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Joint Network Topology Inference Via
a Shared Graphon Model

Madeline Navarro

Abstract—We consider the problem of estimating the topology of
multiple networks from nodal observations, where these networks
are assumed to be drawn from the same (unknown) random graph
model. We adopt a graphon as our random graph model, which is
a nonparametric model from which graphs of potentially different
sizes can be drawn. The versatility of graphons allows us to tackle
the joint inference problem even for the cases where the graphs to
be recovered contain different number of nodes and lack precise
alignment across the graphs. Our solution is based on combining
a maximum likelihood penalty with graphon estimation schemes
and can be used to augment existing network inference methods.
The proposed joint network and graphon estimation is further
enhanced with the introduction of a robust method for noisy graph
sampling information. We validate our proposed approach by com-
paring its performance against competing methods in synthetic and
real-world datasets.

Index Terms—Network topology inference, graph learning, joint
inference, graphon.

1. INTRODUCTION

cated relationships and intuitively represent structure via
dyadic connections. Data consisting of entities in interconnected
systems, tangible or abstract, are ubiquitous in multiple fields.
Network structures are highly utilized across these many dis-
ciplines for representation and analysis of complex informa-
tion [2], such as ecology for predicting animal behavior [3], neu-
roscience for modeling relationships between neurons [4], and
environmental science for discovering and predicting outcomes
of climate relationships [5]. Interpretation of networks varies
greatly depending on the application. For example, networks
may represent physical systems, such as road networks or joint
connectivity for skeletal data [6]. In contrast, the nature of a
connected system may be more abstract, as is the case for
correlation networks, where connectivity represents statistical

N ETWORKS conveniently capture systems with compli-

Manuscript received 27 April 2022; revised 5 September 2022 and 4 Novem-
ber 2022; accepted 9 November 2022. Date of publication 21 November 2022;
date of current version 6 December 2022. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Ketan Rajawat.
This work was supported by NSF under Award CCF-2008555. An earlier version
were presented at [CASSP 2022 [DOI: 10.1109/ICASSP43922.2022.9746332].
(Corresponding author: Madeline Navarro.)

The authors are with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005 USA (e-mail: nav@rice.edu;
segarra@rice.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSP.2022.3223523, provided by the authors.

Digital Object Identifier 10.1109/TSP.2022.3223523

, Graduate Student Member, IEEE, and Santiago Segarra

, Senior Member, IEEE

interdependencies between observed variables. Additionally,
networks may or may not be directly observable. As an intuitive
example, consider that structural (anatomical) connectivity be-
tween neurons can be directly measured [7], whereas functional
connectivity between brain regions cannot be known but must
be estimated by observing neural responses [4], [8].

While networks are convenient and interpretable tools for
tasks on complex data, the underlying structure may be unavail-
able. For instance, the true structure of unobservable networks
cannot be provided but must be obtained, as with brain functional
networks [4], [8], the correlations in social behavior between
animals [3], or any abstract network where we cannot mea-
sure connectivity patterns directly. Alternately, the underlying
network may be expensive to obtain, as with brain structural
connectivity [7]. The ubiquitous problem of recovering network
connectivity from graph measurements has been well studied
in fields such as statistics [9] and signal processing [10]. Given
data in the form of nodal observations, network connectivity
via data-driven methods include graphical models [11], [12],
structural equation models [13], and graph signal processing
(GSP)-based approaches [10], [14], [15], [16].

In the case of inferring the topologies of multiple networks,
separate estimation is a feasible methodology. However, in many
scenarios a joint inference method may achieve better perfor-
mance by leveraging common structures between the graphs
to be inferred. For instance, one would expect certain levels of
similarities between the brain networks of different healthy indi-
viduals or between the same social network observed at different
points in time. In this paper, we consider the prevalent problem of
inferring the topology of multiple networks while assuming that
networks share structural similarities. Many applications rely on
multiple instances of interconnected relationships observed over
time or in several scenarios, and these complex structures can
be conveniently represented by a set of networks. E.g., Brain
networks, functional or structural, are valuable tools for diagno-
sis, and estimating multiple networks is necessary for analysis
of many patients or scenarios [4]. One of the most prominent
scenarios requiring the acquisition of multiple networks is when
networks vary over time [8]. For example, we would expect
that the social network of a species of interest will evolve over
time [17].

We consider the problem of recovering the connectivity of
multiple networks whose structures are represented by graphs
assumed to be sampled from the same (unknown) random
graph model. We adopt the nonparametric network model as
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a graphon [18], but the specific graphon model need not be
known a priori for our proposed method. While estimation of
multiple networks is well-studied, to the best of our knowledge
we provide the only work in the literature that utilizes a shared
graphon relationship to jointly estimate graphs of potentially
different sizes.

The contributions of our paper are as follows:

1) We present a methodology to infer multiple networks that
potentially lack node alignment and may have different
sizes by leveraging the assumption that graphs come from
the same nonparametric network model.

2) We detail how our approach can be combined with ex-
isting network inference methods, effectively providing a
whole family of methods to solve the problem of interest.

3) We develop a robust version of the problem where the
exact sampling criteria of the graphs from the graphon
are not known, but we are instead given noisy sampling
information.

4) Through numerical experiments in synthetic and real-
world data we demonstrate the performance of our method
in comparison with separate inference and competing joint
inference algorithms.

The remainder of this paper is organized as follows. We
review graph signal processing and graphons in Section II,
along with past related work. We introduce the problem of
interest in Section III. Our proposed problem formulations are
presented in Section IV, and the algorithm development is
discussed in Section V. We expand the problem to a noisy
graph sampling setting and present a robust solution in Sec-
tion VI. Section VII presents experimental results of all pro-
posed algorithms on synthetic and real-world data. Finally, we
close with conclusions and discussions of future directions in
Section VIII.

II. PRELIMINARIES
A. Notation

The following notation will be used in this paper. We represent
vectors as bold lowercase letters x, entries of which are indexed
by x;. Matrices are bold uppercase letters X, where entries
are indexed by X;;, and X represents the i-th row of X. The
superscript | denotes the transpose. A matrix with a calligraphic
letter subscript X7 denotes the submatrix of X consisting of
rows of X indexed by the set Z. The notation X/ is ordered by
first selecting the rows indexed by Z then transposing the result.
Thus, selecting the i-th column of a matrix X is represented by
[X]; and columns of X indexed by Z is denoted by [X];.
We define three special index sets £, U, and D referring to the
lower triangle, upper triangle, and diagonal indices of a square
matrix. A square matrix X € RY>*¥ with the subscript £ as X
returns a column vector of length N(N — 1)/2 of the vertical
concatenation of the lower triangular entries of X. The sets I/
and D return similar column vectors. We let Iy and 1  represent
the identity matrix of size N x N and the all-ones column vector
of length N. The Kronecker product, the Kronecker sum, and
the Hadamard product are denoted by ®, €, and o, respectively.
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We use vec(X) to represent the column vector containing the
vertical concatenation of the columns in X.

B. Graph Signal Processing

We consider undirected, unweighted graphs of the form G =
(V, €) with node (vertex) set )V of cardinality NV and edge set
E CV x V. The structure of a graph can be represented by its
adjacency matrix S € {0, 1}V where S;; # 0 if and only if
the edge (4, j) exists in the network, and S;; = 0 otherwise. We
define graph signals as real-valued observations at each of the V
nodes, represented by a vector x € R . We may associate these
nodal values with the graph topology via graph signal models.
Choices for graph signal models include stationary signals that
result from diffusion processes over the graph [19], [20], [21]
or as multivariate random numbers, where the graph structure
represents statistical dependencies between variables [11], [12].

C. Graphons

A graphon is a bounded symmetric measurable function
W :[0,1]? — [0, 1] whose domain can be interpreted as edges
in an infinitely large adjacency matrix, while the range of W
represents edge probabilities. By this definition, a graphon can
be seen as a random graph model from which graphs with
similar structural characteristics can be sampled [18], [22], [23].
Generating an undirected graph G = (V, £) from a graphon W
consists of two steps: (1) selecting a random value between 0
and 1 for each node, and (2) assigning an edge between nodes
with probability equal to the value of the graphon at the their
randomly sampled points. Formally, the steps are as follows

¢i ~ Uniform([0, 1]) Vie, (1a)
Sij = Sji ~ Bernoulli W(;, () VY (i,7) €V xV, (1b)

where the latent variables ¢; € [0, 1] are independently drawn
for each node ¢. This notion of graphon encompasses many
commonly used exchangeable distributions on networks. In-
deed, Erd6s-Rényi graph models are represented via con-
stant graphons [24] and stochastic block models (SBMs) via
piecewise-constant graphons [25].

In our case, we assume that graphs are sampled from the
same graphon, which is also unknown. Therefore, we propose
a method to jointly estimate both the graphs and the underlying
graphon.

D. Related Work

Joint network inference. Inferring multiple networks has
been well-studied, particularly for graphical model estimation,
but most methods require strong assumptions about sizes and
node alignment across networks. Statistical methods that esti-
mate multiple graphical models typically involve modifications
of joint graphical lasso with novel penalties encouraging sim-
ilarity among networks [26], [27], [28], [29], [30]. While far
fewer than their statistical counterpart, GSP-based methods for
inferring multiple networks are prevalent [31], [32], [33], [34].
A particularly prominent scenario of joint network inference is
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estimation of time-varying graphs, where typical assumptions
include slow or smooth network changes over time [35], [36],
[37], [38] or smooth graph signals, that is, signal values across
nodes vary little [39], [40], [41], [42]. A more challenging
problem is the inference of multiple networks where it is not
known from which network observed data are generated. We
note GSP methods [32], [43], [44], [45] and statistical meth-
ods [46], [47], [48] within this category. We refer the reader to
the reviews in [10], [49], [50] for more examples of multiple
network estimation.

The majority of joint network inference methods require
network estimation on the same node set (and, thus, of the same
size). One exception includes brain network estimation with
brain regions of different coarseness [51], resulting in potentially
different sized networks; however, we not only allow for regions
at possibly different coarseness levels, but networks may consist
of completely different sets of regions altogether.

Furthermore, assumptions on similarity between graph struc-
tures mostly concentrate on edgewise relationships, with excep-
tions including [52], [53], [54], [55] that encourage similar struc-
tural characteristics without relying on edgewise comparisons
in particular. Similarly to our paper, [52] introduced a random
graph model for estimating networks that share a common
subspace without encouraging similar edge structures. Unlike
our approach, all of these methods require networks to have the
same size.

Graphon estimation. The proposed estimation procedure
jointly estimates a set of graphs along with their unknown shared
graphon. Graphon estimation is a well-studied problem [56],
[57], where the random graph model is estimated from a binary
adjacency matrix. Methods include estimating the graphon as
a continuous smooth object [58], [59], [60], [61] along with
the coarser SBM estimation [62], [63], [64], [65], [66], [67].
In many cases, the entire graphon is not needed but only the
probability matrix from which the graphon was sampled, i.e.,
the value of the graphon W(z,y) only at the latent sample
points (z,y) € ¢ x ¢, and these methods include neighborhood
smoothing [68], [69], [70], matrix completion [71], [72], [73],
or low-rank approximations [74]. In this work, we present a
framework that can leverage any graphon estimation method for
network estimation.

While most graphon estimation methods assume availability
of only one sampled adjacency matrix, a few works exist that
estimate graphon models from multiple graphs [62], [65], [68].
In our case, we infer a graphon from multiple networks without
prior knowledge of the network structure.

III. PROBLEM STATEMENT

Leveraging the proposed graphon relationship among net-
works, we present an algorithm that simultaneously estimates
heterogeneous networks and accounts for a common graphon
model. We consider undirected, unweighted graphs without
self-loops and sampled from a shared graphon. Formally, con-
sider a set of K different graphs {G®*) K_| where the k-th
graph has N*) nodes. The set of undirected, unweighted ad-
jacency matrices is represented by the set of adjacency matrices
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{S(k) 15:1- Assume also that there is a set of graph signals pro-
(k) .. (k)
[x; xr, | €
RN® *Tk where the r; columns contain the graph signals cor-
responding to the k-th graph. We further assume that all graphs
are sampled from the same generative model, a graphon W.
With some abuse of notation, we let S and X represent the sets
of adjacency matrices S = {S®)}X_  and graph signals X =

{X(k)}é(:l, respectively. We present our problem as follows.

Problem 1: Given sets of observations X = {X*)} X for
K graphs, find the adjacency matrices S = {S(*) S| under the
assumptions that (AS1) all graphs are sampled from the same
(unknown) graphon W and (AS2) the latent point sets ¢ (%) in
(1a) for each graph are known.

The first assumption (AS1) creates a relationship among the
graphs, and with it we may improve estimation of graphs by
jointly inferring the graph structures given their shared relation-
ship. The second assumption (AS2) eliminates the identifiability
problem for graphon estimation, where multiple graphons can
lead to the same random graph distribution [22]. When all
latent point sets are equivalent, i.e., ((¥) = ¢ for all graphs
ke {l,2,...,K}, (AS2) is equivalent to the assumption in
previous joint network inference methods, where node align-
ment is present and known for all pairs of graphs. However,
assuming possibly different known latent point sets is a weaker
assumption than that of previous methods, as we do not require
node alignment for the graphs. Furthermore, in Section VI we
relax the assumption (AS2) where the latent point sets are not
exactly known and only noisy sets are available.

The assumption (AS2) corresponds intuitively to situations
of known sensor placement, such as known locations of elec-
trode placement for neural response data collection or known
climate regions to be observed. For example, the brain functional
networks of multiple subjects may be measured by consid-
ering the same known brain regions or neurons across sub-
jects [4]. Inferred graphs may also correspond to statistical
interdependence between pairs of variables in a climate data
set, where variables are measured at known spatial regions of
earth [5].

vided for each graph, represented by X (%) :=

IV. GRAPHON-AIDED JOINT NETWORK ESTIMATION

In Sections IV-A and IV-B we tackle two versions of Problem
1 of increasing difficulty whereas in Section IV-C we explain
how these solutions can be combined with existing network
inference methods.

A. Graphs and Probability Matrix Estimation

First consider the case where all graphs are sampled as in (1a)
from the same points in the graphon space, that is, ((¥) = ¢ for
allk € {1,2,..., K};seeFig. 1(a). In practice, this case arises,
e.g., when using the same sensor placement under multiple trials
or experiments. Since we only consider edge probabilities in the
graphon atpoints (x, y) € ¢ x ¢, weneed not consider the whole
graphon }V but only the probability matrix T € [0, 1]V*V that
contains the edge probabilities at the sampled points. The graphs
S() are then sampled from the same probability matrix T, so
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(a)

Fig. 1.
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(b)

Schematic depiction of the two problem modalities considered. (a) Multiple graphs sampled from the same latent point sets in the same graphon. Sampled

graphs have not only the same size but also node alignment; see Section IV-A. (b) Multiple graphs sampled from different latent point sets in the same graphon.

Sampled graphs may have different sizes; see Section IV-B.

the graphs all must have the same size, that is, N(*) = N for all
ke{l,2,...,K}.
Given T, the log-likelihood of a graph S(*) is

log Pr {S(k)|T] Z S(k) log (T, (1—ng))10g(1—ﬂj),

1<J

where we have leveraged the fact that, given T, edges are drawn
independently in our graph model [cf. (1b)]. Furthermore, we
can estimate each edge probability 7;; by the sample mean of
the grﬁph edges. Thus, we estimate the probability matrix T as
K Luk=1 st

Recalling the notation for X and S from Problem 1, consider
a generic optimization problem to estimate multiple networks
that we formalize as

min (S, X) + L(S), @)

where the objective function f (S, X) estimates graph structures
from the observed graph signals, and L(S) is an additional graph
penalty or regularizer; in Section IV-C we provide common
examples for these functions. To solve our problem at hand, we
propose to append the generic formulation in (2) with a negative
log-likelihood penalty to obtain

réuTr‘l f(S,X)+ L(S

Z log Pr [ sk |T}

K
1
(k) _ L (k)
sto SM e8y, T = ;ﬂs , 3)

where we jointly estimate the graphs and their shared genera-
tive probability matrix T. The new term promoting maximum
likelihood encourages edges to be similar based on shared
probabilities in aligned edges. The estimation of the probability
matrix entries is included as the sample mean of the edges in the
graphs. The set S4 enforces valid binary adjacency matrices,
that is,
Sa={8® 80 = (s)7, s =0, 5% € {0,1}},

where we consider undirected graphs without self-loops and
edges that are unweighted.

As mentioned in the problem statement, the assumption
(%) = (¢ forall k € {1,2,..., K} is equivalent to node align-
ment for all graphs. We relate (3) to the task of estimating
functional networks among the same brain regions of one subject
under a set of discrete stimuli, or observing climate variables
among the same geographical regions over several time in-
stances.

B. Graphs and Graphon Estimation

We now consider the case where each graph is sampled
from different latent point sets and graphs may possibly have
different sizes, i.e., () # ¢(¥) and N*) £ N*) for k £ K/,
see Fig. 1(b). Therefore, each graph is sampled from a potentially
different probability matrix T(*), which is the value of the
graphon at the points (z,y) € ¢®) x ¢(*), For this case, let the
set of probability matrices be represented by T = {T*)} K
The probability matrices provide estimates of the graphon at the
known latent point pairs, and each graph provides information
about the value of its respective probability matrix.

We again build our joint network and graphon inference
framework using (2) as our starting point. We add a new set of
terms to encourage maximum likelihood of the graph structures
and the graphon model, along with a penalty to incorporate
prior graphon information. Under this setting, we present a
general optimization framework to jointly estimate the graphs,
the probability matrices, and the graphon as

K
J(8,X)+L(S)— ZlogPr [S(k)|T(k)} N

min W)
S, T,W
k=1
s.to M e Sy,
_ (k) _ (k) (k)
T(k) - h(s(k))a Tij =W (Cz 7<j ) )
W 0,12 = [0,1], W(z,y) =W(y,2), @)

where we include the same negative log-likelihood term as in (3),
but each graph is associated with a different probability matrix
T*), The function 2(S*)) is a probability matrix estimation
method that takes an adjacency matrix S*) as input, such as
network histogram or SBM approximations [61], [64]. The third
constraint fits the graphon WV at the known latent point pairs to
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the values of the probability matrices T(*), and the regulariza-
tion term g(WV) in the objective imposes a prior on the overall
graphon structure. For example, we may apply a thin-plate
spline term [75] to estimate a smooth graphon assuming that
points ¢(*) are relatively evenly spaced throughout the interval
[0,1]. Other interpolation methods may be applied for smooth
graphon estimation, such as inverse distance weighting [76].
The suggested potential interpolation terms assume graphon
smoothness to estimate the remainder of the graphon.

The assumptions in (4) are weaker than those in (3), thus
a wider range of applications are available. In the example of
estimating brain functional networks, functional connectivity
of the same subject may be inferred for different sets of brain
regions. Additionally, climate network inference is often based
on correlation or mutual inference measures, which decreases
with geographic distance [2], [5]. Thus, separating inference
of climate networks into multiple networks of subregions and
applying (4) may be more practical than estimating a single
climate network for a large region, as connectivity is expected
to be very low for far apart geographical locations.

C. Examples for Network Inference Methods

Up to this point, we have been considering a generic network
inference problem in (2). Both the formulations in (3) and (4)
are applicable to existing network inference methods through
specific choices of functions f(S,X) and L(S). Assumptions
required for each signal model are explored in Section IV-D.

Consider examples for the function f(S,X) that relate the
observed graph signals to the structure of the graphs. Graph
signals may be assumed to be smooth over their respective
graphs [14], and we apply the penalty

K
£(8,X) =Y |Is® 0 Z®)|)y, (5)
k=1

where ZE;) = ||X§k) - Xg-k) | asin [14]. Alternatively, we may
have graph signals that are the diffusion of noise through a
graph filter [10], [15]. In this case, we have stationary graph
signals, where the signal covariance C commutes with the
adjacency matrix S. Defining sample covariance matrices as
Cch) = LXI(XFNT e RN N e can write

K
f(8,X) =) sWc® —cHsWz. (6)
k=1
In many applications, the graphs of interest are sparse, so it is
common to apply a sparsity constraint for each graph [11], [15].
We may apply this with the penalty function L(S) as

K
L(8) =Y vee(s™)]|,
k=1

Note that while the graphon model results in dense graphs as the
graph size grows, individually sampled graphs of finite size may
be sparse in the sense that the adjacency matrices may contain
many zero entries. For example, an Erdés-Rényi graph with low
edge probability will have a small ratio of edges to pairs of

)
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nodes. In this case, inclusion of a sparsity promoting penalty
would improve network recovery performance.

If, instead of separately inferring each graph, we wish to pro-
mote similar sparsity patterns, we may encourage edge similarity
between graphs [29], [34] as

L(S) =) [lvec(S® — 8" )|y,
k<k'

®)

which requires graphs that are not only the same size, but are also
on the same node set. Thus, the regularizer in (8) is applicable
to our formulation in (3) but not to the one in (4).

Combinations of the described examples for f(S,X) and
L(S) are common in existing works. For instance, graph signal
stationarity in (6) and sparsity penalties for each graph via (7) are
applied in [15]. Moreover, joint inference is performed in [34]
by combining (6) and (8).

D. Assumptions

The proposed formulations in (3) and (4) offer flexible meth-
ods for inference of multiple networks, where we may en-
force characteristics in the inferred networks based on prior
knowledge. What follows is an organization of the assumptions
required for our approach.

Problem assumptions. Section III introduces the assump-
tions about our considered problem. Assumption (AS1) requires
that networks share the same generating graphon. Typically,
joint inference of multiple networks seeks similar edge values
by explicitly encouraging edges of the same node pairs to be
as close as possible (see Section II-D), while our stochastic
approach is less stringent. For each node pair that occurs in
multiple networks, each network shares the likelihood that an
edge will connect the node pair. Furthermore, we allow nodes
to belong to different node sets across networks. Given node
values in a latent space, edge probabilities for two node pairs
are similar if their pairs of latent points are close to each other.
This is conceptually similar to the case of shared node pairs, but
now the latent space dictates similarity in stochastic behavior
for all edges.

In assumption (AS2), we require knowledge of node assign-
ments in a latent space, which we may incorporate via nodal
features whose interactions dictate the presence of edges. For
example, if two nodes belonging to the same class are expected
to be connected, and the features of each node indicate its class
assignment, then we may apply nodal features to inform the
points in the latent space. We demonstrate an example of using
node features for latent point assignment in Section VII-B, where
it is more likely for two senators (nodes) to be connected if their
political parties (classes) are the same.

Graph signal model. For the penalty (5), we assume that
graph signals are smooth on their respective graphs, where we
expect well-connected nodes to have similar signal values [14].
In particular, we assume that data on the graphs lie on a smooth
manifold, where nodes denote points in the manifold space and
edges reflect distances between points. We apply penalty (6) for
stationary graph signals, where we assume that graph signals
are diffusions of arbitrary input through graph filters. If we
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assume linear, shift-invariant graph filters and white noise input
signals, then the graph signal covariances and the network struc-
tures become spectrally related. In particular, eigenvectors are
equivalent, thus the covariance matrices and adjacency matrices
commute.

Network and graphon structure. We often wish to obtain the
most parsimonious network representations for interpretability
of connectivity and mitigation of downstream computation. It
is common to encourage sparsity in inferred networks via the
{1-norm or Frobenius norm, hence the penalty (7). The joint
network inference trademark of encouraging edge similarity in
(8) is effective, but it requires that nodes lie on the same node set,
an assumption which we relax in (4). When all networks share
the same node set, combining the edge-wise similarity penalty
(8) and shared edge probabilities in our proposed formulation
(3) is an appropriate course of action.

Finally, the choice of g(WV) in (4) allows us to incorporate
desirable characteristics of the graphon. For example, we assume
smoothness in the underlying graphon, where two node pairs
with similar latent point pairs are expected to have similar edge
probabilities.

V. ALGORITHM DEVELOPMENT

We address both (3) and (4) via an alternating direction
method of multipliers (ADMM) algorithm [77]. ADMM is an
attractive approach as it allows decoupling terms that cannot
easily be optimized jointly and handling nonconvex constraints
such as our unweighted graph condition. We terminate opti-
mization after reaching the criteria presented in [77, Section
3.3.1]. We solve (4) by alternately optimizing the adjacency
matrices, the probability matrices, and the shared graphon. To
avoid redundancy, we delay presentation of our solution to (3),
as it is a simpler version of (4). Indeed, if we let the penalty
g(W) = 0 and the constraint T = T = L S S®) forall
graphs k € {1,2,..., K}, then the problem (4) reduces to the
formulation in (3).

The general formulation (4) is difficult to solve due to the
continuous graphon penalties and constraints. However, we can
relax it to a computationally feasible problem by estimating a
discretized graphon [61], [66], [78]. We replace the graphon W
with a discrete matrix counterpart W € [0, 1]*¢. Selection of
the size GG requires a tradeoff between the fineness of the grid
to accurately estimate the graphon W and the coarseness of the
matrix W to minimize computational complexity [78]. In this
paper, we let the size G be dependent on the network sizes, e.g.,
D + Zk CN®) for integers C' > 1and D > 0, where values of
C and D can be set as large as computational ability allows. We
empirically observe that this choice of discretization is adequate
for our proposed joint network and graphon estimation. We leave
investigating other choices of graphon discretization as future
work [78], [79].

Our proposed relaxation is as follows

K
min  f(S,X) + L(8) - ; log Pr [S*)[T™)] + 5 (W)
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sto S® eS8y, W e Sy,

k
IT® — R(Ss®)|2 < M,

IT® = W00, |7 < €5, ©)

where W,y ,0) € [0, l]N(U xN™) i< the submatrix of W whose
entries consist of the graphon W values at points (x,y) €
¢®) x ¢(®) for each graph, and g(W) acts as the discretization
of the operation g(W). Furthermore, the set Sy, defines valid
discretized graphon matrices as

Sw={W:W=W"W;€l[0,1]}.

Since we only consider graphs without self-loops, diagonal
values of sampled adjacency matrices are ignored [cf. (1b)].

Note that we also relax the equality constraints fitting each
probability matrix T(®) to each graphon submatrix W, 1) 50
and probability matrix estimate h(S(k)) We expect upper
bounds e( ) and € *) o depend on the number of graphs K and
the graph sizes N(®). Greater values of K and N*) increase
the number of sampled points in the graphon space, resulting in
more precise graphon estimation. Additionally, as N(*) grows,
the probability matrix T(*) approaches the underlying graphon
W, converging to a continuous graphon approximation.

We highlight three major benefits of our formulation:
(i) graphs of different sizes can be inferred, (ii) explicit knowl-
edge of the graphon WV is not needed, and (iii) the relaxed
problem (9) is well suited to alternating minimization with
optimizing each variable S, T, and W while fixing the others. In
the sequel, we consider special cases of the functions f(S, X),
L(S), h(S™)), and g(W) to provide a concrete example of
our proposed problem and demonstrate its implementation in
a common GSP scenario.

A. Stationary Graph Signals and Smooth Graphon

To demonstrate the implementation of our multiple graph
learning algorithm, we present a special case under specific
assumptions. We let f(S,X) take the form of (6) and let
L(S) = 0. We choose 1(S(*)) as a network histogram method to
estimate the probability matrices T*) [61], [64]. In particular,
the probability matrix corresponding to the adjacency matrix
S(*) can be estimated via SBM approximation [61] as

(k) — h(S(k)) = NOFIO) 0N

where F®) = —L— (I )y ® (171} —Iy)) computes the
empirical edge proba{;lhty of adJacency matrix blocks with size
f > 0. We point out that knowledge of the graphon latent sample
points obviates the need for sorting the adjacency matrices by
degrees before computing the approximate SBM [61]. Finally,
we let (W) be a thin-plate spline term [75]

// (W 2+ RIAN
8x2 3x8y Oy? 4
which we then discretize for implementing g(W). First, we
introduce the difference matrices Dy € RE*¢~1 and D, €
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RE*G-2 guch that

-1, 1—75=0
[Dl]ij = ]., 1 —j =1
0, otherwise

and

1, 1—7€{0,2}
-2, i—j=1 »,
0, otherwise

[Da)ij =

and we discretize g(W) as
§(W) = |[Dy W|% + D] WD ||% + [WDs 7.

Under these selections, we assume that graph signals are sta-
tionary on their respective adjacency matrices; see the discussion
of (6) and Section IV-D. Our choices of (S(*)) and (W) assume
that the underlying graphon W is smooth [61], [75].

Note that all matrices are symmetric with irrelevant diag-
onal values. Thus, we introduce vectors containing the ma-
trix lower triangular entries. First, let LF)=N®)(N(*) 1) /2,
J=G(G+1)/2, and Lk = ,If:l L), We define s =
[(SW);,..., (S(K))Z]T € RLx, collecting lower triangles of
matrices in the tuple S in a column vector. The vector t € REx
is defined similarly. We also let w = [W}, WZ]T such that
w € RY contains all entries of vec(W) corresponding to the
indices D U L.

We introduce the matrix M such that || Ms||2 = (S, X) [34],
along with W for applying the network histogram method to s.
We define

MF) — [C(k) @ —C(k)]z =+ [C(k) @ _C(k)];7
g k) — [F(k) ® F(k)]z + [F(k) ® F(k)];.

We also introduce (%) = [ng ) Z(Ek)] for selecting graphon
indices from w by defining

Egc) = [Iz(k) (9 Iz(k)];,
2‘(,}6) = [Iz(k) ® Iz(k)]z + [Iz(k) & Iz(k)];,
where I,u) denotes a subset of rows of the iden-

tity matrix I indexed by z(*). We can then introduce
the block matrices M = blockdiag(M™) M@, ... M),
= [T (@) ... (2EN)T]T and ¥ = blockdiag

(e @@ e We let
®p; P
& — D,1 L1
Ppy Pro

such that || ®w||3 = g(W), where
®p,1 = [D2 ® Icp,
Oy =D ®1c] + D2 @ Iy,
®p» = [(D1 © D1)lp,
@, =[(D1 @Dy)]; +[(D1 @Dyl

5555

Finally, we define the following function
Lx
T(s,t) = — Z[Sl log(t;) + (1 — s;) log(1 — ;)]
i=1
to represent the log-likelihood term.

From the preceding definitions, we can rewrite the problem (9)
to eliminate constraints and minimize the number of variables
to be optimized. This simplification is shown in the following
vectorized problem

min
s, t,w

o B
2 IMs +T(s.8) + 5 | Bwl3

sto s; € {0,1}, w; € [0,1],

lt—Ws|3<e, t-Swi<e (13

with tuning parameters o > 0 and 8 > 0 to control graph signal
stationarity and graphon smoothness.

Developing an ADMM algorithm with guaranteed conver-
gence requires reformulating (13) not only to incorporate dual
variables and parameters but also to account for the constraints
on the entries in s and w. We introduce the auxiliary variables
p € REx and v € R” and expand the problem as follows

. «
min & |Ms[3 4 T(s,6) + 5 [@w]3

Sto s=p, w=1V,
pi € {0,1}, v; € [0,1],
It — @s|Z < er, [t — Bw]l} < e,

The augmented Lagrangian function then takes the form [77]
¢ _ o 2 B 2
p (5,P,6,W,v,up,uz) = S [[Ms|z + (s, t) + 5 || w3
+I{p; € {0,1}Vi} +I{v, € [0,1]Vi}
p
+pr(urs —p) + lls — pl3

+ oz, w = v) + 2w —v3

+ 26— s + 22 - Sw, (14)
where [{-} is the indicator function that takes the value 0 if the
argument is true and infinity otherwise. The primal variables
consist of s, p, t, w, and v, the dual variables u; and us, and
the dual parameters p; and po. Tuning parameters A1 and A,
determine the strength of the relationships among the adjacency
matrices, the graphon, and the probability matrices. We also
define the function Il () as the projection of the argument onto
the set C.

Applying ADMM to (14) results in the following update steps

s/t = argmin £,(s, p’, t/, w/, v/, uj, ud) (15a)
S

p/ =T (s +u)) (15b)

tit = arg?inﬂp(sjﬂ,pj+1,t,wj7vj,u{,u%) (15¢)
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w/t = argmin £,(s"1, pI Lt wv7 ), uh)

v (15d)
VI = Mg (w7 ) 15e)
Wt = ud 4/t — pit! (151)
wt = ud 4wt - it (I5g)

What follows is a discussion of non-trivial update steps.
Optimization of Graphs. Adjacency matrices are initialized

via general graph estimation in (2). We update the graphs s by

solving the problem (15a), resulting in the closed form solution

(OKMTM + p1ILK + )\1\I’T‘I’) S
=~ (t7) + pi(p’ —ul) + A\ Tt

where we let [y(t)]; = log(t;) — log(1 — t;).
Optimization of Probability Matrices. We update the prob-
ability matrix vector t by solving

A ; A )
min T(s, t) + St — @745 4+ Tt — Sw 3.

The subproblem for updating t is separable by entries of t,
thus we can parallelize computation by solving the equivalent
problem

min — (s log(t:) + (1 — 57 log(1 — 1))

+ S(t; - dp? (16)
where c = A; + Apandd = 220,871 4 22$,wJ, obtained by
completing the square of the original subproblem. As the func-
tion s;log(t;) + (1 — s;)log(1 — ¢;) does not have an easily
computed proximal operator, we obtain the update for t by
solving (16) via proximal gradient descent (PG) [80], and we
observe that PG converges quickly in practice.

Optimization of Graphon. The solution to the graphon sub-
problem (15d) is also a closed-form expression,

(BETS+poLi+X0® @) w=po(vI —ud)+ M@ t7H.

‘We thus obtain a convergent result for solving (14). The main
result is shown in the following theorem.

Theorem 1: When ADMM with update steps (15a)—(15g)
is applied to the joint network and graphon inference opti-
mization problem (14), if the underlying generating graphon
W is bounded away from O and 1, i.e., there exists some
€ > 0 such that W(x,y) € [e,1 — €] for all z,y € [0, 1], then
for large enough parameters pi, p2, A1, and Ay, the resulting
sequence (s?, p?, t/, w/, v/, uf, uj) has at least one limit point
(s*,p*, t*, w", v*, uj,uj), and each is also a stationary point,
thatis, 0 € 0L, (s*, p*, t*, w*, v¥, uj, uj).

Proof of Theorem 1: See Appendix A.

The most complex ADMM steps are the updates fors € RLx
and w € R”. If we assume for simplicity that all graphs have
the same number of nodes, N*) = N forallk € {1,2,... K},
then we have that L = K N(N — 1)/2. We further let the size
of the discretized graphon be G = C KN + D for integers C' >

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

1 and D > 0. Thus, each iteration of the update steps (15a)—
(15g) has complexity O(J?) = O(K* N*), stemming from the
graphon vector w update.

We may precompute the inverses for updating s and w,
which have complexities O(L%,) = O(K? N°¢) and O(J3) =
O(KS NY), respectively.

Remark I (Solution to (3)): When solving the problem in (3),
we let T™*) = T forall k € {1,2,..., K} and ignore graphon
penalties and constraints, i.e., g(W), W € Sy, and || T*) —
W, 6,00 || % < egk). In this case, we forgo update steps (15d),
(15e), and (15g). The update for s remains the same while letting
A =0.

For the update of t, we note that since T®) =T for all
graphs, we have L = N(N — 1)/2 degrees of freedom for (3)
instead of the Lx = szl L®*) of (4). Thus we need only
estimate one vector t(*¥) = t € R’ for all graphs. We introduce
the matrix R = %(1;( ® Ip) such that t = Rss, equivalent to
the last constraint in (3). The update step (15¢) then becomes

/
min - —K (#;log (t:) + (1 — t;) log(1 — #;)) + %
where ¢ = \; and d’ = R;s?t!. The objective in this subprob-
lem is a difference of convex terms, which can be solved via
existing methods such as DCA algorithms [81], [82].

Remark 2 (Normalized projections): The Euclidean projec-
tions I 1(-) and IIjo 1)(-) applied respectively in (15b) and
(15e) guarantee convergence of the ADMM algorithm. However,
we empirically observed improved performance by normalized
projections. In particular, the argument x is first normalized as

(ti - d/)Q )

_ X — min; x;
X =

. b
max; (x — min; x;)

and the normalized X is then projected to the set C as usual as
11 ()_() .

VI. ROBUST NETWORK AND GRAPHON ESTIMATION

In practice, the exact placement of the latent sample points
may not be available. For example, electrode location for mea-
suring neural responses may not be precisely comparable across
several subjects. For comparisons of conditions in a climate
system, regions of observation may not be consistent over time
since atmospheric patterns will not necessarily occur in precisely
the same geographical locations. Thus, we relax the assumption
(AS2) that latent points ¢ (%) are exactly known, but approximate
points (%) = ¢(*) 4 (%) are known, where w®) is random
noise perturbing the true sample points. This assumption was
also applied in [83] for graphon estimation from known graphs.
We update the problem (4) as

min

K
S, TW,C f(S’X) + L(S) - ZIOgPr |:S(k)|T(k7):| + g(W)

k=1
Sk e 8y,

T = n(s®), 7 =w (M, ¢),

S.to

W:[0,1]% = [0,1], W(x,y) = W(y, ),

1CH) — E®)12 < ), (17)
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where we introduce the final constraint to estimate graphon
sample points ¢(*) based on the given noisy values ¢(*) for all
graphs k € {1,2,..., K}.

Implementation is almost identical to that of (4), where we
discretize the graphon and perform an ADMM algorithm. The
update steps for each variable are the same, with the addi-
tion of an update for optimizing the graphon indices z(*).
Let the vector z be the concatenation of the graphon indices,
z=[z")" (z®)" ... (25))T]T. The appended update step
solves the subproblem

7/t = argmin ||t/ — Swi T3
sto ¥ = blockdiag(X™M, 2@, ... 5,

=W =[Cm @Lw) ;) + [ Tw @ Lw)y ] T,
20 — 50 4 Ag®),

Az e f=n®,—® 1, By, ag)

where 7(*) is the maximum perturbation of the estimated
graphon indices from the given noisy version z(*). The value of
n™*) depends on the upper bound egk) and the size G of the dis-
cretized graphon. The area of the error region of radius e:(,,k) inthe
graphon domain [0, 1]? dictates the size of the error grid of radius
n(*) in the graphon matrix of size G’ x G. We solve this step viaa
greedy minimization over each entry in z using a grid search over
the set of perturbations {—n*), —n*) 4+ 1,... ()}, where we
select the value of Azl-(k) to minimize the objective. The opti-
mization order is arbitrary; options include sorted or randomized
index orders.

VII. NUMERICAL EXPERIMENTS

We compare the performance of network topology inference
methods with and without the augmentations in (3), (4), and (17),
denoted by “Mod. 1,” “Mod. 2,” and “Mod. 3,” respectively. For
all experiments, we apply the same signal model assumption
f(S,X) as (6), and we compare separate network inference via
sparsity penalties (7) and joint network inference via pairwise
difference penalties (8). For synthetic experiments, we sample
from the graphon W(z, y) = 3 (2 + y?). The error of estimator
S is calculated as ||S — S||/||S|| 7, where the true adjacency
matrix is given by S.! Additional results are included in the
Supplementary Material.

A. Synthetic Experiments

Same node sets. We consider the case where all graphs
are sampled from the same points within the graphon space,
(k) = ¢. We estimate ' = 3 graphs with N = 30 nodes as we
observe an increasing number of signals for sample covariance
computation. We present in Fig. 2(a) the comparison of separate
and joint network inference methods with the augmentations in
(3) and (4), and without either. In both methods, the augmented
formulations improve estimation performance significantly. The

'Implementations of our method are available at https://github.com/mn51/
jointinf_graphs_graphon.
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pairwise joint penalty (8) enjoys the greatest improvement, as
graphs not only possess node alignment required by (8), but they
also follow our graph model assumption.

Node sets of different sizes. We consider the challenging case
where the graphs have different latent point sets of different sizes
N £ N(K)_ Unlike the previous experiment, we cannot apply
(3) or (8), so we consider only (6) and (7) with and without the
joint graphon estimation from (4). We consider K = 3 graphs
for node sets of N = 10, 30,50 and N = 15, 30, 45 in Fig. 2(b).
For both cases, application of joint graphon inference results in
consistent improvement, with increasing performance gap for
larger number of observed signals.

Different node sets of same size. Finally, we observe graphs
of the same size and different node sets, i.e., N*) = N*) put
¢) = ¢%) for every pair k, k. In this case, (3) is applicable,
but the model assumption is incorrect, as it assumes that all
graphs are not only sampled from the same graphon, but it
is also incorrectly assumed that graphs are sampled from the
same probability matrix. We observe in Fig. 2(c) the comparison
of the three modalities, separate network inference and joint
inference with the augmentations in (3) and (4). While (3)
outperforms separate inference, indeed (4) generally exhibits
greater improvement as it includes the knowledge of different
sample points within the graphon space. Our results demonstrate
the value in prior knowledge of sampling locations and accurate
estimation of the underlying graphon, as both contribute to
improvement of network estimation.

Noisy latent sample points. Finally, we observe the
performance of the robust formulation in (17) when only
a noisy version of the latent sample points ((*) are
available. We infer K =3 graphs of size N =20 from
the graphon W (z,y) = 0.25+ 0.75exp{—B(z — 1/2)*(y —
1/2)2} for 8 > 0. We let ¢V, ¢?) ~ Unif(0.4,0.6) and () ~
Unif(0.2,0.4). Latent sample points are perturbed with increas-
ing levels of magnitude, where é(k) = (% 4 nw® for n e
{0,0.05,0.1,0.15,0.2,0.25}. The upper bound eék) increases
in proportion to the magnitude of the noise as egk) =n for all
values of n. Comparisons are shown in Fig. 3. Fig. 3(a) presents
comparisons of graph estimation error for our proposed methods,
and Fig. 3(b) compares graphon estimation error for formula-
tions (4) and (17). Joint inference of networks and graphons for
both the original (4) and robust (17) formulations demonstrate
consistent superiority in graph recovery over both separate in-
ference and joint inference of networks and probability matrix
(3). Furthermore, the robust inference in (17) demonstrates a
general improvement in performance over the original formula-
tion (4). We also observe that graphon estimation is consistently
improved when applying the robust joint inference method in
Fig. 3(b). Our approach not only demonstrates a viable method
for robust graph estimation under noisy latent sample points
but also simultaneously presents improved graphon estimation
under perturbed prior information.

B. Senate Networks

Finally, we performed graph estimation with real-world data
of U.S. congress roll-call votes [84], and we set up senate vote
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Fig.2. Performance analysis in synthetic networks. (a) Recovery error for K = 3 graphs sampled from the same latent point sets in the same graphon as a function
of the number of observed signals. Incorporating the joint estimation of the probability matrix or the graphon both improve estimation performance. (b) Recovery
error for K = 3 graphs sampled from latent point sets of different sizes in the same graphon as a function of the number of observed signals. Separate inference
of graphs is outperformed by including joint estimation of the underlying graphon. (c) Recovery error for K = 3 graphs of the same size N = 30 sampled from
different latent point sets in the same graphon. Joint estimation of networks and the underlying graphon model drastically outperforms separate inference, and the

joint network and graphon estimation (4) demonstrates improvement over joint network and probability matrix estimation (3).
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Fig. 3.

Performance analysis in synthetic networks under noisy graphon sample information. (a) Recovery error of networks as a function of the magnitude

of perturbation of graphon latent sample points ¢ (%) from (1a). Both versions of joint network and graphon inference outperform separate network inference
and joint network and probability matrix inference (3) for all noise levels. Robust joint inference (17) exhibits improvement in network recovery compared to

(4). (b) Recovery error of graphon as a function of the magnitude of perturbation of graphon latent sample points (%) from (1a). As the magnitude of perturbation

of sample points increases, the robust joint inference (17) demonstrates increasing recovery performance over (4).

signals as in [34]. The number of nodes corresponds to the num-
ber of votes (100 senators and 1 President). We let votes represent
graph signals, where a node can take the value 1 for yea, —1 for
nay, and 0 for abstinence. We observe the 724, 919, and 612
votes of congresses 103, 104, and 105, respectively, and we let
the underlying true networks be obtained by separate estimation
of each network using all available votes. For the experiment,
we consider the same three cases of network estimation as in

the synthetic experiments: (i) networks sampled from the same
node set, (ii) networks of different sizes, and (iii) networks of
the same size but sampled from different node sets. We estimate
subgraphs of the separately inferred true graphs, and senators
are chosen for each subgraph analogous to sampling a graphon
at selected points.

Same set of senators. In the first case, we estimate K = 3
subgraphs sampled from the same points, i.e., networks with
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Fig. 4.

Performance analysis in senate networks. (a) Recovery error as a function of the number of observed signals for induced subgraphs of three senate

networks of the same set of senators. Joint network and probability matrix inference (3) outperforms both separate network inference and joint network and graphon
inference (4) for all sets of observed signals. (b) Recovery error of induced subgraphs of three senate networks of sizes N = 15, 30, 45 as a function of the number
of observed signals. Joint network and graphon inference (4) outperforms separate network inference as the set of observed signals grows larger. (c) Recovery
error as a function of the number of observed signals for induced subgraphs of three senate networks of size N = 30 consisting of different sets of senators. Joint
network inference outperforms separate network inference consistently for all sets of observed signals, and joint network and graphon inference (4) demonstrates

better performance than joint network and probability matrix inference (3).

nodes [N = 30 consisting of the same 30 senators, where we
only observe votes of senators corresponding to these subsets of
nodes. We show in Fig. 4(a) that (3), which assumes all three
node sets consist of the same set of senators, indeed outperforms
separate estimation and the augmentation in (4), demonstrating
the statistical voting similarities of these chosen senate seats
across congresses.

Sets of senators of different sizes. For networks of different
sizes, we estimate induced subgraphs of sizes N = 15, 30, 45.In
Fig. 4(b) we observe that joint network and graphon estimation
from (4) appears to consistently rival or outperform separate
inference for larger numbers of observed votes, even though the
true networks were estimated separately. Indeed, while separate
inference of the induced subgraphs becomes more similar to the
true network generation as the number of signals increases, (4)
is still able to improve accuracy.

Different senator sets of same size. We also revisit the
comparison under an incorrect model assumption for (3). We
consider K = 3 subgraphs of size N = 30 for all, but the esti-
mated subgraphs consist of different sets of senators. Fig. 4(c)
demonstrates that estimation via (4) drastically outperforms that
of (3), which assumes the subgraphs consist of the same senators,
and furthermore (4) generally outperforms separate inference.
These experiments demonstrate that the versatile nonparametric
nature of graphons can aid the recovery of real-world graphs,

Fig. 5. The graphon estimated jointly with senate networks exhibits two-
community node clustering behavior.

even if these graphs have not been explicitly drawn from a
graphon model in the first place.

Finally, we include in Fig. 5 the estimated graphon from ap-
plying (4) for inferring senate networks. We assume an SBM-like
underlying model, where we expect that the nodes (senators)
will exhibit clustering behavior into two communities (political
parties). The expected behavior is clearly recognizable in the
estimated graphon, which validates our claim that the estimated
graphon exhibits the general shared structure of a set of real-
world networks.
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Fig. 6. Performance analysis in brain functional networks. Recovery error
as a function of observe time frames for the induced subnetworks of K = 3
different subsets of neurons, each of size N = 30. Joint network inference
assuming an underlying graphon model demonstrates competitive and promising
improvement in performance.

C. Brain Functional Networks

We consider the estimation of neural connectivity using data
from the Allen Brain Atlas [85], which consists of recordings of
in vivo neural responses from 100 neurons of a live mouse being
shown visual stimuli, which are designed to stimulate the visual
cortex. We let the ground-truth brain functional network be the
single estimated network given all 100000 available frames of
neural data.

Consider the case where we only observe the activity of
multiple subsets of neurons of size N = 30 each, where each
subset is measured separately, but we wish to infer the induced
subnetworks connecting the observed neurons. We estimate
these brain functional subnetworks via the separate network
inference method used to generate the ground-truth network,
denoted by “Sparse,” which we compare to our proposed joint
inference augmentations. Estimation results are shown in Fig. 6,
where we observe that for different subsets of neurons, applying
our joint inference approaches results in competitive and even
superior performances, even when the true underlying network
is obtained from the Sparse method.

VIII. CONCLUSION AND FUTURE WORK

We demonstrated a method to jointly estimate multiple net-
works under the assumption that they are sampled from the
same graphon. To the best of our knowledge, our work is the
first to leverage graphons to solve the challenging problem of
inferring graphs of different sizes. We also presented a robust
method when only noisy information about the latent variables
¢ is available. We demonstrated that our proposed maximum-
likelihood-based method improves network estimation in syn-
thetic and real-world experiments, along with the efficacy of
our robust solution with inexact sampling data. In terms of
future directions, we plan to consider: i) Alternative random
graph models (beyond graphons) that can also generate graphs
of different sizes while promoting other common structural
characteristics, and ii) Additional relevant tasks on multiple
networks that benefit from additional statistical knowledge, i.e.,
the shared graphon assumption; tasks include graph clustering,
dynamic graph change-point detection, or graph node alignment
for graphs of different sizes.
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APPENDIX A
PROOF OF THEOREM 1

This proof is inspired by [86], with digression mainly due to
the function g(s, t, w), whose Lipschitz smoothness depends on
combinations of s, t, and w, and the order of updates, where the
lower semicontinuous indicator functions are not updated first.
Additionally, we have that the function f(p,v) is not convex
with respect to p.

Remark 3 (Boundedness of t): Note that since the graphon
is bounded away from O and 1, values of W and T®*) are
restricted to the set [e, 1 — €]. In this proof we assume that
t/ € [e,1 — €] for all j € N. This can be easily enforced in the
optimization by modifying the log-likelihood penalty I'(s, t) =
— S K [silog(ti — €) 4 (1 — s;)log(1 — t; — €)], where the
resulting modified probability matrix update in (16) remains
solvable by proximal gradient descent.

We first introduce the following Lemmas to be used in the
remainder of the proof. Proofs of the Lemmas can be found in
the Supplementary Material.

Lemma 1 (Coercivity): The  objective  function
o(s,p,t,w,v) is coercive over the feasible set F :=
{(s,p,t,w,Vv) € dom(¢) : s =p, w = V}. Specifically,
o(s,p,t,w,v) — oo when ||(s, p, t, w, V)| — occ.

Lemma 2 (Objective regularity): 1ft € [e,1 — €]Fx for some
€ > 0, then

a) For positive constants G¢, G, G¥, and G?,

[Vsg(s, t,w) = Vsg(3, 8, W)[3
< MGlls = 8]13 + MGLt — £,
[Veg(s,t.w) — Veg(s, t, W)[3 < GG [lw — w3,
IVwg(s, t,w) = Vwg(s, £, w)l[3
< NGhlw — W3 + A5G0 It — E13.
b) For positive constants Hg and H,,,
IVsh(s, w) — Vsh(s, w)|3 < a®H,lls — |3,
[Vwh(s,w) — Vwh(s,W)|3 < 2 Hy|lw — w|3.

Lemma 3 (Bound dual by primal): For all j € N,

(@uf = ‘p% (Vsh (s, w7 1) + Vg (87,677, wi ™))

+pil_pd
(b) ug = _pi (th (sj,wj) + ng(sj,tj,wj))
2

+ vitl — i
1
P

©[lu] —ul*)3 < S((\Gs +o?H,)|s’ — 73
+ (1/e* + NGO — t7]3
+ o3Pt =P II5 + Pl — P T3)

) ) 1 ) )
(d)[lug —ud™3 < ?((%G% + B2 Hy) [ w? — w3
2
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+ A6, (It — T3
+ 3V = VI + p3 v — v

We next list four key properties under which ADMM con-
vergence can be ensured. The Supplementary Material contains
proofs that the ADMM steps (15a)—(15g) satisty the following
properties when applied to problem (14).

Property P1 (Monotone, lower-bounded £, and bounded
sequence). The sequence {s’,p/ t/,w/ v/ ul ull is
bounded, and the Lagrangian £,(s’, p?, t/, w/, v/, u{, u%) is
lower bounded.

Property 2 (Sufficient descent). There is a constant
C1(p, \) > 0 such that for all k, we have that

£,(s%,p°, t%, w?, v, ul, uf)
—Ep(sj,pj7tj,wj,vj,u{7ug)
j . . . .
> Ci(p.A)D ([Is" = s5+ [[p" — pI3
i=0
=t W = w4 (v = V3.

Property 3 (Subgradient bound). There is a constant
Cy(p, A) > 0 and subdifferential

it e a£p(sj+1’pj+17tj+17wj+1’vj+1’u{+17ug+1)

such that

1743 < Ca(p, M (Ils” = "3 + [Ip — '3
S X o e i ER S e b
W = WIS 4 v = v 4 T = V).

Property 4 (Limiting continuity). It
(s*,p*,t*,w*,v*,‘u’{,ug) is  the limit point of the
subsequence  (s7¢, p’e, t/e, wie vie ul* ul) for a€
N, then £,(s*,p* t",w", v, uj,us) is the limit of
Lp(s7e, pla, tde, wia, vie ul® u)) as a — .

Finally, under the above four properties, we can demonstrate
the convergence of ADMM applied to problem (14). By Property
1, we have that the sequence (s/,p’,t/, w7, v/ uj,ul)
is bounded and thus has a convergent subsequence
(87a, ple, tde wla via ul*,u)*) for a € N with the limit
point (s*, p*,t*, w*, v*,uj, u3) as a — oo. Under Properties
1 and 2, the Lagrangian Sp(sj,pj,tj,wjl,vj,lu]l,u%) is
bounded above and below, so we have that ||s’ — s7*1(|3 — 0,
[p7 =P[5 =0, [t/ — 713 — 0, [|w/ — w/TH|3 =0,
v/ —vit1|2 -0 as j — oo. Then, by Lemma 3 and

the primal variable convergence, we also have that
, e { > ‘
[u —uwd™3 =0 and |u)—uw,™|3 =0 as j— oo

Based on Property 3, there exists a subgradient sequence
d’ € 9L,(s7,p/, t/, w, v/, uj, up) such that [|d7[|5 — 0 as
j — 00. Thus, we also have that ||d7*||3 — Oasa — oo. Finally,
by Property 4, we have that Qp(s*,p*,tf,w*_,v*,uf,u’é) is
the limit of £,(s’, ple, tie, wie vJe ul* ul*) as a — oo.
By the definition of the general subgradient, we have that
0 € 0L,(s*, p*, t*, w", v, uj, u3).
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