




resource (ĝpit) and the monitoring signal (gpit) into the EMS

simultaneously. By doing so, the monitoring signal will

appear the same from the EMS’ perspective as ĝpit + g̃pit
under the normal operation in Fig. 3(a) and the one under the

intraday FDI attack in Fig. 3(b), while the actual generation

is perturbed by ∆gpit from the original dispatch regardless

of presence of the governor adjustment. Other resources that

receive dispatch signals from EMS such as energy storage,

demand response can be exposed to the same type of attack.

B. Dispatch prediction model

To generate multi-interval falsifying dispatch signals, the

attacker needs to predict the original dispatch signals from

the EMS. This requires knowledge of the power grids such as

network topology and nodal electricity demands. The attack

model in this paper is assumed to have perfect knowledge of

necessary information (network topology, line impedances,

and thermal limits ± see Table I), which can be considered

as the most precise attack scenario.1 The type of information

needed for the attack model is summarized in Table I.2 The

dispatch prediction model mimics the power grid operation

and is formulated as the second-order cone problem:

min
ΞP

∑

t∈T

∑

i∈I

cgi (ĝ
p
it) + cdn(d̂

p,curt
nt ) + cri(r̂it) (1a)

fp
l|o(l)=n,t−

∑

l|r(l)=n

(fp
lt−altRl)−

∑

i∈In

ĝpit +Dp
nt

− d̂p,curtnt +Gnunt = 0, ∀n ∈ N , t ∈ T ,

(1b)

fq
l|o(l)=n,t−

∑

l|r(l)=n

(fq
lt−altXl)−

∑

i∈In

ĝqit +Dq
nt

− Γnd̂
p,curt
nt −Bnunt = 0, ∀n ∈ N , t ∈ T ,

(1c)

uo(l),t−2(Rlf
p
lt+Xlf

q
lt) + alt(R

2
l +X2

l ) =ur(l),t,

∀l ∈ L, t ∈ T ,
(1d)

[

alt+uo(l),t, alt−uo(l),t, 2f
p
lt, 2f

q
lt

]

∈ K4, ∀l ∈ L, t ∈ T ,
(1e)





Fl

f̂p
lt

f̂q
lt



 ,





Fl

f̂p
lt − âltRl

f̂q
lt − âltXl



 ∈ K3, ∀l ∈ L, t ∈ T (1f)

∑

i∈I

r̂it ≥ Kr,sys
∑

n∈N

Dp
nt, ∀t ∈ T , (1g)

Rdn
i ≤ ĝpit − ĝpi,t−1 ≤ Rup

i , ∀i ∈ IC, t ∈ T , (1h)

Gp
i ≤ ĝpit + r̂it ≤ G

p

i , ∀i ∈ I, t ∈ T , (1i)

Gq
i ≤ ĝqit ≤ G

q

i , ∀i ∈ I, t ∈ T , (1j)

Un ≤ ûnt ≤ Un, ∀n ∈ N , t ∈ T , (1k)

Dp,curt
nt ≤ d̂p,curtnt ≤ D

p,curt

nt , ∀n ∈ N , (1l)

êkt = êk,t−1 + p̂chktℵ
ch − p̂diskt /ℵ

dis, ∀k ∈ K, t ∈ T , (1m)

Ekt ≤ êkt ≤ Ekt, ∀k ∈ K, t ∈ T , (1n)

P k ≤ p̂chkt · ℵ
ch, p̂diskt /ℵ

dis ≤ P k, ∀k ∈ K, t ∈ T , (1o)

1In the 2015 Ukraine case [2] the network information was obtained by
reconnaissance operations.

2While the reserve allocation for each balancing unit is marked as
unknown, the attack model requires the knowledge of the total reserve.

where ΞP := {ĝpit, ĝ
q
it, r̂it, d̂

p,curt
nt , êkt, p̂

ch
kt, p̂

dis
kt , âlt, ûnt ≥ 0,

d̂p,netnt , f̂p
lt, f̂

q
lt ∈ R}. Power grid is defined with lines l ∈ L

and nodes n ∈ N while time set is denoted as t ∈ T .

The objective function in (1a) minimizes the total cost of

generation, load curtailment and reserve. Equations (1b)±(1e)

are second-order-conic relaxation of the AC power flow

equations [30], where o(l) and r(l) denote the sending and

receiving buses of line l. Forward and backward line flow

limits are enforced in (1f) with line capacity Fl. Given

reserve requirement parameter Kr,sys, the minimum system

reserve is set proportional to the total demand in (1g).

Ramping constraints of flexible generation units (i ∈ IC)

are imposed in (1h). The active and reactive power limits

of generators are enforced in (1i) and (1j). Equations (1k)

and (1l) limit lower and upper bounds of nodal voltage mag-

nitudes and load curtailments respectively. Energy storage

operation is modeled in (1m)±(1o) where the charging and

discharging decisions are denoted as p̂chkt and p̂diskt . The inter-

temporal relationship of the state of charge êkt is defined in

(1m) with charging and discharging efficiency parameters,

ℵch and ℵdis. The lower and upper bounds for the charging

and discharging power are in (1o).

C. Dispatch falsification model

Once the prediction of the dispatch is made, the attacker

can generate falsification signals. The falsification targets are

constrained by the number and type of access points. For

simplicity, it is assumed that the FDI attack would be carried

out using only a single type of DERs (e.g., generator, storage

or demand in Fig. 2). Then the dispatch falsification model

is formulated with generic dispatch notation xkt for unit k
and attack time t ∈ T a as follows:

min
∆xkt

∑

t∈T

∑

k∈K

(

|∆xkt|
2 + ρ|∆xkt−∆xk,t−1|

2
)

(2a)

|
∑

k∈K

∆xkt| ≥ Ka
t

∑

i∈I

r̂it, ∀t ∈ T a (2b)

|
∑

t∈T a

∑

k∈K

∆xkt| ≥
∑

t∈T a

∑

i∈I

r̂it, (2c)

− ϵax̂kt ≤ ∆xkt ≤ ϵax̂kt, ∀k ∈ K, t ∈ T a, (2d)

−Xkt ≤ x̂kt +∆xkt ≤ Xkt, ∀k ∈ K, t ∈ T a, (2e)

Given the prediction of the target dispatch (e.g., x̂kt := ĝpit
for generator, x̂kt := p̂

ch/dis
kt for storage, and x̂kt := d̂p,curtnt

for load curtailment), the attacker determines the falsification

signal (e.g., ∆xkt = ∆gpit). The objective function in (2a)

minimizes the sum of the squared size of the attack and

the temporal smoothness regularization term3 with penalty

parameter ρ. Constraint (2b) sets the impact of the attack

achieves the target deviation with user-defined parameter

Ka
t for each time interval and (2c) ensures the accumulated

deviation in the dispatch during the attacking windows t ∈
T a exceeds the system reserve. The lower and upper bounds

for individual falsification signals are given in (2d) and (2e)

3The regularization term in (2a) can be extended to account for other
dimensions such as geographical locations (i.e., similar deviations in nearby
dispatch signals).



TABLE I. ASSUMPTIONS FOR THE ATTACK AND DETECTION MODELS

Name Attack Model Detection Model

Network information:
topology (N ,L) ✓ ✓

line impedance (Rl, Xl) ✓ ✓

line thermal limit (Fl) ✓ ✓

Dispatch signals:

generation output (g
p
it) ± P & A

load curtailment (dcurtnt ) ± P & A

storage dispatch (p
ch/dis
kt ) ± P & A

reserve (rit) ± P & A

Measurements:

nodal demand (D
p
nt) P P & A

nodal voltage (vnt, θnt) ± ✓

∗ P: prediction, A: actual, ✓: assumed to be known, ±: unknown

where ϵa is an user-defined parameter to confine the attack

size and the original dispatch bounds are Xkt and Xkt.

III. FDI ATTACK DETECTION WITH KERNEL SVR

To detect the intraday FDI attack carried out over several

hours, the detection model should be able to capture the

temporal changes in dispatch signals as well as the current

values. To do so, the detection model requires access to

the dispatch signals and network status for the monitoring

windows T m (in the sequel we shall use a 6-hour window)

and the system margin at the time of interest T pred (in our

examples, the time of interest is set to 2 hours after the

monitoring window closes) as summarized in Table I.

A. Kernel Support Vector Regression

Kernel SVR is a generalization of Kernel support vec-

tor machine for real-value function estimation, commonly

equipped with ϵ-insensitive loss function (sometimes referred

to as soft-margin loss function) [31]. A kernel function maps

the original input data into feature space (i.e., xi 7→ ϕ(xi))
through the use of inner products, which is compatible for

the SVR model fitting. The common selection of a kernel

is Gaussian radial basis kernel function (RBF) in (3a) and

polynomial kernel of degree d in (3b) (See [32] for details):

k(x, y) := e−
∥x−y∥2

2σ2 (3a)

k(x, y) := (x⊤y)d (3b)

Given input data xi with user-defined parameter C and

feature map ϕ(·), the Kernel SVR for predicting output: yi ∈
R can be modeled as in (4):

min
w,b,ξ+

i
≥0,ξ−

i
≥0

∥w∥+ C
l

∑

i=1

(ξ+i + ξ−i ) (4a)

s.t. (w⊤ϕ(xi) + b)− yi ≤ ϵ+ ξ+i , ∀i (4b)

yi − (w⊤ϕ(xi) + b) ≤ ϵ+ ξ−i , ∀i (4c)

The objective function in (4a) minimizes the sum of the norm

of ω and the loss terms, where ω⊤x + b = 0 is a decision

boundary and the size of margin is 2
||ω|| (i.e., the margin is

maximized). Points within an ϵ distance of the support vector

do not contribute to the cost.
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Fig. 4. Training and testing process of the kernel SVR detection
model with the normal operation data and falsified dispatch data.

B. Kernel SVR detection model

Figure 4 shows the process of training the kernel SVR for

detecting the intraday FDI attacks. To train the SVR model in

(4), we first generate normal operation data with supply and

demand side uncertainties and falsified operation data. The

supply and demand uncertainties are modeled as a random

variable drawn from a Gaussian distribution. In practice,

historical data can be used for generating a probability

distribution of the supply and demand uncertainties. The

power grid measurement data (voltage magnitudes and phase

angles) are obtained by solving the power flow equations

with fixed power injections based on the supply and demand

data. Synthetic falsified operation data can be generated in

the same way, while the dispatch signals are fixed as the

falsified values from the dispatch falsification model.

Once the training data is prepared, the input vector xi

for each observation i is constructed which is comprised of

prediction (̂·) and actual (·) values of energy resources over

the user-defined monitoring time windows (t ∈ T m) and the

system status (voltage magnitudes and phase angles):

xi =



























[ĝpit]∀i∈I,t∈T m

[gpit]∀i∈I,t∈T m

[d̂curtnt ]∀n∈N ,t∈T m

[dcurtnt ]∀n∈N ,t∈T m

[p̂
ch/dis
kt ]∀k∈K,t∈T m

[p
ch/dis
kt ]∀k∈K,t∈T m

[vnt]∀n∈N s,t∈T m

[θnt]∀n∈N s,t∈T m



























∈ R
d, yi ∈ R (5a)

where d = (2|I| + 2|N | + 2|K| + 2|N s|)|T m|. Then the

corresponding output (yi) of the kernel SVR is set as the

system operation margin defined as the minimum of the

remaining up-ward and down-ward reserves at the time of

interest t = T pred (e.g., 2 hours from now). Formally, the

margin at time t is:

min{rupt −
∑

i

(xit − x̂it), rdnt −
∑

i

(x̂it − xit)}. (5b)

In (5b), the generic notation xit is used to represent all

flexible resources such as generators (gpit), storage (p
ch/dis
kt ),

load curtailment (dcurtnt ) and the system margin is defined as

the total sum of remaining flexibility in all units.

To increase and validate the model performance, additional

steps are added in the kernel SVR. First, the input data is







the attack hard to be detected. As a result of the attack, as

shown in Fig. 7(c), the total system generation (dashed-line)

decreases gradually and the total amount of supply-demand

imbalance exceeds the system flexibility (shaded area).

3) Detecting the FDI attack with the kernel SVR: Similar

to Scenario 1, the monitored system margin (yellow line)

in Fig. 7(d) looks normal throughout all intervals. However,

the actual margin (red line) starts to decrease at 13:00 and is

fully exhausted at 15:20. The proposed kernel SVR detection

model predicts the drop would begin at 14:00 and the margin

will be below 1MW at 15:30. In other words, the grid

operator will notice the change at 12:00 (two hours ahead

of 14:00) and the preventive measure will be taken at 13:30

(two hours ahead of 15:30) if the security threshold is 1MW.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzed the vulnerability of power grids with

high PV penetration against an intraday FDI attack that

falsifies DER dispatch and monitoring signals. Based upon

the dispatch prediction and dispatch falsification models, we

illustrated how gradual manipulation of DER outputs can

cause a power imbalance which exceeds the system reliability

margin. To enhance the power grid reliability against the

attack scenario, we also proposed a detection model utilizing

a kernel SVR which allows a power grid operator to predict

the reduction in the system margin ahead of time. The

numerical experiments demonstrate the attack scenarios and

the performance of the detection model on the HCE test

system, which is based on real-world data.

There are several directions for future works. First, we

plan to relax the perfect knowledge assumption on the grid

conditions. In practice, such information is available only in

limited locations and we will investigate how this affects the

detection model. We also plan to evaluate the performance

of the kernel SVR detection model against other detection

methods and carry out the comparative analyses.
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