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Abstract

This article studies a finite element discretization of the

regularized Bingham equations that describe viscoplastic

flow. An efficient nonlinear solver for the discrete model is

then proposed and analyzed. The solver is based on Ander-

son acceleration (AA) applied to a Picard iteration, and we

show accelerated convergence of the method by applying

AA theory (recently developed by the authors) to the itera-

tion, after showing sufficient smoothness properties of the

associated fixed point operator. Numerical tests of spatial

convergence are provided, as are results of the model for 2D

and 3D driven cavity simulations. For each numerical test,

the proposed nonlinear solver is also tested and shown to be

very effective and robust with respect to the regularization

parameter as it goes to zero.

KEYWORDS

Anderson acceleration, Bingham fluid, fixed-point iteration

1 INTRODUCTION

A Bingham plastic is a material that as a solid at lower shear stress but flows with a constant viscosity

when larger shear stress is applied [4]. Fresh concrete, dough, blood in the capillaries, muds, toothpaste,

and ketchup are a few examples of such materials [7]. These applications motivate researchers from

several fields and industries to study their behavior, their mathematical formulations and properties,

and to develop software to perform simulations [5].

The governing equation of Bingham plastics is given by

− div𝝉 + ∇p = f

∇ ⋅ u = 0
(1)
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in a bounded and connected domain Ω ⊂ R𝑑 , 𝑑 = 2, 3. Here, 𝝉 is the u is the fluid velocity and p is

the pressure.

The change in the behavior of Bingham plastic occurs after the applied stress 𝜏 exceeds a certain

threshold called the yield stress, which is denoted by 𝜏s. Du =
1

2
[∇Du + ∇DuT ] is strain rate tensor

defined as a symmetric part of velocity gradient and |Du| =
√

Du ∶ Du is the Frobenius norm of

Du. If |Du| ≠ 0, then |𝝉| = |2𝜇Du + 𝜏s
Du

|Du| | > 𝜏s and so Bingham plastic behaves a as fluid and the

equations describing the flow of a Bingham plastic are given by

− div (𝜇̂Du) + ∇p = f,

∇ ⋅ u = 0,
(2)

where 𝜇̂ = 2𝜇 +
𝜏s

|Du| is the shear-dependent viscosity with given problem dependent constants which

are the plastic viscosity 𝜇 > 0 and the yield stress 𝜏s ≥ 0,

On the other hand, if |Du| = 0, then |𝝉| ≤ 𝜏s and so Bingham plastic behaves as solid material, and

the Equation (1) is not valid. Hence, the domain of Bingham plastics can be split into two subdomains,

determined by relationship 𝝉 and 𝜏s, and this relation can be rewritten as

Du =

⎧
⎪⎨⎪⎩

0 for |𝝉| ≤ 𝜏s (rigid region ∶ Ωr),(
1 −

𝜏s

|𝝉|
)

𝝉

2𝜇
for |𝝉| > 𝜏s (fluid region ∶ Ωf ).

In the fluid region Ωf , Bingham plastics behave like a fluid, and the Equations (1) turn into (2) and

they can be viewed as a generalization of the Stokes equations having a shear-dependent viscosity 𝜇̂.

In the case of no yield stress; that is, 𝜏s = 0, (1) reduces exactly to Stokes equations with constant

viscosity 𝜇. In the rigid (or plug) region Ωr, Bingham plastics behave like a solid, Equation (1) cannot

describe the any motion of the solid material.

There are two major difficulties associated with solving the Bingham equations: the interface

between the rigid and fluid regions is not known a priori, and 𝜇̂ becomes singular in the rigid region

since |Du| = 0. There are two main approaches to handle these difficulties. One is to reformulate

the problem as a variational inequality [9,13] and to use either operator splitting methods [7,17,30]

or an augmented Lagrangian approach [14,37]. The other is to introduce regularization for 𝝉 , which

circumvents both issues but introduces a consistency error. The most common types of regulariza-

tion are proposed by Papanastasiou [25] and Bercovier–Engelmann [3], but other types have been

considered [22,33].

We consider the Bercovier–Engelman regularization, in which |Du| is replaced by |Du|𝜀 =√
Du ∶ Du + 𝜀2 in the shear-dependent viscosity 𝜇̂ in (2), with 𝜀 denoting the regularization parameter.

This regularized formulation provides one nonsingular system for the entire domain Ω:

− div
(

2𝜇 +
𝜏s

|Du|𝜀

)
Du + ∇p = f,

−∇ ⋅ u = 0.
(3)

With (3), the entire domain is treated computationally as a single region. The approximated plug region

can be recovered by inspecting regions of high viscosity. However, there is an obvious drawback in that

any regularization affects the accuracy of results due to physical inconsistency. As is known from [15],

the regularized problem (3) provides an approximate solution for non-regularized Bingham problem

(1) which satisfies only

||D(u − unonreg)|| ≤ C
√
𝜀,
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where u is the solution of (3) and unonreg is the solution of (1). Thus not surprisingly, one must choose

small 𝜀 for good accuracy [8,11,31]. Unfortunately, as we discuss below, small 𝜀 causes solvers to fail.

The purpose of this article is to propose a method that is both accurate and also robust for small 𝜀.

Nonlinear solvers used for solving the regularized Bingham model are typically iterative schemes

of Newton or Picard type, however there are drawbacks with both of these approaches. The issue with

the standard Picard iteration is that convergence is slow and may not be guaranteed, especially as 𝜀 gets

small [2]. Convergence can be improved by introducing an auxiliary tensor variable as in [2], however

this makes solving the linear systems at each iteration more difficult. Using a Newton iteration instead

of Picard can provide quadratic convergence, but at the expense of more difficult linear system solves

at each iteration. Moreover, Newton’s domain of convergence is not robust with respect to 𝜀 (see [8]

and numerical results in [15,16]). We note that in general, analytical convergence results for iterative

solvers for regularized Bingham is lacking in the literature.

One aim in this article is to improve the Picard iteration for the regularized Bingham problem (3)

considered in [2] by enhancing it with Anderson acceleration (AA), an extrapolation technique intro-

duced in [1]. AA has recently been used to improve convergence and robustness of nonlinear solvers for

a wide range of problems including various types of flow problems [21,27-29], molecular interaction

[32], and many others for example, [12,18,20,21,35,36]. Hence applying it in this setting seems a natu-

ral next step. Indeed we show herein both theoretically and in numerical tests that AA-enhanced Picard

maintains the Picard iteration’s simplicity but provides it with much better efficiency and robustness,

in particular for small 𝜀. For the sake of simplicity of the analysis, we consider homogeneous Dirich-

let boundary condition. However, the extending the analysis to mixed Dirichlet/Neumann boundary

problems is straightforward.

In addition to the study of nonlinear solvers, we will also consider the accuracy of a standard mixed

finite element approximation of the regularized Bingham equations. While some results exist in the

literature for related variational inequality formulations [9,13] and particular low order stabilized ele-

ments [10,19], there seems to be not much done for general mixed finite element approximations. This

may be due to the difficulty in solving the system resulting from standard mixed methods as conven-

tional nonlinear solvers will not converge for even moderately small 𝜀 [2]. Here, AA is seen to be an

enabling technology as the solver now remains robust for small 𝜀. Hence, for completeness, we include

a spatial convergence analysis for mixed finite elements applied to the regularized Bingham equations.

We find the expected result that optimal convergence can be obtained but is inversely dependent on 𝜀,

but we also find that suboptimal convergence (by one order) can be obtained that is independent of 𝜀.

With very small 𝜀, it is the latter result that is expected in practice and in our numerical tests we do

not see any significant negative scaling with 𝜀.

This article is arranged as follows: Section 2 provides notation and mathematical preliminaries on

the finite element discretization and AA. Section 3 presents the Picard iteration to solve the regularized

Bingham equations and proves properties of the associated fixed point solution operator. Then, we

give an acceleration result for AA applied to a Picard iteration. In Section 4, we provide the results of

several numerical tests, which demonstrate a significant positive impact of AA on the convergence.

Finally, we provide convergence analysis the finite element discretization of the regularized Bingham

equations, to support the numerical results in Section 4 which indicate no negative scaling with 𝜀.

2 MATHEMATICAL PRELIMINARIES

We consider a domain Ω ⊂ R𝑑 (𝑑 = 2, 3) which is polygonal for 𝑑 = 2 or polyhedral for

𝑑 = 3 (or 𝜕Ω ∈ C0,1). The notation ||⋅|| and (⋅, ⋅) will be used to denote the L2(Ω) norm and inner
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product. The Hk(Ω) seminorm will be denoted by | ⋅ |k. We use boldface letters for vector-valued

functions.

The natural velocity and pressure spaces for the Bingham equations are given by

X ∶= (H1
0(Ω))

𝑑 = {v ∈ L2(Ω)𝑑 ∶ ∇v ∈ L2(Ω)𝑑×𝑑 and v = 0 on 𝜕Ω},

Q ∶= L2
0(Ω) = {q ∈ L2(Ω) ∶ ∫Ω

q 𝑑x = 0}.

The Poincaré–Friedrichs’ inequality is known to hold in X: For every u ∈ X,

||v|| ≤ CF||∇v||,
where CF constant depending on the size of Ω. Also, we define the divergence-free vector function

space by

V ∶= {v ∈ X ∶ (∇ ⋅ v, q) = 0 ∀q ∈ Q}.

From the vector identities 2divD = Δ+∇∇⋅ and ∇∇⋅ = Δ+∇×∇×∇ applying integration by parts

one gets the following Korn type inequalities

||∇v|| ≤ Ck||Dv||,
for all v ∈ X.

The weak formulation of (3) can be written as follows: find u ∈ X and p ∈ Q such that

2𝜇(Du,Dv) + 𝜏s

(
Du

|Du|𝜀 ,Dv
)
− (p,∇ ⋅ v) = (f, v),

(q,∇ ⋅ u) = 0.
(4)

Existence and the uniqueness of solutions can be proven by the Browder–Minty method of strictly

monotone operators [6], for any 𝜀 > 0 and f ∈ H−1(Ω) [2].

Remark 2.1. While the well-posedness of the system holds for any fixed 𝜀 > 0, as 𝜀 goes

to zero, the bounds used for regularity and uniqueness blow up [2] and there is no rigorous

study to extend the results in [2] to the limit case of 𝜀 = 0. Still, the well-posedness of the

unregularized system holds in 2D [9,11] and in 3D existence is known but uniqueness is

seemingly an open problem [9], these results are proved with different techniques, which

suggests a potential gap in the known analysis for Bingham.

2.1 Discretization Preliminaries

For the discrete setting, we assume a regular conforming triangulation 𝜏h(Ω) with maximum element

diameter h. Let (Xh,Qh) ⊂ (X,Q) be pair of discrete velocity-pressure spaces satisfying the LBB

condition: there exists a constant 𝛽, independent of h satisfying

inf
q∈Qh

sup
v∈Xh

(∇ ⋅ vh, qh)

||qh||||∇vh|| ≥ 𝛽 > 0. (5)

For simplicity, we assume Xh = X
⋂

Ps(𝜏h) and Qh = Q
⋂

Pr(𝜏h), however, the analysis that follows

can be applied to any inf-sup stable pair with only minor modifications.

The space for discrete divergence free functions is

Vh ∶= {v ∈ Xh ∶ (∇ ⋅ vh, qh) = 0 ∀qh ∈ Qh}.
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We assume the mesh is sufficiently regular for the inverse inequality to hold: there exists a constant C

such that for all vh ∈ Xh,

||∇vh|| ≤ Ch−1||vh||, (6)

and with this and the LBB assumption, we assume interpolation operator Ih ∶ H1(Ω) → Vh satisfying

for all v ∈ V,

||v − Ih(v)|| ≤ Chs+1|v|s+1,

||∇(v − Ih(v))|| ≤ Chs|v|s+1.

We recall the following discrete Sobolve inequality in Ω ⊂ R2 (see [6]),

||vh||L∞(Ω) ≤ C(1 + | ln h|)1∕2||∇vh|| ∀v ∈ Xh, (7)

and for Ω ⊂ R3 and a quasi-uniform triangulation of Ω, it follows from an Agmon’s inquality and a

standard inverse estimate [6] that

||vh||L∞(Ω) ≤ Ch−1∕2||∇vh|| ∀v ∈ Xh, (8)

where C is positive constant and independent of h.

2.2 Finite element discretization of regularized Bingham equations

In this section, we present a FEM scheme for regularized Bingham equations (3). First, we define the

FEM scheme as follows: Find (uh, q) ∈ (Xh,Qh) such that

2𝜇(Duh,Dvh) + 𝜏s

(
Duh

|Duh|𝜀 ,Dvh

)
− (ph,∇ ⋅ vh) = (f, vh),

(qh,∇ ⋅ uh) = 0,
(9)

for all (vh, qh) ∈ (Xh,Qh).

The scheme (9) restricted to discretely divergence-free function space Vh for velocity reads: Find

uh ∈ Vh such that for all vh ∈ Vh,

a𝜀(uh, vh) = 2𝜇(Duh,Dvh) + 𝜏s

(
Duh

|Duh|𝜀 ,Dvh

)
= (f, vh). (10)

We note due to the assumed LBB condition that (9) and (10) are equivalent.

The well-posedness of scheme (10) follows the same as the well-posedness proof in [2] for the

analogous variational formulation posed in V instead of Vh. The key steps rely on monotonicity which

can be shown as follows:

a𝜀(uh,uh − vh) − a𝜀(vh,uh − vh)

= ∫Ω

2𝜇|Duh − Dvh|2 + 𝜏s

(
Duh − Dvh

|Duh|𝜀 +

(
1

|Duh|𝜀 −
1

|Dvh|𝜀
)

Dvh

)
∶ (Duh − Dvh)

= ∫Ω

2𝜇|Duh − Dvh|2 + 𝜏s

|Duh|𝜀
(
|Duh − Dvh|2 − |Duh|𝜀 − |Dvh|𝜀

|Dvh|𝜀 Dvh ∶ (Duh − Dvh)

)

(11)

≥ ∫Ω

2𝜇|Duh − Dvh|2 + 𝜏s

|Duh|𝜀
(
|Duh − Dvh|2 − |Duh − Dvh|

|Dvh|𝜀 Dvh ∶ (Duh − Dvh)

)

≥ 2𝜇||Duh − Dvh||2,
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where ||Dvh|−1
𝜀 Dvh| ≤ 1. The Browder-Minty theorem then guarantees existence and uniqueness of

the solution.

2.3 Anderson acceleration

Anderson acceleration (AA) is an extrapolation technique that is used to improve convergence of

fixed-point iterations. Consider a fixed-point operator g ∶ Y → Y where Y is a normed vector space.

The AA procedure is stated in the following algorithm: Denote wj = g(xj−1) − xj−1 as the nonlinear

residual, also sometimes referred to as the update step.

Algorithm 2.1 (Anderson acceleration with depth m and damping factors 𝛽k).

Step 0: Choose x0 ∈ Y .

Step 1: Find w1 ∈ Y such that w1 = g(x0) − x0 where g(x0) = x1. Set x1 = x0 + w1.

Step k: For k = 2, 3, … Set mk = min{k − 1,m}.

[a.] Find wk = g(xk−1) − xk−1.

[b.] Solve the minimization problem for the Anderson coefficients {𝛼k
j }

k−1
k−mk

{𝛼k
j }

k−1
k−mk

= argmin

‖‖‖‖‖‖

(
1 −

k−1∑
j=k−mk

𝛼k
j

)
wk +

k−1∑
j=k−mk

𝛼k
j wj

‖‖‖‖‖‖Y

. (12)

[c.] For damping factor 0 < 𝛽k ≤ 1, set

xk = (1 −

k−1∑
j=k−mk

𝛼k
j )xk−1 +

k−1∑
j=k−mk

𝛼k
j xj−1 + 𝛽k

(
(1 −

k−1∑
j=k−mk

𝛼k
j )wk +

k−1∑
j=k−mk

𝛼k
j wj

)
. (13)

The m = 0 case is equivalent to the fixed point iteration without acceleration. To understand how

AA improves convergence, define matrices Ek and Fk, whose columns are the consecutive differences

between iterates and residuals, respectively.

Ek ∶=
(
ek−1 ek−2 … ek−mk

)
, ej = xj − xj−1 (14)

Fk ∶=
(
(wk − wk−1)(wk−1 − wk−2) … (wk−mk+1 − wk−mk

)
)
. (15)

Then defining 𝛾k = argmin𝛾∈Rm ||wk − Fk𝛾||Y , the update step (2.11) can be written as

xk = xk−1 − 𝛽kwk − (Ek + 𝛽kFk)𝛾
k = x𝛼k−1 + 𝛽kw𝛼

k ,

where w𝛼
k = wk − Fk𝛾

k and x𝛼k−1 = xk−1 − Ek−1𝛾
k are the averages corresponding to the solution from

the optimization problem. The optimization gain factor 𝜃k may be defined by

||w𝛼
k || = 𝜃k||wk||.

As shown in the recent theory proposed in [26,27], the gain factor 𝜃k is the key to acceleration.

The next two assumptions from [26] provide sufficient conditions on the fixed point operator g for

the acceleration results developed therein to hold.

Assumption 2.1. Assume g ∈ C1(Y) has a fixed point x∗ in Y , and there are positive

constants C0 and C1 with

1 ||g′(x)||Y ≤ C0 for all x ∈ Y , and

2 ||g′(x) − g′(y)||Y ≤ C1||x − y||Y for all x, y ∈ Y .
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Assumption 2.2. Assume there is a constant 𝜎 > 0 for which the differences between

consecutive residuals and iterates satisfy

||wk+1 − wk||Y ≥ 𝜎||xk − xk−1||Y , k ≥ 1. (16)

Assumption 2.1 describes properties of the underlying fixed-point operator. Both parts of this

assumption will be verified for the Picard fixed-point operator for this problem in the analysis that

follows. Assumption 2.2 is harder to verify for this problem. It is globally satisfied for instance if g is

contractive, which is generally not the case here, or locally if the Jacobian of g can be shown not to

degenerate in the vicinity of a solution, as discussed in [26]. On the other hand, (16) can be checked

at each iteration as it only involves the differences between iterates and update steps that have already

been computed. Assumption 2.2 can then be enforced for instance by the following safeguarding strat-

egy: given some chosen 𝜎 > 0, on any step for which (16) is not satisfied with 𝜎 = 𝜎, the next iterate

can be given by the simple fixed-point iteration, after which AA can be restarted. We found it was not

necessary to implement this strategy here, however. We demonstrate this in Section 4, where we cal-

culate the ratio ||wk+1 − wk||Y∕||xk − xk−1||X using varying fixed m on a benchmark problems and find

𝜎 bounded well above 0.

Under Assumptions 2.1 and 2.2, the following result summarized from [26], produces a one-step

bound on the residual ||wk+1|| in terms of the previous residual ||wk||.
Theorem 2.1 (Pollock et al., 2021). Let Assumptions 2.1 and 2.2 hold, and suppose the

direction sines between each column i of Fj defined by (14) and the subspace spanned

by the preceding columns satisfy | sin(fj,i, span {fj,1, … , fj,i−1})| ≥ cs > 0, for j = k −

mk, … , k − 1. Then the residual wk+1 = g(xk) − xk from Algorithm 2.1 (depth m) satisfies

the following bound.

‖wk+1‖ ≤ ‖wk‖
(
𝜃k((1 − 𝛽k) + C0𝛽k) +

CC1

√
1 − 𝜃2

k

2

(
‖wk‖ h(𝜃k)

+ 2

k−1∑
n=k−mk+1

(k − n) ‖wn‖ h(𝜃n) + mk
‖‖wk−mk

‖‖ h(𝜃k−mk
)
))

, (17)

where each h(𝜃j) ≤ C

√
1 − 𝜃2

j + 𝛽j𝜃j, and C depends on cs and the implied upper bound

on the direction cosines.

In this estimate, 𝜃k is the gain from the optimization problem, and it determines the relative scalings

of the contributions from the lower and higher order terms. The lower order terms are multiplied by

𝜃k, and the higher-order terms are multiplied by
√

1 − 𝜃2
k . While this bound does not guarantee global

convergence, it does establish how AA improves the first order term at the cost of adding higher-order

terms to the residual expansion at each step. For contractive problems, this additionally shows local

convergence with an improved rate in comparison to the original fixed-point iteration. If close to the

root (so higher order terms are negligible), it shows AA will improve the convergence rate by the

scaling factor 𝜃k, which can change at each step.

3 ACCELERATION OF THE REGULARIZED BINGHAM PICARD

ITERATION

In this section, we present some properties of the Picard iteration to solve (3) and its associated fixed

point function. We then use these properties to apply convergence and acceleration theory for AA to
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POLLOCK ET AL. 3881

this iteration. Given u0 ∈ Vh, for k = 1, 2, ..., find uk ∈ Vh such that

2𝜇(Duk,Dv) + 𝜏s

(
Duk

|Duk−1|𝜀 ,Dv
)

= (f, v), ∀v ∈ Vh. (18)

The convergence analysis of this Picard iteration for (3) is given in [2].

3.1 Solution operator G corresponding to the Picard iteration

In this subsection, we study some properties of the solution operator of the linearized problem of the

form of (18).

Let f ∈ H−1(Ω) and u ∈ Vh be given. Consider the problem of finding ũ ∈ Vh such that

2𝜇(Dũ,Dv) + 𝜏s

(
Dũ

|Du|𝜀 ,Dv
)

= (f, v), ∀v ∈ Vh. (19)

In continuous case, well-posedness and convergence analysis of the solution of Picard iteration of (3)

is presented in [2]. In discrete setting, well-posedness can be proven by following these same steps.

Lemma 3.1. For f ∈ H−1(Ω) and u ∈ Vh, (19) is well-posed and the solution satisfies

the bound

||∇ũ|| ≤ 𝜇−1||f||−1. (20)

Proof. Assume a solution exists, and choose v = ũ ∈ Vh. Then, using the dual norm on

Vh, we get

𝜇||∇ũ||2 ≤ 2𝜇||Dũ||2 ≤ 2𝜇||Dũ||2 + 𝜏s|||Du|−1∕2
𝜀 Dũ||2 = (f, ũ) ≤ ||f||−1||∇ũ||,

which shows (20). This bound is sufficient to imply uniqueness since the system is linear,

and since it is also finite dimensional, existence follows from uniqueness. ▪

Definition 3.1. Define G ∶ Vh → Vh to be the solution operator of (19). That is,

ũ = G(u).

By Lemma 3.1, (19) is well-posed, so G is well defined. Thus, the iteration (18) can now be written

as

uk+1 = G(uk).

3.2 Lipschitz continuity and differentiability of G

In this subsection, we prove properties of G which are used to show convergence of the AA Picard

iteration for (10) via Theorem 2.1. First, to prove that G satisfies the first part of Assumptions 2.1, we

show that G is Lipschitz continuous, G′ exists and is the Fréchet derivative of G. Then, by showing G

is Lipschitz continuously differentiable, we prove that G satisfies the second part of Assumptions 2.1.

The satisfaction of both properties allows us to establish convergence of the AA Picard iteration for

(18). We begin with Lipschitz continuity of G.

Lemma 3.2. For any u,w ∈ Vh, we have

||DG(u) − DG(w)|| ≤ CG||Dw − Du||, (21)

where CG =
(

𝜏s𝜀
−3C(1+| ln h|)h−2𝜇−3||f||2

−1

8

)1∕2

in 2D, and CG =
(

𝜏s𝜀
−3Ch−3𝜇−3||f||2

−1

8

)1∕2

in 3D.
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3882 POLLOCK ET AL.

Remark 3.1. This constant is quite large, but it holds globally and also we make no

assumptions on the data (i.e., no assumption that 𝜇 is large). In terms of representing a

contraction number, we believe this to be a pessimistic bound. While negative scalings

with h and 𝜖 are observed in our tests and in [2], the negative scalings are much milder

than these. It appears to be an open problem to show the existence of a region (i.e., u close

enough to w) where CG < 1, without excessive restrictions on the data and mesh size.

Proof. Let u,w ∈ Vh and G(u) = ũ and G(w) = w̃. Then,

2𝜇(DG(u),Dv) + 𝜏s

(
DG(u)

|Du|𝜀 ,Dv
)

= (f, v), (22)

2𝜇(DG(w),Dv) + 𝜏s

(
DG(w)

|Dw|𝜀 ,Dv
)

= (f, v). (23)

Subtracting (23) from (22), then adding and subtracting
DG(w)

|Du|𝜀 from the first argument in

the second term, we get

2𝜇(DG(u) − DG(w),Dv) + 𝜏s

(
1

|Du|𝜀 (DG(u) − DG(w)) ,Dv
)

+ 𝜏s

((
1

|Du|𝜀 −
1

|Dw|𝜀

)
DG(w),Dv

)
= 0.

(24)

Choosing v = G(u) − G(w) gives

2𝜇||DG(u) − DG(w)||2 + 𝜏s|| |Du|−1∕2
𝜀 (DG(u) − DG(w))||2

= −𝜏s

((
1

|Du|𝜀 −
1

|Dw|𝜀

)
DG(w),DG(u) − DG(w)

)
,

(25)

and then using reverse triangle and Hölder’s inequalities, noting that |||Du|−1
𝜀 ||L∞(Ω) ≤

𝜀−1, exploiting discrete Sobolev and inverse inequalities, (20) and Young’s inequality, we

obtain in 2D that

|||||
−𝜏s

((
1

|Du|𝜀 −
1

|Dw|𝜀
)

DG(w),DG(u) − DG(w)

)|||||
≤ 𝜏s ∫Ω

|Dw − Du|
|Du|𝜀|Dw|𝜀 |DG(w)| |DG(u) − DG(w)|

≤ 𝜏s𝜀
−3∕2C(1 + | ln h|)1∕2h−1𝜇−1||f||−1||Dw − Du|| || |Du|−1∕2

𝜀 (DG(u) − DG(w))||
≤ 𝜏s𝜀

−3C(1 + | ln h|)h−2𝜇−2||f||2−1

4
||Dw − Du||2 + 𝜏s|| |Du|−1∕2

𝜀 (DG(u) − DG(w))||2.
So, combining the bound for left hand side term and dividing each side by 2𝜇 give

||DG(u) − DG(w)||2 ≤ 𝜏s𝜀
−3C(1 + | ln h|)h−2𝜇−3||f||2−1

8
||Dw − Du||2.

Then, by taking the square roots of both sides, we get (21). For the 3D case, we use inverse

inequality (8) instead of (7) to obtain the result. ▪

Next, we show that G is Lipschitz Fréchet differentiable. We begin by defining the operator G′,

and then show it is the Fréchet derivative operator of G.

Definition 3.2. Given u ∈ Vh, define an operator G′(u; ⋅) ∶ Vh → Vh by G′(u;h)

satisfying for all h ∈ Vh,

2𝜇(DG′(u;h),Dv) + 𝜏s

(
DG′(u;h)

|Du|𝜀 ,Dv
)
= 𝜏s

(
Du∶Dh

|Du|3
𝜀

DG(u),Dv
)
. (26)
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POLLOCK ET AL. 3883

Now, we need to show G′ is the Jacobian matrix of G at u by the following lemma. To show this,

first we need to prove G′ in definition (3.2) is well defined.

Lemma 3.3. The operator G′ in Definition (3.2) is well-defined for all u,h ∈ Vh such

that

||DG′(u;h)|| ≤ CG||Dh||, (27)

where CG = CG2D
on Ω ⊂ R2, and CG = CG3D

on Ω ⊂ R3.

Proof. The proof of Lemma 3.3 can be done by following same steps as in the proof of

Lemma 3.2. Since (26) is linear and finite dimensional, (27) is sufficient to say that the

(26) is well-posed. Thus, G′ is well-defined and uniformly bounded over Vh, since the

bound is independent of u. ▪

Next, we show that G′ is the Fréchet derivative operator of G. That is, given u ∈ Vh, there exists

some constant  such that for any h ∈ Vh

||D(G(u + h) − G(u) − G′(u;h))|| ≤  ||Dh||2.
Lemma 3.4. For arbitrary u ∈ Vh and sufficiently small h ∈ Vh, the bound

||DG(u + h) − DG(u) − DG′(u;h)|| ≤ (
𝜏sC(1 + | ln h|)h−2𝜀−3

(
C2

G + 𝜀−2𝜇−2||f||2−1

))1∕2||Dh||2
(28)

holds, which implies G is Fréchet differentiable on Vh.

Proof. Set g̃ = G(u + h) − G(u) − G′(u;h) for notational ease. To construct the left hand

side of the inequality above, we begin with the following equations: for any u,h ∈ Vh,

2𝜇(DG(u + h),Dv) + 𝜏s

(
DG(u+h)

|D(u+h)|𝜀 ,Dv
)

= (f, v). (29)

Subtracting (22) and (26) from (29), we obtain

2𝜇(Dg̃,Dv) + 𝜏s

(
DG(u + h)

|D(u + h)|𝜀 −
DG(u)

|Du|𝜀 −
DG′(u;h)

|Du|𝜀 −
Du ∶ Dh

|Du|3𝜀 DG(u),Dv

)
= 0. (30)

Adding and subtracting
DG(u+h)

|Du|𝜀 from the first argument in the second term on the left hand

side of (30) and then choosing v = g̃ gives

2𝜇||Dg̃||2 + 𝜏s|||D(u)|−1∕2
𝜀 Dg̃||2 = −𝜏s

(
DG(u + h)

|D(u + h)|𝜀 −
DG(u + h)

|Du|𝜀 −
Du ∶ Dh

|Du|3𝜀 DG(u),Dg̃

)
.

Adding and subtracting
Du∶Dh

|Du|3
𝜀

DG(u+h) from the first argument of the term on right hand

side of (30) and rearranging terms gives

2𝜇||Dg̃||2 + 𝜏s|||D(u)|−1∕2
𝜀 Dg̃||2 = − 𝜏s

(
Du ∶ Dh

|Du|3𝜀 (DG(u + h) − DG(u)) ,Dg̃

)

− 𝜏s

((
1

|D(u + h)|𝜀 −
1

|Du|𝜀 −
Du ∶ Dh

|Du|3𝜀
)

DG(u + h),Dg̃

)
.

(31)

We now estimate the right hand side terms of (31). For the first one, we use Lemma 3.2,

that |||Du|−1
𝜀 ||L∞(Ω) ≤ 𝜀−1 and |||Du|−1

𝜀 D(u)||L∞(Ω) ≤ 1, and Hölder’s, discrete Sobolev,
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3884 POLLOCK ET AL.

inverse and Young’s inequalities to obtain

|||||
−𝜏s

(
Du ∶ Dh

|Du|3𝜀 (DG(u + h) − DG(u)) ,Dg̃

)|||||
≤ 𝜏s ∫Ω

|Du||Dh|
|Du|3𝜀 |DG(u + h) − DG(u)| |Dg̃|

≤ 𝜏s𝜀
−3∕2||DG(u + h) − DG(u)||L∞(Ω)||Dh||||Du|−1∕2

𝜀 Dg̃|
≤ 𝜏s𝜀

−3∕2C(1 + | ln h|)1∕2h−1||DG(u + h) − DG(u)||||Dh||||Du|−1∕2
𝜀 Dg̃|

≤ 𝜏s𝜀
−3∕2C(1 + | ln h|)1∕2h−1CG||Dh||2||Du|−1∕2

𝜀 Dg̃||
≤ 𝜏s

2
𝜀−3C(1 + | ln h|)h−2C2

G||Dh||4 + 𝜏s

2
||Du|−1∕2

𝜀 Dg̃||2.
For the second term in (31), we proceed similar to the first term but utilize the Taylor

expansion

1

|D(u + h)|𝜀 =
1

|Du|𝜀 +
Du ∶ Dh

|Du|3𝜀 +
1

2

(
1

|Du|3𝜀 + 3
Du ∶ Du

|Du|5𝜀
)
|Dh|2 + higher-order terms,

to get

|||||
−𝜏s

((
1

|D(u + h)|𝜀 −
1

|Du|𝜀 −
Du ∶ Dh

|Du|3𝜀
)

DG(u + h),Dg̃

)|||||
≤ 𝜏s ∫Ω

||||
1

|D(u + h)|𝜀 −
1

|Du|𝜀 −
Du ∶ Dh

|Du|3𝜀
|||| |DG(u + h)||Dg̃|

≤ 𝜏s ∫Ω

3

4

||||
1

|Du|3𝜀 +
3|Du|2
|Du|5𝜀

|||| |Dh|2|DG(u + h)||Dg̃| + higher-order terms

≤ 2𝜀−5∕2C(1 + | ln h|)1∕2h−1𝜇−1||f||−1||Dh||2|||Du|−1∕2
𝜀 Dg̃|| + higher-order terms

≤ 2𝜏s𝜀
−5C(1 + | ln h|)h−2𝜇−2||f||2−1||Dh||4 + 𝜏s

2
|||Du|−1∕2

𝜀 Dg̃||2.
In the third line in the above inequality string we account for higher order terms by increas-

ing the
1

2
coefficient from the Taylor expansion to be

3

4
, since the higher-order terms are

higher order in h which we can consider arbitrarily small in this context, while the mesh

and 𝜖 are considered fixed.

Combining the bounds above, we obtain

||Dg̃||2 ≤ 𝜏sC(1 + | ln h|)h−2𝜀−3
(
C2

G + 𝜀−2𝜇−2||f||2−1

) ||Dh||4.
So, by taking the square roots of both sides and applying the definition of g̃, we get

||DG(u + h) − DG(u) − DG′(u;h)|| ≤ (
𝜏sC(1 + | ln h|)h−2𝜀−3

(
C2

G + 𝜀−2𝜇−2||f||2−1

))1∕2||Dh||2,
(32)

which shows Fréchet differentiability of G at u. Since (32) holds for arbitrary u, G is

Fréchet differentiable on Vh. In the case of Ω ⊂ R3, we apply inverse inequality (8) instead

of (7), and the rest of the steps are identical. ▪

We now show G′ is Lipschitz continuous over Vh.

Lemma 3.5. G is Lipschitz continuously differentiable on Vh, such that for all u, s,h ∈ Vh

||D (
G′(u + h; s) − G′(u; s)

) || ≤ ĈG||Ds||||Dh||,
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POLLOCK ET AL. 3885

where there exist a constant ĈG = C𝜇−1𝜏s𝜀
−2(1 + | ln h|)1∕2h−1

(
CG + 𝜀−1(1 + | ln h|)1∕2

h−1𝜇−1||f||−1

)
in 2D and ĈG = C𝜇−1𝜏s𝜀

−2h−3∕2
(
CG + 𝜀−1h−3∕2𝜇−1||f||−1

)
in 3D, and CG

is defined in Lemma (3.2).

Proof. By the definition of G′, the following equations hold

2𝜇(DG′(u; s),Dv) + 𝜏s

(
DG′(u; s)

|Du|𝜀 ,Dv

)
+ 𝜏s

(
Du ∶ Ds

|Du|3𝜀 DG(u),Dv

)
= 0, (33)

2𝜇(DG′(u + h; s),Dv) + 𝜏s

(
DG′(u + h; s)

|D(u + h)|𝜀 ,Dv

)
+ 𝜏s

(
D(u + h) ∶ Ds

|D(u + h)|3𝜀 DG(u + h),Dv

)
= 0,

(34)

for all u, s,h, v ∈ Vh.

Set e = G′(u + h; s) − G′(u; s), and then by subtracting (33) from (34), we get

2𝜇(De,Dv) + 𝜏s

(
DG′(u + h; s)

|D(u + h)|𝜀 −
DG′(u; s)

|D(u)|𝜀 ,Dv

)

+ 𝜏s

(
D(u + h) ∶ Ds

|D(u + h)|3𝜀 DG(u + h) −
Du ∶ Ds

|D(u)|3𝜀 DG(u),Dv

)
= 0.

By adding and subtracting
DG′(u;s)

|D(u+h)|𝜀 from the first argument in second term on left hand

side and choosing u = e, we obtain

2𝜇||De||2 ≤ 2𝜇||De||2 + 𝜏s|||D(u + h)|−1∕2
𝜀 De||2

= −𝜏s

(
D(u + h) ∶ Ds

|D(u + h)|3𝜀 DG(u + h) −
Du ∶ Ds

|D(u)|3𝜀 DG(u),De

)

− 𝜏s

((
1

|D(u + h)|𝜀 −
1

|D(u)|𝜀
)

DG′(u; s),De

)
.

Noting that ||Du|𝜀Du| ≤ 1 and |||Du|−1
𝜀 ||L∞(Ω) ≤ 𝜀−1, applying Hölder’s, discrete Sobolev

and inverse inequalities, (20) and (21), we get

|||||
−𝜏s

(
D(u + h) ∶ Ds

|D(u + h)|3𝜀 DG(u + h) −
Du ∶ Ds

|D(u)|3𝜀 DG(u),De

)|||||
≤ 𝜏s ∫Ω

Du ∶ Ds

|D(u)|3𝜀 DG(u + h)De +
Dh ∶ Ds

|D(u + h)|3𝜀 DG(u + h)De −
Du ∶ Ds

|D(u)|3𝜀 DG(u)De

≤ 𝜏s ∫Ω

Du ∶ Ds

|D(u)|3𝜀 (DG(u + h) − DG(u))De +
Dh ∶ Ds

|D(u + h)|3𝜀 DG(u + h)De

≤ 𝜏s𝜀
−2||Ds||L∞(Ω)||DG(u + h) − DG(u)||||De||
+ 𝜏s𝜀

−3||Dh||L∞(Ω)||Ds||L∞(Ω)||DG(u + h)||||De||
≤ 𝜏s𝜀

−2C(1 + | ln h|)1∕2h−1CG||Ds||||Dh||||De||
+ 𝜏s𝜀

−3C(1 + | ln h|)h−2𝜇−1||f||−1||Dh||||Ds||||De||.
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Using reverse triangle and Hölder’s inequalities, noting that |||Du|−1
𝜀 ||L∞(Ω) ≤ 𝜀−1,

exploiting discrete Sobolev and inverse inequalities, we obtain

|||||
−𝜏s

((
1

|D(u + h)|𝜀 −
1

|Du|𝜀
)

DG′(u; s),De

)|||||
≤ 𝜏s ∫Ω

( |Dh|
|D(u)|𝜀|D(u + h)|𝜀

)
DG′(u; s),De

≤ 𝜏s𝜀
−2||Dh||L∞(Ω)||DG′(u; s)||||De||

≤ 𝜏s𝜀
−2CGC(1 + | ln h|)1∕2h−1||Dh||||Ds||||De||.

By combining the above bounds, we get

||De|| ≤ C𝜇−1𝜏s𝜀
−2(1 + | ln h|)1∕2h−1

(
CG + 𝜀−1(1 + | ln h|)1∕2h−1𝜇−1||f||−1

) ||Dh||||Ds||
= ĈG||Dh||||Ds||.

In this way, G′(u; ⋅) is Lipschitz continuous with constant ĈG. Since the bound holds

for arbitrary u, we have that G is Lipschitz continuously differentiable on Vh with

constant ĈG. ▪

3.3 Anderson Accelerated Picard algorithm for regularized Bingham Equations (3)

In previous subsection, we proved that the solution operator G of Picard iteration (18) of regularized

Bingham equation satisfies Assumption 2.1. To apply the one-step residual bound of [26], we further

require satisfaction of Assumption 2.2; namely, there a constant 𝜎 > 0 such that for any u, s ∈ V

||F(u) − F(s)|| ≥ 𝜎||u − s||, (35)

where F(u) ∶= G(u) − u.

As discussed in subSection 2.3, condition (35) can be monitored and enforced by a safeguard-

ing strategy for a given 𝜎 > 0, although as shown in Section 4, it was not necessary to do so here.

Under these assumptions and with Lemmas 3.2,3.3,3.5, and 28, Theorem 2.1 shows the convergence

of Algorithm 2.1 where G is the solution operator of the Picard iteration for regularized Bingham

equation.

Theorem 3.1. Suppose (35) holds for some 𝜎 > 0, and suppose the direction sines

between each column i of Fj defined by (14) and the subspace spanned by the preceding

columns satisfy | sin(fj,i, span {fj,1, … , fj,i−1})| ≥ cs > 0, for j = k −mk, … , k − 1. Then,

for any step k > m the following bound holds for the AA Picard residual

‖wk+1‖ ≤ ‖wk‖
(
𝜃k(1 − 𝛽k + CG𝛽k) +

CĈG

√
1 − 𝜃2

k

2

(
‖wk‖ h(𝜃k)

+ 2

k−1∑
n=k−mk+1

(k − n) ‖wn‖ h(𝜃n) + mk
‖‖wk−mk

‖‖ h(𝜃k−mk
)
))

, (36)

for residual wk, where 𝜃k is the gain from the optimization problem.

Remark 3.2. The direction sine condition in the hypotheses of Theorem 3.1 can be directly

enforced by the method described in [26, section 5.1].

Remark 3.3. While CG is not proven above to be less than 1 (see Remark 5.1), numerical

tests below and in [2] suggests this is typically the case, at least when near the solution.
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So even though Theorem 3.1 does not guarantee global convergence, it does show that

AA reduces the first order term in term in the residual expansion in comparison to the

corresponding fixed-point iteration, specifically (1 − 𝛽k + CG𝛽k) to 𝜃k(1 − 𝛽k + CG𝛽k),

where 𝜃k is the gain of the step k optimization problem. Thus, in practice, a good initial

guess is expected to both keep CG small and make the higher terms negligible, which in

turn makes AA improve convergence.

4 NUMERICAL EXPERIMENTS

This section presents the results of three numerical tests that illustrate the theory above for the Ander-

son Accelerated Picard iteration for regularized Bingham equations. First, we show the predicted

convergence rate of the finite element discretization, and the positive impact of AA on convergence

by the flow between two parallel plates, which is one of the few analytical test cases for the Bingham

equations. Then, we test Anderson Accelerated Picard iteration for regularized Bingham fluid flow on

2D and 3D driven cavity problems. Our results are in good agreement with those found in [23,24]. In

all numerical tests, AA provides significantly faster convergence than Picard without AA, especially

with small 𝜀. For all of our tests, we use u0 = 0 in the interior but also satisfying the boundary con-

ditions of the problem. We would expect somewhat better convergence if a better u0 were chosen, for

example, the solution of the analogous problem with similar 𝜖, such as in a continuation method. How-

ever, with AA, initial guesses that are sufficiently bad may not perform well since the analysis suggests

the higher order terms in the residual may prevent convergence.

4.1 Analytical test

The flow between two parallel plates is one of the known analytical test cases for Bingham problem.

In two dimensions, the analytical solutions of Stokes type Bingham equations are given by

u1 =

⎧
⎪⎨⎪⎩

1

8

[
(1 − 2𝜏s)

2 − (1 − 2𝜏s − 2y)2
]
, 0 ≤ y <

1

2
− 𝜏s

1

8
(1 − 2𝜏s)

2,
1

2
− 𝜏s ≤ y ≤ 1

2
+ 𝜏s

1

8

[
(1 − 2𝜏s)

2 − (2y − 2𝜏s − 1)2
]
,

1

2
+ 𝜏s < y ≤ 1

, u2 = 0, and p = 0. (37)

The rigid (or plug) region {y ∈ Ω | 1

2
− 𝜏s ≤ y ≤ 1

2
+ 𝜏s} is the kernel moving at constant velocity. We

choose 𝜏s = 0.3. The discretization uses (P2,P1) Taylor-Hood elements on a uniform triangular mesh.

We take 𝜇 = 1 and external force f = 0, and perform Anderson accelerated Picard iterations with depth

m = 0 (no acceleration), 1, 2, 5, and 10, and will test both convergence rates for (9) and efficiency of

AA Picard solver. The initial guess is u0 = 0 except satisfying Dirichlet boundary conditions defined

by the true analytical solution in (37).

We display the number of iterations that reduce the relative residual of the velocity by 10−8 for

varying depths m, mesh sizes h and regularization parameters 𝜀 in Table 1. When 𝜀 → 0 and/or the

mesh width decreases, the required number of iterations increases, as we expect from our analysis

in the previous section. Also, AA provides better convergence results as we increase the depth. This

improvement is more apparent in lower values of 𝜀, which is required to obtain an accurate solution.

In the case of m = 0 (without AA), the numbers of iterations are substantially higher; however, with

AA they decrease significantly. The fastest convergence is obtained with depths m = 5 and 10, as seen

in Table 1.
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3888 POLLOCK ET AL.

TABLE 1 Number of Anderson accelerated Picard iterations required for reducing the residual by 10−8 with different depths
for regularized Bingham equation when 𝜏s = 0.3 and h and 𝜀 is changing in analytical test case.

↓ h 𝜺 → 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5

m = 0 m = 1

1/8 10 34 42 88 101 8 22 24 31 43

1/16 10 34 80 171 274 9 21 36 60 94

1/32 11 27 98 258 296 9 21 45 95 114

1/64 11 35 108 184 184 9 21 46 57 49

1/128 11 35 106 306 408 9 21 43 71 69

m = 5 m = 10

1/8 7 14 16 22 26 7 14 16 21 25

1/16 7 15 24 30 33 7 15 23 28 33

1/32 8 16 29 36 41 8 15 25 32 34

1/64 8 16 29 34 40 8 15 26 34 39

1/128 8 16 29 48 50 8 15 26 39 51

4.2 2D driven cavity

We next test Anderson accelerated Picard iteration for the regularized Bingham equations on a

lid-driven cavity problem. The domain for the problem is the unit square Ω = (0, 1)2 and we impose

Dirichlet boundary conditions by u|y=1 = (1, 0)T and u = 0 everywhere else. The discretization uses

(P2,P1) Taylor-Hood elements on a uniform mesh. Initial guess u0 satisfies the boundary condition of

the problem and u0 = 0 elsewhere in the domain.

Figure 1 shows the number of iterations of the Anderson accelerated Picard iteration with varying

depth m and regularization parameter 𝜀, when h = 1∕64 and yield stresses 𝜏s = 2 and 𝜏s = 5. Iterations

were run until the relative L2 velocity residual fell below 10−8. As 𝜀 becomes smaller, the required

number of iterations increases. As illustrated in Figure 1, the original (unaccelerated) Picard method

converges very slowly compared to the accelerated method. However, with AA, convergence is much

faster. While larger m gives faster convergence, we note there is only modest gain past m = 1 in this

test.

Figure 2 shows the growth of rigid region (white) as the value of yield stress 𝜏s increases. When the

rigid region enlarges, the yielded (fluid) region (shaded) remains close to the lid. These results agree

well with those in [3,23,24].

4.3 3D driven cavity

We now test the Anderson accelerated Picard iteration for regularized Bingham equations on the 3D

lid-driven cavity. In this problem, the domain is the unit cube, there is no forcing (f = 0), and homo-

geneous Dirichlet boundary conditions are enforced on all walls and u = (1, 0, 0)T on the moving lid.

We compute with (P2,P1) elements on Alfeld split tetrahedral meshes with 134,457 total degrees of

freedom (dof) weighted towards the boundary using a Chebychev grid before tetrahedralizing. We test

our scheme with varying m, regularization parameter 𝜀, and yield stress 𝜏s. Initial guess u0 satisfies the

boundary condition of the problem and u0 = 0 everywhere else in the domain. Our stopping criteria

is residual ||D(uk − G(uk))|| ≤ 10−5 or 500 iterations.

Figure 3 illustrates the positive impact of AA on convergence for different value of 𝜏s and m. As 𝜏s

increases, number of iterations grows since the rigid zones become larger and may completely block
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FIGURE 1 Convergence for different 𝜀 = 10−1, 10−4, 10−8(left to right), when 𝜏s = 2 (top) and 𝜏s = 5 (bottom) with varying m.
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FIGURE 2 Growth of the rigid region (white) for lid-driven flow by 𝜏s = 2, 5, 10 (left to right) when h = 1∕64 and 𝜀 = 10−4.

the flow when 𝜏s is sufficiently large. For smaller values of 𝜀, more iterations are required; however,

using AA reduces the iteration counts significantly and enables convergence even with larger values

of 𝜏s.

In Figure 4, we compare centerline x-velocities when 𝜀 = 10−4 for varying 𝜏s = 1, 2, 5 and 10

(i.e., growing rigid zones) and obtain good agreement with those found in [34] with P1/P1 stabilized

elements and [24] with a finite difference method.

4.4 Numerical verification of Assumption 2.2

The application of the AA theory from [26] to the Picard iteration for the regularized Bing-

ham equations relies on the satisfaction of Assumptions 2.1 and 2.2. We analytically verified

Assumption 2.1 in Section 3. Assumption 2.2 is satisfied if the Jacobian of g does not degenerate. To

demonstrate the satisfaction of this assumption, here we calculate the ratio
||wk−wk−1||
||uk−uk−1|| for two numer-

ical tests using constant m to show the 𝜎k (the minimum of the k through k − mk ratios) is bounded
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FIGURE 3 Required number of iterations, velocity residual≤ 10−5, 134,457 dof, 𝜏s = 2 (top) and 𝜏s = 10 (bottom) with

varying m for 𝜀 = 10−3, 10−4, 10−5.
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FIGURE 4 Shown above is the centerline x-velocity plots for the 3D driven cavity simulations for 𝜏s = 1, 2, 5 and 10, using

AA Picard iteration for regularized Bingham equation with m = 10 and 𝜀 = 10−4, 134,457 dof.
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FIGURE 5 Shown above are ratios of
||wk−wk−1||
||uk−uk−1||

for (left) the analytical test using h = 1∕32, 𝜏s = 0.3, 𝜀 = 10−3 and (right) for

2d lid driven cavity h = 1∕64, 𝜏s = 2, 𝜀 = 10−1, both with varying m.
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well above 0. Results for the analytical test problem and 2D driven cavity are shown in Figure 5. We

observe that the ratios never get close to 0, and in general get larger for larger m.

5 CONVERGENCE OF THE FINITE ELEMENT DISCRETIZATION

The convergence analysis of the numerical solutions of regularized Bingham equations by general

mixed FEM does not appear well studied in the literature, and so we include here a convergence analysis

for completeness. First, we establish convergence of the velocity solution of (9) to the velocity of (3).

Theorem 5.1. Let (u, p) be the solution pair of the regularized Bingham problem (3). The

error in the solution uh to (10) satisfies

||D(u − uh)|| ≤ 𝜇−1
√
𝑑 inf

qh∈Qh

||p − qh|| + (
3 + 3𝜏2

s 𝜀
−2𝜇−2

)1∕2||D(u − Ih(u))||. (38)

Furthermore, if h is small enough so that |||Du|−1
𝜀 D(Ih(u) − uh)|| ≤ 1, we also have

the velocity error bound

||D(u − uh)|| ≤ 𝜇−1
√
𝑑 inf

qh∈Qh

||p − qh|| +
√

2||D(u − Ih(u))|| + (
2𝜇−1𝜏s

)1∕2||D(u − Ih(u))||1∕2.

(39)

Remark 5.1. The velocity error bound (38) is optimal in h for common choices of mixed

finite elements such as Taylor-Hood and Scott-Vogelius, however it depends inversely on 𝜀

which can be small. The bound (39) is independent of 𝜀 but suboptimal in h, and it requires

h small enough with respect to 𝜀 so that (38) can be invoked to produce |||Du|−1
𝜀 D(Ih(u)−

uh)|| ≤ 1. A sufficient condition on h to produce this bound is

𝜇−1
√
𝑑 inf

qh∈Qh

||p − qh|| + (
3 + 3𝜏2

s 𝜀
−2𝜇−2

)1∕2||D(u − Ih(u))|| ≤ 𝜀.

If 𝜀 ≪ 1, 𝜏s, 𝜇 ∼ O(1), infqh∈Qh
||p − qh|| ∼ hs, and ||D(u − Ih(u))|| ∼ hs, this reduces

to h ≤ O(𝜀2∕s). We note this is likely not a realizable condition in practice, however it

is only a sufficient (and not necessary) condition that we believe pessimistic, and in our

numerical tests we see no negative scaling with respect to 𝜀.

Corollary 5.1. Let (u, p) be the true solution of regularized Bingham problem satisfying

u ∈ H3(Ω)
⋂

V and p ∈ H2(Ω)
⋂

Q. Then if (Xh,Qh) = (P2,P1) Taylor-Hood elements

are used and h is sufficiently small (see Remark 5.1), the error in velocity satisfies

||D(u − uh)|| ≤ min
{(h), (h2𝜀−1)

}
. (40)

If instead u ∈ H2(Ω)
⋂

V and the (Pb
1,P1) mini element is used and h is sufficiently small

(see Remark 5.1), then the bound becomes

||D(u − uh)|| ≤ min
{(h1∕2), (h𝜀−1)

}
. (41)

Proof of Theorem 5.1. First we will prove the bound (38). The true solution (u, p) of the

regularized Bingham problem satisfies (4a) with u ∈ V and v = vh ∈ Vh. Subtracting

(10) from this provides

a𝜀(u, vh) − a𝜀(uh, vh) − b(p − qh, vh) = 0, (42)
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which can be written as

2𝜇(De,Dvh) + 𝜏s

(
Du

|Du|𝜀 −
Duh

|Duh|𝜀 ,Dvh

)
− (p − qh,∇ ⋅ vh) = 0, (43)

where the error e = u − uh is decomposed as e = u − Ih(u) + Ih(u) − uh = 𝜼 + 𝝓h with

Ih(u) the interpolation of u in Vh. First, we utilize the monotonicity of a𝜀 to establish the

convergence.

Let’s choose vh = 𝝓h, and add and subtract a𝜀(Ih(u),𝝓h) on right hand side. Then we

get

a𝜀(Ih(u),𝝓h) − a𝜀(uh,𝝓h) = b(p − qh,𝝓h) + a𝜀(Ih(u),𝝓h) − a𝜀(u,𝝓h),

Then, the monotonicity of a𝜀 provides

2𝜇||D𝝓h||2 ≤ b(p − qh,𝝓h) + a𝜀(Ih(u),𝝓h) − a𝜀(u,𝝓h). (44)

Rewriting (44) by expanding the b and a𝜀 forms gives

2𝜇||D𝝓h||2 ≤ −2𝜇(D𝜼,D𝝓h) + 𝜏s

(
DIh(u)

|DIh(u)|𝜀 −
Du

|Du|𝜀 ,D𝝓h

)
. (45)

The first term of (45) is bounded by Cauchy-Schwarz, Korn’s and Young’s inequalities.

(p − qh,∇ ⋅ 𝝓h) ≤ ||p − qh||||∇ ⋅ 𝝓h|| ≤
√
𝑑||p − qh||||∇𝝓h|| ≤CK

√
𝑑||p − qh||||D𝝓h||

≤3C2
K𝜇

−1𝑑

4
||p − qh||2 + 𝜇

3
||D𝝓h||2.

The second term is be bounded by Cauchy-Schwarz and Young’s inequalities.

|2𝜇(D𝜼,D𝝓h)| ≤ 2𝜇||D𝜼||||D𝝓h|| ≤ 3𝜇||D𝜼||2 + 𝜇

3
||D𝝓h||2.

For the last term of (45), we first add and subtract
Du

|DIh(u)|𝜀 , and then apply reverse triangle

inequality, Hölder’s inequality (L∞ − L2 − L2), the upper bound |||D ⋅ |−1
𝜀 ||L∞(Ω) ≤ 𝜀−1 and

||Du|−1
𝜀 D(u)| ≤ 1, and Young’s inequality to get

𝜏s

(
DIh(u)

|DIh(u)|𝜀 −
Du

|Du|𝜀 ,D𝝓h

)

≤ |||||
−𝜏s

(
D𝜼

|DIh(u)|𝜀 ,D𝝓h

)|||||
+
|||||
𝜏s

((
1

|DIh(u)|𝜀 −
1

|Du|𝜀
)

Du,D𝝓h

)|||||
≤ 𝜏s|| |DIh(u)|−1

𝜀 ||L∞(Ω)||D𝜼|| ||D𝝓h|| + 𝜏s ∫Ω

|D𝜼|
|DIh(u)|𝜀|Du|𝜀 |Du||D𝝓h|

≤ 2𝜏s𝜀
−1||D𝜼|| ||D𝝓h||

≤ 3𝜏2
s 𝜀

−2𝜇−1||D𝜼||2 + 𝜇

3
||D𝝓h||2.

By combining the bounds on all three terms of (45), we obtain

𝜇||D𝝓h||2 ≤ 3C2
K𝜇

−1𝑑

4
||p − qh||2 + (

3𝜇 + 3𝜏2
s 𝜀

−2𝜇−1
) ||D𝜼||2.

Then, by taking the square root of each side and using the triangle inequality, the bound

(38) is revealed.
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Next we show the second bound, namely (39). Choose vh = 𝝓h in (43), and then add

and subtract
Duh

|Du|𝜀 from the second term to obtain

2𝜇||D𝝓h||2 + 𝜏s|||Du|−1∕2
𝜀 D𝝓h||2

= 2𝜇(D𝜼,D𝝓h) − 𝜏s

(
D𝜼

|Du|𝜀 ,D𝝓h

)
− 𝜏s

((
1

|Du|𝜀 −
1

|Duh|𝜀
)

Duh,D𝝓h

)
+ (p − qh,∇ ⋅ 𝝓h).

(46)

The first term on the right hand side of (46) is bounded using Cauchy-Schwarz and Young’s

inequalities, by

2𝜇(D𝜼,D𝝓h) ≤ 2𝜇||D𝜼||||D𝝓h|| ≤ 2𝜇||D𝜼||2 + 𝜇

2
||D𝝓h||2.

Under the assumption that h is sufficiently small so that |||Du|−1
𝜀 |D𝝓h||| ≤ 1, the second

term of (46) satisfies the bound

𝜏s

(
D𝜼

|Du|𝜀 ,D𝝓h

)
≤ 𝜏s||D𝜼|||||Du|−1

𝜀 D𝝓h|| ≤ 𝜏s|||D𝜼||.

To bound the third term of (46), let’s first consider

1

|Du|𝜀 −
1

|Duh|𝜀 =
|Duh|𝜀 − |Du|𝜀
|Du|𝜀|Duh|𝜀 =

|Duh|2𝜀 − |Du|2𝜀
|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀)

≤ Duh ∶ Duh − Du ∶ Du

|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀)
=

De(Duh + Du)

|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀) .

So the third term of (46) satisfies

𝜏s

((
1

|Du|𝜀 −
1

|Duh|𝜀
)

Duh,D𝝓h

)
≤ 𝜏s

(
D𝝓h(Duh + Du)

|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀)Duh,D𝝓h

)

+ 𝜏s

(
D𝜼(Duh + Du)

|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀)Duh,D𝝓h

)

≤ 𝜏s ∫Ω

|D𝝓h||Duh + Du|
|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀) |Duh||D𝝓h|

+ 𝜏s ∫Ω

|D𝜼||Duh + Du|
|Du|𝜀|Duh|𝜀(|Duh|𝜀 + |Du|𝜀) |Duh||D𝝓h|

≤ 𝜏s ∫Ω

|D𝝓h|2
|Du|𝜀 + 𝜏s ∫Ω

|D𝜼|
|Du|𝜀 |D𝝓h|

≤ 𝜏s|||Du|−1∕2
𝜀 D𝝓h||2 + 𝜏s||D𝜼||,

by the triangle inequality, using |||Du|−1
𝜀 Du||L∞(Ω) ≤ 1, and assuming h is small enough

so that |||Du|−1
𝜀 D𝝓h|| ≤ 1.

The last term of (46) can be bounded by Cauchy-Schwarz, Korn’s and Young’s

inequalities, by

(p − qh,∇ ⋅ 𝝓h) ≤ ||p − qh||||∇ ⋅ 𝝓h|| ≤
√
𝑑||p − qh||||∇𝝓h|| ≤ CK

√
𝑑||p − qh||||D𝝓h||

≤ C2
K𝜇

−1𝑑||p − qh||2 + 𝜇

2
||D𝝓h||2.
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TABLE 2 H1 Errors and Convergence Rates when 𝜀 = 10−4, 10−8.

𝜺 → 10−4 10−8

h ↓ ||D(u − uk)|| Rates ||D(u − uk)|| Rates

1/4 4.7326e−03 - 4.7126e−03 -

1/8 5.2061e−03 −0.14 5.3075e−03 −0.17

1/16 8.7186e−04 2.58 9.3267e−04 2.51

1/32 6.5649e−04 0.41 6.6056e−04 0.50

1/64 1.8945e−04 1.79 1.4539e−04 2.18

1/128 1.3906e−04 0.45 8.7903e−05 0.73

1/256 1.1311e−04 0.30 1.2947e−05 2.76

Putting together the bounds of each term of (46), we obtain

||D𝝓h||2 ≤ 2||D𝜼||2 + 2𝜇−1𝜏s||D𝜼|| + C2
K𝜇

−2𝑑||p − qh||2.
Finally, taking square root of each side and using triangle inequality gives (39). ▪

5.1 Analytical test for convergence verification

In this subsection, we consider the same analytical test (37) to study spatial convergence of numerical

solution of regularized Bingham equation with the same discretization setting used in Section 4.1

(recall solver tolerance is 10−8 in the H1 norm). All results are obtained by AA enhanced Picard

iteration with depth m = 10, since we don’t observe change in solutions from iterations with different

depths.

Table 2 shows the errors (true solution compared to numerical solution of the regularized model)

and convergence rates for different choices of h and 𝜀 by calculating numerical error in the H1 norm.

We note this error includes both numerical error of the computed regularized model to the regularized

model, which we prove above is at most O(h) for small 𝜖, as well as the model consistency error, which

is discussed above to be at most O(𝜖1∕2). Hence for larger h, we expect numerical error to dominate

but for smaller h we expect model consistency error to dominate once the numerical error is smaller

than the consistency error.

The table shows that for 𝜖 = 10−4, numerical error dominates until about h = 1∕128, where error

no longer decreases with shrinking h. The rates are very choppy for h ≥ 1∕128, but are consistent in

the average with O(h). For 𝜖 = 10−8, however, numerical error appears to be dominant for all h’s tested

(again consistent with O(h) in the average), as we see error decreasing significantly from 1∕128 to

1∕256. Hence for h ≥ 1∕64, we see only minor differences in error between the 𝜖 = 10−4 and 𝜖 = 10−8

solutions, but for h ≤ 1∕128 we observe the 𝜖 = 10−8 is better, in fact by a whole order of magnitude

when h = 1∕256.

6 CONCLUSION

We studied herein the acceleration of a Picard iteration to solve a finite element discretization of the reg-

ularized Bingham equations, and spatial convergence of the solution to the discrete nonlinear problem.

We proved that the fixed point operator associated with the Picard iteration for the regularized Bingham

equations satisfies regularity properties which allow the AA theory of [26] to be applied, and thus the

iteration is accelerated through the scaling of its linear convergence rate by the gain factor of the AA
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optimization problem. We demonstrated numerically with three test problems that the Picard iteration

alone may not be an effective solver for the regularized Bingham equations due to the large number

of iterations required, but with AA (and in particular with m ≥ 5), it can be an effective and efficient

solver. For the spatial convergence of the finite element discretization, we showed that optimal conver-

gence in h can be achieved but that it depends inversely on 𝜀. We further showed that for h sufficiently

small with respect to 𝜀, suboptimal convergence in h which is independent of 𝜀 can also be achieved.
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