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Abstract—Graph filtering is the cornerstone operation in graph
signal processing (GSP). Thus, understanding it is key in developing
potent GSP methods. Graph filters are local and distributed linear
operations, whose output depends only on the local neighborhood
of each node. Moreover, a graph filter’s output can be computed
separately at each node by carrying out repeated exchanges with
immediate neighbors. Graph filters can be compactly written as
polynomials of a graph shift operator (typically, a sparse matrix
description of the graph). This has led to relating the properties of
the filters with the spectral properties of the corresponding matrix
– which encodes global structure of the graph. In this work, we
propose a framework that relies solely on the local distribution
of the neighborhoods of a graph. The crux of this approach is to
describe graphs and graph signals in terms of a measurable space
of rooted balls. Leveraging this, we are able to seamlessly compare
graphs of different sizes and coming from different models, yielding
results on the convergence of spectral densities, transferability
of filters across arbitrary graphs, and continuity of graph signal
properties with respect to the distribution of local substructures.

Index Terms—Graph signal processing, graph filtering,
transferability, graph Fourier transform, graphing signal
processing, weak convergence.

I. INTRODUCTION

G
RAPH filters are a fundamental building block in graph
signal processing, where cascaded applications of a graph

shift operator model diffusion on the nodes of a graph [1], [2].
The analogy between filtering in discrete time and filtering on
graphs has led to a fruitful research direction, with applications
including robotics [3], neuroscience [4], and recommender sys-
tems [5]. Due to their typical implementation as low-degree
matrix polynomials, graph filters are local operators, where the
output of a graph filter at a given node is strictly dependent on
the connectivity structure and signal values on the node’s local
neighborhood. This highlights an invariance property of graph
filters, typically summarized by the property of permutation

equivariance. However, the equivariance of graph filters is much
stronger than not being sensitive to permutations of nodes.
If the same filter is applied to two different graphs, and two
nodes within each of those graphs have identical neighborhoods,
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then the graph filter output at those nodes will be identical as
well [6]. Indeed, graph filters in their usual implementation are
equivariant to local substructures, which have been shown to be
of primary importance in real-world networks [7], often leading
to useful properties such as scale invariance and robustness [8].

The importance of local substructures is an incipient develop-
ment in the literature. This view has been considered before in
the graph wavelet literature [9], [10], [11], where wavelet atoms
are constructed by applying graph filters to impulse functions
on each node in the graph, yielding a dictionary of atoms with
known spectral properties that also exhibit (approximate) spatial
localization. As a representational tool for graphs predating the
development of graph signal processing, graph kernel methods
have put forth the idea of graphs as bags of motifs [12], such
as in the paper on graphlets [13]. Works such as [14], [15]
have considered the extension of graph kernels for graphs with
continuous labels, typically via a neighborhood aggregation or
discretization approach. In [16], equivariance to local structures
is proposed as a more useful invariant for graph neural networks,
as opposed to permutation equivariance. For instance, [17] con-
siders neural networks for graph classification that act on small
subgraphs over an entire graph, and [18] considers how to design
graph neural networks that can recognize structures more ex-
pressive than those of the Weisfeiler-Lehman test. The treatment
of graphs as distributions of ego-networks in [19] was used to
devise a novel loss function for training of graph neural networks
based on the maximization of mutual information. Additionally,
local structures at each node need not be deterministic, as [20]
considers random walk features and defines the notion of an
estimable parameter under such a model.

In this work, we develop machinery for reasoning about basic
notions in graph signal processing, with the primacy of local
substructures in mind. After reviewing basic definitions for
graph signal processing in Section II, we make the following
theoretical contributions:

1) We introduce rooted graphs and rooted graph filters as
vehicles for describing localized graph filters. In doing
so, we develop a measure-theoretic view of graph signal
processing that considers distributions of rooted balls and
signals supported on them (Section III).

2) Within the proposed framework, we illustrate how con-
vergence of Fourier spectra of graph signals can be un-
derstood in terms of weak convergence of measures (Sec-
tion IV).

3) We apply the proposed framework to yield a principled
understanding of the transferability of graph summaries
via integral probability metrics (Section V).
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4) To highlight the flexibility of the proposed approach,
we extend the relationship between distributions of local
graph structures and the Fourier spectra of graph signals
to weighted graphs (Section VI).

5) We identify graphings and signals supported on them as
the appropriate limiting objects in the proposed frame-
work, and develop basic notions of graphing signal pro-
cessing. We prove that the proposed framework applies
directly to graphing signal processing in a natural way
(Section VII), yielding a suitable spectral theory.

II. GRAPH SIGNAL PROCESSING

Consider an undirected graph G = (V, E) where V is the set
of nodes and E ⊆ V × V is the set of edges. Since the graph is
undirected, it holds that if an edge (u, v) ∈ E for u, v ∈ V , then
(v, u) ∈ E . We further assume the graph to have no self-loops,
i.e., (v, v) /∈ E for all v ∈ V , and to be unweighted. An extension
to weighted graphs can be found in Section VI.

The neighborhood N (V ′) of a given collection of nodes V ′ ⊆
V is defined as

N (V ′) = {u ∈ V : (u, v) ∈ E for some v ∈ V ′} ∪ V ′. (1)

That is, the neighborhood of a collection of nodes is that set of
nodesV ′ as well as those nodes immediately connected to it. The
k-hop neighborhood N k(V ′) can then be conveniently defined
in a recursive manner as N k(V ′) = N (N k−1(V ′)) for integers
k ≥ 1 and withN 0(V ′) = V ′. Note that the k-hop neighborhood
of a singleton V ′ = {v} is denoted as N k(v), and that its degree
can be easily computed as deg(v) = |N (v)| − 1.

Graph signals can be associated with a graph structure and are
defined as a map x : V → R between the node set V and the real
numbers R. That is, a graph signal simply attaches a single real
number [x]v ∈ R to each node of the graph v ∈ V . For a given
graph G = (V, E), we can define the space of graph signals as
X(G) = {x : V → R}.

A graph shift operator (GSO)S can also be associated with the
graph structure G as a means of relating graph signals explicitly
with the underlying graph support. More precisely, the GSO is
defined as a linear operator between graph signals S : X(G) →
X(G) such that the output graph signal y = Sx is computed as

[y]v =
∑

u∈N (v)

[S]vu[x]u. (2)

The operation (2) shifts the signal around the graph and is
analogous to the time-shift in discrete-time signal processing.
Note that the GSO can be completely characterized by speci-
fying the adjacency rule that assigns the values [S]vu for every
(u, v) ∈ E . Examples of GSOs that have found widespread use in
the literature include the adjacency matrix, the Laplacian matrix,
the Markov transition matrix, and their normalized counterparts.
While it is technically possible to design adjacency rules that
lead to arbitrary values of [S]vu, we only consider rules that are
determined exclusively by the local, combinatorial structure of
the graph.

Remark 1 (More general signals): As indicated by the recent
popularity of graph neural networks, it is of interest to con-
sider how to understand multidimensional or categorical data
on graphs. This fits into our framework in a seamless fashion
by expanding the definition of “graph signal” to include any
function from the nodes of a graph to a metric space. For
simplicity of exposition, we restrict our view to real-valued
functions, keeping in mind that such extensions require very
little extra work.

A graph filter can then be built from the GSO. More specifi-
cally, given a collection of (K + 1) scalar coefficients {hk}

K
k=0,

a K-tap graph filter H(S) : X(G) → X(G) is defined as the
linear mapping between two graph signals y = H(S)x given
by

H(S) =

K
∑

k=0

hkS
k (3)

where Sk denotes k repeated applications of the GSO (see (2))
to the input signal x. The operator S0 is understood to be the
identity map on X(G).

Graph filters are linear and local operators. They are linear in
the input graph signal x. They are local in that they only require
information up to the K-hop neighborhood. More specifically,
the output of the graph filter at each node [y]v can be computed
byK repeated exchanges of information with one-hop neighbors
N (v), thus collecting the signal values contained in up to theK-
hop neighborhood NK(v). Each node can compute their output
separately from the rest. The key observation is that the nodes
need not know the global structure of the whole graph G but only
their local neighborhood. Thus, graph filters can be analyzed
and understood entirely from looking at this local neighborhood
structure.

III. A LOCAL FRAMEWORK FOR GSP

The local nature of graph filters calls for a local framework
to analyze their effects. Towards this end, define a rooted K-
ball GK(r) = (VK ,EK , r) as a graph with a root r ∈ VK such
that all nodes are at most K-hops away from the root, i.e.,
VK = NK(r). Note that, since the rooted K-ball GK(r) is
a graph, the notions of graph shift operator and graph signal
are immediately well-defined. We denote these as SK(r) and
xK(r), respectively. For ease of exposition, the specification
of the root node will be dropped, unless necessary to avoid
confusion.

Of particular interest is the case of rooted K-balls obtained
as the induced subgraph of the K-hop neighborhood of a
node. More specifically, given a graph G = (V, E), a rooted
K-ball GK can be constructed by selecting a node r ∈ V ,
settingVK ≡ NK(r) and EK ≡ E ∩ NK(r)×NK(r). In this
context, the graph signal xK corresponding to the rooted K-ball
can be tied to the graph signal x defined on G by setting
[xK ]v = [x]v for all v ∈ NK(r).

We can now formalize the notion that a graph filter only relies
on local information.

Proposition 1: Let G = (V, E) be a graph with graph signal x
and a GSOS. For a node r ∈ V , denote the corresponding rooted
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K-ball as GK , with graph signal xK and GSO SK , respectively.
Then, for any K-tap filter H, the following equality holds

[H(S)x]r =
[

H
(

SK
)

xK
]

r
. (4)

We note that for (4) to hold, the adjacency rule used to construct
S and SK has to be the same, and it is assumed to depend only
on the combinatorial structure of the graphs; see Section II.

Proposition 1 formalizes the well-known fact that a K-tap
graph filter evaluated at a node only depends on the subgraph
of K-hops centered at that node (i.e., the ego-network of the
node [21]). In this sense, it is not necessary to understand how
a graph filter behaves on the global structure of a graph. Rather,
one only needs to understand the behavior of a graph filter
locally, in particular on the rooted K-balls of the graph. This
naturally leads to a weaker form of the property of permutation
equivariance, discussed next.

For two graphs G = (V, E) and G ′ = (V ′, E ′), we say that a
map φ : V → V ′ is a K-morphism if it preserves the structure
of rooted K-balls for all nodes in V . The structure of two rooted
K-balls GK = (VK ,EK , r) and G

′
K = (V

′
K ,E

′
K , r′)with signals

xK and x′K , respectively, is preserved, if there exists an iso-
morphism ψ : VK → V ′

K such that ψ(r) = r′, (ψ(u), ψ(v)) ∈
E ′
K if and only if (u, v) ∈ EK , and [xK ]v = [x′K ]ψ(v) for all

v ∈ VK . Then, a K-morphism φ : V → V ′ between two graphs
G = (V, E) and G ′ = (V ′, E ′) with associated signals x and x′,
respectively, satisfies that the rooted K-balls (GK(v), xK(v))

and (G
′
K(φ(v)), x′K(φ(v))) are isomorphic for all nodes v ∈ V .

Note that K-morphisms are not necessarily invertible, nor are
they necessarily surjective.

Graph filters are invariant under K-morphisms, as it follows
from Proposition 1, where we see that the same filter applied to
two different graphs yields the same result if the local structures
are the same.

Corollary 1: Consider two graphs G = (V, E) and G ′ =
(V ′, E ′) with corresponding signals x and x′. Denote by GK(v)
the K-rooted ball for root v ∈ V , and by SK(v) and xK(v)
the corresponding GSO and graph signal, respectively. If there
exists a K-morphism φ : V → V ′, then for any K-hop filter H
it holds that
[

H
(

SK(v)
)

xK(v)
]

v
=

[

H
(

SK (φ(v))
)

xK (φ(v))
]

φ(v)
(5)

for all v ∈ V .
Note that Corollary 1 is a generalization of the permutation

equivariance property that graph filters have [6]. More generally,
Corollary 1 opens up ways to compare the performance of a fixed
graph filter across two different graphs with different associated
graph signals. It would be expected then, that if two graphs have
similar distributions of rooted K-balls with associated signal,
then a fixed graph filter acting on one should yield similar
results on the other. We formalize these notions in the ensuing
discussion.

A. Distributions of Rooted Balls

Proposition 1 states that the output of a K-tap graph filter at
each node depends only on the rootedK-ball at that node and the
corresponding graph signal values. Therefore, to characterize the

effect of graph filtering, it suffices to characterize the distribution

of rootedK-balls of a graph. Towards this end, we will construct
a sample space,σ-field, and a corresponding measure to describe
this distribution.

Denote by Gk a rooted k-ball and by X(Gk) its corresponding
signal space. Consider now the space constructed by the disjoint
union of all signal spaces on all possible rooted k-balls (up to
isomorphism) with k ≤ K, given by1

ΩK =
∐

Gk:k≤K

X
(

Gk

)

. (6)

The construction of the space ΩK is illustrated in Fig. 1.
Essentially, one considers a different space X(G) (typically,
|V|-dimensional vectors x) for each possible rooted K-ball
G, and then puts them all into a common space where each
original space is isolated. An element ω ∈ ΩK is described by
both the rooted K-ball and the graph signal space it indexes,

i.e., ω = (G,X(G)). Making the identification X(G) ≡ R
|V|, the

point ω can be thought as a |V|-dimensional vector associated
with the rooted K-ball G. Note that, while it may happen that

X(G) ∼= X(G
′
) because |V| = |V

′
|, these are different component

spaces in the disjoint union ΩK as they are indexed by different

rooted balls G and G
′
, respectively.

To define the corresponding σ-field σ(ΩK) associated with
ΩK , note that the disjoint union of graph signal spaces (i.e.,
Euclidean spaces) has a natural topology defined over it, namely
the disjoint union topology. Thus, the Borel σ-field σ(ΩK) gen-
erated from the topology of ΩK is a proper σ-field. Intuitively,
measurable sets in ΩK are constructed by selecting some rooted
K-ball G and a Borel set in the space of graph signals X(G),
then considering the corresponding set in ΩK .

A measure µ can be properly defined now that the σ-field
associated with ΩK has been constructed. Let ΣK : V → ΩK

be a map that takes a node v ∈ V and returns the corresponding
rooted K-ball and signal, i.e.,

ΣK(v) =
(

GK(v), xK(v)
)

. (7)

Note that ΣK(v) ∈ ΩK . Then, for a Borel set A ∈ σ(ΩK), the
measure µ : σ(ΩK) → [0, 1] is defined as

µ(A) =
1

|V|

∣

∣ {v ∈ V : ΣK(v) ∈ A}
∣

∣. (8)

Recall that each element in ΩK can be thought of as a rooted
K-ball with an associated signal. Formally,µ is the pushforward
of the uniform measure on the nodes of G by the sampling map
ΣK , which can be denoted asµ = (ΣK)∗(G,x) [22]. We observe
that any measure on the nodes of the graph can be used to replace
the RHS of (8).

The space ΩK serves as a natural domain in which to char-
acterize K-tap graph filters. Indeed, Proposition 1 indicates that
the behavior of a K-tap graph filter can be fully characterized
by its behavior over ΩK . That is to say, any given K-tap graph
filterH has a corresponding map H : ΩK → R such that for any

1In this context, each signal space X(Gk) is considered modulo the action of
the automorphism group of Gk . This is clarified in Appendix A.
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Fig. 1. The space ΩK of rooted K-balls and signals, constructed via the disjoint union of signal spaces enumerated by rooted K-balls. (Left) A graph on nodes
{a, b, . . . , h}, with graph signal denoted by the node coloring. (Right) The space Ω1, and the distibution µ of points obtained via the pushforward of Σ1. Observe

that nodes {a, d, g, h} all have isomorphic rooted 1-balls, and thus all correspond to points inX(G
(1)

) (depicted here in random positions within Euclidean space).

Similarly, nodes {b, e} are mapped to points in X(G
(2)

), and {c, f} are mapped to points in X(G
(4)

). Since the given graph is triangle-free, no points are mapped

to X(G
(3)

).

graph G = (V, E) with GSO S and signal x, (4) can be rewritten
as:

H(ΣK(r)) = [H(S)x]r. (9)

To use the terminology of quotient spaces [23], (9) indicates that
a K-tap graph filter passes, or descends, to a unique map on ΩK

via the map ΣK . Thus, in the context of Proposition 1 and graph
filtering, it is sufficient to characterize local operations overΩK ,
rather than with respect to the global structure of a given graph
G.

Now that the local framework based on rooted balls has been
introduced, we proceed to show how it can be leveraged to obtain
theoretical results that provide insight into the inner workings
of graph signal processing. In Section IV we discuss how to
understand power spectral densities, while in Section V we
discuss transferability of graph filters across graphs of different
size.

Remark 2 (Distributions of edge sets): In [24], the authors
consider a pushforward probability measure into the Fourier
domain when there is an underlying probability distribution of
edges in a fixed graph. This allows for the modeling of graph
signals under uncertainty on the edge set. Such a distribution of
edges can be incorporated into the distributionµ via the pushfor-
ward map (ΣK)∗, allowing for a description of the distribution
of rooted balls in a graph under a probability distribution on the
edges.

Remark 3 (Rooted subtrees): Many authors have considered
graph processing methods that are equivariant to local sub-
tree structures [18], such as architectures whose computation
resembles the 1-Weisfeiler-Lehman test [12]. In the proposed
framework, these subtree structures are strictly “less expressive”
than rooted ball structures, in the sense that the rooted subtree of
depth K centered at a given node can be determined completely
by the rooted K-ball centered at that node. However, the rooted
K-ball cannot be determined by the rooted subtree of depth
K, as evidenced by the inability of the 1-Weisfeiler-Lehman
test to distinguish certain structures [25]. With this in mind, the
proposed framework could certainly be applied where the space
ΩK is constructed with rooted subtrees, rather than rooted balls.

However, given that these rooted balls are more expressive than
rooted subtrees [18], we state all proceeding results using the
rooted ball construction.

IV. POWER SPECTRAL DENSITY

One of the key ideas in graph signal processing is that of
the graph Fourier transform of a graph signal [2]. For a graph
G = (V, E) on n nodes, consider the GSO S to be the graph
Laplacian, which is a positive semidefinite Hermitian matrix.
Thus, it admits the following eigendecomposition

S =

n
∑

j=1

λjuju
T

j , (10)

for eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding pair-
wise orthogonal eigenvectorsu1, . . . ,un. One can check that for
any of these eigenvectors, 〈uj ,Suj〉 = λj . The graph Laplacian
induces a quadratic form on a graph signal that measures a useful
notion of smoothness [2]. For a given graph signal x on G, the
quadratic form can be shown to be equal to

〈x,Sx〉 =
∑

v∈V

∑

u∈N (v)

([x]v − [x]u)
2 . (11)

That is, the quadratic form of the graph Laplacian measures the
sum of the squared differences of the graph signal at neighboring
pairs of nodes. A signal is called smooth if the quadratic form
takes a small value relative to its norm. For instance, the eigen-
vectors of S with small corresponding eigenvalues are smooth
signals.

We note that this notion of smoothness can be extended to
normalized versions of the graph Laplacian in a similar fashion.
Furthermore, a notion of smoothness can also be defined using
the adjacency matrix [26]. In any case, for ease of exposition and
conceptual simplicity, we assume that S is the graph Laplacian
throughout this section, but we remark that the results derived
herein are also valid for any other GSO built from adjacency
rules that rely on the combinatorial structure of the graph.

Since the eigenvectors u1, . . . ,un form an orthonormal basis
for Rn, any graph signal x admits a unique representation as
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a linear combination of the eigenvectors of S. That is, for any
graph signal x, there exists a set of coefficients {x̃j}nj=1 such
that the following holds:

x =
n
∑

j=1

x̃juj (12)

〈x,Sx〉 =
n
∑

j=1

λj x̃
2
j . (13)

Thus, the representation of a graph signal as a weighted sum
of the eigenvectors can be used to conveniently compute the
quadratic form in terms of the spectrum. In an analogy to
complex exponential functions being the eigenfunctions of the
Laplace operator in discrete-time signal processing, we call the
representation of the graph signal x by the coefficients x̃j the
graph Fourier transform (GFT).

When coupled with their corresponding eigenvalues λj , the
coefficients x̃j can be used to describe the distribution of energy
in a graph signal, in a way concordant with the notion of smooth-
ness described by the Laplacian quadratic form (11). To capture
this, define the normalized power spectral distribution of a graph
signal. Given a graph signal x with Fourier coefficients x̃j

and corresponding Laplacian eigenvalues 0 = λ1 ≤ . . . ≤ λn,
define

Px : R → R
+

λ �→
1

n

∑

j:λj≤λ

x̃2
j . (14)

One can easily see thatPx is a monotone, right-continuous func-
tion, with Px(λ) = 0 for λ < 0, and at most n discontinuities
(one at each eigenvalue λj). Moreover, there is a convenient
expression for the moments of Px:

mK(x) :=

∫

R

λKdPx(λ) =
1

n

〈

x,SKx
〉

. (15)

That is to say, the moments of the normalized power spectral
distribution are given by scaled quadratic forms of powers of the
GSO. Observe that the quadratic form (11) can be expressed as
〈x,Sx〉 = n ·m1(x). Indeed, the moments of the graph Fourier
transform are an essential quantity in the design of low-order
graph filters [27]. This points to a very useful idea: the powers
of the GSO are the most primitive types of graph filters, so
the proposed local framework provides a path for understanding
these moments in terms of functions on the space of distributions
of rooted balls.

To see this, let us examine (15). Notice that

1

n
〈x,SKx〉 =

1

n

∑

v∈V

[x]v[S
Kx]v. (16)

As before, let SK(v) be the GSO of the K-ball rooted at node
v. By Proposition 1, the above equation can be written as

1

n

∑

v∈V

[x]v
[

SKx
]

v
=

1

n

∑

v∈V

[xK ]v

[

S
K

K(v)xK(v)
]

v
. (17)

That is, the moments of the normalized power spectral distribu-
tion of a graph signal can be written as an average of operations
that resemble local filtering. In the proposed local framework,
this has the following interpretation.

Proposition 2: Let G be a graph and x be a graph signal. For
a given K ≥ 0, define the map

mK : ΩK → R (18)

((V, E , r) , y) �→ [y]r

[

S
K

K y
]

r
, (19)

where SK denotes the Laplacian of the rooted K-ball.
Letting µ be the probability distribution on ΩK determined

by (G,x), the Kth moment of the normalized power spectral
distribution Px is given by the equation

mK(x) =

∫

ΩK

mK(ω)dµ(ω) = Eµ[mK ]. (20)

Having reduced the moments of the normalized power spec-
tral distribution to an average over the distribution of rooted
balls, we can now reason about the convergence of graph Fourier
distributions in terms of weak convergence of measure for
graphs with bounded degree D. Although the limit of dense
graphs has been considered before via graphon models [28],
[29], this cannot capture the behavior of bounded degree graphs,
as all infinite sequences of growing graphs of bounded degree
converge to the zero graphon [30]. However, in the case of sparse
graphs, understanding the descension of maps to the space ΩK

is a feasible approach, with the following compactness property.
Lemma 1: For given integers K ≥ 0, D ≥ 1 and any collec-

tion of graphs in GD with uniformly bounded signals, there
exists a compact subspace Γ ⊂ ΩK such that the support of the
probability measures corresponding to the graphs/graph signals
is contained in Γ.

The proof of Lemma 1 can be found in Appendix C. The con-
straint of a graph having bounded degree, for instance coming
from physical constraints in a real-world system, corresponds to
a compact description in the space ΩK . From this, the following
convergence result holds.

Theorem 1: Let integers K ≥ 0, D ≥ 1 be given. Let
{(Gj ,xj)}∞j=1 be a sequence of graphs and graph signals such
that each Gj ∈ GD and the collection of signals xj is uniformly
bounded. Let µj be the probability measure on ΩK associated
with (Gj ,xj) for each j, and Pj the corresponding normalized
power spectral distribution function.

If the measures µj converge weakly, then the K th moments of
the normalized power spectral distribution functions converge.
Moreover, if weak convergence of measure holds for all K ≥ 0,
then the normalized power spectral distribution functions con-
verge weakly.

The proof of Theorem 1 can be found in Appendix B. Theo-
rem 1 casts the power spectral density of a graph signal in terms
of the distribution of local structures in the graph. In particular,
we treat the power spectral density as a function from graphs
with graph signals to Borel measures on a compact subset of
the real line, then prove that this function is continuous with
respect to the distribution of rooted balls in the graph, where
continuity is understood to be with respect to the weak topology
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for both the distribution in ΩK and the power distribution of the
signal. Although the frequency domain representation of a graph
signal is typically understood to be a representation in terms of
the global graph structure, owing to the global support of the
graph Laplacian’s eigenvectors, this results indicates that it is in
essence still subject to fundamentally local phenomena, namely
the rooted balls in the graph.

To illustrate this, we consider a toy example of growing
sequences of path/cycle graphs with sinusoidal signals on the
nodes. For integers j ≥ 1, let Pj be the path graph on nodes [j],
and Cj the cycle graph on nodes [j]. For either graph, let sj be the
graph signal mapping each node v ∈ [j] to cos(πv/8). We now
consider the moments of the power spectral distributions for the
sequences {(Pj , sj)}

∞
j=1 and {(Cj , sj)}

∞
j=1. For any nonnega-

tive integer K ≥ 0, one can check by explicit calculation that
the moments mK(sj) converge to (2(1− cos(π/8)))K/2 as
j → ∞ for both the sequence of path graphs and the sequence of
cycle graphs. Although the path and cycle graphs with sinusoidal
signals are globally distinguishable, they are (approximately)
locally indistinguishable, particularly when considered on a
large number of nodes.

This characterization of the power spectral distribution in
terms of the distribution of rooted balls also reflects the local na-
ture of graph filtering. Indeed, as discussed in [27], the moments
of the power spectral distribution are key in the understanding
of graph filters. More broadly, when designing a graph filter,
we often aim to construct a matched filter in the frequency
domain, so that the response of the filter aligns with that of the
signal, subject to some noise model (additive white Gaussian
noise, for instance). Additionally, constraints such as a filter
havingK taps reduces the space of possible frequency responses
to degree K polynomials in the frequency domain, so that
the moments become the basic values of interest. This is an
immediate consequence of graph filters admitting a distributed
implementation [27], so that the expression of a graph filter’s
performance in terms of the power spectrum of the signal is
actually a distillation of the distribution of rooted balls in ΩK .

We have shown how connecting the moments of the power
spectral distribution to the space ΩK yields insights about how
features of graphs and graph signals are dependent only on
localized information. In particular, a function mK : ΩK → R

was constructed whose expected value under the pushforward
measure of a graph computes the moments of the power spectral
distribution. This machinery can be immediately extended to
other functions on graphs that act locally, allowing us to compare
the behavior of a given function on two graphs in terms of their
distributions of rooted balls.

V. TRANSFERABILITY

Let J be a function mapping a graph and its corresponding
graph signal to a real number. This function is typically known as
a graph summary and examples include the graph power spectral
distribution discussed in the previous section, as well as the
average node degree or node centrality values [31], the clustering
coefficient [32], or the conductance [33]. We can also consider
cost functions for a given task as graph summaries, since they
ultimately take a graph and its signal as input, and output a real

number [34]. In this context, we want to study how the functionJ
changes across two different graphs with different graph signals
(G1,x1) and (G2,x2).

To study the transference of the graph summary J across
different graphs and graph signals, let us assume that there
exists a function J : ΩK → R such that for any pair (G,x)
whose associated probability distribution on ΩK is denoted by
µ, we have J(G,x) = Eµ[J]. This assumption is not too severe,
essentially saying that the graph summary is an average over a
function on the nodes, with the value at each node determined
strictly by the structure of its local neighborhood. Then, consider
the transfer equation

|J (G1,x1)− J (G2,x2)| =
∣

∣Eµ

[

J
]

− Eν

[

J
]∣

∣ . (21)

as a way of measuring the transferability of J , and where µ and
ν are the distributions of rooted balls on the space ΩK of the
graphs (G1,x1) and (G2,x2), respectively.

To understand (21) in a quantitative manner demands a
stronger structure on ΩK than the disjoint union topology. To
this end, we then endow ΩK with the structure of a metric space,
in a way that preserves the original topology. For an arbitrary
constant C > 0, define a metric dC on ΩK as follows. For
ω1 = (G1, x1) and ω2 = (G2, x2) ∈ ΩK , put

dC(ω1, ω2) =

{

min{‖x1 − x2‖2, 2C} G1 = G2

C otherwise,
(22)

where ‖ · ‖2 is inherited from the identification of X(G) with
Euclidean space.2 Note that ‖ · ‖2 is well defined since both
x1 and x2 are vectors in the same |V|-dimensional space when
G1 = G2. One can check that dC is indeed a metric on ΩK for
any C > 0. The metric dC is constructed in a way that preserves
the local metric structure of each signal space X(G), while also
endowing the whole space ΩK with a global metric structure, at
the cost of some local distortion in order to maintain the triangle
inequality, as dictated by the constant C. When C is chosen to
be very large, the local metric structure on each rooted ball of
the space is well-preserved, but these rooted balls are otherwise
kept “far apart” from each other. On the other hand, when C is
very small, the rooted balls become “close,” but the local metric
structure on each of them is distorted (i.e. signals belonging
to the same rooted ball that are beyond a distance of 2C are
indistinguishable from signals that belong to different rooted
balls). Importantly, the metric topology on ΩK induced by dC
is equal to the disjoint union topology (6), so that all notions of
continuity and weak convergence of measure are preserved.

Given the additional metric structure onΩK , we can quantita-
tively characterize the transfer (21) by comparing distributions
of rooted balls on the metric space (ΩK , dC). To do so, we make
the following assumption on the function J.

Assumption 1: For all rooted K-balls G ∈GD, J(G, x) is L-
Lipschitz continuous with respect to the second argument xover
the space of bounded signals X(G, [−1, 1]).

This is not a difficult assumption to satisfy. For instance, it is
sufficient for J to be continuously differentiable on each signal

2This metric is again understood modulo the automorphism group of the
rooted ball, discussed in Appendix A.
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Fig. 2. The 1-Wasserstein distance reflects structural similarity between
graphs. (Top) Three graphs (a, b, c) with signals indicated by node coloring.
(Bottom) Distributions of rooted 1-balls in each graph (a, b, c), represented by
histograms. The x-axis corresponds to the space Ω1, and the y-axis shows the
density of each rooted 1-ball in the graph. The 1-Wasserstein distance, then, es-
sentially describes the distance between histograms, subject to a metric structure
on Ω1. For instance, graph (a) is expected to have a large 1-Wasserstein distance
from graphs (b, c), since there is minimal overlap between their histograms. On
the other hand, graphs (b, c) have substantial overlap, so their 1-Wasserstein
distance will be smaller.

space for this to hold. In fact, the set of Lipschitz continuous
functions on a compact space is dense in the set of continuous
functions with respect to the uniform norm [35].

Theorem 2: Let graphs G1,G2 ∈ GD with corresponding
bounded signals x1,x2 be given. Denote their corresponding
measures in ΩK by µ and ν, respectively. For a function J :
ΩK → [0, 1] that satisfies Assumption 1, it holds that

∣

∣Eµ[J]− Eν [J]
∣

∣ ≤ L ·W1

(

µ, ν;
1

L

)

, (23)

where W1(µ, ν;C) denotes the 1-Wasserstein distance between
µ and ν under the metric dC .

The proof of Theorem 2 can be found in Appendix D. The-
orem 2 bounds the transfer (21) in terms of the 1-Wasserstein
distance between the two distributions of rooted balls. The ap-
pearance of the 1-Wasserstein distance in this setting is intuitive:
the dual formulation of the 1-Wasserstein distance defines the
distance between two distributions via an integral probability
metric over 1-Lipschitz functions [36], yielding a transferability
bound that holds for all Lipschitz functions. We illustrate the
notion of the 1-Wasserstein distance between graphs in Fig. 2.

A. Examples and Discussion

Theorem 2 indicates that smoother functions J generally
transfer better than ones with large Lipschitz constant. Some
examples of graph summaries that fulfill the conditions of The-
orem 2 follow.

Example: Power spectral distribution. For any K ≥ 0, the
spectral moment functionmK as defined in Section IV descends
to the expectation of the function mK : ΩK → R. For any rooted
K-ball G, it holds that mK(G, ·) is a polynomial of the graph
signal in the second argument, and can thus be shown to satisfy
Assumption 1. Thus, the difference in the spectral moments of
two graphs can be bounded in terms of the Wasserstein dis-
tance of their respective distributions of rooted balls. Moreover,
observe that for K ≥ M ≥ 0, the moment functionmM can be
defined onΩK in a way that preserves the identity (20), so that we
can compare the similarity of spectral moments between graph
signals by comparing the Lipschitz constants of the functions
mK and mM on the same space ΩK . Indeed, one can see that
mK has a larger Lipschitz constant thanmM , so that the bound
given by Theorem 2 is tighter for the lower moments of the
power spectral distribution, contingent upon a relatively small
1-Wasserstein distance between the distributions of rooted balls.

Example: MSE of a graph filter. Let H be a fixed K-tap
graph filter, and let σ2 > 0 be given. For any given graph G on
n nodes with associated signal x and shift operator S, put the
function J as

J(G,x) = E

[

1

n

∥

∥x−H (S) (x+ η)
∥

∥

2

2

]

, (24)

where the expectation is taken over the random vector η ∼
N (0, σ2I). In words, J is the mean squared error when applying
H to (G,x) under additive white Gaussian noise. Define J on
rooted K-balls G = (V, E , r) with shift operator S as

J
(

G, x
)

=
(

[x]r −
[

H
(

S
)

x
]

r

)2
+ σ2

[

(

H
(

S
))2

]

r
. (25)

If we denote the measure on ΩK associated with (G,x) by µ,
one can show that

J (G,x) = Eµ

[

J
]

. (26)

Observe that J(G, x) is a polynomial of the values of x for
each rooted K-ball G, so that it is Lipschitz continuous on each
bounded signal space, thus satisfying Assumption 1. Moreover,
the Lipschitz constant of J over each signal space X(G) can be
shown to be proportional to ‖(I−H(S))δr‖2, where δr is the
signal taking value 1 on the root node and 0 elsewhere. That is to
say, the Lipschitz constant is directly influenced by the “spread”
of the impulse response of the filter. Intuitively, this indicates that
while filters with large coefficients in their higher-order terms
may suit a particular signal well, they may transfer across graphs
poorly. This aligns with existing results on the stability of graph
filters [6], [37].

Estimation of the transferability bound. The computation
of the 1-Wasserstein distance in (23) may prove problematic for
large graphs. However, given the definition of the 1-Wasserstein
distance as an integral probability metric, it is not difficult to
compute an emprical estimate of W1(µ, ν;C). By [36, Theo-
rem 6], if {ωµ

j }
m
j=1 and {ων

j }
n
j=1 are i.i.d. samples drawn from

the respective distributions µ and ν, then the 1-Wasserstein dis-
tance between the empirical distributions can be computed via a
linear program. To draw i.i.d. samples from these distributions,
one can choose a node uniformly at random (with replacement)
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from the node set of the underlying graph and then take the
rooted K-ball via the map ΣK . By [36, Corollary 10], the
compact support of the distributions µ, ν guarantees almost sure
convergence of the empirical estimator to the true Wasserstein
distance as m,n → ∞.

Tighter bounds. In Theorem 2, the difference in expectation
between two distributions of rooted balls is characterized in
terms of their Wasserstein distance, which is defined in terms of
a metric imposed upon ΩK . Given that the metric dC is defined
for essentially arbitrary C, one can derive a tighter bound on the
transfer equation, with less stringent assumptions on the function
J. First, note that for two graphs G1,G2 ∈ GD and bounded
signals x1,x2, the corresponding measures µ, ν have support
in the compact subspace Γ ⊂ ΩK , where Γ is as described in
Lemma 1. Because of this, any continuous function on Γ is
bounded. For a function J : ΩK → R satisfying Assumption 1,
define the range of J as

A = sup
ω∈Γ

J(ω)− inf
ω∈Γ

J(ω). (27)

In the same vein as Theorem 2, it holds that

∣

∣Eµ[J]− Eν [J]
∣

∣ ≤ inf
C∈(0,1]

L

C
·W1

(

µ, ν;
AC

L

)

. (28)

This bound illustrates an interplay between the smoothness of
J, the range of J, and the regime of similarity between the two
graphs. If two graphs have similar distributions of rooted balls,
then the smoothness of J plays a stronger role in bounding
transferability. If they have highly distinct distributions of rooted
balls, the range ofJ, as described by the valueA, plays a stronger
role in bounding transferability.

Extensions to graph neural networks. Although we have
considered maps on graphs with real-valued signals, the analysis
in this section is equally applicable when the nodes have other
types of features such as categorical labeling. For example,
one could consider J to be the cross-entropy loss for a fixed
graph neural network with K layers, where the “graph signal”
is taken to be a set of discrete input features and a ground-truth
label against which the loss is evaluated [38]. In the context of
Theorem 2, the Lipschitz constants of the nonlinearity and the
operator norm of the weights influence the Lipschitz constant,
and the depth of the graph neural network determines the value of
K. We aim to address this relationship in greater detail in future
work, with a particular focus on understanding how a given graph
neural network trained on a single graph might generalize to a
distribution of graphs with similar characteristics.

Graph kernels. Wasserstein distances between graphs have
been considered in the graph kernel literature [15], where
node embeddings in Euclidean space are computed from local
structures about each node, followed by a computation of the
Wasserstein distance in Euclidean space. Given that the proposed
computation for nodes with continuous attributes in this paper is
smooth with respect to the node attributes, one can show that the
Wasserstein distance between distributions in our case descends
to theirs via a continuous map. Also related are the Weisfeiler-
Lehman subtree kernels [25] that compare graphs based on
their sets of subtree structures, which can be determined by the

rooted ball structures (see Remark 3). The analytical tools we
put forth are particularly well-suited for graphs with continuous
attributes, unlike the discrete attributes usually considered in the
graph kernel literature.

By endowing the space ΩK with an appropriate metric struc-
ture, we have applied the proposed framework to studying trans-
ferability of graph summaries that descend to maps on rooted
K-balls. In analyzing the relationship between the Lipschitz
constant of the graph summary and the distribution of rooted
balls, insights have been gleaned as to what drives common-
alities between graphs in this regard. Although our focus in
this section has been on fixed graph summaries, such as the
loss of a fixed graph filter in Section V-A, these ideas can be
readily adapted to problems of designing graph summaries. For
instance, the presence of the Lipschitz constant in Theorem 2
indicates that a graph filter or graph neural network will transfer
better if it is designed to be smooth. This can be cast in the
light of stability, where certain conditions on filter banks in
graph neural networks can guarantee a response that is stable to
structural perturbations [6], [37]. To summarize, in the context of
graph filtering, graph kernels, or even graph neural networks, our
results formalize the interplay between smoothness of functions
and appropriate notions of similarity between graphs to yield a
more formal understanding of the phenomenon of transferability
in GSP methods. This allows for a precise, yet flexible, way to
characterize the application of methods to graphs of different
sizes and geometries.

VI. EXTENSION TO WEIGHTED GRAPHS

In this section, we consider how ideas from the unweighted
case (Sections IV and V) can be extended to weighted graphs.
We define a weighted graph as a graph G = (V, E) coupled with
a weight function w : E → R≥0. For a given graph G, the set of
all possible weight functions on it is denotedW(G) = {w : E →
R≥0}. We use the same notation for the set of weight functions
on a rooted graph: W(G).

We now expand our definition of a rootedK-ball with a signal
to include weight functions. Define

ΩW
K =

∐

Gk:k≤K

W(G)× X(G). (29)

Similar to the definition of ΩK in (6), the space ΩW
K consists

of all rooted K-balls with both edge weights and graph signals
on them. As before, a weighted graph with a signal (G, w,x)
yields elements of ΩW

K via a suitably defined sampling map
ΣK , defined for nodes v ∈ V:

ΣK(v) =
(

GK(v),wK(v), xK(v)
)

, (30)

where wK(v) denotes the restriction of w to the edges of
GK(v). As before, a given weighted graph with a signal defines a
probability measure on ΩW

K via the pushforward of the uniform
measure by ΣK , which we denote by µ = (ΣK)∗(G, w,x). For
a weighted graph (G, w), define the weighted degree of a node
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v ∈ V as follows:

deg(v) =
∑

u∈N (v)

w(v, u). (31)

The set of weighted graphs whose nodes have weighted degree
at most D is denoted by G

W
D for real number D > 0.

We now develop a local description of the graph Fourier
transform for weighted graphs, much like in Section IV. For
a graph G = (V, E) with weight function w, define the weighted

graph Laplacian as a shift operator such that, for any u, v ∈ V ,

[S]uv =

⎧

⎪

⎨

⎪

⎩

deg(v;w) u = v

−w(u, v) (u, v) ∈ E

0 otherwise.

(32)

The weighted Laplacian for a graph on n nodes is pos-
itive semidefinite, and admits an eigendecomposition S =
∑n

j=1 λjuju
T
j , with a Fourier representation for graph signals

defined in a way analogous to (12). For a given graph signal
x ∈ X(G), there is a power spectral distribution associated with
x via the weighted Laplacian, whose moments are given by (15).
We characterize the properties of the power spectral distribution
in terms of the distribution of rooted K-balls in the following
theorem.

Theorem 3: Let an integer K ≥ 0 and a real number D > 0
be given. Let {(Gj , wj ,xj)}

∞
j=1 be a sequence of graphs, weight

functions, and graph signals such that each graph is contained
in G

W
D and the signals xj are uniformly bounded. Let µj be

the probability measure on ΩW
K associated with (Gj , wj ,xj) for

each j, and Pj the corresponding normalized power spectral
distribution function.

If the measuresµj converge weakly, then theKth moments of
the normalized power spectral distribution functions converge.
Moreover, if weak convergence of measure holds for all K ≥ 0,
then the normalized power spectral distribution functions con-
verge weakly.

The proof of Theorem 3 can be found in Appendix E. Theo-
rem 3 establishes that the power spectral distribution of a graph
signal on a weighted graph is continuous with respect to the weak
topology of distributions of rooted K-balls, under boundedness
assumptions. Unlike the regime of Theorem 1, the convergence
of the power spectral distribution for weighted graphs here is not
dependent on the combinatorial constraint of having bounded
node degrees. Rather, any node may have an arbitrarily large
number of neighbors, as long as the total influence remains
bounded. This is a realistic assumption for many systems, where
an agent may be allowed to exert influence on a large collection
of other agents, but the total influence is bounded by some
physical constraint, such as power consumption.

VII. IN THE LIMIT: GRAPHING SIGNAL PROCESSING

In Sections V and VI, the (weak) continuity of the power
spectral density with respect to the distribution of rooted balls
was established. Specifically, it was shown that weakly conver-
gent sequences of distributions of rooted balls yielded weakly
convergent power spectra. Given that these distributions corre-
spond to underlying graphs, it remains to be established precisely

what objects these sequences are converging to. In general, a
weakly convergent sequence of finite graphs does not neces-
sarily converge to a finite graph. When studying graph limits
using graphon models, the homomorphism density of motifs
is of primary concern [39]. This setting is slightly different,
depending on the isomorphism density of rooted graphs. In this
setting, a more appropriate model is that of a graphing. We show
that the basic ideas in the discussion so far can be transferred
directly to these limiting objects. Let us define the basic object
of study for this section.

Definition 1: A graphing of degree D is a triplet G =
(V, E , λ) such that

1) V is a sample space with a σ-field B on V
2) λ is a probability measure on B
3) E ∈ B × B is such that, for all A,A′ ∈ B, we have

∫

A

deg(v,A′)dλ(v) =

∫

A′

deg(v,A)dλ(v), (33)

where deg(v,A) = |{u ∈ A : (u, v) ∈ E}|, with the con-
dition that deg(v,V) ≤ D for all v ∈ V .

A graphing is a way to describe a graph with a potentially
uncountable number of nodes (elements of V), yet with bounded
node degrees. We tacitly assume that all graphings considered
are of degree D, for some D ≥ 1. Unlike a graphon, which
describes dense graphs with unbounded node degrees, the struc-
tures that arise from a graphing are typically sparse, and notions
of graph filtering and graph shifts reduce to finite sums, rather
than continuous integrals. Given a graphing G = (V, E , λ), a
graphing signal is a mapx : V → Rbetween the nodesV and the
real numbers R such that x is a measurable function. Endowing
this with the usual vector space structure, we define the space of
graphing signals as

X(G) = {x : V → R
∣

∣ x is measurable}. (34)

Much like how a graphon describes a model for dense random
graphs, a graphing carries with it a distribution of random rooted
graphs. As before, letN be the neighborhood operator, returning
all of the one-hop neighbors of a node v ∈ V , so that NK is the
K-hop neighborhood operator. For a graphing G = (V, E , λ)
with associated signal x ∈ X(G), the rooted K-ball at a node
r ∈ V is defined in the same way as in Section III, denoted by
GK(r), with the same notation used to denote the corresponding
graph signal xK(r). Due to the bounded degree condition on the
graphing, GK(r) is always a finite rooted graph of maximum
degree at most D. With this in mind, we define a sampling map
ΣK : V → ΩK for graphings much like the sampling map (7)
for finite graphs:

ΣK(v) =
(

GK(v), x(v)
)

. (35)

The sampling map ΣK is illustrated in Fig. 3 for a simple
graphing. Much like for finite graphs, we can pushforward the
measure λ to yield a probability measure µ on ΩK . That is
to say, µ = (ΣK)∗(G,x), in the same way as before, where
we adopt λ as the probability measure over V to be pushed
forward. This differs slightly from the case of finite graphs,
where we implicitly assume that the initial measure was the
uniform probability measure on the finite node set.
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Fig. 3. Sampling of a random rooted graph from a graphing with an associated
signal. (Upper left) A graphing G = ([0, 1), E ,λ). The diagonal lines indicate
adjacency between nodes in [0,1] via the edge set E : observe that although
there are uncountably many nodes, each node has a finite, bounded number
of neighbors. We sample from G by first selecting a root node ρ at random
(colored in black), and then taking the connected component of ρ in the edge
set. That is, starting with the node ρ, we see that the nodes v1, v2 are neighbors
of ρ. Then, the nodes v3, v4 are neighbors of v1, v2, with the process stopping
there. The intersections of the dashed lines indicate the entries of the adjacency
matrix of the subgraph induced by {ρ, v1, v2, v3, v4}. (Lower left) A graphing
signal x : [0, 1) → R. After sampling a node and edge set from the graphing,
we sample this function at the corresponding values. (Right) The drawn rooted
graph and signal sampled from the graphing.

To establish the basic building blocks for signal processing
on graphings, we first construct a Laplacian for graphing sig-
nals. Unlike graph signals, graphing signals are not necessarily
supported on a finite, or even countable space. We specify the
graphing Laplacian as a linear operator on the space of graphing
signals in the following way. For any x ∈ X(G) and v ∈ V , put

[Sx]v =
∑

u∈N (v)

[x]v − [x]u. (36)

By the degree boundedness condition from Definition 1, the
sum in (36) is well-defined. Due to its singular nature, it is
difficult to define a “graphing Fourier transform” directly from
the Laplacian: for instance, even fairly tame graphing structures
may have a Laplacian whose eigenvalues have uncountable
multiplicity. This, for instance, makes the notion of the power
spectral distribution of a graphing signal unwieldy.

However, the spectral properties of a graphing signal with
respect to the underlying graphing structure can be studied
indirectly. Let G be a graphing with graphing signal x ∈ X(G)
and LaplacianS. Then, for integersK ≥ 0, we tentatively define

mK (x) =

∫

V
[x]v

[

SKx
]

v
dλ(v), (37)

where SK again indicates K repeated applications of the Lapla-
cian. See that this definition resembles that of the moments
of the power spectral distribution of a graph signal in (15).
We define the values mK(x) tentatively, as it is not obvious
when they are finite, or even well-defined. In the following
discussion, we establish sufficient conditions under which the
sequence {mK(x)}∞K=0 exists and corresponds to the moments
of a distribution function.

Much like in Sections IV and V, we control the behavior of the
graphing by bounding its size. We first do this by determining a
suitable notion of boundedness for a graphing signal.

Definition 2: LetG = (V, E , λ) be a graphing andx ∈ X(G)
be a graphing signal. The signal x is said to be locally essen-
tially bounded if it is bounded on almost all of the connected
components of G. That is, there exists an a ≥ 0 such that for all
K ≥ 0,

λ
(

NK((x−1[−a, a])C)
)

= 0, (38)

where (x−1[−a, a])C denotes the set of nodes v ∈ V such that
[x]v /∈ [−a, a], and NK is the K-hop neighborhood of a set.
Denote the set of all such graphing signals by XLB(G).

In words, local essential boundedness not only controls the
size of the set of nodes with large signal value (essential bound-
edness), but also controls the size of the neighborhoods with
which those nodes can interact. Local essential boundedness
is an analog of boundedness for finite graph signals adapted
to graphing signals. For instance, a graphing signal that is
strictly bounded is locally essentially bounded. This condition,
however, is stronger than being bounded almost everywhere
(see Lemma 4), due to the neighborhood condition in (38). The
necessity of this condition stems from the highly singular nature
of the graphing Laplacian as an operator on signals.

We will also find it useful to consider graphings that “resem-
ble” finite graphs in some sense.

Definition 3: Let G = (V, E , λ) be a graphing with graph-
ing signal x ∈ X(G), and {(Gj ,xj)}∞j=1 a sequence of graphs
with associated graph signals. For all K ≥ 0, put µK =
(ΣK)∗(G,x), and µK(j) = (ΣK)∗(Gj ,xj). Then, we say that
the sequence of graphs {(Gj ,xj)}∞j=1 converges weakly to
(G,x) if for all K ≥ 0, µK(j) converges to µK as j tends to
infinity. We denote weak convergence of graphs to a graphing
by (Gj ,xj) ⇀ (G,x).

Much like Theorem 1, we can characterize the properties of
a graphing based on the limiting properties of a sequence of
graphs that converges to it. We state this formally below.

Theorem 4: Let a graphing G of degree D with signal x ∈
XLB(G) be given. Suppose there exists a sequence of graphs
and graph signals {(Gj ,xj)}

∞
j=1 such that (Gj ,xj) ⇀ (G,x).

Then, there exists a unique distribution functionPx supported on
[0, 2D] such that the moments of Px are given by the sequence
{mK(x)}∞K=0.

The proof of Theorem 4 can be found in Appendix F. The-
orem 4 defines the power spectral distribution for sufficiently
nice graphing signals. In particular, if the graphing and graphing
signal are the limit of a sequence of graphs and graph signals,
then asking that the power spectral distribution be continuous
with respect to the weak topology on distributions forces the
distribution to take on a unique value. Namely, the power spectral
distribution of the limit of a sequence of graphs and graph signals
is merely the weak limit of the power spectral distributions of
the graphs as defined in (14).

In Sections IV to VI, we considered how the distribution of
rooted balls in graphs yields useful topological or metric struc-
ture with which graphs can be related to each other, particularly
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Fig. 4. (a) Pruned random sensor network model, sampling a Gaussian random field over an increasing area. (b) Observed MSE of kth moments compared to the
largest (n = 1462) random graph. (c) MSE of kth moments relative to ground truth determined by bounds in Theorem 2. (d) Weak convergence of power spectra.
For visibility, we apply kernel density estimation to the derivative of the power spectral distribution function, yielding a density plot.

in light of graph summaries such as the power spectral distribu-
tion. In all of these cases, the topology of weak convergence was
used to show that a convergent sequence of graphs in the sense
of the distribution of rooted balls is also convergent in the sense
of any appropriate graph summary. This left the question open:
what do the graphs converge to? By considering graphings as
limiting objects for sparse graphs, we have shown that the exten-
sion of graph summaries, such as the power spectral distribution,
to graphings maintains continuity in the natural way.

VIII. SIMULATIONS

To illustrate the theoretical results in Sections IV and V, we
consider a simulated sensor network example. We assume that a
Gaussian random field on R

2 is being measured, with zero mean
and covariance between points x, y ∈ R

2 given by C(x, y) =
exp(−‖x− y‖22). To measure the properties of the signal, we
uniformly place nodes at a density of 6.5 nodes per unit area on
squares of edge length 1, 2, 5, 10, 15, yielding random graphs
with size n ∈ {6, 26, 162, 650, 1462}, as illustrated in Fig. 4(a).
Then, a graph is constructed by connecting nodes that are within
a distance of 0.5 from each other, and then pruned so that each
node has maximum degree 3. The signal on this graph is then
sampled from the realization of the Gaussian random field.

By the stationarity of the Gaussian random field, and the local-
ity of the random graph model, we expect the power spectrum of
the graph signals to converge as the sampled area increases. We
take the kth moments of the power spectral distribution over 25
trials, for k ∈ {1, 2, 3, 4}. Treating the largest graph (n = 1462)
as the ground truth, we plot the mean squared error for each
graph size relative to the ground truth in Fig. 4(b), where the
n = 1462 line plots the variance over the 25 trials. Observe that
as the graph grows, the moments converge to that of the ground
truth, as expected by Theorem 1.

Additionally, Theorem 2 yields a quantitative understanding
of these convergence properties. To illustrate this, we estimate
the Lipschitz constant L for each k directly from the data, and
then plot the bound on the MSE according to Theorem 2 for
each graph size and value of k in Fig. 4(c). Again, the line
for n = 1462 indicates the variance within the realizations of
the graph model of that size. Although there is a difference in
the magnitude of the MSE between Fig. 4(b) and 4(c), observe
that the relative shapes of the lines are the same. Namely, the
larger graphs have tighter bounds with respect to the ground

truth than the smaller ones, as expected. Moreover, since the kth

moments of the power spectral distribution have larger Lipschitz
constants and more demanding conditions for convergence, the
bounds loosen as k increases. This is further demonstrated by
the convergence of the power spectral densities of the graph
signals shown in Fig. 4(d). By plotting the derivative of the
power spectral distribution functions (averaged over the trials)
as defined in (14), we roughly see that the “shape” of the signal
spectrum converges as the graph grows. Moreover, based on the
Lipschitz constants of the moments, the lower-order features of
the distribution converge faster than the higher-order ones, e.g.,
it is clear for all graph sizes that the signal is low-pass, but the
degree of (approximate) bandlimitedness is not apparent until
larger graphs are considered.

Remark 4 (Complexity of Bound Computation): The calcula-
tion of the bounds for Fig. 4(c) is computationally demanding
for two reasons: first, the computation of the 1-Wasserstein
distance has cubic complexity in the number of nodes, and
second, the computation of the distance dC requires the com-
parison and identification of all pairs of rooted balls from
the graphs by applying the graph isomorphism test to a large
collection of small graph structures, which can be done in
polynomial time for the bounded-degree case [40]. We would
like to note that in the context of this work, we are not proposing
the use of Wasserstein distances as a methodological tool for
graph signal processing – rather, we are proposing their use
as an analytical tool for understanding the phenomenon of
transferability.

IX. CONCLUSION

We have developed a local framework for graph signal pro-
cessing, highlighting the local nature of graph filters. In par-
ticular, by mapping a graph and graph signal to a probability
distribution on a fixed space, we allow for the application of
tools from probability theory to characterize similarities between
graphs based on their local structures, even if they do not have
a common node set. Using the topology of weak convergence
of probability distributions, we define a topology on the space
of graphs and graph signals, where notions of continuity can be
understood: this was most obviously demonstrated in Section IV,
where it was proved that the power spectral distribution of a
graph signal is weakly continuous with respect to the distribution
of rooted balls in a graph. This approach allows for relatively
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painless treatment of limiting objects, such as graphings, by
simply decomposing them into their constituent distributions.

The analysis carried out in this paper provides proper jus-
tification for transferring graph filters across multiple graphs,
given the assumption that they share local structural properties.
With the particular suitability of this approach to highly sparse
graphs, this complements existing work on transferability based
on graphon models or assumptions of graphs as discretizing
manifold structures. The framework of this paper provides a
path for the detailed study of more exotic functions, such as
graph neural networks and graph kernels, or the incorporation
of properties encoded by distributions of local structures into
tasks such as network topology inference [41].

APPENDIX A
METRIC TOPOLOGY OF THE SIGNAL SPACE

Let a rooted ball G = (V, E , r) be given. Denote by Aut(G)
the automorphism group of maps {φ : V → V}, i.e., the set of all
isomorphisms from G to itself, with the group operation given
by composition. The group Aut(G) acts on X(G) in a natural
way. For any φ ∈ Aut(G),x ∈ X(G), define the action of φ on
x as the graph signal φ(x) satisfying

[φ(x)]φ(v) = [x]v (39)

for all v ∈ V . Next, define an equivalence relation on X(G)
where x∼φ(x) for all φ ∈ Aut(G),x ∈ X(G), and take the
quotient space X(G)/∼, whose elements are the equivalence
classes under this relation. Define the metric ‖ · ‖2 on X(G)/∼
so that for any [x], [y] ∈ X/∼,

‖[x]− [y]‖2 = min
x
′∈[x]

y
′∈[y]

‖x′ − y′‖2, (40)

where ‖x′ − y′‖2 is the norm on X(G) inherited from identifi-
cation with R

|V|. As Aut(G) is a finite group, this minimum is
well-defined, and satisfies the triangle inequality, thus yielding
a valid metric. When defining the space ΩK in Section III-A
we treat X(G) with the structure of X(G)/∼, from which the
topology on ΩK is inherited. Similarly, we use the metric ‖ · ‖2
in Section V as defined on X(G)/∼.

APPENDIX B
PROOF OF THEOREM 1

By Lemma 1, the sequence {µj}
∞
j=1 has compact sup-

port. Since mK is a continuous function, this implies that
{Eµj

[mK ]}∞j=1 is a convergent sequence by the definition of
weak convergence of probability measures. Applying Proposi-
tion 2, the moments mK(xj) = Eµj

[mK ] converge, as desired.
For the case where weak convergence holds for all K ≥ 0,

we complete the proof with the following lemma.
Lemma 2: Let A = [0, a] be a compact subset of the real line,

for some a > 0. Let {{mK(j)}∞K=0}
∞
j=1 be an array of numbers

such that {mK(j)}∞K=0 is the sequence of moments of a finite

measure Pj supported on A, and that mK(j)
j
→ mK for each

K, where {mK}∞K=0 is some sequence of real numbers.

Then, the sequence {mK}∞K=0 uniquely corresponds to a
distribution P supported on A, such that the sequence of dis-
tributions Pj converges weakly to P .

Lemma 2 is a routine derivation following from the Haus-
dorff moment property [42, Theorem 3.15] and the Weierstrass
approximation theorem [43], so we omit the proof. In particular,
letA = [0, 2D]. The momentsmK(xj) correspond to the power
spectral distributions of the graph signals xj , which are sup-
ported on A by the bounded degree assumption. Since mK(xj)
converges for all K ≥ 0, we have that the sequence of limits
{mK}∞K=0 is the sequence of moments of a distribution P
supported on A. Moreover, we have that P is the weak limit
of the power spectral distributions of the graph signals xn, as
desired.

APPENDIX C
PROOF OF LEMMA 1

Denote by GD the set of rooted graphs such that the underlying
graph has node degree bounded by D. For any K ≥ 0 and any
graph G = (V, E) contained in GD, note that for all v ∈ V , it
holds that the rooted K-ball centered at v is contained in GD.
Moreover, it is straightforward to show that there are only finitely
many rooted K-balls contained in GD, up to isomorphism. For
anya ≥ 0 and any rooted graph G, denote the set of graph signals
taking values in [−a, a] by X(G, a). It is clear that X(G, a) is
compact as a subset of X(G).

Using these constructions, it immediately follows that for any
graph G ∈ GD with graph signal x ∈ X(G, a) for some a > 0,
the associated distribution µ = (ΣK)∗(G,x) satisfies

supp(µ) ⊆
∐

Gk∈GD:k≤K

X(G, a). (41)

Since there are only finitely many rooted K-balls in GD, the
above set is a disjoint union of finitely many compact spaces,
and is thus a compact space itself, by the properties of the
disjoint union of topological spaces. If a family of graphs in
{Gj}j∈J ∈ GD has uniformly bounded signals {xj}j∈J for
some index set J , this means that there is some a ≥ 0 such
that xj ∈ X(Gj , a) for all j ∈ J , so that the condition in (41)
holds for all graph/graph signals in the family, as desired.

APPENDIX D
PROOF OF THEOREM 2

We first establish that for a functionJ satisfying Assumption 1,
the metric dC preserves Lipschitz continuity over the subspace
Γ ⊂ ΩK as defined in Lemma 1.

Lemma 3: LetJ : ΩK → R be a function satisfying Assump-
tion 1. Then, for any C > 0, J has a Lipschitz constant at most
max{L,A/C} on the subspace Γ with the metric dC , where

A = sup
ω∈Γ

J(ω)− inf
ω∈Γ

J(ω). (42)

Lemma 3 can be shown by directly applying the definition
of Lipschitz continuity, so we omit the proof. By the dual
formulation of the 1-Wasserstein distance [36], Lemma 3 implies
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that, for C > 0,

∣

∣Eµ[J]− Eν [J]
∣

∣ ≤ max

{

L,
A

C

}

·W1 (µ, ν;C) , (43)

owing to the fact that supp(µ), supp(ν) ⊆ Γ, by assumption.
Observing that W1(µ, ν;C) is monotonically increasing with
respect to C, we can restrict our view to C ≥ A/L. Applying a
simple change of variables yields the expression

∣

∣Eµ

[

J
]

− Eν

[

J
] ∣

∣ ≤ inf
C∈(0,1]

L

C
·W1

(

µ, ν;
AC

L

)

. (44)

Taking C = 1 and noting that A = 1 by assumption yields the
bound (23), as desired.

APPENDIX E
PROOF OF THEOREM 3

One can check that mK is continuous and bounded on
⋃∞

j=1 supp(µj) due to the weighted degree bound D and the
uniform boundedness of the signals, so that {Eµj

[mK ]}∞j=1 is
a convergent sequence by the definition of weak convergence
of probability measures. Applying Proposition 2, the moments
mK(xj) = Eµj

[mK ] converge, as desired.
When weak convergence holds for all K ≥ 0, the proof is

completed by appealing to Lemma 2 as in the proof of Theo-
rem 1.

APPENDIX F
PROOF OF THEOREM 4

We begin by establishing two results regarding locally essen-
tially bounded signals XLB(G) and the graphing Laplacian S.

Lemma 4: For a graphing G = (V, E , λ), the set XLB(G) is
a subset of L∞(V, λ), where L∞(V, λ) denotes the space of es-
sentially bounded functions on V with respect to the probability
measure λ.

We omit the proof of Lemma 4, as it follows directly from
Definition 2.

Lemma 5: XLB(G) is closed under application of the Lapla-
cian S, i.e., for any x ∈ XLB(G), we have that Sx ∈ XLB(G).

The proof of Lemma 5 can be found in Appendix G.
For any K ≥ 0, the graphing signal SKx is contained in

XLB(G) by Lemma 5. The product of two functions inL∞(V, λ)
is contained in L∞(V, λ), so that the graphing signal y : v →
[x]v · [S

Kx]v is contained in L∞(V, λ), by Lemma 4. Thus,
mK(x) = Eλ[y] has finite value for all K ≥ 0.

LetK ≥ 0 be given, and let mK : ΩK → R be the function as
defined in Proposition 2. One can check thatmK(x) = Eµ[mK ],
where µ = (ΣK)∗(G,x). By the bounded degree property of
the graphing and the assumption that x ∈ L∞(V, λ) (as a conse-
quence of Lemma 4), Lemma 1 implies that supp(µ) is contained
in a compact subset of ΩK . For each finite graph and graph
signal (Gn,xn), denote the Kth moment of the signal xn by
mK(xn), and the pushforward measure of ΣK on the space
ΩK by µn, so that mK(xn) = Eµn

[mK ], by Proposition 2.
The assumption that (Gn,xn) ⇀ (G,x) implies that µn weakly
converges to µ. Since µ has compact support and mK is a

continuous function, this implies that Eµn
[mK ] → Eµ[mK ]. In

other words, mK(xn) → mK(x).
Having satisfied the conditions of Theorem 1, we have that

the power spectral distributions of the finite graphs converge to a
unique distribution supported on [0, 2D], and that the moments
of this distribution are given by {mK(x)}∞K=0 by Lemma 2, as
desired.

APPENDIX G
PROOF OF LEMMA 5

Let a degree D graphing G = (V, E , λ) with graphing signal
x ∈ XLB(G) be given. By definition, there exists an a ≥ 0 such
that for all K ≥ 0, we have

λ
(

NK((x−1[−a, a])C)
)

= 0. (45)

Put b = 2Da, and define the graphing signal y = Sx, where S

denotes the graphing Laplacian. Observe, due to the bounded
degree D of the graphing, that

(

y−1[−b, b]
)C

⊆ N
(

(

x−1[−a, a]
)C
)

, (46)

so that, for all K ≥ 0,

NK
(

(

y−1[−b, b]
)C
)

⊆ NK+1
(

(

x−1[−a, a]
)C
)

. (47)

By the definition of local essential boundedness, the right hand
side of (47) has measure zero (under the probability measure
λ), which implies that the left hand side also has measure zero.
Since K was arbitrary, this establishes that y ∈ XLB(G).
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