
Hypergraph 1-Spectral Clustering with General

Submodular Weights

Yu Zhu, Boning Li, and Santiago Segarra

Dept. of Electrical and Computer Engineering, Rice University, USA

Abstract—We develop a spectral clustering algorithm for
general submodular hypergraphs based on their 1-Laplacians.
More precisely, we utilize the eigenvector associated with the
second smallest eigenvalue of the hypergraph 1-Laplacian to
cluster the vertices. The computation of the eigenvector is based
on the inverse power method, the key of which is to solve its
inner-loop optimization problem. Efficient solutions to this inner
problem exist when submodular hypergraphs are equipped with
hyperedge splitting functions with special structures such as when
they are cardinality based or graph reducible. In this paper, we
present a solution to the inner problem for general submodular
splitting functions by adopting a random coordinate descent
method together with the Fujishige-Wolfe algorithm. Numerical
experiments using real-world data demonstrate the effectiveness
of the proposed clustering algorithm.

Index Terms—submodular hypergraphs, spectral clustering, 1-
Laplacian, hyperedge splitting functions, submodular functions

I. INTRODUCTION

Spectral clustering leverages the eigenvalues and eigenvec-

tors of the graph Laplacian to group the vertices of the graph. It

is one of the most popular clustering methods due to its gen-

erality, efficiency, and strong theoretical basis. The standard

graph Laplacian (2-Laplacian) was first adopted in the context

of spectral clustering to obtain relaxations of balanced graph

cut criteria [1]. Then, it was generalized to the p-Laplacian,

which is able to provide a better approximation of the Cheeger

constant [2, 3]. Especially, the second smallest eigenvalue of

the 1-Laplacian is equal to the Cheeger constant, and the

partition that achieves the optimal normalized Cheeger cut can

be obtained via thresholding the corresponding eigenvector [4].

In graphs, vertices are assumed to interact via pairwise

relations. However, this can be a limitation in a wide range of

machine learning tasks where entities may naturally engage in

higher-order relations [5, 6]. Therefore, hypergraphs emerge as

an extension to graphs with the generalized notion of an edge,

namely a hyperedge, that can simultaneously connect multiple

(≥ 2) vertices. Real-world examples of a hyperedge include

a product for which multiple customers place orders [7], a

keyword contained in multiple news articles [8, 9], and a

publication on which multiple authors collaborate [10].

An edge in a graph connects two vertices, hence there

is only one way to split it and a scalar weight is enough

to describe the splitting cost. Different from graphs, there

may exist different ways to split a hyperedge. In order to

This work was supported by NSF under award CCF-2008555. E-mails:
{yz126, boning.li, segarra}@rice.edu

assign costs to every possible cut of a hyperedge e, a splitting

function we is introduced where we(S) indicates the penalty

of partitioning e into a subset S ⊆ e and its complement

e\S [11]. When we is submodular for every hyperedge e, the

corresponding model is called submodular hypergraph [12].

Fundamental theoretical results in spectral graph theory in-

cluding p-Laplacians, nodal domain theorems, and Cheeger

inequalities have been generalized to submodular hypergraphs.

The choice of the splitting function has a significant impact

on the clustering results. There are three subclasses of sub-

modular splitting functions considered in existing work. One

is the so-called all-or-nothing splitting function, which simply

resembles the edge weight in graphs and assigns an identical

cost if the hyperedge is split regardless of how its vertices are

separated [4]. This splitting function disregards the fact that

different subsets of vertices belonging to the same hyperedge

may have different degrees of importance when clustered

together. Consequently, cardinality-based splitting functions

are proposed, where the splitting penalty depends only on the

number of vertices placed on each side of the split [11]. The

limitation of this choice is that all vertices within the same hy-

peredge are viewed as equal contributors, thus losing the likely

critical information regarding the different levels of vertex-to-

hyperedge contributions. In this regard, edge-dependent vertex

weights (EDVWs) are introduced, where a positive weight

γe(v) is assigned for every hyperedge e and every vertex v

in this hyperedge to quantify the contribution of v to e [10],

for example, the amount of a product that was purchased

by a given customer. EDVWs-based splitting functions in the

form of we(S) = ge(
∑

v∈S γe(v)) are proposed where ge is a

concave function to guarantee that we is submodular [13–15].

Since the 1-Laplacian provides the tightest approximation of

the Cheeger constant, we are interested in applying 1-spectral

clustering to submodular hypergraphs. To this end, we need

to compute the eigenvector of the hypergraph 1-Laplacian

associated with the second smallest eigenvalue. Computation

methods have been developed based on the inverse power

method (IPM) [16]. The key step in IPM is solving an inner-

loop optimization problem in it. Efficient solutions to this

inner problem have been proposed for submodular hyper-

graphs equipped with cardinality-based [12] and EDVWs-

based splitting functions [14]. In this paper, we consider gen-

eral submodular splitting functions with no special structures.

We develop an algorithm to solve the inner problem which

combines a random coordinate descent method (RCDM) [17]

and the Fujishige-Wolfe algorithm [18–20]. The effectiveness

935978-1-6654-5906-8/22/$31.00 ©2022 IEEE Asilomar 2022

20
22

 5
6t

h
As

ilo
m

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
an

d
Co

m
pu

te
rs

 |
 9

78
-1

-6
65

4-
59

06
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IE

EE
CO

NF
56

34
9.

20
22

.1
00

52
06

5

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:37 UTC from IEEE Xplore. Restrictions apply.

of the proposed algorithm is validated via numeral experiments

on real-world datasets.

II. PRELIMINARIES

We briefly review the submodular function and its related

concepts in Section II-A and then introduce the submod-

ular hypergraph model and its corresponding 1-Laplacian

in Section II-B. Throughout the paper, we assume that the

hypergraph is connected.

A. Mathematical preliminaries

For a finite set V , a set function F : 2V → R is called

submodular if F (S1 ∪{u})−F (S1) ≥ F (S2 ∪{u})−F (S2)
for every S1 ⊆ S2 ⊂ V and every u ∈ V\S2. Considering a set

function F : 2V → R such that F (∅) = 0 where V = [N] =
{1, 2, · · · , N}, its Lovász extension f : RN → R is defined

as follows. For any x ∈ R
N , sort its entries in non-increasing

order xi1 ≥ xi2 ≥ · · · ≥ xiN , where (i1, i2, · · · , iN) is a

permutation of (1, 2, · · · , N), and set

f(x) =
∑N−1

j=1 F (Sj)(xij − xij+1
) + F (V)xiN , (1)

where Sj = {i1, · · · , ij} for 1 ≤ j < N . A set function

F is submodular if and only if its Lovász extension f is

convex [21]. For a submodular function F , its base polytope

is a convex set defined as

B = {y ∈ R
N |y(S) ≤F (S) for all S ⊆ V

and y(V) = F (V)}, (2)

where y(S) =
∑

i∈S yi. The Lovász extension and the base

polytope are related as f(x) = maxy∈B〈y,x〉 [21].

B. Submodular hypergraphs

Let H = (V, E , µ, {we}) denote a submodular hyper-

graph [12] where V = [N] is the vertex set and E represents

the set of hyperedges. The function µ : V → R+ assigns

positive weights to every vertex. Each hyperedge e ∈ E is

associated with a submodular function we : 2e → R≥0 that

assigns non-negative costs to each possible partition of the

hyperedge e. Moreover, we is required to satisfy we(∅) = 0
and be symmetric so that we(S) = we(e \ S) for any S ⊆ e.

The domain of the function we can be extended from 2e to 2V

by setting we(S) = we(S ∩ e) for any S ⊆ V , guaranteeing

that the submodularity is maintained.

A cut is a partition of the vertex set V into two disjoint, non-

empty subsets denoted by S and its complement S̄ = V \ S .

The cut weight is defined as the sum of cut costs associated

with each hyperedge [12], i.e., cut(S, S̄) =
∑

e∈E we(S). The

normalized Cheeger cut (NCC) is defined as

NCC(S) =
cut(S, S̄)

min{vol(S), vol(S̄)}
, (3)

where vol(S) =
∑

v∈S µ(v) denotes the volume of S . The

Cheeger constant [12, 22, 23] is defined as

h2 = min
∅⊂S⊂V

NCC(S). (4)

The solution to (4) provides an optimal partitioning in the

sense that we obtain two balanced clusters (in terms of their

volume) that are only loosely connected, as captured by a small

cut weight. Although many alternative clustering formulations

exist [1, 3, 24], in this paper we adopt the minimization of (4)

as our objective.

Optimally solving (4) has been shown to be NP-hard for

graphs [3, 4, 25], let alone weighted hypergraphs. Hence,

different relaxations have been proposed, a popular one being

spectral clustering, a relaxation based on the second eigen-

vector of the graph (or hypergraph) Laplacian [1, 3, 8]. This

approach is also theoretically justified through the Cheeger

inequality [10, 12, 22, 23], where h2 is upper bounded by a

function of the second smallest eigenvalue of the Laplacian.

However, it has been proved that the Cheeger constant h2 is

equal to the second smallest eigenvalue λ2 of the hypergraph

1-Laplacian, an alternative (non-linear) operator that general-

izes the classical Laplacian (Theorem 4.1 in [12]). Moreover,

the corresponding partitioning can be obtained by thresholding

the eigenvector associated with λ2 (Theorem 4.3 in [12]). The

1-Laplacian 41 of a submodular hypergraph is defined as an

operator that, for all x ∈ R
N , induces

〈x,41(x)〉 =
∑

e∈E fe(x) ≡ Q1(x), (5)

where fe is the Lovász extension of we. Notice that 41 can be

alternatively defined in terms of the subdifferential of fe [12],

but the inner product definition in (5) is more instrumental to

our development.

III. 1-SPECTRAL CLUSTERING

A. IPM-based 1-spectral clustering

We study spectral clustering for general submodular hy-

pergraphs leveraging the 1-Laplacian. As mentioned in Sec-

tion II-B, for submodular hypergraphs, the Cheeger constant

h2 is equal to the second smallest eigenvalue λ2 of the 1-

Laplacian 41. The corresponding optimal bipartition can be

obtained by thresholding the eigenvector of41 associated with

λ2 [12]. This eigenvector can be computed by minimizing

R1(x) =
Q1(x)

minc∈R ‖x− c1‖1,µ
, (6)

where ‖x‖1,µ =
∑

v∈V µ(v)|xv|. Given the eigenvector x, a

partitioning can be defined as S = {v ∈ V |xv > t} and its

complement, where t is a threshold value. The optimal t can

be determined as the one that minimizes the NCC in (3).

The minimization of R1(x) can be solved based on IPM [12,

16], as outlined in Algorithm 1. Three functions are intro-

duced: µ+(x) =
∑

v∈V:xv>0 µ(v), µ−(x) =
∑

v∈V:xv<0 µ(v)
and µ0(x) =

∑

v∈V:xv=0 µ(v). Although this algorithm can-

not guarantee convergence to the second eigenvector, the

objective R1(x) is guaranteed to decrease and converge in

the iterative process. The algorithm was first proposed for the

undirected graph setting [16], then generalized to submodular

hypergraphs with cardinality-based splitting functions [12] and

splitting functions that are graph reducible, including EDVWs-

based splitting functions [14]. The major difference between

936

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 IPM-based minimization of R1(x) [12, 16]

1: Input: submodular hypergraph H = (V, E , µ, {we}) with

N vertices, accuracy ε

2: Initialization: non-constant x ∈ R
N subject to 0 ∈

argminc ‖x− c1‖1,µ, λ← R1(x)

3: repeat

4: for all v ∈ V , gv ←

{

sign(xv) · µ(v), if xv 6= 0
µ−(x)−µ+(x)

µ0(x)
· µ(v), if xv = 0

5: x← argmin‖x‖2≤1 Q1(x)− λ〈x, ggg〉 (inner problem)

6: x← x− argminc ‖x− c1‖1,µ
7: λ′ ← λ, λ← R1(x)

8: until
|λ−λ′|

λ′ < ε

9: Output: x

these settings lies in how the inner-loop optimization problem

(line 5 in Algorithm 1) is solved.

In [12], the authors solved the inner problem using

RCDM [17] together with a divide-and-conquer algorithm

proposed in [26], and the computational complexity of the

latter algorithm depends on the time of solving the problem

minS⊆e F (S) , we(S)+c(S) for an arbitrary vector c ∈ R
|e|.

For a cardinality-based splitting function, the solution to this

problem can be found efficiently via a line search even when

|e| is large, in which we start from an empty set S0 = ∅,
for each step we add one vertex corresponding to the smallest

entry in vector c that has not been added yet in former steps so

that we obtain a series of sets S1, · · · ,S|e| where the last one

is S|e| = e, finally we compare their objective values F (Si)
and identify the solution Si∗ leading to the minimum objective

value. However, this is not the case for EDVW-based splitting

functions or more general ones.

For submodular hypergraphs that are reducible to some

(possibly) directed graph defined on a (possibly) augmented

vertex set, the paper [14] derives the dual of the inner problem

where the dual problem is defined on the graph obtained via

the hypergraph-to-graph reduction. Compared with the primal

problem, which is convex but non-smooth, the dual problem is

convex as well as smooth, and thus it can be efficiently solved

using algorithms including FISTA [27, 28] and PDHG [29, 30]

with quadratic convergence. Since it is still an open problem

if all submodular splitting functions are graph reducible, it

is not clear whether this approach works for all submodular

hypergraphs or not.

B. Solving the inner problem for general submodular weights

We propose a solution to the inner problem for hypergraphs

with general submodular splitting functions with no special

structures. According to Theorem 4.7 in [12], the inner prob-

lem is the dual of the following problem

min
{ye}
‖
∑

e∈E

ye − λg‖22, ye ∈ Be, for all e ∈ E , (7)

Algorithm 2 Fujishige-Wolfe algorithm for solving

miny∈B ‖y‖2

1: Input: base polytope B of some submodular function F ,

accuracy ε

2: Initialization: take any q ∈ B, y ← q, S ← {q1 = q},
a1 ← 1; always maintain y =

∑

qi∈S aiqi

3: while true (major cycle)

4: (a) q← argminq∈B y>q

5: (b) if ‖y‖22 ≤ y>q+ ε2 then break

6: (c) S ← S ∪ {q}

7: (d) while true (minor cycle)

8: z, coefficients{b1, b2, · · · } ← argminz∈aff(S) ‖z‖2
9: if all coefficients bi ≥ 0 then break

10: θ ← mini:bi<0
ai

ai−bi

11: y← θz+ (1− θ)y

12: ai ← θbi + (1− θ)ai

13: S ← {qi : ai > 0}

14: (e) y← z

15: Output: y

Algorithm 3 Greedy method for solving minq∈B y>q

1: Input: vector y (assuming its length to be N), B is the

base polytope of a submodular function F

2: sort the entries in y: yi1 ≤ yi2 ≤ · · · ≤ yiN
3: set S0 = ∅ and Sj = {i1, · · · , ij} for j = 1, · · · , N

4: set the jth entry of q as qj = F (Sj)− F (Sj−1)

5: Output: q

where Be is the base polytope of we. The primal and dual

variables are related as x =
λg−

∑
e∈E

ye

‖λg−
∑

e∈E
ye‖2

.

By leveraging RCDM [17], we sample a hyperedge to

optimize in each step. Then in each step, we need to solve

a decomposed problem in the following form,

min
ye∈Be

‖ye + c‖22, where c =
∑

e′∈E\e

ye′ − λg. (8)

Set y′
e = ye + c and rewrite the above problem as

min
y′
e∈B′

e

‖y′
e‖

2
2, (9)

where B′e is the base polytope of the submodular function

we(S)+c(S). This problem can be solved using the Fujishige-

Wolfe algorithm [19, 20] as summarized in Algorithm 2. For

the problem in line 4, it can be solved using the greedy

method presented in Algorithm 3. For the problem in line

8, the affine hull of a finite set S ⊆ R
N is aff(S) =

{z|z =
∑

qi∈S biqi and the sum of all bi equals 1}. Define

the matrix Q which collects all qi ∈ S into its columns.

Then the vector b collecting all coefficients bi can be naively

computed as b = (Q>Q)−11

1>(Q>Q)−11
and z = Qb.

937

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:37 UTC from IEEE Xplore. Restrictions apply.

Random walk-based EDVWs-based Cardinality-based All-or-nothing

10
-3

10
-3

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
0.30

0.35

0.40

0.45

0.50

C
lu

st
er

in
g
 e

rr
o
r

(R
C

V
1
)

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
0.00

0.05

0.10

0.15

0.20

0.25

N
C

C
 (

R
C

V
1

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

C
lu

st
er

in
g
 e

rr
o
r

(R
C

V
1
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

N
C

C
 (

R
C

V
1
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

C
lu

st
er

in
g

 e
rr

o
r

(C
o

v
ty

p
e)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

0.20

0.30

0.40

0.50

0.60

0.70

0.80

N
C

C
 (

C
o

v
ty

p
e)

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

C
lu

st
er

in
g

 e
rr

o
r

(C
o

v
ty

p
e)

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
C

C
 (

C
o

v
ty

p
e)

(a) (b) (c) (d)

(e) (f) (g) (h)

Proposed

Fig. 1: Clustering performance in two real-world datasets as a function of parameters α and β. On RCV1 dataset, (a-b) plot

the clustering error and NCC versus α; (c-d) plot the clustering error and NCC versus log10 β. Similar results on Covtype

dataset are shown in (e-h).

IV. NUMERICAL EXPERIMENTS

In evaluating the proposed method for hypergraphs with

general submodular weights, we focus on the 2-partition case1.

We consider hyperedge splitting functions in the form of

we(S) = min{
∑

v∈S

γe(v) ·
∑

v∈e\S

γe(v), β ·
∑

v∈e

γe(v)}. (10)

Datasets. We consider two widely used real-world datasets.

Reuters Corpus Volume 1 (RCV1)2: A collection of man-

ually categorized newswire stories [31]. We consider the

documents in categories C22 (new products/services) and

C23 (research/development) for our 2-partition evaluation. In

modeling the hypergraph, each document is represented by

a unique vertex, which belongs to one or more hyperedge(s)

manifesting individual words in that document. We select the

30 most frequent words in the corpus, excluding stop words

(e.g., articles, pronouns, etc.), common words (found in more

than 2% documents), and rare words (found in fewer than

0.1% documents). We also disregard documents containing

less than 5 selected words, leaving us with 483 documents and

30 hyperedges (words). The EDVWs γe(v) are defined as the

corresponding term frequency-inverse document frequencies

(tf-idf) [32] to the power of an adjustable parameter α.

1The implementation of our method and experiments can be found at https:

//github.com/bl166/hg general submodular weights.
2https://trec.nist.gov/data/reuters/reuters.html

Covertype Data Set (Covtype)3: Areas of different forest cover

types with each numerical feature quantized into 15 evenly

sized bins and then mapped to hyperedges. We consider two

cover type classes, namely the types 4 (Cottonwood/Willow)

and 5 (Aspen). We randomly select a subset of 150 vertices

from each class, resulting in a downsampled hypergraph of

300 vertices and 144 hyperedges. Its EDVWs are computed

as exp(−αde), where de is the distance between each feature

value in hyperedge/bin e and the median of the bin, normalized

to the range [0, 1]. Hence, ‘typical’ vertices (i.e., whose feature

values are close to the typical feature value in the correspond-

ing hyperedge/bin) are associated with higher EDVWs.

Baselines. We illustrate the clustering performance of our pro-

posed method by comparing it with three baseline approaches.

Random walk-based: A hypergraph Laplacian is proposed

by [8] based on random walks with EDVWs. We adopt it as a

competitor method and, to get the partitioning, threshold the

second eigenvector of the normalized hypergraph Laplacian.

Cardinality-based: Our proposed method reduces to the

cardinality-based case when α=0. Indeed, it immediately

follows from the definitions of EDVWs for both datasets that

we effectively ignore the EDVWs by setting α = 0, i.e., we

assig a uniform value of 1 to vertices in a hyperedge. Hence,

the corresponding submodular weight functions we(S) depend

only on the cardinality of S .

3https://archive.ics.uci.edu/ml/datasets/covertype

938

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:37 UTC from IEEE Xplore. Restrictions apply.

All-or-nothing: This is yet another special case of the proposed

method when β approaches 0. From the definition of the

splitting function in (10) it follows that there exists a small

enough β > 0 under which the same penalty will be assigned

to every possible cut of e.

Results. The evaluation of multiple settings is displayed in

Fig. 1, including the two datasets (RCV1 and Covtype), two

evaluation metrics (clustering error and NCC), as well as the

performance metrics versus two parameters (α and β).

Performance versus parameter α: In Fig. 1a and 1e, the

clustering errors are computed as the fraction of incorrectly

clustered samples and plotted as a function of parameter α

(fixing β=0.17). Correspondingly, the NCC metric is shown

in Fig. 1b and 1f. Focusing first on the RCV1 dataset (Fig. 1a-

1b), it can be observed that the proposed method always yields

smaller or same metrics (both clustering error and NCC) com-

pared to the random walk-based baseline using the classical

Laplacian. Moreover, the cardinality-based baseline (α=0)

deteriorates the performance of the general case (α> 0), which

highlights the modeling flexibility as a major advantage of the

proposed method. Turning to the Covtype dataset (Fig. 1e-

1f), the trends are very similar. More conspicuously, greater

performance gaps appear between our method and the random

walk-based method, underscoring the importance of utilizing

the non-linear 1-Laplacian in spectral clustering.

Performance versus parameter β: In Fig. 1c, 1d, 1g, and 1h,

the clustering errors and NCC values are plotted against

different choices of the splitting function parameter β (fixing

α=2). The proposed method significantly outperforms the

random walk-based baseline, and its performance gradually

improves as it departs from all-or-nothing (very small β) into

the general submodular weights scenario.

V. CONCLUSIONS

We presented an implementation of the 1-spectral clus-

tering algorithm for hypergraphs with generic submodular

splitting functions. There are several directions for future

work: (1) Design multiway partitioning algorithms based on

nonlinear Laplacians; (2) Explore applications of p-Laplacians

for values of p that go beyond p = 1 and p = 2; and (3) Tackle

the open problem of whether all submodular splitting functions

are graph reducible.

REFERENCES

[1] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and

Computing, vol. 17, no. 4, pp. 395–416, 2007.
[2] S. Amghibech, “Eigenvalues of the discrete p-laplacian for graphs,” Ars

Combinatoria, vol. 67, pp. 283–302, 2003.
[3] T. Bühler and M. Hein, “Spectral clustering based on the graph p-

laplacian,” in International Conference on Machine Learning, pp. 81–88,
2009.

[4] A. Szlam and X. Bresson, “Total variation and cheeger cuts,” in
International Conference on Machine Learning, pp. 1039–1046, 2010.

[5] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[6] M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S. Segarra,
“Signal processing on higher-order networks: Livin’on the edge... and
beyond,” Signal Processing, vol. 187, p. 108149, 2021.

[7] J. Li, J. He, and Y. Zhu, “E-tail product return prediction via hypergraph-
based local graph cut,” in International Conference on Knowledge

Discovery & Data Mining, pp. 519–527, 2018.
[8] K. Hayashi, S. G. Aksoy, C. H. Park, and H. Park, “Hypergraph random

walks, laplacians, and clustering,” in Conference on Information and

Knowledge Management, pp. 495–504, 2020.
[9] Y. Zhu, B. Li, and S. Segarra, “Co-clustering vertices and hyperedges

via spectral hypergraph partitioning,” in European Signal Processing

Conference, pp. 1416–1420, 2021.
[10] U. Chitra and B. Raphael, “Random walks on hypergraphs with edge-

dependent vertex weights,” in International Conference on Machine

Learning, pp. 1172–1181, 2019.
[11] N. Veldt, A. R. Benson, and J. Kleinberg, “Hypergraph cuts with general

splitting functions,” SIAM Review, vol. 64, no. 3, pp. 650–685, 2022.
[12] P. Li and O. Milenkovic, “Submodular hypergraphs: p-laplacians,

cheeger inequalities and spectral clustering,” in International Conference

on Machine Learning, pp. 3014–3023, 2018.
[13] Y. Zhu and S. Segarra, “Hypergraph cuts with edge-dependent vertex

weights,” Applied Network Science, vol. 7, no. 1, p. 45, 2022.
[14] Y. Zhu and S. Segarra, “Hypergraphs with edge-dependent ver-

tex weights: p-laplacians and spectral clustering,” arXiv preprint

arXiv:2208.07457, 2022.
[15] Y. Zhu, B. Li, and S. Segarra, “Hypergraphs with edge-dependent vertex

weights: Spectral clustering based on the 1-laplacian,” in International

Conference on Acoustics, Speech and Signal Processing, pp. 8837–8841,
2022.

[16] M. Hein and T. Bühler, “An inverse power method for nonlinear
eigenproblems with applications in 1-spectral clustering and sparse
PCA,” Advances in Neural Information Processing Systems, vol. 23,
2010.

[17] A. Ene and H. Nguyen, “Random coordinate descent methods for
minimizing decomposable submodular functions,” in International Con-

ference on Machine Learning, pp. 787–795, 2015.
[18] P. Wolfe, “Finding the nearest point in a polytope,” Mathematical

Programming, vol. 11, no. 1, pp. 128–149, 1976.
[19] S. Fujishige, “Submodular systems and related topics,” in Mathematical

Programming at Oberwolfach II, pp. 113–131, 1984.
[20] D. Chakrabarty, P. Jain, and P. Kothari, “Provable submodular mini-

mization via fujishige-wolfe algorithm,” Advances in Neural Information

Processing Systems, 2014.
[21] L. Lovász, “Submodular functions and convexity,” in Mathematical

programming The state of the art, pp. 235–257, 1983.
[22] F. R. Chung, Spectral Graph Theory, vol. 92. American Mathematical

Soc.
[23] F. Tudisco and M. Hein, “A nodal domain theorem and a higher-order

cheeger inequality for the graph p-laplacian,” Journal of Spectral Theory,
vol. 8, no. 3, pp. 883–908, 2018.

[24] G. Carlsson, F. Mémoli, A. Ribeiro, and S. Segarra, “Hierarchical
clustering of asymmetric networks,” Adv. Data Anal. Classif., vol. 12,
pp. 65–105, 2018.

[25] D. Wagner and F. Wagner, “Between min cut and graph bisection,”
in International Symposium on Mathematical Foundations of Computer

Science, pp. 744–750, 1993.
[26] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly

submodular optimization,” Advances in Neural Information Processing

Systems, vol. 26, 2013.
[27] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[28] Y. E. Nesterov, “A method for solving the convex programming problem
with convergence rate o (1/kˆ 2),” in Dokl. akad. nauk Sssr, vol. 269,
pp. 543–547, 1983.

[29] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of mathematical

imaging and vision, vol. 40, no. 1, pp. 120–145, 2011.
[30] F. Tudisco, P. Mercado, and M. Hein, “Community detection in networks

via nonlinear modularity eigenvectors,” SIAM Journal on Applied Math-

ematics, vol. 78, no. 5, pp. 2393–2419, 2018.
[31] D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li, “RCV1: A new bench-

mark collection for text categorization research,” Journal of Machine

Learning Research, vol. 5, pp. 361–397, 2004.
[32] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive data

sets. 2020.

939

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:12:37 UTC from IEEE Xplore. Restrictions apply.

