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Abstract—We consider the problem of estimating the topology of
multiple networks from nodal observations, where these networks
are assumed to be drawn from the same (unknown) random graph
model. We adopt a graphon as our random graph model, which is
a nonparametric model from which graphs of potentially different
sizes can be drawn. The versatility of graphons allows us to tackle
the joint inference problem even for the cases where the graphs to
be recovered contain different number of nodes and lack precise
alignment across the graphs. Our solution is based on combining
a maximum likelihood penalty with graphon estimation schemes
and can be used to augment existing network inference methods.
The proposed joint network and graphon estimation is further
enhanced with the introduction of a robust method for noisy graph
sampling information. We validate our proposed approach by com-
paring its performance against competing methods in synthetic and
real-world datasets.

Index Terms—Network topology inference, graph learning, joint
inference, graphon.

I. INTRODUCTION

N
ETWORKS conveniently capture systems with compli-

cated relationships and intuitively represent structure via

dyadic connections. Data consisting of entities in interconnected

systems, tangible or abstract, are ubiquitous in multiple fields.

Network structures are highly utilized across these many dis-

ciplines for representation and analysis of complex informa-

tion [2], such as ecology for predicting animal behavior [3], neu-

roscience for modeling relationships between neurons [4], and

environmental science for discovering and predicting outcomes

of climate relationships [5]. Interpretation of networks varies

greatly depending on the application. For example, networks

may represent physical systems, such as road networks or joint

connectivity for skeletal data [6]. In contrast, the nature of a

connected system may be more abstract, as is the case for

correlation networks, where connectivity represents statistical
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interdependencies between observed variables. Additionally,

networks may or may not be directly observable. As an intuitive

example, consider that structural (anatomical) connectivity be-

tween neurons can be directly measured [7], whereas functional

connectivity between brain regions cannot be known but must

be estimated by observing neural responses [4], [8].

While networks are convenient and interpretable tools for

tasks on complex data, the underlying structure may be unavail-

able. For instance, the true structure of unobservable networks

cannot be provided but must be obtained, as with brain functional

networks [4], [8], the correlations in social behavior between

animals [3], or any abstract network where we cannot mea-

sure connectivity patterns directly. Alternately, the underlying

network may be expensive to obtain, as with brain structural

connectivity [7]. The ubiquitous problem of recovering network

connectivity from graph measurements has been well studied

in fields such as statistics [9] and signal processing [10]. Given

data in the form of nodal observations, network connectivity

via data-driven methods include graphical models [11], [12],

structural equation models [13], and graph signal processing

(GSP)-based approaches [10], [14], [15], [16].

In the case of inferring the topologies of multiple networks,

separate estimation is a feasible methodology. However, in many

scenarios a joint inference method may achieve better perfor-

mance by leveraging common structures between the graphs

to be inferred. For instance, one would expect certain levels of

similarities between the brain networks of different healthy indi-

viduals or between the same social network observed at different

points in time. In this paper, we consider the prevalent problem of

inferring the topology of multiple networks while assuming that

networks share structural similarities. Many applications rely on

multiple instances of interconnected relationships observed over

time or in several scenarios, and these complex structures can

be conveniently represented by a set of networks. E.g., Brain

networks, functional or structural, are valuable tools for diagno-

sis, and estimating multiple networks is necessary for analysis

of many patients or scenarios [4]. One of the most prominent

scenarios requiring the acquisition of multiple networks is when

networks vary over time [8]. For example, we would expect

that the social network of a species of interest will evolve over

time [17].

We consider the problem of recovering the connectivity of

multiple networks whose structures are represented by graphs

assumed to be sampled from the same (unknown) random

graph model. We adopt the nonparametric network model as
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a graphon [18], but the specific graphon model need not be

known a priori for our proposed method. While estimation of

multiple networks is well-studied, to the best of our knowledge

we provide the only work in the literature that utilizes a shared

graphon relationship to jointly estimate graphs of potentially

different sizes.

The contributions of our paper are as follows:

1) We present a methodology to infer multiple networks that

potentially lack node alignment and may have different

sizes by leveraging the assumption that graphs come from

the same nonparametric network model.

2) We detail how our approach can be combined with ex-

isting network inference methods, effectively providing a

whole family of methods to solve the problem of interest.

3) We develop a robust version of the problem where the

exact sampling criteria of the graphs from the graphon

are not known, but we are instead given noisy sampling

information.

4) Through numerical experiments in synthetic and real-

world data we demonstrate the performance of our method

in comparison with separate inference and competing joint

inference algorithms.

The remainder of this paper is organized as follows. We

review graph signal processing and graphons in Section II,

along with past related work. We introduce the problem of

interest in Section III. Our proposed problem formulations are

presented in Section IV, and the algorithm development is

discussed in Section V. We expand the problem to a noisy

graph sampling setting and present a robust solution in Sec-

tion VI. Section VII presents experimental results of all pro-

posed algorithms on synthetic and real-world data. Finally, we

close with conclusions and discussions of future directions in

Section VIII.

II. PRELIMINARIES

A. Notation

The following notation will be used in this paper. We represent

vectors as bold lowercase letters x, entries of which are indexed

by xi. Matrices are bold uppercase letters X, where entries

are indexed by Xij , and Xi represents the i-th row of X. The

superscript � denotes the transpose. A matrix with a calligraphic

letter subscript XI denotes the submatrix of X consisting of

rows of X indexed by the set I. The notation X�
I is ordered by

first selecting the rows indexed by I then transposing the result.

Thus, selecting the i-th column of a matrix X is represented by

[X�]�i and columns of X indexed by I is denoted by [X�]�I .

We define three special index sets L, U , and D referring to the

lower triangle, upper triangle, and diagonal indices of a square

matrix. A square matrix X ∈ R
N×N with the subscript L as XL

returns a column vector of length N(N − 1)/2 of the vertical

concatenation of the lower triangular entries of X. The sets U
andD return similar column vectors. We let IN and1N represent

the identity matrix of sizeN ×N and the all-ones column vector

of length N . The Kronecker product, the Kronecker sum, and

the Hadamard product are denoted by ⊗, ⊕, and ◦, respectively.

We use vec(X) to represent the column vector containing the

vertical concatenation of the columns in X.

B. Graph Signal Processing

We consider undirected, unweighted graphs of the form G =
(V, E) with node (vertex) set V of cardinality N and edge set

E ⊆ V × V . The structure of a graph can be represented by its

adjacency matrix S ∈ {0, 1}N×N , where Sij �= 0 if and only if

the edge (i, j) exists in the network, and Sij = 0 otherwise. We

define graph signals as real-valued observations at each of theN
nodes, represented by a vector x ∈ R

N . We may associate these

nodal values with the graph topology via graph signal models.

Choices for graph signal models include stationary signals that

result from diffusion processes over the graph [19], [20], [21]

or as multivariate random numbers, where the graph structure

represents statistical dependencies between variables [11], [12].

C. Graphons

A graphon is a bounded symmetric measurable function

W : [0, 1]2 → [0, 1] whose domain can be interpreted as edges

in an infinitely large adjacency matrix, while the range of W
represents edge probabilities. By this definition, a graphon can

be seen as a random graph model from which graphs with

similar structural characteristics can be sampled [18], [22], [23].

Generating an undirected graph G = (V, E) from a graphon W
consists of two steps: (1) selecting a random value between 0

and 1 for each node, and (2) assigning an edge between nodes

with probability equal to the value of the graphon at the their

randomly sampled points. Formally, the steps are as follows

ζi ∼ Uniform([0, 1]) ∀ i ∈ V, (1a)

Sij = Sji ∼ Bernoulli (W(ζi, ζj)) ∀ (i, j) ∈ V × V, (1b)

where the latent variables ζi ∈ [0, 1] are independently drawn

for each node i. This notion of graphon encompasses many

commonly used exchangeable distributions on networks. In-

deed, Erdős-Rényi graph models are represented via con-

stant graphons [24] and stochastic block models (SBMs) via

piecewise-constant graphons [25].

In our case, we assume that graphs are sampled from the

same graphon, which is also unknown. Therefore, we propose

a method to jointly estimate both the graphs and the underlying

graphon.

D. Related Work

Joint network inference. Inferring multiple networks has

been well-studied, particularly for graphical model estimation,

but most methods require strong assumptions about sizes and

node alignment across networks. Statistical methods that esti-

mate multiple graphical models typically involve modifications

of joint graphical lasso with novel penalties encouraging sim-

ilarity among networks [26], [27], [28], [29], [30]. While far

fewer than their statistical counterpart, GSP-based methods for

inferring multiple networks are prevalent [31], [32], [33], [34].

A particularly prominent scenario of joint network inference is
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estimation of time-varying graphs, where typical assumptions

include slow or smooth network changes over time [35], [36],

[37], [38] or smooth graph signals, that is, signal values across

nodes vary little [39], [40], [41], [42]. A more challenging

problem is the inference of multiple networks where it is not

known from which network observed data are generated. We

note GSP methods [32], [43], [44], [45] and statistical meth-

ods [46], [47], [48] within this category. We refer the reader to

the reviews in [10], [49], [50] for more examples of multiple

network estimation.

The majority of joint network inference methods require

network estimation on the same node set (and, thus, of the same

size). One exception includes brain network estimation with

brain regions of different coarseness [51], resulting in potentially

different sized networks; however, we not only allow for regions

at possibly different coarseness levels, but networks may consist

of completely different sets of regions altogether.

Furthermore, assumptions on similarity between graph struc-

tures mostly concentrate on edgewise relationships, with excep-

tions including [52], [53], [54], [55] that encourage similar struc-

tural characteristics without relying on edgewise comparisons

in particular. Similarly to our paper, [52] introduced a random

graph model for estimating networks that share a common

subspace without encouraging similar edge structures. Unlike

our approach, all of these methods require networks to have the

same size.

Graphon estimation. The proposed estimation procedure

jointly estimates a set of graphs along with their unknown shared

graphon. Graphon estimation is a well-studied problem [56],

[57], where the random graph model is estimated from a binary

adjacency matrix. Methods include estimating the graphon as

a continuous smooth object [58], [59], [60], [61] along with

the coarser SBM estimation [62], [63], [64], [65], [66], [67].

In many cases, the entire graphon is not needed but only the

probability matrix from which the graphon was sampled, i.e.,

the value of the graphon W(x, y) only at the latent sample

points (x, y) ∈ ζ × ζ, and these methods include neighborhood

smoothing [68], [69], [70], matrix completion [71], [72], [73],

or low-rank approximations [74]. In this work, we present a

framework that can leverage any graphon estimation method for

network estimation.

While most graphon estimation methods assume availability

of only one sampled adjacency matrix, a few works exist that

estimate graphon models from multiple graphs [62], [65], [68].

In our case, we infer a graphon from multiple networks without

prior knowledge of the network structure.

III. PROBLEM STATEMENT

Leveraging the proposed graphon relationship among net-

works, we present an algorithm that simultaneously estimates

heterogeneous networks and accounts for a common graphon

model. We consider undirected, unweighted graphs without

self-loops and sampled from a shared graphon. Formally, con-

sider a set of K different graphs {G(k)}Kk=1 where the k-th

graph has N (k) nodes. The set of undirected, unweighted ad-

jacency matrices is represented by the set of adjacency matrices

{S(k)}Kk=1. Assume also that there is a set of graph signals pro-

vided for each graph, represented by X(k) := [x
(k)
1 · · · x

(k)
rk ] ∈

R
N(k)×rk , where the rk columns contain the graph signals cor-

responding to the k-th graph. We further assume that all graphs

are sampled from the same generative model, a graphon W .

With some abuse of notation, we let S and X represent the sets

of adjacency matrices S = {S(k)}Kk=1 and graph signals X =
{X(k)}Kk=1, respectively. We present our problem as follows.

Problem 1: Given sets of observations X = {X(k)}Kk=1 for

K graphs, find the adjacency matricesS = {S(k)}Kk=1 under the

assumptions that (AS1) all graphs are sampled from the same

(unknown) graphon W and (AS2) the latent point sets ζ(k) in

(1a) for each graph are known.

The first assumption (AS1) creates a relationship among the

graphs, and with it we may improve estimation of graphs by

jointly inferring the graph structures given their shared relation-

ship. The second assumption (AS2) eliminates the identifiability

problem for graphon estimation, where multiple graphons can

lead to the same random graph distribution [22]. When all

latent point sets are equivalent, i.e., ζ(k) = ζ for all graphs

k ∈ {1, 2, . . . ,K}, (AS2) is equivalent to the assumption in

previous joint network inference methods, where node align-

ment is present and known for all pairs of graphs. However,

assuming possibly different known latent point sets is a weaker

assumption than that of previous methods, as we do not require

node alignment for the graphs. Furthermore, in Section VI we

relax the assumption (AS2) where the latent point sets are not

exactly known and only noisy sets are available.

The assumption (AS2) corresponds intuitively to situations

of known sensor placement, such as known locations of elec-

trode placement for neural response data collection or known

climate regions to be observed. For example, the brain functional

networks of multiple subjects may be measured by consid-

ering the same known brain regions or neurons across sub-

jects [4]. Inferred graphs may also correspond to statistical

interdependence between pairs of variables in a climate data

set, where variables are measured at known spatial regions of

earth [5].

IV. GRAPHON-AIDED JOINT NETWORK ESTIMATION

In Sections IV-A and IV-B we tackle two versions of Problem

1 of increasing difficulty whereas in Section IV-C we explain

how these solutions can be combined with existing network

inference methods.

A. Graphs and Probability Matrix Estimation

First consider the case where all graphs are sampled as in (1a)

from the same points in the graphon space, that is, ζ(k) = ζ for

all k ∈ {1, 2, . . . ,K}; see Fig. 1(a). In practice, this case arises,

e.g., when using the same sensor placement under multiple trials

or experiments. Since we only consider edge probabilities in the

graphon at points (x, y) ∈ ζ × ζ, we need not consider the whole

graphon W but only the probability matrix T ∈ [0, 1]N×N that

contains the edge probabilities at the sampled points. The graphs

S(k) are then sampled from the same probability matrix T, so
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Fig. 1. Schematic depiction of the two problem modalities considered. (a) Multiple graphs sampled from the same latent point sets in the same graphon. Sampled
graphs have not only the same size but also node alignment; see Section IV-A. (b) Multiple graphs sampled from different latent point sets in the same graphon.
Sampled graphs may have different sizes; see Section IV-B.

the graphs all must have the same size, that is, N (k) = N for all

k ∈ {1, 2, . . . ,K}.

Given T, the log-likelihood of a graph S(k) is

log Pr
[

S(k)|T
]

=
∑

i<j

S
(k)
ij log (Tij)+

(

1−S
(k)
ij

)

log(1−Tij),

where we have leveraged the fact that, given T, edges are drawn

independently in our graph model [cf. (1b)]. Furthermore, we

can estimate each edge probability Tij by the sample mean of

the graph edges. Thus, we estimate the probability matrix T as
1
K

∑K
k=1 S

(k).

Recalling the notation for X and S from Problem 1, consider

a generic optimization problem to estimate multiple networks

that we formalize as

min
S

f(S,X) + L(S), (2)

where the objective function f(S,X) estimates graph structures

from the observed graph signals, andL(S) is an additional graph

penalty or regularizer; in Section IV-C we provide common

examples for these functions. To solve our problem at hand, we

propose to append the generic formulation in (2) with a negative

log-likelihood penalty to obtain

min
S,T

f(S,X) + L(S)−
K
∑

k=1

log Pr
[

S(k)|T
]

s.to S(k) ∈ SA, T =
1

K

K
∑

k=1

S(k), (3)

where we jointly estimate the graphs and their shared genera-

tive probability matrix T. The new term promoting maximum

likelihood encourages edges to be similar based on shared

probabilities in aligned edges. The estimation of the probability

matrix entries is included as the sample mean of the edges in the

graphs. The set SA enforces valid binary adjacency matrices,

that is,

SA =
{

S(k) : S(k) = (S(k))�, S
(k)
ii = 0, S

(k)
ij ∈ {0, 1}

}

,

where we consider undirected graphs without self-loops and

edges that are unweighted.

As mentioned in the problem statement, the assumption

ζ(k) = ζ for all k ∈ {1, 2, . . . ,K} is equivalent to node align-

ment for all graphs. We relate (3) to the task of estimating

functional networks among the same brain regions of one subject

under a set of discrete stimuli, or observing climate variables

among the same geographical regions over several time in-

stances.

B. Graphs and Graphon Estimation

We now consider the case where each graph is sampled

from different latent point sets and graphs may possibly have

different sizes, i.e., ζ(k) �= ζ(k
′) and N (k) �= N (k′) for k �= k′;

see Fig. 1(b). Therefore, each graph is sampled from a potentially

different probability matrix T(k), which is the value of the

graphon at the points (x, y) ∈ ζ(k) × ζ(k). For this case, let the

set of probability matrices be represented by T = {T(k)}Kk=1.

The probability matrices provide estimates of the graphon at the

known latent point pairs, and each graph provides information

about the value of its respective probability matrix.

We again build our joint network and graphon inference

framework using (2) as our starting point. We add a new set of

terms to encourage maximum likelihood of the graph structures

and the graphon model, along with a penalty to incorporate

prior graphon information. Under this setting, we present a

general optimization framework to jointly estimate the graphs,

the probability matrices, and the graphon as

min
S,T,W

f (S,X) + L (S)−

K
∑

k=1

log Pr
[

S(k)|T(k)
]

+ g (W)

s.to S(k) ∈ SA,

T(k) = h(S(k)), T
(k)
ij = W

(

ζ
(k)
i , ζ

(k)
j

)

,

W : [0, 1]2 → [0, 1], W (x, y) = W(y, x), (4)

where we include the same negative log-likelihood term as in (3),

but each graph is associated with a different probability matrix

T(k). The function h(S(k)) is a probability matrix estimation

method that takes an adjacency matrix S(k) as input, such as

network histogram or SBM approximations [61], [64]. The third

constraint fits the graphon W at the known latent point pairs to
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the values of the probability matrices T(k), and the regulariza-

tion term g(W) in the objective imposes a prior on the overall

graphon structure. For example, we may apply a thin-plate

spline term [75] to estimate a smooth graphon assuming that

points ζ(k) are relatively evenly spaced throughout the interval

[0,1]. Other interpolation methods may be applied for smooth

graphon estimation, such as inverse distance weighting [76].

The suggested potential interpolation terms assume graphon

smoothness to estimate the remainder of the graphon.

The assumptions in (4) are weaker than those in (3), thus

a wider range of applications are available. In the example of

estimating brain functional networks, functional connectivity

of the same subject may be inferred for different sets of brain

regions. Additionally, climate network inference is often based

on correlation or mutual inference measures, which decreases

with geographic distance [2], [5]. Thus, separating inference

of climate networks into multiple networks of subregions and

applying (4) may be more practical than estimating a single

climate network for a large region, as connectivity is expected

to be very low for far apart geographical locations.

C. Examples for Network Inference Methods

Up to this point, we have been considering a generic network

inference problem in (2). Both the formulations in (3) and (4)

are applicable to existing network inference methods through

specific choices of functions f(S,X) and L(S). Assumptions

required for each signal model are explored in Section IV-D.

Consider examples for the function f(S,X) that relate the

observed graph signals to the structure of the graphs. Graph

signals may be assumed to be smooth over their respective

graphs [14], and we apply the penalty

f(S,X) =

K
∑

k=1

‖S(k) ◦ Z(k)‖1, (5)

whereZ
(k)
ij = ‖X

(k)
i −X

(k)
j ‖2 as in [14]. Alternatively, we may

have graph signals that are the diffusion of noise through a

graph filter [10], [15]. In this case, we have stationary graph

signals, where the signal covariance C commutes with the

adjacency matrix S. Defining sample covariance matrices as

C(k) = 1
rk
X(k)(X(k))� ∈ R

N(k)×N(k)
, we can write

f(S,X) =

K
∑

k=1

‖S(k)C(k) −C(k)S(k)‖2F . (6)

In many applications, the graphs of interest are sparse, so it is

common to apply a sparsity constraint for each graph [11], [15].

We may apply this with the penalty function L(S) as

L (S) =

K
∑

k=1

∥

∥vec
(

S(k)
)∥

∥

1
. (7)

Note that while the graphon model results in dense graphs as the

graph size grows, individually sampled graphs of finite size may

be sparse in the sense that the adjacency matrices may contain

many zero entries. For example, an Erdős-Rényi graph with low

edge probability will have a small ratio of edges to pairs of

nodes. In this case, inclusion of a sparsity promoting penalty

would improve network recovery performance.

If, instead of separately inferring each graph, we wish to pro-

mote similar sparsity patterns, we may encourage edge similarity

between graphs [29], [34] as

L (S) =
∑

k<k′

‖vec(S(k) − S(k′))‖1, (8)

which requires graphs that are not only the same size, but are also

on the same node set. Thus, the regularizer in (8) is applicable

to our formulation in (3) but not to the one in (4).

Combinations of the described examples for f(S,X) and

L(S) are common in existing works. For instance, graph signal

stationarity in (6) and sparsity penalties for each graph via (7) are

applied in [15]. Moreover, joint inference is performed in [34]

by combining (6) and (8).

D. Assumptions

The proposed formulations in (3) and (4) offer flexible meth-

ods for inference of multiple networks, where we may en-

force characteristics in the inferred networks based on prior

knowledge. What follows is an organization of the assumptions

required for our approach.

Problem assumptions. Section III introduces the assump-

tions about our considered problem. Assumption (AS1) requires

that networks share the same generating graphon. Typically,

joint inference of multiple networks seeks similar edge values

by explicitly encouraging edges of the same node pairs to be

as close as possible (see Section II-D), while our stochastic

approach is less stringent. For each node pair that occurs in

multiple networks, each network shares the likelihood that an

edge will connect the node pair. Furthermore, we allow nodes

to belong to different node sets across networks. Given node

values in a latent space, edge probabilities for two node pairs

are similar if their pairs of latent points are close to each other.

This is conceptually similar to the case of shared node pairs, but

now the latent space dictates similarity in stochastic behavior

for all edges.

In assumption (AS2), we require knowledge of node assign-

ments in a latent space, which we may incorporate via nodal

features whose interactions dictate the presence of edges. For

example, if two nodes belonging to the same class are expected

to be connected, and the features of each node indicate its class

assignment, then we may apply nodal features to inform the

points in the latent space. We demonstrate an example of using

node features for latent point assignment in Section VII-B, where

it is more likely for two senators (nodes) to be connected if their

political parties (classes) are the same.

Graph signal model. For the penalty (5), we assume that

graph signals are smooth on their respective graphs, where we

expect well-connected nodes to have similar signal values [14].

In particular, we assume that data on the graphs lie on a smooth

manifold, where nodes denote points in the manifold space and

edges reflect distances between points. We apply penalty (6) for

stationary graph signals, where we assume that graph signals

are diffusions of arbitrary input through graph filters. If we

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:02 UTC from IEEE Xplore.  Restrictions apply. 



5554 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

assume linear, shift-invariant graph filters and white noise input

signals, then the graph signal covariances and the network struc-

tures become spectrally related. In particular, eigenvectors are

equivalent, thus the covariance matrices and adjacency matrices

commute.

Network and graphon structure. We often wish to obtain the

most parsimonious network representations for interpretability

of connectivity and mitigation of downstream computation. It

is common to encourage sparsity in inferred networks via the

�1-norm or Frobenius norm, hence the penalty (7). The joint

network inference trademark of encouraging edge similarity in

(8) is effective, but it requires that nodes lie on the same node set,

an assumption which we relax in (4). When all networks share

the same node set, combining the edge-wise similarity penalty

(8) and shared edge probabilities in our proposed formulation

(3) is an appropriate course of action.

Finally, the choice of g(W) in (4) allows us to incorporate

desirable characteristics of the graphon. For example, we assume

smoothness in the underlying graphon, where two node pairs

with similar latent point pairs are expected to have similar edge

probabilities.

V. ALGORITHM DEVELOPMENT

We address both (3) and (4) via an alternating direction

method of multipliers (ADMM) algorithm [77]. ADMM is an

attractive approach as it allows decoupling terms that cannot

easily be optimized jointly and handling nonconvex constraints

such as our unweighted graph condition. We terminate opti-

mization after reaching the criteria presented in [77, Section

3.3.1]. We solve (4) by alternately optimizing the adjacency

matrices, the probability matrices, and the shared graphon. To

avoid redundancy, we delay presentation of our solution to (3),

as it is a simpler version of (4). Indeed, if we let the penalty

g(W) = 0 and the constraint T(k) = T = 1
K

∑K
k=1 S

(k) for all

graphs k ∈ {1, 2, . . . ,K}, then the problem (4) reduces to the

formulation in (3).

The general formulation (4) is difficult to solve due to the

continuous graphon penalties and constraints. However, we can

relax it to a computationally feasible problem by estimating a

discretized graphon [61], [66], [78]. We replace the graphon W
with a discrete matrix counterpart W ∈ [0, 1]G×G. Selection of

the size G requires a tradeoff between the fineness of the grid

to accurately estimate the graphon W and the coarseness of the

matrix W to minimize computational complexity [78]. In this

paper, we let the size G be dependent on the network sizes, e.g.,

D +
∑

k CN (k) for integersC ≥ 1 andD ≥ 0, where values of

C and D can be set as large as computational ability allows. We

empirically observe that this choice of discretization is adequate

for our proposed joint network and graphon estimation. We leave

investigating other choices of graphon discretization as future

work [78], [79].

Our proposed relaxation is as follows

min
S,T,W

f(S,X) + L(S)−

K
∑

k=1

log Pr
[

S(k)|T(k)
]

+ ḡ (W)

s.to S(k) ∈ SA, W ∈ SW ,

‖T(k) − h(S(k))‖2F ≤ ε
(k)
1 ,

‖T(k) −Wz(k)z(k)‖2F ≤ ε
(k)
2 , (9)

whereWz(k)z(k) ∈ [0, 1]N
(k)×N(k)

is the submatrix ofWwhose

entries consist of the graphon W values at points (x, y) ∈
ζ(k) × ζ(k) for each graph, and ḡ(W) acts as the discretization

of the operation g(W). Furthermore, the set SW defines valid

discretized graphon matrices as

SW =
{

W : W = W�,Wij ∈ [0, 1]
}

.

Since we only consider graphs without self-loops, diagonal

values of sampled adjacency matrices are ignored [cf. (1b)].

Note that we also relax the equality constraints fitting each

probability matrix T(k) to each graphon submatrix Wz(k)z(k)

and probability matrix estimate h(S(k)). We expect upper

bounds ε
(k)
1 and ε

(k)
2 to depend on the number of graphs K and

the graph sizes N (k). Greater values of K and N (k) increase

the number of sampled points in the graphon space, resulting in

more precise graphon estimation. Additionally, as N (k) grows,

the probability matrix T(k) approaches the underlying graphon

W , converging to a continuous graphon approximation.

We highlight three major benefits of our formulation:

(i) graphs of different sizes can be inferred, (ii) explicit knowl-

edge of the graphon W is not needed, and (iii) the relaxed

problem (9) is well suited to alternating minimization with

optimizing each variableS,T, andW while fixing the others. In

the sequel, we consider special cases of the functions f(S,X),
L(S), h(S(k)), and g(W) to provide a concrete example of

our proposed problem and demonstrate its implementation in

a common GSP scenario.

A. Stationary Graph Signals and Smooth Graphon

To demonstrate the implementation of our multiple graph

learning algorithm, we present a special case under specific

assumptions. We let f(S,X) take the form of (6) and let

L(S) = 0. We chooseh(S(k)) as a network histogram method to

estimate the probability matrices T(k) [61], [64]. In particular,

the probability matrix corresponding to the adjacency matrix

S(k) can be estimated via SBM approximation [61] as

T̂(k) = h(S(k)) = F(k)S(k)F(k),

where F(k) = f
N(k)−f

(IN(k)/f ⊗ (1f1
�
f − If )) computes the

empirical edge probability of adjacency matrix blocks with size

f > 0. We point out that knowledge of the graphon latent sample

points obviates the need for sorting the adjacency matrices by

degrees before computing the approximate SBM [61]. Finally,

we let g(W) be a thin-plate spline term [75]

g (W)=

∫ 1

0

∫ 1

0

(

∂2W

∂x2

)2

+2

(

∂2W

∂x∂y

)2

+

(

∂2W

∂y2

)2

dxdy

which we then discretize for implementing ḡ(W). First, we

introduce the difference matrices D1 ∈ R
G×G−1 and D2 ∈
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R
G×G−2 such that

[D1]ij =

⎧

⎨

⎩

−1, i− j = 0
1, i− j = 1
0, otherwise

⎫

⎬

⎭

and

[D2]ij =

⎧

⎨

⎩

1, i− j ∈ {0, 2}
−2, i− j = 1
0, otherwise

⎫

⎬

⎭

,

and we discretize g(W) as

ḡ(W) = ‖D�
2W‖2F + ‖D�

1WD1‖
2
F + ‖WD2‖

2
F .

Under these selections, we assume that graph signals are sta-

tionary on their respective adjacency matrices; see the discussion

of (6) and Section IV-D. Our choices of (S(k)) and ḡ(W) assume

that the underlying graphon W is smooth [61], [75].

Note that all matrices are symmetric with irrelevant diag-

onal values. Thus, we introduce vectors containing the ma-

trix lower triangular entries. First, let L(k)=N (k)(N (k)−1)/2,

J = G(G+ 1)/2, and LK =
∑K

k=1 L
(k). We define s =

[

(S(1))�L , . . . , (S
(K))�L

]�
∈ R

LK , collecting lower triangles of

matrices in the tuple S in a column vector. The vector t ∈ R
LK

is defined similarly. We also let w =
[

W�
D W�

L

]�
such that

w ∈ R
J contains all entries of vec(W) corresponding to the

indices D ∪ L.

We introduce the matrixM such that ‖Ms‖22 = f(S,X) [34],

along with Ψ for applying the network histogram method to s.

We define

M(k) = [C(k) ⊕−C(k)]�L + [C(k) ⊕−C(k)]�U ,

Ψ(k) = [F(k) ⊗ F(k)]�L + [F(k) ⊗ F(k)]�U .

We also introduce Σ(k) = [Σ
(k)
D Σ

(k)
L ] for selecting graphon

indices from w by defining

Σ
(k)
D = [Iz(k) ⊗ Iz(k) ]

�
D ,

Σ
(k)
L = [Iz(k) ⊗ Iz(k) ]

�
L + [Iz(k) ⊗ Iz(k) ]�U ,

where Iz(k) denotes a subset of rows of the iden-

tity matrix IG indexed by z(k). We can then introduce

the block matrices M = blockdiag(M(1),M(2), . . . ,M(K)),
Σ = [(Σ(1))� (Σ(2))� · · · (Σ(K))�]�, and Ψ = blockdiag

(Ψ(1),Ψ(2), . . . ,Ψ(K)). We let

Φ =

[

ΦD,1 ΦL,1

ΦD,2 ΦL,2

]

such that ‖Φw‖22 = ḡ(W), where

ΦD,1 = [D2 ⊗ IG]
�
D,

ΦL,1 = [D2 ⊗ IG]
�
L + [D2 ⊗ IG]

�
U ,

ΦD,2 = [(D1 ⊗D1)]
�
D,

ΦL,2 = [(D1 ⊗D1)]
�
L + [(D1 ⊗D1)]

�
U .

Finally, we define the following function

Γ(s, t) = −

LK
∑

i=1

[si log(ti) + (1− si) log(1− ti)]

to represent the log-likelihood term.

From the preceding definitions, we can rewrite the problem (9)

to eliminate constraints and minimize the number of variables

to be optimized. This simplification is shown in the following

vectorized problem

min
s,t,w

α

2
‖Ms‖22 + Γ(s, t) +

β

2
‖Φw‖22

s.to si ∈ {0, 1}, wi ∈ [0, 1],

‖t−Ψs‖22 ≤ ε1, ‖t−Σw‖22 ≤ ε2 (13)

with tuning parameters α > 0 and β > 0 to control graph signal

stationarity and graphon smoothness.

Developing an ADMM algorithm with guaranteed conver-

gence requires reformulating (13) not only to incorporate dual

variables and parameters but also to account for the constraints

on the entries in s and w. We introduce the auxiliary variables

p ∈ R
LK and v ∈ R

J and expand the problem as follows

min
s,t,w

α

2
‖Ms‖22 + Γ(s, t) +

β

2
‖Φw‖22

s.to s = p, w = v,

pi ∈ {0, 1}, vi ∈ [0, 1],

‖t−Ψs‖22 ≤ ε1, ‖t−Σw‖22 ≤ ε2.

The augmented Lagrangian function then takes the form [77]

Lρ (s,p, t,w,v,u1,u2) =
α

2
‖Ms‖22 + Γ(s, t) +

β

2
‖Φw‖22

+ I {pi ∈ {0, 1}∀i}+ I {vi ∈ [0, 1]∀i}

+ ρ1〈u1, s− p〉+
ρ1
2
‖s− p‖22

+ ρ2〈u2,w − v〉+
ρ2
2
‖w − v‖22

+
λ1

2
‖t−Ψs‖22 +

λ2

2
‖t−Σw‖22, (14)

where I{·} is the indicator function that takes the value 0 if the

argument is true and infinity otherwise. The primal variables

consist of s, p, t, w, and v, the dual variables u1 and u2, and

the dual parameters ρ1 and ρ2. Tuning parameters λ1 and λ2

determine the strength of the relationships among the adjacency

matrices, the graphon, and the probability matrices. We also

define the function ΠC(·) as the projection of the argument onto

the set C.

Applying ADMM to (14) results in the following update steps

sj+1 = argmin
s

Lρ(s,p
j , tj ,wj ,vj ,uj

1,u
j
2) (15a)

pj+1 = Π{0,1}(s
j+1 + u

j
1) (15b)

tj+1 = argmin
t

Lρ(s
j+1,pj+1, t,wj ,vj ,uj

1,u
j
2) (15c)
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wj+1 = argmin
w

Lρ(s
j+1,pj+1, tj+1,w,vj ,uj

1,u
j
2)

(15d)

vj+1 = Π[0,1](w
j+1 + u

j
2) (15e)

u
j+1
1 = u

j
1 + sj+1 − pj+1 (15f)

u
j+1
2 = u

j
2 +wj+1 − vj+1 (15g)

What follows is a discussion of non-trivial update steps.

Optimization of Graphs. Adjacency matrices are initialized

via general graph estimation in (2). We update the graphs s by

solving the problem (15a), resulting in the closed form solution

(

αM�M+ ρ1ILK
+ λ1Ψ

�Ψ
)

s

= γ
(

tj
)

+ ρ1(p
j − u

j
1) + λ1Ψ

�tj

where we let [γ(t)]i = log(ti)− log(1− ti).
Optimization of Probability Matrices. We update the prob-

ability matrix vector t by solving

min
t

Γ(s, t) +
λ1

2
‖t−Ψsj+1‖22 +

λ2

2
‖t−Φwj‖22.

The subproblem for updating t is separable by entries of t,

thus we can parallelize computation by solving the equivalent

problem

min
ti

−(sj+1
i log(ti) + (1− sj+1

i ) log(1− ti))

+
c

2
(ti − d)2 (16)

where c = λ1 + λ2 and d = λ1

c Ψis
j+1 + λ2

c Φiw
j , obtained by

completing the square of the original subproblem. As the func-

tion si log(ti) + (1− si) log(1− ti) does not have an easily

computed proximal operator, we obtain the update for t by

solving (16) via proximal gradient descent (PG) [80], and we

observe that PG converges quickly in practice.

Optimization of Graphon. The solution to the graphon sub-

problem (15d) is also a closed-form expression,

(

βΣ�Σ+ρ2IJ+λ2Φ
�Φ

)

w=ρ2(v
j−u

j
2)+λ2Φ

�tj+1.

We thus obtain a convergent result for solving (14). The main

result is shown in the following theorem.

Theorem 1: When ADMM with update steps (15a)–(15g)

is applied to the joint network and graphon inference opti-

mization problem (14), if the underlying generating graphon

W is bounded away from 0 and 1, i.e., there exists some

ε > 0 such that W(x, y) ∈ [ε, 1− ε] for all x, y ∈ [0, 1], then

for large enough parameters ρ1, ρ2, λ1, and λ2, the resulting

sequence (sj ,pj , tj ,wj ,vj ,uj
1,u

j
2) has at least one limit point

(s∗,p∗, t∗,w∗,v∗,u∗
1,u

∗
2), and each is also a stationary point,

that is, 0 ∈ ∂Lρ(s
∗,p∗, t∗,w∗,v∗,u∗

1,u
∗
2).

Proof of Theorem 1: See Appendix A.

The most complex ADMM steps are the updates for s ∈ R
LK

and w ∈ R
J . If we assume for simplicity that all graphs have

the same number of nodes,N (k) = N for all k ∈ {1, 2, . . . ,K},

then we have that LK = KN(N − 1)/2. We further let the size

of the discretized graphon be G = CKN +D for integers C ≥

1 and D ≥ 0. Thus, each iteration of the update steps (15a)–

(15g) has complexity O(J2) = O(K4 N4), stemming from the

graphon vector w update.

We may precompute the inverses for updating s and w,

which have complexities O(L3
K) = O(K3 N6) and O(J3) =

O(K6 N6), respectively.

Remark 1 (Solution to (3)): When solving the problem in (3),

we let T(k) = T for all k ∈ {1, 2, . . . ,K} and ignore graphon

penalties and constraints, i.e., ḡ(W), W ∈ SW , and ‖T(k) −

Wz(k)z(k)‖2F ≤ ε
(k)
2 . In this case, we forgo update steps (15d),

(15e), and (15g). The update for s remains the same while letting

λ1 = 0.

For the update of t, we note that since T(k) = T for all

graphs, we have L = N(N − 1)/2 degrees of freedom for (3)

instead of the LK =
∑K

k=1 L
(k) of (4). Thus we need only

estimate one vector t(k) = t ∈ R
L for all graphs. We introduce

the matrix R = 1
K (1�

K ⊗ IL) such that t = Rs, equivalent to

the last constraint in (3). The update step (15c) then becomes

min
ti

−K (ti log (ti) + (1− ti) log(1− ti)) +
c′

2
(ti − d′)

2
,

where c′ = λ1 and d′ = Ris
j+1. The objective in this subprob-

lem is a difference of convex terms, which can be solved via

existing methods such as DCA algorithms [81], [82].

Remark 2 (Normalized projections): The Euclidean projec-

tions Π{0,1}(·) and Π[0,1](·) applied respectively in (15b) and

(15e) guarantee convergence of the ADMM algorithm. However,

we empirically observed improved performance by normalized

projections. In particular, the argument x is first normalized as

x̄ =
x−mini xi

maxj(x−mini xi)
,

and the normalized x̄ is then projected to the set C as usual as

ΠC(x̄).

VI. ROBUST NETWORK AND GRAPHON ESTIMATION

In practice, the exact placement of the latent sample points

may not be available. For example, electrode location for mea-

suring neural responses may not be precisely comparable across

several subjects. For comparisons of conditions in a climate

system, regions of observation may not be consistent over time

since atmospheric patterns will not necessarily occur in precisely

the same geographical locations. Thus, we relax the assumption

(AS2) that latent points ζ(k) are exactly known, but approximate

points ζ̄(k) = ζ(k) + ω(k) are known, where ω(k) is random

noise perturbing the true sample points. This assumption was

also applied in [83] for graphon estimation from known graphs.

We update the problem (4) as

min
S,T,W,ζ

f(S,X) + L(S)−

K
∑

k=1

log Pr
[

S(k)|T(k)
]

+ g(W)

s.to S(k) ∈ SA,

T(k) = h(S(k)), T
(k)
ij = W

(

ζ
(k)
i , ζ

(k)
j

)

,

W : [0, 1]2 → [0, 1], W(x, y) = W(y, x),

‖ζ(k) − ζ̄(k)‖22 ≤ ε
(k)
3 , (17)
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where we introduce the final constraint to estimate graphon

sample points ζ(k) based on the given noisy values ζ̄(k) for all

graphs k ∈ {1, 2, . . . ,K}.

Implementation is almost identical to that of (4), where we

discretize the graphon and perform an ADMM algorithm. The

update steps for each variable are the same, with the addi-

tion of an update for optimizing the graphon indices z(k).

Let the vector z be the concatenation of the graphon indices,

z = [(z(1))� (z(2))� · · · (z(K))�]�. The appended update step

solves the subproblem

zj+1 = argmin
z

‖tj+1 − Σ̄wj+1‖22

s.to Σ̄ = blockdiag
(

Σ(1),Σ(2), . . . ,Σ(K)
)

,

Σ(k)=[(Iz(k)⊗Iz(k))
�
L ]

�+
[

(Iz(k) ⊗ Iz(k))
�
U

]�
,

z(k) = z̄(k) +∆z(k),

∆z
(k)
i ∈ {−η(k),−η(k) + 1, . . . , η(k)}, (18)

where η(k) is the maximum perturbation of the estimated

graphon indices from the given noisy version z̄(k). The value of

η(k) depends on the upper bound ε
(k)
3 and the size G of the dis-

cretized graphon. The area of the error region of radius ε
(k)
3 in the

graphon domain [0, 1]2 dictates the size of the error grid of radius

η(k) in the graphon matrix of sizeG×G. We solve this step via a

greedy minimization over each entry inz using a grid search over

the set of perturbations {−η(k),−η(k) + 1, . . . , η(k)}, where we

select the value of ∆z
(k)
i to minimize the objective. The opti-

mization order is arbitrary; options include sorted or randomized

index orders.

VII. NUMERICAL EXPERIMENTS

We compare the performance of network topology inference

methods with and without the augmentations in (3), (4), and (17),

denoted by “Mod. 1,” “Mod. 2,” and “Mod. 3,” respectively. For

all experiments, we apply the same signal model assumption

f(S,X) as (6), and we compare separate network inference via

sparsity penalties (7) and joint network inference via pairwise

difference penalties (8). For synthetic experiments, we sample

from the graphonW(x, y) = 1
2 (x

2 + y2). The error of estimator

Ŝ is calculated as ‖S− Ŝ‖F /‖S‖F , where the true adjacency

matrix is given by S.1 Additional results are included in the

Supplementary Material.

A. Synthetic Experiments

Same node sets. We consider the case where all graphs

are sampled from the same points within the graphon space,

ζ(k) = ζ. We estimate K = 3 graphs with N = 30 nodes as we

observe an increasing number of signals for sample covariance

computation. We present in Fig. 2(a) the comparison of separate

and joint network inference methods with the augmentations in

(3) and (4), and without either. In both methods, the augmented

formulations improve estimation performance significantly. The

1Implementations of our method are available at https://github.com/mn51/
jointinf_graphs_graphon.

pairwise joint penalty (8) enjoys the greatest improvement, as

graphs not only possess node alignment required by (8), but they

also follow our graph model assumption.

Node sets of different sizes. We consider the challenging case

where the graphs have different latent point sets of different sizes

N (k) �= N (k′). Unlike the previous experiment, we cannot apply

(3) or (8), so we consider only (6) and (7) with and without the

joint graphon estimation from (4). We consider K = 3 graphs

for node sets of N = 10, 30, 50 and N = 15, 30, 45 in Fig. 2(b).

For both cases, application of joint graphon inference results in

consistent improvement, with increasing performance gap for

larger number of observed signals.

Different node sets of same size. Finally, we observe graphs

of the same size and different node sets, i.e., N (k) = N (k′) but

ζ(k) �= ζ(k
′) for every pair k, k′. In this case, (3) is applicable,

but the model assumption is incorrect, as it assumes that all

graphs are not only sampled from the same graphon, but it

is also incorrectly assumed that graphs are sampled from the

same probability matrix. We observe in Fig. 2(c) the comparison

of the three modalities, separate network inference and joint

inference with the augmentations in (3) and (4). While (3)

outperforms separate inference, indeed (4) generally exhibits

greater improvement as it includes the knowledge of different

sample points within the graphon space. Our results demonstrate

the value in prior knowledge of sampling locations and accurate

estimation of the underlying graphon, as both contribute to

improvement of network estimation.

Noisy latent sample points. Finally, we observe the

performance of the robust formulation in (17) when only

a noisy version of the latent sample points ζ(k) are

available. We infer K = 3 graphs of size N = 20 from

the graphon W (x, y) = 0.25 + 0.75 exp{−β(x− 1/2)2(y −
1/2)2} for β > 0. We let ζ(1), ζ(2) ∼ Unif(0.4, 0.6) and ζ(3) ∼
Unif(0.2, 0.4). Latent sample points are perturbed with increas-

ing levels of magnitude, where ζ̂(k) = ζ(k) + nω(k) for n ∈

{0, 0.05, 0.1, 0.15, 0.2, 0.25}. The upper bound ε
(k)
3 increases

in proportion to the magnitude of the noise as ε
(k)
3 = n for all

values of n. Comparisons are shown in Fig. 3. Fig. 3(a) presents

comparisons of graph estimation error for our proposed methods,

and Fig. 3(b) compares graphon estimation error for formula-

tions (4) and (17). Joint inference of networks and graphons for

both the original (4) and robust (17) formulations demonstrate

consistent superiority in graph recovery over both separate in-

ference and joint inference of networks and probability matrix

(3). Furthermore, the robust inference in (17) demonstrates a

general improvement in performance over the original formula-

tion (4). We also observe that graphon estimation is consistently

improved when applying the robust joint inference method in

Fig. 3(b). Our approach not only demonstrates a viable method

for robust graph estimation under noisy latent sample points

but also simultaneously presents improved graphon estimation

under perturbed prior information.

B. Senate Networks

Finally, we performed graph estimation with real-world data

of U.S. congress roll-call votes [84], and we set up senate vote
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Fig. 2. Performance analysis in synthetic networks. (a) Recovery error forK = 3 graphs sampled from the same latent point sets in the same graphon as a function
of the number of observed signals. Incorporating the joint estimation of the probability matrix or the graphon both improve estimation performance. (b) Recovery
error for K = 3 graphs sampled from latent point sets of different sizes in the same graphon as a function of the number of observed signals. Separate inference
of graphs is outperformed by including joint estimation of the underlying graphon. (c) Recovery error for K = 3 graphs of the same size N = 30 sampled from
different latent point sets in the same graphon. Joint estimation of networks and the underlying graphon model drastically outperforms separate inference, and the
joint network and graphon estimation (4) demonstrates improvement over joint network and probability matrix estimation (3).

Fig. 3. Performance analysis in synthetic networks under noisy graphon sample information. (a) Recovery error of networks as a function of the magnitude

of perturbation of graphon latent sample points ζ(k) from (1a). Both versions of joint network and graphon inference outperform separate network inference
and joint network and probability matrix inference (3) for all noise levels. Robust joint inference (17) exhibits improvement in network recovery compared to

(4). (b) Recovery error of graphon as a function of the magnitude of perturbation of graphon latent sample points ζ(k) from (1a). As the magnitude of perturbation
of sample points increases, the robust joint inference (17) demonstrates increasing recovery performance over (4).

signals as in [34]. The number of nodes corresponds to the num-

ber of votes (100 senators and 1 President). We let votes represent

graph signals, where a node can take the value 1 for yea, −1 for

nay, and 0 for abstinence. We observe the 724, 919, and 612

votes of congresses 103, 104, and 105, respectively, and we let

the underlying true networks be obtained by separate estimation

of each network using all available votes. For the experiment,

we consider the same three cases of network estimation as in

the synthetic experiments: (i) networks sampled from the same

node set, (ii) networks of different sizes, and (iii) networks of

the same size but sampled from different node sets. We estimate

subgraphs of the separately inferred true graphs, and senators

are chosen for each subgraph analogous to sampling a graphon

at selected points.

Same set of senators. In the first case, we estimate K = 3
subgraphs sampled from the same points, i.e., networks with
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Fig. 4. Performance analysis in senate networks. (a) Recovery error as a function of the number of observed signals for induced subgraphs of three senate
networks of the same set of senators. Joint network and probability matrix inference (3) outperforms both separate network inference and joint network and graphon
inference (4) for all sets of observed signals. (b) Recovery error of induced subgraphs of three senate networks of sizes N = 15, 30, 45 as a function of the number
of observed signals. Joint network and graphon inference (4) outperforms separate network inference as the set of observed signals grows larger. (c) Recovery
error as a function of the number of observed signals for induced subgraphs of three senate networks of size N = 30 consisting of different sets of senators. Joint
network inference outperforms separate network inference consistently for all sets of observed signals, and joint network and graphon inference (4) demonstrates
better performance than joint network and probability matrix inference (3).

nodes N = 30 consisting of the same 30 senators, where we

only observe votes of senators corresponding to these subsets of

nodes. We show in Fig. 4(a) that (3), which assumes all three

node sets consist of the same set of senators, indeed outperforms

separate estimation and the augmentation in (4), demonstrating

the statistical voting similarities of these chosen senate seats

across congresses.

Sets of senators of different sizes. For networks of different

sizes, we estimate induced subgraphs of sizesN = 15, 30, 45. In

Fig. 4(b) we observe that joint network and graphon estimation

from (4) appears to consistently rival or outperform separate

inference for larger numbers of observed votes, even though the

true networks were estimated separately. Indeed, while separate

inference of the induced subgraphs becomes more similar to the

true network generation as the number of signals increases, (4)

is still able to improve accuracy.

Different senator sets of same size. We also revisit the

comparison under an incorrect model assumption for (3). We

consider K = 3 subgraphs of size N = 30 for all, but the esti-

mated subgraphs consist of different sets of senators. Fig. 4(c)

demonstrates that estimation via (4) drastically outperforms that

of (3), which assumes the subgraphs consist of the same senators,

and furthermore (4) generally outperforms separate inference.

These experiments demonstrate that the versatile nonparametric

nature of graphons can aid the recovery of real-world graphs,

Fig. 5. The graphon estimated jointly with senate networks exhibits two-
community node clustering behavior.

even if these graphs have not been explicitly drawn from a

graphon model in the first place.

Finally, we include in Fig. 5 the estimated graphon from ap-

plying (4) for inferring senate networks. We assume an SBM-like

underlying model, where we expect that the nodes (senators)

will exhibit clustering behavior into two communities (political

parties). The expected behavior is clearly recognizable in the

estimated graphon, which validates our claim that the estimated

graphon exhibits the general shared structure of a set of real-

world networks.
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Fig. 6. Performance analysis in brain functional networks. Recovery error
as a function of observe time frames for the induced subnetworks of K = 3

different subsets of neurons, each of size N = 30. Joint network inference
assuming an underlying graphon model demonstrates competitive and promising
improvement in performance.

C. Brain Functional Networks

We consider the estimation of neural connectivity using data

from the Allen Brain Atlas [85], which consists of recordings of

in vivo neural responses from 100 neurons of a live mouse being

shown visual stimuli, which are designed to stimulate the visual

cortex. We let the ground-truth brain functional network be the

single estimated network given all 100000 available frames of

neural data.

Consider the case where we only observe the activity of

multiple subsets of neurons of size N = 30 each, where each

subset is measured separately, but we wish to infer the induced

subnetworks connecting the observed neurons. We estimate

these brain functional subnetworks via the separate network

inference method used to generate the ground-truth network,

denoted by “Sparse,” which we compare to our proposed joint

inference augmentations. Estimation results are shown in Fig. 6,

where we observe that for different subsets of neurons, applying

our joint inference approaches results in competitive and even

superior performances, even when the true underlying network

is obtained from the Sparse method.

VIII. CONCLUSION AND FUTURE WORK

We demonstrated a method to jointly estimate multiple net-

works under the assumption that they are sampled from the

same graphon. To the best of our knowledge, our work is the

first to leverage graphons to solve the challenging problem of

inferring graphs of different sizes. We also presented a robust

method when only noisy information about the latent variables

ζ(k) is available. We demonstrated that our proposed maximum-

likelihood-based method improves network estimation in syn-

thetic and real-world experiments, along with the efficacy of

our robust solution with inexact sampling data. In terms of

future directions, we plan to consider: i) Alternative random

graph models (beyond graphons) that can also generate graphs

of different sizes while promoting other common structural

characteristics, and ii) Additional relevant tasks on multiple

networks that benefit from additional statistical knowledge, i.e.,

the shared graphon assumption; tasks include graph clustering,

dynamic graph change-point detection, or graph node alignment

for graphs of different sizes.

APPENDIX A

PROOF OF THEOREM 1

This proof is inspired by [86], with digression mainly due to

the function g(s, t,w), whose Lipschitz smoothness depends on

combinations of s, t, and w, and the order of updates, where the

lower semicontinuous indicator functions are not updated first.

Additionally, we have that the function f(p,v) is not convex

with respect to p.

Remark 3 (Boundedness of t): Note that since the graphon

is bounded away from 0 and 1, values of W and T(k) are

restricted to the set [ε, 1− ε]. In this proof we assume that

tj ∈ [ε, 1− ε] for all j ∈ N. This can be easily enforced in the

optimization by modifying the log-likelihood penalty Γ̂(s, t) =

−
∑LK

i=1[si log(ti − ε) + (1− si) log(1− ti − ε)], where the

resulting modified probability matrix update in (16) remains

solvable by proximal gradient descent.

We first introduce the following Lemmas to be used in the

remainder of the proof. Proofs of the Lemmas can be found in

the Supplementary Material.

Lemma 1 (Coercivity): The objective function

φ(s,p, t,w,v) is coercive over the feasible set F :=
{(s,p, t,w,v) ∈ dom(φ) : s = p, w = v}. Specifically,

φ(s,p, t,w,v) → ∞ when ‖(s,p, t,w,v)‖ → ∞.

Lemma 2 (Objective regularity): If t ∈ [ε, 1− ε]LK for some

ε > 0, then

a) For positive constants Gs
s, Gt

s, Gw
w, and Gt

w,

‖∇sg(s, t,w)−∇sg(ŝ, t̂, ŵ)‖22

≤ λ2
1G

s
s‖s− ŝ‖22 + λ2

1G
t
s‖t− t̂‖22,

‖∇tg(s, t,w)−∇tg(s, t, ŵ)‖22 ≤ λ2
2G

t
w‖w − ŵ‖22,

‖∇wg(s, t,w)−∇wg(ŝ, t̂, ŵ)‖22

≤ λ2
2G

w
w‖w − ŵ‖22 + λ2

2G
t
w‖t− t̂‖22.

b) For positive constants Hs and Hw,

‖∇sh(s,w)−∇sh(ŝ, ŵ)‖22 ≤ α2Hs‖s− ŝ‖22,

‖∇wh(s,w)−∇wh(ŝ, ŵ)‖22 ≤ β2Hw‖w − ŵ‖22.

Lemma 3 (Bound dual by primal): For all j ∈ N,

(a)u
j
1 = −

1

ρ1

(

∇sh
(

sj ,wj−1
)

+∇sg
(

sj , tj−1,wj−1
))

+ pj−1 − pj

(b)u
j
2 = −

1

ρ2

(

∇wh
(

sj ,wj
)

+∇wg(sj , tj ,wj)
)

+ vj−1 − vj

(c) ‖uj
1 − u

j+1
1 ‖22 ≤

1

ρ21
((λ2

1G
s
s + α2Hs)‖s

j − sj+1‖22

+ (1/ε4 + λ2
1G

t
s)‖t

j−1 − tj‖22

+ ρ21‖p
j−1 − pj‖22 + ρ21‖p

j − pj+1‖22)

(d) ‖uj
2 − u

j+1
2 ‖22 ≤

1

ρ22
((λ2

2G
w
w + β2Hw)‖w

j −wj+1‖22
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+ λ2
2G

t
w‖t

j − tj+1‖22

+ ρ22‖v
j−1 − vj‖22 + ρ22‖v

j − vj+1‖22)

We next list four key properties under which ADMM con-

vergence can be ensured. The Supplementary Material contains

proofs that the ADMM steps (15a)–(15g) satisfy the following

properties when applied to problem (14).

Property P1 (Monotone, lower-bounded Lρ and bounded

sequence). The sequence {sj ,pj , tj ,wj ,vj ,uj
1,u

j
2} is

bounded, and the Lagrangian Lρ(s
j ,pj , tj ,wj ,vj ,uj

1,u
j
2) is

lower bounded.

Property 2 (Sufficient descent). There is a constant

C1(ρ, λ) > 0 such that for all k, we have that

Lρ(s
0,p0, t0,w0,v0,u0

1,u
0
2)

− Lρ(s
j ,pj , tj ,wj ,vj ,uj

1,u
j
2)

≥ C1(ρ, λ)

j
∑

i=0

(‖si − si+1‖22 + ‖pi − pi+1‖22

+ ‖ti − ti+1‖22 + ‖wi −wi+1‖22 + ‖vi − vi+1‖22).

Property 3 (Subgradient bound). There is a constant

C2(ρ, λ) > 0 and subdifferential

dj+1 ∈ ∂Lρ(s
j+1,pj+1, tj+1,wj+1,vj+1,uj+1

1 ,uj+1
2 )

such that

‖dj+1‖22 ≤ C2(ρ, λ)(‖s
j − sj+1‖22 + ‖pj − pj+1‖22

+ ‖pj−1 − pj‖22 + ‖tj − tj+1‖22 + ‖tj−1 − tj‖22

+ ‖wj −wj+1‖22 + ‖vj − vj+1‖22 + ‖vj−1 − vj‖22).

Property 4 (Limiting continuity). If

(s∗,p∗, t∗,w∗,v∗,u∗
1,u

∗
2) is the limit point of the

subsequence (sja ,pja , tja ,wja ,vja ,uja
1 ,uja

2 ) for a ∈
N, then Lρ(s

∗,p∗, t∗,w∗,v∗,u∗
1,u

∗
2) is the limit of

Lρ(s
ja ,pja , tja ,wja ,vja ,uja

1 ,uja
2 ) as a → ∞.

Finally, under the above four properties, we can demonstrate

the convergence of ADMM applied to problem (14). By Property

1, we have that the sequence (sj ,pj , tj ,wj ,vj ,uj
1,u

j
2)

is bounded and thus has a convergent subsequence

(sja ,pja , tja ,wja ,vja ,uja
1 ,uja

2 ) for a ∈ N with the limit

point (s∗,p∗, t∗,w∗,v∗,u∗
1,u

∗
2) as a → ∞. Under Properties

1 and 2, the Lagrangian Lρ(s
j ,pj , tj ,wj ,vj ,uj

1,u
j
2) is

bounded above and below, so we have that ‖sj − sj+1‖22 → 0,

‖pj − pj+1‖22 → 0, ‖tj − tj+1‖22 → 0, ‖wj −wj+1‖22 → 0,

‖vj − vj+1‖22 → 0 as j → ∞. Then, by Lemma 3 and

the primal variable convergence, we also have that

‖uj
1 − u

j+1
1 ‖22 → 0 and ‖uj

2 − u
j+1
2 ‖22 → 0 as j → ∞.

Based on Property 3, there exists a subgradient sequence

dj ∈ ∂Lρ(s
j ,pj , tj ,wj ,vj ,uj

1,u
j
2) such that ‖dj‖22 → 0 as

j → ∞. Thus, we also have that ‖dja‖22 → 0 asa → ∞. Finally,

by Property 4, we have that Lρ(s
∗,p∗, t∗,w∗,v∗,u∗

1,u
∗
2) is

the limit of Lρ(s
ja ,pja , tja ,wja ,vja ,uja

1 ,uja
2 ) as a → ∞.

By the definition of the general subgradient, we have that

0 ∈ ∂Lρ(s
∗,p∗, t∗,w∗,v∗,u∗

1,u
∗
2).
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