Zhu and Segarra Applied Network Science (2022) 7:45 . .
https:/doi.org/10.1007/541109-022-00483-x Applied Network Science

RESEARCH Open Access

Hypergraph cuts with edge-dependent .4

vertex weights

Yu Zhu' and Santiago Segarra

*Correspondence:

yz126@rice.edu Abstract

Department of Electrical We develop a framework for incorporating edge-dependent vertex weights (EDVWs)
and Computer Engineering, Rice into the hypergraph minimum s-t cut problem. These weights are able to reflect differ-
University, 6100 Main Street, ent importance of vertices within a hyperedge, thus leading to better characterized cut

Houston 77005, USA . . . o .
properties. More precisely, we introduce a new class of hyperedge splitting functions

that we call EDVWs-based, where the penalty of splitting a hyperedge depends only
on the sum of EDVWs associated with the vertices on each side of the split. Moreover,
we provide a way to construct submodular EDVWs-based splitting functions and prove
that a hypergraph equipped with such splitting functions can be reduced to a graph
sharing the same cut properties. In this case, the hypergraph minimum s-t cut problem
can be solved using well-developed solutions to the graph minimum s-t cut problem.
In addition, we show that an existing sparsification technique can be easily extended
to our case and makes the reduced graph smaller and sparser, thus further accelerating
the algorithms applied to the reduced graph. Numerical experiments using real-world
data demonstrate the effectiveness of our proposed EDVWs-based splitting functions
in comparison with the all-or-nothing splitting function and cardinality-based splitting
functions commonly adopted in existing work.

Keywords: Hypergraphs, Minimum s-t cut, Edge-dependent vertex weights,
Hyperedge expansion, Sparsification

Introduction

The graph minimum s-¢ cut problem, or equivalently the maximum s-¢ flow problem, is
a fundamental problem in network science. A cut is a bipartition of the graph vertices
and its weight is computed by summing the weights of the edges crossing the cut. The
problem aims to find the minimum weight cut that disconnects the source vertex s from
the sink vertex ¢. It has various applications such as bipartite matching (Cherkassky et al.
1998; Lovasz and Plummer 2009), network reliability (Colbourn 1991; Ramanathan and
Colbourn 1987), distributed computing (Bokhari 1987), image segmentation (Boykov
and Funka-Lea 2006; Boykov and Kolmogorov 2004) and very large scale integration
(VLSI) circuit design (Leighton and Rao 1999; Li et al. 1995). Classical solutions to this
problem include “augmenting paths”-based algorithms (Ford and Fulkerson 1956) and
“push-relabel” style algorithms (Goldberg and Tarjan 1988), to name a few.

. ©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
@ Sprlnger Open use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
— author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00483-x&domain=pdf

Zhu and Segarra Applied Network Science (2022) 7:45 Page 2 of 20

A natural extension is the hypergraph minimum s-t cut problem. Graphs are limited
to modeling pairwise relations, while hypergraphs generalize the notion of an edge to
a hyperedge, which can represent higher-order interactions connecting more than two
vertices. Many practical problems can be better modeled by hypergraphs (Papa and
Markov 2007; Schaub et al. 2021). For instance, in the columnwise decomposition of a
sparse matrix for parallel sparse-matrix vector multiplication, hypergraphs provide a
more accurate representation for the communication volume requirement than graphs,
where vertices and hyperedges are respectively used to model columns of the sparse
matrix and the non-zero pattern of each row (Catalyurek and Aykanat 1999). In image
segmentation, hypergraphs are leveraged to describe higher-order relations among
superpixels (Ding and Yilmaz 2008; Kim et al. 2011). In VLSI circuit design, vertices and
hyperedges respectively represent gates and signal nets (Karypis et al. 1999).

The weight of a hypergraph cut is defined as the sum of splitting penalties associated
with every hyperedge. Different from the graph case, there may exist multiple ways to
split a hyperedge. Consequently, for each hyperedge e, we consider a splitting function
we : 2° — R that assigns a penalty to every possible cut of e where 2° denotes the
power set of e. For any S C e, w,(S) indicates the penalty of partitioning e into S and
e \ S (Li and Milenkovic 2017; Veldt et al. 2020a). Existing works mainly adopt two kinds
of splitting functions. One is the so-called all-or-nothing splitting function in which an
identical penalty is charged if the hyperedge is cut no matter how it is cut (Hein et al.
2013). It is a straightforward extension of the graph case since an edge in a graph is asso-
ciated with only one non-zero splitting penalty. Another slightly more general type is the
class of cardinality-based splitting functions where the splitting penalty w,.(S) depends
only on the number of vertices placed into S (Veldt et al. 2020a; Zhou et al. 2006).

There are two major approaches for solving the minimum s-¢ cut problem in hyper-
graphs. One is to adopt submodular splitting functions for all hyperedges (cf. (5) for the
definition of submodular functions), then the hypergraph minimum s-¢ cut problem can
be solved using submodular function minimizers (Li and Milenkovic 2018b; Veldt et al.
2020a). Another more efficient approach is to reduce the hypergraph to a graph that has
the same cut properties and then leverage existing solutions to the graph minimum s-¢
cut problem (Ihler et al. 1993; Lawler 1973; Li and Milenkovic 2017; Veldt et al. 2020a).
The reduction is generally implemented by expanding every hyperedge into a small graph
possibly with additional auxiliary vertices and then concatenating these small graphs to
form the final graph. It has been proved in Veldt et al. (2020a) that, for cardinality-based
splitting functions, the hypergraph cut problem is reducible to a graph cut problem if
and only if the splitting functions are submodular. Moreover, Veldt et al. (2020a) pro-
poses a graph reduction method for an arbitrary submodular cardinality-based splitting
function where a hyperedge e is expanded into a graph that has up to O(Je|) auxiliary
vertices and O(Je|?) edges in the worst case. This may result in large and dense graphs
thus affecting the efficiency of algorithms applied to the reduced graph. To tackle this
problem, sparsification techniques have been developed which try to approximate the
hypergraph cut using a sparse graph with fewer auxiliary vertices (Bansal et al. 2019;
Benczur and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krauth-
gamer 2015). A follow-up paper (Benson et al. 2020) proposes a sparsification method
for approximating hypergraph cuts defined by submodular cardinality-based splitting

Zhu and Segarra Applied Network Science (2022) 7:45 Page 3 of 20

functions. The proposed method reduces the number of auxiliary vertices and the num-
ber of edges needed to expand a hyperedge e to O(¢!logle|) and O(e!le|log|el|)
respectively, where € is the approximation tolerance parameter.

A disadvantage of the all-or-nothing splitting function as well as cardinality-based
ones is that they treat all the vertices in a hyperedge equally while in practice these ver-
tices might contribute differently to the hyperedge. Such information can be captured by
edge-dependent vertex weights (EDVWs): Every vertex v is associated with a weight y,(v)
for each incident hyperedge e that reflects the contribution of v to e (Chitra and Raphael
2019). The hypergraph model with EDV'Ws is very relevant in practice. For example, an
e-commerce system can be modeled as a hypergraph with EDVWs where vertices and
hyperedges respectively correspond to users and products, and EDVWs represent the
quantity of a product bought by a user (Li et al. 2018). EDV'Ws can also be used to model
the author positions in a co-authored manuscript (Chitra and Raphael 2019), the prob-
ability of a pixel belonging to a segment in image segmentation (Ding and Yilmaz 2010),
and the relevance of a word to a document in text mining (Hayashi et al. 2020; Zhu et al.
2021), to name a few.

Contributions In this paper, we propose a new class of splitting functions that we
call EDVWs-based. In an EDVWs-based splitting function, the splitting penalty w,(S)
depends only on the sum of EDVWs in S, namely) s ve(v). Hence, we can write
Wwe(S) = g3, cs ve(v)) for some continuous function g.. We prove that w, is submodu-
lar if g, is concave. The submodularity is necessary for graph reducibility. We study the
EDVWs-based counterparts of four cardinality-based splitting functions in existing
work and show that they are graph reducible. Moreover, we prove that any EDVWs-
based splitting function with a concave g, is graph reducible and provide a way for such
a reduction. We also show that the sparsification technique proposed in Benson et al.
(2020) can be easily adapted to the EDVWs-based case. The size and the density of the
reduced graph depend on both the shape of g, and the EDVWs’ values. In a nutshell, our
paper provides a framework to study hypergraph cut problems incorporating EDVWs
and generalizes the results presented in Benson et al. (2020); Veldt et al. (2020a) from
cardinality-based splitting functions to EDVWs-based ones.

Paper outline The rest of this paper is structured as follows. Preliminary concepts
and related work about graph and hypergraph cut problems are reviewed in Sect. 2.
The main theoretical results are presented in Sect. 3, where the hypergraph model with
EDVWs is introduced in Sect. 3.1, the proposed EDVWs-based splitting functions are
studied in Sect. 3.2, the graph reducibility results are stated in Sect. 3.3, and the sparsi-
fication technique is discussed in Sect. 3.4. The numerical results shown in Sect. 4 vali-
date the effectiveness of introducing EDVWs into hypergraph cuts. Closing remarks are
included in Sect. 5.

Preliminaries and related work

Graph cuts

Let G = (V, £, W) denote a weighted and possibly directed graph where V is the ver-
tex set, £ is the edge set, and W is the weighted adjacency matrix whose entry Wy,
denotes the weight of the edge from u to v. A cut is a partition of the vertex set }V into

Zhu and Segarra Applied Network Science (2022) 7:45 Page 4 of 20

two disjoint, non-empty subsets denoted by S and its complement V \ S. The weight
of the cut is defined as

cutg(S) =3 esverns War- (1)

Given two vertices s, t in the graph, the minimum s-¢ cut problem aims to find the mini-
mum weight cut that separates s and ¢. Formally, the problem can be written as

mingcscy cutg(S) st.seS,teV\S. (2)

The minimum s-¢ cut problem is the dual of the maximum s-¢ flow problem. There exist
a number of algorithms for the min-cut/max-flow problem and a summary can be found
in Goldberg (1998). Moreover, it is established in Orlin (2013) that the min-cut/max-
flow problem is solvable in O(|V||€|) time. We also notice that a recent paper (Chen et al.
2022) provides an algorithm that solves this problem in almost-linear time.

Hypergraph cuts

Let H = (V,€) be a hypergraph where V and £ respectively denote the vertex set and
the hyperedge set. Unlike the graph case, a hyperedge can connect more than two
vertices thus there may exist multiple ways to split a hyperedge. For each hyperedge
e € £, we introduce a splitting function w, : 2¢ — R that assigns a non-negative
penalty to every possible cut of e (Li and Milenkovic 2017; Veldt et al. 2020a). The
splitting function satisfies w.(¥J) = w.(e) = 0, in other words, a penalty of zero is
assigned when the hyperedge is not cut. Moreover, the splitting function is symmet-
ric if it satisfies w.(S) = we(e \ S) for any S C e. The weight of the hypergraph cut
induced by & C V is defined as the sum of splitting penalties associated with every
hyperedge, i.e.,

cuty(S) =D ,ce We(SNe). (3)

There are mainly two types of splitting functions in existing work: (i) An all-or-noth-
ing splitting function assigns the same penalty to every possible cut of the hyperedge
regardless of how its vertices are separated (Hein et al. 2013). More precisely, w.(S) is
equal to some positive constant, e.g., the hyperedge weight, for all non-empty S C e and
we(S) =0if S € {0, e}. (ii) A splitting function is cardinality-based if w.(S1) = we(S2)
for all S1, Sy C e whenever |S1| = |Sy| (Veldt et al. 2020a). In other words, the value of
We(S) depends only on the cardinality of S. Several examples are given in Table 1.

Table 1 Examples of cardinality-based and EDVWs-based splitting functions and their corresponding
gadgets where S'is a subset of the hyperedge e and g, b are positive constants

Cardinality-based EDVWs-based Corresponding gadget
We(S) = [S] - le\ S| We(S) = e(S) - ve(e \ S) Clique gadget
We(S) = min{|S], e \ S} We(S) = min{ye(S), ve(e \ S)} Star gadget

We(S) = min{|S], le \ S|, b} We(S) = min{ye(S), ve(e \ S), b} Sym. cardinality/EDVWs-based gadget
We(S) = minf{a|S|,ble \ S|} We(S) = min{aye(S),bye(e \ S)} Asym. cardinality/EDVWs-based gadget

Zhu and Segarra Applied Network Science (2022) 7:45 Page 5 of 20

Similar to the graph case, the hypergraph minimum s-¢ cut problem is formulated
as

mingcscy cuty(S) st.seS,teV\S. (4)

For a finite set S, a set function F : 2° — Riis called submodular if
F(S1U{v}) —F(S1) = F(S U {v})) — F(S52) (5)

for every S1 € So € S and every v € S\ Sy (Bach 2013). If the splitting function w,
associated with every hyperedge e € £ is submodular, the resulting hypergraph cut in
the form of a sum of submodular functions is also submodular. In this case, the hyper-
graph minimum s-¢ cut problem can be solved using general submodular function mini-
mizers (Grotschel et al. 1981; Iwata 2003; Iwata et al. 2001; Iwata and Orlin 2009; Orlin
2009; Schrijver 2000) or minimizers for decomposable submodular functions (Ene et al.
2017; Kolmogorov 2012; Li and Milenkovic 2018a). The all-or-nothing splitting function
and the cardinality-based ones listed in Table 1 are all submodular.

Graph reducibility

Since algorithms for the graph minimum s-¢ cut problem are more efficient than algo-
rithms for general submodular function minimization, another way of solving hyper-
graph cut problems is to reduce the hypergraph to a graph that shares the same or
similar cut properties (Ihler et al. 1993; Lawler 1973; Li and Milenkovic 2017). The
reduction is generally accomplished via hyperedge expansions. Recently, a generalized
hyperedge expansion has been formulated in Veldt et al. (2020a), which projects a hyper-
edge onto a graph allowing directed edges and additional vertices. The formal definition

is given below.

Definition 1 (Gadget splitting function (Veldt et al. 2020a)) A gadget associated with
a hyperedge e is a weighted and possibly directed graph G, = (V', £’) with vertex set
V' =eUV where V is a set of auxiliary vertices. The corresponding gadget splitting
function W, : 2¢ — Rxqis defined as

We(S) = mingcy rre=s cutg, (7). (6)

A hyperedge splitting function is graph reducible if it is identical to some gadget split-
ting function. A hypergraph cut function defined as (3) or the hypergraph minimum s-¢
cut problem is graph reducible if all its hyperedge splitting functions are graph reduc-
ible. It has been proved in Veldt et al. (2020a) that every gadget splitting function w,
defined as (6) is submodular. Hence, if a hyperedge splitting function is graph reducible,
it must be submodular.

In the following, we give several examples of splitting functions that have been shown
to be graph reducible in existing works. The all-or-nothing splitting function is graph
reducible and can be constructed from the Lawler gadget described as follows.

Lawler gadget (Lawler 1973). The Lawler gadget replaces a hyperedge e with a digraph
defined on the vertex set V' = e U {¢/, "} where ¢, ¢’ are two auxiliary vertices. For each
v € e, add a directed edge of weight infinity from v to ¢’ and a directed edge of weight

Zhu and Segarra Applied Network Science (2022) 7:45 Page 6 of 20

infinity from e” to v. Finally, add a directed edge of weight equal to the hyperedge weight
frome' toe”.

The cardinality-based splitting functions listed in Table 1 are all graph reducible and
correspond to the following gadgets, respectively.

Clique gadget (Agarwal et al. 2006). This gadget is an (undirected) clique graph with
vertex set V' = e. For every u, v € e, add an edge of weight 1 between u and v.

Star gadget (Agarwal et al. 2006). This gadget is an (undirected) star graph with vertex
set V' = e U {v,} where v, is an auxiliary vertex. For each v € e, add an edge of weight 1
between v and v,.

Symmetric cardinality-based gadget (Veldt et al. 2020a). Similar to the Lawler gadget,
this gadget is a digraph with vertex set V' = e U {¢/,e”}. For each v € ¢, add a directed
edge of weight 1 from v to ¢’ and a directed edge of weight 1 from e” to v. Moreover, add
a directed edge of weight b € N from e’ to e”.

Asymmetric cardinality-based gadget (Veldt et al. 2020a). This gadget is a digraph
defined on V' = e U {v}. For each v € ¢, add a directed edge of weight a from v to v, and
a directed edge of weight b from v, to v.

Hypergraph cuts with EDVWs
The hypergraph model with EDVWs
In this paper, we consider the hypergraph model with EDVWs as defined next.

Definition 2 (Hypergraph with EDVWSs (Chitra and Raphael 2019)) Let
H =W, & k,{ye}) be a hypergraph with EDVWs where V and & respectively denote the
vertex set and the hyperedge set. The function « : £ — R assigns positive weights to
hyperedges and those weights reflect the strength of connection. Each hyperedge e € £
is associated with a function y, : e — R to assign EDVWs. For convenience, we define

Ye(S) =) ,cs Ye(v)forany S Ce.

The introduction of EDVWs enables the hypergraph to model the cases when the ver-
tices in the same hyperedge contribute differently to this hyperedge. For example, in a
coauthorship network, every author (vertex) in general has a different degree of contri-
bution to a paper (hyperedge), usually reflected by the order of the authors. This infor-
mation is lost in traditional hypergraph models but it can be easily encoded through
EDVWs. In the following, we study how to incorporate EDVWs into hypergraph cut
problems.

EDVWs-based splitting functions
A natural extension from cardinality-based splitting functions to EDVWs-based ones is
to make the splitting penalty w,(S) dependent only on the sum of EDVWs in S.

Definition 3 (EDVWs-based splitting function) We refer to splitting functions defined
in the following way as EDVWSs-based splitting functions:

We(S) = g (Ve(S)), VS Ce, (7)

where g : [0, y.(e)] = Rxg satisfies g.(0) = g.(y.(e)) = 0.

Zhu and Segarra Applied Network Science (2022) 7:45 Page 7 of 20

For trivial EDVWs, namely y.(v) =1 for all v € e, we have y.(S) = |S| and the
EDVWs-based splitting function reduces to a cardinality-based one. Actually, g, can
be viewed as a continuous extension of the splitting function w,. In practice, we can
also incorporate the hyperedge weight «(e) into the splitting function such as setting
We(S) = k(e) - ge(ve(S)). This does not influence the results presented in this paper.

We are interested in submodular splitting functions which make it possible to lever-
age existing solvers for submodular function minimization. Moreover, as mentioned
in Sect. 2.3, submodularity is a necessary condition for a splitting function to be graph
reducible (Veldt et al. 2020a). In the following Theorem 3.2, we show that the EDVWs-
based splitting function defined as (7) is submodular if g, is concave. We first present

several properties of concave functions which will be used later.

Lemma 3.1 (Properties of concave functions) For a concave function g, we have

(i) Ifb1 < by, a > 0, the inequality g(b1 + a) — g(b1) > g(ba + a) — g(ba) holds.
(if) Ifbr < by < bs, the inequality g(by) > P=32g(b1) + P=p-g(b3) holds.
(iii) If b1 < by < a and g is symmetric with respect to a, the inequality g(b1) < g(ba)

holds.

Proof
According to the definition of concave functions, the following inequality holds for any x

and y in the domain of a concave function g,

gtx+ (A —-0)y) =tgx)+ (1 —1t)gly), VtelO01].

by—b;
by—bi+a

To prove Property (i), we set x = b; and y = by +a. For t = and t = b

—Zl +a’
the above inequality respectively becomes
gbr+a) = 250 g(by) + 5—4—g(by + a),

g(by) > 5=t (b)) + 5252 (by + a).

Property (i) can be obtained by respectively adding both sides of these two inequalities

together. Property (ii) can be proved by setting x = b1, y = bz and ¢t = Z;:gf. Property

Zﬂ—hl —bz |:|

(iii) can be proved by setting x = b1, y = 2a — byand t = =~ =2.

Theorem 3.2 For EDVWs-based splitting functions defined as (7), if g. is a concave
function, then w, is submodular. If g, is concave as well as symmetric with respect to

Ve(€e)/2, then w, is submodular and symmetric.

Proof
For every S1 € Sy C e and every v € e\ Sy, set b1 = y.(S1), by = ye(S2) and a = ye(v).
When g, is concave, it follows from (i) in Lemma 3.1 that

Ze(Ve(S1) + Ve(V)) — ge(Ye(S1)) = ge(Ve(S2) + Ve (V) — ge(Ve(S2)).

Zhu and Segarra Applied Network Science (2022) 7:45

It immediately follows from (7) that
We(S1 U {v]) — we(S1) = we(S2 U {V}) — we(S52).

Hence, w, is submodular according to the definition of submodular functions. Moreover,
it is straightforward to show that w, satisfies w.(S) = w.(e \ S) for all S C e if g, is sym-
metric with respect to y,(e)/2.

Graph reducibility of EDVWs-based splitting functions
We first consider the following concave functions for g,.

) =x- (ve(e) — x), (8)
ge(x) = min{x, ye(e) — x}, 9)
ge(x) = min{x, ye(e) —x,b}, b >0, (10)
ge(x) = min{ax, b(ye(e) —x)}, a,b > 0. (11)

By substituting these concave functions into (7), we obtain the EDVWs-based splitting
functions listed in Table 1, which are submodular according to Theorem 3.2. The first
three are also symmetric while the last one is generally asymmetric unless 2 = b. For the
third one, if the parameter b is set to some value no greater than miny ¢, y.(v), it reduces
to the all-or-nothing splitting function; while if > > maxsc, min{y,(S), ye(€) — y.(S)}, it
reduces to the second one. We are going to show that the EDVWs-based splitting func-
tions listed in Table 1 are also graph reducible by constructing gadgets that generalize
the gadgets introduced in Sect. 2.3. An illustration of these generalized gadgets is given
in Fig. 1.

Theorem 3.3 The EDVWs-based splitting functions listed in Table 1 are all graph
reducible and respectively correspond to the gadgets described in Table 2.

Table 2 Examples of gadgets G, = (e U V,£') incorporating EDVWs

Gadget name Type v 1€ Description

(EDVWs-based) Clique gadget Undirected ¢ lel(le] —1)/2 Foreveryu,v € e, add an edge (u, v) of
weight ye (U)ye (V).

(EDVWs-based) Star gadget Undirected {ve} le| Foreveryv € e, add an edge (v, v,) of
weight ye(v).

Sym. EDVWs-based gadget Directed (e, e’} 2lel+1 For everyv € e, add a directed edge of

weight y (v) from v to ¢’ and a directed
edge of weight ye (v) from " to v. Moreover,
add a directed edge of weight b from €/
toe”.

Asym. EDVWs-based gadget Directed {ve} 2le| Foreveryv € e, add a directed edge of

weight aye (v) from v to ve and a directed
edge of weight bye (v) fromve to v.

Page 8 of 20

Zhu and Segarra Applied Network Science (2022) 7:45 Page 9 of 20

©

Ye (Ul)

Ye (v1)7ve (v2)
Ye(v1)ve(v3)
Ve (v2) Ve (vs)
e (v2)7e (va) (=) 1O

(b)

b A\

/@\ bye(v1) ave(vi)

Ye(v1) Ye(v1)

< Ve (v2) —@<— Ve (v2) ave(vz) bye(vs)
Ve (v3) Ve (v3)

@/ bye(v2) ave(vs)
(c) (d)

Fig. 1 The illustration of (a) a clique gadget, (b) a star gadget, (c) a symmetric EDVWs-based gadget, and (d)
an asymmetric EDVWs-based gadget, for a hyperedge e = {vy, v, v3}

Proof
In the following, we prove these four cases one by one.

(i) It follows from (6) that the splitting function constructed from the clique gadget is

We(S) = cutg,(S) = > 7@y =D ve: > vev) = 7e(S) - vele\ S).

ueS,vee\S ueS vee\S

(ii) According to (6), there are two ways to split S from e in the star gadget: set 7 = S or
T = S U {v.}. The corresponding graph cut weights cutg,(7) are respectively equal to
¥e(S) and ¥, (e \ S). Take the minimum one and the result follows.

(iii) For the symmetric EDVWs-based gadget, there are four ways to split S from e:
set 7T =85, 7T=8U{e,¢"}, T=SU{e} or T =S U {e"}. They respectively result in
cutg,(7) equal to y.(S), ve(e \ S), b and y.(e). Notice that the last one is always no less
than the first two. The result follows by taking the minimum one.

(iv) To split S from e in the asymmetric EDVWs-based gadget, we can set 7 = S or
T = S U {v.} which respectively lead to cutg,(7) equal to ay.(S) and by.(e\ S). The
proof is completed by taking the minimum one. 0

It has been proved in Veldt et al. (2020a) that all submodular cardinality-based splitting
functions are graph reducible. More precisely, any submodular cardinality-based splitting

Zhu and Segarra Applied Network Science (2022) 7:45 Page 10 of 20

function can be constructed from a combination of up to |e| — 1 different asymmetric car-
dinality-based gadgets. For a symmetric submodular cardinality-based splitting function,
it can also be constructed from a combination of up to||e|/2] symmetric cardinality-based
gadgets. In Theorem 3.4 below, we show graph reducibility for the proposed submodular
EDVWs-based splitting functions. To this end, we first define two sets as follows.

Qs = {re(S)IS S 6,0 < 7e(S) = ve(e)/2}, (12)

Qu={re(S)IWCSCel (13)

Denote by S; the subset of e corresponding to the ith smallest element in Q,. The set O
is a subset of Q, and contains the smallest| Q| elements in Q.

Theorem 3.4 All EDVWs-based splitting functions defined as (7) with concave g, are
graph reducible. A hyperedge paired with such a splitting function can be reduced to a
graph which is a combination of at most |Q,| asymmetric EDVWs-based gadgets. If, in
addition, g, is symmetric, the hyperedge can also be reduced to a graph combining at most
| Qs| symmetric EDVWs-based gadgets.

Proof
We first consider the case when g, is concave and symmetric, then study the more general
case when g, is concave and possibly asymmetric.

(i) Consider a hyperedge e and an EDVWs-based splitting function w, with concave,
symmetric g,. We are going to show that w, corresponds to some gadget splitting func-
tion W, and one way for constructing such a gadget is to combine r = |Q;| symmetric
EDVWs-based gadgets. For the ith symmetric EDVWs-based gadget, denote the two
auxiliary vertices by e; and e, set the weight of the edge from €] to e to b; = y.(S;), then
scale all edge weights by a factor a; > 0. The combined gadget contains |e| 4 2| Q| verti-

ces and (2]e| + 1)|Q;| edges. Its corresponding splitting function can be written as
We(S) = Yooy a; - min{ye(S), ve(e \ S), bi}. (14)
By substituting S; into (14) we get

We(S;) = E}Zl aj - min{b;, ye(e) — b;, b}.}
- Z;=1 aibj + 3 @b, Vi=1,---,r,

which can be condensed in the following matrix form

b1 by by by -+ b1 [m We(S1)
b1 by by by --- by |ay We(S2)
by by b3 bz --- b3| |a3 We(S3)
by by b3 by --- ba| |aa| = |We(Sa)|-

by by b3 by --- by ar 1’,i’e(Sr)

B;

Zhu and Segarra Applied Network Science (2022) 7:45

The question left is whether there exist non-negative ay, - - -

,a, such that we(S;) = we(S;)
for alli € [r]. To identify such a;, we replace w,(S;) with w,(S;) and invert the system (15)

as follows
a we(S1)
a Wwe(S2)
. -1 .
: =B, : ’
ar—1 We(Sr-1)
ar Wwe(Sy)
where
b 1
(bZ*gl)bl " by—h O 0 0 0
- bs—by 0 0 0
by—by (b3—by)(by—b1) ~ b3— bz
Bi'l=| : : :
0 0 0 -1 be—bros -1
by_1—by_5 (by—by_ 1)(br 1—br2) brl_br—l
0 0 0 B h br—b,
It follows that
[Tt We(S1) = prlpwe(S)]
al bs—by (by—b1)b1 € 1 by—by € 2
— 1 1
a3 Tabortby=bn) Ve (52) ~ 5y We(S1) — gy We(53)
ar—1 bbs (S - w(Sr) We(Sy)
a (br_brfl)(brfl_brfﬂ le r—1 br blr 2 r=2 71 ¢ r
! L br—b, 1 Wwe(Sy) — Br—b,_ 1We(8r71)]
Since ay, - - - , a, need to be non-negative, we are left to prove the following inequalities:
Wwe(S1) > ﬁWe(S2), (16)
We(S) = 2w (Sio1) + i we(Siga), Vi=2,000,r— 1, (17)
We(Sr) = we(Sr-1). (18)

Moreover, it can be observed from (15) that w,(S1) < We(S2) < -+ - < W,(S,) due to the

structure of By and the non-negativity of coefficients a;. Hence, we also need to show

that

We(S1) S We(S2) < -+ < we(S)). (19)
By introducing g = 0, the inequalities (16), (17) can be rewritten as

ge(bi) > b:;libbllge(bl D+ biv Biz l ! ge(bH»l); Vi=1,---,r—1L (20)

It follows immediately from (ii) in Lemma 3.1. The inequalities (19) (including (18)) can
be rewritten as

Ze(b1) < ge(by) < -+ < ge(by), (21)

Zhu and Segarra Applied Network Science (2022) 7:45 Page 12 of 20

which can be proved according to (iii) in Lemma 3.1. Notice that, when there exists any
equality in (16)—(18), the corresponding a; equals 0, which implies that the number of
symmetric EDVWs-based gadgets needed to construct the combined gadget can be fur-
ther reduced. The equality in (17) (or see (20)) means that the points at b;_j, b; and by
are colinear.

(ii) Next we consider the case when g, is concave and possibly asymmetric. In this case,
w, can be shown to be identical to some gadget splitting function w, and such a gadget
can be constructed by combing r = |Q,|asymmetric EDVWs-based gadgets. The ith one
is paired with parameters a;(y.(e) — b;) and a;b; where a; > 0 is a scaling parameter. The
combined gadget consists of |e| + |Q,| vertices and 2|e| - |Q,| edges. Its corresponding
splitting function can be written as

We(S) = S°I_ a; - min{(ye(e) — by)ye(S), bive(e \ S)}. (22)

We set b; = y.(5;) for alli € [r]. Then it holds that b; 4+ by41_; = y.(e). By substituting S;
into (22) we get

We(Si) = 3j_1 @ - min{(ye(e) — b)bi, bj(ve(e) — b)},
= Z;:l ﬂjbij»lfi + Z;=i+1 ﬂjbr+1fjbi, Vi= 1,---,r

which can also be written in the following matrix from

[b1by b1by1 biby 2 b1by 3 --- biby biby] [a1] [We(S1) T
bib; 1 baby_1 byby 5 baby 3 --- baby baby as We(S2)

b1b, 5 baby_5 b3b, o b3b, 3 --- b3by b3b; as We(S3)

b1by—3 byby_3 b3by_3 byby—3 --- byby byby ag | _ | we(Sa)

: : : : . : : : : (23)

biby baby b3by baby -+ by_1by by_1b1| |ar—1 We(Sr—1)

| bib1 baby b3by byby - b_1b1 biby | | ar | L We(Sy) |
B,

Replace w(S;) with w(S;) and invert the system (23) to find the valid coefficients a;. For
convenience, we introduce b,;+1 = y.(e). The inverse of By can be written as

by 1
(bZ*bIObl hbzzbl 0 0 0 0
_ 3—b1 _ .
1 by—b1 (b3—by)(by—b1) b3—by 0 0 0
br+l 0 0 0 o ‘1 br_‘hr—Z B 1
br—l*br—Z (br*br—l)(br—lfbr—z) b br*gr—l
1 by
0 0 0 0 by—br1 (by1—by)(br—br_1)

Notice that B, ! has the same structure as By ! except for the last element as well as the
scaling coefficient 1/b,41. Since ay, - - - , a, need to be non-negative, we are left to prove
the following inequalities:

we(S1) = Prwe(S), (24)

Zhu and Segarra Applied Network Science (2022) 7:45 Page 13 of 20

we(Si) > b; l?; lwe(St 1)+ b; bi l : We(Sz+1), Vi=2,---,r—1, (25)

+17

We(Sy) = 2, (S,). (26)

+1_

By introducing by = 0, the above inequalities can be rewritten and summarized as

ge(b) > h,:lrl bh 1ge(bz D+ b+l ge(bl+1) Vi=1,---,r1, (27)
which immediately follows (ii) in Lemma 3.1. U

For the two cases discussed in Theorem 3.4, the required number of building gadgets | Q|
and | Q| are respectively upper bounded by 2/¢/=1 — 1 and 2/¢/ — 2. For trivial EDVWs, the
theorem coincides with the results for cardinality-based splitting functions in (Veldt et al.
2020a) with | Q| and | Q| respectively reducing to | |e| /2] and |e| — 1. Hence, EDVWSs-based
splitting functions generally lead to a denser graph than cardinality-based splitting func-
tions in the worst case. In addition, when g, is concave as well as symmetric, Theorem 3.4
provides two ways for the reduction while the one leveraging symmetric EDVWs-based
gadgets requires fewer edges.

Sparsifying hypergraph-to-graph reductions

Graph min-cut/max-flow algorithms have a complexity that depends on the number of
vertices and the number of edges in the graph (Goldberg 1998). The reduction procedures
discussed above may result in large and dense graphs, thus affecting the efficiency of algo-
rithms applied to the reduced graph. A workaround is to find a smaller and sparser graph
whose cut approximates, rather than exactly recovers, the hypergraph cut (Bansal et al.
2019; Benczar and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krau-
thgamer 2015). In Benson et al. (2020), a sparsification technique is proposed for hyper-
graphs with submodular cardinality-based splitting functions. It is based on approximating
concave functions using piecewise linear curves and can be generalized to our EDVWs-
based case due to the formulation (7). In the following, we discuss this in detail.

As shown in (3), the hypergraph cut function is defined as the sum of splitting functions
associated with every hyperedge. Hence, the problem can be decomposed into approxi-
mately modeling each hyperedge using a sparse gadget with a smaller set of auxiliary ver-
tices. More formally, we would like to find such a gadget whose corresponding splitting
function w, as defined in (6) approximates the splitting penalties associated with a hyper-
edge, i.e.,

We(S) < We(S) < (1 4+ we(S), VS Ce, (28)

where € > 0 is an approximation tolerance parameter. This is equivalent to finding some
gadget splitting function w, satisfying %we (S) < We(S) < 8w, (S) with the correspond-
ence we(S) = 8w.(S)and e = §2 — 1.

We first consider EDVWs-based splitting functions with concave and symmetric g,.
We have shown in Theorem 3.4 that these splitting functions can be exactly constructed
from a combination of |Qg| symmetric EDVWs-based gadgets. Following the idea

Zhu and Segarra Applied Network Science (2022) 7:45 Page 14 of 20

in Benson et al. (2020), we next show how to approximate these splitting functions using
a smaller set of symmetric EDVWs-based gadgets. Recall from the proof of Theorem 3.4
that the combination of » symmetric EDVWs-based gadgets respectively with positive
parameters b; < - -- < b, and combination coefficients a3, - - - , 4, has the splitting func-
tion in the form of (14). Its continuous extension can be written as follows. Since it is
symmetric, we can just consider the first half of the function

Ze(x) =>"7_, a; - minfx, b;}, wherex € [0, y.(e)/2]. (29)

When x <bj, (29) can be rewritten as ge(x) = (}.;_ja;)-x when x> b,

we have g(x) =) ,ab; when b,y <x <b; for any i=2,---,r, we have
Ge(x) = j;} ajb; + (Z;:i a;) - x. Hence, g.(x) can also be characterized as the lower

envelope of a set of r + 1 linear functions having non-negative decreasing slopes and
non-negative increasing intercepts (Benson et al. 2020), i.e.,

ge(x) = mln{fl (x);_fZ(x)r e ’ﬁ'+1(x)};
where fi(x) = mx + dj,
m; = Z;:i ajforl <i <randmy =0,

d1=Oanddi=

(30)

;;}ajbjforZ <i<r+1
Equivalently, the relations between the coefficients a;, b; and m;, d; can also be described
asa; = m; — mjy1and b; = (diy1 — d;) /a;.

The sparsification problem can be described as: Find the piecewise linear function g,
with the minimum number of pieces that approximates g, at the points in Q. It can be
formulated as follows.

min r
st g®) <ge(®) < (1+6)g),Vx € Qs
Ze(x) is defined as (30),
For each i € [r + 1],fi(x) = ge(x) for some x € {0} U Q;.

(31)

The first constraint is from (28). The third constraint is added without loss of general-
ity since an improved approximation could be found if there is some f; strictly greater
than g, at all points in {0} U Q,. The main difference with the corresponding formulation
in (Benson et al. 2020) is that, for the cardinality-based case there considered, the set Q
consists of only integers from 1 to | |e|/2]; for the EDVWSs-based case, the elements in QO
depend on the values of EDVWs thus they are not necessarily integers or evenly spaced.
We can modify the algorithm proposed in Benson et al. (2020) to find an optimal solu-
tion to (31). Here we briefly introduce the procedure and please refer to Benson et al.
(2020) for a detailed explanation. For convenience, we denote the elements in Q; by
q1 < q2 < -+ < gy where n = | Q| and define a series of functions with the ith one join-
ing (7 0(:)) and (qi+1, & (gi41)), ie., () = LUD=EM o — g,) 1 g,(q;). The last lin-
ear piece fr41 is first determined. According to (30) and (31), it has a zero slope and
passes through (g, g.(g,)), thus we have f,1(x) = g.(gy). For the first linear piece fi, it

goes through the origin according to (30) and its slope m1; is set to % so that it can

provide a qualified approximation for as many points in QO as possible. Then we identify
the first point g, in Q; that does not have a (1 4 €)-approximation. In other words,

Zhu and Segarra Applied Network Science (2022) 7:45 Page 15 of 20

fi(q)) < (14 €)ge(q;) holds for i =1,---,¢ — 1 and becomes invalid since i = £. We
stop searching more linear pieces if (i) £ > n, or (ii) g.(qx) < (1 + €)g.(q¢) where (ii)
implies that gy, - - ,g, have a (1 + €)-approximation provided by the last linear piece.
Otherwise, we continue to find the next linear piece f; in order to cover the rest of the
points. We identify i* such that s;+_1(q¢) < (1 + €)ge(qe) and ki (qe) > (1 + €)ge(qe). In
other words, the linear function A;«_; provides a qualified approximation at g, (i.e., the
first point has not been covered yet), but the following functions 4; for i > i* do not.
Hence, f, should pass through the point (g;+, g.(g:+)) and lie between /;+_1 and /;= (its
slope should be greater than /;+'s slope and no greater than /;+_1’s slope). In the mean-
time, we expect f, to provide a qualified approximation at g¢ and have a slope as small as
possible so that more points after g;« can be covered. Therefore, we set f; to the line join-
ing (q¢, (1 + €)ge(qe)) and (gix, ge(qi+)). We refer the reader to Figure 4 in (Benson et al.
2020) for an illustration. Then we update g, to the new start point in Qg that does not
have a (1 + €)-approximation yet, and check the stopping criterion. We repeat the pro-
cess of picking f; to add more linear pieces until we meet the stopping criterion.

We can also ignore the particular positions of elements in Q; and try to provide a
(1 4 €)-approximation for g,(x) everywhere in the range [0, y.(e)/2]. This approach has
two benefits: (i) It avoids building the set Q. (ii) If multiple hyperedges share the same
continuous extension g, we can find their sparsified reductions all at once. The proce-
dure of finding the set of linear pieces can be modified as follows. The last linear piece
should be fi11(x) = g.(v.(e)/2). The first linear piece fj is tangent to g, at the origin. We
identify the value z € [0, y.(e)/2] that satisfies fi(z) = (1 4 €)g.(z). If no such a z exits or
ge(Ye(€)/2) < (1 4 €)ge(z), we stop. Otherwise, we add the next linear piece f, which is
selected to pass through (z, (1 + €)g.(z)) and be tangent to g, as some point greater than
z. We repeat the process of choosing f; to add more linear pieces until the whole range
[0, Ye(e)/2] has been covered. An illustrative example is given in Fig. 2.

For EDVWs-based splitting functions with concave and possibly asymmetric g, they
can be approximated using a smaller set of asymmetric EDVWs-based gadgets. It has
been proved in (Benson et al. 2020) that the continuous extension of the splitting func-
tion in the form of (22) is also piecewise linear, thus we can adopt a similar reduction
procedure as described above.

Moreover, a direct extension of Theorem 4.1 in (Benson et al. 2020) is that the number
of symmetric/asymmetric EDVWs-based gadgets needed to approximate an EDVWs-
based splitting function with concave, symmetric/asymmetric g, is upper bounded by
O(logy . ve(e)) which behaves as €~ 1log y.(e) as € approaches zero. This bound could be
further improved if a specific concave function g, is chosen.

Experiments

We show the effects of introducing EDVWs into hypergraph cuts via numerical exper-
iments. We consider the binary classification of hypergraph vertices: Given the labels
of a subset of vertices VI = VI U VI where VE and VY respectively consist of all labeled
vertices in two classes, the task is to estimate the labels of the rest of the vertices. The
problem can be formulated as a generalized hypergraph minimum s-¢ cut problem with

multiple source and sink vertices, i.e.,

Zhu and Segarra Applied Network Science (2022) 7:45 Page 16 of 20

—Ge
2r £l

L foll
: fi
0 1 1 il 1 1 1 il

0 1 2 3 4 5 6 7 8 9

Fig. 2 An example where ge(x) = —0.125x? + 2x. We want to find a (1 + €)-approximation for ge (x)
everywhere in the range [0, 8] where we set € = 0.1. The last linear piece f; has a zero slope and passes
through (8, 8), thus f3(x) = 8.The first linear piece f; is tangent to g at the origin, hence f; (x) = 2x. At

the point x = 1.4545,f1(x) = (1 4+ €)ge(x), meaning that f; provides a qualified approximation for ge (x)

in the range [0, 1.4545]. The second linear piece f, passes through (1.4545, 2.909) and is tangent to g at
(2909, 4.7602),namely ,(x) = 1.2727x + 1.0579. At x = 5.2894,f,(x) = (1 4 €)ge(x), hence f, provides a
qualified approximation for ge(x) in the range [1.4545, 5.2894]. The rest of the points in the range [5.2894, 8]
have been covered by f3

mingcscy cuty(S) st VEC S, VECV\S. (32)

Then the vertices in & and V\S are classified into two categories, respec-
tively. We consider the first three EDVWs-based splitting functions listed in
Table 1, namely we(S) = ye(S) ye(e\S), we(S) = min{y,(S),y.(e\ S)} and
We(S) = min{y,(S), ye(e \ S), b}, which are symmetric and graph reducible. For any of
them, we can reduce the hypergraph to a graph sharing the same cut properties. Follow-
ing the idea in (Blum and Chawla 2001), we introduce another two vertices — a super-
source s and a super-sink ¢ — into the reduced graph. For every v € VI, add an edge of
weight infinity from s to v; for every v € V£, add an edge of weight infinity from v to .
Then problem (32) can be converted into a common minimum s-¢ cut problem defined
on the new graph in the form of (2). We solve the graph minimum s-¢ cut problem using
the highest-label preflow-push algorithm implemented in the NetworkX package (Hag-
berg et al. 2008).

We adopt the 20 Newsgroups dataset and consider the task of document classifica-
tion. The dataset contains documents in different categories and we consider the docu-
ments in categories “rec.motorcycles” and “sci.space”. We extract the 200 most frequent
words in the corpus after removing stop words and words appearing in > 3% and < 0.2%
of the documents. We then remove a small fraction of documents that do not contain
the selected words and finally get 1852 documents with 932 and 920 documents in two
classes, respectively. To model the text dataset using hypergraphs with EDVWs, we con-
sider documents as vertices and words as hyperedges. A document (vertex) belongs to
a word (hyperedge) if the word appears in the document. The EDVWs are taken as the
corresponding tf-idf (term frequency-inverse document frequency) values (Leskovec
et al. 2020) to the power of o, where « is a tunable parameter. More precisely, we set

Zhu and Segarra Applied Network Science

(2022) 7:45

ye(v) = tf-idf(e, v)*, where tf-idf(e, v) = tf(e, v) - idf(e). (33)

The term frequency tf(e, v) is the relative frequency of word e in document v. The inverse
document frequency idf(e) measures the informativeness of word e, i.e., if it is common
or rare across all documents. Hence, the tf-idf values are able to reflect the importance
of a word to a document in a corpus and thus an ideal choice for EDVWSs. We adopt the
TfidfTransformer function in the scikit-learn package with default parameters to com-
pute the tf-idf values. The parameter « is introduced for extra flexibility. When o = 0,
we get the trivial EDVWs and the splitting functions reduce to cardinality-based ones.
For the splitting function w.(S) = min{y.(S), ye(e \ S), b}, we set b = By.(e) where 8 is
also adjustable. If a small enough B is selected, the splitting function reduces to the all-
or-nothing case.

Figure 3 shows the effects of the parameters « and 8 on the classification performance.
We plot the average classification accuracy and the standard deviation over 10 realiza-
tions which adopt different sets of labeled vertices. We respectively set the fraction of
labeled vertices to 0.3 in (a-d) and 0.5 in (e-h). The three considered EDVWs-based split-
ting functions respectively correspond to (a) (e), (b) (f), and (c-d) (g-h). For the third
splitting function, we fix 8 = 0.15 to observe the influence of « in (c) (g) and fix @ = 1 to
test Bin (d) (h). It can be observed that, for all of them, the best performance is achieved
for intermediate values of « or 8 rather than the extreme cases when the EDVWSs-based
splitting function reduces to a cardinality-based splitting function or the all-or-nothing
splitting function.

Figure 4 provides a more direct comparison between the proposed EDVWs-based
splitting functions and existing ones. For EDVWs-based splitting functions, we adopt
a 5-fold cross-validation to find the optimal « and B. In (a), we search the optimal «
over the set {0 : 0.2 : 3}. In (b-c), we search « over {0 : 0.2 : 5}. In (d), we search 8 over

[F—EDVWsbased O Cardinality-based O _All hing|

100 100 95

y (a) (b) © 901 (d)
90 90 90 /]/PL’_'_FH_[_H‘H
9
2 5 88
5 80 80 8
8 80
£ 70 70 86
2 75
2
2 60 60 84
Z 70,
Z
S Sog 505 65 82

40 40 60 30

0 06 12 18 24 3 0 06 12 18 24 3 0 06 12 18 24 3 35 3 25 2 -5 -1 05
« a a logy 8

100 89 92
< (e) () 91 (&) (h)
3 %0 8 88
g
z 87 90
2 80 .
=
g 86 89 84
2
I 83
Z ” 88 8
O 60 84

87 76
0 06 12 18 24 3 0 06 12 18 24 3 0 06 12 18 24 3 35 3 25 2 <15 -1 -05
o @ a logyy 8

Fig. 3 Classification performance as a function of the parameters « and B. For the two rows, the fraction

of labeled vertices is respectively set to 0.3 and 0.5. (a) and (e) correspond to the splitting function

We(S) = Ye(S) - ve(e \ S); (b) and (f) correspond to the splitting function we(S) = min{ye(S), ye(e \ S)};
(c), (d) and (g), (h) correspond to the splitting function we(S) = mMin{ye(S), ve(e \ S), Bye(e)} where we fix
B =0.15in(c), (g) and we fixa = Tin (d), (h)

Page 17 of 20

Zhu and Segarra Applied Network Science

(2022) 7:45

[—F—EDVWs-based — I~ Cardinality-based_— I~ All-or-nothing|

(b)

100

90

80

70

60

Classification accuracy %

504 —— —4 50

75
0.1 02 03 04 05 06 07
Fraction of labeled vertices

40 40
01 02 03 04 05 06 07 01 02 03 04 05 06 07
Fraction of labeled vertices Fraction of labeled vertices

40 .
01 02 03 04 05 06 07
Fraction of labeled vertices

Fig. 4 Performance comparison between the proposed splitting functions and existing ones.

(a), (b) and (c-d) respectively correspond to the splitting functions we(S) = ye(S) - ye(e \ S),

We(S) = Min{ye(S), ve(e \ S)} and we(S) = min{ye(S), ve(e \ S), Bye(e)}. We fix B = 0.15in (c) and fix

a = 1in (d). The red curves (cardinality-based) and the green curve (all-or-nothing) respectively correspond
to the cases when o = 0 and when Bis small enough (8 = 1073 here). For the blue curves (EDVWs-based),
a 5-fold cross-validation is adopted in (a-c) to search the optimal « and in (d) to search the optimal B

20 equally spaced values between 1073° and 1071/3 in the log scale. We can see that
adopting EDV'WSs-based splitting functions improves the classification performance
over a wide range of train-test split ratios.

Conclusion

We developed a framework for incorporating EDVWs into hypergraph cut problems
and generalized reduction as well as sparsification techniques recently proposed for
cardinality-based splitting functions. Through a real-world text mining application,
we showcased the value of the introduction of EDVWs. There are numerous direc-
tions for future work: (i) As mentioned in the introduction, hypergraph minimum
cuts can be used to solve various real-world applications (Catalyurek and Aykanat
1999; Ding and Yilmaz 2008; Karypis et al. 1999; Kim et al. 2011) or as subroutines
in many machine learning algorithms (Liu et al. 2021; Veldt et al. 2020b). Hence, it
would be desirable to apply the proposed framework to these applications and algo-
rithms and evaluate the performance. (ii) Another direction is to further extend the
proposed framework to multiway cuts (Chekuri and Ene 2011; Okumoto et al. 2012;
Veldt et al. 2020a; Zhao et al. 2005) or other types of cuts such as normalized cuts (Li
and Milenkovic 2017, 2018b; Fountoulakis et al. 2021). (iii) An open problem is
whether all submodular splitting functions are graph reducible (Veldt et al. 2020a).

Abbreviations

EDVWs Edge-dependent vertex weights
VLSI Very large scale integration
tf-idf Term frequency-inverse document frequency

Acknowledgements
Not applicable

Authors contributions
YZ developed the methodology, conducted the experiments, and wrote the initial manuscript. SS supervised the study,
contributed to the discussions, and edited the manuscript. Both authors read and approved the final manuscript.

Funding
This work was supported by NSF under award CCF 2008555.

Availability of data and materials
The code and data are available at https://github.com/yuzhu2019/hg_cut_edvws.

Page 18 of 20

https://github.com/yuzhu2019/hg_cut_edvws

Zhu and Segarra Applied Network Science (2022) 7:45 Page 19 of 20

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 28 February 2022 Accepted: 13 June 2022
Published online: 05 July 2022

References

Agarwal S, Branson K, Belongie S (2006) Higher order learning with graphs. In: International conference on machine learing.
https://doi.org/10.1145/1143844.1143847

Bach F (2013) Learning with submodular functions: a convex optimization perspective. Foundations and Trends® in machine
learning 6(2-3):145-373

Bansal N, Svensson O, Trevisan L (2019) New notions and constructions of sparsification for graphs and hypergraphs. In: IEEE
symposium on foundations of computer science, pp 910-928, https://doi.org/10.1109/focs.2019.00059

Benczur AA, Karger DR (1996) Approximating s-t minimum cuts in é(nz)time In: Symposium on theory of computing, pp
47-55. https://doi.org/10.1145/237814.237827

Benson AR, Kleinberg J, Veldt N (2020) Augmented sparsifiers for generalized hypergraph cuts with applications to decom-
posable submodular function minimization. arXiv preprint arxiv:2007.08075https://arxiv.org/abs/2007.08075

Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: International conference on
machine learning, pp 19-26. https.//doi.org/10.1184/R1/6606860.V1

Bokhari SH (1987) Assignment problems in parallel and distributed computing, vol 32. Springer, Boston. https://doi.
0rg/10.1007/978-1-4613-2003-6

Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70(2):109-131. https://doi.
0rg/10.1007/511263-006-7934-5

Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in
vision. [EEE Trans Pattern Anal Mach Intell 26(9):1124-1137. https://doi.org/10.1109/TPAMI.2004.60

Catalyurek UV, Aykanat C (1999) Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplica-
tion. IEEE Trans Parallel Distrib Syst 10(7):673-693. https://doi.org/10.1109/71.780863

Chekuri C, Ene A (2011) Approximation algorithms for submodular multiway partition. In: IEEE symposium on foundations of
computer science, pp 807-816. https://doi.org/10.1109/FOCS.2011.34

Chekuri C, Xu C (2018) Minimum cuts and sparsification in hypergraphs. SIAM J Comput 47(6):2118-2156. https://doi.org/10.
1137/18M1163865

Chen L, Kyng R, Liu YP, Peng R, Gutenberg MP, Sachdeva S (2022) Maximum flow and minimum-cost flow in almost-linear
time. arXiv preprint arXiv:2203.0067 Thttps://arxiv.org/abs/2203.00671

Cherkassky BV, Goldberg AV, Martin P, Setubal JC, Stolfi J (1998) Augment or push: a computational study of bipartite match-
ing and unit-capacity flow algorithms. ACM J Exp Algorithm 3:8. https://doi.org/10.1145/297096.297140

Chitra U, Raphael B (2019) Random walks on hypergraphs with edge-dependent vertex weights. In: International conference
on machine learning, pp 1172-1181. http://proceedings.mlr.press/v97/chitral9a.html

Colbourn CJ (1991) Combinatorial aspects of network reliability. Ann Oper Res 33(1):1-15. https://doi.org/10.1007/BF020
61656

Ding L, Yilmaz A (2008) Image segmentation as learning on hypergraphs. In: IEEE international conference on machine learn-
ing and applications, pp 247-252. https://doi.org/10.1109/ICMLA.2008.17

Ding L, Yilmaz A (2010) Interactive image segmentation using probabilistic hypergraphs. Pattern Recognit 43(5):1863-1873.
https://doi.org/10.1016/j.patcog.2009.11.025

Ene A, Nguyén HL, Végh LA (2017) Decomposable submodular function minimization discrete and continuous. In: Advances
in neural information processing systems, pp 2874-2884. https://dl.acm.org/doi/10.5555/3294996.3295047

Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8:399-404. https://doi.org/104153/
CIM-1956-045-5

Fountoulakis K, Li P, Yang S (2021) Local hyper-flow diffusion. In: Advances in neural information processing systems,
vol 34, arXiv:2102.07945

Goldberg AV (1998) Recent developments in maximum flow algorithms. In: Scandinavian workshop on algorithm theory, pp
1-10, https://doi.org/10.1007/BFb0054350

Goldberg AV, Tarjan RE (1988) A new approach to the maximum-flow problem. J ACM 35(4):921-940. https://doi.org/10.
1145/48014.61051

Grotschel M, Lovasz L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combina-
torica 1(2):169-197. https://doi.org/10.1007/BF02579273

Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Tech. rep,,
Los Alamos National Lab.(LANL), Los Alamos, NM (United States), https://www.osti.gov/biblio/960616

Hayashi K, Aksoy SG, Park CH, Park H (2020) Hypergraph random walks, laplacians, and clustering. In: Conference on informa-
tion and knowledge management, pp 495-504. https://doi.org/10.1145/3340531.3412034

https://doi.org/10.1145/1143844.1143847
https://doi.org/10.1109/focs.2019.00059
https://doi.org/10.1145/237814.237827
http://arxiv.org/abs/2007.08075
https://arxiv.org/abs/2007.08075
https://doi.org/10.1184/R1/6606860.V1
https://doi.org/10.1007/978-1-4613-2003-6
https://doi.org/10.1007/978-1-4613-2003-6
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/FOCS.2011.34
https://doi.org/10.1137/18M1163865
https://doi.org/10.1137/18M1163865
http://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671
https://doi.org/10.1145/297096.297140
http://proceedings.mlr.press/v97/chitra19a.html
https://doi.org/10.1007/BF02061656
https://doi.org/10.1007/BF02061656
https://doi.org/10.1109/ICMLA.2008.17
https://doi.org/10.1016/j.patcog.2009.11.025
https://dl.acm.org/doi/10.5555/3294996.3295047
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
http://arxiv.org/abs/2102.07945
https://doi.org/10.1007/BFb0054350
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/BF02579273
https://www.osti.gov/biblio/960616
https://doi.org/10.1145/3340531.3412034

Zhu and Segarra Applied Network Science (2022) 7:45 Page 20 of 20

Hein M, Setzer S, Jost L, Rangapuram SS (2013) The total variation on hypergraphs-learning on hypergraphs revisited. In:
Advances in neural information processing systems, vol 26, pp 2427-2435. https://doi.org/10.5555/2999792.
2999883

Ihler £, Wagner D, Wagner F (1993) Modeling hypergraphs by graphs with the same mincut properties. Inf Process Lett
45(4):171-175. https.//doi.org/10.1016/0020-0190(93)90115-P

Iwata S (2003) A faster scaling algorithm for minimizing submodular functions. SIAM J Comput 32(4):833-840. https//doi.
org/10.1137/50097539701397813

Iwata S, Orlin JB (2009) A simple combinatorial algorithm for submodular function minimization. In: ACM SIAM symposium
on discrete algorithms, pp 1230-1237, https://doi.org/10.1137/1.9781611973068.133

Iwata S, Fleischer L, Fujishige S (2001) A combinatorial strongly polynomial algorithm for minimizing submodular functions. J
ACM 48(4):761-777. https://doi.org/10.1145/502090.502096

Karypis G, Aggarwal R, KumarV, Shekhar S (1999) Multilevel hypergraph partitioning: Applications in VLS| domain. IEEE Trans
Very Large Scale Integr (VLSI) Syst 7(1):69-79, https://doi.org/10.1109/92.748202

Kim S, Nowozin S, Kohli P Yoo C (2011) Higher-order correlation clustering for image segmentation. In: Advances in neural
information processing systems, vol 24, pp 1530-1538, https://doi.org/10.5555/2986459.2986630

Kogan D, Krauthgamer R (2015) Sketching cuts in graphs and hypergraphs. In: Innovations in theoretical computer science,
pp 367-376. https//doi.org/10.1145/2683073.2683093

Kolmogorov V (2012) Minimizing a sum of submodular functions. Discrete Appl Math 160(15):2246-2258. https://doi.org/10.
1016/j.dam.2012.05.025

Lawler EL (1973) Cutsets and partitions of hypergraphs. Networks 3(3):275-285. https://doi.org/10.1002/net.3230030306

Leighton T, Rao S (1999) Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J
ACM 46(6):787-832. https;//doi.org/10.1145/331524.331526

Leskovec J, Rajaraman A, Ullman JD (2020) Mining of massive data sets. Cambridge university press, New York, https://doi.
org/10.1017/CBO9781139924801

Li P Milenkovic O (2017) Inhomogeneous hypergraph clustering with applications. In: Advances in neural information pro-
cessing systems, vol 30, pp 2308-2318. https://doi.org/10.5555/3294771.3294991

Li P Milenkovic O (2018a) Revisiting decomposable submodular function minimization with incidence relations. In: Advances
in neural information processing systems, pp 2242-2252. https://doi.org/10.5555/3327144.3327151

Li P, Milenkovic O (2018b) Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral clustering. In: Interna-
tional conference on machine learning, pp 3014-3023. http://proceedings.mirpress/v80/li18e.html

Liu M, Veldt N, Song H, Li P, Gleich DF (2021) Strongly local hypergraph diffusions for clustering and semi-supervised learning.
In: International world wide web conference, pp 2092-2103. https://doi.org/10.1145/3442381.3449887

Li J, Lillis J, Cheng CK (1995) Linear decomposition algorithm for VLSI design applications. In: IEEE international conference on
computer aided design, pp 223-228, https://doi.org/10.1109/ICCAD.1995.480016

Li J,He J, Zhu'Y (2018) E-tail product return prediction via hypergraph-based local graph cut. In: ACM SIGKDD international
conference on knowledge discovery and data mining, pp 519-527, https://doi.org/10.1145/3219819.3219829

Lovész L, Plummer MD (2009) Matching theory, vol 367. American Mathematical Soc, Providence. https://www.ams.org/
books/chel/367/chel367-endmatter.pdf

Okumoto K, Fukunaga T, Nagamochi H (2012) Divide-and-conquer algorithms for partitioning hypergraphs and submodular
systems. Algorithmica 62(3):787-806. https://doi.org/10.1007/978-3-642-10631-6_8

Orlin JB (2013) Max flows in o (nm) time, or better. In: Proceedings of the forty-fifth annual ACM symposium on theory of
computing, pp 765-774. https://doi.org/10.1145/2488608.2488705

Orlin JB (2009) A faster strongly polynomial time algorithm for submodular function minimization. Math Programm
118(2):237-251. https://doi.org/10.1007/510107-007-0189-2

Papa DA, Markov IL (2007) Hypergraph partitioning and clustering. Handbook of Approximation Algorithms and Metaheuris-
tics 20073547:61-1. https.//web.eecs.umich.edu/~imarkov/pubs/book/part_survey.pdf

Ramanathan A, Colbourn CJ (1987) Counting almost minimum cutsets with reliability applications. Math Program 39(3):253—
261. https://doi.org/10.1007/BF02592076

Schaub MT, ZhuY, Seby JB, Roddenberry TM, Segarra S (2021) Signal processing on higher-order networks: Livinon the edge...
and beyond. Signal Process 187:108-149. https://doi.org/10.1016/j.sigpro.2021.108149

Schrijver A (2000) A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J Combin Theory
Ser B 80(2):346-355. https://doi.org/10.1006/jctb.2000.1989

Veldt N, Benson AR, Kleinberg J (2020a) Hypergraph cuts with general splitting functions. arXiv preprint arxiv:2001.
02817https.//arxiv.org/abs/2001.02817

Veldt N, Benson AR, Kleinberg J (2020b) Minimizing localized ratio cut objectives in hypergraphs. In: ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pp 1708-1718, https;//doi.org/10.1145/3394486.3403222

Zhao L, Nagamochi H, Ibaraki T (2005) Greedy splitting algorithms for approximating multiway partition problems. Math
Program 102(1):167-183. https://doi.org/10.1007/510107-004-0510-2

Zhou D, Huang J, Scholkopf B (2006) Learning with hypergraphs: Clustering, classification, and embedding. In: Advances in
neural information processing systems, vol 19, pp 1601-1608. https://doi.org/10.5555/2976456.2976657

ZhuY, Li B, Segarra S (2021) Co-clustering vertices and hyperedges via spectral hypergraph partitioning. In: European
signal processing conference, pp 1416-1420, https://doi.org/10.23919/EUSIPCO54536.2021.9616223

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5555/2999792.2999883
https://doi.org/10.5555/2999792.2999883
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1137/S0097539701397813
https://doi.org/10.1137/S0097539701397813
https://doi.org/10.1137/1.9781611973068.133
https://doi.org/10.1145/502090.502096
https://doi.org/10.1109/92.748202
https://doi.org/10.5555/2986459.2986630
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1016/j.dam.2012.05.025
https://doi.org/10.1016/j.dam.2012.05.025
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1145/331524.331526
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.5555/3294771.3294991
https://doi.org/10.5555/3327144.3327151
http://proceedings.mlr.press/v80/li18e.html
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.1109/ICCAD.1995.480016
https://doi.org/10.1145/3219819.3219829
https://www.ams.org/books/chel/367/chel367-endmatter.pdf
https://www.ams.org/books/chel/367/chel367-endmatter.pdf
https://doi.org/10.1007/978-3-642-10631-6_8
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1007/s10107-007-0189-2
https://web.eecs.umich.edu/%7eimarkov/pubs/book/part_survey.pdf
https://doi.org/10.1007/BF02592076
https://doi.org/10.1016/j.sigpro.2021.108149
https://doi.org/10.1006/jctb.2000.1989
http://arxiv.org/abs/2001.02817
http://arxiv.org/abs/2001.02817
https://arxiv.org/abs/2001.02817
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1007/s10107-004-0510-2
https://doi.org/10.5555/2976456.2976657
https://doi.org/10.23919/EUSIPCO54536.2021.9616223

	Hypergraph cuts with edge-dependent vertex weights
	Abstract
	Introduction
	Preliminaries and related work
	Graph cuts
	Hypergraph cuts
	Graph reducibility

	Hypergraph cuts with EDVWs
	The hypergraph model with EDVWs
	EDVWs-based splitting functions
	Graph reducibility of EDVWs-based splitting functions
	Sparsifying hypergraph-to-graph reductions

	Experiments
	Conclusion
	Acknowledgements
	References

