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1 | INTRODUCTION

A Bingham plastic is a material that as a solid at lower shear stress but flows with a constant viscosity
when larger shear stress is applied [4]. Fresh concrete, dough, blood in the capillaries, muds, toothpaste,
and ketchup are a few examples of such materials [7]. These applications motivate researchers from
several fields and industries to study their behavior, their mathematical formulations and properties,
and to develop software to perform simulations [5].

The governing equation of Bingham plastics is given by

—divt+Vp =f
V-u =0

ey
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in a bounded and connected domain Q ¢ RY, d = 2, 3. Here, 7 is the u is the fluid velocity and p is
the pressure.

The change in the behavior of Bingham plastic occurs after the applied stress 7 exceeds a certain
threshold called the yield stress, which is denoted by z,. Du = %[VDu + VDu'] is strain rate tensor

defined as a symmetric part of velocity gradient and |Du| = 4/Du : Du is the Frobenius norm of
Du. If |Du| # 0, then |t| = |2uDu + rslg—zll > 7, and so Bingham plastic behaves a as fluid and the
equations describing the flow of a Bingham plastic are given by

—div(gDu)+ Vp =f,
V-u =0,

@

TS

where ji =2u + Dl
are the plastic viscosity 4 > 0 and the yield stress 7z, > 0,

On the other hand, if |Du| = 0, then |7| < 7, and so Bingham plastic behaves as solid material, and
the Equation (1) is not valid. Hence, the domain of Bingham plastics can be split into two subdomains,
determined by relationship = and 7y, and this relation can be rewritten as

is the shear-dependent viscosity with given problem dependent constants which

b 0 for |7| < 7, (rigid region : Q,),
u =
(1 - ﬁ> £ for || > 7, (fluid region : Q).

In the fluid region €, Bingham plastics behave like a fluid, and the Equations (1) turn into (2) and
they can be viewed as a generalization of the Stokes equations having a shear-dependent viscosity /.
In the case of no yield stress; that is, 7y = 0, (1) reduces exactly to Stokes equations with constant
viscosity p. In the rigid (or plug) region €,, Bingham plastics behave like a solid, Equation (1) cannot
describe the any motion of the solid material.

There are two major difficulties associated with solving the Bingham equations: the interface
between the rigid and fluid regions is not known a priori, and j becomes singular in the rigid region
since |Du| = 0. There are two main approaches to handle these difficulties. One is to reformulate
the problem as a variational inequality [9,13] and to use either operator splitting methods [7,17,30]
or an augmented Lagrangian approach [14,37]. The other is to introduce regularization for z, which
circumvents both issues but introduces a consistency error. The most common types of regulariza-
tion are proposed by Papanastasiou [25] and Bercovier—Engelmann [3], but other types have been
considered [22,33].

We consider the Bercovier—-Engelman regularization, in which |Du| is replaced by |Du|, =
v/ Du : Du + €2 in the shear-dependent viscosity £ in (2), with € denoting the regularization parameter.
This regularized formulation provides one nonsingular system for the entire domain :

—div(2y+ 2 )Du+vp=f,

|Dul, 3)
-V.u=0.

With (3), the entire domain is treated computationally as a single region. The approximated plug region
can be recovered by inspecting regions of high viscosity. However, there is an obvious drawback in that
any regularization affects the accuracy of results due to physical inconsistency. As is known from [15],
the regularized problem (3) provides an approximate solution for non-regularized Bingham problem
(1) which satisfies only

”D(u - unonreg)” < C\/g’
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where u is the solution of (3) and w,,y,. is the solution of (1). Thus not surprisingly, one must choose
small € for good accuracy [8,11,31]. Unfortunately, as we discuss below, small € causes solvers to fail.
The purpose of this article is to propose a method that is both accurate and also robust for small €.

Nonlinear solvers used for solving the regularized Bingham model are typically iterative schemes
of Newton or Picard type, however there are drawbacks with both of these approaches. The issue with
the standard Picard iteration is that convergence is slow and may not be guaranteed, especially as € gets
small [2]. Convergence can be improved by introducing an auxiliary tensor variable as in [2], however
this makes solving the linear systems at each iteration more difficult. Using a Newton iteration instead
of Picard can provide quadratic convergence, but at the expense of more difficult linear system solves
at each iteration. Moreover, Newton’s domain of convergence is not robust with respect to € (see [8]
and numerical results in [15,16]). We note that in general, analytical convergence results for iterative
solvers for regularized Bingham is lacking in the literature.

One aim in this article is to improve the Picard iteration for the regularized Bingham problem (3)
considered in [2] by enhancing it with Anderson acceleration (AA), an extrapolation technique intro-
duced in [1]. AA has recently been used to improve convergence and robustness of nonlinear solvers for
a wide range of problems including various types of flow problems [21,27-29], molecular interaction
[32], and many others for example, [12,18,20,21,35,36]. Hence applying it in this setting seems a natu-
ral next step. Indeed we show herein both theoretically and in numerical tests that AA-enhanced Picard
maintains the Picard iteration’s simplicity but provides it with much better efficiency and robustness,
in particular for small €. For the sake of simplicity of the analysis, we consider homogeneous Dirich-
let boundary condition. However, the extending the analysis to mixed Dirichlet/Neumann boundary
problems is straightforward.

In addition to the study of nonlinear solvers, we will also consider the accuracy of a standard mixed
finite element approximation of the regularized Bingham equations. While some results exist in the
literature for related variational inequality formulations [9,13] and particular low order stabilized ele-
ments [10,19], there seems to be not much done for general mixed finite element approximations. This
may be due to the difficulty in solving the system resulting from standard mixed methods as conven-
tional nonlinear solvers will not converge for even moderately small € [2]. Here, AA is seen to be an
enabling technology as the solver now remains robust for small €. Hence, for completeness, we include
a spatial convergence analysis for mixed finite elements applied to the regularized Bingham equations.
We find the expected result that optimal convergence can be obtained but is inversely dependent on &,
but we also find that suboptimal convergence (by one order) can be obtained that is independent of €.
With very small ¢, it is the latter result that is expected in practice and in our numerical tests we do
not see any significant negative scaling with &.

This article is arranged as follows: Section 2 provides notation and mathematical preliminaries on
the finite element discretization and AA. Section 3 presents the Picard iteration to solve the regularized
Bingham equations and proves properties of the associated fixed point solution operator. Then, we
give an acceleration result for AA applied to a Picard iteration. In Section 4, we provide the results of
several numerical tests, which demonstrate a significant positive impact of AA on the convergence.
Finally, we provide convergence analysis the finite element discretization of the regularized Bingham
equations, to support the numerical results in Section 4 which indicate no negative scaling with ¢.

2 | MATHEMATICAL PRELIMINARIES

We consider a domain Q C R? (d = 2, 3) which is polygonal for d = 2 or polyhedral for
d = 3 (or 0Q € C%!). The notation ||-|| and (-, -) will be used to denote the L?(Q) norm and inner
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product. The H*(Q) seminorm will be denoted by |- |¢. We use boldface letters for vector-valued
functions.
The natural velocity and pressure spaces for the Bingham equations are given by

X 1= (H) Q) = {(ve L*(Q)" : Vv e L*(Q)™? and v = 0 on 0Q},
Q :=L}Q) ={qgel*Q): /q dx = 0}.
Q
The Poincaré—Friedrichs’ inequality is known to hold in X: For every u € X,
Ivll < CrlIVvIl,

where Cr constant depending on the size of Q. Also, we define the divergence-free vector function
space by

Vi={veX: (V-v,q)=0Vqe Q).

From the vector identities 2divD = A+ VV-and VV- = A + V X V X V applying integration by parts
one gets the following Korn type inequalities

IVvll < CillDvl],

for all v e X.
The weak formulation of (3) can be written as follows: find u € X and p € Q such that

2u(Du, DV) + 7, (ﬂ,l)v) — (Vv =),

Dul, 0)
(g, V-u) =0.

Existence and the uniqueness of solutions can be proven by the Browder—Minty method of strictly
monotone operators [6], forany e > O and f € H 1) [2].

Remark 2.1. While the well-posedness of the system holds for any fixed € > 0, as € goes
to zero, the bounds used for regularity and uniqueness blow up [2] and there is no rigorous
study to extend the results in [2] to the limit case of € = 0. Still, the well-posedness of the
unregularized system holds in 2D [9,11] and in 3D existence is known but uniqueness is
seemingly an open problem [9], these results are proved with different techniques, which
suggests a potential gap in the known analysis for Bingham.

2.1 | Discretization Preliminaries

For the discrete setting, we assume a regular conforming triangulation z;(£2) with maximum element
diameter h. Let (Xj, Qn) C (X, Q) be pair of discrete velocity-pressure spaces satisfying the LBB
condition: there exists a constant f, independent of / satisfying

inf sup Y Vidn) 5 g (5)
9€0, vex, lgnllllVVal|

For simplicity, we assume X;, = X ﬂ Py(zy) and Q, = Q ﬂ P,(z;), however, the analysis that follows
can be applied to any inf-sup stable pair with only minor modifications.
The space for discrete divergence free functions is

Vi i={veX, : (V-vy,q)=0Vq, € Qp}.
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We assume the mesh is sufficiently regular for the inverse inequality to hold: there exists a constant C
such that for all v, € X},

Vvl < Ch™'vall, (6)

and with this and the LBB assumption, we assume interpolation operator I, : H'(Q) — V), satisfying
forallveV,

IV = WL < ChH V],
IV = L(v)Il < CR*[V]s51.
We recall the following discrete Sobolve inequality in Q C R? (see [6]),
IVallzs@ < €A+ [In D2 VV4| Vv € X, )

and for Q ¢ R? and a quasi-uniform triangulation of Q, it follows from an Agmon’s inquality and a
standard inverse estimate [6] that

IVallz=@ < CHY2| Vv, || Vv € X, (8)

where C is positive constant and independent of 4.

2.2 | Finite element discretization of regularized Bingham equations

In this section, we present a FEM scheme for regularized Bingham equations (3). First, we define the
FEM scheme as follows: Find (uy, ¢) € (X, Qy) such that

2u(Duy, Dvy) + 7 < DVh) - @Pr V- vp) =, vp),

(gn, V-up) =0,

IDI

©))

for all (vi, gn) € X, On).
The scheme (9) restricted to discretely divergence-free function space V), for velocity reads: Find
u;, € V,, such that for all v, € V,,

ae(uy, vy) = 2u(Duy, Dvy) + 74 < Du,

Dy’ Dvh> = (£, vy). (10)

We note due to the assumed LBB condition that (9) and (10) are equivalent.

The well-posedness of scheme (10) follows the same as the well-posedness proof in [2] for the
analogous variational formulation posed in V instead of V},. The key steps rely on monotonicity which
can be shown as follows:

as (W, uy — V) — ag(vp,u, — vy)

Dllh - DVh 1 1
= [ 2u|Duj, — Dv,|* + 7. ( + ( - ) Dvh> : (Duy, — Dvy)
/Q ’ |Duh|£ |Duh|£ |DVh|e

/ 2u|Duy, — D, + <|Duh Dy, |2 = 1PUle = IDVile -y, — Dvh)>
|D nle | Dy,
an
> /2;4|Duh —DvilP+ —= (|Duy = Dy, 2 = 122 =DVhl o (D, — Dy
o |Duy |, |Dvy ¢

> 2ul|Duy, — Dv, |1,
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where ||Dv,|7!Dv;,| < 1. The Browder-Minty theorem then guarantees existence and uniqueness of
the solution.

2.3 | Anderson acceleration

Anderson acceleration (AA) is an extrapolation technique that is used to improve convergence of
fixed-point iterations. Consider a fixed-point operator g : ¥ — Y where Y is a normed vector space.
The AA procedure is stated in the following algorithm: Denote w; = g(xj_1) — xj_ as the nonlinear
residual, also sometimes referred to as the update step.

Algorithm 2.1 (Anderson acceleration with depth m and damping factors fy).
Step 0: Choose xy € Y.
Step 1: Find wi € Y such that wy = g(xo) — xo where g(xo) = x1. Set x| = xo + wi.
Step k: Fork = 2,3, ... Set my = min{k — 1, m}.
[a.] Find wy = g(xy-1) — Xk—1-
[b.] Solve the minimization problem for the Anderson coefficients {a b= mk

k-1
{a]]f}fjrlnk =argmin|||{ 1 - Z a]’-‘ wi + Z (x;‘wj . (12)
J=k—=my J=k—=my Y
[c.] For damping factor 0 < f; < 1, set
xk—(l—Zak)xk1+ Zax,1+ﬁk (I—Zak)wk+ Zaw, . (13)
J=k—my J=k—my, Jj=k—my,

The m = 0 case is equivalent to the fixed point iteration without acceleration. To understand how
AA improves convergence, define matrices Ej and Fy, whose columns are the consecutive differences
between iterates and residuals, respectively.

E, = (ek_1 Cp—2 ... ek_mk) , € = Xj — Xj—1 (14)

Fr 1= (ke = wicDWiet = W) oo Wikomgtd — Wiem,) ) - (15)
Then defining y* = argmin, cg. |[wx — Fiy|ly, the update step (2.11) can be written as
Xt = Xpe1 — Piwk — (Ex + BF)y* = xi_y + fwt,

where w{ = wy — F wr* and Xg_| = Xp—1 — Ej_17* are the averages corresponding to the solution from
the optimization problem. The optimization gain factor 8, may be defined by

Wil = Ocliwill.

As shown in the recent theory proposed in [26,27], the gain factor 6 is the key to acceleration.
The next two assumptions from [26] provide sufficient conditions on the fixed point operator g for
the acceleration results developed therein to hold.

Assumption 2.1. Assume g € C!(Y) has a fixed point x* in ¥, and there are positive
constants Cy and C; with

llg’@)|ly < Co forall x € Y, and
g’ x) — &My < Cillx = ylly forall x,y € Y.
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Assumption 2.2. Assume there is a constant ¢ > 0 for which the differences between
consecutive residuals and iterates satisfy

[Wie1 —willy 2 ollxx — x1lly, k=1, (16)

Assumption 2.1 describes properties of the underlying fixed-point operator. Both parts of this
assumption will be verified for the Picard fixed-point operator for this problem in the analysis that
follows. Assumption 2.2 is harder to verify for this problem. It is globally satisfied for instance if g is
contractive, which is generally not the case here, or locally if the Jacobian of g can be shown not to
degenerate in the vicinity of a solution, as discussed in [26]. On the other hand, (16) can be checked
at each iteration as it only involves the differences between iterates and update steps that have already
been computed. Assumption 2.2 can then be enforced for instance by the following safeguarding strat-
egy: given some chosen ¢ > 0, on any step for which (16) is not satisfied with o = o, the next iterate
can be given by the simple fixed-point iteration, after which AA can be restarted. We found it was not
necessary to implement this strategy here, however. We demonstrate this in Section 4, where we cal-
culate the ratio ||wg4+1 — wi||y/|lxx — xx—1||x using varying fixed m on a benchmark problems and find
o bounded well above 0.

Under Assumptions 2.1 and 2.2, the following result summarized from [26], produces a one-step
bound on the residual ||wy]|| in terms of the previous residual |[wy]|.

Theorem 2.1 (Pollock et al., 2021). Let Assumptions 2.1 and 2.2 hold, and suppose the
direction sines between each column i of F; defined by (14) and the subspace spanned
by the preceding columns satisfy | sin(fj;, span {fj1, ... .ficiPD| > ¢ > 0, forj = k —

My, ... ,k— 1. Then the residual wi.1 = g(xi) — xi from Algorithm 2.1 (depth m) satisfies
the following bound.
CCiy\/1 - 6?
it < Ihwell (861 = B + Co) + = ( llwill @)
k-1
£2 Ge=m lwall BO + 1 [, || 1O ) ) (a7)
n=k—m;+1

where each h(0;) < C4/1 — 9]-2 + B;0;, and C depends on c, and the implied upper bound
on the direction cosines.

In this estimate, 6 is the gain from the optimization problem, and it determines the relative scalings
of the contributions from the lower and higher order terms. The lower order terms are multiplied by
6y, and the higher-order terms are multiplied by /1 — 67. While this bound does not guarantee global
convergence, it does establish how AA improves the first order term at the cost of adding higher-order
terms to the residual expansion at each step. For contractive problems, this additionally shows local
convergence with an improved rate in comparison to the original fixed-point iteration. If close to the
root (so higher order terms are negligible), it shows AA will improve the convergence rate by the
scaling factor 6, which can change at each step.

3 | ACCELERATION OF THE REGULARIZED BINGHAM PICARD
ITERATION

In this section, we present some properties of the Picard iteration to solve (3) and its associated fixed
point function. We then use these properties to apply convergence and acceleration theory for AA to
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this iteration. Given u® € V,, for k = 1,2, ..., find u* € V,, such that

2u(Duk, Dv) + 7, <%,DV) —(fv), VeV, (18)

The convergence analysis of this Picard iteration for (3) is given in [2].

3.1 | Solution operator G corresponding to the Picard iteration

In this subsection, we study some properties of the solution operator of the linearized problem of the
form of (18).
Let f € H™'(Q) and u € V,, be given. Consider the problem of finding @i € V;, such that

2u(Dii, DV) + 7, (%,DV) =(fv), WEV, (19)

In continuous case, well-posedness and convergence analysis of the solution of Picard iteration of (3)
is presented in [2]. In discrete setting, well-posedness can be proven by following these same steps.

Lemma 3.1. For f € H'(Q) and u € V,, (19) is well-posed and the solution satisfies
the bound

IVl < uIfll-i. (20)

Proof. Assume a solution exists, and choose v = @t € V. Then, using the dual norm on
Vi, we get

~ ~ -~ —1/2 £ - -
ull VA < 2ulIDi|1* < 2u)|Da1? + 7 [l Duls 2 Da|? = (£ 8) < [Ifl|-1 |V,

which shows (20). This bound is sufficient to imply uniqueness since the system is linear,
and since it is also finite dimensional, existence follows from uniqueness. ]

Definition 3.1. Define G : V,, — V,, to be the solution operator of (19). That is,
i = G(u).

By Lemma 3.1, (19) is well-posed, so G is well defined. Thus, the iteration (18) can now be written
as
uk+1 — G(uk).

3.2 | Lipschitz continuity and differentiability of G

In this subsection, we prove properties of G which are used to show convergence of the AA Picard
iteration for (10) via Theorem 2.1. First, to prove that G satisfies the first part of Assumptions 2.1, we
show that G is Lipschitz continuous, G’ exists and is the Fréchet derivative of G. Then, by showing G
is Lipschitz continuously differentiable, we prove that G satisfies the second part of Assumptions 2.1.
The satisfaction of both properties allows us to establish convergence of the AA Picard iteration for
(18). We begin with Lipschitz continuity of G.

Lemma 3.2. For any u,w € V;, we have

IDG(w) — DG(W)|| < Cq||Dw — Du]|, 2D

S+ nhph2u3 2, \ /2 . Sch3 e, \ V2
where Cg = <ng ] n;l) L ““) in 2D, and Cg = (w%;l”““) in 3D.
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Remark 3.1. This constant is quite large, but it holds globally and also we make no
assumptions on the data (i.e., no assumption that g is large). In terms of representing a
contraction number, we believe this to be a pessimistic bound. While negative scalings
with & and € are observed in our tests and in [2], the negative scalings are much milder
than these. It appears to be an open problem to show the existence of a region (i.e., u close
enough to w) where Cg < 1, without excessive restrictions on the data and mesh size.

Proof. Letu,w € V;, and G(u) = @ and G(w) = w. Then,

2ﬂ(DG(u),Dv)+T$(fg:f,/)v) = (£,v), 22)
2M(DG(w),Dv)+n(fg;t>,0v> = (f,v). (23)

Subtracting (23) from (22), then adding and subtracting % from the first argument in
the second term, we get ’

2u(DG(u) — DG(W), DV) + 7, (# (DG(u) — DG(W)) ,Dv)

\Dul
‘ (24)
1 1 _
+% (( iDul, _ IDwl, ) DG(W)’DV) =0.
Choosing v = G(u) — G(w) gives
2ullDG() — DGW)|I* + 7| |Dul;*(DG(w) -~ DG(wW))|1?
X . (25)
S (( - ) DG(w), DG(u) — DG(W)) ,

and then using reverse triangle and Holder’s inequalities, noting that |||Du|z!||«@) <
£~1, exploiting discrete Sobolev and inverse inequalities, (20) and Young’s inequality, we
obtain in 2D that

1 1
'—‘L’_Y << Dul. - Dwl. > DG(w), DG(u) — DG(W)>'

|Dw — Du|
<t [ o IDGW)| |DG(u) — DG(W)|
-/Q |Du|c|Dw|,

< 7,6 2C( + | A 2h @Il -1 |DW — Du|| || |Dulz /> (DG(u) — DG(w))||

5_3C1+1hh_2_2f2 _
< o AL b — DulP + 2,1l 1wl (DG - DG

So, combining the bound for left hand side term and dividing each side by 2y give
7,62 C(1 + | Inh)h~>p||f]2

IDG(w) — DGW)||> < s HIDw — Dul?.
Then, by taking the square roots of both sides, we get (21). For the 3D case, we use inverse
inequality (8) instead of (7) to obtain the result. [

Next, we show that G is Lipschitz Fréchet differentiable. We begin by defining the operator G,
and then show it is the Fréchet derivative operator of G.

Definition 3.2. Given u € V,, define an operator G'(u;-) : V, — V, by G'(u;h)
satisfying for allh € V,

2u(DG'(u: h), D) + 7, (DIGL;L‘T‘” , Dv> =1 (?;ﬁhDG(u), DV> . (26)
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Now, we need to show G’ is the Jacobian matrix of G at u by the following lemma. To show this,
first we need to prove G’ in definition (3.2) is well defined.

Lemma 3.3. The operator G' in Definition (3.2) is well-defined for all u,h € V;, such
that

IDG'(u; h)|| < CqlIDh, 27)

where Cg = Cg,, on Q C R2, and Cg = Cg,, onQ C R3.

Proof. The proof of Lemma 3.3 can be done by following same steps as in the proof of
Lemma 3.2. Since (26) is linear and finite dimensional, (27) is sufficient to say that the
(26) is well-posed. Thus, G’ is well-defined and uniformly bounded over Vj, since the
bound is independent of u. =

Next, we show that G’ is the Fréchet derivative operator of G. That is, given u € V, there exists
some constant F such that for any h € V,,

ID(G(u + h) — G(u) - G'(w; h)|| < F||Dh|1>.

Lemma 3.4. For arbitrary u € Vy, and sufficiently small h € V,,, the bound

1/2
| Dh|?

(28)

IDG(u +h) — DG(u) — DG'(w; h)|| < (7,C(1 + [InADh 2™ (CE + e 272 |If]I%)))

holds, which implies G is Fréchet differentiable on Vy,.

Proof. Set 8 = G(u+ h) — G(u) — G’(u; h) for notational ease. To construct the left hand
side of the inequality above, we begin with the following equations: for any u,h € V;,

2u(DG(u + h), DY) + 7, ( Dot ,Dv) = (£, v). (29)

Subtracting (22) and (26) from (29), we obtain

DGu+h) DG() DG'(u;h) Du: Dh
|[Dw+h)|,  [Dul, [Dul, |Dul?

2u(Dg, Dv) + 7, < DG(u),DV) =0. (30)
DG(u+h)

Du|,
side of (30) and then choosing v = g gives

N - - DG(u+h) DGu+h) Du: Dh
2ullDg|* + .|| [P /*Dg|)? = -, - -
ul| D" + 7]l |D(w)|. gll T \D(u+ h)l, Dul., Dul2

Adding and subtracting

from the first argument in the second term on the left hand

DG(u), Dg> .

Du:Dh
Dul?
side of (30) and rearranging terms gives

Adding and subtracting DG(u+h) from the first argument of the term on right hand

- - N Du : Dh -
2u|lDE| + 7| |DW)|c *Dg|)* = - 7, <|12)u|3 (DG(u + h) —DG(u)),Dg>

1 1 Du : Dh »
_ - - DG(u+h),Dg | .
i <<|D<u+h>|g Dul, _ |Dul? > b g>
31)

We now estimate the right hand side terms of (31). For the first one, we use Lemma 3.2,
that |||Du|!||1=@) < €' and |||Du|7'D(u)||1~@) < 1, and Holder’s, discrete Sobolev,
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inverse and Young’s inequalities to obtain

(Du : Dh
(B0 On

Daig PG+ - DG(w) ,Dg) ‘
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Dul||Dh
/ | |111J”| IDUlIDRL 1w + ) — DG |Dg|

< 1,62 DG(u + h) — DG(W)|| 0y | Dh]| || Dul; />

< 1,e32C(1 + | Inh)'?h7Y||DG(u + h) — DG(u)||||Dh|||Du|

Dl
- pg|

|Dh|?|DG(u + h)||Dg| + higher-order terms

3 1 3|Duf?
=t | 7 3+ 5
|[Dulz  |Dul?

< zg—S/ZC(l + [InaD"20~" = Ifl|-1 || Dh|? |||Du|
<22, C(1 + | In AR~ |f]12, || Dh* + |||D |e

< 7,e7/2C(1 + | Inhl) /2™ Cgl|Dh||Dulz Dl
72* £3C( + [ Inh)A~2CL|| Dh|* + ||Du|_1/2Dg||2.

For the second term in (31), we proceed similar to the first term but utilize the Taylor f
expansion E
1 1 Du:Dh 1 1 Du : Du ) . "

= + = + Dh| + higher-order terms, £
IDu+h)l.  [Dul, * |Duf} ( Dul 7 D} ) DRI+ hig §
to get ;
— L __ L _DuiDh)pGyih),pg s
|[D(u+h)[,  |Dul, |Dul; 5

1 1  Du:Dh %

< - - DG(u+ h)||Dg z
Dul. Dul? IDG( )1Dg| :

_l/zDgH + higher-order terms

-1/2

Dg|1*.

In the third line in the above inequality string we account for higher order terms by increas-
ing the % coefficient from the Taylor expansion to be %, since the higher-order terms are
higher order in h which we can consider arbitrarily small in this context, while the mesh
and e are considered fixed.

Combining the bounds above, we obtain

IDEI* < 7,C(A + | InhDh~2e (C& + e u 2 IfII12, ) IIDRII*.

So, by taking the square roots of both sides and applying the definition of g, we get

1/2
| Dh|?,

(32)

IDG(u +h) — DG(u) — DG'(uw; h)|| < (7,C(1 + | InhDh~2e™> (CL + e u~2|If]I%)))

which shows Fréchet differentiability of G at u. Since (32) holds for arbitrary u, G is

Fréchet differentiable on V. In the case of Q C R3, we apply inverse inequality (8) instead

of (7), and the rest of the steps are identical. n
We now show G’ is Lipschitz continuous over V.

Lemma 3.5. G is Lipschitz continuously differentiable on Vy, such that for allu,s,h € V,,

ID (G'(u+ h;s) — G'(u;9)) || < CollDs|ll|Dhl,
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where there exist a constant Cg = Cp~'7,e72(1 + | Inh])!/2h™! (Cg + ™' (1 + | Inh|)!/?
R~ = Ifl|-1) in 2D and Cg = Cu'ze2h=3/% (Cg + e 'h=3/2 |||y ) in 3D, and Cg
is defined in Lemma (3.2).

2
3
2
%
R
5
K3
0
]
S
B
@
g
Z
£
g
2
g
g
&
=
B

Proof. By the definition of G, the following equations hold

! . .
2u(DG' (u;s), DY) + 7, (DG(“’S),DV> +z (1)“"3)SDG(u),Dv =0, 33)
|Dll|£ |Du|e

' . .
2,u(DG'(u +h;s), Dv) + 7, <DG(u+h,s) DV) + 7 <D(“+h)D

S _
DUt Dt b DG(u+h),DV> =0,
(34)

for allu,s,h,v e V.
Set e = G'(u + h;s) — G'(u; s), and then by subtracting (33) from (34), we get

/ . ! 3y~
2u(De, Dv) + 7, <DG (u+h;s) DG'(u;s) DV)

|D(u + h)|. [D(w)|
Du : Ds

) <D(u+h) : DSDG(u+h) - Duil

D D =0.
\D(u+h)[2 o, V) 0

By adding and subtracting % from the first argument in second term on left hand

side and choosing u = e, we obtain

2u|Dell? < 2u]|Dell? + 7| |D@ + h)|- /> De||?
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. <D(u+h):Ds Du : Ds

D+ e g PO De)

-7 << 1 1 >DG’(u;s),De> .
[Du+h)|, [D@),

Noting that ||Du|cDu| < 1 and |||Du|z!||1«@) < €', applying Holder’s, discrete Sobolev
and inverse inequalities, (20) and (21), we get

_z, <D(“ 0 DS G+ hy - DS Gy, De>
|D(u+h)[2 [D(w)z
<z / Du DS G + hype + 222 DS G + hype — 22 P8 pGype
o D]z |D(u + h)[¢ [D(u)|z
Du : Ds Dh : Ds
<z, [ P25 (pGau +hy - DG@)De + 20D G + mype
/Q |D(w)|? |D(u +h)|2

< 7, || Ds|| 1= [IDG(u + h) — DG(w)||[| De||
+ 7,6 ||Dh|| 1o || Ds|l =) | DG(u + h) ||| Del|
< 7, 2C(1 + | Ink])'/*h~' Cs||Ds|||| Dhl]| De]|

+2e > C(1+ | In kA= |Ifll-1 | DRIIDs (| Del.
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Using reverse triangle and Holder’s inequalities, noting that |||Dul;!||;«@ < €71,

exploiting discrete Sobolev and inverse inequalities, we obtain

1 1 .
’ o <( D+ h), ~ Dul, > peiw s)’De>

< Ts/ < |Dh >DG’(u; s), De
o \ |D@)|¢|D(u + h)|,
< 7,6 ?||Dh| () IDG’ (u; s)|| | Del|

< 7,67 C6C(1 + | In )/~ || Dh||| Ds|[|| Dell.
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By combining the above bounds, we get
IDell < Cu're (1 + | In k) 2h™" (Co + 7' (1 + | In DA~ w!|If]| 1) 1D [|Ds|
= Cg||Dhl|||Ds||.
In this way, G'(u;-) is Lipschitz continuous with constant C‘G. Since the bound holds

for arbitrary u, we have that G is Lipschitz continuously differentiable on V, with
constant CG. n

3.3 | Anderson Accelerated Picard algorithm for regularized Bingham Equations (3)

In previous subsection, we proved that the solution operator G of Picard iteration (18) of regularized
Bingham equation satisfies Assumption 2.1. To apply the one-step residual bound of [26], we further
require satisfaction of Assumption 2.2; namely, there a constant ¢ > 0 such that for any u,s € V

IF(w) — F(s)l| 2 ofju—s]|, (35)
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where F(u) := G(u) —u.

As discussed in subSection 2.3, condition (35) can be monitored and enforced by a safeguard-
ing strategy for a given ¢ > 0, although as shown in Section 4, it was not necessary to do so here.
Under these assumptions and with Lemmas 3.2,3.3,3.5, and 28, Theorem 2.1 shows the convergence
of Algorithm 2.1 where G is the solution operator of the Picard iteration for regularized Bingham

equation.

Theorem 3.1. Suppose (35) holds for some ¢ > 0, and suppose the direction sines
between each column i of F; defined by (14) and the subspace spanned by the preceding
columns satisfy | sin(f;;, span {fj1, ... .fii-1 Dl = ¢s >0, forj=k—my, ... ,k—1. Then,
for any step k > m the following bound holds for the AA Picard residual

CCsy/1-6}
Iwietl] < il (61 = B + o) + == lwell A0
k-1
#2 Ce=m lwall A0 + 1 [, || 1B ) ) (36)
n=k—ny+1

for residual wy, where 0y, is the gain from the optimization problem.

Remark 3.2. The direction sine condition in the hypotheses of Theorem 3.1 can be directly
enforced by the method described in [26, section 5.1].

Remark 3.3. While Cg is not proven above to be less than 1 (see Remark 5.1), numerical
tests below and in [2] suggests this is typically the case, at least when near the solution.
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So even though Theorem 3.1 does not guarantee global convergence, it does show that
AA reduces the first order term in term in the residual expansion in comparison to the
corresponding fixed-point iteration, specifically (1 — g + Cgpfi) to 0 (1 — fr + CsBr),
where 6y, is the gain of the step k optimization problem. Thus, in practice, a good initial
guess is expected to both keep C¢ small and make the higher terms negligible, which in
turn makes AA improve convergence.

4 | NUMERICAL EXPERIMENTS

This section presents the results of three numerical tests that illustrate the theory above for the Ander-
son Accelerated Picard iteration for regularized Bingham equations. First, we show the predicted
convergence rate of the finite element discretization, and the positive impact of AA on convergence
by the flow between two parallel plates, which is one of the few analytical test cases for the Bingham
equations. Then, we test Anderson Accelerated Picard iteration for regularized Bingham fluid flow on
2D and 3D driven cavity problems. Our results are in good agreement with those found in [23,24]. In
all numerical tests, AA provides significantly faster convergence than Picard without AA, especially
with small €. For all of our tests, we use uy = 0 in the interior but also satisfying the boundary con-
ditions of the problem. We would expect somewhat better convergence if a better uy were chosen, for
example, the solution of the analogous problem with similar e, such as in a continuation method. How-
ever, with AA, initial guesses that are sufficiently bad may not perform well since the analysis suggests
the higher order terms in the residual may prevent convergence.

4.1 | Analytical test

The flow between two parallel plates is one of the known analytical test cases for Bingham problem.
In two dimensions, the analytical solutions of Stokes type Bingham equations are given by

-2 - -26-27. 0<y<l-z
up = é(1—2fs)2, %—TsSyS%+rs,u2:0, and p = 0. (37)
Ha-2ep2-@y-2e-17], L4z <y<l

The rigid (or plug) region {y € Q |% -7, <y< % + 7, } is the kernel moving at constant velocity. We
choose 7, = 0.3. The discretization uses (P,, P;) Taylor-Hood elements on a uniform triangular mesh.
We take u = 1 and external force f = 0, and perform Anderson accelerated Picard iterations with depth
m = 0 (no acceleration), 1,2, 5, and 10, and will test both convergence rates for (9) and efficiency of
AA Picard solver. The initial guess is ug = 0 except satisfying Dirichlet boundary conditions defined
by the true analytical solution in (37).

We display the number of iterations that reduce the relative residual of the velocity by 10~ for
varying depths m, mesh sizes i and regularization parameters € in Table 1. When € — 0 and/or the
mesh width decreases, the required number of iterations increases, as we expect from our analysis
in the previous section. Also, AA provides better convergence results as we increase the depth. This
improvement is more apparent in lower values of €, which is required to obtain an accurate solution.
In the case of m = 0 (without AA), the numbers of iterations are substantially higher; however, with
AA they decrease significantly. The fastest convergence is obtained with depths m = 5 and 10, as seen
in Table 1.
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TABLE 1 Number of Anderson accelerated Picard iterations required for reducing the residual by 10~® with different depths
for regularized Bingham equation when z, = 0.3 and /4 and ¢ is changing in analytical test case.

lhe > 10! 102 102 10* 1078 107! 102 102 10* 107°
m=0 m=1
1/8 10 34 42 88 101 8 22 24 31 43
1/16 10 34 80 171 274 9 21 36 60 94
1/32 11 27 98 258 296 9 21 45 95 114
1/64 11 35 108 184 184 9 21 46 57 49
1/128 11 35 106 306 408 9 21 43 71 69
m=5 m= 10
1/8 7 14 16 22 26 7 14 16 21 25
1/16 7 15 24 30 33 7 15 23 28 33
1/32 8 16 29 36 41 8 15 25 32 34
1/64 8 16 29 34 40 8 15 26 34 39
1/128 8 16 29 48 50 8 15 26 39 51

4.2 | 2D driven cavity

We next test Anderson accelerated Picard iteration for the regularized Bingham equations on a
lid-driven cavity problem. The domain for the problem is the unit square Q = (0, 1)> and we impose
Dirichlet boundary conditions by u|,=; = (1,0)” and u = 0 everywhere else. The discretization uses
(P2, P) Taylor-Hood elements on a uniform mesh. Initial guess uy satisfies the boundary condition of
the problem and uy = 0 elsewhere in the domain.

Figure 1 shows the number of iterations of the Anderson accelerated Picard iteration with varying
depth m and regularization parameter £, when 7 = 1/64 and yield stresses 7, = 2 and 7, = 5. Iterations
were run until the relative L2 velocity residual fell below 1078, As & becomes smaller, the required
number of iterations increases. As illustrated in Figure 1, the original (unaccelerated) Picard method
converges very slowly compared to the accelerated method. However, with AA, convergence is much
faster. While larger m gives faster convergence, we note there is only modest gain past m = 1 in this
test.

Figure 2 shows the growth of rigid region (white) as the value of yield stress 7, increases. When the
rigid region enlarges, the yielded (fluid) region (shaded) remains close to the lid. These results agree
well with those in [3,23,24].

4.3 | 3D driven cavity

We now test the Anderson accelerated Picard iteration for regularized Bingham equations on the 3D
lid-driven cavity. In this problem, the domain is the unit cube, there is no forcing (f = 0), and homo-
geneous Dirichlet boundary conditions are enforced on all walls and u = (1,0, 0)” on the moving lid.
We compute with (P;, P1) elements on Alfeld split tetrahedral meshes with 134,457 total degrees of
freedom (dof) weighted towards the boundary using a Chebychev grid before tetrahedralizing. We test
our scheme with varying m, regularization parameter €, and yield stress ;. Initial guess ug satisfies the
boundary condition of the problem and uy = 0 everywhere else in the domain. Our stopping criteria
is residual ||D(u; — G(uy))|| < 107 or 500 iterations.

Figure 3 illustrates the positive impact of AA on convergence for different value of 7, and m. As 7
increases, number of iterations grows since the rigid zones become larger and may completely block
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FIGURE1 Convergence for different e = 107", 107*, 107 (left to right), when z, = 2 (top) and 7, = 5 (bottom) with varying m.
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FIGURE 2  Growth of the rigid region (white) for lid-driven flow by 7, = 2,5, 10 (left to right) when & = 1/64 and £ = 107*.

the flow when 7; is sufficiently large. For smaller values of e, more iterations are required; however,
using AA reduces the iteration counts significantly and enables convergence even with larger values
of 7.

In Figure 4, we compare centerline x-velocities when € = 10~ for varying 7, = 1,2,5 and 10
(i.e., growing rigid zones) and obtain good agreement with those found in [34] with P1/P1 stabilized
elements and [24] with a finite difference method.

4.4 | Numerical verification of Assumption 2.2

The application of the AA theory from [26] to the Picard iteration for the regularized Bing-
ham equations relies on the satisfaction of Assumptions 2.1 and 2.2. We analytically verified
Assumption 2.1 in Section 3. Assumption 2.2 is satisfied if the Jacobian of g does not degenerate. To
demonstrate the satisfaction of this assumption, here we calculate the ratio Il o two numer-

ot =ty 1}
ical tests using constant m to show the oy (the minimum of the k through k — my ratios) is bounded
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FIGURE 3 Required number of iterations, velocity residual< 10~, 134,457 dof, 7, = 2 (top) and 7, = 10 (bottom) with
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FIGURE 4 Shown above is the centerline x-velocity plots for the 3D driven cavity simulations for 7, = 1,2, 5 and 10, using

AA Picard iteration for regularized Bingham equation with m = 10 and & = 10™*, 134,457 dof.

A T T T T T T T
_ * m=1
. o m=2
:_237 v m=5 [
5*‘ v ' m=10
- 4 1 4
x v o 4 ¥
3 1 vd o 77 Yva g v i
Ex A oxy v .y ©
= g0 Vagd aV44a99 .o vr . 0% *uX X

Yooxxag,0 V0 q039, 0 6%0308,, 8 xaww ox
0 I I I ki I . I I
0 5 10 15 20 25 30 35 40 45
Iteration k

il

2d lid driven cavity h = 1/64, 7, = 2, € = 107", both with varying m.

_ 3} et ||
. o m=2
¢ B v m=5
:I!xz, . o ¥ v v ' m=10|
= g 4
= 2 o
- o
s} ’ o o v : : 1
Ty ¢ N x ° v
= v * 0 ° e I
= . )

0 . . . . . . . .

0 2 4 6 8 10 12 14 16 18

Iteration k

FIGURE 5 Shown above are ratios of lll‘v;‘*#‘” for (left) the analytical test using 2 = 1/32, 7, = 0.3, ¢ = 107> and (right) for

kU

ASUIIT SUOWIO)) 2ANEAL) [qeardde ) £q PawIaA0S a1e SA[IILE () $asn JO SN 10) KIRIGET AUIUQ A1 UO (SUONIPUOI-PUB-SULI)/ WO K[Im* AIRIQI[aUI[Uo//:sd1Y) SUONIPUO)) PUe SUA], 31 328 *[£70T/L0/01] U0 AIRIqU 2urjuQ A3[IA\ “BPLIOL JO ANSIAATUN AQ 8ZOCT WNU/ZO0 [0 [/10p/wod Aafim- K1eiqriaur[uo//:sdny woiy papeo[umod S ‘€70T ‘978601



POLLOCKET AL. WI LEY 3891

well above 0. Results for the analytical test problem and 2D driven cavity are shown in Figure 5. We
observe that the ratios never get close to 0, and in general get larger for larger m.

5 | CONVERGENCE OF THE FINITE ELEMENT DISCRETIZATION

The convergence analysis of the numerical solutions of regularized Bingham equations by general
mixed FEM does not appear well studied in the literature, and so we include here a convergence analysis
for completeness. First, we establish convergence of the velocity solution of (9) to the velocity of (3).

Theorem 5.1. Let (u, p) be the solution pair of the regularized Bingham problem (3). The
error in the solution uy, to (10) satisfies

. 1/2
IDw—wy)l <u! d inf llp = qull + (3 +3722u72)* D@ - B, (38)
h h

Furthermore, if h is small enough so that |||Du|7' D, (w) — wy)|| < 1, we also have
the velocity error bound

ID@ = w)ll - < u™Vd inf llp = gl + V2UID ~ L) + (26") 1D~ 1|2
h h (39)
Remark 5.1. The velocity error bound (38) is optimal in /& for common choices of mixed
finite elements such as Taylor-Hood and Scott-Vogelius, however it depends inversely on €
which can be small. The bound (39) is independent of € but suboptimal in /4, and it requires
h small enough with respect to £ so that (38) can be invoked to produce |||Du|;' D, (u) —
u,)|| < 1. A sufficient condition on £ to produce this bound is

_ . 0 o 1)2
u! dquelg lp = gull + (3 + 3272 u2) / [[D(u = I,(w)|| < e.
h h

Ife <1, 75,4 ~ O),infy co llp —qnll ~ #*, and ||D(u — I,(w)|| ~ A, this reduces
to h < O(£*/*). We note this is likely not a realizable condition in practice, however it
is only a sufficient (and not necessary) condition that we believe pessimistic, and in our
numerical tests we see no negative scaling with respect to €.

Corollary 5.1. Let (u, p) be the true solution of regularized Bingham problem satisfying
ue HQ(\Vandp € HX(Q) () Q. Then if Xy, Q) = (P2, P) Taylor-Hood elements
are used and h is sufficiently small (see Remark 5.1), the error in velocity satisfies

ID(u — wy)|| < min {Oh), O(Pe™")}. (40)

Ifinstead u € H*(Q) 'V and the (P, Py) mini element is used and h is sufficiently small
(see Remark 5.1), then the bound becomes

ID(u — wy)|| < min {Oh!/?), Ohe™")} . 41)

Proof of Theorem 5.1. First we will prove the bound (38). The true solution (u, p) of the
regularized Bingham problem satisfies (4a) withu € V and v = v;, € V.. Subtracting
(10) from this provides

as(w, vy) — a.(y, vi) — b(p — qn, vi) = 0, (42)
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which can be written as

Du _ Duh
|Dule  |Duyl.’

2u(De, Dvy,) + 7, ( Dvh> -@=qnV-v;) =0, (43)

where the error e = u — uy, is decomposed as e = u — I,(u) + I(u) — w, = n+ ¢, with
I;,(u) the interpolation of u in V;,. First, we utilize the monotonicity of a, to establish the
convergence.

Let’s choose v, = ¢,,, and add and subtract a.(/,(u), ¢,) on right hand side. Then we
get

ae(lh(u)7 ¢h) - (JE(“h, ¢h) = b(p — 4h, ¢h) + aE(Ih(u)’ ¢h) - a&(u’ ¢h)7

Then, the monotonicity of a, provides

2ullDg,|I* < b = qn, ) + ac(Iy(w), ) — ac(u, §,,). (44)

Rewriting (44) by expanding the b and a, forms gives

2 DIy(w) ~ Du
2ullDeylI” < 2#(Dn,D¢h)+fs<|Dlh(u)|£ |Du|£,D¢h>~ 45)

The first term of (45) is bounded by Cauchy-Schwarz, Korn’s and Young’s inequalities.

® =V ) < lIp = alllV -yl < Vallp — aullIVé,ll <CxVdllp = aall 1D, |
3C2u~'d
<K llp — aull” + £ 1D, I”
4 3
The second term is be bounded by Cauchy-Schwarz and Young’s inequalities.

12u(Dn, D) < 2ul|DylllID, 1l < 3ullDnll* + §||D¢h||2.

For the last term of (45), we first add and subtract |DID7(l:1)|
h €

inequality, Holder’s inequality (L® — L? — L?), the upper bound |||D - |z || ;=) < 7! and
[|Du|;'D(u)| < 1, and Young’s inequality to get

Dl(w) _ Du
i <|Dlh<u>|g iDul. " "’h>

, and then apply reverse triangle

Dn
<= (1o o*)
1o ( (ke ~ ou ) Pw0h)
l |DI],(11)|£ |Dll|5

_ D
< ol DL =@ 1Dall 1Dl + 7 / Dal | pyipg, |

o [DIyw)|Dul.
<2z [ Dnll 1Dy

<3 Dnl + S0, 1.

By combining the bounds on all three terms of (45), we obtain

3C2u'd o
1D, II* < Kfllp —aqull*+ (Bu+3t7eu") ||D7l|%.

Then, by taking the square root of each side and using the triangle inequality, the bound
(38) is revealed.
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Next we show the second bound, namely (39). Choose v, = ¢, in (43), and then add

lgz‘l’ from the second term to obtain

and subtract
2ullDg, || pul;"*Dg, |12
ulIDy|I” + z5|[|Dule " "D, ||

_ B Dn B 1 _ )
=2u(Dn, De;,) — 7, <|Du|E’D¢h> Ts << \Dul, _ |Duyl. > DuhsD¢h> +@=qn V- Py
(46)

The first term on the right hand side of (46) is bounded using Cauchy-Schwarz and Young’s
inequalities, by

2u(Dn, Depy) < 2ul| Dll|I Dyl < 24l Dll* + %IID%IIZ-

Under the assumption that  is sufficiently small so that |||Du|z!|D¢, ||| < 1, the second
term of (46) satisfies the bound

D _
T (IDI?I ’D¢h> < =lIDnlll|Dul Dy, || < =11 Dnll-

To bound the third term of (46), let’s first consider

I 1 _ |Dwl.—|Dul, _ |Du,l? - |Duj?
|DU|E |Duh|e |Du|E|Duh|e |Du|E|Duh|E(|Duh|6 + |Dll|5)
< Duy, : Du, — Du : Du
- |Du|£|Duh|E(|Duh|5 + |Dll|5)
_ De(Duy, + Du)
|Du|$|Duh|£(|Duh|£ + |Dll|5).

So the third term of (46) satisfies

Dg, (D D
. << L 1>Duh,D¢h> < rs< ¢,(Du; + D) Du;,,quh)
IDuls IDuhls |Du|£|Duh|£(|Duh|5 + IDuls)

b < Dn(Duy, + Du) Du,.D ¢h>
|Du|£|Duh|£(|Duh|e + |Du|£)

|Dg,||Duy, + Dul|
<, / PullDuy |Du, 1D
Q |Du|£|Duh|£(|Duh|£ + |Du|s)

Dn||Duy, + Du
- / DrllDw, +Dul____ 5 g, |
Q |Du|s|Duh|5(|Duh|£ + |Dll|£)

D 2
STS/| ¢h| +Ts/ |D77| |D¢h|
o |Dulc o |Dul.

-1/2
< ,||1Dul7 > D, |I> + 7| Dnll,

by the triangle inequality, using |||Du|z'Dul|;~) < 1, and assuming / is small enough
so that |||Du|; D¢, || < 1.

The last term of (46) can be bounded by Cauchy-Schwarz, Korn’s and Young’s
inequalities, by

@ —an V¢ < llp— aullllV - 1l < Valip — aullIV,ll < CxVallp — aullID |
< Cyu™dllp = aull® + 1D, 1.
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TABLE 2 H' Errors and Convergence Rates when € = 10’4, 1078,

£ 10~ 1078

hl (1D — up)| Rates [|D(u —wy)|| Rates
1/4 4.7326e—03 - 4.7126e—-03 -

1/8 5.2061e—-03 —0.14 5.3075e—-03 -0.17
1/16 8.7186e—04 2.58 9.3267e—04 2.51
1/32 6.5649¢—04 0.41 6.6056e—04 0.50
1/64 1.8945e—04 1.79 1.4539e—04 2.18
1/128 1.3906e—04 0.45 8.7903e—-05 0.73
1/256 1.1311e—04 0.30 1.2947e—-05 2.76

Putting together the bounds of each term of (46), we obtain
DG, I1> < 20D|1* + 24~ % IDnll + Ciu2dllp = gill*.

Finally, taking square root of each side and using triangle inequality gives (39). [

5.1 | Analytical test for convergence verification

In this subsection, we consider the same analytical test (37) to study spatial convergence of numerical
solution of regularized Bingham equation with the same discretization setting used in Section 4.1
(recall solver tolerance is 107% in the H' norm). All results are obtained by AA enhanced Picard
iteration with depth m = 10, since we don’t observe change in solutions from iterations with different
depths.

Table 2 shows the errors (true solution compared to numerical solution of the regularized model)
and convergence rates for different choices of 4 and & by calculating numerical error in the H' norm.
We note this error includes both numerical error of the computed regularized model to the regularized
model, which we prove above is at most O(h) for small e, as well as the model consistency error, which
is discussed above to be at most O(e'/?). Hence for larger i, we expect numerical error to dominate
but for smaller & we expect model consistency error to dominate once the numerical error is smaller
than the consistency error.

The table shows that for ¢ = 10™*, numerical error dominates until about 4 = 1 /128, where error
no longer decreases with shrinking 4. The rates are very choppy for 42 > 1/128, but are consistent in
the average with O(h). For e = 1078, however, numerical error appears to be dominant for all /’s tested
(again consistent with O(h) in the average), as we see error decreasing significantly from 1/128 to
1/256. Hence for h > 1/64, we see only minor differences in error between the e = 10™* and e = 107%
solutions, but for 4 < 1/128 we observe the e = 107% is better, in fact by a whole order of magnitude
when h = 1/256.

6 | CONCLUSION

We studied herein the acceleration of a Picard iteration to solve a finite element discretization of the reg-
ularized Bingham equations, and spatial convergence of the solution to the discrete nonlinear problem.
We proved that the fixed point operator associated with the Picard iteration for the regularized Bingham
equations satisfies regularity properties which allow the AA theory of [26] to be applied, and thus the
iteration is accelerated through the scaling of its linear convergence rate by the gain factor of the AA
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optimization problem. We demonstrated numerically with three test problems that the Picard iteration
alone may not be an effective solver for the regularized Bingham equations due to the large number
of iterations required, but with AA (and in particular with m > 5), it can be an effective and efficient
solver. For the spatial convergence of the finite element discretization, we showed that optimal conver-
gence in & can be achieved but that it depends inversely on €. We further showed that for 4 sufficiently
small with respect to €, suboptimal convergence in # which is independent of € can also be achieved.
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