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Abstract—A fundamental problem in signal processing is to
denoise a signal. While there are many well-performing methods
for denoising signals defined on regular domains, including images
defined on a two-dimensional pixel grid, many important classes of
signals are defined over irregular domains that can be conveniently
represented by a graph. This paper introduces two untrained
graph neural network architectures for graph signal denoising,
develops theoretical guarantees for their denoising capabilities in
a simple setup, and provides empirical evidence in more general
scenarios. The two architectures differ on how they incorporate
the information encoded in the graph, with one relying on graph
convolutions and the other employing graph upsampling operators
based on hierarchical clustering. Each architecture implements
a different prior over the targeted signals. Finally, we provide
numerical experiments with synthetic and real datasets that i) asses
the denoising behavior predicted by our theoretical results and ii)
compare the denoising performance of our architectures with that
of existing alternatives.

Index Terms—Geometric deep learning, graph decoder, graph
signal denoising, graph signal processing.

I. INTRODUCTION

AST amounts of data are generated and stored every

day, propelling the deployment of data-driven solutions to
address a wide variety of real-world problems. Unfortunately,
the input data suffers from imperfections and is corrupted with
noise, oftentimes associated with the data-collection process.
Noisy signals appear in a gamut of applications, with examples
including the processing of voice and images, the measurements
in electric, social and transportation networks, or the monitoring
of biological signals [1], [2]. The presence of noise entails a
detrimental influence on the quality of the data, which may
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become unusable when the noise power is comparable to that of
the signal. As aresult, separating the signal from the noise, which
is referred to as signal denoising, is a critical and ubiquitous task
in contemporary data science applications. While most existing
works focus on the denoising of signals defined over regular
domains (time and space), signals with irregular supports are
becoming pervasive. In particular, signals obtained from sensors
deployed across different positions, such as voltage in power
networks, temperature in weather stations, or neurological ac-
tivity on the brain, have largely benefited from graph signal
denoising since sensor measurements are typically corrupted
by noise [3]. Hence, designing (nonlinear) denoising schemes
for signals defined over irregular domains constitutes a relevant
problem both from a theoretical and practical point of view.

A versatile and tractable approach to overcome the challenges
inherent to data supported on irregular domains consists of
representing the underlying structure as a graph, with nodes
representing variables and edges encoding levels of similarity,
influence, or statistical dependence among nodes. Successful
examples of this approach can be found in the subareas of
network analytics, machine learning over graphs, and graph
signal processing (GSP) [1], [4], [5], with graph neural net-
works (GNNs) and GSP being particularly relevant for the
architectures presented in this paper [6], [7]. Note that traditional
data-processing architectures are designed to deal with data
defined over regular domains, such as images, and hence, they
may incur difficulties when learning and exploiting the more
complex structure present in many contemporary applications.
Nonetheless, GSP provides a principled approach to handling
this issue [2], [5], [6]. Assuming that the structure of the signals
can be modeled by a graph, GSP uses the information encoded in
the graph topology to analyze, process, and learn from the data.
As a result, it is not surprising that GSP has been successfully
applied to design and analyze GNNs [7], [8], [9], [10], a class
of neural network (NN) architectures that incorporate the graph
topology information to enhance their performance when the
data is composed of signals defined over a graph.

The importance of leveraging the graph influence when using
deep nonlinear architectures is reflected in the wide range of
GNNss that co-exist in the literature, including graph convolu-
tional NNs (GCNNGs) [11], [12], [13], graph recurrent NN [14],
graph autoencoders [15], [16], [17], graph generative adversarial
networks [18], [19], and simplicial NNs [20], [21], to name a few.
Incorporating the graph structure into deep nonlinear models in-
volves a wide range of options when designing the architecture.
For example, GCNNs can be defined with or without pooling
layers and the convolution over a graph can be implemented in
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several ways (vertex vs frequency), each leading to architectures
with different properties and performances. In fact, one of the
key questions when designing a GNN is to decide the particular
way in which the graph is incorporated into the architecture.

Considering the preceding paragraphs, the goal of this work
is twofold. First, we explore different ways of incorporating the
information encoded in the graph and propose new graph-based
NN architectures to denoise graph signals. Second, we provide
theoretical guarantees for the denoising capabilities of this ap-
proach and show that it is directly influenced by the properties of
the graph. The mathematical analysis, performed on particular
instances of these architectures, provides guarantees on their
denoising performance under specific assumptions for the orig-
inal signal and its underlying graph. In addition, we provide
empirical evidence about the denoising performance of our
method for scenarios more general than those strictly covered
by our theory, further illustrating the value of our graph-aware
untrained architectures.

The proposed architectures are untrained NNs, meaning that
the parameters of the network are optimized using only the signal
observation that we want to denoise, avoiding the dependency
on a training set with multiple observed graph signals. The
underlying assumption behind this untrained denoising archi-
tecture is that, due to the graph-specific structure incorporated
into the different layers, when tuning the network parameters
using stochastic gradient steps, the NNs are capable of learning
(matching) the structure of the signal faster than that of the
noise. Hence, the denoising process is carried out separately
for each individual observation by fitting the weights of the
NN and stopping the updates after a few iterations. This same
phenomenon has been observed to hold true in non-graph deep
learning architectures [22], [23] and constitutes a framework
that is closely related to that of zero-shot learning [24], [25].
In the context of signal denoising, the consideration of an over-
parametrized graph-aware architecture along with early stopping
avoids overfitting to the noise.

To incorporate the topology of the graph, the first architecture
multiplies the input at each layer by a fixed (non-learnable) graph
filter [26], which can be seen as a generalization of the convo-
lutional layer in [12]. The second architecture performs graph
upsampling operations that, starting from a low-dimensional
latent space, progressively increase the size of the input until
it matches the size of the signal to denoise. The sequence of
upsampling operators is designed based on hierarchical cluster-
ing algorithms [16], [27], [28], [29] so that, in contrast to [30],
matrix inversions are not required, avoiding the related numer-
ical issues. Our work is substantially different from [16], [17],
which deal with graph encoder-decoder architectures. On top of
our theoretical analysis and extensive numerical simulations,
additional differences to prior work are that: (a) our graph
decoder is an untrained network, and thus, it does not need a
training phase; (b) we only require a decoder-like architecture
for denoising graph signals, soitis not necessary to jointly design
and train two different architectures as carried out in, [16], [17].

Contributions and outline. In summary, the contributions
of the paper are the following: (i) we present two new over-
parametrized and untrained GNNs for solving graph-signal

5709

denoising problems; (ii) mathematical analysis is conducted
for each architecture offering bounds for their performance,
improving our understanding of nonlinear architectures and the
influence of incorporating graph structure into NNs; and (iii) the
proposed architectures are evaluated and compared to other
denoising alternatives through numerical experiments carried
out with synthetic and real-world data. These contrast with
the contributions of our preliminary work in [31], which only
considered a single underparametrized denoising architecture,
did not provide mathematical analysis, and focused on synthetic
datasets. Moreover, moving to the overparametrized regime not
only endows the proposed architectures with a larger learning
capacity, but it also opens the door to a more thorough theoretical
analysis.

The remainder of the paper is organized as follows. Section I-
A reviews related works dealing with graph-signal denoising.
Section II explains fundamental concepts leveraged along the
paper. Section III formally introduces the problem at hand and
presents our general approach. Sections IV and V detail the pro-
posed architectures and provide the mathematical analysis for
each of them. Numerical experiments are presented in Section VI
and concluding remarks are provided in Section VII.

A. Related Works

Untrained NNs enable the recovery of signals without the need
of training over large (or any) datasets by carefully incorporating
prior information of the signals [22], [23], [32], [33]. In [22],
it is shown that fitting a standard convolutional autoencoder to
only one noisy signal using early stopping enables the effective
denoising of an image. For this approach to work, it is key
that the signal class (images) matches the NN architecture (2D
convolutional NN with particular filters).

Previous approaches to the graph-signal denoising task in-
cluded a graph-regularization term that promoted desired prop-
erties on the estimated signals [34]. Some existing works mini-
mize the graph total variation pushing the signal value at neigh-
boring nodes to be close [34], [35]. Later on, total generalized
variation extended this idea to promote similar values of higher-
order terms [36]. A related approach assumes that the signals
are smooth on the graph and add a regularization parameter
based on the quadratic form of the graph Laplacian [37]. Also,
in [38], the authors propose a spectral graph trilateral filter as
a regularizer, based on the prior assumption that the gradient is
smooth over the graph. It is worth noting that these alternatives
rely on imposing some notion of smoothness on the original
graph signal. Furthermore, classical denoising methods typically
assume that the signal and the graph are related by a linear or
a quadratic mapping. Nonetheless, the actual relation between
the signal and the graph may be of a different nature and, in fact,
in many relevant applications the actual prior is more complex
than that represented by linear and quadratic terms, motivating
the development of nonlinear models.

More recently, nonlinear solutions for denoising graph signals
have been proposed to tackle the aforementioned issues. In [39],
a median graph filter [40] is used to denoise time-varying graph
signals defined over dynamic graphs. A different nonlinear
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TABLE I

SUMMARY OF MAIN NOTATION

Symbol Explanation

Gg,N Graph, number of nodes.

v, E Set of nodes and edges.

A A RVXN Adjacency matrix, expectation of A.

V € RNXN Matrix containing the eigenvectors of A.

A € RNXN Diagonal matrix collecting the eigenvalues of A.
F,© Number of features of the GNN, Iearnable

Zc RN(U) x F(0)

parameters.
Random input of the GNN.

Téﬁ)z) {-1G} Linear graph-dependent transformation of the
GNN at layer £.

fo(Z|G) GNN architecture.

x,n € R Noisy signal observation, noise vector.

x0, %0 € RN Original signal, denoised estimate.

X € RVX Expected squared Jacobian of fg(Z|G) with
respect to ©.

W € RVXN Matrix containing the eigenvectors of X.

3 € RNXN Diagonal matrix containing the eigenvalues of X’.

M(A) Set of SBMs with expected adjacency matrix .A.

MpN (Bmin, p) Set of SBMs with minimum expected degree
increasing with N.

fo(H), fe(U) Two-layer GCG, two-layer GDec.

H c RVXN Graph filter.

PO RNV Membership matrix at layer 4.

U® RN OxNED Upsampling matrix at layer £.

approach is followed in [30], where a graph autoencoder is
trained to recover the denoised signals. To change the size of the
graph, the autoencoder relies on Kron reduction operations [41].
However, since the Kron reduction is based on the inverse of a
submatrix of the graph Laplacian, it could fall into numerical
issues if the submatrix is singular. Moreover, both architectures
need several observations to recover the noiseless signals. Later
on, [42] proposes a graph unrolling architecture based on GC-
NN to approach the denoising task. The architecture is trained in
an unsupervised fashion and relies on regularizing the objective
function to avoid learning the noise. Differently, our proposed
solution implicitly encodes the regularization in the architectures
enabling them to learn the signal faster than the noise.

II. PROCESSING ARCHITECTURES FOR GRAPH SIGNALS

This section introduces mathematical notation and the fun-
damentals of GSP and GNNSs. In addition, the main notation
is summarized in Table I. Readers familiar with these concepts
may give a quick pass and move on to Section III.

A. Fundamentals of GSP

Let G = (V, ) denote an undirected! graph, where V is the
set of NV nodes, and & is the set of links such that (7, j) belong
to £ if nodes ¢ and j are connected. For a given graph G, the
symmetric adjacency matrix A € RV*" has non-zero entries
A;; only if (i,7) € £. The value of A;; captures the strength
of the link between nodes ¢ and j. Define the degree matrix as
D = diag(A1), where 1 is the vector of all ones and diag(-)
is the diagonal operator that turns a vector into a diagonal
matrix. A popular alternative to A is the degree normalized

! Although our theoretical results assume that the graph is undirected, the
proposed architectures can tackle signals defined on directed graphs [43].
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adjacency matrix A := D zAD :. Indeed, in the subsequent
discussions, we assume that the rows and columns of A are
normalized by its degree, so that A = A.. Finally, when the ad-
jacency matrix is symmetric, we can write A = VAV T, where
'V is an orthonormal N x N matrix collecting the eigenvectors
of A and A is diagonal matrix collecting its eigenvalues.

Graph signals. In this paper, we focus on the processing
of graph signals which are defined on V. Graph signals can
be represented as a vector X = [, ..., N]T e RN , where the
i-th entry represents the value of the signal at node 7. Since the
signal x is defined on G, the core assumption of GSP is that
either the values or the properties of x depend on the topology
of G [44]. For instance, consider a graph that encodes similarity.
If the value of A;; is high, then one expects the signal values
x; and x; to be akin to each other. This rationale helps to
explain the success of GNNs since the incorporation of G into
the architectures amounts to including prior information about
the signals to process.

Graph filtering. Graph filters, an important tool of GSP, play
a fundamental role in the definition of our GNN architectures.
Graph filters are linear operators R — R’ that can be ex-
pressed as a polynomial of the adjacency matrix of the form

M—-1
H = Z By AT, (1)
m=0

where H is the graph filter, h,, are the filter coefficients, and
M < N [26]. Since A™ encodes the m-hop neighborhoods of
the graph, graph filters can be used to diffuse input graph signals
x across the graph as y = Zf\f;é hm A™x = Hx. Because
graph filters diffuse signals across (M —1)-hop neighborhoods,
they are widely used to generalize the convolution operation to
signals defined over graphs.

Frequency representation. The theoretical analysis devel-
oped in this paper leverages the notion of bandlimited graph
signals, a widely-used definition that links the properties of a
signal to those of the (spectrum of) the supporting graph [6]. To
be specific, the frequency representation of the signal x is given
by the N-dimensional vector X = V 'x, with V' acting as the
graph Fourier transform (GFT) [45]. Then, a graph signal is said
to be bandlimited if x satisfies that T, = 0 for k > K, where
K < N is referred to as the bandwidth of the signal x. If x is
bandlimited with bandwidth K it holds that

X:VKiK, (2)

with Xxg = [Z1,...,Z k] collecting the active frequency com-
ponents and V g collecting the corresponding K eigenvectors.
This reduced-dimensionality representation, which can be gen-
eralized to graph filters as well, has been shown to bear practical
relevance in real-world datasets and it is exploited in denoising
and other inverse problems [46].

B. Fundamentals of GNNs

Generically, we represent a GNN using a parametric nonlin-
ear function fe(Z|G) : RN@*FO RN that depends on the
graph G. The parameters of the architecture are collected in ©,
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. (0)  2(0) .
and the matrix Z € RN *F" represents the input of the net-

work. Despite the many possibilities for defining a GNN, a broad
range of such architectures recursively apply a graph-aware
linear transformation followed by an entry-wise nonlinearity.
Then, a generic deep architecture fg(Z|G) with L layers can be
described as

YO =70, (v Gy, 1sesn 0
v = 4 (y/ig@) , 1<0<L, “)

where Y(©) = Z and y = Y &) denote the input and output of
the architecture, Tg&) {16} : RNCVXEED L pNOXEO 30y

. . (-1 (O
graph-aware linear transformation, 0W ¢RI are the

parameters that define such a transformation, and g(é) R—R
is a scalar nonlinear transformation (e.g., the ReLU function),
which is oftentimes omitted in the last layer. Moreover, N ()
and F'(¥) represent the number of nodes and features at layer /,
e = {('B(E)}ZL:1 collects all the parameters of the architecture,
and y is the output of the GNN. Note that although fe(Z|G)
generates output signals defined in R”, which is the case of
interest for this paper, it can be easily adapted to output graph
signals with more than one feature.

III. GNNS FOR GRAPH-SIGNAL DENOISING

We now formally introduce the problem of graph-signal de-
noising within the GSP framework, and present our approach
to tackle it using untrained GNN architectures. Given the graph
G, let us consider the observed graph signal x € RY, which is
a noisy version of the original graph signal xo. With n € RY
being a noise vector, the relation between x and x is

X = Xg + 1. &)

Then, the goal of graph-signal denoising is to remove as much
noise as possible from the observed signal x to estimate the orig-
inal signal x, which is performed by exploiting the information
encoded in G.

A traditional approach for the graph-signal denoising task is
to solve an optimization problem of the form

%o = argming [x — %Xol|3 + aR(%0|G). (6)

The first term promotes fidelity to the signal observations, the
regularizer R(-|G) promotes denoised signals with desirable
properties over the given graph G, and a > 0 controls the
influence of the regularization. Common choices for the regular-
izer include the quadratic Laplacian R(x|G) = x " Lx [37], or
regularizers involving high-pass graph filters R(x|G) = ||Hx||3
that foster smoothness on the estimated signal [34], [45].

While those traditional approaches exhibit a number of ad-
vantages (including interpretability, mathematical tractability,
and convexity), they may fail to capture more complex relations
between G and x(, motivating the development of nonlinear
graph-denoising approaches.
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Algorithm 1: Proposed Graph-Signal Denoising Method.

Inputs : x and G
Outputs: %X, and O(x)
Set fe(Z|G) as explained in Sec. IV or V
Generate Z from iid zero-mean Gaussian distribution
Initialize © gy from iid zero-mean Gaussian
fort=1to T do
| Update © ;) minimizing (7) with SGD
end
@(X) = ®(T)
%0 = fo (219)

W N A R W N =

As summarized in Algorithm 1, in this paper we advocate
handling the graph-signal denoising task by employing an over-
parametrized GNN (denoted by fe(Z|G)) as described in (3)—
(4). The weights of the architecture, collected in ®, are learned
by minimizing the loss function

1
L(x,0) = 5|x = fo(ZI9)[5, ™

applying stochastic gradient descent (SGD) in combination with
early stopping to avoid overfitting the noise. The entries of the
parameters © and the input matrix Z are initialized at random
using an iid zero-mean Gaussian distributions, and the weights
learned after a few iterations of denoising the observation x are
denoted as © (x). Note that Z is fixed to its random initialization.
Finally, the denoised graph signal estimate is computed as

X0 = fox) (Z|9). (®)

The intuition behind this approach is as follows: since the
architecture is overparametrized it can in principle fit any signal,
including noise. However, as shown formally later, both em-
pirically and theoretically, the proposed architectures fit graph
signals faster than the noise, and therefore with early stopping
they fit most of the signal and little of the noise, enabling signal
denoising.

Remark 1: The proposed architectures are described as un-
trained NNs because, when minimizing (7), the weights in ©®
are learned to fit each observation x, with the denoised signal
X being the output for those particular weights. This implies
that each noisy-denoised signal pair (x, %) is associated with
a particular value of the weights ®, in contrasts with trainable
NN, where the weights @ are first learned by fitting the signals
in a training set and later used (unchanged) to denoise signals
that were not in the training set.

Regarding the specific implementation of the untrained net-
work fe(Z|G), there are multiple possibilities for selecting the
linear and nonlinear transformations Tg&) and ¢() defined in
(3) and (4), respectively. As is customary in NNs dealing with
signals defined in R, we select the ReLU operator, defined
as ReLU(x) = max(0, x), to be the entrywise nonlinearity g(*).
Then, we focus on the design of the linear transformation, which
is responsible for incorporating the structure of the graph. The
two following sections postulate the implementation of two
particular linear transformations Tg&) (each giving rise to a
different GNN) and analyze the resulting architectures.
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IV. GRAPH CONVOLUTIONAL GENERATOR

Our first architecture to address the graph-signal denoising
task is a graph-convolutional generator (GCG) network that
incorporates the topology of the graph into the NN pipeline
via vertex-based graph convolutions. Then, leveraging the fact
that convolutions of a graph signal on the vertex domain can
be represented by a graph filter H € RY*Y [26], we define the
linear transformation for the convolutional generator as

T (Y V|g) = mY Ve, )

Remember that the F(“~1) x F(®) matrix ©® collects the learn-
able weights of the /-th layer, and the graph filter H is given
by (1). The coefficients {h,, }}/=} are fixed a priori so that H
promotes desired properties on the estimated signal. Using the
linear transformation defined in (9), the output of the GCG with
L layers is given by the recursion

Y® =ReLUHY ! DOW), for ¢=1,...,L -1, (10)

y(L) - Hy(Lfl)@(L)’ (1)
where Y (%) = Z denotes the random input and the ReLU is not
applied in the last layer of the architecture. With the proposed
linear transformation, the GCG learns to combine the features
within each node by fitting the weights of the matrices ® (©) while
the graph filter H interpolates the signal by mixing features from
M — 1 neighborhoods.

Even though the proposed GCG exploits graph convolutions
to incorporate the graph topology into the architecture, it is
intrinsically different from other GCNNSs. The linear transfor-
mation proposed in [12], arguably one of the most popular
implementations of GCNNEs, is given by

7—(5) {Y(€71)|g} _ (A—Q—I)Y(E*l)@(e).

e (12)

Recalling the definition of graph filters in (1), it is evident that
(12) is a particular case of our proposed linear transformation,
obtained by setting the generative graph filterto H = A + 1, a
low-pass graph filter of degree one. In addition to representing
a more general scenario, (10) endows the GCG with two main
advantages. First, the graph filter H allows us to incorporate
prior information on the signals to denoise, making our GCG
architecture more suitable to denoise a (high-) low-frequency
signal by employing a (high-) low-pass filter. Second, in (12)
there is an equivalence between the depth of the network and
the radius of the considered neighborhood, so that gathering
information from nodes that are M hops apart requires a GNN
with M layers. In contrast, with the architecture considered in
(10), the same can be achieved by considering a GCG with L
layers and a graph filter H of degree M /L [26], reducing the
number of learnable parameters and bypassing some of the well-
known over-smoothing problems associated with (12) [47].
Next, we adopt some simplifying assumptions to provide
theoretical guarantees on the denoising capability of the GCG
(Section IV-A). Then, we rely on numerical tests to demonstrate
that the results also hold in more general settings (Section IV-B).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

A. Guaranteed Denoising With the GCG

To formally prove that the proposed architecture can suc-
cessfully denoise the observed graph signal x, we consider a
two-layer GCG given by

fo (Z|G) = ReLU(HZO™M)0), (13)

where © 1) € R and 6 ¢ R are the learnable coeffi-
cients. With F' denoting the number of features, we consider the
overparametrized regime where ' > 2 N, and analyze the be-
havior and performance of denoising with the untrained network
defined in (13).

We start by noting that scaling the ¢-th entry of 0@ is
equivalent to scaling the ¢-th column of 6(1), so that, without
loss of generality, we can set the weights to 0®) = b, where b
is a vector of size F' with half of its entries set to 1/ \/F and the
other half to —1/ V/F. Furthermore, since Z is a random matrix
of dimension N x F, the column space of Z spans RY , and
hence, minimizing over ZzOW is equivalent to minimizing over
® c RV*F, With these considerations in place, the optimiza-
tion over (7) can be performed replacing the two-layer GCG
described in (13) by its simplified form

fo(H) = fo(Z|G) = ReLU(HO)b.

Note that we replaced fo(Z|G) with fe(H) since the graph
influence is modeled by the graph filter H, and the influence of
the matrix Z is absorbed by the learnable weights ®. Also note
that the behavior of the optimization algorithm of (13) and (14)
may differ and the upcoming theoretical analysis is focused on
the latter case.

The denoising capability of the two-layer architecture is
related to the eigendecomposition of its expected squared Ja-
cobian [33]. However, to understand which signals can be ef-
fectively denoised with the proposed architecture, we need to
connect the spectral domain of the expected squared Jacobian
with the spectrum of the graph, given by the eigenvectors of the
adjacency matrix.

To thatend, we next compute the expected squared Jacobian of
the two-layer architecture in (14). Denote as Jg (H) € RY*NF
the Jacobian matrix of fg (H) with respect to ®, which is given
by

(14)

b, H "diag(ReLU'(H6)))
Jo(H) = : e RV (15)
brH"diag(ReLU'(HOF))
where 0; represents the i-th column of @, and ReLU’ is the
derivative of the ReLU, which is the Heaviside step function.
Then, define the NV x N expected squared Jacobian matrix as

X = Ee[Jo(H)Je (H)]

F
= > b’E [ReLU'(HO;)ReLU'(HO;)"| @ HH'. (16)

i=1
Moreover, from the work in [48, Sec. 3.2], we note that
E[ReLU’'(H;)ReLU’(H®,) "] is in fact the so-called dual acti-
vation of the step function. Therefore, combining the expression
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for the dual activation of the step function from [48, Table 1] with
(16), we obtain that

X =05(11" — 7 tarccos(C'H’C™ 1)) o HH', (17)

where © represents the Hadamard (entry-wise) product,
arccos(-) is computed entry-wise, h; represents the i-th column
(row) of H, C = diag([|/h1]|2, .. -, ||hx]|2]) is a normalization
term so that C"*H2C ! is the autocorrelation of the graph filter
H.

Since X is symmetric and positive (semi) definite, it has an
eigendecomposition X = WXW '. Here, the columns of the
orthonormal matrix W = [wy, ..., wy]arethe N eigenvectors,
and the nonnegative eigenvalues in the diagonal matrix 3 are
assumed to be orderedas o1 > 09 > ... > op.

After defining the two-layer GCG fg(H) and its expected
square Jacobian X, we formally analyze its performance when
denoising bandlimited graph signals. This is particularly relevant
given the importance of (approximate) bandlimited graph sig-
nals both from analytical and practical points of view [5]. For the
sake of clarity, we first introduce the main result (Theorem 1)
and then we detail a key intermediate result (Lemma 1) that
provides additional insight.

Formally, consider the K -bandlimited graph signal x as de-
scribed in (2), and let the architecture fo (H) have a sufficiently
large number of features F:

2\ 26
F> C;) £8N, with € € (o, (2log(2 N/(;s))’%) (18)
N
being an error tolerance parameter for some prespecified ¢.
Then, for a specific set of graphs with minimum number of nodes
Nk e,s thatis introduced later in the section (cf. Assumption 1),
if we solve (7) running gradient descent with a step size n < % ,
the following result holds (see Appendix A). '

Theorem 1: Let fo(H) be the network defined in (14), and
assume it is sufficiently wide, i.e., it satisfies condition (18) for
some error tolerance parameter &. Let xo be a K-bandlimited
graph signal spanned by the eigenvectors V g, and let w; and
o; be the i-th eigenvector and eigenvalue of X. Let n be the
noise present in x, set ¢ and € to small positive numbers, and
let the conditions from Assumption 1 hold. Then, for any e, d,
there exists some Ng . s such thatif N > N . 5, the error for
each iteration ¢ of gradient descent with stepsize 7 used to fit the
architecture is bounded as

Ix0 = fer, (H) 12 < (1 =nok)" + 38 (1 =nok)") lxollz

N ont 2 12
+§||X|2+\/Zi_1 ((1_770i) _1> (win)”, (19)
with probability at least 1 — e - ¢ — €.

As explained next, the fitting (denoising) bound provided by
the theorem first decreases and then increases with the number
of iterations t. To be more precise, let us analyze separately each
of the three terms in the right hand side of (19). The first term
captures the part of the signal x that is fitted after ¢ iterations
while accounting for the misalignment of the eigenvectors V g
and W g . This term decreases with ¢ and, since ¢ can be made
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arbitrary small (cf. Lemma 1), vanishes for moderately low
values of t. The second term is an error term that is negligible if
the network is sufficiently wide. Therefore, £ can be chosen to
be sufficiently small by designing the architecture according to
the condition in (18). Finally, the third term, which depends
on the noise present in each of the spectral components of
the squared Jacobian (w, n)?, grows with ¢. More specifically,
if the o; associated with a spectral component is very small,
the term (1 — no?) is close to 1 and, hence, the noise power
in the ¢-th frequency will be small. Only when ¢ grows very
large the coefficient (1 — no?)! vanishes and the i-th frequency
component of the noise is fitted. As a result, if the filter H is
designed such that eigenvalues of the squared Jacobian satisty
that o > 011, then there will be a range of moderate-to-high
values of ¢ for which: 1) the first term is zero and ii) only the /'
strongest components of the noise have been fitted, so that the
VK (w/n)2. Clearly,
as t grows larger, the coefficient ((1 — no?)! — 1) will also be
close to one for + > K, meaning that additional components of
the noise will be fitted as well, deteriorating the performance of
the denoising architecture. This implies that if the optimization
algorithm is stopped before ¢ grows too large, the original signal
is fitted along with the noise that aligns with the signal, but not
the noise present in other components.

In other words, Theorem 1 not only characterizes the perfor-
mance of the two-layer GNN, but also illustrates that, if early
stopping is adopted, our overparametrized architecture is able to
effectively denoise the bandlimited graph signal. This result is
related to the error bound for denoising images presented in [33],
where x is assumed to lie in the span of W x. However, when
dealing with graphs, it is unclear which signals would satisfy
this requirement. Motivated by this, we assume that x; is a
bandlimited signal (i.e., lies in the span of V), which is a
natural condition employed in many applications.

As a consequence, a critical step to attain Theorem 1 is
to relate the eigenvectors of X with those of the adjacency
matrix A, denoted as V. To achieve this, we assume that A
is random and provide high-probability bounds between the
leading eigenvectors of A and X'. More specifically, consider a
graph G drawn from a stochastic block model (SBM) [49] with K
communities. Also, denote by M (.A) the SBM with expected
adjacency matrix A = E[A], and by B, the minimum ex-
pected degree Bin := min,;[A1];. Given some p > 0, we define
as My (Bumin, p) the class of SBMs M (.A) with N nodes for
which the minimum expected degree is Suin or higher. Then,
the condition of G being drawn from this SBM whose expected
minimum degree increases with NV is formally expressed in the
following assumption.

Assumption 1: The model M(.A) from which A is drawn
satisfies M(A) € My (Bmin, ), With Bmin = w(In(N/p)).

Here, w(-) denotes the (conventional) asymptotic dominance.
We note that, as discussed in [50], the minimal degree condition
considered in Assumption 1 ensures that nodes belonging to the
same community also belong to the same connected component
with high probability, which is helpful to relate A and .A. Under
these conditions, the following result holds.

third term can be approximated as
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Comparison between the eigenvectors of the matrices A and X for an SBM graph with N = 64 nodes and K = 4 communities, and fora GCGof L = 5

layers. From left to right, the figures represent the first, third, tenth, and last eigenvectors.

Lemma 1: Let the matrix X be defined as in (17), set € and
& to small positive numbers, and denote by V i and W the
K leading eigenvectors in the respective eigendecompositions
of A and X. Under Assumption 1, there exists an orthonormal
matrix Q and an integer N 5 such that, for N > N . 5, the
bound

holds with probability at least 1 — e.

The proof is provided in Appendix B, and it leverages As-
sumption 1 to relate the eigenvectors V x and W g based on the
eigenvectors of the expected values of A and X.

For a given K, Lemma 1 bounds the difference between the
subspaces spanned by the K leading eigenvectors of A and X
when graphs are big enough, a result that is key in obtaining
Theorem 1. Moreover, the lemma shows that if the lower bound
Nk s increases, then the error encoded § becomes arbitrary
small. Also note that, if a larger value of K is considered, then
the minimum required graph size N s will also be larger.
An inspection of (17) reveals that the result in Lemma 1 is
not entirely unexpected. Indeed, since H is a polynomial in
A, so is H2. This implies that V are also the eigenvectors
of H?, and because H? appears twice on the right hand side
of (17), a relationship between the eigenvectors of X and V
can be anticipated. However, the presence of the Hadamard
product and the (non Lipschitz continuous) nonlinearity arccos
renders the exact analysis of the eigenvectors a challenging task.
Consequently, we resorted to a stochastic framework in deriving
Lemma 1.

B. Numerical Inspection of the Deep GCG Spectrum

While for convenience, the previous section focused on ana-
lyzing the GCG architecture with L = 2 layers, in practice we
often work with a larger number of layers. In this section, we
provide numerical evidence showing that the relation between
matrices A and X described in Lemma 1 also holds when L > 2.

To that end, Fig. 1 shows the pairs of eigenvectors v; and
w; for the indexes i = {1,3,10,64}, for a given graph G
drawn from an SBM with N = 64 nodes and 4 communities.
The GCG is composed of L =5 layers and, to obtain the
eigenvectors of the squared Jacobian matrix, the Jacobian is
computed using the autograd functionality of PyTorch. The
nodes of the graph are sorted by communities, i.e., the first
N; nodes belong to the first community and so on. It can

1.0
0.8
4
0.6
0.4
0.2
2 4 6 8 10 0.0

Fig. 2. Heatmap representation of the matrix product V;(WK. The low
values of the off-diagonal entries illustrate the orthogonality between both sets
of eigenvectors. These eigenvectors are the same as those depicted in Fig. 1.

be clearly seen that, even for moderately small graphs, the
leading eigenvectors of A and X" are almost identical, becoming
more dissimilar as the eigenvectors are associated with smaller
eigenvalues. It can also be observed how leading eigenvectors
have similar values for entries associated with nodes within the
same community. Moreover, Fig. 2 depicts the matrix product
VW, where it is observed that the K = 4 leading eigenvec-
tors of both matrices are orthonormal. The presented numer-
ical results strengthen the argument that the analytical results
obtained for the two-layer case can be extrapolated to deeper
architectures.

Another key assumption of Lemma 1 is that G is drawn from
the SBM described in M y (Bmin, p)- This assumption facilitates
the derivation of a bound relating the spectra of A and X (i.e., the
subspaces spanned by the eigenvectors V i and W ). However,
the results reported in Fig. 3 suggest that such a relation exists for
other type of graphs, even though its analytical characterization
is more challenging. The figure has 12 panels (3 rows and 4
columns). Each of the rows corresponds to a different graph,
namely: 1) a realization of a small-world (SW) graph [51] with
N = 150 nodes, 2) the Zachary’s Karate graph [52] with N =
34 nodes, and 3) a graph of N = 316 weather stations across the
United States [53]. Each of the three first columns correspond to
an N x N matrix, namely: 1) the normalized adjacency matrix
A, 2) H?, the squared version of a low pass graph filter and
whose coefficients are drawn from a uniform distribution and set
to unit /1 norm, and 3) the squared Jacobian matrix X’. Although
we may observe some similarity between A and X, the relation
between X and the graph G becomes apparent when comparing
the matrices H? and X. The matrix H is a random graph filter
used in the linear transformation of the convolutional generator
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Tllustration of matrices A, H2, X, and VLW K, shown in columns 1, 2, 3, and 4, respectively, for different types of graphs. The rows 1, 2, and 3

correspond to a small world, the Zachary’s Karate, and the weather stations graph. The graph filter H? is created as a square graph filter with coefficients drawn

from a uniform distribution and with unitary ¢; norm. For each graph (rows), it can be seen that the matrices A, H2,

are close to orthogonal.

fe(H), and itis clear that the vertex connectivity pattern of X is
related to that of H?. Since X and H? are closely related and we
know that the eigenvectors of H? and those of A are the same,
we expect W (the eigenvectors of X') and V (the eigenvectors
of A) to be related as well. To verify this, the fourth column of
Fig. 3 represents V ; W k., i.e., the pairwise inner products of the
K leading eigenvectors of A and those of X. It can be observed
that the K leading eigenvectors are close to orthogonal, which
means that the relation observed in the vertex domain carries
over to the spectral domain and V g and W g expand the same
subspace. These results suggest that a deep GCG could be able to
denoise signals living in the subspace spanned by V . However,
because the bound in Theorem 1 assumed a 2-layer GCG, we
address this hypothesis numerically in Section VI.

To summarize, the presented results illustrate that the analyti-
cal characterization provided in Section IV-A, which considered
a 2-layer GCG operating over SBM graphs, carries over to more
general setups.

V. GRAPH UPSAMPLING DECODER

The GCG architecture presented in Section IV incorporated
the topology of G via the vertex-based convolutions imple-
mented by the graph filter H. In this section, we introduce
the graph decoder (GDec) architecture. In contrast to the GCG
and other GCNN:Gs, this novel graph-aware denoising NN in-
corporates the topology of G via a (nested) collection of graph
upsampling operators [31]. Specifically, we propose the linear
transformation for the GDec denoiser to be given by

T Y D|gy = Uy De®, (20)

and X are related, and that V i and W g

where U € RN NV with N(© > N1 are graph up-
sampling matrices to be defined soon. Note that, compared to (9),
the graph filter H is replaced with the upsampling operator U(®)
that depends on ¢. Adopting the proposed linear transformation,
the output of the GDec with L layers is given by the recursion

Y@ =ReLU(UV Y DOW), fort=1,...,L -1, Q1)
vy — gy yE-ngt)

where the ReLLU is also removed from the last layer.

Similar to the GCG, the proposed GDec learns to combine
the features within each node. However, the interpolation of
the signals in this case is determined by the graph upsampling
operators {U(f)}ngl, rather than by employing convolutions.
The size of the input N(©) is now a design parameter that will
determine the implicit degrees of freedom of the architecture.
Note that, from the GSP perspective, the input feature ma-
trix YU € RN renresents (1) graph signals,
each of them defined over a graph G~ with N*~1) nodes.
Therefore, even though the input Y(©) = Z is still a random
white matrix across rows and columns, since N > Ny(¢-1)
the dimensionality of the input is progressively increasing.

A closer comparison with the GCG reveals that the smaller
dimensionality of the input Z endows the GDec architecture
with fewer degrees of freedom, rendering the architecture more
robust to noise. Not only that, but the graph information is now
included via the graph upsampling operators U®) instead of
relying on graph filters. Clearly, the method used to design the
graph upsampling matrices, which is the subject of the next
section, will have an impact on the type of graph signals that
can be efficiently denoised using the GDec architecture.

(22)
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Fig.4. Dendrogram of an agglomerative hierarchical clustering algorithm and
the resulting graphs with 2, 4, 7 and 14 nodes.

A. Graph Upsampling Operator From Hierarchical Clustering

Regular upsampling operators have been successfully used
in NN architectures to denoise signals defined on regular do-
mains [33]. While the design of upsampling operators in regular
grids is straightforward, when the signals are defined on irregular
domains the problem becomes substantially more challenging.
The approach that we put forth in this paper is to use ag-
glomerative hierarchical clustering methods [27], [28], [29] to
design a graph upsampling operator that leverages the graph
topology. These methods take a graph as an input and return a
dendrogram; see Fig. 4. A dendrogram can be interpreted as a
rooted-tree structure that shows different clusters at the different
levels of resolution . At the finest resolution (v = 0) each node
forms a cluster of its own. Then, as v increases, nodes start to
group together (agglomerate) in bigger clusters and, when the
resolution becomes large (coarse) enough, all nodes end up being
grouped in the same cluster.

By cutting the dendrogram at L + 1 resolutions, including
v =0, we obtain a collection of node sets with parent-child
relationships inherited by the refinement of clusters. Since we are
interested in performing graph upsampling, note that the dendro-
gram is interpreted from left to right. This can be observed in the
example shown in Fig. 4, where the three red nodes in the second
graph (v = 10, layer ¢ = 1) are children of the red parent in the
coarsest graph (v = 12, layer ¢ = 0). In this sense, the graph
upsampling operator is given by the inverse operation of the
clustering algorithm. We leverage these parent-children relations
to define the membership matrices P() € {0, 1}V N

where the entry Pi(f) = 1 only if the i-th node in layer ¢ is the
child of the j-th node in layer ¢ — 1. Moreover, we can further
exploit the dendrogram to obtain coarser-resolution versions of
the original graph G. To that end, note that the clusters at layer ¢
can be interpreted as nodes of a graph G with N©) nodes and
adjacency matrix A (), There are several ways of defining A ()
based on the original adjacency matrix A. While our architecture
does not focus on a particular form, in the simulations we set
Az(f) # 0 only if, in the original graph G, there is at least one
edge between nodes belonging to the cluster < and nodes from
cluster 7. In addition, the weight of the edge depends on the
number of existing edges between the two clusters.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

With the definition of the membership matrix P(©) and the
adjacency matrix A (), the upsampling operator of the /-th layer
is given by

U® = (71 T (1—7) A“)) 1308 (23)
where v € [0,1] is a pre-specified constant. Notice that U(®)
first copies the signal value from the parents to the children by
applying the matrix P(©), and then every child performs a convex
combination between this value and the average signal value of
its neighbors. This design promotes that nodes descending from
the same parent have similar (related) values, which conveys a
notion (prior) of smoothness on the targeted graph signals. As
we show in Section VI, the implicit smoothness prior results
in a better performance when denoising smooth signals but, on
the other hand, makes the architecture more sensitive to model
mismatch. Therefore, when dealing with high-frequency signals,
a worth-looking approach left as a future research direction is
to rely on algorithms that cluster the nodes considering not only
the topology of G but also the properties of the graph signals.

Because the membership matrices P(*) are designed using
a clustering algorithm over G, and the matrices A() capture
how strongly connected the clusters of layer £ are in the original
graph, these two matrices are responsible for incorporating the
information of G into the upsampling operators U®). Further-
more, we remark that the upsampling operator U(¥) can be rein-
terpreted as the application of P(*) followed by the application
of a graph filter

H® =714 (1 -7)AW®, (24)

which sets the filter coefficients as hg = vand hy =1 — 7.

B. Guaranteed Denoising With the GDec

Aswe did for the GCG, our goal is to theoretically characterize
the denoising performance of the GNN architecture defined
by (21)-(23). To achieve that goal, we replicate the approach
implemented in Section IV-A. We first derive the matrix X and
provide theoretical guarantees when denoising a K -bandlimited
graph signal with the GDec. Then, to gain additional insight,
we detail the relation between the subspace spanned by the
eigenvectors W and the spectral domain of A. This relation
is key in deriving the theoretical analysis.

We start by introducing the 2-layer GDec

fo(Z|G) = ReLU(UZOW)0), (25)

Then, following a similar reasoning to that provided after (14),
instead of employing the architecture in (25) we can optimize
(7) over its simplifying version

fo(U) = fo(Z|G) = ReLU(U®O)b. (26)

An important difference with respect to the GCG presented in
(14) is that the matrix ® has a dimension of N(©) x F,soit spans
RN instead of RY. Since N < N , the smaller subspace
spanned by the weights of the GDec renders the architecture
more robust to fitting noise, but, on the other hand, the number
of degrees of freedom to learn the graph signal of interest are
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reduced. As a result, the alignment between the targeted graph
signals and the low-pass vertex-clustering architecture becomes
more important.

The expected squared Jacobian X = Eg[Je (U)Jg (U)] is
obtained following the procedure used to derive (17), arriving at
the expression

X =05 (11T — Lavecos (CIUUT61)> oUuU’, 27

T
where u; represents the i¢-th row of U, and C=
diag([||lu1]|2, - - -, [Jun]2]) is a normalization matrix.

Then, let x( be a K-bandlimited graph signal and let fo (U)
have a number of features I satisfying (18). If we solve (7)
running gradient descent with a step size n < %, the following
result holds. '

Theorem 2: Let fo(U) be the network defined in (26). Con-
sider the conditions described in Theorem 1 and let N (%) match
the number of communities /K (see Assumption 1). Then, for
any €, 9, there exists some N ¢ s such thatif NV > N . 5, then
the error for each iteration ¢ of gradient descent with stepsize n
used to fit the architecture is bounded as (19), with probability
atleast1 — e 7 — ¢ — €.

The proof is analogous to the one provided in Appendix A
but exploiting Lemma 2 instead of Lemma 1. Lemma 2 is
fundamental in attaining Theorem 2 and is presented later in
the section.

Theorem 2 formally establishes the denoising capability of the
GDec when X is a K -bandlimited graph signal and K = N(©)
matches the number of communities in the SBM graph. When
compared with the GCG, the smaller dimensionality of the input
Z, and thus the smaller rank of the matrix ®, constrains the
learning capacity of the architecture, making it more robust
to the presence of noise. However, this additional robustness
also implies that the architecture is more sensitive to model
mismatch, since its capacity to learn arbitrary signals is smaller.
Intuitively, the GDec represents an architecture tailored for a
more specific family of graph signals than the GCG. Moreover,
employing the GDec instead of the GCG has a significant impact
on the relation between the subspaces spanned by V - and W .

To establish the new relation between V i and W g, assume
that the adjacency matrix is drawn from an SBM M (.A) with
K communities such that M(A) € M n(Bmin, p), so that the
SBM follows Assumption 1. In addition, set the size of the latent
space to the number of communities so N(°) = K. Under this
setting, the counterpart to Lemma 1 for the case where fg(U)
is a GDec architecture follows.

Lemma 2: Let the matrix X be defined as in (27), set € and
0 to small positive numbers, and denote by Vi and W the
K leading eigenvectors in the respective eigendecompositions
of A and X. Under Assumption 1, there exist an orthonormal
matrix Q and an integer Nk ¢ s such that for N > Nk s the
bound

Vi — WgkQllr <4,

holds with probability at least 1 — e.
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Lemma 2 asserts that the difference between the subspaces
spanned by V i and W g becomes arbitrarily small as the size
of the graph increases. The proof is provided in Appendix C and
the intuition behind it arises from the fact that the upsampling
operator can be understood as U = HP, where H is a graph
filter of the specific form described in (24). Remember that P is
a binary matrix encoding the cluster in the layer ¢ — 1 to which
the nodes in the layer ¢ belong. Since we are only considering two
layers, and we have that NV 0) = g , the matrix P is encoding the
node-community membership of the SBM graph and, hence, the
product PP " is a block matrix with constant entries matching
the block pattern of LA. As shown in the proof, this property can
be leveraged to bound the eigendecomposition of A and X.

C. Analyzing the Deep GDec

The deep GDec composed of L > 2 layers can be constructed
following the recursion presented in (21) and (22). In this case,
by stacking more layers we perform the upsampling of the input
signal in a progressive manner and, at the same time, we add
more nonlinearities, which helps alleviating the rank constraint
related to the input size N(®). In the absence of nonlinear
functions, the maximum rank of the weights would be NV () and
thus, only signals in a subspace of size N(%) could be learned. By
properly selecting the number of layers and the input size when
constructing the network, we can obtain a trade-off between the
robustness of the architecture and its learning capability.

In addition, the effect of adding more layers is also reflected
on the smoothness assumption inherited from the construction
of the upsampling operator. Adding more layers is related to less
smooth signals, since the number of nodes in G with a common
parent, and thus, with similar values, is smaller.

We note that numerically illustrating that the bound between
V i and W g holds true for the deep GDec, and that its denoising
capability is not limited to signals defined over SBM graphs
provide results similar to those in Section IV-B. Therefore,
instead of replicating the previous section, we directly illustrate
the performance of the deep GDec under more general settings in
the following section, where we present the numerical evaluation
of the proposed architectures.

VI. NUMERICAL RESULTS

This section presents different experiments to numerically
validate the theoretical claims introduced in the paper, and
to illustrate the denoising performance of the GCG and the
GDec. The experiments are carried out using synthetic and
real-world data, and the proposed architectures are compared
to other graph-signal denoising alternatives. The code for the
experiments and the architectures is available on GitHub?. For
hyper-parameter settings and implementation details the inter-
ested reader is referred to the online available code.

Zhttps://github.com/reysam93/Graph_Deep_Decoder
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Fig. 5.

(a) Error of the 2-layer GCG when fitting a piece-wise constant signal, noise, and a noisy signal, as a function of the number of epochs. The graph is

drawn from an SBM with 64 nodes and 4 communities, and the normalized noise power is P, = 0.1. (b) Counterpart of (a) but for the 2-layer GDec architecture.
(c) Mean distance between the K leading eigenvectors of the adjacency matrix and & as a function of the graph size for several graph models.

A. Denoising Capability of Graph Untrained Architectures

The goal of the experiment shown in Fig. 5(a) and (b) is
to illustrate that the proposed graph untrained architectures are
capable of learning the structured original signal x faster than
the noise, which is one of the core claims of the paper. To
that end, we generate an SBM graph with N = 64 nodes and
K =4 communities, and define 3 different signals: (i) “Sig-
nal”: a piece-wise constant signal x, with the value of each
node being the label of its community; (ii) “Noise”: zero-mean
white Gaussian noise n with unit variance; and (iii) “Signal
+ Noise”: a noisy observation x = xy + n where the noise
has a normalized power of 0.1. Fig. 5(a) and (b) show the
normalized mean squared error (NMSE), with the error for each
realization being || xo — Xo/|3/|/x0||3. The mean is computed for
100 realizations of the noise as the number of epochs increases
when the different signals are fitted by the 2-layer GCG and
the 2-layer GDec, respectively. It can be seen how, in both
cases, the error when fitting the noisy signal x decreases for
a few epochs until it reaches a minimum, and then starts to
increase. This is because the proposed untrained architectures
learn the signal xq faster than the noise, but if they fit the
observation for too many epochs, they start learning the noise as
well and, hence, the MSE increases. As stated by Theorems 1
and 2, this result illustrates that, if early stopping is applied,
both architectures are capable of denoising the observed graph
signals without a training step. It can also be noted that, under
this setting, the GDec learns the signal x faster than the GCG
and, at the same time, is more robust to the presence of noise.
This can be seen as a consequence of GDec implicitly mak-
ing stronger assumptions about the smoothness of the targeted
signal.

The goal of the second test case is two-fold. First, it illustrates
that the result presented in Lemma 1 is not constrained to the
family of SBM (as specified by Assumption 1), but can be gen-
eralized to other families of random graphs as well. In addition,
it measures the influence of the number of nodes in the discrep-
ancies between V g and W . To that end, Fig. 5(c) contains the
mean eigenvector similarity measured as + ||V — W Q||p
as a function of the number of nodes in the graph. The eigenvec-
tor similarity is computed for 50 realizations of random graphs
and the presented error is the median of all the realizations.
The random graph models considered are: the SBM (“SBM”),

the connected caveman graph (“CAVE”) [54], the regular graph
whose fixed degree increases with its size (“REG”), the small
world graph (“SW”) [51], and the power law cluster graph model
(“PLC”) [55]. The second term in the legend denotes the number
of leading eigenvectors taken into account in each case, which
depends on the number of active frequency components of the
specific random graph model. We can clearly observe that for
most of the random graph models, the eigenvector error goes to
0 as NN increases and, furthermore, the error is below 10~! even
for moderately small graphs. This illustrates that, although the
conditions assumed for Lemmas 1 and 2 focus on the specific
setting of the SBM, the results can be applied to a wider class of
graphs. Here, the regular graphs are particularly interesting since
most classical signals may be interpreted as signals defined over
regular graphs. As a result, this empirical evidence motivates the
extension of the proposed theorems to more general settings as
a future line of work.

B. Denoising Synthetic Data

We now proceed to comment on the denoising performance
of the proposed architectures with synthetic data. The usage of
synthetic signals allows us to study how the properties of the
noiseless signal influence the quality of the denoised estimate.

The first experiment, shown in Fig. 6(a), studies the error
of the denoised estimate obtained with the 2-layer GCG as the
number of epochs increases. The reported error is the NMSE
of the estimated signal X(, and the figure shows the mean
values of 100 realizations of graphs and graph signals. The
normalized power of the noise present in the data is 0.1. Graphs
are drawn from an SBM with N = 64 nodes and 4 communities,
and the graph signals are generated as: (i) a zero-mean white
Gaussian noise with unit variance (“Rand”); (ii) a bandlimited
graph signal (cf. 2) using the K leading eigenvectors of A as
base (“BL”); and (iii) a diffused white (“DW”) signal created
as y = med(Hw|G), where w is a white vector whose entries
are sampled from N(0,1), H is a low-pass graph filter, and
med(-|G) represents the graph-aware median operator such that
the value of the node ¢ is the median of its neighborhood [39],
[40]. The results in Fig. 6(a) show that the best denoising error is
obtained when the signal is composed of just a small number of
eigenvectors, and the performance deteriorates as the bandwidth
(i.e., the number of eigenvectors that span the signal subspace)
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Fig. 6.

Median MSE when denoising a graph signal as a function of the number of epochs. (a) The 2-layer GCG is used to denoise different families of signals.

(b) Performance comparison between total variation, Laplacian regularization, bandlimited models, the 2-layer GCG, the deep GCG, and the deep GDec, when the
signals are bandlimited. (c) Counterpart of b) for the case where signals are diffused white.

increases, obtaining the worst result when the signal is generated
atrandom. This result is aligned with the theoretical claims since
it is assumed that the signal x is bandlimited. It is also worth
noting that the architecture also achieves a good denoising error
with the “DW” model, showcasing that the GCG is also capable
of denoising other types of smooth graph signals.

Next, Fig. 6(b) compares the performance of the 2-layer
GCG (“2L-GCG”), the deep GCG (“GCG”) and the deep GDec
(“GDec”) with the baseline models introduced in Section III,
which are the total variation (“TV”") [34], Laplacian regulariza-
tion (“LR”) [37], and bandlimited model (“BL”) [46]. In this
setting, the graphs are SBM with 256 nodes and 8 communities,
and the signals are bandlimited with a bandwidth of 8. Since the
“BL” model with i = 8 captures the actual generative model
of the signal xg, it achieves the best denoising performance.
However, it is worth noting that the GCG obtains a similar
result, outperforming the other alternatives. On the other hand,
the “LR” obtains an error noticeably larger than that of “BL”
and “GCG,” highlighting that, even though “BL” and “LR”
are related models their different assumptions lead to different
performances. Moreover, the benefits of using the deep GCG
instead of the 2-layer architecture are apparent, since it achieves
a better performance in fewer epochs.

On the other hand, Fig. 6(c) illustrates a similar experiment but
with the graph signals generated as “DW”. Under this setting, it
is clear that the GDec outperforms the other alternatives. These
results showcase the benefits of employing a nonlinear archi-
tecture relative to classical denoising approaches. Furthermore,
this experiment corroborates that the GDec is more robust to the
presence of noise when the signals are aligned with the prior
implicitly captured by the architecture.

C. Denoising Real-World Signals

Finally, we assess the performance of the proposed ar-
chitectures in several real-world datasets. To the baselines
considered in the previous experiments, we add the follow-
ing competitive denoising algorithms: graph trend filtering
(“GTF”) [35], a graph-aware median operator (“MED”) [39],
a GCNN (“GCNN”) implemented as in [12], a graph attention
network (“GAT”) [56], a Kron reduction-based autoencoder
(“K-GAE”) [41], and the graph unrolling sparse coding archi-
tecture (“GUSC”) in [42]. Moreover, we consider the following

noise distributions: (i) zero-mean Gaussian distribution, which
is the noise model typically assumed for sensor measurements
in signal processing; (ii) uniform distribution on some interval
[0, a], where a € R is chosen accordingly to the desired noise
power; and (iii) Bernoulli distribution to model errors in binary
signals. Next, we describe the selected datasets and analyze the
achieved results, which are summarized in Table II.

Temperature. We consider a network of 316 weather stations
distributed across the United States [45]. Graph signals represent
daily temperature measurements in the first three months of the
year 2003. The graph G represents the geographical distance
between weather stations and is given by the 8-nearest neighbors
graph. The first and second rows of Table II list the NMSE when
the noise is drawn from a Gaussian and a uniform distribution,
respectively. In both cases, the noise has a normalized power
of 0.3. It is clear that the GDec architecture outperforms the
alternatives in both scenarios. Furthermore, we can observe that
the GCG achieves a better performance than GCNN, show-
casing the benefits of being able to use a more general graph
filter.

S&P 500. In this experiment, we have 189 nodes representing
stocks belonging to 6 different sectors of the S&P 500 with
the graph signals representing the prices of those stocks at
particular time instants. We follow [57] to estimate the graph
G assuming that the signals are drawn from a multivariate
Gaussian distribution and are smooth on G. We consider the
noise specifications described in the previous dataset and provide
the NMSE in the third and fourth rows of Table II. It is worth
noting that considering Gaussian noise in this dataset constitutes
amore challenging denoising problem than using uniform noise.
A plausible explanation is that the graph is estimated assuming
that the data follows a Gaussian distribution, and hence, it is
harder to separate the Gaussian noise from the true signals.
In the presence of Gaussian noise, the GCG and the GDec
outperform the other 8 alternatives. However, when the noise
follows a uniform distribution, the best performance is obtained
by the GCG and the GCNN, with GDec being the third best.
In addition, we observe that traditional methods yield an error
that is considerably larger than that incurred by the proposed
architectures. This is aligned with our initial intuition about
linear and quadratic methods being more limited when the actual
relation between xg and G is more intricate, as is the case for
financial data.
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TABLE II
DENOISING ERROR OF SEVERAL DATASETS WITH DIFFERENT TYPES OF RANDOM NOISE

DATASET
(METRIC) METHOD H BL TV LR GTF H MED GCNN GAT K-GAE GUSC H GCG  GDec
TEMPERATURE Gaussian 0.062 0.117 0.095 0.066 || 0.053 0.123 0.045 0.134 0.044 0.056  0.035
(NMSE) Uniform 0.063 0.117 0.094 0.064 || 0.053 0.118 0.047 0.136 0.049 0.057  0.036
S&P 500 Gaussian 0350 0.238 0.231 0239 || 0319 0252  0.199 0.354 0.203 0.188  0.188
(NMSE) Uniform 0.216 0246 0.161  0.298 || 0.340  0.091 0.222 0.273 0.127 0.094 0.121
CORA Whole G 0.154 0.142 0.115 0.126 || 0.167 0.099  0.141 0.135 0.099 0.093 0.121
(ERROR RATE)  Conn. comp. 0.151 0.141 0.105 0.116 || 0.165 0.093 0.139 0.135 0.094 0.088 0.125

The font in bold highlights the architectures with the best errors.

Cora. Lastly, we consider the Cora citation network
dataset [12]. Nodes represent different scientific documents and
edges capture citations among them. Like in [42], we consider
the 7 class labels as binary graph signals encoding if the par-
ticular node belongs to that class. For each signal, we consider
25 realizations of Bernoulli noise that randomly flips 30% of
the binary values of the signals, resulting in a total of 175 noisy
graph signals. With the error rate denoting the proportion of
labels correctly recovered after the denoising process, Table II
shows the error metric averaged over all the signals. Moreover,
since the graph is formed by several connected components,
we report two results: the error rate when the whole graph is
considered (fifth row) and the error rate when only the largest
connected component is considered (sixth row). It can be seen
that the GCG yields the best performance in both cases.

VII. CONCLUSION

In this paper, we faced the relevant task of graph-signal
denoising. To approach this problem, we presented two over-
parametrized and untrained GNNs and provided theoretical
guarantees on the denoising performance of both architectures
when denoising K -bandlimited graph signals under some sim-
plifying assumptions. Moreover, we numerically illustrated that
the proposed architectures are also capable of denoising graph
signals in more general settings. The key difference between
the two architectures resided in the linear transformation that
incorporates the information encoded in the graph. The GCG
employs fixed (non-learnable) low-pass graph filters to model
convolutions in the vertex domain, promoting smooth estimates.
On the other hand, the GDec relies on a nested collection of graph
upsampling operators to progressively increase the input size,
limiting the degrees of freedom of the architecture, and providing
more robustness to noise. In addition to the aforementioned
analysis, we tested the validity of the proposed theorems and
evaluated the performance of both architectures with real and
synthetic datasets, showcasing a better performance than other
classical and nonlinear methods for graph-signal denoising.
Finally, we consider extending the results from Theorems 1 and
2 to more general scenarios as an interesting future line of work.

APPENDIX A
PROOF OF THEOREM 1

Let x¢ be a K bandlimited graph signal as described in (2),
which is spanned by the K leading eigenvectors of the graph

V i, with X denoting its frequency representation. Let Q be
an orthonormal matrix that aligns the subspaces spanned by
Vi and Wi, and denote as xg = W QX the bandlimited
signal using W g as basis and whose frequency response is also
Xo. Note that X can be interpreted as recovering x, from its
frequency response using W g in lieu of V. Also, note that
x9 — X0 = (VK — W Q)X represents the error between the
signal x( and its approximation inside the subspace spanned
by Wg. With these definitions in place, in [33, Th. 3] the
authors showed that error when denoising a signal x = xg + n
is bounded with probability at least 1 — e’ - ¢ by

%0 = fo, (ZIG)]l2 < [[¥xoll2 + &llx2
S = o) — 12w 02,

with ¥ := W(Iy — n22)'W7, and Iy the N x N identity
matrix. However, note that the bound provided for || ®xg]2

in [33] requires x lying in the subspace spanned by W -, which
is not the case. As a result, we further bound this term as

(28)

[¥xoll2 = [[¥(x0 + X0 — Xo) |2

=
=

i)

|®rxo+ ¥ (VK — WrQ)Xo|2
(id) N
< [ WrXoll2 + [[¥(VE — WEQ)Xo |2
(ii1) B ~
< [ ®kl2ll%ollz + [[¥|l2[VE — Wk Q| F%oll2

(iv)
< (M®xll2 + 0] ¥l2) |xol|2

—

v

=

(1 =nof)" +6(1 =no3)") %ol (29)
Here, Wy := Wi (Ix — nEi{)tWT, and X represents a
diagonal matrix containing the first K leading eigenvalues o.
We have that (7) follows from X being bandlimited in W g, so
Wxy = WXo. Then, (i) follows from the triangle inequality,
and (#i¢) from the ¢5 norm being submultiplicative and using
the Frobenius norm as an upper bound for the ¢ norm. In
(iv) we apply the result of Lemma 1, which holds with prob-
ability at least 1 — ¢ because N > Nk .5, and the fact that,
since both Wy and Vi are orthonormal matrices, we have
that ||xo]|2 = ||Xo]l2 = ||Xo]|2- We obtain (v) from the largest
eigenvalues present in W and W.
Finally, the proof concludes by combining (29) and (28).

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:11:42 UTC from IEEE Xplore. Restrictions apply.



REY et al.: UNTRAINED GRAPH NEURAL NETWORKS FOR DENOISING

APPENDIX B
PROOF OF LEMMA 1
Define A as A := E[A] = E[D] 2. AE[D] 2 and let X be
given by (17). Denote by H a graph filter defined as a polynomial
of the expected adjacency matrix A, and let X be the expected
squared Jacobian using the graph filter H, i.e.,

_ 1
X =05 <11T — — arccos (617{2C1)> ©H?,  (30)
™

where C is the counterpart of C in (17), but using H instead
of H. Given the following eigendecompositions A = VAV ',

X=WIW' A=VAV' and X = WEW ', for arbitrary
orthonormal matrices T and R, we have that
[Vk —WgQ|r < ||[Vk — Vk Tk
+[[VKT — WkR|r + [WrkR — WkQ]lE.

€Y

To prove the theorem, we bound the three terms on the right
hand side of (31).

Bounding ||VxT — WxR||r. From the definition of an
SBM, it follows that A =FE[A] =BQB', where B¢
{0,1}¥*E s an indicator matrix encoding the community to
which each node belongs, and €2 is a K x K matrix encoding
the link probability between the communities of the graph.
Therefore, A and X are both block matrices whose blocks
coincide with the communities in the SBM. This implies that the
eigenvectors associated with non-zero eigenvalues must span the
columns of B. Hence, the leading eigenvectors must be related
by an orthonormal transformation, from where it follows that,
given T, we can always find R such that

[VKT — WgR| = 0. (32)

Bounding |V — V gT||r. Under Assumption 1, as it is shown
in [50], with probability at least 1 — p we have that

3In(4 N/p)
ﬁmin

Then, we combine the concentration (33) with the Davis-Kahan
results [58, Th. 2], which bound the distance between the
subspaces spanned by the population eigenvectors (V) and
their sample version (V g). Denoting as \; the i-th eigenvalue

collected in A, i.e. \; = A;;, we obtain that there exists an
orthonormal matrix T such that

|A-A|<3 : (33)

V8K

[Vk = VET||p < ———— A - A||r
AK — AK+1
< 3\/_8K 31n(4 N/p)’ (34)
)\K Bmin

where we note that, since A follows an SBM, then \; = 0 for
alli > K.
Since Bmin = w(ln(N/p)), we obtain that
I[Vk — VKT|g — 0, (35)

Bounding ||[W kR — W Q|| . If we show that | X — X[ — 0
as N — oo, we can then mimic the procedure in (33) and (34)

as N — oo.
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to show that the difference between the leading K eigenvectors
of X and X also vanishes. Hence, we are left to show that
X — X| — 0as N — oc. From the definitions of X and X,
it follows that

|X — || < 0.5][H* — 3|
1
+ 2—|| arccos (CT'H?’C™') o H?
7r
— arccos (CT'H?’C™') o H?||. (36)

To bound the difference between the sampled and expected
filters, we have that

L 2 L 2
IH? —H?| = (Z huv> - <Z m‘)
=0 =0

;3D

S (- )

2L

~ ~¢

<> aAr- 4
£=0

for suitable coefficients vy and recalling that L = 2. Then, we
can then leverage the fact that ||A| = ||A|| =1 to see that

At — .«[ll|| < (||A — A||. We thus get that
21 o
2~ #2) <> tay HA - AH 0, asN — oo, (38)
=0

where the limiting behavior follows from (33). Finally, to bound
the second term in (36), we first note that the argument of
the norm can be re-written as arccos(C'H?C~1) ® (H? —
H?) + (arccos(C'H?C™!) — arccos(CTH?C 1)) © H2.
The limitin (38) ensures that the first of these two terms vanishes.
Similarly, it follows that ||C'H*C ' — C'H?C!|| =0
which, combined with the fact that arccos is a uniformly
continuous function, we can always find an Ng such that
|| arccos(CT*HAC™!) — arccos(C TH2C™!)|| < ¢ with high
probability. Combining this result with (38) and applying the
Davis-Kahan Theorem as done to obtain (34) we get that

[WxkR - WgQ|r — 0, (39)
Replacing (32), (35), and (39) into (31) our result follows.

as N — oo.

APPENDIX C
PROOF OF LEMMA 2

Recall that A = E[A], and define H := I+ (1 —7).A as
the specific graph filter introduced in Section V-A as a polyno-
mial of A. Let X be given by (27), and denote by X the expected
squared Jacobian using the graph filter H, i.e.,

X =05 (11T ! arccos (éluwél)) OUUT (40)
™

with U = HP and where the matrix C is the counterpart of C
in (27), but using U in lieu of U. Given the eigendecompo-
sitions A = VAV, X = WEW', A= VAV, and X =
WXW ', analogously to Lemma 1, we bound the difference
between V i and W g by bounding the three terms in the right

hand side of (31).
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Bounding |[VxT — WgR|. We have that UU' =

#PPT?QT. Since P is a binary matrix indicating to which
community belongs each node, PPT is ablock diagonal matrix
that captures the structure of the communities of the SBM. Then,
because H is also block matrix with the same block pattern that
the SBM, it turns out that the matrix X is also a block matrix
whose blocks coincide with the communities in the SBM graph.
Therefore, the rest of the bound is analogous to that in Lemma 1.

Bounding ||V ¢ — V ¢'T||. The relation between A and A is
the same as in Lemma 1 so the bound provided in (35) holds.

Bounding |W xR — W Q||. To derive this bound we show
that |[UUT —UU" | = |[APP TH™ — HPP H ' | goesto0
as N grows. From (38) we have that | H — H|| — 0,as N — oo,
and hence, |[H — #|| — 0,as N — oo. Therefore, it can be seen
that

[UU"T —UuU"|| -0, as N — oo, (41)

with [[UUT — YU || vanishing as N grows. The remainder of
the derivation of the bound is analogous to that for (39).
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