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ABSTRACT

We develop a novel data-driven nonlinear mixup mechanism for
graph data augmentation and present different mixup functions for
sample pairs and their labels. Mixup is a data augmentation method
to create new training data by linearly interpolating between pairs
of data samples and their labels. Mixup of graph data is challeng-
ing since the interpolation between graphs of potentially different
sizes is an ill-posed operation. Hence, a promising approach for
graph mixup is to first project the graphs onto a common latent fea-
ture space and then explore linear and nonlinear mixup strategies in
this latent space. In this context, we propose to (i) project graphs
onto the latent space of continuous random graph models known as
graphons, (ii) leverage convex clustering in this latent space to gen-
erate nonlinear data-driven mixup functions, and (iii) investigate the
use of different mixup functions for labels and data samples. We
evaluate our graph data augmentation performance on benchmark
datasets and demonstrate that nonlinear data-driven mixup functions
can significantly improve graph classification.

Index Terms— Graph mixup, convex clustering, graph classifi-
cation, data augmentation, graph neural network.

1. INTRODUCTION

Rapid advancements in graph-based machine learning have led to
the widespread use of graph neural networks (GNNs) in fields such
as chemistry [1], wireless communications [2], and social network
analysis [3]. However, as with existing deep learning models, GNN’s
require large datasets to prevent overfitting. Collecting more data is
either costly or impossible, thus data augmentation arises as a cheap
way to create more labeled samples from existing data. New data
are generated to preserve label-dependent characteristics while pre-
senting unseen views of data to help the model learn discriminative
features.

Mixup poses an efficient method for augmenting Euclidean data
such as images and text [4,5]. In essence, mixup creates new data
by selecting points along the linear interpolants between pairs of
existing labeled samples. Formally, given two points (x1,y1) and
(x2,y2) with data x; and one-hot label vectors y; for i = 1,2,
mixup generates new samples as

Xnew = AX1 + (1 — A\)xa2, (1a)
Ynew = Ay1 + (1 — Nyz, (1b)
where the mixup parameter A € [0, 1] selects new points along the
connecting line. While mixup is theoretically and empirically effec-

tive at improving model generalization [6-8], it is not straightfor-
ward to translate conventional mixup to (non-Euclidean) graph data.
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Existing works [9-12] apply mixup in the graph domain by directly
manipulating nodes, edges, or subgraphs; however, crucial structural
information may be lost as classes can be sensitive to minor changes
in graph topology. An attractive alternative is mixing graph data in
a latent space, which includes mixup of learned graph representa-
tions [13, 14] or graph models [15].

Traditional mixup of Euclidean data, including graph mixup in
latent space, applies the same linear function for data mixup (la)
and label mixup (1b) [16]. However, forcing linear mixing between
classes may overlook crucial nonlinear behavior in the true distri-
bution. Additionally, given a pair of samples, the user must de-
cide where along the linear interpolant to sample new data. Previ-
ous works rely on empirically choosing the mixup parameter A, but
explicit investigation remains underexplored. Automatic data aug-
mentation via learned optimal mixup parameters has attracted recent
attention [7, 16, 17], but this incurs great computational cost.

We present Graph Mixup for Augmenting Data (GraphMAD) to
augment graph data using data-driven mixup functions through con-
vex clustering. We also analyze the choice of different mixup func-
tions for data [cf. (1a)] and labels [cf. (1b)]. Our main contributions
are as follows:

(1) We perform nonlinear graph mixup in an interpretable con-
tinuous domain given by graphons, random graph models that
characterize graph structure.

(i) We present convex clustering to efficiently learn data-driven
mixup functions, where generated samples exploit relation-
ships among all graphs as opposed to pairs of data.

(iii) We compare applying different mixup functions for data sam-
ples and their labels and demonstrate examples of datasets
for which this is beneficial.

We introduce preliminaries on graph mixup and convex cluster-
ing in Section 2. Section 3 describes the three main steps of our pro-
posed GraphMAD process for augmenting graph data. We demon-
strate the superiority of our method in graph classification tasks on
benchmark graph datasets in Section 4. Finally, our paper concludes
on a discussion of the future directions in Section 5.

2. PRELIMINARIES AND RELATED WORK

In this section, we introduce three key topics related to our proposed
GraphMAD method. We review mixup for graph data, graphons as
continuous graph descriptors, and convex clustering.

2.1. Graph Mixup

Since its introduction [6], mixup has been popularly applied to image
and text data [4,5]. The application of mixup to graphs is a new but
quickly developing area of research due to the ubiquity of graph data.
Early research on graph mixup operates in the graph domain, directly
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Fig. 1: Schematic of GraphMAD for graph data augmentation. Step 1: Convert each labeled graph (G, y;) to a labeled graph descriptor
(0;,y:). Step 2: Compute the clusterpath {i*) }1<_ | and soft labels {§*) }/<_, from the labeled descriptors {(6;,y:)}i_,. Step 3: Sample

0 ew from a point in the clusterpath a®)(A\) at A € [0,1] and k = 1,...

modifying the topology of the graphs [9, 10]. However, the cascad-
ing nature of graph connectivity means that crucial class-dependent
structural information can be lost by changing a single edge or node.
Thus, mixup for graphs in a latent graph representation space has
gained popularity [13-15].

Authors in [15] present the closest work to our own. They es-
timate a set of K nonparametric random graph models known as
graphons to collect discriminative characteristics for each of the K
classes. Pairs of class graphons are then linearly interpolated to ob-
tain new random graph models to create any number of new graph
samples. However, because a single graphon represents all graphs in
one class, the subsequent mixup cannot consider the spread of graphs
within each class. Moreover, they consider only linear interpolation.

2.2. Continuous Graph Descriptors

To perform mixup of graphs in a continuous latent space as in [13—
15], we require an Euclidean graph descriptor. In this work, sim-
ilar to [15], we adopt the graphon, a bounded symmetric function
W :[0,1]> — [0, 1] that can be interpreted as a random graph model
associated with a family of graphs with similar structural character-
istics [18-20]. To generate an undirected, unweighted graph G =
(V, €) from a graphon W, we require the following two steps

¢i ~ Uniform(]0, 1]) VieV, (2a)
Ai]' = Aji ~ Bernoulli (W(CZ, CJ)) \ (Z,]) eV xV, (2b)

where A € {0,1}Y1*V] is the adjacency matrix with A;; # 0
if and only if (i,j) € &, and the latent variables ¢; € [0, 1] are
independently drawn for each node 7. Intuitively, each node ¢ is
assigned a value (; and the edge (i, j) is drawn between nodes ¢ and
j with probability W((;, ¢;) for all 4 # j.

We convert every graph to a descriptor via graphon estimation,
a well-studied task. A graphon can be inferred as a continuous
function [21,22] or as a coarser piecewise-constant stochastic block
model (SBM) [23].

2.3. Convex Clustering

We apply convex clustering to characterize the spatial relationship
of the graph data in graphon space. Convex clustering formulates
the clustering problem as a continuous optimization problem, first
introduced by [24-26] and inspired by sum-of-norms regularization
[27]. Given a set of T' data samples x = {xi},T:l in R?, traditional
convex clustering seeks to solve the regularized problem

T
(v) = argmin y _ daa(wi, xi) +7 > wijdsus (Wi, v;),  (3)

i=1 i<j

, K and generate new graphs G7°* with label ypew = y¥ (N).

where v > 0 is the tunable fusion parameter, w;; > 0 is the weight
specifying the fusion strength between u; and u;, and the functions
daqg and dg,s quantify data fidelity and sample fusion, respectively.
We let the clusterpath be the solution path &t = {1}, providing
the cluster centroids w1(y) = {{1;(y)}i=; forany v > 0. If f1;() =
; () for ¢ # j, then we say that samples x; and x; belong to the
same cluster at -, where K (y) is the total number of clusters for the
fusion level . We show an example clusterpath in Step 2 of Fig. 1.

Under mild conditions, convex clustering enjoys theoretical
guarantees for agglomerative fusions and cluster recovery due to
the convexity of (3) [28-30]. However, convex clustering in non-
Euclidean domains remains underexplored [31,32]. Indeed, apply-
ing (3) for graph data suffers from the same difficulties as mixup
of graphs, and imposing valid data formats may require nonconvex
penalties, thus obviating the value of convex clustering.

3. METHODOLOGY

We let G = (V, £) denote an undirected, unweighted graph with set
of nodes V and set of edges £ = V x V. For a labeled graph G
belonging to one of K classes, its label is represented by the one-hot
vector y € {0, 1}*. When G belongs to the k-th class, y contains
zeros everywhere except the k-th entry, which has the value 1. We
denote the space of all graphs by G.

3.1. GraphMAD

Given a set of T samples {(G,y:)}i—1 of graph labeled data
used to train a classifier f : G — {0,1}¥, our goal is to use
GraphMAD to generate new data {(G7°V,yi°")}; 7', so that a
classifier fhew tralned on the augmented dataset {(Gi,y:)}iey U
{(G3=Y, y2*™)}T_| outperforms f when classifying unseen graphs.
In particular, we focus on a GNN graph classifier [1,33,34], a highly
effective model that requires a large training dataset.

We perform GraphMAD in graph descriptor space to obviate the
difficulties of graph data for convex clustering and mixup described
in Section 2. More specifically, we convert each graph GG; to an SBM
graphon estimate [22] as introduced in Section 2.2. Given a set of
graph descriptors denoted by @ = {6;}7_; and their respective one-
hot labels y = {y;}7_,, we formulate the general mixup process of
graph data as

Orew = Jfeat (07 )\), (4a)
Yoew = glabel(e1 y; )\)7 (4b)

where A € [0, 1] is the mixup parameter and gseat and giaber are the
mixup functions for graph descriptors and labels, respectively. For

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on July 02,2023 at 21:09:40 UTC from IEEE Xplore. Restrictions apply.



Table 1: Graph classification accuracy on molecule and bioinformatics datasets. Columns gseat and giabel are the data mixup for (4a) and the
label mixup for (4b), respectively. The first row corresponds to the original datasets. The top performing methods are bolded.

Method DD PROTEINS ENZYMES AIDS MUTAG NCI109
Classes 2 2 6 2 2 2
Graphs 1178 1113 600 2000 188 4127
YGfeat YGlabel
— — 68.77 £ 2.35 69.51 +1.20 26.43+2.55 96.18+2.57 84.59 £+ 5.53 68.23 £2.13
Linear (1b) [15] 67.01 +1.72 65.15+£2.53 24.88+3.38 96.82+1.39 85.71+7.15 68.16 £ 2.72
Linear (10) Sigmoid (11a) 64.894+1.49 68.42+3.94 24.76+4.10 96.07+1.42 85.71 +4.63 65.96 +2.34
Logit (11b) 66.22 4 3.82 69.25 £2.94 25.95+5.48 96.07+1.27 80.08 £ 5.60 66.81 £+ 4.07
Clusterpath (8) 68.22 +3.71 69.38 £2.04 24.64+2.39 95.86+1.88 87.22+4.96 65.01 +3.07
Linear (1b) 67.114+1.56 67.51+2.62 26.67+6.49 97.15+1.00 87.24 +4.21 68.61+1.41
Clusterpath (7) Sigmoid (11a) 68.23 4+ 3.61 64.60 £5.07 32.62+6.35 97.07+1.35 85.20 £ 3.53 67.50 £ 2.06
sterp Logit (11b) 70.07 £ 2.51 67.26+2.84 25.71+4.26 95.87+1.47 80.10%+14.77 65.33+3.35
Clusterpath (8) 70.44+3.79 71.18 4+ 3.98 24.52+3.30 97.22+0.54 85.71 + 5.40 68.54 + 3.16

traditional mixup, we have that great (X; A) = Ax; + (1 — A\)x; and
Glabel (X, y;A) = Ayi+ (1= N)y; foré,j =1,...,T, where i # j.

A schematic of our graph mixup method is presented in Fig. 1,
which can be described in three steps: Step 1: We convert each
graph G to a descriptor 8; = 0(G;); Step 2: Given the descriptors
6, we compute the clusterpath @t over A € [0, 1] through convex
clustering; and Step 3: We choose A € [0, 1] to select points in the
clusterpath Oycw = 1(A). The samples Oy in graph descriptor
space are converted to the graph domain by sampling G} ~ Opew
from the graphon with label ynew. The remainder of this section
elaborates on each step of GraphMAD.

Step 1: Graph Descriptors. Convex clustering in Section 2.3 re-
quires Euclidean data formats for the fidelity and fusion distances
in (3). We convert the non-Euclidean graph data {G;}7_; to de-
scriptors from Section 2.2, denoted as 8; = 6(G,;) for samples
1 = 1,...,T. Similarly to [15], our graph descriptors are SBM
graphon approximations, where W; € [0,1]”*® is obtained for
each graph GG; by sorting and smoothing (SAS) [22] with D denot-
ing the fineness of the graphon estimate. The graph descriptors are

then set as 8; = vec(W;) € [0, 1]D2, where vec(Y) denotes the
vectorization of the matrix Y. In this paper, we restrict our analy-
sis to graphons, but GraphMAD accepts any descriptors that permit
computation of (3) given choices of dgq and dgys.

Step 2: Data-Driven Mixup Function via Clusterpath. We ap-
proach graph mixup with the goal of exploiting the positions of data
samples to inform where and how to interpolate between classes. We
characterize the spatial relationships of graphs in descriptor space
through the clusterpath, which we obtain by adapting (3) as

T
N . A
a()) = argmin Y [lu; — 6|3 + T—x > wilw =y,
u i=1 i<j
(5)

where we specified the fidelity dsq and fusion dy,s distances as the
squared £2-norm and ¢;-norm, respectively, and we have A € [0, 1]
as in traditional mixup, where we apply (5) when A € [0, 1) and we
let A = 1 correspond to minimizing the fidelity distance under the
constraint that @1; (1) = @;(1) for every ¢ # j. Section 2.3 describes
the clusterpath @ as providing graphons t(A) for A € [0, 1], where
1;(0) = O, returns the original data and 0;(1) = + Zle 0, re-
sults in total fusion of the dataset forall ¢ = 1,..., 7. Furthermore,
we let the fusion weights w;; = 1 when G; and G belong to the
same class, and w;; = € < 1, otherwise. The labels inform the fu-
sion weights to encourage tree-like clustering [30] while maintaining
the data-dependent clusterpath shape. Note that the solutions to (5)
lie in the convex hull of 0, resulting in valid symmetric and bounded

graphons described in Section 2.2 and Step 1 of Section 3.1.

The clusterpath 1 = {ﬁi}iTzl obtained via (5) results in T'
graphons that vary over A € [0, 1]. We compute a clusterpath of K
branches by combining subsets of the 7" paths based on their cluster
assignments from (5). Given a point A* where the number of clusters
K(X\*) = K as in Section 2.3, let the cluster assignments of t1(\*)
be represented by index sets Z(*) C {1,...,T}fork=1,...,K,
where ZM U .- U ZE) = {1,...,T}. We collapse & into K
branches by averaging K graphon subsets based on {Z () K L as

a® (N = IITIW > w(\) Ve=1,...,K, A€ [0,1]. (6)
iez(k)
The extended clusterpath {ﬁ(k ) }4< | is superimposed on the original
clusterpath in Step 2 of Fig. 1.

Step 3: Sampling. In this step, we describe the mixup processes in
(4) using the extended clusterpath in (6) for sampling new data great
and new labels giabel.
New data O,c.. To obtain Onew = greas(6;\) from the ex-
tended clusterpath {a®}£ | in (6), we first choose a branch
k € {1,...,K} and mixup parameter A € [0,1], and we ob-
tain the graphon centroid as @ne = U™ (X). A set of T new
graphs {G{-‘ew}iT:/l is created from the graphon @,c., as

G?CW ~ enew - ﬁ(k) ()\) (7)
where GJ'°" ~ Oyew refers to the process of sampling a graph from

a graphon as described in (2), so we can generate any number of new
graphs for every k and A that we consider.

New labels yncw. We can obtain labels ynew = giabel(0,¥;A)
using the extended clusterpath {t1®)}X_, as with ,,¢,,. To do this,
we compute soft labels ynew € [0,1]% using class proportions of
samples @ in each branch of the clusterpath 1| as described below.
For each branch, we define a label clusterpath function *) (\) =
Giabe1(0, y; A) that yields the soft label ynew = ¥ () € [0,1]%
corresponding to the graphon ﬁ(k>()\). For the k-th branch, we
let the I-th entry of $*)(0) € [0,1]% be the proportion of class
[ assigned to branch k, and we let y<k>(1) = %1, where 1 is
the all-ones vector of length K, denoting total dataset fusion for
equally-sized classes. We then compute %) () for X € [0,1] as

7Y =gy O + (1- 9P W) yP W), ®

where géf)) represents the rate of change of the k-th branch of the

clusterpath a® with respect to the mixup parameter A. More specif-
ically, we have gég) :[0,1] — [0,1] as

N A ~ ~
_ 1180 + f5 Vaa® (n)dr 3 — 4™ (©0)]3
@t (1)[J3 — ([t (0)[3 ’

g )
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Table 2: Counterpart of Table 1 for graph classification accuracy on
social datasets.

Method COLLAB IMDB-B IMDB-M
Classes 3 2 3
Graphs 5000 1000 1500
Yteat Jlabel
— — 80.00 +0.96 73.14£3.15 47.71+£4.25
Ln. (Ib)[15] 77.60+1.53  72.07+2.06 47.24+4.21
Ln. (10) Sig. (11a) 78.21+1.16 74.00+ 2.14 49.67 = 2.15
. Log. (11b) 78.19 £+ 1.61 72.64+£1.73 47.43+2.45
Cp. (8) 78.41+0.99 71.43+3.25 47.29+5.21
Ln. (1b) 78.93+£2.63 70.57+£4.89 45.52+£4.09
Cp. (1) Sig. (11a) 77.894+1.30 75.00+5.13 44.48+£2.78
p: Log. (11b) 80.39 +1.20 73.43+£4.75 48.76+2.43
Cp. (8) 79.554+2.29 71.43+£4.72 49.71+4.33

for A€ [0,1]andk = 1,..., K, where g’ (\) = Afor A € {0,1}.

Similarly to e = 1'*)(\), new graph labels ynew = 3% (1)
for A € [0, 1] require selecting a branch k € {1, ..., K'}. When the
clusterpath is used for both gfeat and giapel, that is, Onew = a®) N
in (7) and ynew = y* (A) in (8), we use the same branch k of the
extended clusterpath a® for (7) and (9).

Under Steps 1 to 3, we obtain data-driven mixup functions for
(4) using descriptors 8, where new samples Onew = Great (0; \) and
labels ynew = Giavel(8,y; A) depend on the clusterpath in (6) for
A € [0,1]. We sample graphs {G?ew}gl from Opew via (7).

To conclude our GraphMAD discussion, we note that while
both data mixup (7) and label mixup (8) depend on the clusterpath
{a™}E | in (6), these mixup functions need not be applied to-
gether. For example, for some A € [0,1] and k = 1,..., K, we
may have Oyev = 0% () from (7) and ypew = Ay™ (0) + (1 —
N)y*) (1) as in (Ib). In the next section we demonstrate Graph-
MAD data mixup via (7) and label mixup via (8), both implemented
jointly with each other and with other choices of great and giabel.

4. RESULTS

We demonstrate GraphMAD for creating labeled graph data to im-
prove graph classification performance. As a graph classifier, we
use the same GNN for all our experiments, the Graph Isomorphism
Network (GIN) [34], which uses node spatial relations to aggre-
gate neighborhood features. We compare classification performance
for the original dataset with that of augmented datasets via multiple
methods of graph mixup.

For mixup of graph data gfeat, we compare GraphMAD’s clus-
terpath data mixup (7) with linear graphon mixup [15]. In this latter
approach, we estimate one SBM graphon W*) e [0,1]°*P for
eachclass k = 1,..., K. Then, for random pairs of classes k, k' =
1,...,K with k # k', we linearly interpolate with A\ € [0, 1] and
sample new graphs as

G~ Whew = AW® 4 (1 = )yWH), (10)

‘We consider additional variants for the label mixup giabel, apart
from the classical linear function in (1b) and the proposed one in (8).
In particular, given A € [0, 1] and label vectors y;,y; € [0, 1], we
also consider the mixup functions

(11a)
(11b)

Ynew = sig(M)yi + (1 —sig(N))y;,
Ynew = logit(A)yi + (1 — logit(A))y;,
where sigmoid refers to sig(z) = 1/(1 + exp{—a(2z — 1)}) and

logit is logit(z) = log(z/(1 — z))/2a + 1/2 fora > 0 and x €
[0, 1]. Note that G-Mixup [15] has gseat as (10) and giaber as (1b)

—e— DBranch k&

i —e— DBranch ¥’

0.0 0.5 1.0 15 2.0
«

Fig. 2: Extended clusterpath behavior between branches k and &’ for
ENZYMES dataset. For a € [0, 2], we show the level of data mixup

from branch k to fusion in blue as £ 9% () for a € [0, 1] and from

fusion to branch k" inred as 1 — %gég/)(Q —a) fora € [1,2].

We perform graph classification on nine graph benchmark
datasets from the TUDatasets collection [35]: DD, PROTEINS,
and ENZYMES for protein categorization, AIDS, MUTAG, and
NCI109 for molecule classification, and COLLAB, IMDB-B, and
IMDB-M for social network classification. In Tables 1 and 2 we
present classification accuracy for each dataset using all pairs of
data and label mixup functions, where gseat is (7) or (10), and giabel
is selected from (1b), (8), or (11). The first row with no choice of
Jreat and giaber denotes performance using the original dataset. The
mixup parameter A ~ Unif([0, 1]) is the same for all choices of
Jfeat and QJlabel -

GraphMAD data mixup in (7) achieves the best performance for
all nine datasets, and (7) is the only data augmentation method to
improve performance for PROTEINS and COLLAB. Furthermore,
for all multi-class datasets, since GraphMAD exploits relationships
among all classes, it is always able to improve accuracy above the
baseline compared to linear graphon mixup in (10), which only per-
forms mixup between pairs of classes and thus is outperformed by
the vanilla GIN for COLLAB and ENZYMES.

We examine the 6-class ENZYMES dataset, whose performance
using GraphMAD data mixup in (7) and sigmoid label mixup in
(11a) achieves an accuracy gap of around 6% over other methods.
For topology-sensitive protein datasets such as ENZYMES, new data
close in graphon space to the original data may produce incorrect
graph structures for protein categorization, hence we wish to sample
farther away from the original classes. This is automatically cap-
tured by the shape of the clusterpath. The data clusterpath across
two branches a®) and a*") is shown in Fig. 2 for several choices
of k and k’. For uniformly selected values of A, new data Oy are
close to the mean of the dataset for several values of A\. Thus sam-
ples generated through the data-driven GraphMAD are generated far
from the original data, which dramatically improves performance.

5. CONCLUSION

We proposed a data-driven mixup function for graph data augmen-
tation via convex clustering, where GraphMAD outperformed tradi-
tional linear mixup for several graph classification datasets. Potential
directions for development include learning parameters for convex
clustering, such as the fusion weights and the selected clusterpath
branch for sampling. Furthermore, we can convert GraphMAD to
a completely data-driven approach by using similarity-based fusion
weights and applying self-supervised learning approaches.

Further implementation details can be found in our code, provided at
https://github.com/mn51/graphmad.
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