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Introduction

The graph minimum s-t cut problem, or equivalently the maximum s-t flow problem, is 

a fundamental problem in network science. A cut is a bipartition of the graph vertices 

and its weight is computed by summing the weights of the edges crossing the cut. The 

problem aims to find the minimum weight cut that disconnects the source vertex s from 

the sink vertex t. It has various applications such as bipartite matching (Cherkassky et al. 

1998; Lovász and Plummer 2009), network reliability (Colbourn 1991; Ramanathan and 

Colbourn 1987), distributed computing  (Bokhari 1987), image segmentation  (Boykov 

and Funka-Lea 2006; Boykov and Kolmogorov 2004) and very large scale integration 

(VLSI) circuit design (Leighton and Rao 1999; Li et al. 1995). Classical solutions to this 

problem include “augmenting paths”-based algorithms  (Ford and Fulkerson 1956) and 

“push-relabel” style algorithms (Goldberg and Tarjan 1988), to name a few.
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A natural extension is the hypergraph minimum s-t cut problem. Graphs are limited 

to modeling pairwise relations, while hypergraphs generalize the notion of an edge to 

a hyperedge, which can represent higher-order interactions connecting more than two 

vertices. Many practical problems can be better modeled by hypergraphs  (Papa and 

Markov 2007; Schaub et al. 2021). For instance, in the columnwise decomposition of a 

sparse matrix for parallel sparse-matrix vector multiplication, hypergraphs provide a 

more accurate representation for the communication volume requirement than graphs, 

where vertices and hyperedges are respectively used to model columns of the sparse 

matrix and the non-zero pattern of each row (Catalyurek and Aykanat 1999). In image 

segmentation, hypergraphs are leveraged to describe higher-order relations among 

superpixels (Ding and Yilmaz 2008; Kim et al. 2011). In VLSI circuit design, vertices and 

hyperedges respectively represent gates and signal nets (Karypis et al. 1999).

The weight of a hypergraph cut is defined as the sum of splitting penalties associated 

with every hyperedge. Different from the graph case, there may exist multiple ways to 

split a hyperedge. Consequently, for each hyperedge e, we consider a splitting function 

we : 2
e
→ R≥0 that assigns a penalty to every possible cut of e where 2e denotes the 

power set of e. For any S ⊆ e , we(S) indicates the penalty of partitioning e into S and 

e \ S (Li and Milenkovic 2017; Veldt et al. 2020a). Existing works mainly adopt two kinds 

of splitting functions. One is the so-called all-or-nothing splitting function in which an 

identical penalty is charged if the hyperedge is cut no matter how it is cut (Hein et al. 

2013). It is a straightforward extension of the graph case since an edge in a graph is asso-

ciated with only one non-zero splitting penalty. Another slightly more general type is the 

class of cardinality-based splitting functions where the splitting penalty we(S) depends 

only on the number of vertices placed into S (Veldt et al. 2020a; Zhou et al. 2006).

There are two major approaches for solving the minimum s-t cut problem in hyper-

graphs. One is to adopt submodular splitting functions for all hyperedges (cf. (5) for the 

definition of submodular functions), then the hypergraph minimum s-t cut problem can 

be solved using submodular function minimizers (Li and Milenkovic 2018b; Veldt et al. 

2020a). Another more efficient approach is to reduce the hypergraph to a graph that has 

the same cut properties and then leverage existing solutions to the graph minimum s-t 

cut problem (Ihler et al. 1993; Lawler 1973; Li and Milenkovic 2017; Veldt et al. 2020a). 

The reduction is generally implemented by expanding every hyperedge into a small graph 

possibly with additional auxiliary vertices and then concatenating these small graphs to 

form the final graph. It has been proved in Veldt et al. (2020a) that, for cardinality-based 

splitting functions, the hypergraph cut problem is reducible to a graph cut problem if 

and only if the splitting functions are submodular. Moreover, Veldt et  al. (2020a) pro-

poses a graph reduction method for an arbitrary submodular cardinality-based splitting 

function where a hyperedge e is expanded into a graph that has up to O(|e|) auxiliary 

vertices and O(|e|2) edges in the worst case. This may result in large and dense graphs 

thus affecting the efficiency of algorithms applied to the reduced graph. To tackle this 

problem, sparsification techniques have been developed which try to approximate the 

hypergraph cut using a sparse graph with fewer auxiliary vertices  (Bansal et  al. 2019; 

Benczúr and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krauth-

gamer 2015). A follow-up paper (Benson et al. 2020) proposes a sparsification method 

for approximating hypergraph cuts defined by submodular cardinality-based splitting 
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functions. The proposed method reduces the number of auxiliary vertices and the num-

ber of edges needed to expand a hyperedge e to O(ǫ−1 log |e|) and O(ǫ−1|e| log |e|) 

respectively, where ǫ is the approximation tolerance parameter.

A disadvantage of the all-or-nothing splitting function as well as cardinality-based 

ones is that they treat all the vertices in a hyperedge equally while in practice these ver-

tices might contribute differently to the hyperedge. Such information can be captured by 

edge-dependent vertex weights (EDVWs): Every vertex v is associated with a weight γe(v) 

for each incident hyperedge e that reflects the contribution of v to e (Chitra and Raphael 

2019). The hypergraph model with EDVWs is very relevant in practice. For example, an 

e-commerce system can be modeled as a hypergraph with EDVWs where vertices and 

hyperedges respectively correspond to users and products, and EDVWs represent the 

quantity of a product bought by a user (Li et al. 2018). EDVWs can also be used to model 

the author positions in a co-authored manuscript (Chitra and Raphael 2019), the prob-

ability of a pixel belonging to a segment in image segmentation (Ding and Yilmaz 2010), 

and the relevance of a word to a document in text mining (Hayashi et al. 2020; Zhu et al. 

2021), to name a few.

Contributions In this paper, we propose a new class of splitting functions that we 

call EDVWs-based. In an EDVWs-based splitting function, the splitting penalty we(S) 

depends only on the sum of EDVWs in S , namely 
v∈S

γe(v) . Hence, we can write 

we(S) = ge(
∑

v∈S
γe(v)) for some continuous function ge . We prove that we is submodu-

lar if ge is concave. The submodularity is necessary for graph reducibility. We study the 

EDVWs-based counterparts of four cardinality-based splitting functions in existing 

work and show that they are graph reducible. Moreover, we prove that any EDVWs-

based splitting function with a concave ge is graph reducible and provide a way for such 

a reduction. We also show that the sparsification technique proposed in Benson et al. 

(2020) can be easily adapted to the EDVWs-based case. The size and the density of the 

reduced graph depend on both the shape of ge and the EDVWs’ values. In a nutshell, our 

paper provides a framework to study hypergraph cut problems incorporating EDVWs 

and generalizes the results presented in Benson et al. (2020); Veldt et al. (2020a) from 

cardinality-based splitting functions to EDVWs-based ones.

Paper outline The rest of this paper is structured as follows. Preliminary concepts 

and related work about graph and hypergraph cut problems are reviewed in Sect.  2. 

The main theoretical results are presented in Sect. 3, where the hypergraph model with 

EDVWs is introduced in Sect. 3.1, the proposed EDVWs-based splitting functions are 

studied in Sect. 3.2, the graph reducibility results are stated in Sect. 3.3, and the sparsi-

fication technique is discussed in Sect. 3.4. The numerical results shown in Sect. 4 vali-

date the effectiveness of introducing EDVWs into hypergraph cuts. Closing remarks are 

included in Sect. 5.

Preliminaries and related work

Graph cuts

Let G = (V , E ,W) denote a weighted and possibly directed graph where V is the ver-

tex set, E is the edge set, and W is the weighted adjacency matrix whose entry Wuv 

denotes the weight of the edge from u to v. A cut is a partition of the vertex set V into 
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two disjoint, non-empty subsets denoted by S and its complement V \ S . The weight 

of the cut is defined as

Given two vertices s, t in the graph, the minimum s-t cut problem aims to find the mini-

mum weight cut that separates s and t. Formally, the problem can be written as

The minimum s-t cut problem is the dual of the maximum s-t flow problem. There exist 

a number of algorithms for the min-cut/max-flow problem and a summary can be found 

in  Goldberg (1998). Moreover, it is established in Orlin (2013) that the min-cut/max-

flow problem is solvable in O(|V||E |) time. We also notice that a recent paper (Chen et al. 

2022) provides an algorithm that solves this problem in almost-linear time.

Hypergraph cuts

Let H = (V , E) be a hypergraph where V and E respectively denote the vertex set and 

the hyperedge set. Unlike the graph case, a hyperedge can connect more than two 

vertices thus there may exist multiple ways to split a hyperedge. For each hyperedge 

e ∈ E , we introduce a splitting function we : 2
e
→ R≥0 that assigns a non-negative 

penalty to every possible cut of e  (Li and Milenkovic 2017; Veldt et  al. 2020a). The 

splitting function satisfies we(∅) = we(e) = 0 , in other words, a penalty of zero is 

assigned when the hyperedge is not cut. Moreover, the splitting function is symmet-

ric if it satisfies we(S) = we(e \ S) for any S ⊆ e . The weight of the hypergraph cut 

induced by S ⊆ V is defined as the sum of splitting penalties associated with every 

hyperedge, i.e.,

There are mainly two types of splitting functions in existing work: (i) An all-or-noth-

ing splitting function assigns the same penalty to every possible cut of the hyperedge 

regardless of how its vertices are separated (Hein et al. 2013). More precisely, we(S) is 

equal to some positive constant, e.g., the hyperedge weight, for all non-empty S ⊂ e and 

we(S) = 0 if S ∈ {∅, e} . (ii) A splitting function is cardinality-based if we(S1) = we(S2) 

for all S1,S2 ⊆ e whenever |S1| = |S2| (Veldt et al. 2020a). In other words, the value of 

we(S) depends only on the cardinality of S . Several examples are given in Table 1.

(1)cutG(S) =
∑

u∈S,v∈V\S Wuv .

(2)min∅⊂S⊂V cutG(S) s.t. s ∈ S , t ∈ V \ S .

(3)cutH(S) =
∑

e∈E
we(S ∩ e).

Table 1 Examples of cardinality-based and EDVWs-based splitting functions and their corresponding 
gadgets where S is a subset of the hyperedge e and a, b are positive constants

Cardinality-based EDVWs-based Corresponding gadget

we(S) = |S| · |e \ S| we(S) = γe(S) · γe(e \ S) Clique gadget

we(S) = min{|S|, |e \ S|} we(S) = min{γe(S), γe(e \ S)} Star gadget

we(S) = min{|S|, |e \ S|, b} we(S) = min{γe(S), γe(e \ S), b} Sym. cardinality/EDVWs-based gadget

we(S) = min{a|S|, b|e \ S|} we(S) = min{aγe(S), bγe(e \ S)} Asym. cardinality/EDVWs-based gadget
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Similar to the graph case, the hypergraph minimum s-t cut problem is formulated 

as

For a finite set S , a set function F : 2
S

→ R is called submodular if

for every S1 ⊆ S2 ⊂ S and every v ∈ S \ S2  (Bach 2013). If the splitting function we 

associated with every hyperedge e ∈ E is submodular, the resulting hypergraph cut in 

the form of a sum of submodular functions is also submodular. In this case, the hyper-

graph minimum s-t cut problem can be solved using general submodular function mini-

mizers (Grötschel et al. 1981; Iwata 2003; Iwata et al. 2001; Iwata and Orlin 2009; Orlin 

2009; Schrijver 2000) or minimizers for decomposable submodular functions (Ene et al. 

2017; Kolmogorov 2012; Li and Milenkovic 2018a). The all-or-nothing splitting function 

and the cardinality-based ones listed in Table 1 are all submodular.

Graph reducibility

Since algorithms for the graph minimum s-t cut problem are more efficient than algo-

rithms for general submodular function minimization, another way of solving hyper-

graph cut problems is to reduce the hypergraph to a graph that shares the same or 

similar cut properties  (Ihler et  al. 1993; Lawler 1973; Li and Milenkovic 2017). The 

reduction is generally accomplished via hyperedge expansions. Recently, a generalized 

hyperedge expansion has been formulated in Veldt et al. (2020a), which projects a hyper-

edge onto a graph allowing directed edges and additional vertices. The formal definition 

is given below.

Definition 1 (Gadget splitting function  (Veldt et al. 2020a)) A gadget associated with 

a hyperedge e is a weighted and possibly directed graph Ge = (V ′, E ′) with vertex set 

V ′ = e ∪ V̂ where V̂ is a set of auxiliary vertices. The corresponding gadget splitting 

function ŵe : 2e → R≥0 is defined as

A hyperedge splitting function is graph reducible if it is identical to some gadget split-

ting function. A hypergraph cut function defined as (3) or the hypergraph minimum s-t 

cut problem is graph reducible if all its hyperedge splitting functions are graph reduc-

ible. It has been proved in  Veldt et  al. (2020a) that every gadget splitting function ŵe 

defined as (6) is submodular. Hence, if a hyperedge splitting function is graph reducible, 

it must be submodular.

In the following, we give several examples of splitting functions that have been shown 

to be graph reducible in existing works. The all-or-nothing splitting function is graph 

reducible and can be constructed from the Lawler gadget described as follows.

Lawler gadget (Lawler 1973). The Lawler gadget replaces a hyperedge e with a digraph 

defined on the vertex set V ′ = e ∪ {e′, e′′} where e′, e′′ are two auxiliary vertices. For each 

v ∈ e , add a directed edge of weight infinity from v to e′ and a directed edge of weight 

(4)min∅⊂S⊂V cutH(S) s.t. s ∈ S , t ∈ V \ S .

(5)F(S1 ∪ {v}) − F(S1) ≥ F(S2 ∪ {v}) − F(S2)

(6)ŵe(S) = minT ⊆V ′,T ∩e=S cutGe
(T ).
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infinity from e′′ to v. Finally, add a directed edge of weight equal to the hyperedge weight 

from e′ to e′′.

The cardinality-based splitting functions listed in Table 1 are all graph reducible and 

correspond to the following gadgets, respectively.

Clique gadget  (Agarwal et al. 2006). This gadget is an (undirected) clique graph with 

vertex set V ′
= e . For every u, v ∈ e , add an edge of weight 1 between u and v.

Star gadget (Agarwal et al. 2006). This gadget is an (undirected) star graph with vertex 

set V ′ = e ∪ {ve} where ve is an auxiliary vertex. For each v ∈ e , add an edge of weight 1 

between v and ve.

Symmetric cardinality-based gadget (Veldt et al. 2020a). Similar to the Lawler gadget, 

this gadget is a digraph with vertex set V ′ = e ∪ {e′, e′′} . For each v ∈ e , add a directed 

edge of weight 1 from v to e′ and a directed edge of weight 1 from e′′ to v. Moreover, add 

a directed edge of weight b ∈ N from e′ to e′′.

Asymmetric cardinality-based gadget  (Veldt et  al. 2020a). This gadget is a digraph 

defined on V ′ = e ∪ {ve} . For each v ∈ e , add a directed edge of weight a from v to ve and 

a directed edge of weight b from ve to v.

Hypergraph cuts with EDVWs

The hypergraph model with EDVWs

In this paper, we consider the hypergraph model with EDVWs as defined next.

Definition 2 (Hypergraph with EDVWs  (Chitra and Raphael 2019)) Let 

H = (V , E , κ , {γe}) be a hypergraph with EDVWs where V and E respectively denote the 

vertex set and the hyperedge set. The function κ : E → R+ assigns positive weights to 

hyperedges and those weights reflect the strength of connection. Each hyperedge e ∈ E 

is associated with a function γe : e → R+ to assign EDVWs. For convenience, we define 

γe(S) =

∑
v∈S

γe(v) for any S ⊆ e.

The introduction of EDVWs enables the hypergraph to model the cases when the ver-

tices in the same hyperedge contribute differently to this hyperedge. For example, in a 

coauthorship network, every author (vertex) in general has a different degree of contri-

bution to a paper (hyperedge), usually reflected by the order of the authors. This infor-

mation is lost in traditional hypergraph models but it can be easily encoded through 

EDVWs. In the following, we study how to incorporate EDVWs into hypergraph cut 

problems.

EDVWs-based splitting functions

A natural extension from cardinality-based splitting functions to EDVWs-based ones is 

to make the splitting penalty we(S) dependent only on the sum of EDVWs in S.

Definition 3 (EDVWs-based splitting function) We refer to splitting functions defined 

in the following way as EDVWs-based splitting functions:

where ge : [0, γe(e)] → R≥0 satisfies ge(0) = ge(γe(e)) = 0.

(7)we(S) = ge(γe(S)), ∀S ⊆ e,
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For trivial EDVWs, namely γe(v) = 1 for all v ∈ e , we have γe(S) = |S| and the 

EDVWs-based splitting function reduces to a cardinality-based one. Actually, ge can 

be viewed as a continuous extension of the splitting function we . In practice, we can 

also incorporate the hyperedge weight κ(e) into the splitting function such as setting 

we(S) = κ(e) · ge(γe(S)) . This does not influence the results presented in this paper.

We are interested in submodular splitting functions which make it possible to lever-

age existing solvers for submodular function minimization. Moreover, as mentioned 

in Sect. 2.3, submodularity is a necessary condition for a splitting function to be graph 

reducible (Veldt et al. 2020a). In the following Theorem 3.2, we show that the EDVWs-

based splitting function defined as  (7) is submodular if ge is concave. We first present 

several properties of concave functions which will be used later.

Lemma 3.1 (Properties of concave functions) For a concave function g, we have 

 (i) If b1 ≤ b2 , a > 0 , the inequality g(b1 + a) − g(b1) ≥ g(b2 + a) − g(b2) holds.

 (ii) If b1 < b2 < b3 , the inequality g(b2) ≥
b3−b2
b3−b1

g(b1) +
b2−b1
b3−b1

g(b3) holds.

 (iii) If b1 < b2 ≤ a and g is symmetric with respect to a, the inequality g(b1) ≤ g(b2) 

holds.

Proof

According to the definition of concave functions, the following inequality holds for any x 

and y in the domain of a concave function g,

To prove Property (i), we set x = b1 and y = b2 + a . For t =
b2−b1

b2−b1+a
 and t =

a

b2−b1+a
 , 

the above inequality respectively becomes

Property (i) can be obtained by respectively adding both sides of these two inequalities 

together. Property (ii) can be proved by setting x = b1 , y = b3 and t =
b3−b2
b3−b1

 . Property 

(iii) can be proved by setting x = b1 , y = 2a − b1 and t =
2a−b1−b2
2a−2b1

 . 

Theorem  3.2 For EDVWs-based splitting functions defined as  (7), if ge is a concave 

function, then we is submodular. If ge is concave as well as symmetric with respect to 

γe(e)/2 , then we is submodular and symmetric.

Proof

For every S1 ⊆ S2 ⊂ e and every v ∈ e \ S2 , set b1 = γe(S1) , b2 = γe(S2) and a = γe(v) . 

When ge is concave, it follows from (i) in Lemma 3.1 that

g(tx + (1 − t)y) ≥ tg(x) + (1 − t)g(y), ∀t ∈ [0, 1].

g(b1 + a) ≥
b2−b1

b2−b1+a
g(b1) +

a
b2−b1+a

g(b2 + a),

g(b2) ≥
a

b2−b1+a
g(b1) +

b2−b1
b2−b1+a

g(b2 + a).

�

ge(γe(S1) + γe(v)) − ge(γe(S1)) ≥ ge(γe(S2) + γe(v)) − ge(γe(S2)).
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It immediately follows from (7) that

Hence, we is submodular according to the definition of submodular functions. Moreover, 

it is straightforward to show that we satisfies we(S) = we(e \ S) for all S ⊆ e if ge is sym-

metric with respect to γe(e)/2 . �

Graph reducibility of EDVWs-based splitting functions

We first consider the following concave functions for ge.

By substituting these concave functions into (7), we obtain the EDVWs-based splitting 

functions listed in Table 1, which are submodular according to Theorem 3.2. The first 

three are also symmetric while the last one is generally asymmetric unless a = b . For the 

third one, if the parameter b is set to some value no greater than minv∈e γe(v) , it reduces 

to the all-or-nothing splitting function; while if b ≥ maxS⊆e min{γe(S), γe(e) − γe(S)} , it 

reduces to the second one. We are going to show that the EDVWs-based splitting func-

tions listed in Table 1 are also graph reducible by constructing gadgets that generalize 

the gadgets introduced in Sect. 2.3. An illustration of these generalized gadgets is given 

in Fig. 1.

Theorem  3.3 The EDVWs-based splitting functions listed in Table  1 are all graph 

reducible and respectively correspond to the gadgets described in Table 2.

we(S1 ∪ {v}) − we(S1) ≥ we(S2 ∪ {v}) − we(S2).

(8)ge(x) = x · (γe(e) − x),

(9)ge(x) = min{x, γe(e) − x},

(10)ge(x) = min{x, γe(e) − x, b}, b > 0,

(11)ge(x) = min{ax, b(γe(e) − x)}, a, b > 0.

Table 2 Examples of gadgets Ge = (e ∪ V̂ ,E ′) incorporating EDVWs

Gadget name Type V̂ |E ′| Description

(EDVWs-based) Clique gadget Undirected ∅ |e|(|e| − 1)/2 For every u, v ∈ e , add an edge (u, v) of 
weight γe(u)γe(v).

(EDVWs-based) Star gadget Undirected {ve} |e| For every v ∈ e , add an edge (v , ve) of 
weight γe(v).

Sym. EDVWs-based gadget Directed {e′ , e′′} 2|e| + 1 For every v ∈ e , add a directed edge of 
weight γe(v) from v to e′ and a directed 
edge of weight γe(v) from e′′ to v. Moreover, 
add a directed edge of weight b from e′ 
to e′′.

Asym. EDVWs-based gadget Directed {ve} 2|e| For every v ∈ e , add a directed edge of 
weight aγe(v) from v to ve and a directed 
edge of weight bγe(v) from ve to v.
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Proof

In the following, we prove these four cases one by one.

(i) It follows from (6) that the splitting function constructed from the clique gadget is

(ii) According to (6), there are two ways to split S from e in the star gadget: set T = S or 

T = S ∪ {ve} . The corresponding graph cut weights cutGe
(T ) are respectively equal to 

γe(S) and γe(e \ S) . Take the minimum one and the result follows.

(iii) For the symmetric EDVWs-based gadget, there are four ways to split S from e: 

set T = S , T = S ∪ {e′, e′′} , T = S ∪ {e′} or T = S ∪ {e′′} . They respectively result in 

cutGe
(T ) equal to γe(S) , γe(e \ S) , b and γe(e) . Notice that the last one is always no less 

than the first two. The result follows by taking the minimum one.

(iv) To split S from e in the asymmetric EDVWs-based gadget, we can set T = S or 

T = S ∪ {ve} which respectively lead to cutGe
(T ) equal to aγe(S) and bγe(e \ S) . The 

proof is completed by taking the minimum one. 

It has been proved in Veldt et al. (2020a) that all submodular cardinality-based splitting 

functions are graph reducible. More precisely, any submodular cardinality-based splitting 

ŵe(S) = cutGe
(S) =

∑

u∈S,v∈e\S

γe(u)γe(v) =
∑

u∈S

γe(u) ·
∑

v∈e\S

γe(v) = γe(S) · γe(e \ S).

�

v1

v2 v3

e(v1) e(v2)

e(v1) e(v3)

e(v2) e(v3)

(a)

v1

v2 v3

ve

e(v1)

e(v2) e(v3)

(b)

v1

v2

v3

e e

e(v1)

e(v2)

e(v3)

e(v1)

e(v2)

e(v3)

b

(c)

v1

v2 v3

ve

a e(v1)b e(v1)

a e(v2)

b e(v2) a e(v3)

b e(v3)

(d)
Fig. 1 The illustration of (a) a clique gadget, (b) a star gadget, (c) a symmetric EDVWs-based gadget, and (d) 
an asymmetric EDVWs-based gadget, for a hyperedge e = {v1 , v2 , v3}
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function can be constructed from a combination of up to |e| − 1 different asymmetric car-

dinality-based gadgets. For a symmetric submodular cardinality-based splitting function, 

it can also be constructed from a combination of up to ⌊|e|/2⌋ symmetric cardinality-based 

gadgets. In Theorem 3.4 below, we show graph reducibility for the proposed submodular 

EDVWs-based splitting functions. To this end, we first define two sets as follows.

Denote by Si the subset of e corresponding to the ith smallest element in Qa . The set Qs 

is a subset of Qa and contains the smallest |Qs| elements in Qa.

Theorem 3.4 All EDVWs-based splitting functions defined as  (7) with concave  ge are 

graph reducible. A hyperedge paired with such a splitting function can be reduced to a 

graph which is a combination of at most |Qa| asymmetric EDVWs-based gadgets. If, in 

addition, ge is symmetric, the hyperedge can also be reduced to a graph combining at most 

|Qs| symmetric EDVWs-based gadgets.

Proof

We first consider the case when ge is concave and symmetric, then study the more general 

case when ge is concave and possibly asymmetric.

(i) Consider a hyperedge e and an EDVWs-based splitting function we with concave, 

symmetric ge . We are going to show that we corresponds to some gadget splitting func-

tion ŵe and one way for constructing such a gadget is to combine r = |Qs| symmetric 

EDVWs-based gadgets. For the ith symmetric EDVWs-based gadget, denote the two 

auxiliary vertices by e′
i
 and e′′

i
 , set the weight of the edge from e′

i
 to e′′

i
 to bi = γe(Si) , then 

scale all edge weights by a factor ai ≥ 0 . The combined gadget contains |e| + 2|Qs| verti-

ces and (2|e| + 1)|Qs| edges. Its corresponding splitting function can be written as

By substituting Si into (14) we get

which can be condensed in the following matrix form

(12)Qs = {γe(S)|S ⊆ e, 0 < γe(S) ≤ γe(e)/2},

(13)Qa = {γe(S)|∅ ⊂ S ⊂ e}.

(14)ŵe(S) =
∑

r

i=1 ai · min{γe(S), γe(e \ S), bi}.

ŵe(Si) =
∑r

j=1 aj · min{bi, γe(e) − bi, bj}

=
∑i

j=1 ajbj +
∑r

j=i+1 ajbi, ∀i = 1, · · · , r,

(15)











b1 b1 b1 b1 · · · b1

b1 b2 b2 b2 · · · b2

b1 b2 b3 b3 · · · b3

b1 b2 b3 b4 · · · b4

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

b1 b2 b3 b4 · · · br











� �� �

B1











a1

a2

a3

a4

.

.

.

ar











=











ŵe(S1)

ŵe(S2)

ŵe(S3)

ŵe(S4)

.

.

.

ŵe(Sr)











.
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The question left is whether there exist non-negative a1, · · · , ar such that ŵe(Si) = we(Si) 

for all i ∈ [r] . To identify such ai , we replace ŵe(Si) with we(Si) and invert the system (15) 

as follows

where

It follows that

Since a1, · · · , ar need to be non-negative, we are left to prove the following inequalities:

Moreover, it can be observed from (15) that ŵe(S1) ≤ ŵe(S2) ≤ · · · ≤ ŵe(Sr) due to the 

structure of B1 and the non-negativity of coefficients ai . Hence, we also need to show 

that

By introducing b0 = 0 , the inequalities (16), (17) can be rewritten as

It follows immediately from (ii) in Lemma 3.1. The inequalities (19) (including (18)) can 

be rewritten as













a1

a2

.

.

.

ar−1

ar













= B
−1
1













we(S1)

we(S2)

.

.

.

we(Sr−1)

we(Sr)













,

B
−1

1
=



















b2
(b2−b1)b1

−
1

b2−b1
0 · · · 0 0 0

−
1

b2−b1

b3−b1
(b3−b2)(b2−b1)

−
1

b3−b2
· · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
1

br−1−br−2

br−br−2

(br−br−1)(br−1−br−2)
−

1

br−br−1

0 0 0 · · · 0 −
1

br−br−1

1

br−br−1



















.













a1

a2

.

.

.

ar−1

ar













=



















b2
(b2−b1)b1

we(S1) −
1

b2−b1
we(S2)

b3−b1
(b3−b2)(b2−b1)

we(S2) −
1

b2−b1
we(S1) −

1

b3−b2
we(S3)

.

.

.
br−br−2

(br−br−1)(br−1−br−2)
we(Sr−1) −

1

br−1−br−2
we(Sr−2) −

1

br−br−1
we(Sr)

1

br−br−1
we(Sr) −

1

br−br−1
we(Sr−1)



















.

(16)we(S1) ≥
b1
b2
we(S2),

(17)we(Si) ≥
bi+1−bi

bi+1−bi−1
we(Si−1) +

bi−bi−1

bi+1−bi−1
we(Si+1), ∀i = 2, · · · , r − 1,

(18)we(Sr) ≥ we(Sr−1).

(19)we(S1) ≤ we(S2) ≤ · · · ≤ we(Sr).

(20)ge(bi) ≥
bi+1−bi

bi+1−bi−1
ge(bi−1) +

bi−bi−1

bi+1−bi−1
ge(bi+1), ∀i = 1, · · · , r − 1.

(21)ge(b1) ≤ ge(b2) ≤ · · · ≤ ge(br),
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which can be proved according to (iii) in Lemma 3.1. Notice that, when there exists any 

equality in (16)–(18), the corresponding ai equals 0, which implies that the number of 

symmetric EDVWs-based gadgets needed to construct the combined gadget can be fur-

ther reduced. The equality in (17) (or see (20)) means that the points at bi−1 , bi and bi+1 

are colinear.

(ii) Next we consider the case when ge is concave and possibly asymmetric. In this case, 

we can be shown to be identical to some gadget splitting function ŵe and such a gadget 

can be constructed by combing r = |Qa| asymmetric EDVWs-based gadgets. The ith one 

is paired with parameters ai(γe(e) − bi) and aibi where ai ≥ 0 is a scaling parameter. The 

combined gadget consists of |e| + |Qa| vertices and 2|e| · |Qa| edges. Its corresponding 

splitting function can be written as

We set bi = γe(Si) for all i ∈ [r] . Then it holds that bi + br+1−i = γe(e) . By substituting Si 

into (22) we get

which can also be written in the following matrix from

Replace ŵ(Si) with w(Si) and invert the system (23) to find the valid coefficients ai . For 

convenience, we introduce br+1 = γe(e) . The inverse of B2 can be written as

Notice that B−1

2
 has the same structure as B−1

1
 except for the last element as well as the 

scaling coefficient 1/br+1 . Since a1, · · · , ar need to be non-negative, we are left to prove 

the following inequalities:

(22)ŵe(S) =
∑

r

i=1 ai · min{(γe(e) − bi)γe(S), biγe(e \ S)}.

ŵe(Si) =
∑r

j=1 aj · min{(γe(e) − bj)bi, bj(γe(e) − bi)},

=
∑i

j=1 ajbjbr+1−i +
∑r

j=i+1 ajbr+1−jbi, ∀i = 1, · · · , r,

(23)













b1br b1br−1 b1br−2 b1br−3 · · · b1b2 b1b1

b1br−1 b2br−1 b2br−2 b2br−3 · · · b2b2 b2b1

b1br−2 b2br−2 b3br−2 b3br−3 · · · b3b2 b3b1

b1br−3 b2br−3 b3br−3 b4br−3 · · · b4b2 b4b1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

b1b2 b2b2 b3b2 b4b2 · · · br−1b2 br−1b1

b1b1 b2b1 b3b1 b4b1 · · · br−1b1 brb1













� �� �

B2













a1

a2

a3

a4

.

.

.

ar−1

ar













=













ŵe(S1)

ŵe(S2)

ŵe(S3)

ŵe(S4)

.

.

.

ŵe(Sr−1)

ŵe(Sr)













.

1

br+1

·



















b2
(b2−b1)b1

−
1

b2−b1
0 · · · 0 0 0

−
1

b2−b1

b3−b1
(b3−b2)(b2−b1)

−
1

b3−b2
· · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
1

br−1−br−2

br−br−2

(br−br−1)(br−1−br−2)
−

1

br−br−1

0 0 0 · · · 0 −
1

br−br−1

br+1−br−1

(br+1−br )(br−br−1)



















.

(24)we(S1) ≥
b1
b2
we(S2),
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By introducing b0 = 0 , the above inequalities can be rewritten and summarized as

which immediately follows (ii) in Lemma 3.1. 

For the two cases discussed in Theorem 3.4, the required number of building gadgets |Qs| 

and |Qa| are respectively upper bounded by 2|e|−1 − 1 and 2|e| − 2 . For trivial EDVWs, the 

theorem coincides with the results for cardinality-based splitting functions in (Veldt et al. 

2020a) with |Qs| and |Qa| respectively reducing to ⌊|e|/2⌋ and |e| − 1 . Hence, EDVWs-based 

splitting functions generally lead to a denser graph than cardinality-based splitting func-

tions in the worst case. In addition, when ge is concave as well as symmetric, Theorem 3.4 

provides two ways for the reduction while the one leveraging symmetric EDVWs-based 

gadgets requires fewer edges.

Sparsifying hypergraph-to-graph reductions

Graph min-cut/max-flow algorithms have a complexity that depends on the number of 

vertices and the number of edges in the graph (Goldberg 1998). The reduction procedures 

discussed above may result in large and dense graphs, thus affecting the efficiency of algo-

rithms applied to the reduced graph. A workaround is to find a smaller and sparser graph 

whose cut approximates, rather than exactly recovers, the hypergraph cut  (Bansal et  al. 

2019; Benczúr and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krau-

thgamer 2015). In Benson et al. (2020), a sparsification technique is proposed for hyper-

graphs with submodular cardinality-based splitting functions. It is based on approximating 

concave functions using piecewise linear curves and can be generalized to our EDVWs-

based case due to the formulation (7). In the following, we discuss this in detail.

As shown in (3), the hypergraph cut function is defined as the sum of splitting functions 

associated with every hyperedge. Hence, the problem can be decomposed into approxi-

mately modeling each hyperedge using a sparse gadget with a smaller set of auxiliary ver-

tices. More formally, we would like to find such a gadget whose corresponding splitting 

function ŵe as defined in (6) approximates the splitting penalties associated with a hyper-

edge, i.e.,

where ǫ ≥ 0 is an approximation tolerance parameter. This is equivalent to finding some 

gadget splitting function w̃e satisfying 1
δ
we(S) ≤ w̃e(S) ≤ δwe(S) with the correspond-

ence ŵe(S) = δw̃e(S) and ǫ = δ
2
− 1.

We first consider EDVWs-based splitting functions with concave and symmetric ge . 

We have shown in Theorem 3.4 that these splitting functions can be exactly constructed 

from a combination of |Qs| symmetric EDVWs-based gadgets. Following the idea 

(25)we(Si) ≥
bi+1−bi

bi+1−bi−1
we(Si−1) +

bi−bi−1

bi+1−bi−1
we(Si+1), ∀i = 2, · · · , r − 1,

(26)we(Sr) ≥
br+1−br

br+1−br−1
we(Sr−1).

(27)ge(bi) ≥
bi+1−bi

bi+1−bi−1
ge(bi−1) +

bi−bi−1

bi+1−bi−1
ge(bi+1), ∀i = 1, · · · , r,

�

(28)we(S) ≤ ŵe(S) ≤ (1 + ǫ)we(S), ∀S ⊆ e,



Page 14 of 20Zhu and Segarra  Applied Network Science            (2022) 7:45 

in Benson et al. (2020), we next show how to approximate these splitting functions using 

a smaller set of symmetric EDVWs-based gadgets. Recall from the proof of Theorem 3.4 

that the combination of r symmetric EDVWs-based gadgets respectively with positive 

parameters b1 < · · · < br and combination coefficients a1, · · · , ar has the splitting func-

tion in the form of  (14). Its continuous extension can be written as follows. Since it is 

symmetric, we can just consider the first half of the function

When x ≤ b1 , (29) can be rewritten as ĝe(x) = (
∑r

i=1
ai) · x ; when x > br , 

we have ĝe(x) =
∑r

i=1
aibi ; when bi−1 < x ≤ bi for any i = 2, · · · , r , we have 

ĝe(x) =
∑i−1

j=1
ajbj + (

∑r
j=i aj) · x . Hence, ĝe(x) can also be characterized as the lower 

envelope of a set of r + 1 linear functions having non-negative decreasing slopes and 

non-negative increasing intercepts (Benson et al. 2020), i.e.,

Equivalently, the relations between the coefficients ai, bi and mi, di can also be described 

as ai = mi − mi+1 and bi = (di+1 − di)/ai.

The sparsification problem can be described as: Find the piecewise linear function ĝe 

with the minimum number of pieces that approximates ge at the points in Qs . It can be 

formulated as follows.

The first constraint is from (28). The third constraint is added without loss of general-

ity since an improved approximation could be found if there is some fi strictly greater 

than ge at all points in {0} ∪ Qs . The main difference with the corresponding formulation 

in (Benson et al. 2020) is that, for the cardinality-based case there considered, the set Qs 

consists of only integers from 1 to ⌊|e|/2⌋ ; for the EDVWs-based case, the elements in Qs 

depend on the values of EDVWs thus they are not necessarily integers or evenly spaced.

We can modify the algorithm proposed in Benson et al. (2020) to find an optimal solu-

tion to  (31). Here we briefly introduce the procedure and please refer to Benson et al. 

(2020) for a detailed explanation. For convenience, we denote the elements in Qs by 

q1 < q2 < · · · < qn where n = |Qs| and define a series of functions with the ith one join-

ing (qi, ge(qi)) and (qi+1, ge(qi+1)) , i.e., hi(x) =
ge(qi+1)−ge(qi)

qi+1−qi
(x − qi) + ge(qi) . The last lin-

ear piece fr+1 is first determined. According to  (30) and  (31), it has a zero slope and 

passes through (qn, ge(qn)) , thus we have fr+1(x) = ge(qn) . For the first linear piece f1 , it 

goes through the origin according to (30) and its slope m1 is set to 
ge(q1)
q1

 so that it can 

provide a qualified approximation for as many points in Qs as possible. Then we identify 

the first point qℓ in Qs that does not have a (1 + ǫ)-approximation. In other words, 

(29)ĝe(x) =
∑r

i=1 ai · min{x, bi}, where x ∈ [0, γe(e)/2].

(30)

ĝe(x) = min{f1(x), f2(x), · · · , fr+1(x)},

where fi(x) = mix + di,

mi =
∑r

j=i aj for 1 ≤ i ≤ r andmr+1 = 0,

d1 = 0 and di =
∑i−1

j=1 ajbj for 2 ≤ i ≤ r + 1.

(31)

min r

s.t. ge(x) ≤ ĝe(x) ≤ (1 + ǫ)ge(x),∀x ∈ Qs,

ĝe(x) is defined as (30),

For each i ∈ [r + 1], fi(x) = ge(x) for some x ∈ {0} ∪ Qs.
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f1(qi) ≤ (1 + ǫ)ge(qi) holds for i = 1, · · · , ℓ − 1 and becomes invalid since i = ℓ . We 

stop searching more linear pieces if (i) ℓ ≥ n , or (ii) ge(qn) ≤ (1 + ǫ)ge(qℓ) where (ii) 

implies that qℓ, · · · , qn have a (1 + ǫ)-approximation provided by the last linear piece. 

Otherwise, we continue to find the next linear piece f2 in order to cover the rest of the 

points. We identify i∗ such that hi∗−1(qℓ) ≤ (1 + ǫ)ge(qℓ) and hi∗(qℓ) > (1 + ǫ)ge(qℓ) . In 

other words, the linear function hi∗−1 provides a qualified approximation at qℓ (i.e., the 

first point has not been covered yet), but the following functions hi for i ≥ i
∗ do not. 

Hence, f2 should pass through the point (qi∗ , ge(qi∗)) and lie between hi∗−1 and hi∗ (its 

slope should be greater than hi∗ ’s slope and no greater than hi∗−1 ’s slope). In the mean-

time, we expect f2 to provide a qualified approximation at qℓ and have a slope as small as 

possible so that more points after qi∗ can be covered. Therefore, we set f2 to the line join-

ing (qℓ, (1 + ǫ)ge(qℓ)) and (qi∗ , ge(qi∗)) . We refer the reader to Figure 4 in (Benson et al. 

2020) for an illustration. Then we update qℓ to the new start point in Qs that does not 

have a (1 + ǫ)-approximation yet, and check the stopping criterion. We repeat the pro-

cess of picking f2 to add more linear pieces until we meet the stopping criterion.

We can also ignore the particular positions of elements in Qs and try to provide a 

(1 + ǫ)-approximation for ge(x) everywhere in the range [0, γe(e)/2] . This approach has 

two benefits: (i) It avoids building the set Qs . (ii) If multiple hyperedges share the same 

continuous extension ge , we can find their sparsified reductions all at once. The proce-

dure of finding the set of linear pieces can be modified as follows. The last linear piece 

should be fr+1(x) = ge(γe(e)/2) . The first linear piece f1 is tangent to ge at the origin. We 

identify the value z ∈ [0, γe(e)/2] that satisfies f1(z) = (1 + ǫ)ge(z) . If no such a z exits or 

ge(γe(e)/2) ≤ (1 + ǫ)ge(z) , we stop. Otherwise, we add the next linear piece f2 which is 

selected to pass through (z, (1 + ǫ)ge(z)) and be tangent to ge as some point greater than 

z. We repeat the process of choosing f2 to add more linear pieces until the whole range 

[0, γe(e)/2] has been covered. An illustrative example is given in Fig. 2.

For EDVWs-based splitting functions with concave and possibly asymmetric ge , they 

can be approximated using a smaller set of asymmetric EDVWs-based gadgets. It has 

been proved in (Benson et al. 2020) that the continuous extension of the splitting func-

tion in the form of (22) is also piecewise linear, thus we can adopt a similar reduction 

procedure as described above.

Moreover, a direct extension of Theorem 4.1 in (Benson et al. 2020) is that the number 

of symmetric/asymmetric EDVWs-based gadgets needed to approximate an EDVWs-

based splitting function with concave, symmetric/asymmetric ge is upper bounded by 

O(log1+ǫ γe(e)) which behaves as ǫ−1 log γe(e) as ǫ approaches zero. This bound could be 

further improved if a specific concave function ge is chosen.

Experiments

We show the effects of introducing EDVWs into hypergraph cuts via numerical exper-

iments. We consider the binary classification of hypergraph vertices: Given the labels 

of a subset of vertices VL
= V

L

1
∪ V

L

2
 where VL

1
 and VL

2
 respectively consist of all labeled 

vertices in two classes, the task is to estimate the labels of the rest of the vertices. The 

problem can be formulated as a generalized hypergraph minimum s-t cut problem with 

multiple source and sink vertices, i.e.,
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Then the vertices in S and V \ S are classified into two categories, respec-

tively. We consider the first three EDVWs-based splitting functions listed in 

Table  1, namely we(S) = γe(S) · γe(e \ S) , we(S) = min{γe(S), γe(e \ S)} and 

we(S) = min{γe(S), γe(e \ S), b} , which are symmetric and graph reducible. For any of 

them, we can reduce the hypergraph to a graph sharing the same cut properties. Follow-

ing the idea in (Blum and Chawla 2001), we introduce another two vertices – a super-

source s and a super-sink t – into the reduced graph. For every v ∈ V
L

1
 , add an edge of 

weight infinity from s to v; for every v ∈ V
L

2
 , add an edge of weight infinity from v to t. 

Then problem (32) can be converted into a common minimum s-t cut problem defined 

on the new graph in the form of (2). We solve the graph minimum s-t cut problem using 

the highest-label preflow-push algorithm implemented in the NetworkX package (Hag-

berg et al. 2008).

We adopt the 20 Newsgroups dataset and consider the task of document classifica-

tion. The dataset contains documents in different categories and we consider the docu-

ments in categories “rec.motorcycles” and “sci.space”. We extract the 200 most frequent 

words in the corpus after removing stop words and words appearing in > 3% and < 0.2% 

of the documents. We then remove a small fraction of documents that do not contain 

the selected words and finally get 1852 documents with 932 and 920 documents in two 

classes, respectively. To model the text dataset using hypergraphs with EDVWs, we con-

sider documents as vertices and words as hyperedges. A document (vertex) belongs to 

a word (hyperedge) if the word appears in the document. The EDVWs are taken as the 

corresponding tf-idf (term frequency-inverse document frequency) values  (Leskovec 

et al. 2020) to the power of α , where α is a tunable parameter. More precisely, we set

(32)min∅⊂S⊂V cutH(S) s.t. VL

1
⊆ S ,VL

2
⊆ V \ S .
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Fig. 2 An example where ge(x) = −0.125x2 + 2x . We want to find a (1 + ǫ)-approximation for ge(x) 
everywhere in the range [0, 8] where we set ǫ = 0.1 . The last linear piece f3 has a zero slope and passes 
through (8, 8), thus f3(x) = 8 . The first linear piece f1 is tangent to ge at the origin, hence f1(x) = 2x . At 
the point x = 1.4545 , f1(x) = (1 + ǫ)ge(x) , meaning that f1 provides a qualified approximation for ge(x) 
in the range [0, 1.4545]. The second linear piece f2 passes through (1.4545, 2.909) and is tangent to ge at 
(2.909, 4.7602),namely f2(x) = 1.2727x + 1.0579 . At x = 5.2894 , f2(x) = (1 + ǫ)ge(x) , hence f2 provides a 
qualified approximation for ge(x) in the range [1.4545, 5.2894]. The rest of the points in the range [5.2894, 8] 
have been covered by f3
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The term frequency tf(e, v) is the relative frequency of word e in document v. The inverse 

document frequency idf(e) measures the informativeness of word e, i.e., if it is common 

or rare across all documents. Hence, the tf-idf values are able to reflect the importance 

of a word to a document in a corpus and thus an ideal choice for EDVWs. We adopt the 

TfidfTransformer function in the scikit-learn package with default parameters to com-

pute the tf-idf values. The parameter α is introduced for extra flexibility. When α = 0 , 

we get the trivial EDVWs and the splitting functions reduce to cardinality-based ones. 

For the splitting function we(S) = min{γe(S), γe(e \ S), b} , we set b = βγe(e) where β is 

also adjustable. If a small enough β is selected, the splitting function reduces to the all-

or-nothing case.

Figure 3 shows the effects of the parameters α and β on the classification performance. 

We plot the average classification accuracy and the standard deviation over 10 realiza-

tions which adopt different sets of labeled vertices. We respectively set the fraction of 

labeled vertices to 0.3 in (a-d) and 0.5 in (e-h). The three considered EDVWs-based split-

ting functions respectively correspond to (a) (e), (b) (f ), and (c-d) (g-h). For the third 

splitting function, we fix β = 0.15 to observe the influence of α in (c) (g) and fix α = 1 to 

test β in (d) (h). It can be observed that, for all of them, the best performance is achieved 

for intermediate values of α or β rather than the extreme cases when the EDVWs-based 

splitting function reduces to a cardinality-based splitting function or the all-or-nothing 

splitting function.

Figure 4 provides a more direct comparison between the proposed EDVWs-based 

splitting functions and existing ones. For EDVWs-based splitting functions, we adopt 

a 5-fold cross-validation to find the optimal α and β . In (a), we search the optimal α 

over the set {0 : 0.2 : 3} . In (b-c), we search α over {0 : 0.2 : 5} . In (d), we search β over 

(33)γe(v) = tf-idf(e, v)α , where tf-idf(e, v) = tf(e, v) · idf(e).
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Fig. 3 Classification performance as a function of the parameters α and β . For the two rows, the fraction 
of labeled vertices is respectively set to 0.3 and 0.5. (a) and (e) correspond to the splitting function 

we(S) = γe(S) · γe(e \ S) ; (b) and (f) correspond to the splitting function we(S) = min{γe(S), γe(e \ S)} ; 
(c), (d) and (g), (h) correspond to the splitting function we(S) = min{γe(S), γe(e \ S),βγe(e)} where we fix 

β = 0.15 in (c), (g) and we fix α = 1 in (d), (h)
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20 equally spaced values between 10−3.5 and 10−1/3 in the log scale. We can see that 

adopting EDVWs-based splitting functions improves the classification performance 

over a wide range of train-test split ratios.

Conclusion

We developed a framework for incorporating EDVWs into hypergraph cut problems 

and generalized reduction as well as sparsification techniques recently proposed for 

cardinality-based splitting functions. Through a real-world text mining application, 

we showcased the value of the introduction of EDVWs. There are numerous direc-

tions for future work: (i) As mentioned in the introduction, hypergraph minimum 

cuts can be used to solve various real-world applications  (Catalyurek and Aykanat 

1999; Ding and Yilmaz 2008; Karypis et al. 1999; Kim et al. 2011) or as subroutines 

in many machine learning algorithms  (Liu et  al. 2021; Veldt et  al. 2020b). Hence, it 

would be desirable to apply the proposed framework to these applications and algo-

rithms and evaluate the performance. (ii) Another direction is to further extend the 

proposed framework to multiway cuts (Chekuri and Ene 2011; Okumoto et al. 2012; 

Veldt et al. 2020a; Zhao et al. 2005) or other types of cuts such as normalized cuts (Li 

and Milenkovic 2017, 2018b; Fountoulakis et  al. 2021). (iii) An open problem is 

whether all submodular splitting functions are graph reducible (Veldt et al. 2020a).
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VLSI  Very large scale integration
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Fig. 4 Performance comparison between the proposed splitting functions and existing ones. 
(a), (b) and (c-d) respectively correspond to the splitting functions we(S) = γe(S) · γe(e \ S) , 

we(S) = min{γe(S), γe(e \ S)} and we(S) = min{γe(S), γe(e \ S),βγe(e)} . We fix β = 0.15 in (c) and fix 
α = 1 in (d). The red curves (cardinality-based) and the green curve (all-or-nothing) respectively correspond 
to the cases when α = 0 and when β is small enough ( β = 10

−3.5 here). For the blue curves (EDVWs-based), 
a 5-fold cross-validation is adopted in (a–c) to search the optimal α and in (d) to search the optimal β
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