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ABSTRACT

We develop a novel data-driven nonlinear mixup mechanism for

graph data augmentation and present different mixup functions for

sample pairs and their labels. Mixup is a data augmentation method

to create new training data by linearly interpolating between pairs

of data samples and their labels. Mixup of graph data is challeng-

ing since the interpolation between graphs of potentially different

sizes is an ill-posed operation. Hence, a promising approach for

graph mixup is to first project the graphs onto a common latent fea-

ture space and then explore linear and nonlinear mixup strategies in

this latent space. In this context, we propose to (i) project graphs

onto the latent space of continuous random graph models known as

graphons, (ii) leverage convex clustering in this latent space to gen-

erate nonlinear data-driven mixup functions, and (iii) investigate the

use of different mixup functions for labels and data samples. We

evaluate our graph data augmentation performance on benchmark

datasets and demonstrate that nonlinear data-driven mixup functions

can significantly improve graph classification.

Index TermsÐ Graph mixup, convex clustering, graph classifi-

cation, data augmentation, graph neural network.

1. INTRODUCTION

Rapid advancements in graph-based machine learning have led to

the widespread use of graph neural networks (GNNs) in fields such

as chemistry [1], wireless communications [2], and social network

analysis [3]. However, as with existing deep learning models, GNNs

require large datasets to prevent overfitting. Collecting more data is

either costly or impossible, thus data augmentation arises as a cheap

way to create more labeled samples from existing data. New data

are generated to preserve label-dependent characteristics while pre-

senting unseen views of data to help the model learn discriminative

features.

Mixup poses an efficient method for augmenting Euclidean data

such as images and text [4, 5]. In essence, mixup creates new data

by selecting points along the linear interpolants between pairs of

existing labeled samples. Formally, given two points (x1,y1) and

(x2,y2) with data xi and one-hot label vectors yi for i = 1, 2,

mixup generates new samples as

xnew = λx1 + (1− λ)x2, (1a)

ynew = λy1 + (1− λ)y2, (1b)

where the mixup parameter λ ∈ [0, 1] selects new points along the

connecting line. While mixup is theoretically and empirically effec-

tive at improving model generalization [6±8], it is not straightfor-

ward to translate conventional mixup to (non-Euclidean) graph data.
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Existing works [9±12] apply mixup in the graph domain by directly

manipulating nodes, edges, or subgraphs; however, crucial structural

information may be lost as classes can be sensitive to minor changes

in graph topology. An attractive alternative is mixing graph data in

a latent space, which includes mixup of learned graph representa-

tions [13, 14] or graph models [15].

Traditional mixup of Euclidean data, including graph mixup in

latent space, applies the same linear function for data mixup (1a)

and label mixup (1b) [16]. However, forcing linear mixing between

classes may overlook crucial nonlinear behavior in the true distri-

bution. Additionally, given a pair of samples, the user must de-

cide where along the linear interpolant to sample new data. Previ-

ous works rely on empirically choosing the mixup parameter λ, but

explicit investigation remains underexplored. Automatic data aug-

mentation via learned optimal mixup parameters has attracted recent

attention [7, 16, 17], but this incurs great computational cost.

We present Graph Mixup for Augmenting Data (GraphMAD) to

augment graph data using data-driven mixup functions through con-

vex clustering. We also analyze the choice of different mixup func-

tions for data [cf. (1a)] and labels [cf. (1b)]. Our main contributions

are as follows:

(i) We perform nonlinear graph mixup in an interpretable con-

tinuous domain given by graphons, random graph models that

characterize graph structure.

(ii) We present convex clustering to efficiently learn data-driven

mixup functions, where generated samples exploit relation-

ships among all graphs as opposed to pairs of data.

(iii) We compare applying different mixup functions for data sam-

ples and their labels and demonstrate examples of datasets

for which this is beneficial.

We introduce preliminaries on graph mixup and convex cluster-

ing in Section 2. Section 3 describes the three main steps of our pro-

posed GraphMAD process for augmenting graph data. We demon-

strate the superiority of our method in graph classification tasks on

benchmark graph datasets in Section 4. Finally, our paper concludes

on a discussion of the future directions in Section 5.

2. PRELIMINARIES AND RELATED WORK

In this section, we introduce three key topics related to our proposed

GraphMAD method. We review mixup for graph data, graphons as

continuous graph descriptors, and convex clustering.

2.1. Graph Mixup

Since its introduction [6], mixup has been popularly applied to image

and text data [4, 5]. The application of mixup to graphs is a new but

quickly developing area of research due to the ubiquity of graph data.

Early research on graph mixup operates in the graph domain, directlyIC
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Table 1: Graph classification accuracy on molecule and bioinformatics datasets. Columns gfeat and glabel are the data mixup for (4a) and the

label mixup for (4b), respectively. The first row corresponds to the original datasets. The top performing methods are bolded.

Method DD PROTEINS ENZYMES AIDS MUTAG NCI109

Classes 2 2 6 2 2 2
Graphs 1178 1113 600 2000 188 4127

gfeat glabel

Ð Ð 68.77± 2.35 69.51 ± 1.20 26.43± 2.55 96.18± 2.57 84.59 ± 5.53 68.23± 2.13

Linear (10)

Linear (1b) [15] 67.01± 1.72 65.15± 2.53 24.88± 3.38 96.82± 1.39 85.71 ± 7.15 68.16± 2.72

Sigmoid (11a) 64.89± 1.49 68.42± 3.94 24.76± 4.10 96.07± 1.42 85.71 ± 4.63 65.96± 2.34

Logit (11b) 66.22± 3.82 69.25± 2.94 25.95± 5.48 96.07± 1.27 80.08 ± 5.60 66.81± 4.07

Clusterpath (8) 68.22± 3.71 69.38± 2.04 24.64± 2.39 95.86± 1.88 87.22 ± 4.96 65.01± 3.07

Clusterpath (7)

Linear (1b) 67.11± 1.56 67.51± 2.62 26.67 ± 6.49 97.15 ± 1.00 87.24 ± 4.21 68.61 ± 1.41

Sigmoid (11a) 68.23± 3.61 64.60± 5.07 32.62 ± 6.35 97.07± 1.35 85.20 ± 3.53 67.50± 2.06

Logit (11b) 70.07 ± 2.51 67.26± 2.84 25.71± 4.26 95.87± 1.47 80.10± 14.77 65.33± 3.35

Clusterpath (8) 70.44 ± 3.79 71.18 ± 3.98 24.52± 3.30 97.22 ± 0.54 85.71 ± 5.40 68.54 ± 3.16

traditional mixup, we have that gfeat(x;λ) = λxi + (1− λ)xj and

glabel(x,y;λ) = λyi+(1−λ)yj for i, j = 1, . . . , T , where i ̸= j.

A schematic of our graph mixup method is presented in Fig. 1,

which can be described in three steps: Step 1: We convert each

graph Gi to a descriptor θi = θ(Gi); Step 2: Given the descriptors

θ, we compute the clusterpath û over λ ∈ [0, 1] through convex

clustering; and Step 3: We choose λ ∈ [0, 1] to select points in the

clusterpath θnew = û(λ). The samples θnew in graph descriptor

space are converted to the graph domain by sampling Gnew
i ∼ θnew

from the graphon with label ynew. The remainder of this section

elaborates on each step of GraphMAD.

Step 1: Graph Descriptors. Convex clustering in Section 2.3 re-

quires Euclidean data formats for the fidelity and fusion distances

in (3). We convert the non-Euclidean graph data {Gi}
T
i=1 to de-

scriptors from Section 2.2, denoted as θi = θ(Gi) for samples

i = 1, . . . , T . Similarly to [15], our graph descriptors are SBM

graphon approximations, where Wi ∈ [0, 1]D×D is obtained for

each graph Gi by sorting and smoothing (SAS) [22] with D denot-

ing the fineness of the graphon estimate. The graph descriptors are

then set as θi = vec(Wi) ∈ [0, 1]D
2

, where vec(Y) denotes the

vectorization of the matrix Y. In this paper, we restrict our analy-

sis to graphons, but GraphMAD accepts any descriptors that permit

computation of (3) given choices of dfid and dfus.

Step 2: Data-Driven Mixup Function via Clusterpath. We ap-

proach graph mixup with the goal of exploiting the positions of data

samples to inform where and how to interpolate between classes. We

characterize the spatial relationships of graphs in descriptor space

through the clusterpath, which we obtain by adapting (3) as

û(λ) = argmin
u

T
∑

i=1

∥ui − θi∥
2
2 +

λ

1− λ

∑

i<j

wij∥ui − uj∥1,

(5)

where we specified the fidelity dfid and fusion dfus distances as the

squared ℓ2-norm and ℓ1-norm, respectively, and we have λ ∈ [0, 1]
as in traditional mixup, where we apply (5) when λ ∈ [0, 1) and we

let λ = 1 correspond to minimizing the fidelity distance under the

constraint that ûi(1) = ûj(1) for every i ̸= j. Section 2.3 describes

the clusterpath û as providing graphons û(λ) for λ ∈ [0, 1], where

ûi(0) = θi returns the original data and ûi(1) = 1
T

∑T

j=1 θj re-

sults in total fusion of the dataset for all i = 1, . . . , T . Furthermore,

we let the fusion weights wij = 1 when Gi and Gj belong to the

same class, and wij = ϵ < 1, otherwise. The labels inform the fu-

sion weights to encourage tree-like clustering [30] while maintaining

the data-dependent clusterpath shape. Note that the solutions to (5)

lie in the convex hull of θ, resulting in valid symmetric and bounded

graphons described in Section 2.2 and Step 1 of Section 3.1.

The clusterpath û = {ûi}
T
i=1 obtained via (5) results in T

graphons that vary over λ ∈ [0, 1]. We compute a clusterpath of K

branches by combining subsets of the T paths based on their cluster

assignments from (5). Given a point λ∗ where the number of clusters

K̂(λ∗) = K as in Section 2.3, let the cluster assignments of û(λ∗)

be represented by index sets I(k) ⊆ {1, . . . , T} for k = 1, . . . ,K,

where I(1) ∪ · · · ∪ I(K) = {1, . . . , T}. We collapse û into K

branches by averaging K graphon subsets based on {I(k)}Kk=1 as

û
(k)(λ) =

1

|I(k)|

∑

i∈I(k)

ûi(λ) ∀k = 1, . . . ,K, λ ∈ [0, 1]. (6)

The extended clusterpath {û(k)}Kk=1 is superimposed on the original

clusterpath in Step 2 of Fig. 1.

Step 3: Sampling. In this step, we describe the mixup processes in

(4) using the extended clusterpath in (6) for sampling new data gfeat
and new labels glabel.

New data θnew. To obtain θnew = gfeat(θ;λ) from the ex-

tended clusterpath {û(k)}Kk=1 in (6), we first choose a branch

k ∈ {1, . . . ,K} and mixup parameter λ ∈ [0, 1], and we ob-

tain the graphon centroid as θnew = û(k)(λ). A set of T ′ new

graphs {Gnew
i }T

′

i=1 is created from the graphon θnew as

G
new
i ∼ θnew = û

(k)(λ) (7)

where Gnew
i ∼ θnew refers to the process of sampling a graph from

a graphon as described in (2), so we can generate any number of new

graphs for every k and λ that we consider.

New labels ynew. We can obtain labels ynew = glabel(θ,y;λ)

using the extended clusterpath {û(k)}Kk=1 as with θnew. To do this,

we compute soft labels ynew ∈ [0, 1]K using class proportions of

samples θ in each branch of the clusterpath û(k), as described below.

For each branch, we define a label clusterpath function ŷ(k)(λ) =

glabel(θ,y;λ) that yields the soft label ynew = ŷ(k)(λ) ∈ [0, 1]K

corresponding to the graphon û(k)(λ). For the k-th branch, we

let the l-th entry of ŷ(k)(0) ∈ [0, 1]K be the proportion of class

l assigned to branch k, and we let ŷ(k)(1) = 1
K
1, where 1 is

the all-ones vector of length K, denoting total dataset fusion for

equally-sized classes. We then compute ŷ(k)(λ) for λ ∈ [0, 1] as

ŷ
(k)(λ) = g

(k)
cp (λ)ŷ(k)(0) +

(

1− g
(k)
cp (λ)

)

ŷ
(k)(1), (8)

where g
(k)
cp represents the rate of change of the k-th branch of the

clusterpath û(k) with respect to the mixup parameter λ. More specif-

ically, we have g
(k)
cp : [0, 1] → [0, 1] as

g
(k)
cp (λ) =

∥û(k)(0) +
∫ λ

0
∇λû

(k)(τ)dτ∥22 − ∥û(k)(0)∥22

∥û(k)(1)∥22 − ∥û(k)(0)∥22
, (9)
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