
Hypergraph cuts with edge‑dependent
vertex weights

Yu Zhu* and Santiago Segarra

Introduction

The graph minimum s-t cut problem, or equivalently the maximum s-t flow problem, is

a fundamental problem in network science. A cut is a bipartition of the graph vertices

and its weight is computed by summing the weights of the edges crossing the cut. The

problem aims to find the minimum weight cut that disconnects the source vertex s from

the sink vertex t. It has various applications such as bipartite matching (Cherkassky et al.

1998; Lovász and Plummer 2009), network reliability (Colbourn 1991; Ramanathan and

Colbourn 1987), distributed computing (Bokhari 1987), image segmentation (Boykov

and Funka-Lea 2006; Boykov and Kolmogorov 2004) and very large scale integration

(VLSI) circuit design (Leighton and Rao 1999; Li et al. 1995). Classical solutions to this

problem include “augmenting paths”-based algorithms (Ford and Fulkerson 1956) and

“push-relabel” style algorithms (Goldberg and Tarjan 1988), to name a few.

Abstract

We develop a framework for incorporating edge-dependent vertex weights (EDVWs)
into the hypergraph minimum s-t cut problem. These weights are able to reflect differ-
ent importance of vertices within a hyperedge, thus leading to better characterized cut
properties. More precisely, we introduce a new class of hyperedge splitting functions
that we call EDVWs-based, where the penalty of splitting a hyperedge depends only
on the sum of EDVWs associated with the vertices on each side of the split. Moreover,
we provide a way to construct submodular EDVWs-based splitting functions and prove
that a hypergraph equipped with such splitting functions can be reduced to a graph
sharing the same cut properties. In this case, the hypergraph minimum s-t cut problem
can be solved using well-developed solutions to the graph minimum s-t cut problem.
In addition, we show that an existing sparsification technique can be easily extended
to our case and makes the reduced graph smaller and sparser, thus further accelerating
the algorithms applied to the reduced graph. Numerical experiments using real-world
data demonstrate the effectiveness of our proposed EDVWs-based splitting functions
in comparison with the all-or-nothing splitting function and cardinality-based splitting
functions commonly adopted in existing work.

Keywords: Hypergraphs, Minimum s-t cut, Edge-dependent vertex weights,
Hyperedge expansion, Sparsification

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Zhu and Segarra Applied Network Science (2022) 7:45

https://doi.org/10.1007/s41109‑022‑00483‑x Applied Network Science

*Correspondence:
yz126@rice.edu

Department of Electrical
and Computer Engineering, Rice
University, 6100 Main Street,
Houston 77005, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00483-x&domain=pdf

Page 2 of 20Zhu and Segarra Applied Network Science (2022) 7:45

A natural extension is the hypergraph minimum s-t cut problem. Graphs are limited

to modeling pairwise relations, while hypergraphs generalize the notion of an edge to

a hyperedge, which can represent higher-order interactions connecting more than two

vertices. Many practical problems can be better modeled by hypergraphs (Papa and

Markov 2007; Schaub et al. 2021). For instance, in the columnwise decomposition of a

sparse matrix for parallel sparse-matrix vector multiplication, hypergraphs provide a

more accurate representation for the communication volume requirement than graphs,

where vertices and hyperedges are respectively used to model columns of the sparse

matrix and the non-zero pattern of each row (Catalyurek and Aykanat 1999). In image

segmentation, hypergraphs are leveraged to describe higher-order relations among

superpixels (Ding and Yilmaz 2008; Kim et al. 2011). In VLSI circuit design, vertices and

hyperedges respectively represent gates and signal nets (Karypis et al. 1999).

The weight of a hypergraph cut is defined as the sum of splitting penalties associated

with every hyperedge. Different from the graph case, there may exist multiple ways to

split a hyperedge. Consequently, for each hyperedge e, we consider a splitting function

we : 2
e
→ R≥0 that assigns a penalty to every possible cut of e where 2e denotes the

power set of e. For any S ⊆ e , we(S) indicates the penalty of partitioning e into S and

e \ S (Li and Milenkovic 2017; Veldt et al. 2020a). Existing works mainly adopt two kinds

of splitting functions. One is the so-called all-or-nothing splitting function in which an

identical penalty is charged if the hyperedge is cut no matter how it is cut (Hein et al.

2013). It is a straightforward extension of the graph case since an edge in a graph is asso-

ciated with only one non-zero splitting penalty. Another slightly more general type is the

class of cardinality-based splitting functions where the splitting penalty we(S) depends

only on the number of vertices placed into S (Veldt et al. 2020a; Zhou et al. 2006).

There are two major approaches for solving the minimum s-t cut problem in hyper-

graphs. One is to adopt submodular splitting functions for all hyperedges (cf. (5) for the

definition of submodular functions), then the hypergraph minimum s-t cut problem can

be solved using submodular function minimizers (Li and Milenkovic 2018b; Veldt et al.

2020a). Another more efficient approach is to reduce the hypergraph to a graph that has

the same cut properties and then leverage existing solutions to the graph minimum s-t

cut problem (Ihler et al. 1993; Lawler 1973; Li and Milenkovic 2017; Veldt et al. 2020a).

The reduction is generally implemented by expanding every hyperedge into a small graph

possibly with additional auxiliary vertices and then concatenating these small graphs to

form the final graph. It has been proved in Veldt et al. (2020a) that, for cardinality-based

splitting functions, the hypergraph cut problem is reducible to a graph cut problem if

and only if the splitting functions are submodular. Moreover, Veldt et al. (2020a) pro-

poses a graph reduction method for an arbitrary submodular cardinality-based splitting

function where a hyperedge e is expanded into a graph that has up to O(|e|) auxiliary

vertices and O(|e|2) edges in the worst case. This may result in large and dense graphs

thus affecting the efficiency of algorithms applied to the reduced graph. To tackle this

problem, sparsification techniques have been developed which try to approximate the

hypergraph cut using a sparse graph with fewer auxiliary vertices (Bansal et al. 2019;

Benczúr and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krauth-

gamer 2015). A follow-up paper (Benson et al. 2020) proposes a sparsification method

for approximating hypergraph cuts defined by submodular cardinality-based splitting

Page 3 of 20Zhu and Segarra Applied Network Science (2022) 7:45

functions. The proposed method reduces the number of auxiliary vertices and the num-

ber of edges needed to expand a hyperedge e to O(ǫ−1 log |e|) and O(ǫ−1|e| log |e|)

respectively, where ǫ is the approximation tolerance parameter.

A disadvantage of the all-or-nothing splitting function as well as cardinality-based

ones is that they treat all the vertices in a hyperedge equally while in practice these ver-

tices might contribute differently to the hyperedge. Such information can be captured by

edge-dependent vertex weights (EDVWs): Every vertex v is associated with a weight γe(v)

for each incident hyperedge e that reflects the contribution of v to e (Chitra and Raphael

2019). The hypergraph model with EDVWs is very relevant in practice. For example, an

e-commerce system can be modeled as a hypergraph with EDVWs where vertices and

hyperedges respectively correspond to users and products, and EDVWs represent the

quantity of a product bought by a user (Li et al. 2018). EDVWs can also be used to model

the author positions in a co-authored manuscript (Chitra and Raphael 2019), the prob-

ability of a pixel belonging to a segment in image segmentation (Ding and Yilmaz 2010),

and the relevance of a word to a document in text mining (Hayashi et al. 2020; Zhu et al.

2021), to name a few.

Contributions In this paper, we propose a new class of splitting functions that we

call EDVWs-based. In an EDVWs-based splitting function, the splitting penalty we(S)

depends only on the sum of EDVWs in S , namely
v∈S

γe(v) . Hence, we can write

we(S) = ge(
∑

v∈S
γe(v)) for some continuous function ge . We prove that we is submodu-

lar if ge is concave. The submodularity is necessary for graph reducibility. We study the

EDVWs-based counterparts of four cardinality-based splitting functions in existing

work and show that they are graph reducible. Moreover, we prove that any EDVWs-

based splitting function with a concave ge is graph reducible and provide a way for such

a reduction. We also show that the sparsification technique proposed in Benson et al.

(2020) can be easily adapted to the EDVWs-based case. The size and the density of the

reduced graph depend on both the shape of ge and the EDVWs’ values. In a nutshell, our

paper provides a framework to study hypergraph cut problems incorporating EDVWs

and generalizes the results presented in Benson et al. (2020); Veldt et al. (2020a) from

cardinality-based splitting functions to EDVWs-based ones.

Paper outline The rest of this paper is structured as follows. Preliminary concepts

and related work about graph and hypergraph cut problems are reviewed in Sect. 2.

The main theoretical results are presented in Sect. 3, where the hypergraph model with

EDVWs is introduced in Sect. 3.1, the proposed EDVWs-based splitting functions are

studied in Sect. 3.2, the graph reducibility results are stated in Sect. 3.3, and the sparsi-

fication technique is discussed in Sect. 3.4. The numerical results shown in Sect. 4 vali-

date the effectiveness of introducing EDVWs into hypergraph cuts. Closing remarks are

included in Sect. 5.

Preliminaries and related work

Graph cuts

Let G = (V , E ,W) denote a weighted and possibly directed graph where V is the ver-

tex set, E is the edge set, and W is the weighted adjacency matrix whose entry Wuv

denotes the weight of the edge from u to v. A cut is a partition of the vertex set V into

Page 4 of 20Zhu and Segarra Applied Network Science (2022) 7:45

two disjoint, non-empty subsets denoted by S and its complement V \ S . The weight

of the cut is defined as

Given two vertices s, t in the graph, the minimum s-t cut problem aims to find the mini-

mum weight cut that separates s and t. Formally, the problem can be written as

The minimum s-t cut problem is the dual of the maximum s-t flow problem. There exist

a number of algorithms for the min-cut/max-flow problem and a summary can be found

in Goldberg (1998). Moreover, it is established in Orlin (2013) that the min-cut/max-

flow problem is solvable in O(|V||E |) time. We also notice that a recent paper (Chen et al.

2022) provides an algorithm that solves this problem in almost-linear time.

Hypergraph cuts

Let H = (V , E) be a hypergraph where V and E respectively denote the vertex set and

the hyperedge set. Unlike the graph case, a hyperedge can connect more than two

vertices thus there may exist multiple ways to split a hyperedge. For each hyperedge

e ∈ E , we introduce a splitting function we : 2
e
→ R≥0 that assigns a non-negative

penalty to every possible cut of e (Li and Milenkovic 2017; Veldt et al. 2020a). The

splitting function satisfies we(∅) = we(e) = 0 , in other words, a penalty of zero is

assigned when the hyperedge is not cut. Moreover, the splitting function is symmet-

ric if it satisfies we(S) = we(e \ S) for any S ⊆ e . The weight of the hypergraph cut

induced by S ⊆ V is defined as the sum of splitting penalties associated with every

hyperedge, i.e.,

There are mainly two types of splitting functions in existing work: (i) An all-or-noth-

ing splitting function assigns the same penalty to every possible cut of the hyperedge

regardless of how its vertices are separated (Hein et al. 2013). More precisely, we(S) is

equal to some positive constant, e.g., the hyperedge weight, for all non-empty S ⊂ e and

we(S) = 0 if S ∈ {∅, e} . (ii) A splitting function is cardinality-based if we(S1) = we(S2)

for all S1,S2 ⊆ e whenever |S1| = |S2| (Veldt et al. 2020a). In other words, the value of

we(S) depends only on the cardinality of S . Several examples are given in Table 1.

(1)cutG(S) =
∑

u∈S,v∈V\S Wuv .

(2)min∅⊂S⊂V cutG(S) s.t. s ∈ S , t ∈ V \ S .

(3)cutH(S) =
∑

e∈E
we(S ∩ e).

Table 1 Examples of cardinality-based and EDVWs-based splitting functions and their corresponding
gadgets where S is a subset of the hyperedge e and a, b are positive constants

Cardinality-based EDVWs-based Corresponding gadget

we(S) = |S| · |e \ S| we(S) = γe(S) · γe(e \ S) Clique gadget

we(S) = min{|S|, |e \ S|} we(S) = min{γe(S), γe(e \ S)} Star gadget

we(S) = min{|S|, |e \ S|, b} we(S) = min{γe(S), γe(e \ S), b} Sym. cardinality/EDVWs-based gadget

we(S) = min{a|S|, b|e \ S|} we(S) = min{aγe(S), bγe(e \ S)} Asym. cardinality/EDVWs-based gadget

Page 5 of 20Zhu and Segarra Applied Network Science (2022) 7:45

Similar to the graph case, the hypergraph minimum s-t cut problem is formulated

as

For a finite set S , a set function F : 2
S

→ R is called submodular if

for every S1 ⊆ S2 ⊂ S and every v ∈ S \ S2 (Bach 2013). If the splitting function we

associated with every hyperedge e ∈ E is submodular, the resulting hypergraph cut in

the form of a sum of submodular functions is also submodular. In this case, the hyper-

graph minimum s-t cut problem can be solved using general submodular function mini-

mizers (Grötschel et al. 1981; Iwata 2003; Iwata et al. 2001; Iwata and Orlin 2009; Orlin

2009; Schrijver 2000) or minimizers for decomposable submodular functions (Ene et al.

2017; Kolmogorov 2012; Li and Milenkovic 2018a). The all-or-nothing splitting function

and the cardinality-based ones listed in Table 1 are all submodular.

Graph reducibility

Since algorithms for the graph minimum s-t cut problem are more efficient than algo-

rithms for general submodular function minimization, another way of solving hyper-

graph cut problems is to reduce the hypergraph to a graph that shares the same or

similar cut properties (Ihler et al. 1993; Lawler 1973; Li and Milenkovic 2017). The

reduction is generally accomplished via hyperedge expansions. Recently, a generalized

hyperedge expansion has been formulated in Veldt et al. (2020a), which projects a hyper-

edge onto a graph allowing directed edges and additional vertices. The formal definition

is given below.

Definition 1 (Gadget splitting function (Veldt et al. 2020a)) A gadget associated with

a hyperedge e is a weighted and possibly directed graph Ge = (V ′, E ′) with vertex set

V ′ = e ∪ V̂ where V̂ is a set of auxiliary vertices. The corresponding gadget splitting

function ŵe : 2e → R≥0 is defined as

A hyperedge splitting function is graph reducible if it is identical to some gadget split-

ting function. A hypergraph cut function defined as (3) or the hypergraph minimum s-t

cut problem is graph reducible if all its hyperedge splitting functions are graph reduc-

ible. It has been proved in Veldt et al. (2020a) that every gadget splitting function ŵe

defined as (6) is submodular. Hence, if a hyperedge splitting function is graph reducible,

it must be submodular.

In the following, we give several examples of splitting functions that have been shown

to be graph reducible in existing works. The all-or-nothing splitting function is graph

reducible and can be constructed from the Lawler gadget described as follows.

Lawler gadget (Lawler 1973). The Lawler gadget replaces a hyperedge e with a digraph

defined on the vertex set V ′ = e ∪ {e′, e′′} where e′, e′′ are two auxiliary vertices. For each

v ∈ e , add a directed edge of weight infinity from v to e′ and a directed edge of weight

(4)min∅⊂S⊂V cutH(S) s.t. s ∈ S , t ∈ V \ S .

(5)F(S1 ∪ {v}) − F(S1) ≥ F(S2 ∪ {v}) − F(S2)

(6)ŵe(S) = minT ⊆V ′,T ∩e=S cutGe
(T).

Page 6 of 20Zhu and Segarra Applied Network Science (2022) 7:45

infinity from e′′ to v. Finally, add a directed edge of weight equal to the hyperedge weight

from e′ to e′′.

The cardinality-based splitting functions listed in Table 1 are all graph reducible and

correspond to the following gadgets, respectively.

Clique gadget (Agarwal et al. 2006). This gadget is an (undirected) clique graph with

vertex set V ′
= e . For every u, v ∈ e , add an edge of weight 1 between u and v.

Star gadget (Agarwal et al. 2006). This gadget is an (undirected) star graph with vertex

set V ′ = e ∪ {ve} where ve is an auxiliary vertex. For each v ∈ e , add an edge of weight 1

between v and ve.

Symmetric cardinality-based gadget (Veldt et al. 2020a). Similar to the Lawler gadget,

this gadget is a digraph with vertex set V ′ = e ∪ {e′, e′′} . For each v ∈ e , add a directed

edge of weight 1 from v to e′ and a directed edge of weight 1 from e′′ to v. Moreover, add

a directed edge of weight b ∈ N from e′ to e′′.

Asymmetric cardinality-based gadget (Veldt et al. 2020a). This gadget is a digraph

defined on V ′ = e ∪ {ve} . For each v ∈ e , add a directed edge of weight a from v to ve and

a directed edge of weight b from ve to v.

Hypergraph cuts with EDVWs

The hypergraph model with EDVWs

In this paper, we consider the hypergraph model with EDVWs as defined next.

Definition 2 (Hypergraph with EDVWs (Chitra and Raphael 2019)) Let

H = (V , E , κ , {γe}) be a hypergraph with EDVWs where V and E respectively denote the

vertex set and the hyperedge set. The function κ : E → R+ assigns positive weights to

hyperedges and those weights reflect the strength of connection. Each hyperedge e ∈ E

is associated with a function γe : e → R+ to assign EDVWs. For convenience, we define

γe(S) =

∑
v∈S

γe(v) for any S ⊆ e.

The introduction of EDVWs enables the hypergraph to model the cases when the ver-

tices in the same hyperedge contribute differently to this hyperedge. For example, in a

coauthorship network, every author (vertex) in general has a different degree of contri-

bution to a paper (hyperedge), usually reflected by the order of the authors. This infor-

mation is lost in traditional hypergraph models but it can be easily encoded through

EDVWs. In the following, we study how to incorporate EDVWs into hypergraph cut

problems.

EDVWs-based splitting functions

A natural extension from cardinality-based splitting functions to EDVWs-based ones is

to make the splitting penalty we(S) dependent only on the sum of EDVWs in S.

Definition 3 (EDVWs-based splitting function) We refer to splitting functions defined

in the following way as EDVWs-based splitting functions:

where ge : [0, γe(e)] → R≥0 satisfies ge(0) = ge(γe(e)) = 0.

(7)we(S) = ge(γe(S)), ∀S ⊆ e,

Page 7 of 20Zhu and Segarra Applied Network Science (2022) 7:45

For trivial EDVWs, namely γe(v) = 1 for all v ∈ e , we have γe(S) = |S| and the

EDVWs-based splitting function reduces to a cardinality-based one. Actually, ge can

be viewed as a continuous extension of the splitting function we . In practice, we can

also incorporate the hyperedge weight κ(e) into the splitting function such as setting

we(S) = κ(e) · ge(γe(S)) . This does not influence the results presented in this paper.

We are interested in submodular splitting functions which make it possible to lever-

age existing solvers for submodular function minimization. Moreover, as mentioned

in Sect. 2.3, submodularity is a necessary condition for a splitting function to be graph

reducible (Veldt et al. 2020a). In the following Theorem 3.2, we show that the EDVWs-

based splitting function defined as (7) is submodular if ge is concave. We first present

several properties of concave functions which will be used later.

Lemma 3.1 (Properties of concave functions) For a concave function g, we have

 (i) If b1 ≤ b2 , a > 0 , the inequality g(b1 + a) − g(b1) ≥ g(b2 + a) − g(b2) holds.

 (ii) If b1 < b2 < b3 , the inequality g(b2) ≥
b3−b2
b3−b1

g(b1) +
b2−b1
b3−b1

g(b3) holds.

 (iii) If b1 < b2 ≤ a and g is symmetric with respect to a, the inequality g(b1) ≤ g(b2)

holds.

Proof

According to the definition of concave functions, the following inequality holds for any x

and y in the domain of a concave function g,

To prove Property (i), we set x = b1 and y = b2 + a . For t =
b2−b1

b2−b1+a
 and t =

a

b2−b1+a
 ,

the above inequality respectively becomes

Property (i) can be obtained by respectively adding both sides of these two inequalities

together. Property (ii) can be proved by setting x = b1 , y = b3 and t =
b3−b2
b3−b1

 . Property

(iii) can be proved by setting x = b1 , y = 2a − b1 and t =
2a−b1−b2
2a−2b1

 .

Theorem 3.2 For EDVWs-based splitting functions defined as (7), if ge is a concave

function, then we is submodular. If ge is concave as well as symmetric with respect to

γe(e)/2 , then we is submodular and symmetric.

Proof

For every S1 ⊆ S2 ⊂ e and every v ∈ e \ S2 , set b1 = γe(S1) , b2 = γe(S2) and a = γe(v) .

When ge is concave, it follows from (i) in Lemma 3.1 that

g(tx + (1 − t)y) ≥ tg(x) + (1 − t)g(y), ∀t ∈ [0, 1].

g(b1 + a) ≥
b2−b1

b2−b1+a
g(b1) +

a
b2−b1+a

g(b2 + a),

g(b2) ≥
a

b2−b1+a
g(b1) +

b2−b1
b2−b1+a

g(b2 + a).

�

ge(γe(S1) + γe(v)) − ge(γe(S1)) ≥ ge(γe(S2) + γe(v)) − ge(γe(S2)).

Page 8 of 20Zhu and Segarra Applied Network Science (2022) 7:45

It immediately follows from (7) that

Hence, we is submodular according to the definition of submodular functions. Moreover,

it is straightforward to show that we satisfies we(S) = we(e \ S) for all S ⊆ e if ge is sym-

metric with respect to γe(e)/2 . �

Graph reducibility of EDVWs-based splitting functions

We first consider the following concave functions for ge.

By substituting these concave functions into (7), we obtain the EDVWs-based splitting

functions listed in Table 1, which are submodular according to Theorem 3.2. The first

three are also symmetric while the last one is generally asymmetric unless a = b . For the

third one, if the parameter b is set to some value no greater than minv∈e γe(v) , it reduces

to the all-or-nothing splitting function; while if b ≥ maxS⊆e min{γe(S), γe(e) − γe(S)} , it

reduces to the second one. We are going to show that the EDVWs-based splitting func-

tions listed in Table 1 are also graph reducible by constructing gadgets that generalize

the gadgets introduced in Sect. 2.3. An illustration of these generalized gadgets is given

in Fig. 1.

Theorem 3.3 The EDVWs-based splitting functions listed in Table 1 are all graph

reducible and respectively correspond to the gadgets described in Table 2.

we(S1 ∪ {v}) − we(S1) ≥ we(S2 ∪ {v}) − we(S2).

(8)ge(x) = x · (γe(e) − x),

(9)ge(x) = min{x, γe(e) − x},

(10)ge(x) = min{x, γe(e) − x, b}, b > 0,

(11)ge(x) = min{ax, b(γe(e) − x)}, a, b > 0.

Table 2 Examples of gadgets Ge = (e ∪ V̂ ,E ′) incorporating EDVWs

Gadget name Type V̂ |E ′| Description

(EDVWs-based) Clique gadget Undirected ∅ |e|(|e| − 1)/2 For every u, v ∈ e , add an edge (u, v) of
weight γe(u)γe(v).

(EDVWs-based) Star gadget Undirected {ve} |e| For every v ∈ e , add an edge (v , ve) of
weight γe(v).

Sym. EDVWs-based gadget Directed {e′ , e′′} 2|e| + 1 For every v ∈ e , add a directed edge of
weight γe(v) from v to e′ and a directed
edge of weight γe(v) from e′′ to v. Moreover,
add a directed edge of weight b from e′
to e′′.

Asym. EDVWs-based gadget Directed {ve} 2|e| For every v ∈ e , add a directed edge of
weight aγe(v) from v to ve and a directed
edge of weight bγe(v) from ve to v.

Page 9 of 20Zhu and Segarra Applied Network Science (2022) 7:45

Proof

In the following, we prove these four cases one by one.

(i) It follows from (6) that the splitting function constructed from the clique gadget is

(ii) According to (6), there are two ways to split S from e in the star gadget: set T = S or

T = S ∪ {ve} . The corresponding graph cut weights cutGe
(T) are respectively equal to

γe(S) and γe(e \ S) . Take the minimum one and the result follows.

(iii) For the symmetric EDVWs-based gadget, there are four ways to split S from e:

set T = S , T = S ∪ {e′, e′′} , T = S ∪ {e′} or T = S ∪ {e′′} . They respectively result in

cutGe
(T) equal to γe(S) , γe(e \ S) , b and γe(e) . Notice that the last one is always no less

than the first two. The result follows by taking the minimum one.

(iv) To split S from e in the asymmetric EDVWs-based gadget, we can set T = S or

T = S ∪ {ve} which respectively lead to cutGe
(T) equal to aγe(S) and bγe(e \ S) . The

proof is completed by taking the minimum one.

It has been proved in Veldt et al. (2020a) that all submodular cardinality-based splitting

functions are graph reducible. More precisely, any submodular cardinality-based splitting

ŵe(S) = cutGe
(S) =

∑

u∈S,v∈e\S

γe(u)γe(v) =
∑

u∈S

γe(u) ·
∑

v∈e\S

γe(v) = γe(S) · γe(e \ S).

�

v1

v2 v3

e(v1) e(v2)

e(v1) e(v3)

e(v2) e(v3)

(a)

v1

v2 v3

ve

e(v1)

e(v2) e(v3)

(b)

v1

v2

v3

e e

e(v1)

e(v2)

e(v3)

e(v1)

e(v2)

e(v3)

b

(c)

v1

v2 v3

ve

a e(v1)b e(v1)

a e(v2)

b e(v2) a e(v3)

b e(v3)

(d)
Fig. 1 The illustration of (a) a clique gadget, (b) a star gadget, (c) a symmetric EDVWs-based gadget, and (d)
an asymmetric EDVWs-based gadget, for a hyperedge e = {v1 , v2 , v3}

Page 10 of 20Zhu and Segarra Applied Network Science (2022) 7:45

function can be constructed from a combination of up to |e| − 1 different asymmetric car-

dinality-based gadgets. For a symmetric submodular cardinality-based splitting function,

it can also be constructed from a combination of up to ⌊|e|/2⌋ symmetric cardinality-based

gadgets. In Theorem 3.4 below, we show graph reducibility for the proposed submodular

EDVWs-based splitting functions. To this end, we first define two sets as follows.

Denote by Si the subset of e corresponding to the ith smallest element in Qa . The set Qs

is a subset of Qa and contains the smallest |Qs| elements in Qa.

Theorem 3.4 All EDVWs-based splitting functions defined as (7) with concave ge are

graph reducible. A hyperedge paired with such a splitting function can be reduced to a

graph which is a combination of at most |Qa| asymmetric EDVWs-based gadgets. If, in

addition, ge is symmetric, the hyperedge can also be reduced to a graph combining at most

|Qs| symmetric EDVWs-based gadgets.

Proof

We first consider the case when ge is concave and symmetric, then study the more general

case when ge is concave and possibly asymmetric.

(i) Consider a hyperedge e and an EDVWs-based splitting function we with concave,

symmetric ge . We are going to show that we corresponds to some gadget splitting func-

tion ŵe and one way for constructing such a gadget is to combine r = |Qs| symmetric

EDVWs-based gadgets. For the ith symmetric EDVWs-based gadget, denote the two

auxiliary vertices by e′
i
 and e′′

i
 , set the weight of the edge from e′

i
 to e′′

i
 to bi = γe(Si) , then

scale all edge weights by a factor ai ≥ 0 . The combined gadget contains |e| + 2|Qs| verti-

ces and (2|e| + 1)|Qs| edges. Its corresponding splitting function can be written as

By substituting Si into (14) we get

which can be condensed in the following matrix form

(12)Qs = {γe(S)|S ⊆ e, 0 < γe(S) ≤ γe(e)/2},

(13)Qa = {γe(S)|∅ ⊂ S ⊂ e}.

(14)ŵe(S) =
∑

r

i=1 ai · min{γe(S), γe(e \ S), bi}.

ŵe(Si) =
∑r

j=1 aj · min{bi, γe(e) − bi, bj}

=
∑i

j=1 ajbj +
∑r

j=i+1 ajbi, ∀i = 1, · · · , r,

(15)











b1 b1 b1 b1 · · · b1

b1 b2 b2 b2 · · · b2

b1 b2 b3 b3 · · · b3

b1 b2 b3 b4 · · · b4

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

b1 b2 b3 b4 · · · br











� �� �

B1











a1

a2

a3

a4

.

.

.

ar











=











ŵe(S1)

ŵe(S2)

ŵe(S3)

ŵe(S4)

.

.

.

ŵe(Sr)











.

Page 11 of 20Zhu and Segarra Applied Network Science (2022) 7:45

The question left is whether there exist non-negative a1, · · · , ar such that ŵe(Si) = we(Si)

for all i ∈ [r] . To identify such ai , we replace ŵe(Si) with we(Si) and invert the system (15)

as follows

where

It follows that

Since a1, · · · , ar need to be non-negative, we are left to prove the following inequalities:

Moreover, it can be observed from (15) that ŵe(S1) ≤ ŵe(S2) ≤ · · · ≤ ŵe(Sr) due to the

structure of B1 and the non-negativity of coefficients ai . Hence, we also need to show

that

By introducing b0 = 0 , the inequalities (16), (17) can be rewritten as

It follows immediately from (ii) in Lemma 3.1. The inequalities (19) (including (18)) can

be rewritten as













a1

a2

.

.

.

ar−1

ar













= B
−1
1













we(S1)

we(S2)

.

.

.

we(Sr−1)

we(Sr)













,

B
−1

1
=



















b2
(b2−b1)b1

−
1

b2−b1
0 · · · 0 0 0

−
1

b2−b1

b3−b1
(b3−b2)(b2−b1)

−
1

b3−b2
· · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
1

br−1−br−2

br−br−2

(br−br−1)(br−1−br−2)
−

1

br−br−1

0 0 0 · · · 0 −
1

br−br−1

1

br−br−1



















.













a1

a2

.

.

.

ar−1

ar













=



















b2
(b2−b1)b1

we(S1) −
1

b2−b1
we(S2)

b3−b1
(b3−b2)(b2−b1)

we(S2) −
1

b2−b1
we(S1) −

1

b3−b2
we(S3)

.

.

.
br−br−2

(br−br−1)(br−1−br−2)
we(Sr−1) −

1

br−1−br−2
we(Sr−2) −

1

br−br−1
we(Sr)

1

br−br−1
we(Sr) −

1

br−br−1
we(Sr−1)



















.

(16)we(S1) ≥
b1
b2
we(S2),

(17)we(Si) ≥
bi+1−bi

bi+1−bi−1
we(Si−1) +

bi−bi−1

bi+1−bi−1
we(Si+1), ∀i = 2, · · · , r − 1,

(18)we(Sr) ≥ we(Sr−1).

(19)we(S1) ≤ we(S2) ≤ · · · ≤ we(Sr).

(20)ge(bi) ≥
bi+1−bi

bi+1−bi−1
ge(bi−1) +

bi−bi−1

bi+1−bi−1
ge(bi+1), ∀i = 1, · · · , r − 1.

(21)ge(b1) ≤ ge(b2) ≤ · · · ≤ ge(br),

Page 12 of 20Zhu and Segarra Applied Network Science (2022) 7:45

which can be proved according to (iii) in Lemma 3.1. Notice that, when there exists any

equality in (16)–(18), the corresponding ai equals 0, which implies that the number of

symmetric EDVWs-based gadgets needed to construct the combined gadget can be fur-

ther reduced. The equality in (17) (or see (20)) means that the points at bi−1 , bi and bi+1

are colinear.

(ii) Next we consider the case when ge is concave and possibly asymmetric. In this case,

we can be shown to be identical to some gadget splitting function ŵe and such a gadget

can be constructed by combing r = |Qa| asymmetric EDVWs-based gadgets. The ith one

is paired with parameters ai(γe(e) − bi) and aibi where ai ≥ 0 is a scaling parameter. The

combined gadget consists of |e| + |Qa| vertices and 2|e| · |Qa| edges. Its corresponding

splitting function can be written as

We set bi = γe(Si) for all i ∈ [r] . Then it holds that bi + br+1−i = γe(e) . By substituting Si

into (22) we get

which can also be written in the following matrix from

Replace ŵ(Si) with w(Si) and invert the system (23) to find the valid coefficients ai . For

convenience, we introduce br+1 = γe(e) . The inverse of B2 can be written as

Notice that B−1

2
 has the same structure as B−1

1
 except for the last element as well as the

scaling coefficient 1/br+1 . Since a1, · · · , ar need to be non-negative, we are left to prove

the following inequalities:

(22)ŵe(S) =
∑

r

i=1 ai · min{(γe(e) − bi)γe(S), biγe(e \ S)}.

ŵe(Si) =
∑r

j=1 aj · min{(γe(e) − bj)bi, bj(γe(e) − bi)},

=
∑i

j=1 ajbjbr+1−i +
∑r

j=i+1 ajbr+1−jbi, ∀i = 1, · · · , r,

(23)













b1br b1br−1 b1br−2 b1br−3 · · · b1b2 b1b1

b1br−1 b2br−1 b2br−2 b2br−3 · · · b2b2 b2b1

b1br−2 b2br−2 b3br−2 b3br−3 · · · b3b2 b3b1

b1br−3 b2br−3 b3br−3 b4br−3 · · · b4b2 b4b1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

b1b2 b2b2 b3b2 b4b2 · · · br−1b2 br−1b1

b1b1 b2b1 b3b1 b4b1 · · · br−1b1 brb1













� �� �

B2













a1

a2

a3

a4

.

.

.

ar−1

ar













=













ŵe(S1)

ŵe(S2)

ŵe(S3)

ŵe(S4)

.

.

.

ŵe(Sr−1)

ŵe(Sr)













.

1

br+1

·



















b2
(b2−b1)b1

−
1

b2−b1
0 · · · 0 0 0

−
1

b2−b1

b3−b1
(b3−b2)(b2−b1)

−
1

b3−b2
· · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · −
1

br−1−br−2

br−br−2

(br−br−1)(br−1−br−2)
−

1

br−br−1

0 0 0 · · · 0 −
1

br−br−1

br+1−br−1

(br+1−br)(br−br−1)



















.

(24)we(S1) ≥
b1
b2
we(S2),

Page 13 of 20Zhu and Segarra Applied Network Science (2022) 7:45

By introducing b0 = 0 , the above inequalities can be rewritten and summarized as

which immediately follows (ii) in Lemma 3.1.

For the two cases discussed in Theorem 3.4, the required number of building gadgets |Qs|

and |Qa| are respectively upper bounded by 2|e|−1 − 1 and 2|e| − 2 . For trivial EDVWs, the

theorem coincides with the results for cardinality-based splitting functions in (Veldt et al.

2020a) with |Qs| and |Qa| respectively reducing to ⌊|e|/2⌋ and |e| − 1 . Hence, EDVWs-based

splitting functions generally lead to a denser graph than cardinality-based splitting func-

tions in the worst case. In addition, when ge is concave as well as symmetric, Theorem 3.4

provides two ways for the reduction while the one leveraging symmetric EDVWs-based

gadgets requires fewer edges.

Sparsifying hypergraph-to-graph reductions

Graph min-cut/max-flow algorithms have a complexity that depends on the number of

vertices and the number of edges in the graph (Goldberg 1998). The reduction procedures

discussed above may result in large and dense graphs, thus affecting the efficiency of algo-

rithms applied to the reduced graph. A workaround is to find a smaller and sparser graph

whose cut approximates, rather than exactly recovers, the hypergraph cut (Bansal et al.

2019; Benczúr and Karger 1996; Benson et al. 2020; Chekuri and Xu 2018; Kogan and Krau-

thgamer 2015). In Benson et al. (2020), a sparsification technique is proposed for hyper-

graphs with submodular cardinality-based splitting functions. It is based on approximating

concave functions using piecewise linear curves and can be generalized to our EDVWs-

based case due to the formulation (7). In the following, we discuss this in detail.

As shown in (3), the hypergraph cut function is defined as the sum of splitting functions

associated with every hyperedge. Hence, the problem can be decomposed into approxi-

mately modeling each hyperedge using a sparse gadget with a smaller set of auxiliary ver-

tices. More formally, we would like to find such a gadget whose corresponding splitting

function ŵe as defined in (6) approximates the splitting penalties associated with a hyper-

edge, i.e.,

where ǫ ≥ 0 is an approximation tolerance parameter. This is equivalent to finding some

gadget splitting function w̃e satisfying 1
δ
we(S) ≤ w̃e(S) ≤ δwe(S) with the correspond-

ence ŵe(S) = δw̃e(S) and ǫ = δ
2
− 1.

We first consider EDVWs-based splitting functions with concave and symmetric ge .

We have shown in Theorem 3.4 that these splitting functions can be exactly constructed

from a combination of |Qs| symmetric EDVWs-based gadgets. Following the idea

(25)we(Si) ≥
bi+1−bi

bi+1−bi−1
we(Si−1) +

bi−bi−1

bi+1−bi−1
we(Si+1), ∀i = 2, · · · , r − 1,

(26)we(Sr) ≥
br+1−br

br+1−br−1
we(Sr−1).

(27)ge(bi) ≥
bi+1−bi

bi+1−bi−1
ge(bi−1) +

bi−bi−1

bi+1−bi−1
ge(bi+1), ∀i = 1, · · · , r,

�

(28)we(S) ≤ ŵe(S) ≤ (1 + ǫ)we(S), ∀S ⊆ e,

Page 14 of 20Zhu and Segarra Applied Network Science (2022) 7:45

in Benson et al. (2020), we next show how to approximate these splitting functions using

a smaller set of symmetric EDVWs-based gadgets. Recall from the proof of Theorem 3.4

that the combination of r symmetric EDVWs-based gadgets respectively with positive

parameters b1 < · · · < br and combination coefficients a1, · · · , ar has the splitting func-

tion in the form of (14). Its continuous extension can be written as follows. Since it is

symmetric, we can just consider the first half of the function

When x ≤ b1 , (29) can be rewritten as ĝe(x) = (
∑r

i=1
ai) · x ; when x > br ,

we have ĝe(x) =
∑r

i=1
aibi ; when bi−1 < x ≤ bi for any i = 2, · · · , r , we have

ĝe(x) =
∑i−1

j=1
ajbj + (

∑r
j=i aj) · x . Hence, ĝe(x) can also be characterized as the lower

envelope of a set of r + 1 linear functions having non-negative decreasing slopes and

non-negative increasing intercepts (Benson et al. 2020), i.e.,

Equivalently, the relations between the coefficients ai, bi and mi, di can also be described

as ai = mi − mi+1 and bi = (di+1 − di)/ai.

The sparsification problem can be described as: Find the piecewise linear function ĝe

with the minimum number of pieces that approximates ge at the points in Qs . It can be

formulated as follows.

The first constraint is from (28). The third constraint is added without loss of general-

ity since an improved approximation could be found if there is some fi strictly greater

than ge at all points in {0} ∪ Qs . The main difference with the corresponding formulation

in (Benson et al. 2020) is that, for the cardinality-based case there considered, the set Qs

consists of only integers from 1 to ⌊|e|/2⌋ ; for the EDVWs-based case, the elements in Qs

depend on the values of EDVWs thus they are not necessarily integers or evenly spaced.

We can modify the algorithm proposed in Benson et al. (2020) to find an optimal solu-

tion to (31). Here we briefly introduce the procedure and please refer to Benson et al.

(2020) for a detailed explanation. For convenience, we denote the elements in Qs by

q1 < q2 < · · · < qn where n = |Qs| and define a series of functions with the ith one join-

ing (qi, ge(qi)) and (qi+1, ge(qi+1)) , i.e., hi(x) =
ge(qi+1)−ge(qi)

qi+1−qi
(x − qi) + ge(qi) . The last lin-

ear piece fr+1 is first determined. According to (30) and (31), it has a zero slope and

passes through (qn, ge(qn)) , thus we have fr+1(x) = ge(qn) . For the first linear piece f1 , it

goes through the origin according to (30) and its slope m1 is set to
ge(q1)
q1

 so that it can

provide a qualified approximation for as many points in Qs as possible. Then we identify

the first point qℓ in Qs that does not have a (1 + ǫ)-approximation. In other words,

(29)ĝe(x) =
∑r

i=1 ai · min{x, bi}, where x ∈ [0, γe(e)/2].

(30)

ĝe(x) = min{f1(x), f2(x), · · · , fr+1(x)},

where fi(x) = mix + di,

mi =
∑r

j=i aj for 1 ≤ i ≤ r andmr+1 = 0,

d1 = 0 and di =
∑i−1

j=1 ajbj for 2 ≤ i ≤ r + 1.

(31)

min r

s.t. ge(x) ≤ ĝe(x) ≤ (1 + ǫ)ge(x),∀x ∈ Qs,

ĝe(x) is defined as (30),

For each i ∈ [r + 1], fi(x) = ge(x) for some x ∈ {0} ∪ Qs.

Page 15 of 20Zhu and Segarra Applied Network Science (2022) 7:45

f1(qi) ≤ (1 + ǫ)ge(qi) holds for i = 1, · · · , ℓ − 1 and becomes invalid since i = ℓ . We

stop searching more linear pieces if (i) ℓ ≥ n , or (ii) ge(qn) ≤ (1 + ǫ)ge(qℓ) where (ii)

implies that qℓ, · · · , qn have a (1 + ǫ)-approximation provided by the last linear piece.

Otherwise, we continue to find the next linear piece f2 in order to cover the rest of the

points. We identify i∗ such that hi∗−1(qℓ) ≤ (1 + ǫ)ge(qℓ) and hi∗(qℓ) > (1 + ǫ)ge(qℓ) . In

other words, the linear function hi∗−1 provides a qualified approximation at qℓ (i.e., the

first point has not been covered yet), but the following functions hi for i ≥ i
∗ do not.

Hence, f2 should pass through the point (qi∗ , ge(qi∗)) and lie between hi∗−1 and hi∗ (its

slope should be greater than hi∗ ’s slope and no greater than hi∗−1 ’s slope). In the mean-

time, we expect f2 to provide a qualified approximation at qℓ and have a slope as small as

possible so that more points after qi∗ can be covered. Therefore, we set f2 to the line join-

ing (qℓ, (1 + ǫ)ge(qℓ)) and (qi∗ , ge(qi∗)) . We refer the reader to Figure 4 in (Benson et al.

2020) for an illustration. Then we update qℓ to the new start point in Qs that does not

have a (1 + ǫ)-approximation yet, and check the stopping criterion. We repeat the pro-

cess of picking f2 to add more linear pieces until we meet the stopping criterion.

We can also ignore the particular positions of elements in Qs and try to provide a

(1 + ǫ)-approximation for ge(x) everywhere in the range [0, γe(e)/2] . This approach has

two benefits: (i) It avoids building the set Qs . (ii) If multiple hyperedges share the same

continuous extension ge , we can find their sparsified reductions all at once. The proce-

dure of finding the set of linear pieces can be modified as follows. The last linear piece

should be fr+1(x) = ge(γe(e)/2) . The first linear piece f1 is tangent to ge at the origin. We

identify the value z ∈ [0, γe(e)/2] that satisfies f1(z) = (1 + ǫ)ge(z) . If no such a z exits or

ge(γe(e)/2) ≤ (1 + ǫ)ge(z) , we stop. Otherwise, we add the next linear piece f2 which is

selected to pass through (z, (1 + ǫ)ge(z)) and be tangent to ge as some point greater than

z. We repeat the process of choosing f2 to add more linear pieces until the whole range

[0, γe(e)/2] has been covered. An illustrative example is given in Fig. 2.

For EDVWs-based splitting functions with concave and possibly asymmetric ge , they

can be approximated using a smaller set of asymmetric EDVWs-based gadgets. It has

been proved in (Benson et al. 2020) that the continuous extension of the splitting func-

tion in the form of (22) is also piecewise linear, thus we can adopt a similar reduction

procedure as described above.

Moreover, a direct extension of Theorem 4.1 in (Benson et al. 2020) is that the number

of symmetric/asymmetric EDVWs-based gadgets needed to approximate an EDVWs-

based splitting function with concave, symmetric/asymmetric ge is upper bounded by

O(log1+ǫ γe(e)) which behaves as ǫ−1 log γe(e) as ǫ approaches zero. This bound could be

further improved if a specific concave function ge is chosen.

Experiments

We show the effects of introducing EDVWs into hypergraph cuts via numerical exper-

iments. We consider the binary classification of hypergraph vertices: Given the labels

of a subset of vertices VL
= V

L

1
∪ V

L

2
 where VL

1
 and VL

2
 respectively consist of all labeled

vertices in two classes, the task is to estimate the labels of the rest of the vertices. The

problem can be formulated as a generalized hypergraph minimum s-t cut problem with

multiple source and sink vertices, i.e.,

Page 16 of 20Zhu and Segarra Applied Network Science (2022) 7:45

Then the vertices in S and V \ S are classified into two categories, respec-

tively. We consider the first three EDVWs-based splitting functions listed in

Table 1, namely we(S) = γe(S) · γe(e \ S) , we(S) = min{γe(S), γe(e \ S)} and

we(S) = min{γe(S), γe(e \ S), b} , which are symmetric and graph reducible. For any of

them, we can reduce the hypergraph to a graph sharing the same cut properties. Follow-

ing the idea in (Blum and Chawla 2001), we introduce another two vertices – a super-

source s and a super-sink t – into the reduced graph. For every v ∈ V
L

1
 , add an edge of

weight infinity from s to v; for every v ∈ V
L

2
 , add an edge of weight infinity from v to t.

Then problem (32) can be converted into a common minimum s-t cut problem defined

on the new graph in the form of (2). We solve the graph minimum s-t cut problem using

the highest-label preflow-push algorithm implemented in the NetworkX package (Hag-

berg et al. 2008).

We adopt the 20 Newsgroups dataset and consider the task of document classifica-

tion. The dataset contains documents in different categories and we consider the docu-

ments in categories “rec.motorcycles” and “sci.space”. We extract the 200 most frequent

words in the corpus after removing stop words and words appearing in > 3% and < 0.2%

of the documents. We then remove a small fraction of documents that do not contain

the selected words and finally get 1852 documents with 932 and 920 documents in two

classes, respectively. To model the text dataset using hypergraphs with EDVWs, we con-

sider documents as vertices and words as hyperedges. A document (vertex) belongs to

a word (hyperedge) if the word appears in the document. The EDVWs are taken as the

corresponding tf-idf (term frequency-inverse document frequency) values (Leskovec

et al. 2020) to the power of α , where α is a tunable parameter. More precisely, we set

(32)min∅⊂S⊂V cutH(S) s.t. VL

1
⊆ S ,VL

2
⊆ V \ S .

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Fig. 2 An example where ge(x) = −0.125x2 + 2x . We want to find a (1 + ǫ)-approximation for ge(x)
everywhere in the range [0, 8] where we set ǫ = 0.1 . The last linear piece f3 has a zero slope and passes
through (8, 8), thus f3(x) = 8 . The first linear piece f1 is tangent to ge at the origin, hence f1(x) = 2x . At
the point x = 1.4545 , f1(x) = (1 + ǫ)ge(x) , meaning that f1 provides a qualified approximation for ge(x)
in the range [0, 1.4545]. The second linear piece f2 passes through (1.4545, 2.909) and is tangent to ge at
(2.909, 4.7602),namely f2(x) = 1.2727x + 1.0579 . At x = 5.2894 , f2(x) = (1 + ǫ)ge(x) , hence f2 provides a
qualified approximation for ge(x) in the range [1.4545, 5.2894]. The rest of the points in the range [5.2894, 8]
have been covered by f3

Page 17 of 20Zhu and Segarra Applied Network Science (2022) 7:45

The term frequency tf(e, v) is the relative frequency of word e in document v. The inverse

document frequency idf(e) measures the informativeness of word e, i.e., if it is common

or rare across all documents. Hence, the tf-idf values are able to reflect the importance

of a word to a document in a corpus and thus an ideal choice for EDVWs. We adopt the

TfidfTransformer function in the scikit-learn package with default parameters to com-

pute the tf-idf values. The parameter α is introduced for extra flexibility. When α = 0 ,

we get the trivial EDVWs and the splitting functions reduce to cardinality-based ones.

For the splitting function we(S) = min{γe(S), γe(e \ S), b} , we set b = βγe(e) where β is

also adjustable. If a small enough β is selected, the splitting function reduces to the all-

or-nothing case.

Figure 3 shows the effects of the parameters α and β on the classification performance.

We plot the average classification accuracy and the standard deviation over 10 realiza-

tions which adopt different sets of labeled vertices. We respectively set the fraction of

labeled vertices to 0.3 in (a-d) and 0.5 in (e-h). The three considered EDVWs-based split-

ting functions respectively correspond to (a) (e), (b) (f), and (c-d) (g-h). For the third

splitting function, we fix β = 0.15 to observe the influence of α in (c) (g) and fix α = 1 to

test β in (d) (h). It can be observed that, for all of them, the best performance is achieved

for intermediate values of α or β rather than the extreme cases when the EDVWs-based

splitting function reduces to a cardinality-based splitting function or the all-or-nothing

splitting function.

Figure 4 provides a more direct comparison between the proposed EDVWs-based

splitting functions and existing ones. For EDVWs-based splitting functions, we adopt

a 5-fold cross-validation to find the optimal α and β . In (a), we search the optimal α

over the set {0 : 0.2 : 3} . In (b-c), we search α over {0 : 0.2 : 5} . In (d), we search β over

(33)γe(v) = tf-idf(e, v)α , where tf-idf(e, v) = tf(e, v) · idf(e).

0 0.6 1.2 1.8 2.4 3
40

50

60

70

80

90

100

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 %

(a)

EDVWs-based Cardinality-based All-or-nothing

0 0.6 1.2 1.8 2.4 3

60

70

80

90

100

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 %

(e)

0 0.6 1.2 1.8 2.4 3
40

50

60

70

80

90

100

(b)

0 0.6 1.2 1.8 2.4 3

84

85

86

87

88

89

(f)

0 0.6 1.2 1.8 2.4 3
60

65

70

75

80

85

90

95

(c)

0 0.6 1.2 1.8 2.4 3
87

88

89

90

91 (g)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5
80

82

84

86

88

90 (d)

-3.5 -3 -2.5 -2 -1.5 -1 -0.5
76

80

84

88

92

(h)

Fig. 3 Classification performance as a function of the parameters α and β . For the two rows, the fraction
of labeled vertices is respectively set to 0.3 and 0.5. (a) and (e) correspond to the splitting function

we(S) = γe(S) · γe(e \ S) ; (b) and (f) correspond to the splitting function we(S) = min{γe(S), γe(e \ S)} ;
(c), (d) and (g), (h) correspond to the splitting function we(S) = min{γe(S), γe(e \ S),βγe(e)} where we fix

β = 0.15 in (c), (g) and we fix α = 1 in (d), (h)

Page 18 of 20Zhu and Segarra Applied Network Science (2022) 7:45

20 equally spaced values between 10−3.5 and 10−1/3 in the log scale. We can see that

adopting EDVWs-based splitting functions improves the classification performance

over a wide range of train-test split ratios.

Conclusion

We developed a framework for incorporating EDVWs into hypergraph cut problems

and generalized reduction as well as sparsification techniques recently proposed for

cardinality-based splitting functions. Through a real-world text mining application,

we showcased the value of the introduction of EDVWs. There are numerous direc-

tions for future work: (i) As mentioned in the introduction, hypergraph minimum

cuts can be used to solve various real-world applications (Catalyurek and Aykanat

1999; Ding and Yilmaz 2008; Karypis et al. 1999; Kim et al. 2011) or as subroutines

in many machine learning algorithms (Liu et al. 2021; Veldt et al. 2020b). Hence, it

would be desirable to apply the proposed framework to these applications and algo-

rithms and evaluate the performance. (ii) Another direction is to further extend the

proposed framework to multiway cuts (Chekuri and Ene 2011; Okumoto et al. 2012;

Veldt et al. 2020a; Zhao et al. 2005) or other types of cuts such as normalized cuts (Li

and Milenkovic 2017, 2018b; Fountoulakis et al. 2021). (iii) An open problem is

whether all submodular splitting functions are graph reducible (Veldt et al. 2020a).

Abbreviations

EDVWs Edge-dependent vertex weights
VLSI Very large scale integration
tf-idf Term frequency-inverse document frequency

Acknowledgements

Not applicable

Authors contributions

YZ developed the methodology, conducted the experiments, and wrote the initial manuscript. SS supervised the study,
contributed to the discussions, and edited the manuscript. Both authors read and approved the final manuscript.

Funding

This work was supported by NSF under award CCF 2008555.

Availability of data and materials

The code and data are available at https:// github. com/ yuzhu 2019/ hg_ cut_ edvws.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of labeled vertices

40

50

60

70

80

90

100

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy
 %

(a)

EDVWs-based Cardinality-based All-or-nothing

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of labeled vertices

40

50

60

70

80

90

100

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of labeled vertices

40

50

60

70

80

90

100

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of labeled vertices

75

80

85

90

(d)

Fig. 4 Performance comparison between the proposed splitting functions and existing ones.
(a), (b) and (c-d) respectively correspond to the splitting functions we(S) = γe(S) · γe(e \ S) ,

we(S) = min{γe(S), γe(e \ S)} and we(S) = min{γe(S), γe(e \ S),βγe(e)} . We fix β = 0.15 in (c) and fix
α = 1 in (d). The red curves (cardinality-based) and the green curve (all-or-nothing) respectively correspond
to the cases when α = 0 and when β is small enough (β = 10

−3.5 here). For the blue curves (EDVWs-based),
a 5-fold cross-validation is adopted in (a–c) to search the optimal α and in (d) to search the optimal β

https://github.com/yuzhu2019/hg_cut_edvws

Page 19 of 20Zhu and Segarra Applied Network Science (2022) 7:45

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Received: 28 February 2022 Accepted: 13 June 2022

References

Agarwal S, Branson K, Belongie S (2006) Higher order learning with graphs. In: International conference on machine learning.
https:// doi. org/ 10. 1145/ 11438 44. 11438 47

Bach F (2013) Learning with submodular functions: a convex optimization perspective. Foundations and Trends® in machine
learning 6(2-3):145–373

Bansal N, Svensson O, Trevisan L (2019) New notions and constructions of sparsification for graphs and hypergraphs. In: IEEE
symposium on foundations of computer science, pp 910–928, https:// doi. org/ 10. 1109/ focs. 2019. 00059

Benczúr AA, Karger DR (1996) Approximating s-t minimum cuts in Õ(n2) time. In: Symposium on theory of computing, pp
47–55. https:// doi. org/ 10. 1145/ 237814. 237827

Benson AR, Kleinberg J, Veldt N (2020) Augmented sparsifiers for generalized hypergraph cuts with applications to decom-
posable submodular function minimization. arXiv preprint arXiv: 2007. 08075https:// arxiv. org/ abs/ 2007. 08075

Blum A, Chawla S (2001) Learning from labeled and unlabeled data using graph mincuts. In: International conference on
machine learning, pp 19–26. https:// doi. org/ 10. 1184/ R1/ 66068 60. V1

Bokhari SH (1987) Assignment problems in parallel and distributed computing, vol 32. Springer, Boston. https:// doi.
org/ 10. 1007/ 978-1- 4613- 2003-6

Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70(2):109–131. https:// doi.
org/ 10. 1007/ s11263- 006- 7934-5

Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137. https:// doi. org/ 10. 1109/ TPAMI. 2004. 60

Catalyurek UV, Aykanat C (1999) Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplica-
tion. IEEE Trans Parallel Distrib Syst 10(7):673–693. https:// doi. org/ 10. 1109/ 71. 780863

Chekuri C, Ene A (2011) Approximation algorithms for submodular multiway partition. In: IEEE symposium on foundations of
computer science, pp 807–816. https:// doi. org/ 10. 1109/ FOCS. 2011. 34

Chekuri C, Xu C (2018) Minimum cuts and sparsification in hypergraphs. SIAM J Comput 47(6):2118–2156. https:// doi. org/ 10.
1137/ 18M11 63865

Chen L, Kyng R, Liu YP, Peng R, Gutenberg MP, Sachdeva S (2022) Maximum flow and minimum-cost flow in almost-linear
time. arXiv preprint arXiv: 2203. 00671https:// arxiv. org/ abs/ 2203. 00671

Cherkassky BV, Goldberg AV, Martin P, Setubal JC, Stolfi J (1998) Augment or push: a computational study of bipartite match-
ing and unit-capacity flow algorithms. ACM J Exp Algorithm 3:8. https:// doi. org/ 10. 1145/ 297096. 297140

Chitra U, Raphael B (2019) Random walks on hypergraphs with edge-dependent vertex weights. In: International conference
on machine learning, pp 1172–1181. http:// proce edings. mlr. press/ v97/ chitr a19a. html

Colbourn CJ (1991) Combinatorial aspects of network reliability. Ann Oper Res 33(1):1–15. https:// doi. org/ 10. 1007/ BF020
61656

Ding L, Yilmaz A (2008) Image segmentation as learning on hypergraphs. In: IEEE international conference on machine learn-
ing and applications, pp 247–252. https:// doi. org/ 10. 1109/ ICMLA. 2008. 17

Ding L, Yilmaz A (2010) Interactive image segmentation using probabilistic hypergraphs. Pattern Recognit 43(5):1863–1873.
https:// doi. org/ 10. 1016/j. patcog. 2009. 11. 025

Ene A, Nguyên HL, Végh LA (2017) Decomposable submodular function minimization discrete and continuous. In: Advances
in neural information processing systems, pp 2874–2884. https:// dl. acm. org/ doi/ 10. 5555/ 32949 96. 32950 47

Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8:399–404. https:// doi. org/ 10. 4153/
CJM- 1956- 045-5

Fountoulakis K, Li P, Yang S (2021) Local hyper-flow diffusion. In: Advances in neural information processing systems,
vol 34, arXiv: 2102. 07945

Goldberg AV (1998) Recent developments in maximum flow algorithms. In: Scandinavian workshop on algorithm theory, pp
1–10, https:// doi. org/ 10. 1007/ BFb00 54350

Goldberg AV, Tarjan RE (1988) A new approach to the maximum-flow problem. J ACM 35(4):921–940. https:// doi. org/ 10.
1145/ 48014. 61051

Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combina-
torica 1(2):169–197. https:// doi. org/ 10. 1007/ BF025 79273

Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Tech. rep.,
Los Alamos National Lab.(LANL), Los Alamos, NM (United States), https:// www. osti. gov/ biblio/ 960616

Hayashi K, Aksoy SG, Park CH, Park H (2020) Hypergraph random walks, laplacians, and clustering. In: Conference on informa-
tion and knowledge management, pp 495–504. https:// doi. org/ 10. 1145/ 33405 31. 34120 34

https://doi.org/10.1145/1143844.1143847
https://doi.org/10.1109/focs.2019.00059
https://doi.org/10.1145/237814.237827
http://arxiv.org/abs/2007.08075
https://arxiv.org/abs/2007.08075
https://doi.org/10.1184/R1/6606860.V1
https://doi.org/10.1007/978-1-4613-2003-6
https://doi.org/10.1007/978-1-4613-2003-6
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1109/TPAMI.2004.60
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/FOCS.2011.34
https://doi.org/10.1137/18M1163865
https://doi.org/10.1137/18M1163865
http://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671
https://doi.org/10.1145/297096.297140
http://proceedings.mlr.press/v97/chitra19a.html
https://doi.org/10.1007/BF02061656
https://doi.org/10.1007/BF02061656
https://doi.org/10.1109/ICMLA.2008.17
https://doi.org/10.1016/j.patcog.2009.11.025
https://dl.acm.org/doi/10.5555/3294996.3295047
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
http://arxiv.org/abs/2102.07945
https://doi.org/10.1007/BFb0054350
https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/BF02579273
https://www.osti.gov/biblio/960616
https://doi.org/10.1145/3340531.3412034

Page 20 of 20Zhu and Segarra Applied Network Science (2022) 7:45

Hein M, Setzer S, Jost L, Rangapuram SS (2013) The total variation on hypergraphs-learning on hypergraphs revisited. In:
Advances in neural information processing systems, vol 26, pp 2427–2435. https:// doi. org/ 10. 5555/ 29997 92.
29998 83

Ihler E, Wagner D, Wagner F (1993) Modeling hypergraphs by graphs with the same mincut properties. Inf Process Lett
45(4):171–175. https:// doi. org/ 10. 1016/ 0020- 0190(93) 90115-P

Iwata S (2003) A faster scaling algorithm for minimizing submodular functions. SIAM J Comput 32(4):833–840. https:// doi.
org/ 10. 1137/ S0097 53970 13978 13

Iwata S, Orlin JB (2009) A simple combinatorial algorithm for submodular function minimization. In: ACM SIAM symposium
on discrete algorithms, pp 1230–1237, https:// doi. org/ 10. 1137/1. 97816 11973 068. 133

Iwata S, Fleischer L, Fujishige S (2001) A combinatorial strongly polynomial algorithm for minimizing submodular functions. J
ACM 48(4):761–777. https:// doi. org/ 10. 1145/ 502090. 502096

Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning: Applications in VLSI domain. IEEE Trans
Very Large Scale Integr (VLSI) Syst 7(1):69–79, https:// doi. org/ 10. 1109/ 92. 748202

Kim S, Nowozin S, Kohli P, Yoo C (2011) Higher-order correlation clustering for image segmentation. In: Advances in neural
information processing systems, vol 24, pp 1530–1538, https:// doi. org/ 10. 5555/ 29864 59. 29866 30

Kogan D, Krauthgamer R (2015) Sketching cuts in graphs and hypergraphs. In: Innovations in theoretical computer science,
pp 367–376. https:// doi. org/ 10. 1145/ 26880 73. 26880 93

Kolmogorov V (2012) Minimizing a sum of submodular functions. Discrete Appl Math 160(15):2246–2258. https:// doi. org/ 10.
1016/j. dam. 2012. 05. 025

Lawler EL (1973) Cutsets and partitions of hypergraphs. Networks 3(3):275–285. https:// doi. org/ 10. 1002/ net. 32300 30306
Leighton T, Rao S (1999) Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J

ACM 46(6):787–832. https:// doi. org/ 10. 1145/ 331524. 331526
Leskovec J, Rajaraman A, Ullman JD (2020) Mining of massive data sets. Cambridge university press, New York, https:// doi.

org/ 10. 1017/ CBO97 81139 924801
Li P, Milenkovic O (2017) Inhomogeneous hypergraph clustering with applications. In: Advances in neural information pro-

cessing systems, vol 30, pp 2308–2318. https:// doi. org/ 10. 5555/ 32947 71. 32949 91
Li P, Milenkovic O (2018a) Revisiting decomposable submodular function minimization with incidence relations. In: Advances

in neural information processing systems, pp 2242–2252. https:// doi. org/ 10. 5555/ 33271 44. 33271 51
Li P, Milenkovic O (2018b) Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral clustering. In: Interna-

tional conference on machine learning, pp 3014–3023. http:// proce edings. mlr. press/ v80/ li18e. html
Liu M, Veldt N, Song H, Li P, Gleich DF (2021) Strongly local hypergraph diffusions for clustering and semi-supervised learning.

In: International world wide web conference, pp 2092–2103. https:// doi. org/ 10. 1145/ 34423 81. 34498 87
Li J, Lillis J, Cheng CK (1995) Linear decomposition algorithm for VLSI design applications. In: IEEE international conference on

computer aided design, pp 223–228, https:// doi. org/ 10. 1109/ ICCAD. 1995. 480016
Li J, He J, Zhu Y (2018) E-tail product return prediction via hypergraph-based local graph cut. In: ACM SIGKDD international

conference on knowledge discovery and data mining, pp 519–527, https:// doi. org/ 10. 1145/ 32198 19. 32198 29
Lovász L, Plummer MD (2009) Matching theory, vol 367. American Mathematical Soc., Providence. https:// www. ams. org/

books/ chel/ 367/ chel3 67- endma tter. pdf
Okumoto K, Fukunaga T, Nagamochi H (2012) Divide-and-conquer algorithms for partitioning hypergraphs and submodular

systems. Algorithmica 62(3):787–806. https:// doi. org/ 10. 1007/ 978-3- 642- 10631-6_8
Orlin JB (2013) Max flows in o (nm) time, or better. In: Proceedings of the forty-fifth annual ACM symposium on theory of

computing, pp 765–774. https:// doi. org/ 10. 1145/ 24886 08. 24887 05
Orlin JB (2009) A faster strongly polynomial time algorithm for submodular function minimization. Math Programm

118(2):237–251. https:// doi. org/ 10. 1007/ s10107- 007- 0189-2
Papa DA, Markov IL (2007) Hypergraph partitioning and clustering. Handbook of Approximation Algorithms and Metaheuris-

tics 20073547:61–1. https:// web. eecs. umich. edu/ ~imark ov/ pubs/ book/ part_ survey. pdf
Ramanathan A, Colbourn CJ (1987) Counting almost minimum cutsets with reliability applications. Math Program 39(3):253–

261. https:// doi. org/ 10. 1007/ BF025 92076
Schaub MT, Zhu Y, Seby JB, Roddenberry TM, Segarra S (2021) Signal processing on higher-order networks: Livin’on the edge...

and beyond. Signal Process 187:108–149. https:// doi. org/ 10. 1016/j. sigpro. 2021. 108149
Schrijver A (2000) A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J Combin Theory

Ser B 80(2):346–355. https:// doi. org/ 10. 1006/ jctb. 2000. 1989
Veldt N, Benson AR, Kleinberg J (2020a) Hypergraph cuts with general splitting functions. arXiv preprint arXiv: 2001.

02817https:// arxiv. org/ abs/ 2001. 02817
Veldt N, Benson AR, Kleinberg J (2020b) Minimizing localized ratio cut objectives in hypergraphs. In: ACM SIGKDD interna-

tional conference on knowledge discovery and data mining, pp 1708–1718, https:// doi. org/ 10. 1145/ 33944 86. 34032 22
Zhao L, Nagamochi H, Ibaraki T (2005) Greedy splitting algorithms for approximating multiway partition problems. Math

Program 102(1):167–183. https:// doi. org/ 10. 1007/ s10107- 004- 0510-2
Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: Clustering, classification, and embedding. In: Advances in

neural information processing systems, vol 19, pp 1601–1608. https:// doi. org/ 10. 5555/ 29764 56. 29766 57
Zhu Y, Li B, Segarra S (2021) Co-clustering vertices and hyperedges via spectral hypergraph partitioning. In: European

signal processing conference, pp 1416–1420, https:// doi. org/ 10. 23919/ EUSIP CO545 36. 2021. 96162 23

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5555/2999792.2999883
https://doi.org/10.5555/2999792.2999883
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1137/S0097539701397813
https://doi.org/10.1137/S0097539701397813
https://doi.org/10.1137/1.9781611973068.133
https://doi.org/10.1145/502090.502096
https://doi.org/10.1109/92.748202
https://doi.org/10.5555/2986459.2986630
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1016/j.dam.2012.05.025
https://doi.org/10.1016/j.dam.2012.05.025
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1145/331524.331526
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.5555/3294771.3294991
https://doi.org/10.5555/3327144.3327151
http://proceedings.mlr.press/v80/li18e.html
https://doi.org/10.1145/3442381.3449887
https://doi.org/10.1109/ICCAD.1995.480016
https://doi.org/10.1145/3219819.3219829
https://www.ams.org/books/chel/367/chel367-endmatter.pdf
https://www.ams.org/books/chel/367/chel367-endmatter.pdf
https://doi.org/10.1007/978-3-642-10631-6_8
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1007/s10107-007-0189-2
https://web.eecs.umich.edu/%7eimarkov/pubs/book/part_survey.pdf
https://doi.org/10.1007/BF02592076
https://doi.org/10.1016/j.sigpro.2021.108149
https://doi.org/10.1006/jctb.2000.1989
http://arxiv.org/abs/2001.02817
http://arxiv.org/abs/2001.02817
https://arxiv.org/abs/2001.02817
https://doi.org/10.1145/3394486.3403222
https://doi.org/10.1007/s10107-004-0510-2
https://doi.org/10.5555/2976456.2976657
https://doi.org/10.23919/EUSIPCO54536.2021.9616223

	Hypergraph cuts with edge-dependent vertex weights
	Abstract
	Introduction
	Preliminaries and related work
	Graph cuts
	Hypergraph cuts
	Graph reducibility

	Hypergraph cuts with EDVWs
	The hypergraph model with EDVWs
	EDVWs-based splitting functions
	Graph reducibility of EDVWs-based splitting functions
	Sparsifying hypergraph-to-graph reductions

	Experiments
	Conclusion
	Acknowledgements
	References

