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Abstract: As fish swim through a fluid environment, they must actively use their fins in concert to
stabilize their motion and have a robust form of locomotion. However, there is little knowledge of
how these forces act on the fish body. In this study, we employ a 3D immersed boundary model to
decode the relationship between roll, pitch, and yaw of the fish body and the driving forces acting
on flexible fish bodies. Using bluegill sunfish as our representative geometry, we first examine the
role of an actuating torque on the stability of the fish model, with a torque applied at the head of
the unconstrained fish body. The resulting kinematics is a product of the passive elasticity, fluid
forces, and driving torque. We then examine a constrained model to understand the role that fin
geometry, body elasticity, and frequency play on the range of corrective forces acting on the fish.
We find non-monotonic behavior with respect to frequency, suggesting that the effective flexibility of
the fins play an important role in the swimming performance.

Keywords: immersed boundary method; biomechanics; biological fluid dynamics; animal swimming;
fluid–structure interaction

1. Introduction

Many species of fish live in very complex, turbulent environments, including wave swept coral
reefs and rapidly flowing streams [1] and swim stably despite large environmental forces. Yet the
swimming motion of most fish is itself probably unstable. Much like backing up a car with a trailer
attached, the center of pressure from thrust from the caudal fin is located behind the center of mass,
an unstable configuration [2]. Similarly, the dorsal and anal fins, located above and below the center of
mass, produce large forces that are not the same [3,4], likely producing a destabilizing torque. Finally,
for many fishes, the center of mass is located above the center of buoyancy [5], leading to a static roll
instability. Thus, it seems likely that most fish must actively stabilize themselves during swimming [6].
They have exquisite control over their pectoral [7] and pelvic fins [8], along with the dorsal, anal,
and caudal fins [9], all of which are probably used for stability as well as propulsion.

Certain body forms are thought to be more stable—or really, less unstable—than others [6]. As an
extreme example, boxfishes, which have a rigid carapace, are passively self-stabilizing due to bony
ridges on their carapaces [10]. For other fishes, the evidence is less clear. Species with streamlined
body shapes are found more often in fast flowing turbulent streams [11], but is that because their body
shape is more stable, reduces drag, both, or because of some other factor?

In general, assessing the degree of instability of an unstable system is difficult. For a stable system,
the canonical method involves applying small perturbations and measuring the time it takes the
system to return to its stable equilibrium [12]. These approximations usually involve linearizing a
nonlinear system about the equilibrium. For an unstable system, any small perturbation will ultimately
cause the system to diverge, possibly passing through qualitatively different states in which the linear
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approximation fails. For fishes, the challenge is also that stabilization is an active process. Some
have argued that one could quantify relative stability by examining how much an animal’s body
orientation fluctuates during movement, for example, [13]; animals that pitch up and down more
during swimming, for example, might be less stable than those that pitch less. However, larger
fluctuations in orientation do not necessarily imply lower stability. It might be that animals with larger
fluctuations are exerting less active control over their orientation, and could in fact be more passively
stable than those with smaller fluctuations.

Here, we use a computational model of a swimming fish to examine a different way to assess
stability. We simulate a fish with a flexible body, based on the shape and mechanics of the bluegill
sunfish Lepomis macrochirus. This is a fluid–structure interaction problem, a ubiquitous type of problem
in biology that has been examined with a number of computational frameworks. One such method
is the immersed boundary (IB) method, first developed by Charles Peskin in the 1970s to examine
the cardiovascular fluid dynamics of the human heart. Since then, the IB method has been used
for a number of fluid–structure interaction systems that are in low to intermediate Reynolds regime.
This includes many different biological systems pertaining to animal locomotion in fluids, such as
undulatory swimming [14–16], jellyfish swimming [17–20], crustacean swimming [21], and insect
flight [22,23].

We first demonstrate that the fish body in our simulations is unstable. Then, we augment the
simulation by applying constraint forces that force the swimmer to remain in an upright orientation.
These constraint forces represent the net additional force that a freely swimming fish would have to
produce to stay upright. Most likely, such forces would be produced primarily by the pectoral fins,
which are not included in our simulation. The magnitude of the constraint forces thus represents the
degree of instability of the fish model; larger constraint forces means that the model is less stable.
We find that stability, as assessed with our new metric, varies depending on the effective flexibility [16]
and body shape of the fish model.

2. Methods

2.1. Fluid–Structure Interaction

The IB framework describes the fluid–structure interaction system using an Eulerian description
of the equations of fluid motion and a Lagrangian frame to describe a deformable immersed boundary
or body [24–26]. Let X = (X, Y, Z) ∈ U represent the Lagrangian coordinate system of the immersed
structure, where U is denoting the Lagrangian coordinate domain. Let x = (x, y, z) ∈ Ω denote
physical Cartesian coordinates, with Ω denoting the physical region of the fluid–structure system.
The physical position of the material point X at time t is denoted with the mapping χ(X, t) ∈ Ω, such
that the physical region of the structure at time t is χ(U, t) ⊂ Ω.

The immersed boundary formulation of the equations of motion is given by

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= −∇p(x, t) + µ∇2u(x, t) + f(x, t) (1)

∇ · u(x, t) = 0 (2)

f(x, t) =
∫

U
F(X, t) δ(x− χ(X, t))dX (3)∫

U
F(X, t) ·V(X)dX = −

∫
U
P(X, t) : ∇XV(X)dX +

∫
U

G(X, t) ·V(X)dX (4)

∂χ(X, t)
∂t

=
∫

Ω
u(x, t) δ(x− χ(X, t))dx (5)

where µ is the dynamic viscosity of the fluid, ρ is fluid density, u(x, t) = (ux, uy, uz) is the Eulerian
material velocity at x, p(x, t) is the Eulerian pressure field, and G(X, t) represents an external
body force. F(X, t) and f(x, t) represent the Lagrangian and Eulerian force densities, respectively.
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F is defined with respect to the first Piola Kirchhoff stress tensor in Equation (4) using a unified
weak formulation (following [27]), in which the resulting force term accounts for both internal
body forces and transmission forces at the boundary ∂U and V(X) is an arbitrary Lagrangian test
function. The Dirac delta function δ(x) = δ(x)δ(y)δ(z) is the kernel of the integral transforms of
Equations (3) and (5). Here, Equation (3) couples the Lagrangian force density to the local Eulerian
force density, while Equation (5) enforces the no-slip boundary condition of the structure with respect
to the local fluid velocity.

This study uses a hybrid finite difference/finite element version of the immersed boundary
(IB/FE) to approximate Equations (1)–(5). The IB/FE method uses a finite difference formulation for
the Eulerian equations and a finite element formulation for the Lagrangian structure. More details of
the IB/FE method can be found in Griffith and Luo [27].

2.2. Body Construction

The body shape for the model was constructed in Solidworks (2019 version; Dassault Systèmes,
Waltham, MA, USA) based on images of a bluegill sunfish (Lepomis macrochirus) taken from lateral
and ventral view. The fins were constructed by tracing the outline of the body and fins (Figure 1A),
extruding that shape to a 1 mm thickness, and then rounding the edges with a fillet with a 0.2 mm
radius. To construct the body, we assumed that it had an elliptical cross section and set the width equal
to the body width from the ventral image and the height equal to the body height from the lateral
image. We then joined the ellipses with a smooth swept extrusion (Figure 1B) and merged the body
and fins into a single solid object in an STL file. The STL file was then used to generate a finite element
hex-mesh of the body using Bolt (2018, Csimsoft).

A

B

z
xy

Figure 1. Body construction. (A) Fins were traced (black line) from a lateral image of a bluegill sunfish.
(B) The body was constructed by smoothly changing the width and height of an ellipse (light blue),
based on guide curves (purple).
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2.3. Material Model and Driving Torque

In this study, the kinematics of the fish model emerge from the interaction between the passive
elastic material properties of the body, a driving torque, and the resulting local fluid dynamics.
Additionally, a subset of the simulation has a body force that maintains the body on a fixed (horizontal)
xy plane. The body’s material properties as described using the first Piola–Kirchhoff stress tensor of a
Neo–Hookean material model,

P = ηF+ (λ det(J)− η)F−T (6)

where F = ∂χ
∂X is the deformation gradient of the body, J is the Jacobian of F, η is the shear modulus, λ

is the bulk modulus. The shear and bulk moduli are defined respectively as

η =
E

2(1 + ν)
(7)

and
λ =

Eν

(1 + ν)(1− 2ν)
, (8)

where E is the Young’s modulus and ν is the Poisson ratio.
We also actuate the model at one vertical axis, as if it was being twisted back and forth on a stick,

similar to experimental models [28] shown to give good approximations of many kinematic features of
fish swimming movements. The fish body is driven with a torque applied about a vertical axis that
goes through the anterior region of the fish model, just in front of the dorsal fin. The region where
the torque is applied is a cylinder of radius rc and the applied force magnitude at time t, Fmag(t), is
defined with respect to the distance between the material coordinates and the axis of applied torque, r,

Fmag(t) =

{
Fmax f sin(2π f t) r

rc
if r ≤ rc

0 if r > rc
, (9)

where Fmax is the maximum applied force magnitude and f is the frequency. Note that Fmag(t) is
normalized with respect to f so that the cycle-averaged |Fmag(t)| is constant with respect to actuation
frequency. The applied torque, G̃F, is then defined with respect to the radial coordinates of the
undeformed mesh,

G̃F(X, t) =

{(
Fmag(t) sin(θ), Fmag(t) cos(θ), 0

)
if Y ≥ 0(

−Fmag(t) sin(θ), Fmag(t) cos(θ), 0
)

if Y < 0
(10)

where θ = cos−1(X/r). The force is then mapped to the current configuration of the mesh using the
deformation gradient tensor,

GF(X, t) = FG̃F. (11)

By mapping the force from the undeformed configuration to the current configuration, the region
of applied torque is consistent on the body regardless of the deformation and rotation of the body.

Additionally, a subset of the simulations constrains the fish body to its initial horizontal plane.
To do this, a body force is applied to the column where torque is applied. The body force is a stiff
tether spring force dependent on the difference between the current and initial z-coordinates,

GT(X, t) =

{
κ(χT(X, t)− χ(X, t)) if r ≤ rc

0 if r > rc
, (12)

where κ is a spring constant and

χT(X, t) = (χx(X, t), χy(X, t), χz(X, 0)), (13)
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which allows us to constrain only the z-axis. For unconstrained swimming, κ is set to zero.
The two body forces are then summed up

G(X, t) = GF(X, t) + GT(X, t) (14)

and substituted into Equation (4) as an external force on the body. All reference parameters for this
study are listed in Table 1.

Table 1. Parameters used in simulations.

Quantity Symbol Reference Value

Fish length L 10 cm
Fish height h 5.5 cm

Elastic Modulus E 1× 104 Pa
Poisson ratio η 0.3

Spring constant κ 1× 10−7 Pa
Max force magnitude Fmax 7.5× 105 N
Numerical timestep ∆t 2× 10−4 s

Domain width W 0.6 m
Grid stepsize h W/1024

2.4. Body Coordinate System

To identify the roll, pitch, and yaw angles and torques, we created a body coordinate system for
the fish. We constructed an orthonormal basis for the fish body at time t, {rF(t), rS(t), rT(t)}, where
rF, rS, and rT are unit vectors that respectively point towards the front, side, and top of the fish body,
with the center of mass as the origin. We then construct a rotation matrix, R′,

R(t) = [rF(t), rS(t), rT(t)] , R′ = R(t)[R(0)]T . (15)

From R′, we calculate the associated yaw, pitch, and roll of the body using Euler angle
formulas [29].

To assess stability, we constrained the model to swim in the xy plane, then computed the constraint
torques in the fish’s reference frame. The forward (XF) axis for the fish is defined as the swimming
direction averaged over a tail beat. Since the fish is constrained to an upright orientation, the up axis
(ZF) is the same as the global Z axis, and therefore the lateral axis YF = Z× XF. The torque vector τ(t)
is defined about the fish’s center of mass XCOM by

τ(t) =
∫

U
[(X− XCOM)×GT(X, t)] dX. (16)

We then project the torque on the forward and lateral axis access to compute the roll torque
τθ = τ(t) · XF and pitch torque τφ = τ(t) ·YF.

2.5. Computational Implementation

The computational domain was taken to be 1.5 W×W×W m3 with periodic boundary conditions,
where W is the domain width. The domain was chosen so as to have minimal interaction between the
body and the boundaries of the domain (W = 0.6 m). The fixed domain is discretized using adaptive
mesh refinement [30], where the most refined discretization is reserved for portions of the domain
where the structure is present and the vorticity magnitude is above a certain threshold. Applying the
finest Cartesian grid discretization would result in a 2048× 1024× 1024 patch for the entire domain,
where the finest spatial grid size is h = W/1024. The timestep was ∆t = 0.05/ f where f is the tail beat
frequency in Hz. Benchmark problems for the validation of the IBAMR method and IB/FE framework
can be found in [31,32].
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3. Results

We performed three sets of simulations for this study. The first examines the kinematics of the
unconstrained fish swimming with an applied torque, demonstrating that the baseline geometry is
unstable when propelled by the tail. In the second and third sets, we examine how the stabilizing
forces differ depending on the driving frequency and the body geometry. This is done by applying a
tethering force to the simulation that constrains the body to its initial horizontal plane as the actuation
torque is applied. The tethering forces are then analyzed with respect to the resulting swimming
direction to characterize the pitch torque and roll torque over an actuation cycle. In all three sets of
simulations, the fish body is initially at rest in quiescent flow, which allows for a smooth application of
the actuating torque.

3.1. Unconstrained Swimming

Using the reference values of Table 1 and setting GT(X, t) = 0, the model was actuated with a
torque (Equation 11) at a frequency of 0.75 Hz and allowed to swim in an unconstrained manner for
10 actuation cycles. Figure 2 shows that the trajectory of the fish does not stabilize, even after 10 cycles.

(a) (b)

(c) (d)

Figure 2. The trajectory over 10 actuation cycles of the unconstrained model using reference material
parameters, with (a) an isometric view, (b) the view of the xz-plane, (c) the view of the yz-plane, and (d)
the view from the xy plane.

Figure 3 shows the roll, pitch, and yaw angles (see Section 2.4) with respect to the cycle phase
of the driving torque. The yaw of the body, which is in the same plane as the applied torque of
GF, oscillates with the driving torque frequency. Roll and pitch diverge at an increasing rate as
time increases.

30
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Figure 3. Plot of the roll, pitch, and yaw of the fish body with respect to the cycle phase. The fish body
is driven by an applied torque with a frequency of 0.75 Hz.
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The trajectory of the swimmer depends on the actuation frequency. In Figure 4, we plotted the
end position of the fish model after eight actuation cycles for swimmers with six frequencies, f = 0.5,
0.75, 1.0, 1.25, 1.5 and 2.0 Hz. As the frequencies increased, the trajectory veers increasingly to the side
and rolls and pitches further downward. This suggests that the resulting trajectory is a function of the
actuation frequency and the material properties of the model.

0.5 Hz
0.75 Hz

1.0 Hz

1.25 Hz
1.5 Hz

2.0 Hz

initial
position

Figure 4. The end position of the fish model after eight actuation cycles for f = 0.5 Hz (red), 0.75 Hz
(red-orange), 1.0 Hz (orange), 1.25 Hz (yellow-orange), 1.5 Hz (yellow), and 2.0 Hz (green). Initial
position in blue.

3.2. Stabilizing Torque

We then examine the stabilizing forces of the constrained fish model. Figure 5 shows the stabilizing
roll and pitch torques with respect to cycle phase. The oscillations have a non-zero mean, indicating
that the unconstrained fish would not remain on the xy-plane, but they are consistent over more than
three cycles for both torques, suggesting that a steady state swimming pattern has emerged.
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Figure 5. Pitch and roll torques needed to stabilize models with different driving frequencies. Roll
(a) and pitch (b) torque for stabilization for swimmers with driving frequencies from 0.5 to 2.0 Hz.

The roll and pitch torques needed to stabilize the model vary with driving frequency in
a non-monotonic way over actuation frequencies from 0.5 to 1.25 Hz in 0.25 Hz increments.
The stabilizing roll and pitch torque both vary periodically at all driving frequencies (Figure 5a,b),
but with different amplitudes and timing of the peaks with respect to the cycle phase. The amplitude
of roll torque increases with actuation frequency (Figure 5a), while the pitch torque amplitude remains
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approximately constant (Figure 5b). The peak amplitude for both roll and pitch shifts in the phase of
the actuation cycle according to actuation frequency. As the frequency increases, the peak roll torque
occurs later in the phase, while the peak pitch torque varies in a more complex way.

Figure 6a shows the cycle-averaged roll and pitch torques required to stabilize the model with
different driving frequencies. None of the torques average to zero. As the actuation frequency increases,
the roll torque is small and positive before decreasing and changing sign at f = 1.5 Hz (Figure 6a),
while the pitch torque initially increases in magnitude before changing sign, again at f = 1.5 Hz
(Figure 6a). Swimming speed in body lengths per tail beat cycle decreases as actuation frequency
increases (Figure 7). Tail beat amplitude also decreases until f = 1.75 Hz but then begins to increase
again at 2.0 Hz (Figure 7).
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Figure 6. Pitch and roll torques needed to stabilize models with different driving frequencies (a) and
different body shapes (b).
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Figure 7. Swimming speed (a) and tail beat amplitude (b) as a function of actuation frequency.

3.3. Varying Body Shape

To understand the role of geometry in determining the roll and pitch torques, the simulation was
run for bodies that were 25% taller and shorter than the original body. The actuating torque was driven
at a frequency of 0.75 Hz with a force magnitude scaled by the height of the body. Figure 8 shows
the stabilizing roll and pitch torques for each of the three body geometries. Cycle-averaged roll and
pitch torques decreased in magnitude as body height increased (Figure 6b). For both roll and pitch,
the shorter body required much higher-magnitude torque to stabilize it on average, but the taller body
had a larger fluctuation in the stabilizing torque (Figure 8a,b).
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Figure 8. Pitch and roll torques needed to stabilize models with different body shapes. Roll (a) and
pitch (b) torque for stabilization for swimmers with short, medium, and tall bodies.

4. Discussion

Many fish swim by producing thrust with their caudal fin [32,33], a mode called body-caudal fin
swimming [34]. The center of pressure for thrust is therefore behind the center of mass: a potentially
unstable configuration [6]. Moreover, the dorsal and anal fins are not perfectly symmetric and do not
produce the same flow patterns [4,9], suggesting that their torques do not balance each other: again,
a potentially unstable configuration.

Despite recognizing these instabilities for a long time [6], researchers have not generally quantified
them. This has been challenging for several reasons. The first challenge is that, despite the prediction
of instability, fish do swim stably. This observation suggests either the caudal fin thrust and body
asymmetries are not actually unstable, or, more likely, that fish are constantly stabilizing themselves.
They may adjust the caudal fin beat or use their pectoral fins or other fins to maintain upright forward
movement. Based on neural recordings from lampreys, we know that fish maintain upright orientation
by a cycle-by-cycle modulation of the body and tail motion [35] and that, without their vestibular
system, they roll continuously [36]. However, identifying which body and fin motions are related to
propulsion and which are related to stability is very challenging and may not always be possible [36].

A second reason that quantifying instability in swimming fishes is hard is that quantifying
instability in general is hard [12]. Unstable systems, by definition, diverge, which usually invalidates
the approximations used to assess stability.

Here, we developed a new way to quantify instability in fishes using a computational model.
We simulated a simple model of a swimming fish that matches many features of the mechanics and
kinematics of real swimming fishes. The model is homogeneously elastic. Although fish bodies
have complex internal anatomy [1,37] with many nonlinear materials (e.g., [38]), describing them as
homogeneous beams may be a good first approximation [39,40]. We also actuate the model at one
vertical axis, as if it was being twisted back and forth on a stick. Again, this approximation does not
include any of the complexity of fish muscle [41,42], but rubber fish models mounted in this way
actually match many features of the body motions of swimming fishes [28,43].

This model, as expected, does not maintain a stable heading or upright orientation
(Figures 2 and 3). This supports the hypothesis that caudal fin propulsion in fishes is unstable and
requires active stabilization. Stabilizing forces likely come from the pectoral or pelvic fins, or the
dorsal or anal fins. They could even come from small adjustments in the caudal fin shape or motion.
For example, the conformation of the caudal fin is controlled actively by small muscles at the base of
the fin rays [44], and fish can alter the shape fairly dramatically during different behaviors [45].
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When we add stabilizing torques, we find that they fluctuate during the fin beat cycle and do
not average to zero (Figure 6). This observation again supports the idea that caudal fin propulsion is
unstable, and indicates that our unconstrained fish model would never reach a stable state, but would
continue to spiral in roll and pitch, as seen in Figure 4. The sign of the corrective torque is arbitrary,
and is set by the initial transient, depending on whether the fish starts beating its tail to the left or the
right. If we mirror the fish and its driving torque, the cycle-averaged patterns seen in Figure 6 are the
same, but have the opposite sign.

The stability of the fish model depends on both the driving frequency and the shape of the body.
Flexible panels driven sinusoidally have nonlinear resonance patterns in both swimming speed and
trailing edge amplitude [16,46], with multiple peaks that depend on the driving frequency, body
stiffness, and shape. Specifically, the nonlinearities depend on the effective flexibility of the body,

Π =

√
ρsL5 f 2

EI
(17)

where s is the height of the body, L is body length, f is driving frequency, and EI is the bending
modulus. We find nonlinear patterns in roll and pitch torque as a function of frequency (Figure 6).
These nonlinearities may also be part of this resonant pattern, where resonant peaks in tail beat
amplitude correspond to more stable or less stable swimming. Indeed, in these models, tail beat
amplitude decreases and then increases again (Figure 7b), which may be part of a resonant interaction
similar to the one we saw in [16].

We only tested three different body shapes, so if there is a similar nonlinearity in stability as a
function of body shape, it would be hard to see from our results. However, even with our limited
sampling, the medium body height model requires a lower amplitude corrective roll torque than the
short and tall models (Figure 8a). These models are perfectly neutrally buoyant, so these differences
do not reflect differences in the locations of the center of mass and center of buoyancy. When we scaled
the models to produce the different body shapes, we also scaled the fins, but the dorsal and anal fin
are asymmetric and both fins are flexible. There may therefore be differences in how they bend that
alter the centers of pressure that affect the stability of the different body shapes. Further work would
be useful to examine how passive stability depends on the size and shape of the fins, separately from
that of the body.

In conclusion, we have developed a simple way of assessing the stability of swimming fish models
by computing the corrective torques required to maintain an upright orientation. In real fish, these
torques would have to be produced by fins other than the caudal fin or by subtle modifications of the
caudal fin shape or motion, patterns that are difficult to detect or quantify. Our new technique will
allow us to examine the intrinsic stability and its inverse— maneuvering ability [6]—in fish models
with different shapes, swimming speeds, and swimming modes.
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