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Hypergraphs with
edge-dependent vertex weights:
p-Laplacians and spectral
clustering

Yu Zhu* and Santiago Segarra

Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States

We study p-Laplacians and spectral clustering for a recently proposed hypergraph

model that incorporates edge-dependent vertex weights (EDVW). These weights

can reflect di�erent importance of vertices within a hyperedge, thus conferring

the hypergraph model higher expressivity and flexibility. By constructing

submodular EDVW-based splitting functions, we convert hypergraphs with

EDVW into submodular hypergraphs for which the spectral theory is better

developed. In this way, existing concepts and theorems such as p-Laplacians and

Cheeger inequalities proposed under the submodular hypergraph setting can be

directly extended to hypergraphs with EDVW. For submodular hypergraphs with

EDVW-based splitting functions, we propose an e�cient algorithm to compute

the eigenvector associated with the second smallest eigenvalue of the hypergraph

1-Laplacian. We then utilize this eigenvector to cluster the vertices, achieving

higher clustering accuracy than traditional spectral clustering based on the

2-Laplacian. More broadly, the proposed algorithm works for all submodular

hypergraphs that are graph reducible. Numerical experiments using real-world

data demonstrate the e�ectiveness of combining spectral clustering based on the

1-Laplacian and EDVW.

KEYWORDS

submodular hypergraphs, p-Laplacian, spectral clustering, edge-dependent vertex

weights, decomposable submodular function minimization

1. Introduction

Spectral clustering makes use of eigenvalues and eigenvectors of graph Laplacians to

group vertices in a graph. It is one of the most popular clustering methods due to its

generality, efficiency, and strong theoretical basis. Standard graph Laplacians were first

adopted to obtain relaxations of balanced graph cut criteria (Von Luxburg, 2007). Later,

these were generalized to p-Laplacians, which are able to provide better approximations

of the Cheeger constant (Amghibech, 2003; Bühler and Hein, 2009). Especially, the second

smallest eigenvalue of the 1-Laplacian is identical to the Cheeger constant and the partition

that achieves the optimal Cheeger cut can be obtained by thresholding the corresponding

eigenvector (Szlam and Bresson, 2010).

Graphs are widely used to model pairwise interactions, but in many real-world

applications the entities engage in higher-order relationships (Benson et al., 2016; Schaub

et al., 2021). For instance, in co-authorship networks multiple authors may interact in

writing an article together (Chitra and Raphael, 2019). In an e-commerce system, multiple

customers can be associated if they once purchased the same product (Li et al., 2018).

In text mining, multiple documents are related to each other if they contain the same
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keywords (Hayashi et al., 2020; Zhu et al., 2021). Such multi-way

relations can be modeled by hypergraphs, where the notion of an

edge is generalized to a hyperedge that can connect more than two

vertices.

In graphs, there is only one way to cut an edge, thus, a scalar

weight is enough to characterize the cut. But in hypergraphs, there

may exist multiple ways to split a hyperedge. Consequently, a

splitting function we is introduced for each hyperedge e in the

hypergraph, assigning a cost to every possible cut of e. For any

S ⊆ e, we(S) indicates the penalty of partitioning e into S and

e \ S. In particular, when we is submodular for every hyperedge

e, the corresponding model is termed as a submodular hypergraph

which has desirable mathematical properties, making it convenient

for theoretical analysis (Li and Milenkovic, 2017, 2018). A series

of results in graph spectral theory including p-Laplacians, nodal

domain theorems, and Cheeger inequalities have been generalized

to submodular hypergraphs (Li and Milenkovic, 2018; Yoshida,

2019).

The choice of hyperedge splitting functions has a large practical

effect on the hypergraph clustering performance. There are mainly

two types of splitting functions in existing work. One is the

so-called all-or-nothing splitting function in which an identical

penalty is charged if the hyperedge is split regardless of how

its vertices are separated (Hein et al., 2013). Another slightly

more general type is the class of cardinality-based splitting

functions where the splitting penalty depends only on the number

of vertices placed on each side of the split (Veldt et al.,

2020).

The limitation of existing splitting functions is that they

treat all the vertices in a hyperedge equally while in practice

these vertices may have different degrees of contribution to the

hyperedge. Such information can be captured by edge-dependent

vertex weights (EDVW): every vertex v is associated with a weight

γe(v) for each incident hyperedge e that reflects the contribution

or importance of v to e (Chitra and Raphael, 2019). Going back

to the aforementioned examples, EDVW can be used to model

the author positions in a co-authored article, the quantity of a

product bought by a customer, as well as the frequency of a word

in a document.

Spectral theory on the hypergraph model with EDVW is

much less developed than on submodular hypergraphs. Existing

works studying hypergraphs with EDVW have only focused on

random walk-based Laplacian matrices (Chitra and Raphael, 2019;

Hayashi et al., 2020; Zhu et al., 2021), thus raising the question:

How to define non-linear p-Laplacians for the hypergraph model

that incorporates EDVW? Our basic idea for solving this problem

is to convert a hypergraph with EDVW into a submodular

hypergraph then p-Laplacians and related theorems developed

for submodular hypergraphs can be directly leveraged. Based on

our earlier work (Zhu et al., 2022), the model conversion can be

achieved by defining submodular EDVW-based splitting functions

in the form of we(S) = ge(
∑

v∈S γe(v)) where ge is a concave

function and the splitting penalty we(S) is dependent only on the

sum of EDVW in S. Moreover, hypergraphs with such splitting

functions are proved to be graph reducible, meaning that there

exists some graph sharing the same cut properties (Zhu and

Segarra, 2022).

Since the 1-Laplacian provides the tightest approximation of

the Cheeger constant, a follow-up question is: How to apply

1-spectral clustering to submodular hypergraphs with EDVW-based

splitting functions? To this end, we develop an algorithm to

compute the second eigenvector of the 1-Laplacian for EDVW-

based submodular hypergraphs based on the inverse power

method (IPM). The IPM was initially proposed for undirected

graphs (Hein and Bühler, 2010), then generalized to submodular

hypergraphs with cardinality-based splitting functions (Li and

Milenkovic, 2018). A key to the success of IPM is an efficient

solution to the inner-loop optimization problem in it. In this

paper, we derive an equivalent definition of graph reducibility

based on which we further propose an efficient solution to the

inner problem that works for all graph reducible submodular

hypergraphs including those with EDVW. The proposed solution

can also be used to solve submodular function minimization

(SFM) problems (Bach, 2013) when the submodular function

can be represented as sums of concave functions applied to

modular functions.

The major contributions of this paper can be summarized as

follows:

(1) We present an equivalent definition of graph reducibility

in terms of the Lovász extension of the cut function (see

Theorem 1), which is helpful for understanding the relations

between graph Laplacians and hypergraph Laplacians.

(2) We propose an algorithm to compute the eigenvector of the 1-

Laplacian associated with the second smallest eigenvalue for all

graph reducible submodular hypergraphs including those with

EDVW-based splitting functions, and use the eigenvector for

1-spectral clustering.

(3) We validate the effectiveness of the proposed algorithm which

leverages both of EDVW and 1-spectral clustering via numerical

experiments on real-world datasets.

1.1. Paper outline

The rest of this paper is structured as follows. Preliminary

mathematical concepts and submodular hypergraphs are reviewed

in section 2. Section 3 introduces the hypergraph model with

EDVW and shows how to convert it to graph reducible submodular

hypergraphs by constructing EDVW-based splitting functions.

The section also presents two equivalent definitions for graph

reducibility. The proposed 1-spectral clustering algorithm is

described in section 4. Section 5 presents experimental results. The

relation between hypergraph Laplacians defined in different ways

and the application of the proposed algorithm in SFM are discussed

in section 6. Closing remarks are included in section 7.

1.2. Notation

For a vector x and a set S, xS denotes the vector formed

by the entries of x indexed by S and x(S) =
∑

v∈S xv. The

operator Pa,b(x) projects every entry of x onto the range [a, b].

Frontiers in BigData 02 frontiersin.org



Zhu and Segarra 10.3389/fdata.2023.1020173

Throughout the paper we assume that the considered hypergraphs

are connected.

2. Preliminaries

2.1. Mathematical preliminaries

For a finite setV, a set function F : 2V→R is called submodular

if F(S1)+ F(S2) ≥ F(S1 ∪ S2)+ F(S1 ∩ S2) for every S1,S2 ⊆ V.

Considering a set function F : 2V → R such that F(∅) = 0 where

V = [N] = {1, 2, · · · ,N}, its Lovász extension f :RN → R

is defined as follows. For any x ∈ R
N , sort its entries in non-

increasing order xi1 ≥ xi2 ≥ · · · ≥ xiN , where (i1, i2, · · · , iN) is
a permutation of (1, 2, · · · ,N), and set

f (x) =
∑N−1

j=1
F(Sj)(xij − xij+1 )+ F(V)xiN , (1)

where Sj = {i1, · · · , ij} for 1 ≤ j < N. A set function F is

submodular if and only if its Lovász extension f is convex (Lovász,

1983). For any S ⊆ V, F(S) = f (1S) where 1S is the indicator

vector of S. If F(V) = 0, f (ax + b1) = af (x) for any a ∈
R≥0, b ∈ R. More properties of submodular functions can be found

in Appendix A.

2.2. Submodular hypergraphs

Let H = (V, E,µ, {we}) denote a submodular hypergraph (Li

and Milenkovic, 2018) where V = [N] is the vertex set and E is

the set of hyperedges. The function µ :V → R+ assigns positive

weights to vertices. Each hyperedge e ∈ E is associated with a

submodular splitting function we : 2
e → R≥0 that assigns non-

negative penalties to every possible split of e. Moreover, we is

required to satisfy we(∅) = 0 and be symmetric so that we(S) =
we(e \ S) for any S ⊆ e. The domain of we can be extended from

2e to 2V by setting we(S) = we(S ∩ e) for any S ⊆ V, guaranteeing

that the submodularity is maintained.

A cut is a partition of the vertex set V into two disjoint, non-

empty subsets denoted by S and its complement V \ S. The weight
of the cut is defined as the sum of splitting penalties associated with

each hyperedge (Li and Milenkovic, 2018; Veldt et al., 2020), i.e.,

cutH(S) =
∑

e∈E
we(S). (2)

The normalized Cheeger cut (NCC) is defined as

NCC(S) =
cutH(S)

min{vol(S), vol(V \ S)}
(3)

where vol(S) =
∑

v∈S µ(v) denotes the volume of S. The 2-

way Cheeger constant is defined as the minimum NCC over all

non-empty subsets of V except itself, i.e.,

h2 = min
∅⊂S⊂V

NCC(S). (4)

The solution to (4) provides an optimal partitioning in the sense

that we obtain two clusters which are balanced in terms of volume

and loosely connected as captured by a small cut weight. In this

paper, we adopt the minimization of NCC as our objective. There

exist other clustering measures such as ratio cut, normalized cut

and ratio Cheeger cut, which are closely related (Von Luxburg,

2007; Bühler and Hein, 2009).

Optimally solving (4) has been shown to be NP-hard for

graphs (Wagner and Wagner, 1993), let alone hypergraphs.

In spectral graph theory, Cheeger inequalities are derived to

bound and approximate the Cheeger constant using graph p-

Laplacians (Amghibech, 2003; Bühler and Hein, 2009; Szlam and

Bresson, 2010; Chang, 2016; Chang et al., 2017; Tudisco and

Hein, 2018). The results have been generalized to submodular

hypergraphs (Li and Milenkovic, 2018; Yoshida, 2019). The p-

Laplacian△p of a submodular hypergraph is defined as an operator

that, for all x ∈ R
N , induces

〈x,△p(x)〉 =
∑

e∈E
ϑefe(x)

p , Qp(x), (5)

where ϑe = maxS⊆e we(S) and fe is the Lovász extension of

the normalized splitting function ϑ−1e we. Notice that △p can be

alternatively defined in terms of the subdifferential of fe (Li and

Milenkovic, 2018), while we keep the definition (5) since it is more

instrumental to our development. In particular, when p = 1, Q1(x)

turns out to be the Lovász extension of the cut function defined

in (2). It has been proved that the second smallest eigenvalue of

the 1-Laplacian is identical to the Cheeger constant h2 (Li and

Milenkovic, 2018).

3. EDVW-based submodular
hypergraphs

3.1. The hypergraph model with EDVW

Let H = (V, E,µ, κ , {γe}) represent a hypergraph with

EDVW (Chitra and Raphael, 2019) where V, E, and µ respectively

denote the vertex set, the hyperedge set, and positive vertex weights.

The function κ : E → R+ assigns positive weights to hyperedges,

and those weights can reflect the strength of connection. Each

hyperedge e ∈ E is associated with a function γe :V → R≥0 to

assign edge-dependent vertex weights. For v ∈ e, γe(v) is positive

and measures the importance of the vertex v to the hyperedge e;

for v /∈ e, γe(v) is set to zero. For convenience, we define γe(S) =
∑

v∈S γe(v).

The motivation of introducing EDVW is to enable the

hypergraph model to describe the cases when the vertices in the

same hyperedge contribute differently to this hyperedge. This

information cannot be captured by hypergraphs adopting the all-

or-nothing or cardinality-based splitting functions and is also

hard to be directly described by submodular hypergraphs, but it

can be conveniently represented via EDVW. For example, Chitra

and Raphael (2019) studies the application of ranking authors

in an academic citation network where authors and papers are

respectively modeled as vertices and hyperedges. For a paper e and

any author v of the paper, the corresponding EDVW γe(v) is set to

2 if v is the first or last author, otherwise the weight is set to 1.
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3.2. Building submodular hypergraphs from
EDVW

In order to effectively handle EDVW while still leveraging

existing results obtained for submodular hypergraphs, we

consider the conversion from a hypergraph with EDVW

H = (V, E,µ, κ , {γe}) to a submodular hypergraph

H = (V, E,µ, {we}). The basic idea is to keep V, E, and µ

unchanged, and construct submodular splitting functions

{we} from EDVW {γe} and hyperedge weights κ . After such

a transformation, we can directly extend concepts such as p-

Laplacians and related theorems proposed for the submodular

hypergraph model (Li and Milenkovic, 2018) to the EDVW-based

hypergraph model.

In our preliminary works (Zhu and Segarra, 2022; Zhu et al.,

2022), we have proposed a class of submodular EDVW-based

splitting functions in the following form

we(S) = he(κ(e)) · ge(γe(S)), (6)

where he :R+ → R+ is an arbitrary function and ge :[0, γe(e)] →
R≥0 is concave, symmetric with respect to γe(e)/2, and satisfies

ge(0) = 0. The resulting we is a valid splitting function that is

non-negative, submodular, symmetric, and satisfies we(∅) = 0. In

practice, it is reasonable to select a non-decreasing function for he
such as he(x) = 1 and he(x) = x since a larger hyperedge weight

κ(e) is expected to lead to a larger splitting penalty for the same split

of the hyperedge. Possible choices of ge include ge(x) = x · (γe(e)−
x), ge(x) = min{x, γe(e)−x}, and ge(x) = min{x, γe(e)−x, b}where
b is a positive parameter. Also notice that for trivial EDVW, namely

γe(v) = 1 for all v ∈ e, the splitting functions defined as (6) reduce

to cardinality-based ones (Veldt et al., 2020).

3.3. Hypergraph-to-graph reductions

Submodular hypergraphs with splitting functions defined as (6)

have a desirable property that they are graph reducible. In other

words, they can project onto some graph which shares identical cut

properties. Following Veldt et al. (2020), we consider the reduction

of a hypergraph to a (possibly directed) graph with a potentially

augmented vertex set. For a directed graph (digraph) G with vertex

set VG and weighted adjacency matrix A whose entry Auv denotes

the weight of the directed edge pointing from u to v, its cut function

is defined as

cutG(S) =
∑

u∈S,v∈VG\S
Auv. (7)

In the following, we state a formal definition for graph reducibility

in terms of cut weights, which is a variant of the definition in terms

of hyperedge splitting functions stated in Veldt et al. (2020).

Definition 1. For a submodular hypergraph H with vertex set V,

we say that its cut function cutH(S) is reducible to the cut function

of a directed graph G with vertex set VG = V∪ V̄ where V̄ is a set of

auxiliary vertices if the following equality holds

cutH(S) = min
T⊆V̄

cutG(S ∪ T), ∀S ⊆ V. (8)

1: Input: hypergraph with EDVW H = (V,E,µ, κ , {γe})

2: Convert H to a submodular hypergraph by

constructing submodular splitting functions based

on (6)

3: Compute the second eigenvector of the hypergraph

1-Laplacian via the minimization of R1(x) in (11)

4: Threshold the obtained eigenvector to get the

bipartition of V where we choose the threshold

value as the one that minimizes the NCC in (3)

Algorithm 1. 1-spectral clustering for hypergraphs with EDVW.

In the following theorem, we show an equivalent condition

for graph reducibility regarding the Lovász extension of the cut

function, which is beneficial for our later development of the 1-

spectral clustering algorithm. The Lovász extension of the graph cut

function can be written as

Q
(g)
1 (y) =

∑

u,v∈VG
Auv max{yu − yv, 0} (9)

where y is a vector of length VG.

Theorem 1. The equality presented in (8) is equivalent to

Q1(x) = min
x̄∈RM

Q
(g)
1 (y), ∀ x ∈ R

N (10)

where Q1(x) and Q
(g)
1 (y) are respectively defined in (5) and (9),

|V| = N, |V̄| = M, and y ∈ R
N+M is composed of yV = x and

y
V̄
= x̄.

Proof. The equivalence between (8) and (10) is proved

in Appendix B.

It has been shown in Veldt et al. (2020) that all hypergraphs

with submodular cardinality-based splitting functions are graph

reducible. Our earlier work (Zhu and Segarra, 2022) has generalized

the conclusion to hypergraphs with submodular EDVW-based

splitting functions. In the following section, we propose a 1-spectral

clustering algorithm for all submodular hypergraphs that are graph

reducible including those EDVW-based ones, which are the focus

of this paper.

4. Spectral clustering based on the
1-Laplacian

4.1. IPM-based 1-spectral clustering

We study spectral clustering algorithms for EDVW-based

submodular hypergraphs leveraging the 1-Laplacian. As mentioned

in section 2.2, for submodular hypergraphs the Cheeger constant

h2 is equal to the second smallest eigenvalue λ2 of the 1-

Laplacian △1. The corresponding optimal bipartition can be

obtained by thresholding the eigenvector of △1 associated with

λ2 (Li and Milenkovic, 2018). This eigenvector can be computed

by minimizing

R1(x) =
Q1(x)

minc∈R ‖x− c1‖1,µ
, (11)
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1: Input: submodular hypergraph H = (V,E,µ, {we}) with N

vertices, accuracy ǫ

2: Initialization: non-constant x ∈ R
N subject to 0 ∈

argminc ‖x− c1‖1,µ, λ← R1(x)

3: repeat

4: ∀v ∈ V, gv ←







sgn(xv) · µ(v), if xv 6= 0

µ−(x)−µ+(x)
µ0(x)

· µ(v), if xv = 0

5: x← argmin‖x‖≤1 Q1(x)− λ〈x,ggg〉 (inner problem)

6: c← argminc ‖x− c1‖1,µ
7: x← x− c1

8: λ′ ← λ, λ← R1(x)

9: until
|λ−λ′ |

λ′ < ǫ

10: Output: x

Algorithm 2. IPM-based minimization of R1(x) (Hein and Bühler, 2010; Li

and Milenkovic, 2018).

where ‖x‖1,µ =
∑

v∈V µ(v)|xv|. Given the eigenvector x, a

partitioning can be defined as S = {v ∈ V | xv > t} and
its complement, where t is a threshold value. The optimal t can

be determined as the one that minimizes the NCC in (3). The

pipeline for the 1-spectral clustering algorithm is summarized in

Algorithm 1.

The minimization of R1(x) can be solved based on the

inverse power method (Hein and Bühler, 2010; Li and Milenkovic,

2018), as outlined in Algorithm 2. Three functions are introduced:

µ+(x) =
∑

v∈V : xv>0 µ(v), µ−(x) =
∑

v∈V : xv<0 µ(v) and

µ0(x) =
∑

v∈V : xv=0 µ(v). Although this algorithm cannot

guarantee convergence to the second eigenvector, the objective

R1(x) is guaranteed to decrease and converge in the iterative

process. Moreover, if we start from some point x = 1S in

Algorithm 2 where (S,V \ S) is a given partition of V, then each

step of the IPM-based method gives a partition that has a smaller

(or at least equal) NCC value (see theorem 4.2 in Hein and Setzer,

2011). This implies that we can leverage the partition obtained via

other methods as initialization. The algorithm was first proposed

for the undirected graph setting (Hein and Bühler, 2010), then

generalized to submodular hypergraphs with cardinality-based

splitting functions (Li and Milenkovic, 2018). It is actually a special

case of a more general class of minimization algorithms called

RatioDCA and generalized RatioDCA proposed in Hein and Setzer

(2011) and Tudisco et al. (2018) in order to handle more types of

balanced graph cuts and modularity measures, respectively. The

major difference between the graph setting and the hypergraph

setting lies in how the inner-loop optimization problem (cf. line 5

in Algorithm 2) is solved.

In Li and Milenkovic (2018), the authors solved the inner

problem using a random coordinate descent method (Ene and

Nguyen, 2015) together with a divide-and-conquer algorithm

proposed in Jegelka et al. (2013). The computational complexity of

the divide-and-conquer algorithm depends on the time of solving

the problem minS⊆e F(S) , we(S) + z(S) for an arbitrary vector

z ∈ R
|e|. For a cardinality-based splitting function, the solution

to this problem can be found efficiently via a line search even

when |e| is large. In the line search, we create a series of sets

S0 = ∅,S1, · · · ,S|e|, where Si contains i vertices corresponding

to the first i smallest entries in vector z. We compare their objective

values F(Si) and identify the solution Si∗ leading to the minimum

objective value. However, such solution does not work for EDVW-

based splitting functions. In the following section, we study the

inner problem considering the EDVW-based case.

4.2. Solution to the inner problem

Wepropose efficient solutions to the inner problem for EDVW-

based submodular hypergraphs leveraging the property that they

are graph reducible. More generally speaking, the proposed

solutions work for all graph reducible submodular hypergraphs.

We first show that the inner problem is equivalent to another

optimization problem (12) defined on the digraph obtained via the

reduction.

Theorem 2. For any submodular hypergraph H with vertex set V,

if it is reducible to a digraph G with vertex set VG = V ∪ V̄ and

edge set EG, i.e., (8) or (10) holds, then the solution x to the inner

problem in Algorithm 2 can be obtained (up to a scalar multiple)

by setting x = yV and y ∈ R
|VG| is the solution to

min
‖y‖2≤1

Q
(g)
1 (y)− 〈y, g̃gg〉 (12)

where g̃gg ∈ R
|VG| is a vector composed of g̃ggV = λggg and g̃gg

V̄
= 0.

Proof. The proof can be found in Appendix C where we have

used the equivalent definition for graph reducibility proposed in

Theorem 1.

We present two ways for solving problem (12) in sections 4.2.1

and 4.2.2, respectively.

4.2.1. Solving the inner problem via FISTA
Both of the original inner problem and its equivalent

problem (12) are convex but non-smooth. Inspired by Hein and

Bühler (2010), we derive a dual formulation (13) of problem (12).

Compared to the primal problem, the objective function 9 of the

dual problem is smooth. Moreover, problem (13) can be efficiently

solved using a fast iterative shrinkage-thresholding algorithm

(FISTA) (Nesterov, 1983; Beck and Teboulle, 2009), which has

a guaranteed convergence rate O(1/k2) where k is the number

of iterations. FISTA requires an upper bound on the Lipschitz

constant of the gradient of9 as the input, which is provided in (15).

The steps of FISTA are summarized in Algorithm 3.

To make it clear, in the theorem below, the set ẼG (as well as

the directed edge set EG) contains ordered node pairs, meaning that

(u, v) and (v, u) are different. The parameter m can be understood

as the number of connected node pairs where the connection might

be unidirectional or bidirectional.

Theorem 3. Define a set ẼG = {(u, v) ∈ VG × VG | (u, v) ∈
EG or (v, u) ∈ EG} and setm = |ẼG|/2. The dual of problem (12) is

min
ααα∈[0,1]m

αuv+αvu=1

9(ααα) , ‖fA(ααα)− g̃gg‖22 (13)
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1: Input: A Lipschitz constant L of ∇9

2: Initialization: ααα = βββ ∈ R
m, t = 1

3: repeat

4: ααα′ ← ααα, ααα← βββ − 1
L∇9(βββ)

5: ααα← P0,1(ααα)

6: t′ ← t, t← 1+
√
1+4t2
2

7: βββ ← ααα + t′−1
t (ααα − ααα′)

8: until convergence or a predefined maximum number

of iterations is reached

9: Output: ααα

Algorithm 3. Solution of problem (13) with FISTA.

where ααα is a vector of length m collecting all αuv satisfying (u, v) ∈
ẼG and u < v. For the function fA :R

m → R
N+M , the uth element

of fA(ααα) is

[fA(ααα)]u =
∑

v | (u,v)∈ẼG
Auvαuv − Avuαvu.

The primal and dual variables are related as

y = −
fA(ααα)− g̃gg

‖fA(ααα)− g̃gg‖2
. (14)

The Lipschitz constant of the gradient of 9 is upper bounded by

L = 4 max
u∈VG

∑

v∈VG
(Auv + Avu)

2. (15)

Proof. The proof is given in Appendix D.

In a nutshell, to solve the inner problem, we first compute the

adjacency matrix of the digraph according to the graph reduction

procedure proposed in Zhu and Segarra (2022). Then we solve the

dual problem (13) using FISTA, and get the solution y to the primal

problem (12) according to the relation between the primal and dual

variables as shown in (14). Finally, we obtain the solution x to the

original problem by taking the entries of y indexed by V.

4.2.2. Solving the inner problem via PDHG
Problem (12) can also be solved using a primal-dual hybrid

gradient (PDHG) algorithm (Chambolle and Pock, 2011, 2016a,b).

Although both FISTA and PDHG ensure a quadratic convergence

rate, it has been observed that PDHG can outperform FISTA in

practice for clustering applications (Hein and Setzer, 2011).

PDHG is able to solve problems in the following form:

min
y∈RN1

f1(y)+ f2(By), (16)

whose dual problem is

max
z∈RN2

−f ∗1 (−B⊤z)− f ∗2 (z), (17)

where f1 :R
N1 → (−∞,+∞] and f2 :R

N2 → (−∞,+∞] are

proper, convex, lower semicontinuous functions, B :R
N1 → R

N2

1: Initialization: τσ ≤ 1
‖B‖22

, y = ȳ ∈ R
|V
G
|
, z ∈ R

|E
G
|

2: repeat

3: z← P0,1(z+ σBȳ)

4: y′ ← y, y← 1
1+τ

(

y− τ (B⊤z− g̃gg)
)

5: θ ← 1√
1+τ

, τ ← θτ, σ ← σ
θ

6: ȳ← y+ θ(y− y′)

7: until convergence or a predefined maximum number

of iterations is reached

8: Output: y

Algorithm 4. Solution of problem (18) with accelerated PDHG.

is a bounded linear operator, and f ∗1 and f ∗2 are the corresponding

conjugate functions of f1 and f2 (Boyd et al., 2004).

The solution to problem (12) can be obtained via normalizing

the solution to problem (18) below.

min

y∈R
|V
G
|
Q
(g)
1 (y)+

1

2
‖y− g̃gg‖22. (18)

We can fit (18) into the form (16) by setting N1 = |VG|, N2 =
|EG|, f1(y) =

1
2‖y − g̃gg‖22, f2(z) =

∑N2
i=1 max{zi, 0}, and B is

a |EG| × |VG| matrix. For the row of B corresponding to edge

u → v, the uth and vth elements in the row are respectively equal

to Auv and −Auv, and the other elements are zero. We can show

that f ∗1 (y) =
1
2‖y‖

2
2 + 〈y, g̃〉, f ∗2 (z) = 0 with the domain that

0 ≤ zi ≤ 1 for any 0 ≤ i ≤ N2. Since f1 is 1-strongly convex,

we can leverage an accelerated variant of the PDHG algorithm.

The algorithm tailored for problem (18) is given in Algorithm 4 (cf.

algorithm 8 in Chambolle and Pock, 2016a).

4.3. A special case: Reduction to an
undirected graph

If the submodular hypergraph is reducible to an undirected

graph (e.g., see theorem 3.3 in Zhu and Segarra, 2022), then

there exists another dual formulation of problem (12) that bears

a similar form to (13) while the gradient of its objective has a

smaller Lipschitz constant (cf. lemma 4.3 inHein and Bühler, 2010).

In fact, for this case, the hypergraph 1-spectral clustering can be

implemented via its graph counterpart.

Following Theorem 1, we further define a vertex weight

function µG for the graph G such that µG(v) = µ(v) for v ∈ V

and µG(v) = 0 for each auxiliary vertex v ∈ V̄. Then it follows

from (10) that R1(x) = minx̄∈RM R
(g)
1 (y) for any x ∈ R

N where

R
(g)
1 (y) = Q

(g)
1 (y)

minc∈R ‖y−c1‖1,µ
G

and y is composed of yV = x and

y
V̄
= x̄. Minimizing both sides of the equation over x ∈ R

N

leads to the same minimum NCC value. When G is undirected,

the second eigenvector of the graph 1-Laplacian can be computed

by minimizing R
(g)
1 (y) and then the second eigenvector of the

hypergraph 1-Laplacian can be computed as x = yV. This can also

be understood in terms of the cut function. Following (8), it is easy

to show that the Cheeger constant of the graph G is identical to that
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of the hypergraphH. This coincides with theorem 3.3 in (Liu et al.,

2021), which further proves that if S is the set in G leading to the

minimum NCC for the vertex weight function µG, then S ∩ V is

the minimum NCC set inH.

5. Experiments

We evaluate the performance of the proposed 1-spectral

clustering algorithm for EDVW-based submodular hypergraphs

(termed as EDVW-based hereafter) by focusing on the bipartition

case. In particular, for hyperedge splitting functions as in (6), we

select he(x) = x and ge(x) = min{x, γ (e) − x,βγ (e)} for every
hyperedge e ∈ E, namely

we(S) = κ(e) ·min{γe(S), γe(e)− γe(S),βγe(e)} (19)

where β is tunable. Notice that we reuse the symbols α and β in

this section, which are different from and not related to ααα and βββ

used when describing FISTA. A hypergraph with splitting functions

as (19) can be reduced to a digraph that consists of |V|+2|E| vertices
and |E| + 2

∑

e∈E |e| edges. More precisely, we first project each

hyperedge e onto a small graph which contains |e| + 2 vertices

including two auxiliary vertices denoted by e′ and e′′. For every

v ∈ e, there are two directed edges respectively from v to e′ and

from e′′ to v, both of weight κ(e)γe(v). There is also a directed

edge of weight βκ(e)γe(e) from e′ to e′′. Then we concatenate

these small graphs for all hyperedges together to form the

final graph.

5.1. Datasets

We consider three widely used real-world datasets.

Reuters Corpus Volume 1 (RCV1): This dataset is a collection

of manually categorized newswire stories (Lewis et al., 2004). We

consider two categories C14 and C23. A few short documents

containing less than 20 words are ignored. We select the 100 most

frequent words in the corpus after removing stop words and words

appearing in > 10 and < 0.2% of the documents. We then remove

documents containing < 5 selected words, leaving us with 7, 446

documents. A document (vertex) belongs to a word (hyperedge)

if the word appears in the document. The edge-dependent vertex

weights are taken as the corresponding tf-idf (term frequency-

inverse document frequency) values (Leskovec et al., 2020) to the

power of α, where α is a tunable parameter.

20 Newsgroups 1: This is also a text dataset. For our two-

partition case, we consider the documents in categories “rec.autos"

and “rec.sport.hockey." We preprocess the dataset following the

same procedure as used in RCV1 above. We finally construct a

hypergraph of 1, 389 vertices and 100 hyperedges.

Covtype: This dataset contains patches of forest that are in

different cover types. We consider two cover types (labeled as

4 and 5) and all numerical features. Each numerical feature is

first quantized into 20 bins of equal range and then mapped to

hyperedges. The resulting hypergraph has 12, 240 vertices and 196

1 http://qwone.com/~jason/20Newsgroups/

hyperedges. For each hyperedge (bin), we compute the distance

between each feature value in this bin and their median, and then

normalize these distances to the range [0, 1]. The edge-dependent

vertex weights are computed as exp(−α · distance). Under this

setting, larger edge-dependent vertex weights are assigned to

vertices whose feature values are close to the typical feature value

in the corresponding bin.

Following Hayashi et al. (2020), for all datasets we set the

hyperedge weight κ(e) to the standard deviation of the EDVW γe(v)

for all v ∈ V. Following Li and Milenkovic (2018), we set the

vertex weight µ(v) to the vertex degree defined in the submodular

hypergraph model, i.e., µ(v) =
∑

e∋v ϑe.

5.2. Baselines

We compare the proposed approach with three baseline

methods.

Random walk-based: The paper Hayashi et al. (2020) defines a

hypergraph Laplacian matrix based on random walks with EDVW.

We compute the second eigenvector of the normalized hypergraph

Laplacian [cf. (6) in Hayashi et al., 2020] and then threshold it to

get the partitioning.

Cardinality-based: In the description of the datasets above,

when α = 0, we get the trivial EDVW and the splitting functions

reduce to cardinality-based ones.

All-or-nothing: For the adopted splitting functions (19), they

reduce to the all-or-nothing case if β is small enough [i.e., β ≤
minv∈e γe(v)].

For the proposed method, in Algorithm 2 we adopt the

eigenvector obtained in the random walk-based method described

above as the starting point. We solve the inner problem using

PDHG presented in Algorithm 4. Moreover, in Algorithm 4 we

initialize τ = σ = 0.9
‖B‖2 and z = 0.

5.3. Results

The results are shown in Figure 1. We present both the

clustering error and the NCC where the clustering error is

computed as the fraction of incorrectly clustered samples. For

the RCV1 dataset (A–D), we fix β = 0.2 to observe the

influence of α in (A, B) and fix α = 1 to test β in (C,

D). For the 20 Newsgroups dataset (E–H), we fix β = 0.1

in (E, F) and α = 0.8 in (G, H) to observe the effects of α

and β , respectively. For the Covtype dataset (I–L), we fix β =
0.2 in (I, J) and α = 2 in (K, L). We can see that for all

the considered datasets, when edge-dependent vertex weights are

ignored (including α = 0 for cardinality-based splitting functions

and β close to zero for the all-or-nothing splitting function), the

clustering performance is severely deteriorated, validating that it

is necessary to incorporate EDVW for extra modeling flexibility.

It can also be observed that, when appropriate values for α and β

are selected (such as α = 1.2,β = 0.2 for RCV1, α = 1.2,β =
0.1 for 20 Newsgroups and α = 2.4,β = 0.2 for Covtype),

the proposed method performs much better than the random

walk-based method which depends on the classical Laplacian.

Frontiers in BigData 07 frontiersin.org



Zhu and Segarra 10.3389/fdata.2023.1020173

FIGURE 1

Clustering performance for three real-world datasets displayed in pairs of figures depicting the clustering error and the NCC value as a function of

the parameters α or β. For RCV1, we fix β = 0.2 in (A, B) and α = 1 in (C, D). For 20 Newsgroups, we fix β = 0.1 in (E, F) and α = 0.8 in (G, H). For

Covtype, we fix β = 0.2 in (I, J) and α = 2 in (K, L). A proper choice of α and β helps significantly decrease the clustering error compared with existing

methods. The performance improvement may benefit from both the use of EDVW and 1-Laplacian.

This highlights the value of using the non-linear 1-Laplacian in

spectral clustering. To summarize, both the use of EDVW and

1-Laplacian are beneficial for improving the spectral clustering

performance.

6. Related work

We discuss the related works in this section. We will show

the relationship between hypergraph Laplacians introduced via

random walks and those defined based on submodular splitting

functions.Wewill also show how the proposed solution to the inner

problem contributes to SFM.

6.1. Random walk-based Laplacians

Here we expand the discussion about the relation

between hypergraph Laplacians based on random

walks with EDVW and those studied in this paper

considering submodular EDVW-based splitting

functions.

Considering the hypergraph model with EDVW (cf.

section 3.1), the random walk incorporating EDVW is defined

as follows (Chitra and Raphael, 2019). Starting at some vertex u,

the walker selects a hyperedge e containing u with probability

proportional to κ(e), then moves to vertex v contained in e with

probability proportional to γe(v). In this process, the probability of

moving from u to v via e is

Pu→e→v =







κ(e)
∑

e′∋u κ(e′) ·
γe(v)
γe(e)

, u, v ∈ e,

0, else.
(20)

Then one can define a transition matrix P whose (u, v)th entry

denotes the transition probability from u to v and is computed

as Puv =
∑

e∈E Pu→e→v. When the hypergraph is connected, the

randomwalk converges to a unique stationary distributionπππ which

is the all-positive dominant left eigenvector of P scaled to satisfy
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‖πππ‖1 = 1. In Chitra and Raphael (2019) and Hayashi et al. (2020),

hypergraph Laplacians based on such random walks are proposed

and they are actually equal to combinatorial and normalized graph

Laplacianmatrices (i.e., graph 2-Laplacians) of an undirected graph

which is defined on the same vertex set as the hypergraph and has

the following adjacency matrix

A =
8P+ P8

2
(21)

where 8 is a diagonal matrix whose (v, v)th entry is πv.

Consider a hypergraph H with submodular splitting functions

in the following form for each of its hyperedges:

we(S) =
∑

u∈S,v∈e\S
πuPu→e→v + πvPv→e→u

2
, ∀S ⊆ e. (22)

It is easy to show that H is reducible to the graph G defined by

the adjacency matrix (21) since they have the same cut function

as cutH(S) = cutG(S) =
∑

u∈S,v∈V\S
πuPuv+πvPvu

2 . Notice that

there are no auxiliary vertices introduced in the graph reduction.

Following Theorem 1, we have Q1(x) = Q
(g)
1 (x), implying that the

hypergraph 1-Laplacian of H is identical to the graph 1-Laplacian

of G if we assume that they share the same vertex weight functionµ.

6.2. Decomposable submodular function
minimization

In the inner problem of Algorithm 2, if the norm of x is ‖x‖∞,
the problem is equivalent to the following SFM problem

min
S⊆V

∑

e∈E
we(S)− λg(S), (23)

where the primal and dual variables are related as xv = 1 if

v ∈ S and xv = −1 if v /∈ S (Li and Milenkovic, 2018). Hence,

the proposed solution to the inner problem can also be used to

solve problems in the form of (23) when each function we can be

represented as a concave function applied to a modular (additive)

function [cf. (6)].

7. Conclusion

We presented an equivalent definition of graph reducibility

based on which we further proposed a 1-spectral clustering

algorithm for submodular hypergraphs that are graph reducible,

especially for those with EDVW-based splitting functions.

Through experiments on real-world datasets, we showcased the

value of combining the hypergraph 1-Laplacian and EDVW.

Future research directions include: (1) Developing computation

methods for the hypergraph 1-Laplacian’s eigenvectors which

can work efficiently for all submodular splitting functions, (2)

Designing multi-way partitioning algorithms based on non-linear

Laplacians (Bühler and Hein, 2009), and (3) Exploring applications

of p-Laplacians for different values of p (Fu et al., 2022).
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