
5708 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Untrained Graph Neural Networks for Denoising
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Abstract—A fundamental problem in signal processing is to
denoise a signal. While there are many well-performing methods
for denoising signals defined on regular domains, including images
defined on a two-dimensional pixel grid, many important classes of
signals are defined over irregular domains that can be conveniently
represented by a graph. This paper introduces two untrained
graph neural network architectures for graph signal denoising,
develops theoretical guarantees for their denoising capabilities in
a simple setup, and provides empirical evidence in more general
scenarios. The two architectures differ on how they incorporate
the information encoded in the graph, with one relying on graph
convolutions and the other employing graph upsampling operators
based on hierarchical clustering. Each architecture implements
a different prior over the targeted signals. Finally, we provide
numerical experiments with synthetic and real datasets that i) asses
the denoising behavior predicted by our theoretical results and ii)
compare the denoising performance of our architectures with that
of existing alternatives.

Index Terms—Geometric deep learning, graph decoder, graph
signal denoising, graph signal processing.

I. INTRODUCTION

V
AST amounts of data are generated and stored every

day, propelling the deployment of data-driven solutions to

address a wide variety of real-world problems. Unfortunately,

the input data suffers from imperfections and is corrupted with

noise, oftentimes associated with the data-collection process.

Noisy signals appear in a gamut of applications, with examples

including the processing of voice and images, the measurements

in electric, social and transportation networks, or the monitoring

of biological signals [1], [2]. The presence of noise entails a

detrimental influence on the quality of the data, which may
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become unusable when the noise power is comparable to that of

the signal. As a result, separating the signal from the noise, which

is referred to as signal denoising, is a critical and ubiquitous task

in contemporary data science applications. While most existing

works focus on the denoising of signals defined over regular

domains (time and space), signals with irregular supports are

becoming pervasive. In particular, signals obtained from sensors

deployed across different positions, such as voltage in power

networks, temperature in weather stations, or neurological ac-

tivity on the brain, have largely benefited from graph signal

denoising since sensor measurements are typically corrupted

by noise [3]. Hence, designing (nonlinear) denoising schemes

for signals defined over irregular domains constitutes a relevant

problem both from a theoretical and practical point of view.

A versatile and tractable approach to overcome the challenges

inherent to data supported on irregular domains consists of

representing the underlying structure as a graph, with nodes

representing variables and edges encoding levels of similarity,

influence, or statistical dependence among nodes. Successful

examples of this approach can be found in the subareas of

network analytics, machine learning over graphs, and graph

signal processing (GSP) [1], [4], [5], with graph neural net-

works (GNNs) and GSP being particularly relevant for the

architectures presented in this paper [6], [7]. Note that traditional

data-processing architectures are designed to deal with data

defined over regular domains, such as images, and hence, they

may incur difficulties when learning and exploiting the more

complex structure present in many contemporary applications.

Nonetheless, GSP provides a principled approach to handling

this issue [2], [5], [6]. Assuming that the structure of the signals

can be modeled by a graph, GSP uses the information encoded in

the graph topology to analyze, process, and learn from the data.

As a result, it is not surprising that GSP has been successfully

applied to design and analyze GNNs [7], [8], [9], [10], a class

of neural network (NN) architectures that incorporate the graph

topology information to enhance their performance when the

data is composed of signals defined over a graph.

The importance of leveraging the graph influence when using

deep nonlinear architectures is reflected in the wide range of

GNNs that co-exist in the literature, including graph convolu-

tional NNs (GCNNs) [11], [12], [13], graph recurrent NNs [14],

graph autoencoders [15], [16], [17], graph generative adversarial

networks [18], [19], and simplicial NNs [20], [21], to name a few.

Incorporating the graph structure into deep nonlinear models in-

volves a wide range of options when designing the architecture.

For example, GCNNs can be defined with or without pooling

layers and the convolution over a graph can be implemented in
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several ways (vertex vs frequency), each leading to architectures

with different properties and performances. In fact, one of the

key questions when designing a GNN is to decide the particular

way in which the graph is incorporated into the architecture.

Considering the preceding paragraphs, the goal of this work

is twofold. First, we explore different ways of incorporating the

information encoded in the graph and propose new graph-based

NN architectures to denoise graph signals. Second, we provide

theoretical guarantees for the denoising capabilities of this ap-

proach and show that it is directly influenced by the properties of

the graph. The mathematical analysis, performed on particular

instances of these architectures, provides guarantees on their

denoising performance under specific assumptions for the orig-

inal signal and its underlying graph. In addition, we provide

empirical evidence about the denoising performance of our

method for scenarios more general than those strictly covered

by our theory, further illustrating the value of our graph-aware

untrained architectures.

The proposed architectures are untrained NNs, meaning that

the parameters of the network are optimized using only the signal

observation that we want to denoise, avoiding the dependency

on a training set with multiple observed graph signals. The

underlying assumption behind this untrained denoising archi-

tecture is that, due to the graph-specific structure incorporated

into the different layers, when tuning the network parameters

using stochastic gradient steps, the NNs are capable of learning

(matching) the structure of the signal faster than that of the

noise. Hence, the denoising process is carried out separately

for each individual observation by fitting the weights of the

NN and stopping the updates after a few iterations. This same

phenomenon has been observed to hold true in non-graph deep

learning architectures [22], [23] and constitutes a framework

that is closely related to that of zero-shot learning [24], [25].

In the context of signal denoising, the consideration of an over-

parametrized graph-aware architecture along with early stopping

avoids overfitting to the noise.

To incorporate the topology of the graph, the first architecture

multiplies the input at each layer by a fixed (non-learnable) graph

filter [26], which can be seen as a generalization of the convo-

lutional layer in [12]. The second architecture performs graph

upsampling operations that, starting from a low-dimensional

latent space, progressively increase the size of the input until

it matches the size of the signal to denoise. The sequence of

upsampling operators is designed based on hierarchical cluster-

ing algorithms [16], [27], [28], [29] so that, in contrast to [30],

matrix inversions are not required, avoiding the related numer-

ical issues. Our work is substantially different from [16], [17],

which deal with graph encoder-decoder architectures. On top of

our theoretical analysis and extensive numerical simulations,

additional differences to prior work are that: (a) our graph

decoder is an untrained network, and thus, it does not need a

training phase; (b) we only require a decoder-like architecture

for denoising graph signals, so it is not necessary to jointly design

and train two different architectures as carried out in, [16], [17].

Contributions and outline. In summary, the contributions

of the paper are the following: (i) we present two new over-

parametrized and untrained GNNs for solving graph-signal

denoising problems; (ii) mathematical analysis is conducted

for each architecture offering bounds for their performance,

improving our understanding of nonlinear architectures and the

influence of incorporating graph structure into NNs; and (iii) the

proposed architectures are evaluated and compared to other

denoising alternatives through numerical experiments carried

out with synthetic and real-world data. These contrast with

the contributions of our preliminary work in [31], which only

considered a single underparametrized denoising architecture,

did not provide mathematical analysis, and focused on synthetic

datasets. Moreover, moving to the overparametrized regime not

only endows the proposed architectures with a larger learning

capacity, but it also opens the door to a more thorough theoretical

analysis.

The remainder of the paper is organized as follows. Section I-

A reviews related works dealing with graph-signal denoising.

Section II explains fundamental concepts leveraged along the

paper. Section III formally introduces the problem at hand and

presents our general approach. Sections IV and V detail the pro-

posed architectures and provide the mathematical analysis for

each of them. Numerical experiments are presented in Section VI

and concluding remarks are provided in Section VII.

A. Related Works

Untrained NNs enable the recovery of signals without the need

of training over large (or any) datasets by carefully incorporating

prior information of the signals [22], [23], [32], [33]. In [22],

it is shown that fitting a standard convolutional autoencoder to

only one noisy signal using early stopping enables the effective

denoising of an image. For this approach to work, it is key

that the signal class (images) matches the NN architecture (2D

convolutional NN with particular filters).

Previous approaches to the graph-signal denoising task in-

cluded a graph-regularization term that promoted desired prop-

erties on the estimated signals [34]. Some existing works mini-

mize the graph total variation pushing the signal value at neigh-

boring nodes to be close [34], [35]. Later on, total generalized

variation extended this idea to promote similar values of higher-

order terms [36]. A related approach assumes that the signals

are smooth on the graph and add a regularization parameter

based on the quadratic form of the graph Laplacian [37]. Also,

in [38], the authors propose a spectral graph trilateral filter as

a regularizer, based on the prior assumption that the gradient is

smooth over the graph. It is worth noting that these alternatives

rely on imposing some notion of smoothness on the original

graph signal. Furthermore, classical denoising methods typically

assume that the signal and the graph are related by a linear or

a quadratic mapping. Nonetheless, the actual relation between

the signal and the graph may be of a different nature and, in fact,

in many relevant applications the actual prior is more complex

than that represented by linear and quadratic terms, motivating

the development of nonlinear models.

More recently, nonlinear solutions for denoising graph signals

have been proposed to tackle the aforementioned issues. In [39],

a median graph filter [40] is used to denoise time-varying graph

signals defined over dynamic graphs. A different nonlinear
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TABLE I
SUMMARY OF MAIN NOTATION

approach is followed in [30], where a graph autoencoder is

trained to recover the denoised signals. To change the size of the

graph, the autoencoder relies on Kron reduction operations [41].

However, since the Kron reduction is based on the inverse of a

submatrix of the graph Laplacian, it could fall into numerical

issues if the submatrix is singular. Moreover, both architectures

need several observations to recover the noiseless signals. Later

on, [42] proposes a graph unrolling architecture based on GC-

NNs to approach the denoising task. The architecture is trained in

an unsupervised fashion and relies on regularizing the objective

function to avoid learning the noise. Differently, our proposed

solution implicitly encodes the regularization in the architectures

enabling them to learn the signal faster than the noise.

II. PROCESSING ARCHITECTURES FOR GRAPH SIGNALS

This section introduces mathematical notation and the fun-

damentals of GSP and GNNs. In addition, the main notation

is summarized in Table I. Readers familiar with these concepts

may give a quick pass and move on to Section III.

A. Fundamentals of GSP

Let G = (V, E) denote an undirected1 graph, where V is the

set of N nodes, and E is the set of links such that (i, j) belong

to E if nodes i and j are connected. For a given graph G, the

symmetric adjacency matrix A ∈ R
N×N has non-zero entries

Aij only if (i, j) ∈ E . The value of Aij captures the strength

of the link between nodes i and j. Define the degree matrix as

D = diag(A1), where 1 is the vector of all ones and diag(·)
is the diagonal operator that turns a vector into a diagonal

matrix. A popular alternative to A is the degree normalized

1Although our theoretical results assume that the graph is undirected, the
proposed architectures can tackle signals defined on directed graphs [43].

adjacency matrix Ã := D− 1
2AD− 1

2 . Indeed, in the subsequent

discussions, we assume that the rows and columns of A are

normalized by its degree, so that A = Ã. Finally, when the ad-

jacency matrix is symmetric, we can write A = VΛV�, where

V is an orthonormal N ×N matrix collecting the eigenvectors

of A and Λ is diagonal matrix collecting its eigenvalues.

Graph signals. In this paper, we focus on the processing

of graph signals which are defined on V . Graph signals can

be represented as a vector x = [x1, . . . , xN ]� ∈ R
N , where the

i-th entry represents the value of the signal at node i. Since the

signal x is defined on G, the core assumption of GSP is that

either the values or the properties of x depend on the topology

of G [44]. For instance, consider a graph that encodes similarity.

If the value of Aij is high, then one expects the signal values

xi and xj to be akin to each other. This rationale helps to

explain the success of GNNs since the incorporation of G into

the architectures amounts to including prior information about

the signals to process.

Graph filtering. Graph filters, an important tool of GSP, play

a fundamental role in the definition of our GNN architectures.

Graph filters are linear operators R
N → R

N that can be ex-

pressed as a polynomial of the adjacency matrix of the form

H :=
M−1
∑

m=0

hmAm, (1)

where H is the graph filter, hm are the filter coefficients, and

M ≤ N [26]. Since Am encodes the m-hop neighborhoods of

the graph, graph filters can be used to diffuse input graph signals

x across the graph as y =
∑M−1

m=0 hmAmx = Hx. Because

graph filters diffuse signals across (M−1)-hop neighborhoods,

they are widely used to generalize the convolution operation to

signals defined over graphs.

Frequency representation. The theoretical analysis devel-

oped in this paper leverages the notion of bandlimited graph

signals, a widely-used definition that links the properties of a

signal to those of the (spectrum of) the supporting graph [6]. To

be specific, the frequency representation of the signal x is given

by the N -dimensional vector x̃ = V�x, with V� acting as the

graph Fourier transform (GFT) [45]. Then, a graph signal is said

to be bandlimited if x̃ satisfies that x̃k = 0 for k > K, where

K ≤ N is referred to as the bandwidth of the signal x. If x is

bandlimited with bandwidth K it holds that

x = VK x̃K , (2)

with x̃K = [x̃1, . . . , x̃K ] collecting the active frequency com-

ponents and VK collecting the corresponding K eigenvectors.

This reduced-dimensionality representation, which can be gen-

eralized to graph filters as well, has been shown to bear practical

relevance in real-world datasets and it is exploited in denoising

and other inverse problems [46].

B. Fundamentals of GNNs

Generically, we represent a GNN using a parametric nonlin-

ear function fΘ(Z|G) : RN(0)×F (0) → R
N that depends on the

graph G. The parameters of the architecture are collected in Θ,
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and the matrix Z ∈ R
N(0)×F (0)

represents the input of the net-

work. Despite the many possibilities for defining a GNN, a broad

range of such architectures recursively apply a graph-aware

linear transformation followed by an entry-wise nonlinearity.

Then, a generic deep architecture fΘ(Z|G) with L layers can be

described as

Ŷ(�) = T (�)

Θ
(�)

{

Y(�−1)|G
}

, 1 ≤ � ≤ L, (3)

Y
(�)
ij = g(�)

(

Ŷ
(�)
ij

)

, 1 ≤ � ≤ L, (4)

where Y(0) = Z and y = Y(L) denote the input and output of

the architecture, T (�)

Θ
(�){·|G} : RN(�−1)×F (�−1) → R

N(�)×F (�)

is a

graph-aware linear transformation, Θ(�) ∈ R
F (�−1)×F (�)

are the

parameters that define such a transformation, and g(�) : R → R

is a scalar nonlinear transformation (e.g., the ReLU function),

which is oftentimes omitted in the last layer. Moreover, N (�)

and F (�) represent the number of nodes and features at layer �,
Θ = {Θ(�)}L�=1 collects all the parameters of the architecture,

and y is the output of the GNN. Note that although fΘ(Z|G)
generates output signals defined in R

N , which is the case of

interest for this paper, it can be easily adapted to output graph

signals with more than one feature.

III. GNNS FOR GRAPH-SIGNAL DENOISING

We now formally introduce the problem of graph-signal de-

noising within the GSP framework, and present our approach

to tackle it using untrained GNN architectures. Given the graph

G, let us consider the observed graph signal x ∈ R
N , which is

a noisy version of the original graph signal x0. With n ∈ R
N

being a noise vector, the relation between x and x0 is

x = x0 + n. (5)

Then, the goal of graph-signal denoising is to remove as much

noise as possible from the observed signalx to estimate the orig-

inal signal x0, which is performed by exploiting the information

encoded in G.

A traditional approach for the graph-signal denoising task is

to solve an optimization problem of the form

x̂0 = argminx̌0
‖x− x̌0‖22 + αR(x̌0|G). (6)

The first term promotes fidelity to the signal observations, the

regularizer R(·|G) promotes denoised signals with desirable

properties over the given graph G, and α > 0 controls the

influence of the regularization. Common choices for the regular-

izer include the quadratic Laplacian R(x|G) = x�Lx [37], or

regularizers involving high-pass graph filters R(x|G) = ‖Hx‖22
that foster smoothness on the estimated signal [34], [45].

While those traditional approaches exhibit a number of ad-

vantages (including interpretability, mathematical tractability,

and convexity), they may fail to capture more complex relations

between G and x0, motivating the development of nonlinear

graph-denoising approaches.

Algorithm 1: Proposed Graph-Signal Denoising Method.

As summarized in Algorithm 1, in this paper we advocate

handling the graph-signal denoising task by employing an over-

parametrized GNN (denoted by fΘ(Z|G)) as described in (3)–

(4). The weights of the architecture, collected in Θ, are learned

by minimizing the loss function

L(x,Θ) =
1

2
‖x− fΘ(Z|G)‖22, (7)

applying stochastic gradient descent (SGD) in combination with

early stopping to avoid overfitting the noise. The entries of the

parameters Θ and the input matrix Z are initialized at random

using an iid zero-mean Gaussian distributions, and the weights

learned after a few iterations of denoising the observation x are

denoted as Θ̂(x). Note thatZ is fixed to its random initialization.

Finally, the denoised graph signal estimate is computed as

x̂0 = f
Θ̂(x)(Z|G). (8)

The intuition behind this approach is as follows: since the

architecture is overparametrized it can in principle fit any signal,

including noise. However, as shown formally later, both em-

pirically and theoretically, the proposed architectures fit graph

signals faster than the noise, and therefore with early stopping

they fit most of the signal and little of the noise, enabling signal

denoising.

Remark 1: The proposed architectures are described as un-

trained NNs because, when minimizing (7), the weights in Θ

are learned to fit each observation x, with the denoised signal

x̂0 being the output for those particular weights. This implies

that each noisy-denoised signal pair (x, x̂0) is associated with

a particular value of the weights Θ, in contrasts with trainable

NNs, where the weights Θ are first learned by fitting the signals

in a training set and later used (unchanged) to denoise signals

that were not in the training set.

Regarding the specific implementation of the untrained net-

work fΘ(Z|G), there are multiple possibilities for selecting the

linear and nonlinear transformations T (�)

Θ
(�) and g(�) defined in

(3) and (4), respectively. As is customary in NNs dealing with

signals defined in R
N , we select the ReLU operator, defined

as ReLU(x) = max(0, x), to be the entrywise nonlinearity g(�).
Then, we focus on the design of the linear transformation, which

is responsible for incorporating the structure of the graph. The

two following sections postulate the implementation of two

particular linear transformations T (�)

Θ
(�) (each giving rise to a

different GNN) and analyze the resulting architectures.
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IV. GRAPH CONVOLUTIONAL GENERATOR

Our first architecture to address the graph-signal denoising

task is a graph-convolutional generator (GCG) network that

incorporates the topology of the graph into the NN pipeline

via vertex-based graph convolutions. Then, leveraging the fact

that convolutions of a graph signal on the vertex domain can

be represented by a graph filter H ∈ R
N×N [26], we define the

linear transformation for the convolutional generator as

T (�)

Θ
(�){Y(�−1)|G} = HY(�−1)Θ(�). (9)

Remember that theF (�−1) × F (�) matrixΘ(�) collects the learn-

able weights of the �-th layer, and the graph filter H is given

by (1). The coefficients {hm}M−1
m=0 are fixed a priori so that H

promotes desired properties on the estimated signal. Using the

linear transformation defined in (9), the output of the GCG with

L layers is given by the recursion

Y(�) = ReLU
(

HY(�−1)Θ(�)
)

, for � = 1, . . ., L− 1, (10)

y(L) = HY(L−1)Θ(L), (11)

where Y(0) = Z denotes the random input and the ReLU is not

applied in the last layer of the architecture. With the proposed

linear transformation, the GCG learns to combine the features

within each node by fitting the weights of the matricesΘ(�) while

the graph filterH interpolates the signal by mixing features from

M − 1 neighborhoods.

Even though the proposed GCG exploits graph convolutions

to incorporate the graph topology into the architecture, it is

intrinsically different from other GCNNs. The linear transfor-

mation proposed in [12], arguably one of the most popular

implementations of GCNNs, is given by

T (�)

Θ
(�){Y(�−1)|G} = (A+ I)Y(�−1)Θ(�). (12)

Recalling the definition of graph filters in (1), it is evident that

(12) is a particular case of our proposed linear transformation,

obtained by setting the generative graph filter to H = A+ I, a

low-pass graph filter of degree one. In addition to representing

a more general scenario, (10) endows the GCG with two main

advantages. First, the graph filter H allows us to incorporate

prior information on the signals to denoise, making our GCG

architecture more suitable to denoise a (high-) low-frequency

signal by employing a (high-) low-pass filter. Second, in (12)

there is an equivalence between the depth of the network and

the radius of the considered neighborhood, so that gathering

information from nodes that are M hops apart requires a GNN

with M layers. In contrast, with the architecture considered in

(10), the same can be achieved by considering a GCG with L
layers and a graph filter H of degree M/L [26], reducing the

number of learnable parameters and bypassing some of the well-

known over-smoothing problems associated with (12) [47].

Next, we adopt some simplifying assumptions to provide

theoretical guarantees on the denoising capability of the GCG

(Section IV-A). Then, we rely on numerical tests to demonstrate

that the results also hold in more general settings (Section IV-B).

A. Guaranteed Denoising With the GCG

To formally prove that the proposed architecture can suc-

cessfully denoise the observed graph signal x, we consider a

two-layer GCG given by

fΘ (Z|G) = ReLU
(

HZΘ(1)
)

θ
(2), (13)

where Θ(1) ∈ R
F×F and θ

(2) ∈ R
F are the learnable coeffi-

cients. With F denoting the number of features, we consider the

overparametrized regime where F ≥ 2N , and analyze the be-

havior and performance of denoising with the untrained network

defined in (13).

We start by noting that scaling the i-th entry of θ
(2) is

equivalent to scaling the i-th column of Θ(1), so that, without

loss of generality, we can set the weights to θ
(2) = b, where b

is a vector of size F with half of its entries set to 1/
√
F and the

other half to −1/
√
F . Furthermore, since Z is a random matrix

of dimension N × F , the column space of Z spans R
N , and

hence, minimizing over ZΘ(1) is equivalent to minimizing over

Θ ∈ R
N×F . With these considerations in place, the optimiza-

tion over (7) can be performed replacing the two-layer GCG

described in (13) by its simplified form

fΘ(H) = fΘ(Z|G) = ReLU(HΘ)b. (14)

Note that we replaced fΘ(Z|G) with fΘ(H) since the graph

influence is modeled by the graph filter H, and the influence of

the matrix Z is absorbed by the learnable weights Θ. Also note

that the behavior of the optimization algorithm of (13) and (14)

may differ and the upcoming theoretical analysis is focused on

the latter case.

The denoising capability of the two-layer architecture is

related to the eigendecomposition of its expected squared Ja-

cobian [33]. However, to understand which signals can be ef-

fectively denoised with the proposed architecture, we need to

connect the spectral domain of the expected squared Jacobian

with the spectrum of the graph, given by the eigenvectors of the

adjacency matrix.

To that end, we next compute the expected squared Jacobian of

the two-layer architecture in (14). Denote asJΘ(H) ∈ R
N×NF

the Jacobian matrix of fΘ(H) with respect to Θ, which is given

by

J �
Θ(H) =

⎡

⎢

⎢

⎣

b1H
�diag(ReLU′(Hθ1))

...

bFH
�diag(ReLU′(HθF ))

⎤

⎥

⎥

⎦

∈ R
NF×N , (15)

where θi represents the i-th column of Θ, and ReLU′ is the

derivative of the ReLU, which is the Heaviside step function.

Then, define the N ×N expected squared Jacobian matrix as

X := EΘ

[

JΘ(H)J �
Θ(H)

]

=

F
∑

i=1

b2iE
[

ReLU′(Hθi)ReLU′(Hθi)
�]
HH�. (16)

Moreover, from the work in [48, Sec. 3.2], we note that

E[ReLU′(Hθi)ReLU′(Hθi)
�] is in fact the so-called dual acti-

vation of the step function. Therefore, combining the expression
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for the dual activation of the step function from [48, Table 1] with

(16), we obtain that

X = 0.5
(

11� − π−1 arccos(C−1H2C−1)
)


HH�, (17)

where 
 represents the Hadamard (entry-wise) product,

arccos(·) is computed entry-wise, hi represents the i-th column

(row) of H, C = diag([‖h1‖2, . . ., ‖hN‖2]) is a normalization

term so thatC−1H2C−1 is the autocorrelation of the graph filter

H.

Since X is symmetric and positive (semi) definite, it has an

eigendecomposition X = WΣW�. Here, the columns of the

orthonormal matrixW = [w1, . . . ,wN ] are theN eigenvectors,

and the nonnegative eigenvalues in the diagonal matrix Σ are

assumed to be ordered as σ1 ≥ σ2 ≥ . . . ≥ σN .

After defining the two-layer GCG fΘ(H) and its expected

square Jacobian X , we formally analyze its performance when

denoising bandlimited graph signals. This is particularly relevant

given the importance of (approximate) bandlimited graph sig-

nals both from analytical and practical points of view [5]. For the

sake of clarity, we first introduce the main result (Theorem 1)

and then we detail a key intermediate result (Lemma 1) that

provides additional insight.

Formally, consider the K-bandlimited graph signal x0 as de-

scribed in (2), and let the architecture fΘ(H) have a sufficiently

large number of features F :

F ≥
(

σ2
1

σ2
N

)26

ξ−8N, with ξ ∈
(

0, (2 log(2N/φ))−
1
2

)

(18)

being an error tolerance parameter for some prespecified φ.

Then, for a specific set of graphs with minimum number of nodes

NK,ε,δ that is introduced later in the section (cf. Assumption 1),

if we solve (7) running gradient descent with a step size η ≤ 1
σ2
1

,

the following result holds (see Appendix A).

Theorem 1: Let fΘ(H) be the network defined in (14), and

assume it is sufficiently wide, i.e., it satisfies condition (18) for

some error tolerance parameter ξ. Let x0 be a K-bandlimited

graph signal spanned by the eigenvectors VK , and let wi and

σi be the i-th eigenvector and eigenvalue of X . Let n be the

noise present in x, set φ and ε to small positive numbers, and

let the conditions from Assumption 1 hold. Then, for any ε, δ,

there exists some NK,ε,δ such that if N > NK,ε,δ, the error for

each iteration t of gradient descent with stepsize η used to fit the

architecture is bounded as

‖x0 − fΘ(t)
(H) ‖2 ≤

(

(

1− ησ2
K

)t
+ δ

(

1− ησ2
N

)t
)

‖x0‖2

+ ξ‖x‖2 +
√

∑N
i=1

(

(

1− ησ2
i

)t − 1
)2

(

w�
i n

)2
, (19)

with probability at least 1− e−F 2 − φ− ε.
As explained next, the fitting (denoising) bound provided by

the theorem first decreases and then increases with the number

of iterations t. To be more precise, let us analyze separately each

of the three terms in the right hand side of (19). The first term

captures the part of the signal x0 that is fitted after t iterations

while accounting for the misalignment of the eigenvectors VK

and WK . This term decreases with t and, since δ can be made

arbitrary small (cf. Lemma 1), vanishes for moderately low

values of t. The second term is an error term that is negligible if

the network is sufficiently wide. Therefore, ξ can be chosen to

be sufficiently small by designing the architecture according to

the condition in (18). Finally, the third term, which depends

on the noise present in each of the spectral components of

the squared Jacobian (w�
i n)

2, grows with t. More specifically,

if the σi associated with a spectral component is very small,

the term (1− ησ2
i ) is close to 1 and, hence, the noise power

in the i-th frequency will be small. Only when t grows very

large the coefficient (1− ησ2
i )

t vanishes and the i-th frequency

component of the noise is fitted. As a result, if the filter H is

designed such that eigenvalues of the squared Jacobian satisfy

that σK � σK+1, then there will be a range of moderate-to-high

values of t for which: i) the first term is zero and ii) only the K
strongest components of the noise have been fitted, so that the

third term can be approximated as

√

∑K
i=1(w

�
i n)

2. Clearly,

as t grows larger, the coefficient ((1− ησ2
i )

t − 1) will also be

close to one for i > K, meaning that additional components of

the noise will be fitted as well, deteriorating the performance of

the denoising architecture. This implies that if the optimization

algorithm is stopped before t grows too large, the original signal

is fitted along with the noise that aligns with the signal, but not

the noise present in other components.

In other words, Theorem 1 not only characterizes the perfor-

mance of the two-layer GNN, but also illustrates that, if early

stopping is adopted, our overparametrized architecture is able to

effectively denoise the bandlimited graph signal. This result is

related to the error bound for denoising images presented in [33],

where x0 is assumed to lie in the span of WK . However, when

dealing with graphs, it is unclear which signals would satisfy

this requirement. Motivated by this, we assume that x0 is a

bandlimited signal (i.e., lies in the span of VK ), which is a

natural condition employed in many applications.

As a consequence, a critical step to attain Theorem 1 is

to relate the eigenvectors of X with those of the adjacency

matrix A, denoted as V. To achieve this, we assume that A

is random and provide high-probability bounds between the

leading eigenvectors of A and X . More specifically, consider a

graphG drawn from a stochastic block model (SBM) [49] withK
communities. Also, denote by M(A) the SBM with expected

adjacency matrix A = E[A], and by βmin the minimum ex-

pected degreeβmin := mini[A1]i. Given some ρ > 0, we define

as MN (βmin, ρ) the class of SBMs M(A) with N nodes for

which the minimum expected degree is βmin or higher. Then,

the condition of G being drawn from this SBM whose expected

minimum degree increases with N is formally expressed in the

following assumption.

Assumption 1: The model M(A) from which A is drawn

satisfies M(A) ∈ MN (βmin, ρ), with βmin = ω(ln(N/ρ)).
Here, ω(·) denotes the (conventional) asymptotic dominance.

We note that, as discussed in [50], the minimal degree condition

considered in Assumption 1 ensures that nodes belonging to the

same community also belong to the same connected component

with high probability, which is helpful to relate A and A. Under

these conditions, the following result holds.
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Fig. 1. Comparison between the eigenvectors of the matrices A and X for an SBM graph with N = 64 nodes and K = 4 communities, and for a GCG of L = 5

layers. From left to right, the figures represent the first, third, tenth, and last eigenvectors.

Lemma 1: Let the matrix X be defined as in (17), set ε and

δ to small positive numbers, and denote by VK and WK the

K leading eigenvectors in the respective eigendecompositions

of A and X . Under Assumption 1, there exists an orthonormal

matrix Q and an integer NK,ε,δ such that, for N > NK,ε,δ, the

bound

‖VK −WKQ‖F ≤ δ,

holds with probability at least 1− ε.
The proof is provided in Appendix B, and it leverages As-

sumption 1 to relate the eigenvectors VK and WK based on the

eigenvectors of the expected values of A and X .

For a given K, Lemma 1 bounds the difference between the

subspaces spanned by the K leading eigenvectors of A and X

when graphs are big enough, a result that is key in obtaining

Theorem 1. Moreover, the lemma shows that if the lower bound

NK,ε,δ increases, then the error encoded δ becomes arbitrary

small. Also note that, if a larger value of K is considered, then

the minimum required graph size NK,ε,δ will also be larger.

An inspection of (17) reveals that the result in Lemma 1 is

not entirely unexpected. Indeed, since H is a polynomial in

A, so is H2. This implies that V are also the eigenvectors

of H2, and because H2 appears twice on the right hand side

of (17), a relationship between the eigenvectors of X and V

can be anticipated. However, the presence of the Hadamard

product and the (non Lipschitz continuous) nonlinearity arccos
renders the exact analysis of the eigenvectors a challenging task.

Consequently, we resorted to a stochastic framework in deriving

Lemma 1.

B. Numerical Inspection of the Deep GCG Spectrum

While for convenience, the previous section focused on ana-

lyzing the GCG architecture with L = 2 layers, in practice we

often work with a larger number of layers. In this section, we

provide numerical evidence showing that the relation between

matricesA andX described in Lemma 1 also holds whenL > 2.

To that end, Fig. 1 shows the pairs of eigenvectors vi and

wi for the indexes i = {1, 3, 10, 64}, for a given graph G
drawn from an SBM with N = 64 nodes and 4 communities.

The GCG is composed of L = 5 layers and, to obtain the

eigenvectors of the squared Jacobian matrix, the Jacobian is

computed using the autograd functionality of PyTorch. The

nodes of the graph are sorted by communities, i.e., the first

N1 nodes belong to the first community and so on. It can

Fig. 2. Heatmap representation of the matrix product V
�
K
WK . The low

values of the off-diagonal entries illustrate the orthogonality between both sets
of eigenvectors. These eigenvectors are the same as those depicted in Fig. 1.

be clearly seen that, even for moderately small graphs, the

leading eigenvectors ofA andX are almost identical, becoming

more dissimilar as the eigenvectors are associated with smaller

eigenvalues. It can also be observed how leading eigenvectors

have similar values for entries associated with nodes within the

same community. Moreover, Fig. 2 depicts the matrix product

V�W, where it is observed that the K = 4 leading eigenvec-

tors of both matrices are orthonormal. The presented numer-

ical results strengthen the argument that the analytical results

obtained for the two-layer case can be extrapolated to deeper

architectures.

Another key assumption of Lemma 1 is that G is drawn from

the SBM described inMN (βmin, ρ). This assumption facilitates

the derivation of a bound relating the spectra ofA andX (i.e., the

subspaces spanned by the eigenvectorsVK andWK ). However,

the results reported in Fig. 3 suggest that such a relation exists for

other type of graphs, even though its analytical characterization

is more challenging. The figure has 12 panels (3 rows and 4

columns). Each of the rows corresponds to a different graph,

namely: 1) a realization of a small-world (SW) graph [51] with

N = 150 nodes, 2) the Zachary’s Karate graph [52] with N =
34 nodes, and 3) a graph of N = 316 weather stations across the

United States [53]. Each of the three first columns correspond to

an N ×N matrix, namely: 1) the normalized adjacency matrix

A, 2) H2, the squared version of a low pass graph filter and

whose coefficients are drawn from a uniform distribution and set

to unit �1 norm, and 3) the squared Jacobian matrixX . Although

we may observe some similarity between A and X , the relation

between X and the graph G becomes apparent when comparing

the matrices H2 and X . The matrix H is a random graph filter

used in the linear transformation of the convolutional generator
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Fig. 3. Illustration of matrices A, H2, X , and V
�
K
WK , shown in columns 1, 2, 3, and 4, respectively, for different types of graphs. The rows 1, 2, and 3

correspond to a small world, the Zachary’s Karate, and the weather stations graph. The graph filter H2 is created as a square graph filter with coefficients drawn
from a uniform distribution and with unitary �1 norm. For each graph (rows), it can be seen that the matrices A, H2, and X are related, and that VK and WK

are close to orthogonal.

fΘ(H), and it is clear that the vertex connectivity pattern ofX is

related to that ofH2. SinceX andH2 are closely related and we

know that the eigenvectors of H2 and those of A are the same,

we expect W (the eigenvectors of X ) and V (the eigenvectors

of A) to be related as well. To verify this, the fourth column of

Fig. 3 representsV�
KWK , i.e., the pairwise inner products of the

K leading eigenvectors of A and those of X . It can be observed

that the K leading eigenvectors are close to orthogonal, which

means that the relation observed in the vertex domain carries

over to the spectral domain and VK and WK expand the same

subspace. These results suggest that a deep GCG could be able to

denoise signals living in the subspace spanned byVK . However,

because the bound in Theorem 1 assumed a 2-layer GCG, we

address this hypothesis numerically in Section VI.

To summarize, the presented results illustrate that the analyti-

cal characterization provided in Section IV-A, which considered

a 2-layer GCG operating over SBM graphs, carries over to more

general setups.

V. GRAPH UPSAMPLING DECODER

The GCG architecture presented in Section IV incorporated

the topology of G via the vertex-based convolutions imple-

mented by the graph filter H. In this section, we introduce

the graph decoder (GDec) architecture. In contrast to the GCG

and other GCNNs, this novel graph-aware denoising NN in-

corporates the topology of G via a (nested) collection of graph

upsampling operators [31]. Specifically, we propose the linear

transformation for the GDec denoiser to be given by

T (�)

Θ
(�){Y(�−1)|G} = U(�)Y(�−1)Θ(�), (20)

where U(�) ∈ R
N(�)×N(�−1)

, with N (�) ≥ N (�−1), are graph up-

sampling matrices to be defined soon. Note that, compared to (9),

the graph filter H is replaced with the upsampling operator U(�)

that depends on �. Adopting the proposed linear transformation,

the output of the GDec with L layers is given by the recursion

Y(�)= ReLU
(

U(�)Y(�−1)Θ(�)
)

, for � = 1, . . ., L− 1, (21)

y(L)= U(L)Y(L−1)Θ(L), (22)

where the ReLU is also removed from the last layer.

Similar to the GCG, the proposed GDec learns to combine

the features within each node. However, the interpolation of

the signals in this case is determined by the graph upsampling

operators {U(�)}L�=1, rather than by employing convolutions.

The size of the input N (0) is now a design parameter that will

determine the implicit degrees of freedom of the architecture.

Note that, from the GSP perspective, the input feature ma-

trix Y(�−1) ∈ R
N(�−1)×F (�−1)

represents F (�−1) graph signals,

each of them defined over a graph G(�−1) with N (�−1) nodes.

Therefore, even though the input Y(0) = Z is still a random

white matrix across rows and columns, since N (�) ≥ N (�−1),

the dimensionality of the input is progressively increasing.

A closer comparison with the GCG reveals that the smaller

dimensionality of the input Z endows the GDec architecture

with fewer degrees of freedom, rendering the architecture more

robust to noise. Not only that, but the graph information is now

included via the graph upsampling operators U(�) instead of

relying on graph filters. Clearly, the method used to design the

graph upsampling matrices, which is the subject of the next

section, will have an impact on the type of graph signals that

can be efficiently denoised using the GDec architecture.
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Fig. 4. Dendrogram of an agglomerative hierarchical clustering algorithm and
the resulting graphs with 2, 4, 7 and 14 nodes.

A. Graph Upsampling Operator From Hierarchical Clustering

Regular upsampling operators have been successfully used

in NN architectures to denoise signals defined on regular do-

mains [33]. While the design of upsampling operators in regular

grids is straightforward, when the signals are defined on irregular

domains the problem becomes substantially more challenging.

The approach that we put forth in this paper is to use ag-

glomerative hierarchical clustering methods [27], [28], [29] to

design a graph upsampling operator that leverages the graph

topology. These methods take a graph as an input and return a

dendrogram; see Fig. 4. A dendrogram can be interpreted as a

rooted-tree structure that shows different clusters at the different

levels of resolution ν. At the finest resolution (ν = 0) each node

forms a cluster of its own. Then, as ν increases, nodes start to

group together (agglomerate) in bigger clusters and, when the

resolution becomes large (coarse) enough, all nodes end up being

grouped in the same cluster.

By cutting the dendrogram at L+ 1 resolutions, including

ν = 0, we obtain a collection of node sets with parent-child

relationships inherited by the refinement of clusters. Since we are

interested in performing graph upsampling, note that the dendro-

gram is interpreted from left to right. This can be observed in the

example shown in Fig. 4, where the three red nodes in the second

graph (ν = 10, layer � = 1) are children of the red parent in the

coarsest graph (ν = 12, layer � = 0). In this sense, the graph

upsampling operator is given by the inverse operation of the

clustering algorithm. We leverage these parent-children relations

to define the membership matrices P(�) ∈ {0, 1}N(�)×N(�−1)
,

where the entry P
(�)
ij = 1 only if the i-th node in layer � is the

child of the j-th node in layer �− 1. Moreover, we can further

exploit the dendrogram to obtain coarser-resolution versions of

the original graph G. To that end, note that the clusters at layer �
can be interpreted as nodes of a graph G(�) with N (�) nodes and

adjacency matrix A(�). There are several ways of defining A(�)

based on the original adjacency matrixA. While our architecture

does not focus on a particular form, in the simulations we set

A
(�)
ij �= 0 only if, in the original graph G, there is at least one

edge between nodes belonging to the cluster i and nodes from

cluster j. In addition, the weight of the edge depends on the

number of existing edges between the two clusters.

With the definition of the membership matrix P(�) and the

adjacency matrixA(�), the upsampling operator of the �-th layer

is given by

U(�) =
(

γI+ (1− γ)A(�)
)

P(�), (23)

where γ ∈ [0, 1] is a pre-specified constant. Notice that U(�)

first copies the signal value from the parents to the children by

applying the matrixP(�), and then every child performs a convex

combination between this value and the average signal value of

its neighbors. This design promotes that nodes descending from

the same parent have similar (related) values, which conveys a

notion (prior) of smoothness on the targeted graph signals. As

we show in Section VI, the implicit smoothness prior results

in a better performance when denoising smooth signals but, on

the other hand, makes the architecture more sensitive to model

mismatch. Therefore, when dealing with high-frequency signals,

a worth-looking approach left as a future research direction is

to rely on algorithms that cluster the nodes considering not only

the topology of G but also the properties of the graph signals.

Because the membership matrices P(�) are designed using

a clustering algorithm over G, and the matrices A(�) capture

how strongly connected the clusters of layer � are in the original

graph, these two matrices are responsible for incorporating the

information of G into the upsampling operators U(�). Further-

more, we remark that the upsampling operator U(�) can be rein-

terpreted as the application of P(�) followed by the application

of a graph filter

H̃(�) = γI+ (1− γ)A(�), (24)

which sets the filter coefficients as h0 = γ and h1 = 1− γ.

B. Guaranteed Denoising With the GDec

As we did for the GCG, our goal is to theoretically characterize

the denoising performance of the GNN architecture defined

by (21)–(23). To achieve that goal, we replicate the approach

implemented in Section IV-A. We first derive the matrix X and

provide theoretical guarantees when denoising a K-bandlimited

graph signal with the GDec. Then, to gain additional insight,

we detail the relation between the subspace spanned by the

eigenvectors W and the spectral domain of A. This relation

is key in deriving the theoretical analysis.

We start by introducing the 2-layer GDec

fΘ
(

Z|G
)

= ReLU
(

UZΘ(1)
)

θ
(2). (25)

Then, following a similar reasoning to that provided after (14),

instead of employing the architecture in (25) we can optimize

(7) over its simplifying version

fΘ
(

U
)

= fΘ
(

Z|G
)

= ReLU
(

UΘ
)

b. (26)

An important difference with respect to the GCG presented in

(14) is that the matrixΘ has a dimension ofN (0) × F , so it spans

R
N(0)

instead of R
N . Since N (0) < N , the smaller subspace

spanned by the weights of the GDec renders the architecture

more robust to fitting noise, but, on the other hand, the number

of degrees of freedom to learn the graph signal of interest are
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reduced. As a result, the alignment between the targeted graph

signals and the low-pass vertex-clustering architecture becomes

more important.

The expected squared Jacobian X = EΘ[JΘ(U)J �
Θ
(U)] is

obtained following the procedure used to derive (17), arriving at

the expression

X = 0.5

(

11� − 1

π
arccos

(

C̃−1UU�C̃−1
)

)


UU�, (27)

where ui represents the i-th row of U, and C̃ =
diag([‖u1‖2, . . ., ‖uN‖2]) is a normalization matrix.

Then, let x0 be a K-bandlimited graph signal and let fΘ(U)
have a number of features F satisfying (18). If we solve (7)

running gradient descent with a step size η ≤ 1
σ2
1

, the following

result holds.

Theorem 2: Let fΘ(U) be the network defined in (26). Con-

sider the conditions described in Theorem 1 and let N (0) match

the number of communities K (see Assumption 1). Then, for

any ε, δ, there exists some NK,ε,δ such that if N > NK,ε,δ , then

the error for each iteration t of gradient descent with stepsize η
used to fit the architecture is bounded as (19), with probability

at least 1− e−F 2 − φ− ε.
The proof is analogous to the one provided in Appendix A

but exploiting Lemma 2 instead of Lemma 1. Lemma 2 is

fundamental in attaining Theorem 2 and is presented later in

the section.

Theorem 2 formally establishes the denoising capability of the

GDec when x0 is a K-bandlimited graph signal and K = N (0)

matches the number of communities in the SBM graph. When

compared with the GCG, the smaller dimensionality of the input

Z, and thus the smaller rank of the matrix Θ, constrains the

learning capacity of the architecture, making it more robust

to the presence of noise. However, this additional robustness

also implies that the architecture is more sensitive to model

mismatch, since its capacity to learn arbitrary signals is smaller.

Intuitively, the GDec represents an architecture tailored for a

more specific family of graph signals than the GCG. Moreover,

employing the GDec instead of the GCG has a significant impact

on the relation between the subspaces spanned byVK andWK .

To establish the new relation between VK and WK , assume

that the adjacency matrix is drawn from an SBM M(A) with

K communities such that M(A) ∈ MN (βmin, ρ), so that the

SBM follows Assumption 1. In addition, set the size of the latent

space to the number of communities so N (0) = K. Under this

setting, the counterpart to Lemma 1 for the case where fΘ(U)
is a GDec architecture follows.

Lemma 2: Let the matrix X be defined as in (27), set ε and

δ to small positive numbers, and denote by VK and WK the

K leading eigenvectors in the respective eigendecompositions

of A and X . Under Assumption 1, there exist an orthonormal

matrix Q and an integer NK,ε,δ such that for N > NK,ε,δ the

bound

‖VK −WKQ‖F ≤ δ,

holds with probability at least 1− ε.

Lemma 2 asserts that the difference between the subspaces

spanned by VK and WK becomes arbitrarily small as the size

of the graph increases. The proof is provided in Appendix C and

the intuition behind it arises from the fact that the upsampling

operator can be understood as U = H̃P, where H̃ is a graph

filter of the specific form described in (24). Remember that P is

a binary matrix encoding the cluster in the layer �− 1 to which

the nodes in the layer �belong. Since we are only considering two

layers, and we have thatN (0) = K, the matrixP is encoding the

node-community membership of the SBM graph and, hence, the

product PP� is a block matrix with constant entries matching

the block pattern of A. As shown in the proof, this property can

be leveraged to bound the eigendecomposition of A and X .

C. Analyzing the Deep GDec

The deep GDec composed of L > 2 layers can be constructed

following the recursion presented in (21) and (22). In this case,

by stacking more layers we perform the upsampling of the input

signal in a progressive manner and, at the same time, we add

more nonlinearities, which helps alleviating the rank constraint

related to the input size N (0). In the absence of nonlinear

functions, the maximum rank of the weights would be N (0), and

thus, only signals in a subspace of sizeN (0) could be learned. By

properly selecting the number of layers and the input size when

constructing the network, we can obtain a trade-off between the

robustness of the architecture and its learning capability.

In addition, the effect of adding more layers is also reflected

on the smoothness assumption inherited from the construction

of the upsampling operator. Adding more layers is related to less

smooth signals, since the number of nodes in G with a common

parent, and thus, with similar values, is smaller.

We note that numerically illustrating that the bound between

VK andWK holds true for the deep GDec, and that its denoising

capability is not limited to signals defined over SBM graphs

provide results similar to those in Section IV-B. Therefore,

instead of replicating the previous section, we directly illustrate

the performance of the deep GDec under more general settings in

the following section, where we present the numerical evaluation

of the proposed architectures.

VI. NUMERICAL RESULTS

This section presents different experiments to numerically

validate the theoretical claims introduced in the paper, and

to illustrate the denoising performance of the GCG and the

GDec. The experiments are carried out using synthetic and

real-world data, and the proposed architectures are compared

to other graph-signal denoising alternatives. The code for the

experiments and the architectures is available on GitHub2. For

hyper-parameter settings and implementation details the inter-

ested reader is referred to the online available code.

2https://github.com/reysam93/Graph_Deep_Decoder
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Fig. 5. (a) Error of the 2-layer GCG when fitting a piece-wise constant signal, noise, and a noisy signal, as a function of the number of epochs. The graph is
drawn from an SBM with 64 nodes and 4 communities, and the normalized noise power is Pn = 0.1. (b) Counterpart of (a) but for the 2-layer GDec architecture.
(c) Mean distance between the K leading eigenvectors of the adjacency matrix and X as a function of the graph size for several graph models.

A. Denoising Capability of Graph Untrained Architectures

The goal of the experiment shown in Fig. 5(a) and (b) is

to illustrate that the proposed graph untrained architectures are

capable of learning the structured original signal x0 faster than

the noise, which is one of the core claims of the paper. To

that end, we generate an SBM graph with N = 64 nodes and

K = 4 communities, and define 3 different signals: (i) “Sig-

nal”: a piece-wise constant signal x0 with the value of each

node being the label of its community; (ii) “Noise”: zero-mean

white Gaussian noise n with unit variance; and (iii) “Signal

+ Noise”: a noisy observation x = x0 + n where the noise

has a normalized power of 0.1. Fig. 5(a) and (b) show the

normalized mean squared error (NMSE), with the error for each

realization being ‖x0 − x̂0‖22/‖x0‖22. The mean is computed for

100 realizations of the noise as the number of epochs increases

when the different signals are fitted by the 2-layer GCG and

the 2-layer GDec, respectively. It can be seen how, in both

cases, the error when fitting the noisy signal x decreases for

a few epochs until it reaches a minimum, and then starts to

increase. This is because the proposed untrained architectures

learn the signal x0 faster than the noise, but if they fit the

observation for too many epochs, they start learning the noise as

well and, hence, the MSE increases. As stated by Theorems 1

and 2, this result illustrates that, if early stopping is applied,

both architectures are capable of denoising the observed graph

signals without a training step. It can also be noted that, under

this setting, the GDec learns the signal x0 faster than the GCG

and, at the same time, is more robust to the presence of noise.

This can be seen as a consequence of GDec implicitly mak-

ing stronger assumptions about the smoothness of the targeted

signal.

The goal of the second test case is two-fold. First, it illustrates

that the result presented in Lemma 1 is not constrained to the

family of SBM (as specified by Assumption 1), but can be gen-

eralized to other families of random graphs as well. In addition,

it measures the influence of the number of nodes in the discrep-

ancies between VK and WK . To that end, Fig. 5(c) contains the

mean eigenvector similarity measured as 1
K
‖VK −WKQ‖F

as a function of the number of nodes in the graph. The eigenvec-

tor similarity is computed for 50 realizations of random graphs

and the presented error is the median of all the realizations.

The random graph models considered are: the SBM (“SBM”),

the connected caveman graph (“CAVE”) [54], the regular graph

whose fixed degree increases with its size (“REG”), the small

world graph (“SW”) [51], and the power law cluster graph model

(“PLC”) [55]. The second term in the legend denotes the number

of leading eigenvectors taken into account in each case, which

depends on the number of active frequency components of the

specific random graph model. We can clearly observe that for

most of the random graph models, the eigenvector error goes to

0 as N increases and, furthermore, the error is below 10−1 even

for moderately small graphs. This illustrates that, although the

conditions assumed for Lemmas 1 and 2 focus on the specific

setting of the SBM, the results can be applied to a wider class of

graphs. Here, the regular graphs are particularly interesting since

most classical signals may be interpreted as signals defined over

regular graphs. As a result, this empirical evidence motivates the

extension of the proposed theorems to more general settings as

a future line of work.

B. Denoising Synthetic Data

We now proceed to comment on the denoising performance

of the proposed architectures with synthetic data. The usage of

synthetic signals allows us to study how the properties of the

noiseless signal influence the quality of the denoised estimate.

The first experiment, shown in Fig. 6(a), studies the error

of the denoised estimate obtained with the 2-layer GCG as the

number of epochs increases. The reported error is the NMSE

of the estimated signal x̂0, and the figure shows the mean

values of 100 realizations of graphs and graph signals. The

normalized power of the noise present in the data is 0.1. Graphs

are drawn from an SBM withN = 64 nodes and 4 communities,

and the graph signals are generated as: (i) a zero-mean white

Gaussian noise with unit variance (“Rand”); (ii) a bandlimited

graph signal (cf. 2) using the K leading eigenvectors of A as

base (“BL”); and (iii) a diffused white (“DW”) signal created

as y = med(Hw|G), where w is a white vector whose entries

are sampled from N (0, 1), H is a low-pass graph filter, and

med(·|G) represents the graph-aware median operator such that

the value of the node i is the median of its neighborhood [39],

[40]. The results in Fig. 6(a) show that the best denoising error is

obtained when the signal is composed of just a small number of

eigenvectors, and the performance deteriorates as the bandwidth

(i.e., the number of eigenvectors that span the signal subspace)
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Fig. 6. Median MSE when denoising a graph signal as a function of the number of epochs. (a) The 2-layer GCG is used to denoise different families of signals.
(b) Performance comparison between total variation, Laplacian regularization, bandlimited models, the 2-layer GCG, the deep GCG, and the deep GDec, when the
signals are bandlimited. (c) Counterpart of b) for the case where signals are diffused white.

increases, obtaining the worst result when the signal is generated

at random. This result is aligned with the theoretical claims since

it is assumed that the signal x0 is bandlimited. It is also worth

noting that the architecture also achieves a good denoising error

with the “DW” model, showcasing that the GCG is also capable

of denoising other types of smooth graph signals.

Next, Fig. 6(b) compares the performance of the 2-layer

GCG (“2L-GCG”), the deep GCG (“GCG”) and the deep GDec

(“GDec”) with the baseline models introduced in Section III,

which are the total variation (“TV”) [34], Laplacian regulariza-

tion (“LR”) [37], and bandlimited model (“BL”) [46]. In this

setting, the graphs are SBM with 256 nodes and 8 communities,

and the signals are bandlimited with a bandwidth of 8. Since the

“BL” model with K = 8 captures the actual generative model

of the signal x0, it achieves the best denoising performance.

However, it is worth noting that the GCG obtains a similar

result, outperforming the other alternatives. On the other hand,

the “LR” obtains an error noticeably larger than that of “BL”

and “GCG,” highlighting that, even though “BL” and “LR”

are related models their different assumptions lead to different

performances. Moreover, the benefits of using the deep GCG

instead of the 2-layer architecture are apparent, since it achieves

a better performance in fewer epochs.

On the other hand, Fig. 6(c) illustrates a similar experiment but

with the graph signals generated as “DW”. Under this setting, it

is clear that the GDec outperforms the other alternatives. These

results showcase the benefits of employing a nonlinear archi-

tecture relative to classical denoising approaches. Furthermore,

this experiment corroborates that the GDec is more robust to the

presence of noise when the signals are aligned with the prior

implicitly captured by the architecture.

C. Denoising Real-World Signals

Finally, we assess the performance of the proposed ar-

chitectures in several real-world datasets. To the baselines

considered in the previous experiments, we add the follow-

ing competitive denoising algorithms: graph trend filtering

(“GTF”) [35], a graph-aware median operator (“MED”) [39],

a GCNN (“GCNN”) implemented as in [12], a graph attention

network (“GAT”) [56], a Kron reduction-based autoencoder

(“K-GAE”) [41], and the graph unrolling sparse coding archi-

tecture (“GUSC”) in [42]. Moreover, we consider the following

noise distributions: (i) zero-mean Gaussian distribution, which

is the noise model typically assumed for sensor measurements

in signal processing; (ii) uniform distribution on some interval

[0, a], where a ∈ R+ is chosen accordingly to the desired noise

power; and (iii) Bernoulli distribution to model errors in binary

signals. Next, we describe the selected datasets and analyze the

achieved results, which are summarized in Table II.

Temperature. We consider a network of 316 weather stations

distributed across the United States [45]. Graph signals represent

daily temperature measurements in the first three months of the

year 2003. The graph G represents the geographical distance

between weather stations and is given by the 8-nearest neighbors

graph. The first and second rows of Table II list the NMSE when

the noise is drawn from a Gaussian and a uniform distribution,

respectively. In both cases, the noise has a normalized power

of 0.3. It is clear that the GDec architecture outperforms the

alternatives in both scenarios. Furthermore, we can observe that

the GCG achieves a better performance than GCNN, show-

casing the benefits of being able to use a more general graph

filter.

S&P 500. In this experiment, we have 189 nodes representing

stocks belonging to 6 different sectors of the S&P 500 with

the graph signals representing the prices of those stocks at

particular time instants. We follow [57] to estimate the graph

G assuming that the signals are drawn from a multivariate

Gaussian distribution and are smooth on G. We consider the

noise specifications described in the previous dataset and provide

the NMSE in the third and fourth rows of Table II. It is worth

noting that considering Gaussian noise in this dataset constitutes

a more challenging denoising problem than using uniform noise.

A plausible explanation is that the graph is estimated assuming

that the data follows a Gaussian distribution, and hence, it is

harder to separate the Gaussian noise from the true signals.

In the presence of Gaussian noise, the GCG and the GDec

outperform the other 8 alternatives. However, when the noise

follows a uniform distribution, the best performance is obtained

by the GCG and the GCNN, with GDec being the third best.

In addition, we observe that traditional methods yield an error

that is considerably larger than that incurred by the proposed

architectures. This is aligned with our initial intuition about

linear and quadratic methods being more limited when the actual

relation between x0 and G is more intricate, as is the case for

financial data.
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TABLE II
DENOISING ERROR OF SEVERAL DATASETS WITH DIFFERENT TYPES OF RANDOM NOISE

Cora. Lastly, we consider the Cora citation network

dataset [12]. Nodes represent different scientific documents and

edges capture citations among them. Like in [42], we consider

the 7 class labels as binary graph signals encoding if the par-

ticular node belongs to that class. For each signal, we consider

25 realizations of Bernoulli noise that randomly flips 30% of

the binary values of the signals, resulting in a total of 175 noisy

graph signals. With the error rate denoting the proportion of

labels correctly recovered after the denoising process, Table II

shows the error metric averaged over all the signals. Moreover,

since the graph is formed by several connected components,

we report two results: the error rate when the whole graph is

considered (fifth row) and the error rate when only the largest

connected component is considered (sixth row). It can be seen

that the GCG yields the best performance in both cases.

VII. CONCLUSION

In this paper, we faced the relevant task of graph-signal

denoising. To approach this problem, we presented two over-

parametrized and untrained GNNs and provided theoretical

guarantees on the denoising performance of both architectures

when denoising K-bandlimited graph signals under some sim-

plifying assumptions. Moreover, we numerically illustrated that

the proposed architectures are also capable of denoising graph

signals in more general settings. The key difference between

the two architectures resided in the linear transformation that

incorporates the information encoded in the graph. The GCG

employs fixed (non-learnable) low-pass graph filters to model

convolutions in the vertex domain, promoting smooth estimates.

On the other hand, the GDec relies on a nested collection of graph

upsampling operators to progressively increase the input size,

limiting the degrees of freedom of the architecture, and providing

more robustness to noise. In addition to the aforementioned

analysis, we tested the validity of the proposed theorems and

evaluated the performance of both architectures with real and

synthetic datasets, showcasing a better performance than other

classical and nonlinear methods for graph-signal denoising.

Finally, we consider extending the results from Theorems 1 and

2 to more general scenarios as an interesting future line of work.

APPENDIX A

PROOF OF THEOREM 1

Let x0 be a K bandlimited graph signal as described in (2),

which is spanned by the K leading eigenvectors of the graph

VK , with x̃0 denoting its frequency representation. Let Q be

an orthonormal matrix that aligns the subspaces spanned by

VK and WK , and denote as x̄0 = WKQx̃0 the bandlimited

signal using WK as basis and whose frequency response is also

x̃0. Note that x̄0 can be interpreted as recovering x0 from its

frequency response using WK in lieu of VK . Also, note that

x0 − x̄0 = (VK −WKQ)x̃0 represents the error between the

signal x0 and its approximation inside the subspace spanned

by WK . With these definitions in place, in [33, Th. 3] the

authors showed that error when denoising a signal x = x0 + n

is bounded with probability at least 1− e−F 2 − φ by

‖x0 − fΘ(t)
(Z|G)‖2 ≤ ‖Ψx0‖2 + ξ‖x‖2

+

√

∑N
i=1((1− ησ2

i )
t − 1)2(w�

i n)
2, (28)

with Ψ := W(IN − ηΣ2)tW�, and IN the N ×N identity

matrix. However, note that the bound provided for ‖Ψx0‖2
in [33] requiresx0 lying in the subspace spanned byWK , which

is not the case. As a result, we further bound this term as

‖Ψx0‖2 = ‖Ψ(x0 + x̄0 − x̄0)‖2
(i)
= ‖ΨK x̄0 +Ψ(VK −WKQ)x̃0‖2
(ii)

≤ ‖ΨK x̄0‖2 + ‖Ψ(VK −WKQ)x̃0‖2
(iii)

≤ ‖ΨK‖2‖x̄0‖2 + ‖Ψ‖2‖VK −WKQ‖F ‖x̃0‖2
(iv)

≤ (‖ΨK‖2 + δ‖Ψ‖2) ‖x0‖2
(v)
=

(

(1− ησ2
K)t + δ(1− ησ2

N )t
)

‖x0‖2. (29)

Here, ΨK := WK(IK − ηΣ2
K)tW�

K , and ΣK represents a

diagonal matrix containing the first K leading eigenvalues σk.

We have that (i) follows from x̄0 being bandlimited in WK , so

Ψx̄0 = ΨK x̄0. Then, (ii) follows from the triangle inequality,

and (iii) from the �2 norm being submultiplicative and using

the Frobenius norm as an upper bound for the �2 norm. In

(iv) we apply the result of Lemma 1, which holds with prob-

ability at least 1− ε because N > NK,ε,δ , and the fact that,

since both WK and VK are orthonormal matrices, we have

that ‖x0‖2 = ‖x̄0‖2 = ‖x̃0‖2. We obtain (v) from the largest

eigenvalues present in ΨK and Ψ.

Finally, the proof concludes by combining (29) and (28).
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APPENDIX B

PROOF OF LEMMA 1

Define Ã as Ã := E[Ã] = E[D]−
1
2AE[D]−

1
2 and let X be

given by (17). Denote byH a graph filter defined as a polynomial

of the expected adjacency matrix Ã, and let X̄ be the expected

squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5

(

11� − 1

π
arccos

(

C
−1
H

2
C
−1
)

)


H
2, (30)

where C is the counterpart of C in (17), but using H instead

of H. Given the following eigendecompositions Ã = VΛV�,

X = WΣW�, Ã = V̄Λ̄V̄�, and X̄ = W̄Σ̄W̄�, for arbitrary

orthonormal matrices T and R, we have that

‖VK −WKQ‖F ≤ ‖VK − V̄KT‖F

+ ‖V̄KT− W̄KR‖F + ‖W̄KR−WKQ‖F. (31)

To prove the theorem, we bound the three terms on the right

hand side of (31).

Bounding ‖V̄KT− W̄KR‖F. From the definition of an

SBM, it follows that A = E[A] = BΩB�, where B ∈
{0, 1}N×K is an indicator matrix encoding the community to

which each node belongs, and Ω is a K ×K matrix encoding

the link probability between the communities of the graph.

Therefore, Ã and X̄ are both block matrices whose blocks

coincide with the communities in the SBM. This implies that the

eigenvectors associated with non-zero eigenvalues must span the

columns of B. Hence, the leading eigenvectors must be related

by an orthonormal transformation, from where it follows that,

given T, we can always find R such that

‖V̄KT− W̄KR‖F = 0. (32)

Bounding ‖VK − V̄KT‖F. Under Assumption 1, as it is shown

in [50], with probability at least 1− ρ we have that

‖Ã− Ã‖ ≤ 3

√

3 ln(4N/ρ)

βmin
. (33)

Then, we combine the concentration (33) with the Davis-Kahan

results [58, Th. 2], which bound the distance between the

subspaces spanned by the population eigenvectors (V̄K) and

their sample version (VK). Denoting as λ̄i the i-th eigenvalue

collected in Λ̄, i.e. λ̄i = Λ̄ii, we obtain that there exists an

orthonormal matrix T such that

‖VK − V̄KT‖F ≤
√

8K

λ̄K − λ̄K+1
‖Ã− Ã‖F

≤ 3
√

8K

λ̄K

√

3 ln(4N/ρ)

βmin
, (34)

where we note that, since Ã follows an SBM, then λ̄i = 0 for

all i > K.

Since βmin = ω(ln(N/ρ)), we obtain that

‖VK − V̄KT‖F → 0, as N → ∞. (35)

Bounding ‖W̄KR−WKQ‖F. If we show that ‖X − X̄‖ → 0
as N → ∞, we can then mimic the procedure in (33) and (34)

to show that the difference between the leading K eigenvectors

of X and X̄ also vanishes. Hence, we are left to show that

‖X − X̄‖ → 0 as N → ∞. From the definitions of X and X̄ ,

it follows that

‖X − X̄‖ ≤ 0.5‖H2 −H
2‖

+
1

2π
‖ arccos

(

C
−1
H

2
C
−1
)


H
2

− arccos
(

C−1H2C−1
)


H2‖. (36)

To bound the difference between the sampled and expected

filters, we have that

‖H2 −H
2‖ =

∥

∥

∥

∥

∥

∥

(

L
∑

�=0

h�Ã
�

)2

−
(

L
∑

�=0

h�Ã
�

)2
∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

2L
∑

�=0

α�

(

Ã� − Ã
�
)

∥

∥

∥

∥

∥

≤
2L
∑

�=0

α�

∥

∥

∥
Ã� − Ã

�
∥

∥

∥
, (37)

for suitable coefficients α� and recalling that L = 2. Then, we

can then leverage the fact that ‖Ã‖ = ‖Ã‖ = 1 to see that

‖Ã� − Ã
�‖ ≤ �‖Ã− Ã‖. We thus get that

‖H2 −H
2‖ ≤

2L
∑

�=0

�α�

∥

∥

∥
Ã− Ã

∥

∥

∥
→ 0, as N → ∞, (38)

where the limiting behavior follows from (33). Finally, to bound

the second term in (36), we first note that the argument of

the norm can be re-written as arccos(C−1H2C−1)
 (H2 −
H2) + (arccos(C−1

H
2
C
−1)− arccos(C−1H2C−1))
H

2.

The limit in (38) ensures that the first of these two terms vanishes.

Similarly, it follows that ‖C−1
H

2
C
−1 −C−1H2C−1‖ → 0

which, combined with the fact that arccos is a uniformly

continuous function, we can always find an Nδ′ such that

‖ arccos(C−1
H

2
C
−1)− arccos(C−1H2C−1)‖ ≤ δ′ with high

probability. Combining this result with (38) and applying the

Davis-Kahan Theorem as done to obtain (34) we get that

‖W̄KR−WKQ‖F → 0, as N → ∞. (39)

Replacing (32), (35), and (39) into (31) our result follows.

APPENDIX C

PROOF OF LEMMA 2

Recall that Ã = E[Ã], and define H̃ := γI+ (1− γ)Ã as

the specific graph filter introduced in Section V-A as a polyno-

mial of Ã. LetX be given by (27), and denote by X̄ the expected

squared Jacobian using the graph filter H, i.e.,

X̄ = 0.5

(

11� − 1

π
arccos

(

C̃
−1
UU

�
C̃
−1
)

)


 UU
� (40)

with U = H̃P and where the matrix C̃ is the counterpart of C̃

in (27), but using U in lieu of U. Given the eigendecompo-

sitions Ã = VΛV�, X = WΣW�, Ã = V̄Λ̄V̄�, and X̄ =
W̄Σ̄W̄�, analogously to Lemma 1, we bound the difference

between VK and WK by bounding the three terms in the right

hand side of (31).
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Bounding ‖V̄KT− W̄KR‖. We have that UU
� =

H̃PP�H̃
�

. Since P is a binary matrix indicating to which

community belongs each node, PP� is a block diagonal matrix

that captures the structure of the communities of the SBM. Then,

because H̃ is also block matrix with the same block pattern that

the SBM, it turns out that the matrix X̄ is also a block matrix

whose blocks coincide with the communities in the SBM graph.

Therefore, the rest of the bound is analogous to that in Lemma 1.

Bounding ‖VK − V̄KT‖. The relation between A and A is

the same as in Lemma 1 so the bound provided in (35) holds.

Bounding ‖W̄KR−WKQ‖. To derive this bound we show

that ‖UU� − UU
�‖ = ‖H̃PP�H̃� − H̃PP�H̃

�‖ goes to 0

asN grows. From (38) we have that‖H−H‖ → 0, asN → ∞,

and hence,‖H̃− H̃‖ → 0, asN → ∞. Therefore, it can be seen

that

‖UU� − UU
�‖ → 0, as N → ∞, (41)

with ‖UU� − UU
�‖ vanishing as N grows. The remainder of

the derivation of the bound is analogous to that for (39).
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