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ABSTRACT

We consider the task of representing signals supported on graph
bundles, which are generalizations of product graphs that allow for
“twists” in the product structure. Leveraging the localized product
structure of a graph bundle, we demonstrate how a suitable parti-
tion of unity over the base graph can be used to lift the signal on
the graph into a space where a product factorization can be readily
applied. Motivated by the locality of this procedure, we demonstrate
that bases for the signal spaces of the components of the graph bun-
dle can be lifted in the same way, yielding a basis for the signal
space of the total graph. We demonstrate this construction on syn-
thetic graphs, as well as with an analysis of the energy landscape of
conformational manifolds in stereochemistry.

Index Terms— Graph signal processing, Graph Fourier trans-
form, Fiber bundle, Graph bundle

1. INTRODUCTION

In signal processing and machine learning, a key aspect of many
methods is the selection of a proper coordinate system with which to
represent a dataset. Preprocessing steps such as PCA, for instance,
represent a dataset in coordinates determined by its principal com-
ponents, with the hypothesis that only a few coordinates will dom-
inate the rest. Fourier representations of signals sacrifice spatial or
temporal locality in order to make each coordinate (frequency) carry
information about the entire signal in question — wavelets interpo-
late between the spatial and spectral locality of standard and Fourier
representations. In graph signal processing (GSP), we are interested
in representing and processing graph signals in ways that reflect the
underlying graph geometry [1].

One such problem in GSP arises when processing signals on
product graphs, where factoring the vertex set as the Cartesian prod-
uct of the vertex set of factor graphs yields a multidimensional graph
Fourier transform [2—4], analogous to the multidimensional Fourier
transform in Euclidean space having frequency axes corresponding
to each coordinate. In this case, the Fourier modes of the Cartesian
product graph are given by the tensor product of the Fourier modes
on the factor graphs. However, these product factorizations do not
always hold. For instance, a graph may only factor as a product of
two factors locally about each node, but not globally. When the prod-
uct factorization only holds locally, the tensor product factorization
of the Fourier modes does not necessarily hold, as it is dependent
on the product factorization of the graph holding globally. This is
exemplified in the Mdbius graph (Fig. 1), where the factors of the
graph are approximately given by a cycle graph and a path graph,
but there is a twist in the global structure that obstructs a global fac-
torization. To overcome this for the task of signal representation, we
propose a localized factored coordinate system.
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Fig. 1. (a) A Mobius graph. (b) The cylinder graph given by the
product of the base and the fiber. (¢) The spectra of their Laplacians.

1.1. Contributions.

In this work, we develop tools for representing signals on graphs that
locally factor as product graphs. In particular:

1. We introduce graph bundles as objects describing graphs that
locally factor as product graphs.

2. With the local product structure of graph bundles in mind, we
illustrate how any bases for the local factors can be used to
construct a localized basis for signals on the graph bundle.

3. We illustrate the utility of this on synthetic graph bundles,
as well as an application in analyzing energy landscapes in
stereochemistry.

Data with an underlying fiber bundle structure has been considered
recently in the literature [5—7] with the goal of identifying and ana-
lyzing the topology of data that locally factors as a Cartesian product
space. Our goal in this work is to provide a groundwork for the anal-
ysis of signals supported on structures identified this way, bridging
a gap between topological and signal processing methods for data
analysis, following the recent efforts of the GSP community [8—13].

2. GRAPH BUNDLES AND SIGNAL REPRESENTATION

2.1. Graphs and graph signals

A graph G consists of a finite set of vertices, denoted Vg, and a set
of edges, denoted Eg, such that every edge is an unordered tuple
of vertices. We find it convenient to treat a graph as a set G =
Vg U Eg, but this still captures the usual definition of a graph as a
tuple (Vg, Eg). For a vertex v € Vg, the neighborhood graph about
v is the graph N, such that Vi, consists of v and all nodes w such
that (u,v) € Eg and Ex;, consists of all pairs (u,v). That is, the
neighborhood graph is a star graph centered at v.

For graphs G and H, a graph map is a function ¢ : H — G
such that ¢(Vy) C Vg, and for any (4,5) € FEy, it holds that
6((i,5)) € {6(3), 6(3); (6(), $(7))}. We will use the term “map”
to mean graph map, in general. For graphs G, H and an injective
map ¢ : H — G, we say that ¢ is a local isomorphism if for any pair
i,7 € Vg, itholds that (¢(i), ¢(j)) € Egifandonlyif (¢,5) € Exn.
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Fig. 2. A graph bundle ¥ — G = 3. The projection map = is
indicated by the shapes of the vertices in the total and base graphs.

For two graphs B and F, the (Cartesian) product graph is the graph
G = BLF whose vertex set is the Cartesian product Vz x Vr, and
whose edge set is such that ((i1,142), (j1,72)) € Eg if and only if
i1 = jl and (ig,jg) € Er,or (ilyjl) € Eiand iz = j2 [14].

For a graph G, a graph signal on G is a function x : Vg —
R. We denote the set of all such functions by X(G), and endow it
with the usual Hilbert space structure via identification with RV,
Moreover, we find it useful to define a product of graph signals (-) :
X(G) x X(G) — X(G), which is evaluated by taking the pointwise
product at each vertex of the graph. For graph signals taking strictly
nonnegative values, this yields a well-defined notion of the square-
root of a graph signal.

When graphs are related to each other via maps, we can use
those maps to relate their signal spaces as well. Let G and H be
graphs, with a map 7 : G — H and an injective map ¢ : H — G.
For a signal x € X(H), the pullback of x by the map 7 is a signal on
G given by precomposition of x with 7, denoted by 7*x := x o .
Similarly, the pushforward of x by the injective map ¢ is given by
precomposition of x with ¢~*, denoted by ¢.x := x 0 ¢~ . For
those vertices v € Vg not contained in the image of ¢, by convention
we say that (¢.x)(v) = 0.

2.2. Graph bundles

A graph bundle is a discrete version of a general fiber bundle [15].
Let F, G, B be finite graphs with a surjective map 7 : G — B such
that for all v € Vj, there is a local isomorphism ¢,, : N,OOF — G
with the condition that p; = 7 o ¢, where p; is the projection map
onto the first factor V,, of the product graph A, [1F. Under these
conditions, we call the object F — G = B a graph bundle. Note
that these conditions imply that 7~ *(v) is isomorphic to F for all
v € Vi. We call G the rotal graph, m the projection map, I3 the base
graph, and F the fiber.

This is exemplified in Fig. 2, once again by the Mobius graph.
The fiber is a path graph of length 2, and the base graph is a cycle
on 5 vertices. The projection from the total graph to the base graph
“squashes” the fibers each down to a single vertex in the base, thus
yielding a cycle graph.

In our example, observe that for any strict subgraph U C B, the
product UOF admits a local isomorphism ¢y : UOF — G with
the property that p; = 7 o ¢y. For a graph bundle, there always
exists at least one trivializing cover of the base graph, which is a set
of subgraphs U of the base graph where (i) B = Uy ey /U, and (i) for
each U € U, there is a local isomorphism ¢y : UOF — G with
the condition that p1 = 7 o ¢yy. One such trivializing cover is given
by the set of all neighborhood graphs in the base, but others can be
constructed as well.

A graph bundle naturally generalizes the notion of a (Cartesian)
product graph. For a base graph B and fiber F, let G = BOF be

the Cartesian product graph. Letting 7 : G — B be the standard
projection map onto the first coordinate of a product, one can check
that F — G = Bis a graph bundle.

The advantage of graph bundles is the allowance for “twists” in
the product structure. The presence of twists is what distinguishes
graph bundles as more general objects than product graphs. Indeed,
a graph bundle with a tree for a base graph factors as a product of
the base and the fiber, since a tree has no loops to twist around.

2.3. Spectral graph signal representations

Many signal processing and machine learning methods hinge on the
choice of a proper representation for the data. There are a variety of
options for graph signal representation put forth in the literature. For
a graph G, the standard basis for X(G) represents a graph signal x as
a weighted sum of unit impulse functions at each node. The Fourier
basis represents a graph signal x as a weighted sum of eigenvectors
of a suitably defined graph matrix, such as the Laplacian or any of its
normalized variants; this is commonly known as the graph Fourier
transform (GFT) [1]. Both the standard and Fourier bases are dic-
tionaries of graph signals that constitute orthonormal bases for the
Hilbert space X(G). The standard basis can be thought of as being
spatially localized and spectrally delocalized, while the Fourier basis
is spectrally localized and spatially delocalized [16—18].

3. THE BUNDLE TRANSFORM

3.1. Local coordinate systems

Recent works have considered the processing of signals on product
graphs [2-4], which are special cases of graph bundles. The un-
derlying components of a product graph are used to form a coordi-
nate system, which then allows one to differentiate more interesting
spectral features of graph signals using the GFT. For product graphs
G = G10Gs, the first coordinate can often be thought of as “space”
and the second as “time,” (particularly if G is a path graph). Taking
the GFT in each coordinate separately allows one to decouple these
features, in order to understand the relationship between spatial and
temporal Fourier modes.

For a graph bundle, this decoupling is only approximately valid.
A coordinate representation of a graph bundle not only needs a co-
ordinate on the base and a coordinate on the fiber, but also a way to
map that coordinate into the total graph via a local isomorphism ¢y;.
That is to say, graph bundles indeed have a coordinate system that
factors into a base and a fiber, but only when localized to a particular
set in the cover of the base graph.

As an example of the GFT’s failure to factor over graph bundles,
we return to the Mobius graph in Fig. 1, whose base graph is a cycle
on five nodes and fiber is a path on two nodes. If the Mobius graph
could be identified as a product of the base graph and the fiber, then
the spectrum of the graph Laplacian would be given by the convo-
lution of the spectra of the base and the fiber [19]. Indeed, applying
techniques from [20, 21], one can check that the k™ moments of
the spectra of the product of the base and the fiber and the Mobius
graph are identical up to k = 2: however, their higher-order mo-
ments differ, yielding distinct spectral structures. This is a result of
the graph spectrum being a global descriptor of the graph structure,
while the property of “factoring as a product graph” only holds /o-
cally for graph bundles.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:09:26 UTC from IEEE Xplore. Restrictions apply.



Fig. 3. The bundle dictionary on the Mobius graph. A Fourier mode
on the fiber is pictured on the left. Each column corresponds to a
Fourier mode on the base (pictured as the colored signal on the top
row) coupled with a covering set and corresponding partition func-
tion (highlighted nodes).

3.2. The Bundle Transform

We now define the bundle transform for signals on graph bundles.
Let F — G = B be a graph bundle, with Ds an orthonormal basis
for X(B), and D an orthonormal basis for X(F).

Let U be a trivializing cover of B: for instance, this can be the set
of all neighborhood graphs centered at elements of V. Let {py €
[0,1)Y8 : U € U} be a partition of unity subordinate to /. That
is, the support of py is contained in U for each U € U, and at any
v € Vg, the sum ), ., pu (v) has unit value [22].

We now construct a set of elements of X(G), indexed by
Ds,DF, and U. Fory, € Di,y; € Dr,U € U, define a
signal y; ; € X(G) so that

Yo = (60)«((\/PU - yb) @ y¥). (1)

In words, yé{ ¢ 1s the tensor product of y; and y localized to the
base set U via the weight function py, then pushed forward to the
total graph G via the local isomorphism ¢r;. Let Dg be the set of
all such signals. As a trivial example, suppose D and Dr are the
standard bases consisting of impulse functions, for their respective
signal spaces, and the partition of unity is such that each function
pu takes value 1 on a single node and value O elsewhere. Then,
the set Dg is merely the standard basis for X(G). For a signal x €
X(G), the bundle transform of x is the collection of inner products
{(x,¥) : y € Dg}. This construction allows for Dg to inherit the
representational properties of D and D, in the following sense:

Theorem 1. Under the assumption that D and Dx are orthonor-
mal bases for the respective signal spaces X(B) and X(F), the dic-
tionary of atoms Dg formed according to (1) is a tight frame for
X(G).

Proof. Let x € X(G) be given arbitrarily. We consider the squared
£5-norm of the transform of x by the dictionary Dg, which can be
expressed in the following way:

YT (V) 99 =

yoEDPRys€EDFr UEU

S S v X o) o).

UeUypeDPpyrEDF

Observe that the map sending x — 7%, /py - X is an isometry in the
following sense:

3 Il oo - xlIE = Ix1,

veu

owing to the fact that { pu }ucu is a partition of unity.

For each U € U, define x := 7*/pu - x. It is then sufficient
to show that for each U € U, the pushforward of the tensor product
Dp ® DF preserves the norm of xyy. For some such U and xys,
observe that the support of x; is contained in the image of the local
isomorphism ¢y : UOF — G. Therefore, the pullback of the signal
xy € X(G) by ¢y to X(UOF) is an isometry. Clearly, the tensor
product of dictionaries D ® D restricted to ULF forms a tight
frame for X(UOF) [23, Appendix A.5]. Finally, we have identity
of the inner products under the pullback, i.e.,

(xu, (9v)«(ys ® ¢5)) = ((bv) xU, Y6 R y§)-

With this identity in hand, we can now complete the proof.

S Y e x @) @y) =

UeUy €Dy €EDF

Z Z Z <(¢U)*XU,yb®yf>2:

UeUy,eDpys€EDx

Do) xulz =Y lIxvl = IxI,

veu veu

as desired. O

The proof is inspired by [24], originally for vector bundles over
the Grassmanian manifold. Theorem 1 indicates that the tightness of
the bases for the base and fiber signal spaces are indeed preserved
when pushed forward to the total graph. However, this is at the cost
of dispersing the energy of the base atoms across the cover ¢/. Note
that Theorem 1 recovers the known fact that the tensor product of
the Fourier modes of the base and the fiber form a basis for the space
of signals on their Cartesian product: to see this, let the cover U of
the base graph be the singleton set containing the entirety of 13, with
trivial partition of unity. There is a large amount of freedom in the
design of the partition of unity from which the bundle transform is
computed — we leave a more detailed analysis of the behavior of this
construction to future work.

The computation of the atoms yé{ ¢ is illustrated in Fig. 3. Ob-
serve how the support of each atom is restricted to a covering set U,
which lift to “patches” on the total graph via the local isomorphism
¢u. In the base space, the Fourier modes Dp are weighted accord-
ing to the partition functions pr;. This amounts to a windowed graph
Fourier basis [18,25] on the base graph, which allows for compati-
bility with the fiber structure.

4. EXPERIMENTS

4.1. Locality of the base cover

As indicated by Theorem 1, any pair of orthonormal bases on the
base and fiber signal spaces can be locally lifted to the total space
via local isomorphisms weighted by a suitable partition of unity. We
consider here how changing the design of the partition of the unity
affects properties of the resulting frame. Specifically, we evaluate
how the cumulative coherence [26] and the standard deviation of the
norms of the atoms in Dg vary with respect to how far apart the cov-
ering sets are situated, and how much of the graph each one covers.
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Fig. 4. Numerical evaluation of the bundle transform. (a) The cumulative coherence of the lifted Fourier bases as a function of the stride and
reach of the cover of the base graph. The squares in black are those where the reach is too small for the given stride to yield a cover of the base
graph. (b) The standard deviation of the atom norms in lifted Fourier bases as a function of the stride and reach of the cover of the base graph.
(¢) The simulated energy landscape of n-pentane. The identification of the left and right edges is indicated by the red arrows. (d) Denoising
performance. Lines indicate mean squared error (MSE). Shaded regions indicate the standard deviation of the error over 50 trials.

The cumulative coherence of a dictionary D evaluated at a “sparsity
level” k indicates the maximum possible coherence between an atom
y € D and a subset of D with cardinality k£ not containing y.

Let the base graph B be given by a cycle graph on 27 nodes, with
an extra edge connecting the first and thirteenth nodes in the cycle:
this yields a graph consisting of two loops that share an edge. For
a fiber F given by a path graph of length 7, construct a total graph
G such that the fiber “twists” around one of the loops, and does not
twist around the other. This yields a cylinder and a M6bius band that
are glued together along the product of the fiber and a single edge in
the base, with n = 189 nodes.

We construct a family of covers of the base 3 determined by two
parameters. The first is the stride, which determines how far apart
the centers of the covering sets are located along the base. The sec-
ond is the reach, which determines the radius of the neighborhood
about each center to form the covering sets. For a cover of the base
graph determined by a given stride and reach, we construct a sim-
ple partition of unity where each partition function at a particular
node in the corresponding covering set is equal to the inverse of the
number of sets that cover that node. As shown in Fig. 4 (a), the cu-
mulative coherence evaluated at a sparsity level of y/n decreases as
the stride increases, with the reach having very little influence. We
see furthermore in Fig. 4 (b) that standard deviation of the ¢>-norm
of the atoms in Dg increases with the stride, but decreases with the
reach. A low standard deviation is desirable here, as it indicates the
energy is dispersed evenly among the representation of the signal
space by the dictionary. When the energy is evenly dispersed in this
way, taking the bundle transform of a signal yields coefficients that
can be compared to each other, without rescaling needed to account
for variance in the atom norms. In this case, a design choice needs
to be made in the choice of partition function in order to trade off
between coherence and variance in the atom norms.

2. Conformation space of pentane

In stereochemistry, the energy landscape of molecules is studied with
respect to their possible shapes, or conformations [27]. One such
space of conformations is that of the n-pentane molecule, which is
a chain of five singly-bonded carbon atoms. Under a rigid bond
model, the bond lengths and bond angles between each consecu-
tive carbon atom is assumed to be fixed, leaving the only degrees
of freedom for the conformation of the molecule to be the torsional

angles about the two central carbon-carbon bonds, which we denote
by (01, 62). By symmetry of the molecule, we can make the identi-
fication (61, 62) ~ (62, 61). Then, viewing the angles 61, 6> as each
lying on a circle, the conformation space of n-pentane can be mod-
eled by the product of two circles modulo the equivalence relation.
The product of two circles yields a torus, and dividing by the equiv-
alence relation yields a Mobius band. Each conformation has an as-
sociated energy function, determined by the proximity of the atoms
to one another, yielding a function from the Mobius band to the real
numbers. The stereoisomers of n-pentane, then, are those whose
conformations are at local minima of this energy function [27].

We approximate the conformation space by a graph bundle,
whose fiber is a path graph of length 6, and whose base is a cy-
cle graph of length 15. The energy landscape is computed using the
RDKit [28] implementation of the Merck molecular force field [29],
shown in Fig. 4 (c). We consider a denoising task, where the uni-
versal frame thresholding (UFT) method [30] is applied using both
the Fourier basis of the total graph, and the bundle transform de-
termined by the Fourier modes on the base and fiber graphs, with
covering sets of stride 3 and reach 2. The mean squared error of
the denoised energy landscape under additive white Gaussian noise
using UFT is plotted in Fig. 4 (d). Observe that in addition to having
the interpretability of locally factoring into the product of the fiber
and base coordinates, the lift of the Fourier bases on the factors via
the bundle transform yields superior performance in denoising over
the standard Fourier basis on the total graph.

5. CONCLUSION

Incorporating knowledge of the geometry underlying problems in
signal processing and machine learning has been of great interest
lately. A key aspect of this is to represent data in appropriate co-
ordinate systems, allowing for sound interpretation and design of
processing methods. We have considered how ideas from signal
processing on products of graphs can be adapted to graph bundles,
in which local signal representations are used as “coordinates” for
structures that only factor as product graphs in a local sense. This
approach preserves tightness of the factor bases, and yields inter-
pretable signal representations, as demonstrated on real and syn-
thetic data. In future work, we hope to characterize efficient compu-
tation of the bundle transform, and consider how to more carefully
design the underlying partition of unity.
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