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Joint graph learning from Gaussian observations in
the presence of hidden nodes
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Abstract—Graph learning problems are typically approached
by focusing on learning the topology of a single graph when
signals from all nodes are available. However, many contempo-
rary setups involve multiple related networks and, moreover, it is
often the case that only a subset of nodes is observed while the
rest remain hidden. Motivated by this, we propose a joint graph
learning method that takes into account the presence of hidden
(latent) variables. Intuitively, the presence of the hidden nodes
renders the inference task ill-posed and challenging to solve, so we
overcome this detrimental influence by harnessing the similarity
of the estimated graphs. To that end, we assume that the observed
signals are drawn from a Gaussian Markov random field with
latent variables and we carefully model the graph similarity
among hidden (latent) nodes. Then, we exploit the structure
resulting from the previous considerations to propose a convex
optimization problem that solves the joint graph learning task by
providing a regularized maximum likelihood estimator. Finally,
we compare the proposed algorithm with different baselines and
evaluate its performance over synthetic and real-world graphs.

Index Terms—Graph learning, network topology inference,
Gaussian graphical models, latent variables, multi-layer graphs

I. INTRODUCTION

The rising popularity of graph-based methods to deal
with data defined over irregular domains has propelled the
development of graph learning algorithms [1]-[3]. Indeed,
the problem of graph learning, which seeks to learn the
topology of a graph from a set of nodal observations, is
among the most active research areas of graph signal pro-
cessing (GSP), a field devoted to the development of tools
for processing graph signals [4]-[7]. Fundamental to learning
the topology of the graph is assuming that the (statistical)
properties of the observed signals depend on the unknown
topology, with different assumptions leading to different graph
learning methods. Noteworthy examples of these methods
include correlation networks [8], sparse structural equation
models [9], [10], graph stationarity models [11]-[13], smooth
(local total variation) models [14]-[16], and models based
on more sophisticated graph-topology priors [17], [18], just
to name a few. Of particular interest for the paper at hand
are Gaussian graphical models, a popular and flexible family
of graph learning algorithms that builds upon the assumption
that the observed signals are drawn from a Gaussian Markov
random field (GMRF) [19]-[24].
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Despite the growing interest aroused by the graph learning
problem, the focus is typically placed on learning an individual
(single) graph under the assumption that observations from all
nodes are available. Nonetheless, many contemporary scenar-
ios such as social networks or brain analytics involve multiple
related networks, each of them with a subset of available
signals. When several related networks are available, we can
harness the graph similarity to boost the performance of the
graph learning algorithms [13], [25]-[28]. Moreover, in many
relevant scenarios, we only have access to observations from a
subset of nodes, while the rest remain unobserved or hidden.
Intuitively, ignoring the presence of hidden variables will
hinder the performance of the graph learning algorithms but, at
the same time, accounting for the influence of the hidden nodes
renders the graph learning task an ill-posed problem. This
challenging setting has been studied in the context of learning
a single graph [29]-[32]. However, modeling the influence of
hidden nodes in the context of joint graph learning becomes
even more critical since it is unclear how to measure the graph
similarity between nodes that remain unobserved.

Motivated by the previous discussion, we propose a convex
optimization framework to solve the joint graph learning prob-
lem in the presence of hidden variables under the assumption
that the observed signals are drawn from a GMRF. The main
motivation is to exploit the known benefits of joint network
topology inference methods to improve the performance of the
challenging setup resulting from the presence of hidden vari-
ables. Nonetheless, to put forward such an approach we need
to carefully model the influence of the hidden nodes in (i) the
assumption of GMRF signals that relates the observations and
the graph; and (ii) the similarity of the graphs being estimated.
This is achieved by carefully leveraging the structure inherent
to the presence of hidden nodes into a regularized maximum
likelihood estimator.

Even though the motivation is similar, the resulting al-
gorithm differs substantially from other related works such
as [28]. The main difference lies in the assumption relating
the observed signals and the graph topology, which results
in modeling the influence of the hidden nodes in a different
way, and hence, the structure of the problem is completely
different. Furthermore, the different structure of the problem
at hand also requires a new approach for exploiting the graph
similarity assumption when hidden nodes are involved.

The remainder of the paper is as follows. Section II intro-
duces fundamental concepts about GSP and Gaussian graphi-
cal models. Section III states the joint graph learning problem
with hidden nodes and presents the proposed solution. Finally,
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Section IV offers a numerical evaluation of the proposed
algorithm and Section V provides some concluding remarks.

II. GRAPH LEARNING FROM GAUSSIAN OBSERVATIONS
A. Fundamentals of GSP

Graphs. Let G = (V, £) denote an undirected graph described
by the set of N nodes V, and the set of links £. The elements
in £ are unordered pairs (i,j) with 4,5 € V and such that
(i,7) € € implies that nodes ¢ and j are connected. For any
graph G, the adjacency matrix A € RV*V is a sparse matrix
encoding the connectivity of the graph with A;; = 0 if and
only if (¢,j) ¢ . Then, the value A;; of the non-zero entries
captures the strength of the link between the nodes 7 and j.

Graph signals and graph-shift operator. In addition to
graphs, we are also concerned with graphs signals, a family of
signals defined on the set of nodes V. Formally, a graph signal
can be denoted as a vector X = [z1,...,zy] " € RV, where x;
denotes the signal value observed at node 7. Because the signal
is defined on top of the graph, the key assumption in GSP is
that the properties of x are related to the topology of G. In
this sense, if the graph encodes similarity between nodes, then
the signal values at two neighboring nodes are expected to be
close. Of particular interest when processing graph signals is
the graph-shift operator (GSO), a linear operator applied to
graph signals that captures the topology of the graph [4]. The
GSO is represented by the matrix S € RY*N whose entries
satisfy that S;; # 0 only if i = j or (4, j) € &£. Typical choices
for the GSO are the adjacency matrix A, the combinatorial
graph Laplacian L := diag(A1l) — A, or their normalized
counterparts [4], [S].

B. Gaussian graphical models

Arguably, Gaussian graphical models are one of the most
commonly used graph learning methods [19], [21], [22]. The
main assumption adopted by these models is that the observed
signals are drawn from a multivariate Gaussian distribution
where the zeros in the inverse of the covariance correspond
to edges not present in £. Such a distribution is commonly
known as a Gaussian Markov random field (GMRF), and the
inverse of the covariance is referred to as the precision matrix.
Upon setting the positive definite precision matrix to be the
GSO S, the GMRF assumption implies that x is sampled from
N(0,S71). In other words, if we denote the covariance of x
as C := E[xx "], it follows that the mapping between C and
S is given by C = S~!. Then, Gaussian graphical models
propose to estimate the graph topology encoded in G via the
regularized maximum likelihood estimator

max  logdet(S) — tr(CS) — \r(S) (1)

s.t. S>0,

where C denotes the sample covariance matrix, and the
term r(S) promotes desired properties on S. Indeed, for the
particular case when r(S) is set to r(S) = ||S||1, the estimator
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in (1) yields the celebrated graphical Lasso algorithm [21],
[26].

III. JOINT GRAPH LEARNING WITH HIDDEN NODES

To formally state the joint graph learning problem in the
presence of hidden nodes some definitions are in order. Let
us consider that there are K unknown graphs {G¥)}X_ | all
of them defined over a common set of nodes V of cardinality
N. For the k-th graph, we have access to M), graph signals
collected in the matrix X*) := [x, o Xar,] T € RV M,

The presence of hidden nodes implies that only a subset of
nodes O C V of cardinality O is observed. Meanwhile, the
H = N — O remaining nodes collected in the set H =V \ O
stay unobserved. Furthermore, consider that the sets O and H
are the same for the K graphs. Without loss of generality, let
us assume that the nodes in O correspond to the first nodes
in the graph, so the signal values associated with the observed
nodes correspond to the first O rows of X *) which we denote
as ngk). Then, let us define the sample covariance matrix of
the k-th graph as C%) .= 3~ XB(X*)T. The distinction
between observed and hidden nodes endows the GSO and the
sampled covariance matrix with the following block structure

S:{so Son Co QOH]

Swo Sn ] ©= [Cm C.
The O x O submatrices sﬁf) and CEP respectively denote the
block of the GSO capturing the connection between observed
nodes and the block of the sample covariance of the signal
values at the observed nodes (i.e., the sample covariance of
Xo). On the other hand, the remaining blocks of S and C
involve edges and covariances between hidden nodes.

Based on the previous definitions, the problem of joint graph
learning in the presence of hidden nodes is formally stated
next.

2)

Problem 1. Find the matrices {Sgc)}f=1 encoding the con-
nectivity between the observed nodes O for all of the K
graphs, given the O x M;, matrices {Xgok)}le collecting the
signal values at the observed nodes under the assumptions
that:

(AS1) The number of observed nodes is considerably larger
than the number of hidden nodes, i.e., O > H.

(AS2) The columns of X¥) are independent realizations of a
zero mean multivariate Gaussian distribution N'(0, (S(®))~1),
(AS3) The distance between the K graphs is small according
to some metric d(S™*) (),

Learning the topology encoded in the GSOs {Sg)}kK:1
while accounting for the influence of hidden nodes is an ill-
conditioned problem since there are no observations from the
nodes in H. Therefore, (AS1) ensures the tractability of the
problem by assuming that most of the nodes are observed.
Second, (AS2) establishes a connection between the unknown
graph G*) and the signals collected in X*) via a GMRF
model. However, although this assumption involves the whole
matrices X(*), only the submatrices ch) are observed. A sim-
ilar problem arises with (AS3). The last assumption guarantees
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that the K graphs are closely related so we can harness this
relation in a joint graph learning algorithm. Nonetheless, how
to exploit the similarity between subgraphs whose nodes are
not being observed is not a trivial question.

To address these issues, in the following, we leverage the
block structure introduced in (2) to model how the presence
of the hidden nodes carries over to the assumptions (AS1) and
(AS2), and then we leverage the resulting relations to solve
the joint graph learning problem with hidden variables via an
optimization problem.

A. Joint graph learning as an optimization problem

Let us start by modeling how the presence of hidden
variables impacts the GMRF assumption (AS2), which is fun-
damental for the graph learning problem at hand. Recall that
the GMRF assumption implies that the mapping between the
covariance matrix and the GSO is given by C*) = (S(¥))~1
Then, due to the presence of hidden nodes, we only have
access to the observed sampled covariance matrix CEP and
hence, we are interested in establishing a relation between the
matrices Sé) and C(k) To that end, similar to [29], [32], we
leverage the block structure of Co) and SSQ ), and employ the
Schur complement to obtain the following expression

(CS") " =887 —spu(si) sk =85’ P 3)
Since all the blocks of the GSO associated with hidden nodes
are unknown, we [ift the problem by defining the matrices
Pk = g )(S( ))=18*) ¢ ROXO_ These matrices capture
the influence of the hidden nodes and, since they involve
the product of the H x H matrices ng ), from (AS1) it
follows that the matrices P(*) are low-rank matrices such that
rank(P(*)) < H. Furthermore, we can leverage these matrices
to harness the graph similarity (AS3) between hidden nodes,
as we will explain in more detail later.

Then, a reasonable approach to tackle Problem 1 is to
modify the regularized maximum likelihood estimator from
(1) based on the aforementioned considerations. This result in

the non-convex optimization problem

min

K
3t ((sg’” —P<k>)€:§9’“>) “log det(S%) —p®))

Regarding (AS3), to harness the similarity of the K graphs
on the whole GSOs (instead of only on the observed blocks),
the objective function in (4) includes two distances. Inspired
by other standard joint inference approaches [26], we capture
the similarity between the observed GSOs via the function
ds(-,-). Then, the function dp(-, ) captures the graph similar-
ity between the unobserved blocks of the GSOs by minimizing
the distance between the matrices P(*). This important dis-
tinction allows us to incorporate additional structure reducing
the degrees of freedom and rendering the problem more
manageable.

While there are several ways of measuring graph similarity,
in this work we focus on the commonly used assumption
that the K graphs present a similar support [13], [26]. The
influence on the observed nodes is straightforward since such
an assumption implies that the sparsity pattern of the matrices
sg’“) is similar, so we can set

ds(S% 8%y = SEo.

sy — )

On the other hand, to select an approprlate function dp(-,-)
we recall that P(®) = 8% (S ) 13*) . From this expression,
it follows that the submatrices ng and ng()g determine the
sparsity pattern of the matrices P(*), and hence, the graph
similarity assumption also implies that the sparsity pattern of
the matrices P(*) has to be similar across the different graphs.
Therefore, we select the function

dp(P®), PH)) = |p*) — (6)

Although the resulting distance is simple, it builds upon the
known structure of the matrices {P(*}X | to harness the
similarity assumption over hidden nodes.

Once the graph similarity distance is set, the final ingredient
to approach the joint graph learning problem in the presence of
hidden nodes is to deal with the non-convexity of (4). The non-
convexity of the optimization problem arises from the presence
of the ¢y norm and the rank constraint. Following the classical
approach in the literature, we replace the £y, norm by its convex
surrogate the /1 norm, and instead of setting a maximum value
for the rank of each P(k), we minimize its nuclear norm. This
result in the following convex optimization problem

P o

(s Py . X (k) p k) (k) (*) _pk)
" min Y ((so _pned )—logdet(S )
+ pi[1So [l {s§) P 1T
+ 3 prards (88,887 + Buardp (PR, PED) + pelISE Iy + Bl PH.
k<k’ (k) _ gk (k) _p(k)
+ D prwl[So” —So 11+ Bk [P =Py
s. t. P® = 0; s® _pH 0, 8P e, k; o

rank(P(k)) <H. 4)

First, note that the maximum likelihood terms involve the
expression Sggk) — P®) to account for the influence of hid-
den nodes in assumption (AS2). Second, the rank constraint
rank(P(®)) < H captures the fact that the matrices P(*)
involve the multiplication by H x H matrices. Then, the
£y promotes sparsity on the estimated GSOs and the set S
represents the set of admissible GSOs; see [11].
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s. t. P® 0. s® _p® . s ¢ g

(N
where HSEf) l1 denotes the ¢; norm of the vectorized form of
(k)

o, and |[P®)||, denotes the nuclear norm of P(*),

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms over both synthetic and real-world graphs. The
code related to the implementation of our graph learning
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algorithm and the code for all the simulations presented in
this paper is available in GitHub!.

The results of the experiments conducted are shown in
Fig. 1, where we compare the estimated graphs obtained with
our algorithm in (7), denoted as “Joint-Hid” in the legend, with
other popular graphical models. The algorithms considered
as baselines are: (i) the graphical Lasso algorithm, denoted
as “GL” [21]; (ii) group graphical Lasso, a variant of the
graphical Lasso algorithm modified to jointly estimate several
related graphs that is denoted as “GGL” [26]; and (iii) latent-
variable graphical Lasso, a variant of graphical Lasso that
accounts for the presence of hidden nodes that is denoted as
“LVGL” [29]. Then, to prevent additional errors associated
with the scale ambiguity that often appears in graph learning
algorithms, we consider the following mean error metric
2

i K Sgc) - Sgc) (8)
KES118W1e 188711k || -

where Sék) and ng) respectively denote the estimated and
the true observed GSO. The error reported in the experiments
is the average of 100 independent realizations. The different
experiments and the obtained results are detailed next.

Test case 1. We start by assessing the benefits of implementing
a joint graph learning approach. The results are depicted in
Fig. 1a, where the x-axis shows the number of related graphs
that need to be estimated and the y-axis the error computed
as in (8). The first graph G(1) is generated as an Erdés-Rényi
(ER) with NV = 20 nodes and a link probability of p = 0.2
and the remaining K — 1 graphs are generated by randomly
rewiring a fix number of edges. Among the 20 nodes, H = 2
nodes are selected as hidden nodes according to a uniform
distribution so only O = 18 nodes are observed. Then, for
each graph we create M, = 200 graph signals drawn from a
multivariate Gaussian distribution A/(0, (S(*))~1). From the
results in Fig. la, we observe that the error of “Joint-Hid”
and “GGL” drops as the number of related graphs increases,
showcasing the benefit of the joint graph learning approach. In
addition, we also observe the importance of accounting for the
presence of hidden variables since “LVGL” outperforms both
“GL” and “GGL” when the number of graphs being estimated
is small. Finally, we remark that the “Joint-Hid” algorithm
outperforms the other alternatives, which was expected since
it considers both the influence of hidden nodes and the joint
estimation of the graphs.

Test case 2. The second experiment compares the performance
of different algorithms as the number of observed signals
increases. The results are depicted in Fig. 1b where the x-
axis shows the number of samples M}, which is the same
for the K = 4 graphs. In this case, the graphs considered
are small world (SW) graphs [33] with N = 20 nodes, each
node is connected to 3 neighbors, and the rewiring probability
is p 0.15. From the 20 nodes, O = 18 are observed

Thttps://github.com/reysam93/hidden_joint_gaussian_inf
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nodes while the remaining H = 2 stay hidden. The results
in Fig. 1b show that the performance of all the algorithms
is similar when the number of signals is small but, as more
signals are available, the proposed “Joint-Hid” method swiftly
outperforms the alternatives. On the opposite side, the “GL”
method requires a larger amount of signals to obtain an
error below 0.1. As a result, this experiment highlights that
following a joint approach that takes into account the hidden
variables allows more efficient usage of the available signals,
rendering a smaller error with fewer observed signals.

Test case 3. Finally, we close the numerical evaluation by
studying the influence of the number of hidden nodes. In this
case, we employ K = 4 real-world graphs extracted from the
network of students of the University of Ljubljana dataset>. All
the graphs are composed of the same set of 32 nodes, which
represent students, and the different networks capture different
types of interactions among the students. The graph signals
have been generated according to a GMREF as in the previous
experiments. The error as the number of observed nodes
increases (and hence, the number of hidden nodes becomes
smaller), is illustrated in Fig. 1c. Looking at the figure, it is
clear that the proposed “Joint-Hid” algorithm outperforms the
other alternatives. Moreover, we note that, as the number of
hidden nodes gets closer to 0, the performances of “GL” and
“LVGL” seems to converge. The same happens with “GGL”
and “Joint-Hid”. Interestingly, this behavior suggests that no
evident prejudice follows from accounting for hidden nodes
when all the nodes are being observed.

V. CONCLUSIONS

In this paper, we approached the challenging task of
joint graph learning of several closely related graphs in the
presence of hidden nodes. To establish a relation between
the observed signals and the unknown graphs, we assumed
that the signals were drawn from a GMRF model, i.e.,
X®*E) ~ N(0,(S®)~1). Because the presence of hidden
nodes renders the problem ill-conditioned, we further assumed
that the number of observed nodes is much larger than the
number of hidden nodes (O > H) to ensure the tractability
of the problem. Then, we modified the GMRF assumption to
account for the hidden nodes by exploiting the block structure
of S*) and C(k), resulting in the definition of the low-
rank matrices P(®), Moreover, after studying the definition
of these matrices, we arrived at the conclusion that we could
harness the graph similarity between blocks of S(*) associated
with hidden nodes by estimating matrices P(*) with a similar
sparsity pattern. This observation allowed us to leverage the
graph similarity on the whole graphs. Finally, we presented a
convex algorithm employing the ¢; norm and the nuclear norm
as convex surrogates for the £y norm and the matrix rank. The
performance of the proposed algorithm was compared with
other popular Gaussian graphical models over synthetic and
real-world graphs.

2The original data can be found at hitp://vladowiki.fmf.uni-1j.si/doku.php?id=
pajek:data:pajek:students
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Fig. 1: Mean error of the estimated matrices S(k) through several algorithms and in different types of graphs. The error is
computed according to (8) and we report the mean of 100 independent realizations. a) Graphs being estimated are ER graphs
with N = 20 nodes and p = 0.15. b) Graphs are drawn from an SW random graph model with N = 20 nodes, 3 neighbors
per node, and a rewiring probability of p = 0.15. c) Graphs are obtained from the students of Ljubljana dataset.
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