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Abstract—We develop a spectral clustering algorithm for
general submodular hypergraphs based on their 1-Laplacians.
More precisely, we utilize the eigenvector associated with the
second smallest eigenvalue of the hypergraph 1-Laplacian to
cluster the vertices. The computation of the eigenvector is based
on the inverse power method, the key of which is to solve its
inner-loop optimization problem. Efficient solutions to this inner
problem exist when submodular hypergraphs are equipped with
hyperedge splitting functions with special structures such as when
they are cardinality based or graph reducible. In this paper, we
present a solution to the inner problem for general submodular
splitting functions by adopting a random coordinate descent
method together with the Fujishige-Wolfe algorithm. Numerical
experiments using real-world data demonstrate the effectiveness
of the proposed clustering algorithm.

Index Terms—submodular hypergraphs, spectral clustering, 1-
Laplacian, hyperedge splitting functions, submodular functions

I. INTRODUCTION

Spectral clustering leverages the eigenvalues and eigenvec-
tors of the graph Laplacian to group the vertices of the graph. It
is one of the most popular clustering methods due to its gen-
erality, efficiency, and strong theoretical basis. The standard
graph Laplacian (2-Laplacian) was first adopted in the context
of spectral clustering to obtain relaxations of balanced graph
cut criteria [1]. Then, it was generalized to the p-Laplacian,
which is able to provide a better approximation of the Cheeger
constant [2, 3]. Especially, the second smallest eigenvalue of
the 1-Laplacian is equal to the Cheeger constant, and the
partition that achieves the optimal normalized Cheeger cut can
be obtained via thresholding the corresponding eigenvector [4].

In graphs, vertices are assumed to interact via pairwise
relations. However, this can be a limitation in a wide range of
machine learning tasks where entities may naturally engage in
higher-order relations [5, 6]. Therefore, hypergraphs emerge as
an extension to graphs with the generalized notion of an edge,
namely a hyperedge, that can simultaneously connect multiple
(> 2) vertices. Real-world examples of a hyperedge include
a product for which multiple customers place orders [7], a
keyword contained in multiple news articles [8, 9], and a
publication on which multiple authors collaborate [10].

An edge in a graph connects two vertices, hence there
is only one way to split it and a scalar weight is enough
to describe the splitting cost. Different from graphs, there
may exist different ways to split a hyperedge. In order to
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assign costs to every possible cut of a hyperedge e, a splitting
function w, is introduced where w,(S) indicates the penalty
of partitioning e into a subset S C e and its complement
e\ S [11]. When w, is submodular for every hyperedge e, the
corresponding model is called submodular hypergraph [12].
Fundamental theoretical results in spectral graph theory in-
cluding p-Laplacians, nodal domain theorems, and Cheeger
inequalities have been generalized to submodular hypergraphs.

The choice of the splitting function has a significant impact
on the clustering results. There are three subclasses of sub-
modular splitting functions considered in existing work. One
is the so-called all-or-nothing splitting function, which simply
resembles the edge weight in graphs and assigns an identical
cost if the hyperedge is split regardless of how its vertices are
separated [4]. This splitting function disregards the fact that
different subsets of vertices belonging to the same hyperedge
may have different degrees of importance when clustered
together. Consequently, cardinality-based splitting functions
are proposed, where the splitting penalty depends only on the
number of vertices placed on each side of the split [11]. The
limitation of this choice is that all vertices within the same hy-
peredge are viewed as equal contributors, thus losing the likely
critical information regarding the different levels of vertex-to-
hyperedge contributions. In this regard, edge-dependent vertex
weights (EDVWs) are introduced, where a positive weight
ve(v) is assigned for every hyperedge e and every vertex v
in this hyperedge to quantify the contribution of v to e [10],
for example, the amount of a product that was purchased
by a given customer. EDVWs-based splitting functions in the
form of we(S) = ge(D_,cs Ve(v)) are proposed where g, is a
concave function to guarantee that w,. is submodular [13—15].

Since the 1-Laplacian provides the tightest approximation of
the Cheeger constant, we are interested in applying 1-spectral
clustering to submodular hypergraphs. To this end, we need
to compute the eigenvector of the hypergraph 1-Laplacian
associated with the second smallest eigenvalue. Computation
methods have been developed based on the inverse power
method (IPM) [16]. The key step in IPM is solving an inner-
loop optimization problem in it. Efficient solutions to this
inner problem have been proposed for submodular hyper-
graphs equipped with cardinality-based [12] and EDVWs-
based splitting functions [14]. In this paper, we consider gen-
eral submodular splitting functions with no special structures.
We develop an algorithm to solve the inner problem which
combines a random coordinate descent method (RCDM) [17]
and the Fujishige-Wolfe algorithm [18-20]. The effectiveness
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of the proposed algorithm is validated via numeral experiments
on real-world datasets.

II. PRELIMINARIES

We briefly review the submodular function and its related
concepts in Section II-A and then introduce the submod-
ular hypergraph model and its corresponding 1-Laplacian
in Section II-B. Throughout the paper, we assume that the
hypergraph is connected.

A. Mathematical preliminaries

For a finite set V, a set function F : 2¥ — R is called
submodular if FI(S;U{u}) — F(S1) > F(SaU{u}) — F(S2)
for every S; C So C V and every u € V\Ss. Considering a set
function F : 2V — R such that F(()) = 0 where V = [N] =
{1,2,--- N}, its Lovasz extension f : RY — R is defined
as follows. For any x € RY, sort its entries in non-increasing
order x;, > x;, > -+ > x;,, wWhere (i1,i2, -+ ,in) iS a
permutation of (1,2,---,N), and set

Fx) = Y00 F(S) (@i, — wipy) + FV)ay, (1)

where S; = {i1,---,4;} for 1 < j < N. A set function
F is submodular if and only if its Lovdsz extension f is
convex [21]. For a submodular function F, its base polytope
is a convex set defined as

B={y cRV|y(S) <F(S) forall S CV
and y(V) = F(V)}, 2

where y(S) = > ,cs % The Lovész extension and the base
polytope are related as f(x) = maxyep(y,x) [21].

B. Submodular hypergraphs

Let H = (V,&,u,{w.}) denote a submodular hyper-
graph [12] where V = [N] is the vertex set and £ represents
the set of hyperedges. The function p : V — R assigns
positive weights to every vertex. Each hyperedge e € & is
associated with a submodular function w, : 2¢° — R>( that
assigns non-negative costs to each possible partition of the
hyperedge e. Moreover, w, is required to satisfy w (@) = 0
and be symmetric so that w.(S) = we(e\ §) for any S C e.
The domain of the function w, can be extended from 2¢ to 2V
by setting w,(S) = w.(S Ne) for any S C V, guaranteeing
that the submodularity is maintained.

A cut is a partition of the vertex set V into two disjoint, non-
empty subsets denoted by S and its complement S =V \ S.
The cut weight is defined as the sum of cut costs associated
with each hyperedge [12], i.e., cut(S,S) = 3 ¢ we(S). The
normalized Cheeger cut (NCC) is defined as

cut(S, S)
min{vol(S), vol(S)}’

where vol(S) = ) .spu(v) denotes the volume of S. The
Cheeger constant [12, 22, 23] is defined as

NCC(S) = 3)

he = min NCC(S). “4)
hcscy

The solution to (4) provides an optimal partitioning in the
sense that we obtain two balanced clusters (in terms of their
volume) that are only loosely connected, as captured by a small
cut weight. Although many alternative clustering formulations
exist [1, 3, 24], in this paper we adopt the minimization of (4)
as our objective.

Optimally solving (4) has been shown to be NP-hard for
graphs [3, 4, 25], let alone weighted hypergraphs. Hence,
different relaxations have been proposed, a popular one being
spectral clustering, a relaxation based on the second eigen-
vector of the graph (or hypergraph) Laplacian [1, 3, 8]. This
approach is also theoretically justified through the Cheeger
inequality [10, 12, 22, 23], where hq is upper bounded by a
function of the second smallest eigenvalue of the Laplacian.
However, it has been proved that the Cheeger constant hy is
equal to the second smallest eigenvalue Ay of the hypergraph
1-Laplacian, an alternative (non-linear) operator that general-
izes the classical Laplacian (Theorem 4.1 in [12]). Moreover,
the corresponding partitioning can be obtained by thresholding
the eigenvector associated with Ay (Theorem 4.3 in [12]). The
1-Laplacian Ay of a submodular hypergraph is defined as an
operator that, for all x € RY, induces

(%, 81(%)) = Yeee fe(x) = Qu(x), (5)

where f. is the Lovasz extension of w,.. Notice that /Ay can be
alternatively defined in terms of the subdifferential of f. [12],
but the inner product definition in (5) is more instrumental to
our development.

III. 1-SPECTRAL CLUSTERING
A. IPM-based 1-spectral clustering

We study spectral clustering for general submodular hy-
pergraphs leveraging the 1-Laplacian. As mentioned in Sec-
tion II-B, for submodular hypergraphs, the Cheeger constant
ho is equal to the second smallest eigenvalue Ao of the 1-
Laplacian /A\;. The corresponding optimal bipartition can be
obtained by thresholding the eigenvector of Ay associated with
A2 [12]. This eigenvector can be computed by minimizing

Q1(x)

mingeg [|x — 11,

Ri(x) = (6)

where |x|[1,,, = >,y #(v)|z,|. Given the eigenvector x, a
partitioning can be defined as S = {v € V |z, > t} and its
complement, where ¢ is a threshold value. The optimal ¢ can
be determined as the one that minimizes the NCC in (3).
The minimization of R;(x) can be solved based on IPM [12,
16], as outlined in Algorithm 1. Three functions are intro-
duced: NJ+(X) = Z?)EV:$1,>O M(U)’ H— (X) = Z?}EV:?{:U<O M(’U)
and p1o(X) = > cy.p, —o #(v). Although this algorithm can-
not guarantee convergence to the second eigenvector, the
objective R;(x) is guaranteed to decrease and converge in
the iterative process. The algorithm was first proposed for the
undirected graph setting [16], then generalized to submodular
hypergraphs with cardinality-based splitting functions [12] and
splitting functions that are graph reducible, including EDVWs-
based splitting functions [14]. The major difference between
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Algorithm 1 TPM-based minimization of R;(x) [12, 16]

1: Input: submodular hypergraph H = (W, &, u, {w.}) with
N vertices, accuracy €

2: Initialization: non-constant x € R subject to 0 €
argmin, ||x — c1|1 4, A+ R (%)

3. repeat
sign(z,) - p(v), if x, #0
4: forallv eV, g, + x)— g (x .
v G {W ~p(v), ifxz, =0

50 X ¢ argminy,<; Q1(x) — A(x,g) (inner problem)
6: X < x — argmin, ||x — 1|1,

7. N = A\ A Ry(x)

s until 27 < ¢

9: Output: x

these settings lies in how the inner-loop optimization problem
(line 5 in Algorithm 1) is solved.

In [12], the authors solved the inner problem using
RCDM [17] together with a divide-and-conquer algorithm
proposed in [26], and the computational complexity of the
latter algorithm depends on the time of solving the problem
mingc, F(S) £ we(S)+c(S) for an arbitrary vector ¢ € Rl¢l.
For a cardinality-based splitting function, the solution to this
problem can be found efficiently via a line search even when
le| is large, in which we start from an empty set So = 0,
for each step we add one vertex corresponding to the smallest
entry in vector c that has not been added yet in former steps so
that we obtain a series of sets S, - -+, S| where the last one
is S| = e, finally we compare their objective values F(S;)
and identify the solution S;~ leading to the minimum objective
value. However, this is not the case for EDVW-based splitting
functions or more general ones.

For submodular hypergraphs that are reducible to some
(possibly) directed graph defined on a (possibly) augmented
vertex set, the paper [14] derives the dual of the inner problem
where the dual problem is defined on the graph obtained via
the hypergraph-to-graph reduction. Compared with the primal
problem, which is convex but non-smooth, the dual problem is
convex as well as smooth, and thus it can be efficiently solved
using algorithms including FISTA [27, 28] and PDHG [29, 30]
with quadratic convergence. Since it is still an open problem
if all submodular splitting functions are graph reducible, it
is not clear whether this approach works for all submodular
hypergraphs or not.

B. Solving the inner problem for general submodular weights

We propose a solution to the inner problem for hypergraphs
with general submodular splitting functions with no special
structures. According to Theorem 4.7 in [12], the inner prob-
lem is the dual of the following problem

minHZye—/\gH%, Ve € Be, forallee &, (7)
(e} ec&

Algorithm 2  Fujishige-Wolfe
minyeg [|y|l2

algorithm for solving

1: Input: base polytope 55 of some submodular function F',
accuracy e

2: Initialization: take any q € B,y <+ q, S + {q1 = q},
ay < 1; always maintain y = EinS a;q;
while true (major cycle)
(a) q « argminqeg qu
(b) if ||ly||2 <y "q + €2 then break
(©) S+~ Su{q}
(d) while true (minor cycle)
z, coefficients{b1, bz, - - } «— argmin, c.qs) [12[2
if all coefficients b; > O then break
0 < mingp, <o 75
ye0z+(179)y/
a; < 0b; + (1 —0)a;
S < {q; : a; > 0}
4 (e)y+z
15: Output: y

R A A

—
4

—_ =
LT S L

Algorithm 3 Greedy method for solving mingesy ' q

1: Input: vector y (assuming its length to be V), B is the
base polytope of a submodular function F'

sort the entries in y: y;;, < yi, < <Yy

set So =0 and S; = {iy, -+ ,i;} for j=1,--- N
set the jth entry of q as ¢; = F(S;) — F(S;-1)
Output: q

where B, is the base polytope of w.. The primal and dual
variables are related as x = 2B DeeeVe
) [Ae=>cce vell2”

By leveraging RCDM [17], we sample a hyperedge to

optimize in each step. Then in each step, we need to solve

a decomposed problem in the following form,

. 2
h = C— g (8
yrenelgeIIyﬁcHQ, where ¢ ye —Ag.  (8)
e’e€\e

Set y/, = y. + ¢ and rewrite the above problem as

. /112

Jnin, [[yellz, ©)
where B/, is the base polytope of the submodular function
we(8)~+c¢(S). This problem can be solved using the Fujishige-
Wolfe algorithm [19, 20] as summarized in Algorithm 2. For
the problem in line 4, it can be solved using the greedy
method presented in Algorithm 3. For the problem in line
8, the affine hull of a finite set S C RY is aff(S) =
{zlz = > ,,csbiq: and the sum of all b; equals 1}. Define
the matrix Q which collects all q; € S into its columns.
Then the vector b collecting all coefficients b; can be naively

computed as b = % and z = Qb.
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Fig. 1: Clustering performance in two real-world datasets as a function of parameters « and 5. On RCV1 dataset, (a-b) plot
the clustering error and NCC versus «; (c-d) plot the clustering error and NCC versus log;, 5. Similar results on Covtype

dataset are shown in (e-h).

IV. NUMERICAL EXPERIMENTS

In evaluating the proposed method for hypergraphs with
general submodular weights, we focus on the 2-partition case'.
We consider hyperedge splitting functions in the form of

:min{Z’ye(U) Z Ye(V), 5.2%(1))}

veES vee\S vee

(10)

Datasets. We consider two widely used real-world datasets.

Reuters Corpus Volume 1 (RCVI1)?: A collection of man-
ually categorized newswire stories [31]. We consider the
documents in categories C22 (new products/services) and
C23 (research/development) for our 2-partition evaluation. In
modeling the hypergraph, each document is represented by
a unique vertex, which belongs to one or more hyperedge(s)
manifesting individual words in that document. We select the
30 most frequent words in the corpus, excluding stop words
(e.g., articles, pronouns, etc.), common words (found in more
than 2% documents), and rare words (found in fewer than
0.1% documents). We also disregard documents containing
less than 5 selected words, leaving us with 483 documents and
30 hyperedges (words). The EDVWs 4, (v) are defined as the
corresponding term frequency-inverse document frequencies
(tf-idf) [32] to the power of an adjustable parameter «.

' The implementation of our method and experiments can be found at https:
//github.com/bl166/hg_general_submodular_weights.
2https://trec.nist.gov/data/reuters/reuters.html

Covertype Data Set (Covtype)*: Areas of different forest cover
types with each numerical feature quantized into 15 evenly
sized bins and then mapped to hyperedges. We consider two
cover type classes, namely the types 4 (Cottonwood/Willow)
and 5 (Aspen). We randomly select a subset of 150 vertices
from each class, resulting in a downsampled hypergraph of
300 vertices and 144 hyperedges. Its EDVWs are computed
as exp(—ad,. ), where d. is the distance between each feature
value in hyperedge/bin e and the median of the bin, normalized
to the range [0, 1]. Hence, ‘typical’ vertices (i.e., whose feature
values are close to the typical feature value in the correspond-
ing hyperedge/bin) are associated with higher EDVWs.

Baselines. We illustrate the clustering performance of our pro-
posed method by comparing it with three baseline approaches.

Random walk-based: A hypergraph Laplacian is proposed
by [8] based on random walks with EDVWs. We adopt it as a
competitor method and, to get the partitioning, threshold the
second eigenvector of the normalized hypergraph Laplacian.

Cardinality-based: Our proposed method reduces to the
cardinality-based case when a =0. Indeed, it immediately
follows from the definitions of EDVWs for both datasets that
we effectively ignore the EDVWs by setting o = 0, i.e., we
assig a uniform value of 1 to vertices in a hyperedge. Hence,
the corresponding submodular weight functions w, (S) depend
only on the cardinality of S.

3htps://archive.ics.uci.edu/ml/datasets/covertype
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All-or-nothing: This is yet another special case of the proposed
method when [ approaches 0. From the definition of the
splitting function in (10) it follows that there exists a small
enough 3 > 0 under which the same penalty will be assigned
to every possible cut of e.

Results. The evaluation of multiple settings is displayed in
Fig. 1, including the two datasets (RCV1 and Covtype), two
evaluation metrics (clustering error and NCC), as well as the
performance metrics versus two parameters (« and [3).

Performance versus parameter «: In Fig. la and le, the
clustering errors are computed as the fraction of incorrectly
clustered samples and plotted as a function of parameter «
(fixing 8 =0.17). Correspondingly, the NCC metric is shown
in Fig. 1b and 1f. Focusing first on the RCV1 dataset (Fig. 1a-
1b), it can be observed that the proposed method always yields
smaller or same metrics (both clustering error and NCC) com-
pared to the random walk-based baseline using the classical
Laplacian. Moreover, the cardinality-based baseline (a=0)
deteriorates the performance of the general case (o« > 0), which
highlights the modeling flexibility as a major advantage of the
proposed method. Turning to the Covtype dataset (Fig. le-
1f), the trends are very similar. More conspicuously, greater
performance gaps appear between our method and the random
walk-based method, underscoring the importance of utilizing
the non-linear 1-Laplacian in spectral clustering.

Performance versus parameter 3: In Fig. 1c, 1d, 1g, and 1h,

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
the clustering errors and NCC values are plotted against
different choices of the splitting function parameter 3 (fixing 2%
a=2). The proposed method significantly outperforms the
random walk-based baseline, and its performance gradually [21]
improves as it departs from all-or-nothing (very small () into [22]
the general submodular weights scenario.

(23]

V. CONCLUSIONS

We presented an implementation of the 1-spectral clus- [24]

tering algorithm for hypergraphs with generic submodular
splitting functions. There are several directions for future [25]

work: (1) Design multiway partitioning algorithms based on
nonlinear Laplacians; (2) Explore applications of p-Laplacians [26]

for values of p that go beyond p = 1 and p = 2; and (3) Tackle
the open problem of whether all submodular splitting functions .
are graph reducible. 271
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