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Hypergraphs with
edge-dependent vertex weights:
p-Laplacians and spectral
clustering

Yu Zhu* and Santiago Segarra

Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States

We study p-Laplacians and spectral clustering for a recently proposed hypergraph
model that incorporates edge-dependent vertex weights (EDVW). These weights
can reflect different importance of vertices within a hyperedge, thus conferring
the hypergraph model higher expressivity and flexibility. By constructing
submodular EDVW-based splitting functions, we convert hypergraphs with
EDVW into submodular hypergraphs for which the spectral theory is better
developed. In this way, existing concepts and theorems such as p-Laplacians and
Cheeger inequalities proposed under the submodular hypergraph setting can be
directly extended to hypergraphs with EDVW. For submodular hypergraphs with
EDVW-based splitting functions, we propose an efficient algorithm to compute
the eigenvector associated with the second smallest eigenvalue of the hypergraph
1-Laplacian. We then utilize this eigenvector to cluster the vertices, achieving
higher clustering accuracy than traditional spectral clustering based on the
2-Laplacian. More broadly, the proposed algorithm works for all submodular
hypergraphs that are graph reducible. Numerical experiments using real-world
data demonstrate the effectiveness of combining spectral clustering based on the
1-Laplacian and EDVW.

KEYWORDS

submodular hypergraphs, p-Laplacian, spectral clustering, edge-dependent vertex
weights, decomposable submodular function minimization

1. Introduction

Spectral clustering makes use of eigenvalues and eigenvectors of graph Laplacians to
group vertices in a graph. It is one of the most popular clustering methods due to its
generality, efficiency, and strong theoretical basis. Standard graph Laplacians were first
adopted to obtain relaxations of balanced graph cut criteria (Von Luxburg, 2007). Later,
these were generalized to p-Laplacians, which are able to provide better approximations
of the Cheeger constant (Amghibech, 2003; Bithler and Hein, 2009). Especially, the second
smallest eigenvalue of the 1-Laplacian is identical to the Cheeger constant and the partition
that achieves the optimal Cheeger cut can be obtained by thresholding the corresponding
eigenvector (Szlam and Bresson, 2010).

Graphs are widely used to model pairwise interactions, but in many real-world
applications the entities engage in higher-order relationships (Benson et al., 2016; Schaub
et al., 2021). For instance, in co-authorship networks multiple authors may interact in
writing an article together (Chitra and Raphael, 2019). In an e-commerce system, multiple
customers can be associated if they once purchased the same product (Li et al., 2018).
In text mining, multiple documents are related to each other if they contain the same
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keywords (Hayashi et al., 2020; Zhu et al., 2021). Such multi-way
relations can be modeled by hypergraphs, where the notion of an
edge is generalized to a hyperedge that can connect more than two
vertices.

In graphs, there is only one way to cut an edge, thus, a scalar
weight is enough to characterize the cut. But in hypergraphs, there
may exist multiple ways to split a hyperedge. Consequently, a
splitting function w, is introduced for each hyperedge e in the
hypergraph, assigning a cost to every possible cut of e. For any
S C e, we(S) indicates the penalty of partitioning e into S and
e \ S. In particular, when w, is submodular for every hyperedge
e, the corresponding model is termed as a submodular hypergraph
which has desirable mathematical properties, making it convenient
for theoretical analysis (Li and Milenkovic, 2017, 2018). A series
of results in graph spectral theory including p-Laplacians, nodal
domain theorems, and Cheeger inequalities have been generalized
to submodular hypergraphs (Li and Milenkovic, 2018; Yoshida,
2019).

The choice of hyperedge splitting functions has a large practical
effect on the hypergraph clustering performance. There are mainly
two types of splitting functions in existing work. One is the
so-called all-or-nothing splitting function in which an identical
penalty is charged if the hyperedge is split regardless of how
its vertices are separated (Hein et al, 2013). Another slightly
more general type is the class of cardinality-based splitting
functions where the splitting penalty depends only on the number
of vertices placed on each side of the split (Veldt et al,
2020).

The limitation of existing splitting functions is that they
treat all the vertices in a hyperedge equally while in practice
these vertices may have different degrees of contribution to the
hyperedge. Such information can be captured by edge-dependent
vertex weights (EDVW): every vertex v is associated with a weight
ve(v) for each incident hyperedge e that reflects the contribution
or importance of v to e (Chitra and Raphael, 2019). Going back
to the aforementioned examples, EDVW can be used to model
the author positions in a co-authored article, the quantity of a
product bought by a customer, as well as the frequency of a word
in a document.

Spectral theory on the hypergraph model with EDVW is
much less developed than on submodular hypergraphs. Existing
works studying hypergraphs with EDVW have only focused on
random walk-based Laplacian matrices (Chitra and Raphael, 2019;
Hayashi et al., 2020; Zhu et al., 2021), thus raising the question:
How to define non-linear p-Laplacians for the hypergraph model
that incorporates EDVW? Our basic idea for solving this problem
is to convert a hypergraph with EDVW into a submodular
hypergraph then p-Laplacians and related theorems developed
for submodular hypergraphs can be directly leveraged. Based on
our earlier work (Zhu et al., 2022), the model conversion can be
achieved by defining submodular EDVW-based splitting functions
in the form of w.(S) = ge(zve S Ye(v)) where g, is a concave
function and the splitting penalty w,(S) is dependent only on the
sum of EDVW in S. Moreover, hypergraphs with such splitting
functions are proved to be graph reducible, meaning that there
exists some graph sharing the same cut properties (Zhu and
Segarra, 2022).
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Since the 1-Laplacian provides the tightest approximation of
the Cheeger constant, a follow-up question is: How to apply
1-spectral clustering to submodular hypergraphs with EDVW-based
splitting functions? To this end, we develop an algorithm to
compute the second eigenvector of the 1-Laplacian for EDVW-
based submodular hypergraphs based on the inverse power
method (IPM). The IPM was initially proposed for undirected
graphs (Hein and Biihler, 2010), then generalized to submodular
hypergraphs with cardinality-based splitting functions (Li and
Milenkovic, 2018). A key to the success of IPM is an efficient
solution to the inner-loop optimization problem in it. In this
paper, we derive an equivalent definition of graph reducibility
based on which we further propose an efficient solution to the
inner problem that works for all graph reducible submodular
hypergraphs including those with EDVW. The proposed solution
can also be used to solve submodular function minimization
(SFM) problems (Bach, 2013) when the submodular function
can be represented as sums of concave functions applied to
modular functions.

The major contributions of this paper can be summarized as
follows:

(1) We present an equivalent definition of graph reducibility
in terms of the Lovédsz extension of the cut function (see
Theorem 1), which is helpful for understanding the relations
between graph Laplacians and hypergraph Laplacians.

(2) We propose an algorithm to compute the eigenvector of the 1-
Laplacian associated with the second smallest eigenvalue for all
graph reducible submodular hypergraphs including those with
EDVW-based splitting functions, and use the eigenvector for
1-spectral clustering.

(3) We validate the effectiveness of the proposed algorithm which
leverages both of EDVW and 1-spectral clustering via numerical
experiments on real-world datasets.

1.1. Paper outline

The rest of this paper is structured as follows. Preliminary
mathematical concepts and submodular hypergraphs are reviewed
in section 2. Section 3 introduces the hypergraph model with
EDVW and shows how to convert it to graph reducible submodular
hypergraphs by constructing EDVW-based splitting functions.
The section also presents two equivalent definitions for graph
reducibility. The proposed 1-spectral clustering algorithm is
described in section 4. Section 5 presents experimental results. The
relation between hypergraph Laplacians defined in different ways
and the application of the proposed algorithm in SEM are discussed
in section 6. Closing remarks are included in section 7.

1.2. Notation

For a vector x and a set S, xg denotes the vector formed
by the entries of x indexed by S and x(S) = ) .gx,. The
operator P, ;(x) projects every entry of x onto the range [a, b].
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Throughout the paper we assume that the considered hypergraphs
are connected.

2. Preliminaries

2.1. Mathematical preliminaries

For a finite set V, a set function F : ZV — R is called submodular
if F(S1) + F(S;) = F(S1 USy) + F(S1 N Sy) for every S1, S, € V.
Considering a set function F: 2V 5 R such that F(#) = 0 where
VYV = [N] = {1,2,---,N}, its Lovasz extension f:RN —- R
is defined as follows. For any x € RN, sort its entries in non-

increasing order x;, > xj, > -+ > xjy, where (i1, i, - ,in) is
a permutation of (1,2, --- ,N), and set
N-1
fO) =30 FS)0s = %) + FWiys (1)
where S; = {i1,---,ij} for I < j < N. A set function F is

submodular if and only if its Lovasz extension f is convex (Lovasz,
1983). For any S € V, F(S) = f(1g) where 1g is the indicator
vector of S. If F(V) = 0, f(ax + bl) = af(x) for any a €
Rs,b € R. More properties of submodular functions can be found
in Appendix A.

2.2. Submodular hypergraphs

Let H = (V, & u, {we}) denote a submodular hypergraph (Li
and Milenkovic, 2018) where V = [N] is the vertex set and £ is
the set of hyperedges. The function ;1 :V — R assigns positive
weights to vertices. Each hyperedge e € & is associated with a
submodular splitting function w,:2¢ — R( that assigns non-
negative penalties to every possible split of e. Moreover, w, is
required to satisfy w.(¥) = 0 and be symmetric so that w.(S) =
we(e \ S) for any S C e. The domain of w, can be extended from
2102V by setting w.(S) = w.(SNe) for any S C V), guaranteeing
that the submodularity is maintained.

A cut is a partition of the vertex set ) into two disjoint, non-
empty subsets denoted by S and its complement V' \ S. The weight
of the cut is defined as the sum of splitting penalties associated with
each hyperedge (Li and Milenkovic, 2018; Veldt et al., 2020), i.e.,

cuty(S) =) welS). ©)
The normalized Cheeger cut (NCC) is defined as

cut/(S)

NCC(S) = min{vol(S), vol(V\ S)}

3)

where vol(S) = ), _gu(v) denotes the volume of S. The 2-
way Cheeger constant is defined as the minimum NCC over all
non-empty subsets of } except itself, i.e.,

hy = min NCC(S). (4)

pcScV

The solution to (4) provides an optimal partitioning in the sense
that we obtain two clusters which are balanced in terms of volume
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and loosely connected as captured by a small cut weight. In this
paper, we adopt the minimization of NCC as our objective. There
exist other clustering measures such as ratio cut, normalized cut
and ratio Cheeger cut, which are closely related (Von Luxburg,
2007; Biihler and Hein, 2009).

Optimally solving (4) has been shown to be NP-hard for
graphs (Wagner and Wagner, 1993), let alone hypergraphs.
In spectral graph theory, Cheeger inequalities are derived to
bound and approximate the Cheeger constant using graph p-
Laplacians (Amghibech, 2003; Biihler and Hein, 2009; Szlam and
Bresson, 2010; Chang, 2016; Chang et al, 2017; Tudisco and
Hein, 2018). The results have been generalized to submodular
hypergraphs (Li and Milenkovic, 2018; Yoshida, 2019). The p-
Laplacian A, of a submodular hypergraph is defined as an operator
that, for all x € RY, induces

(6 8p(0) = D - Defe®) £ Qp(), 5)

where ¥, = maxgc, we(S) and f, is the Lovisz extension of
the normalized splitti_ng function ¥, L,. Notice that A can be
alternatively defined in terms of the subdifferential of f, (Li and
Milenkovic, 2018), while we keep the definition (5) since it is more
instrumental to our development. In particular, when p = 1, Q;(x)
turns out to be the Lovész extension of the cut function defined
in (2). It has been proved that the second smallest eigenvalue of
the 1-Laplacian is identical to the Cheeger constant h; (Li and
Milenkovic, 2018).

3. EDVW-based submodular
hypergraphs

3.1. The hypergraph model with EDVW

Let H = (W, & u,k,{ye}) represent a hypergraph with
EDVW (Chitra and Raphael, 2019) where V, &, and p respectively
denote the vertex set, the hyperedge set, and positive vertex weights.
The function « : £ — Ry assigns positive weights to hyperedges,
and those weights can reflect the strength of connection. Each
hyperedge e € & is associated with a function y,:V — Rxq to
assign edge-dependent vertex weights. For v € e, y,(v) is positive
and measures the importance of the vertex v to the hyperedge e;
for v ¢ e, y.(v) is set to zero. For convenience, we define y,(S) =
ZVES Ye(V).

The motivation of introducing EDVW is to enable the
hypergraph model to describe the cases when the vertices in the
same hyperedge contribute differently to this hyperedge. This
information cannot be captured by hypergraphs adopting the all-
or-nothing or cardinality-based splitting functions and is also
hard to be directly described by submodular hypergraphs, but it
can be conveniently represented via EDVW. For example, Chitra
and Raphael (2019) studies the application of ranking authors
in an academic citation network where authors and papers are
respectively modeled as vertices and hyperedges. For a paper e and
any author v of the paper, the corresponding EDVW y,(v) is set to
2 if v is the first or last author, otherwise the weight is set to 1.
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3.2. Building submodular hypergraphs from
EDVW

In order to effectively handle EDVW while still leveraging
existing results obtained for submodular hypergraphs, we
consider the conversion from a hypergraph with EDVW

H = W& i, {ye}) to a submodular hypergraph
H = V& u,{we}). The basic idea is to keep V, &, and p
unchanged, and construct submodular splitting functions

{we} from EDVW {y.} and hyperedge weights «. After such
a transformation, we can directly extend concepts such as p-
Laplacians and related theorems proposed for the submodular
hypergraph model (Li and Milenkovic, 2018) to the EDVW-based
hypergraph model.

In our preliminary works (Zhu and Segarra, 2022; Zhu et al.,
2022), we have proposed a class of submodular EDVW-based
splitting functions in the following form

We(S) = he(k(€)) - ge(ve(S)), (6)

where h, : R; — Ry is an arbitrary function and g, :[0, y.(e)] —
R> is concave, symmetric with respect to y.(e)/2, and satisfies
2.(0) = 0. The resulting w, is a valid splitting function that is
non-negative, submodular, symmetric, and satisfies w.(¥) = 0. In
practice, it is reasonable to select a non-decreasing function for h,
such as h.(x) = 1 and h.(x) = x since a larger hyperedge weight
K (e) is expected to lead to a larger splitting penalty for the same split
of the hyperedge. Possible choices of g, include g.(x) = x - (y.(e) —
X), ge(x) = min{x, y,(e) —x}, and g.(x) = min{x, y.(e) —x, b} where
b is a positive parameter. Also notice that for trivial EDVW, namely
ve(v) = 1 forall v € e, the splitting functions defined as (6) reduce
to cardinality-based ones (Veldt et al., 2020).

3.3. Hypergraph-to-graph reductions

Submodular hypergraphs with splitting functions defined as (6)
have a desirable property that they are graph reducible. In other
words, they can project onto some graph which shares identical cut
properties. Following Veldt et al. (2020), we consider the reduction
of a hypergraph to a (possibly directed) graph with a potentially
augmented vertex set. For a directed graph (digraph) G with vertex
set Vi and weighted adjacency matrix A whose entry A,, denotes
the weight of the directed edge pointing from u to v, its cut function
is defined as

cutg(S) = ZueS,veVg\SAw' @

In the following, we state a formal definition for graph reducibility
in terms of cut weights, which is a variant of the definition in terms
of hyperedge splitting functions stated in Veldt et al. (2020).

Definition 1. For a submodular hypergraph H with vertex set V,
we say that its cut function cutq, (S) is reducible to the cut function
of a directed graph G with vertex set Vg = VU ) where Vis a set of
auxiliary vertices if the following equality holds

cutz;(S) = min cutg(SU T, VSCV. (8)
=%
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1: Input: hypergraph with EDVW H = V& w,k,{ve})

2: Convert H to a submodular hypergraph by
constructing submodular splitting functions based
on (6)

3: Compute the second eigenvector of the hypergraph
l1-Laplacian via the minimization of Ry(x) in (11)

4: Threshold the obtained eigenvector to get the
bipartition of V where we choose the threshold

value as the one that minimizes the NCC in (3)

Algorithm 1. 1-spectral clustering for hypergraphs with EDVW.

In the following theorem, we show an equivalent condition
for graph reducibility regarding the Lovasz extension of the cut
function, which is beneficial for our later development of the 1-
spectral clustering algorithm. The Lovasz extension of the graph cut
function can be written as

Q) = ey A M= 3.0 (©)

where y is a vector of length V.

Theorem 1. The equality presented in (8) is equivalent to

Q) = min Q¥(y), VxeRY (10)
xeRM

where Q(x) and Q(Ig) (y) are respectively defined in (5) and (9),

[V = N, V| = M, andy € RN*M is composed of y)) = xand

Yy = X.

Proof. The equivalence between (8) and (10) is proved

in Appendix B.

It has been shown in Veldt et al. (2020) that all hypergraphs
with submodular cardinality-based splitting functions are graph
reducible. Our earlier work (Zhu and Segarra, 2022) has generalized
the conclusion to hypergraphs with submodular EDVW-based
splitting functions. In the following section, we propose a 1-spectral
clustering algorithm for all submodular hypergraphs that are graph
reducible including those EDVW-based ones, which are the focus
of this paper.

4. Spectral clustering based on the
1-Laplacian

4.1. IPM-based 1-spectral clustering

We study spectral clustering algorithms for EDVW-based
submodular hypergraphs leveraging the 1-Laplacian. As mentioned
in section 2.2, for submodular hypergraphs the Cheeger constant
hy is equal to the second smallest eigenvalue A, of the 1-
Laplacian A;. The corresponding optimal bipartition can be
obtained by thresholding the eigenvector of A; associated with
Az (Li and Milenkovic, 2018). This eigenvector can be computed
by minimizing

Q1(x)

Ri(x)= ——7———,
minger [|x — clll1,,

(11)
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vertices, accuracy €
2: Initialization: non-constant x € RN subject to 0 €
argmin, [|x — clf|1,,, A < Ri(x)

3: repeat

sgn(xy) - u(v), if x, #0
4: WweV, g « g()v ® Y
B ), Af %, =0

5: X <« argminHfol Qi(x) — A(x,8) (inner problem)
6: ¢ < argmin_ [|x —clfl1,

7: X< x—cl

8: A «— AMA <« Ri(x)

[A=]

9: until 7

<€

10: Output: x

Algorithm 2. IPM-based minimization of R4 (x) (Hein and Buhler, 2010; Li
and Milenkovic, 2018).

where [Ix]|1,, 2 ey m(Mxy|. Given the eigenvector x, a
partitioning can be defined as S = {v € V|x, > t} and
its complement, where ¢ is a threshold value. The optimal ¢ can
be determined as the one that minimizes the NCC in (3). The
pipeline for the 1-spectral clustering algorithm is summarized in
Algorithm 1.

The minimization of Rj(x) can be solved based on the
inverse power method (Hein and Biihler, 2010; Li and Milenkovic,
2018), as outlined in Algorithm 2. Three functions are introduced:
() Zvev:xv>0 p), p-(x) = ZveV:xv<0 u(v) and
mo(x) = v o u(v). Although this algorithm cannot
guarantee convergence to the second eigenvector, the objective
Ri(x) is guaranteed to decrease and converge in the iterative
process. Moreover, if we start from some point x = 1g in
Algorithm 2 where (S,V \ S) is a given partition of V), then each
step of the IPM-based method gives a partition that has a smaller
(or at least equal) NCC value (see theorem 4.2 in Hein and Setzer,
2011). This implies that we can leverage the partition obtained via
other methods as initialization. The algorithm was first proposed
for the undirected graph setting (Hein and Biithler, 2010), then
generalized to submodular hypergraphs with cardinality-based
splitting functions (Li and Milenkovic, 2018). It is actually a special
case of a more general class of minimization algorithms called
RatioDCA and generalized RatioDCA proposed in Hein and Setzer
(2011) and Tudisco et al. (2018) in order to handle more types of
balanced graph cuts and modularity measures, respectively. The
major difference between the graph setting and the hypergraph
setting lies in how the inner-loop optimization problem (cf. line 5
in Algorithm 2) is solved.

In Li and Milenkovic (2018), the authors solved the inner
problem using a random coordinate descent method (Ene and
Nguyen, 2015) together with a divide-and-conquer algorithm
proposed in Jegelka et al. (2013). The computational complexity of
the divide-and-conquer algorithm depends on the time of solving
the problem ming, F(S) 2 w(S) + z(S) for an arbitrary vector
z € Rl For a cardinality-based splitting function, the solution
to this problem can be found efficiently via a line search even
when |e| is large. In the line search, we create a series of sets

So = 0,81,

-, Sle|, where S; contains i vertices corresponding
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1: Input: submodular hypergraph H = (V& {we)) with N tothe firstismallest entries in vector z. We compare their objective

values F(S;) and identify the solution S+ leading to the minimum
objective value. However, such solution does not work for EDVW-
based splitting functions. In the following section, we study the
inner problem considering the EDVW-based case.

4.2. Solution to the inner problem

We propose efficient solutions to the inner problem for EDVW-
based submodular hypergraphs leveraging the property that they
are graph reducible. More generally speaking, the proposed
solutions work for all graph reducible submodular hypergraphs.
We first show that the inner problem is equivalent to another
optimization problem (12) defined on the digraph obtained via the
reduction.

Theorem 2. For any submodular hypergraph # with vertex set V,
= VU Vand
edge set Eg, i.e., (8) or (10) holds, then the solution x to the inner

if it is reducible to a digraph G with vertex set Vg

problem in Algorithm 2 can be obtained (up to a scalar multiple)

by setting x = yy,andy € R‘Vgl is the solution to

min Q¥ (y) — (y.8) (12)
llyll2<1

where g € RIVg\ is a vector composed of gy) = Ag and gy, = 0.

Proof. The proof can be found in Appendix C where we have
used the equivalent definition for graph reducibility proposed in
Theorem 1.

We present two ways for solving problem (12) in sections 4.2.1
and 4.2.2, respectively.

4.2.1. Solving the inner problem via FISTA

Both of the original inner problem and its equivalent
problem (12) are convex but non-smooth. Inspired by Hein and
Biihler (2010), we derive a dual formulation (13) of problem (12).
Compared to the primal problem, the objective function W of the
dual problem is smooth. Moreover, problem (13) can be efficiently
solved using a fast iterative shrinkage-thresholding algorithm
(FISTA) (Nesterov, 1983; Beck and Teboulle, 2009), which has
a guaranteed convergence rate O(1/k?) where k is the number
of iterations. FISTA requires an upper bound on the Lipschitz
constant of the gradient of W as the input, which is provided in (15).
The steps of FISTA are summarized in Algorithm 3.

To make it clear, in the theorem below, the set gg (as well as
the directed edge set £) contains ordered node pairs, meaning that
(u,v) and (v, u) are different. The parameter m can be understood
as the number of connected node pairs where the connection might
be unidirectional or bidirectional.

Theorem 3. Define a set Efg = {(u,v) € Vg x Vgl(u, V) €
5g or (v,u) € 5g} and set m = |S’g|/2. The dual of problem (12) is
min

aelo,1]™
ayytoyy=1

W) 2 ||fale) —glII3 (13)
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1: Input: A Lipschitz constant L of VW
2: Initialization: a=B8e€R", t=1
3: repeat
1
4: @' <—a, a < p—1VYP)
5: a <« Poyil@)
6: t «—t, t<« 1++/14412
: , B
. 1w — o
7: B ot (¢ —a')
8: until convergence or a predefined maximum number

of iterations is reached

9: Output: «

Algorithm 3. Solution of problem (13) with FISTA.

where « is a vector of length m collecting all o, satisfying (u,v) €
?)g and u < v. For the function f4 : R” — RN*M the uth element

of fa(e) is

Ay — AvyOlyy.

fa@l=3_ wneég

The primal and dual variables are related as

fale) —g

Tl —glz (14)

Y =
The Lipschitz constant of the gradient of W is upper bounded by

L = 4 max

By + A (15)
ueVg vevg

Proof. The proofis given in Appendix D.

In a nutshell, to solve the inner problem, we first compute the
adjacency matrix of the digraph according to the graph reduction
procedure proposed in Zhu and Segarra (2022). Then we solve the
dual problem (13) using FISTA, and get the solution y to the primal
problem (12) according to the relation between the primal and dual
variables as shown in (14). Finally, we obtain the solution x to the
original problem by taking the entries of y indexed by V.

4.2.2. Solving the inner problem via PDHG
Problem (12) can also be solved using a primal-dual hybrid
gradient (PDHG) algorithm (Chambolle and Pock, 2011, 2016a,b).
Although both FISTA and PDHG ensure a quadratic convergence
rate, it has been observed that PDHG can outperform FISTA in
practice for clustering applications (Hein and Setzer, 2011).
PDHG is able to solve problems in the following form:

min fi(y) + f2(By), (16)
yeRM
whose dual problem is
max —f;(~B'z) — f; (2), (17)
zeRN2

where fj : RN — (—o00,+00] and fo: RN — (—o00,+00] are
proper, convex, lower semicontinuous functions, B : RN — RN
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1: Initialization: 10 < ﬁ, y=vye€ R‘Vgl , Z€ ]R‘gg‘
2: repeat

3: z <« Poi(z+ oBy)

41y <y, yoe = (y—tBTz2-9)

o

5: 0 « ,r<—91,o<—5

1
1+t
6: yey+0y—y)
7: until convergence or a predefined maximum number

of iterations is reached

8: Output: y

Algorithm 4. Solution of problem (18) with accelerated PDHG.

is a bounded linear operator, and f;" and f;* are the corresponding
conjugate functions of f; and f, (Boyd et al., 2004).

The solution to problem (12) can be obtained via normalizing
the solution to problem (18) below.

1 3
min Q¥ (y) + lly — glI3- (18)
‘Vg‘ 2
yeR

We can fit (18) into the form (16) by setting N; = |Vg|, N, =

€l fily) = 3lly — &3, h®) =
a |€g| x |Vg| matrix. For the row of B corresponding to edge

21 max{z;,0}, and B is

u — v, the uth and vth elements in the row are respectively equal
to A,y and —A,,, and the other elements are zero. We can show
that £(y) = 1lyl3 + (.8, f;(2) = 0 with the domain that
0 <z < 1forany 0 < i < N,. Since f; is 1-strongly convex,
we can leverage an accelerated variant of the PDHG algorithm.
The algorithm tailored for problem (18) is given in Algorithm 4 (cf.
algorithm 8 in Chambolle and Pock, 2016a).

4.3. A special case: Reduction to an
undirected graph

If the submodular hypergraph is reducible to an undirected
graph (e.g., see theorem 3.3 in Zhu and Segarra, 2022), then
there exists another dual formulation of problem (12) that bears
a similar form to (13) while the gradient of its objective has a
smaller Lipschitz constant (cf. lemma 4.3 in Hein and Biihler, 2010).
In fact, for this case, the hypergraph 1-spectral clustering can be
implemented via its graph counterpart.

Following Theorem 1, we further define a vertex weight
function nG for the graph G such that Mg(V) = n) forv e V
and Mg(V) = 0 for each auxiliary vertex v € V. Then it follows

from (10) that R;(x) = mingcpm R(lg)(y) for any x € RN where
(&)
ROy = )

W and y is composed of y), = x and
¥y, = X. Minimizing both sides of the equation over x € RN
leads to the same minimum NCC value. When G is undirected,
the second eigenvector of the graph 1-Laplacian can be computed
by minimizing R(lg)(y) and then the second eigenvector of the
hypergraph 1-Laplacian can be computed as x = yy,. This can also
be understood in terms of the cut function. Following (8), it is easy
to show that the Cheeger constant of the graph G is identical to that
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of the hypergraph H. This coincides with theorem 3.3 in (Liu et al.,
2021), which further proves that if S is the set in G leading to the
minimum NCC for the vertex weight function RG> then SN Vis
the minimum NCC set in H.

5. Experiments

We evaluate the performance of the proposed 1-spectral
clustering algorithm for EDVW-based submodular hypergraphs
(termed as EDVW-based hereafter) by focusing on the bipartition
case. In particular, for hyperedge splitting functions as in (6), we
select ho(x) = x and g.(x) = min{x, y(e) — x, By (e)} for every
hyperedge e € &, namely

We(S) = «(e) - min{ye(S), ve(e) — e(S), Bre(e)} (19)

where f is tunable. Notice that we reuse the symbols « and g in
this section, which are different from and not related to & and B
used when describing FISTA. A hypergraph with splitting functions
as (19) can be reduced to a digraph that consists of |V|42|&| vertices
and |&] + 2", ¢ le| edges. More precisely, we first project each
hyperedge e onto a small graph which contains |e| + 2 vertices
including two auxiliary vertices denoted by ¢’ and ¢”. For every
v € e, there are two directed edges respectively from v to ¢’ and
from ¢’ to v, both of weight «(e)y.(v). There is also a directed
edge of weight Br(e)y.(e) from ¢ to ¢’. Then we concatenate
these small graphs for all hyperedges together to form the
final graph.

5.1. Datasets

We consider three widely used real-world datasets.

Reuters Corpus Volume I (RCV1): This dataset is a collection
of manually categorized newswire stories (Lewis et al., 2004). We
consider two categories C14 and C23. A few short documents
containing less than 20 words are ignored. We select the 100 most
frequent words in the corpus after removing stop words and words
appearing in > 10 and < 0.2% of the documents. We then remove
documents containing < 5 selected words, leaving us with 7, 446
documents. A document (vertex) belongs to a word (hyperedge)
if the word appears in the document. The edge-dependent vertex
weights are taken as the corresponding tf-idf (term frequency-
inverse document frequency) values (Leskovec et al., 2020) to the
power of «, where « is a tunable parameter.

1: This is also a text dataset. For our two-

20 Newsgroups
partition case, we consider the documents in categories “rec.autos”
and “rec.sport.hockey." We preprocess the dataset following the
same procedure as used in RCV1 above. We finally construct a
hypergraph of 1, 389 vertices and 100 hyperedges.

Covtype: This dataset contains patches of forest that are in
different cover types. We consider two cover types (labeled as
4 and 5) and all numerical features. Each numerical feature is
first quantized into 20 bins of equal range and then mapped to
hyperedges. The resulting hypergraph has 12,240 vertices and 196

1 http://qwone.com/~jason/20Newsgroups/

Frontiersin Big Data

10.3389/fdata.2023.1020173

hyperedges. For each hyperedge (bin), we compute the distance
between each feature value in this bin and their median, and then
normalize these distances to the range [0, 1]. The edge-dependent
vertex weights are computed as exp(—« - distance). Under this
setting, larger edge-dependent vertex weights are assigned to
vertices whose feature values are close to the typical feature value
in the corresponding bin.

Following Hayashi et al. (2020), for all datasets we set the
hyperedge weight « (e) to the standard deviation of the EDVW y,(v)
for all v € V. Following Li and Milenkovic (2018), we set the
vertex weight 1(v) to the vertex degree defined in the submodular
hypergraph model, i.e., u(v) = ", V..

5.2. Baselines

We compare the proposed approach with three baseline
methods.

Random walk-based: The paper Hayashi et al. (2020) defines a
hypergraph Laplacian matrix based on random walks with EDVW.
We compute the second eigenvector of the normalized hypergraph
Laplacian [cf. (6) in Hayashi et al., 2020] and then threshold it to
get the partitioning.

Cardinality-based: In the description of the datasets above,
when o = 0, we get the trivial EDVW and the splitting functions
reduce to cardinality-based ones.

All-or-nothing: For the adopted splitting functions (19), they
reduce to the all-or-nothing case if B is small enough [ie., f <
minye, Ye(v)].

For the proposed method, in Algorithm 2 we adopt the
eigenvector obtained in the random walk-based method described
above as the starting point. We solve the inner problem using
PDHG presented in Algorithm 4. Moreover, in Algorithm 4 we
0.9

—=—andz = 0.

initialize T = 0 =
1Bl

5.3. Results

The results are shown in Figure 1. We present both the
clustering error and the NCC where the clustering error is
computed as the fraction of incorrectly clustered samples. For
the RCV1 dataset (A-D), we fix B = 0.2 to observe the
influence of o in (A, B) and fix ¢ = 1 to test 8 in (C,
D). For the 20 Newsgroups dataset (E-H), we fix § = 0.1
in (E, F) and « = 0.8 in (G, H) to observe the effects of «
and B, respectively. For the Covtype dataset (I-L), we fix § =
02 in (I, J) and ¢« = 2 in (K, L). We can see that for all
the considered datasets, when edge-dependent vertex weights are
ignored (including o = 0 for cardinality-based splitting functions
and B close to zero for the all-or-nothing splitting function), the
clustering performance is severely deteriorated, validating that it
is necessary to incorporate EDVW for extra modeling flexibility.
It can also be observed that, when appropriate values for « and S
are selected (such as @ = 1.2, = 0.2 for RCVl, ¢ = 1.2,8 =
24,8 = 0.2 for Covtype),
the proposed method performs much better than the random

0.1 for 20 Newsgroups and o =

walk-based method which depends on the classical Laplacian.
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FIGURE 1
Clustering performance for three real-world datasets displayed in pairs of figures depicting the clustering error and the NCC value as a function of
the parameters « or 8. For RCV1, we fix g = 0.2 in (A, B) and « = 1 in (C, D). For 20 Newsgroups, we fix 8 = 0.1 in (E, F) and « = 0.8 in (G, H). For
Covtype, we fix 8 =0.21in (I, J) and « = 2 in (K, L). A proper choice of @ and B helps significantly decrease the clustering error compared with existing
methods. The performance improvement may benefit from both the use of EDVW and 1-Laplacian.

This highlights the value of using the non-linear 1-Laplacian in
spectral clustering. To summarize, both the use of EDVW and
1-Laplacian are beneficial for improving the spectral clustering
performance.

6. Related work

We discuss the related works in this section. We will show
the relationship between hypergraph Laplacians introduced via
random walks and those defined based on submodular splitting
functions. We will also show how the proposed solution to the inner
problem contributes to SEM.

6.1. Random walk-based Laplacians

walks with EDVW and those studied in this paper
considering submodular EDVW-based splitting
functions.

Considering the hypergraph model with EDVW (cf.
section 3.1), the random walk incorporating EDVW is defined
as follows (Chitra and Raphael, 2019). Starting at some vertex u,
the walker selects a hyperedge e containing u with probability
proportional to «(e), then moves to vertex v contained in e with
probability proportional to y,(v). In this process, the probability of

moving from u to v via e is

Kkl re
Dsuk(@)  vele)’

0,

u,v e,

PU‘)E‘)V -

(20)
else.

Then one can define a transition matrix P whose (u, v)th entry
denotes the transition probability from u to v and is computed
as Py, = Y, £ Pu—esy. When the hypergraph is connected, the

Here we expand the discussion about the relation random walk converges to a unique stationary distribution  which
between  hypergraph  Laplacians based on random is the all-positive dominant left eigenvector of P scaled to satisfy
Frontiersin Big Data 08 frontiersin.org
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|l |1 = 1. In Chitra and Raphael (2019) and Hayashi et al. (2020),
hypergraph Laplacians based on such random walks are proposed
and they are actually equal to combinatorial and normalized graph
Laplacian matrices (i.e., graph 2-Laplacians) of an undirected graph
which is defined on the same vertex set as the hypergraph and has
the following adjacency matrix

®P + PP
A= 2R

3 1)

where & is a diagonal matrix whose (v, v)th entry is 7,.
Consider a hypergraph # with submodular splitting functions
in the following form for each of its hyperedges:

TuPusesy + TPy sesy

3 , VSCe (22)

We (S) = Zues,vee\s

It is easy to show that H is reducible to the graph G defined by
the adjacency matrix (21) since they have the same cut function
as cutyy(S) = cutg(S) = ZueS,vEV\S M. Notice that
there are no auxiliary vertices introduced in the graph reduction.
Following Theorem 1, we have Q;(x) = Q(lg) (x), implying that the
hypergraph 1-Laplacian of H is identical to the graph 1-Laplacian
of G if we assume that they share the same vertex weight function .

6.2. Decomposable submodular function
minimization

In the inner problem of Algorithm 2, if the norm of x is [|X[| 00,
the problem is equivalent to the following SFM problem

mn Do e WelS) — 1g(S), (23)
where the primal and dual variables are related as x, = 1 if
v € Sandx, = —1ifv ¢ S (Li and Milenkovic, 2018). Hence,

the proposed solution to the inner problem can also be used to
solve problems in the form of (23) when each function w, can be
represented as a concave function applied to a modular (additive)
function [cf. (6)].

7. Conclusion

We presented an equivalent definition of graph reducibility
based on which we further proposed a 1-spectral clustering
algorithm for submodular hypergraphs that are graph reducible,
especially for those with EDVW-based splitting functions.
Through experiments on real-world datasets, we showcased the
value of combining the hypergraph 1-Laplacian and EDVW.
Future research directions include: (1) Developing computation

Frontiersin Big Data

09

10.3389/fdata.2023.1020173

methods for the hypergraph 1-Laplacian’s eigenvectors which
can work efficiently for all submodular splitting functions, (2)
Designing multi-way partitioning algorithms based on non-linear
Laplacians (Biihler and Hein, 2009), and (3) Exploring applications
of p-Laplacians for different values of p (Fu et al., 2022).
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