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AbstractÐGraph learning problems are typically approached
by focusing on learning the topology of a single graph when
signals from all nodes are available. However, many contempo-
rary setups involve multiple related networks and, moreover, it is
often the case that only a subset of nodes is observed while the
rest remain hidden. Motivated by this, we propose a joint graph
learning method that takes into account the presence of hidden
(latent) variables. Intuitively, the presence of the hidden nodes
renders the inference task ill-posed and challenging to solve, so we
overcome this detrimental influence by harnessing the similarity
of the estimated graphs. To that end, we assume that the observed
signals are drawn from a Gaussian Markov random field with
latent variables and we carefully model the graph similarity
among hidden (latent) nodes. Then, we exploit the structure
resulting from the previous considerations to propose a convex
optimization problem that solves the joint graph learning task by
providing a regularized maximum likelihood estimator. Finally,
we compare the proposed algorithm with different baselines and
evaluate its performance over synthetic and real-world graphs.

Index TermsÐGraph learning, network topology inference,
Gaussian graphical models, latent variables, multi-layer graphs

I. INTRODUCTION

The rising popularity of graph-based methods to deal

with data defined over irregular domains has propelled the

development of graph learning algorithms [1]±[3]. Indeed,

the problem of graph learning, which seeks to learn the

topology of a graph from a set of nodal observations, is

among the most active research areas of graph signal pro-

cessing (GSP), a field devoted to the development of tools

for processing graph signals [4]±[7]. Fundamental to learning

the topology of the graph is assuming that the (statistical)

properties of the observed signals depend on the unknown

topology, with different assumptions leading to different graph

learning methods. Noteworthy examples of these methods

include correlation networks [8], sparse structural equation

models [9], [10], graph stationarity models [11]±[13], smooth

(local total variation) models [14]±[16], and models based

on more sophisticated graph-topology priors [17], [18], just

to name a few. Of particular interest for the paper at hand

are Gaussian graphical models, a popular and flexible family

of graph learning algorithms that builds upon the assumption

that the observed signals are drawn from a Gaussian Markov

random field (GMRF) [19]±[24].
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Despite the growing interest aroused by the graph learning

problem, the focus is typically placed on learning an individual

(single) graph under the assumption that observations from all

nodes are available. Nonetheless, many contemporary scenar-

ios such as social networks or brain analytics involve multiple

related networks, each of them with a subset of available

signals. When several related networks are available, we can

harness the graph similarity to boost the performance of the

graph learning algorithms [13], [25]±[28]. Moreover, in many

relevant scenarios, we only have access to observations from a

subset of nodes, while the rest remain unobserved or hidden.

Intuitively, ignoring the presence of hidden variables will

hinder the performance of the graph learning algorithms but, at

the same time, accounting for the influence of the hidden nodes

renders the graph learning task an ill-posed problem. This

challenging setting has been studied in the context of learning

a single graph [29]±[32]. However, modeling the influence of

hidden nodes in the context of joint graph learning becomes

even more critical since it is unclear how to measure the graph

similarity between nodes that remain unobserved.

Motivated by the previous discussion, we propose a convex

optimization framework to solve the joint graph learning prob-

lem in the presence of hidden variables under the assumption

that the observed signals are drawn from a GMRF. The main

motivation is to exploit the known benefits of joint network

topology inference methods to improve the performance of the

challenging setup resulting from the presence of hidden vari-

ables. Nonetheless, to put forward such an approach we need

to carefully model the influence of the hidden nodes in (i) the

assumption of GMRF signals that relates the observations and

the graph; and (ii) the similarity of the graphs being estimated.

This is achieved by carefully leveraging the structure inherent

to the presence of hidden nodes into a regularized maximum

likelihood estimator.

Even though the motivation is similar, the resulting al-

gorithm differs substantially from other related works such

as [28]. The main difference lies in the assumption relating

the observed signals and the graph topology, which results

in modeling the influence of the hidden nodes in a different

way, and hence, the structure of the problem is completely

different. Furthermore, the different structure of the problem

at hand also requires a new approach for exploiting the graph

similarity assumption when hidden nodes are involved.

The remainder of the paper is as follows. Section II intro-

duces fundamental concepts about GSP and Gaussian graphi-

cal models. Section III states the joint graph learning problem

with hidden nodes and presents the proposed solution. Finally,
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Section IV offers a numerical evaluation of the proposed

algorithm and Section V provides some concluding remarks.

II. GRAPH LEARNING FROM GAUSSIAN OBSERVATIONS

A. Fundamentals of GSP

Graphs. Let G = (V, E) denote an undirected graph described

by the set of N nodes V , and the set of links E . The elements

in E are unordered pairs (i, j) with i, j ∈ V and such that

(i, j) ∈ E implies that nodes i and j are connected. For any

graph G, the adjacency matrix A ∈ R
N×N is a sparse matrix

encoding the connectivity of the graph with Aij = 0 if and

only if (i, j) ̸∈ E . Then, the value Aij of the non-zero entries

captures the strength of the link between the nodes i and j.

Graph signals and graph-shift operator. In addition to

graphs, we are also concerned with graphs signals, a family of

signals defined on the set of nodes V . Formally, a graph signal

can be denoted as a vector x = [x1, ..., xN ]⊤ ∈ R
N , where xi

denotes the signal value observed at node i. Because the signal

is defined on top of the graph, the key assumption in GSP is

that the properties of x are related to the topology of G. In

this sense, if the graph encodes similarity between nodes, then

the signal values at two neighboring nodes are expected to be

close. Of particular interest when processing graph signals is

the graph-shift operator (GSO), a linear operator applied to

graph signals that captures the topology of the graph [4]. The

GSO is represented by the matrix S ∈ R
N×N whose entries

satisfy that Sij ̸= 0 only if i = j or (i, j) ∈ E . Typical choices

for the GSO are the adjacency matrix A, the combinatorial

graph Laplacian L := diag(A1) − A, or their normalized

counterparts [4], [5].

B. Gaussian graphical models

Arguably, Gaussian graphical models are one of the most

commonly used graph learning methods [19], [21], [22]. The

main assumption adopted by these models is that the observed

signals are drawn from a multivariate Gaussian distribution

where the zeros in the inverse of the covariance correspond

to edges not present in E . Such a distribution is commonly

known as a Gaussian Markov random field (GMRF), and the

inverse of the covariance is referred to as the precision matrix.

Upon setting the positive definite precision matrix to be the

GSO S, the GMRF assumption implies that x is sampled from

N (0,S−1). In other words, if we denote the covariance of x

as C := E[xx⊤], it follows that the mapping between C and

S is given by C = S
−1. Then, Gaussian graphical models

propose to estimate the graph topology encoded in G via the

regularized maximum likelihood estimator

max
S

log det(S)− tr(ĈS)− λr(S) (1)

s. t. S ⪰ 0,

where Ĉ denotes the sample covariance matrix, and the

term r(S) promotes desired properties on S. Indeed, for the

particular case when r(S) is set to r(S) = ∥S∥1, the estimator

in (1) yields the celebrated graphical Lasso algorithm [21],

[26].

III. JOINT GRAPH LEARNING WITH HIDDEN NODES

To formally state the joint graph learning problem in the

presence of hidden nodes some definitions are in order. Let

us consider that there are K unknown graphs {G(k)}Kk=1, all

of them defined over a common set of nodes V of cardinality

N . For the k-th graph, we have access to Mk graph signals

collected in the matrix X
(k) := [x1, ...,xMk

]⊤ ∈ R
N×Mk .

The presence of hidden nodes implies that only a subset of

nodes O ⊂ V of cardinality O is observed. Meanwhile, the

H = N −O remaining nodes collected in the set H = V \O
stay unobserved. Furthermore, consider that the sets O and H
are the same for the K graphs. Without loss of generality, let

us assume that the nodes in O correspond to the first nodes

in the graph, so the signal values associated with the observed

nodes correspond to the first O rows of X(k), which we denote

as X
(k)
O . Then, let us define the sample covariance matrix of

the k-th graph as Ĉ
(k) := 1

Mk

X
(k)(X(k))⊤. The distinction

between observed and hidden nodes endows the GSO and the

sampled covariance matrix with the following block structure

S =

[

SO SOH

SHO SH

]

, Ĉ =

[

ĈO ĈOH

ĈHO ĈH

]

. (2)

The O×O submatrices S
(k)
O and Ĉ

(k)
O respectively denote the

block of the GSO capturing the connection between observed

nodes and the block of the sample covariance of the signal

values at the observed nodes (i.e., the sample covariance of

XO). On the other hand, the remaining blocks of S and Ĉ

involve edges and covariances between hidden nodes.

Based on the previous definitions, the problem of joint graph

learning in the presence of hidden nodes is formally stated

next.

Problem 1. Find the matrices {S
(k)
O }Kk=1 encoding the con-

nectivity between the observed nodes O for all of the K

graphs, given the O×Mk matrices {X
(k)
O }Kk=1 collecting the

signal values at the observed nodes under the assumptions

that:

(AS1) The number of observed nodes is considerably larger

than the number of hidden nodes, i.e., O ≫ H .

(AS2) The columns of X(k) are independent realizations of a

zero mean multivariate Gaussian distribution N (0, (S(k))−1).
(AS3) The distance between the K graphs is small according

to some metric d(S(k),S(k′)).

Learning the topology encoded in the GSOs {S
(k)
O }Kk=1

while accounting for the influence of hidden nodes is an ill-

conditioned problem since there are no observations from the

nodes in H. Therefore, (AS1) ensures the tractability of the

problem by assuming that most of the nodes are observed.

Second, (AS2) establishes a connection between the unknown

graph G(k) and the signals collected in X
(k) via a GMRF

model. However, although this assumption involves the whole

matrices X(k), only the submatrices X
(k)
O are observed. A sim-

ilar problem arises with (AS3). The last assumption guarantees
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that the K graphs are closely related so we can harness this

relation in a joint graph learning algorithm. Nonetheless, how

to exploit the similarity between subgraphs whose nodes are

not being observed is not a trivial question.

To address these issues, in the following, we leverage the

block structure introduced in (2) to model how the presence

of the hidden nodes carries over to the assumptions (AS1) and

(AS2), and then we leverage the resulting relations to solve

the joint graph learning problem with hidden variables via an

optimization problem.

A. Joint graph learning as an optimization problem

Let us start by modeling how the presence of hidden

variables impacts the GMRF assumption (AS2), which is fun-

damental for the graph learning problem at hand. Recall that

the GMRF assumption implies that the mapping between the

covariance matrix and the GSO is given by C
(k) = (S(k))−1.

Then, due to the presence of hidden nodes, we only have

access to the observed sampled covariance matrix Ĉ
(k)
O , and

hence, we are interested in establishing a relation between the

matrices S
(k)
O and Ĉ

(k)
O . To that end, similar to [29], [32], we

leverage the block structure of Ĉ
(k)
O and S

(k)
O , and employ the

Schur complement to obtain the following expression

(Ĉ
(k)
O )−1 = S

(k)
O − S

(k)
OH(S

(k)
H )−1

S
(k)
HO = S

(k)
O −P

(k). (3)

Since all the blocks of the GSO associated with hidden nodes

are unknown, we lift the problem by defining the matrices

P
(k) := S

(k)
OH(S

(k)
H )−1

S
(k)
HO ∈ R

O×O. These matrices capture

the influence of the hidden nodes and, since they involve

the product of the H × H matrices S
(k)
H , from (AS1) it

follows that the matrices P(k) are low-rank matrices such that

rank(P(k)) ≤ H . Furthermore, we can leverage these matrices

to harness the graph similarity (AS3) between hidden nodes,

as we will explain in more detail later.

Then, a reasonable approach to tackle Problem 1 is to

modify the regularized maximum likelihood estimator from

(1) based on the aforementioned considerations. This result in

the non-convex optimization problem

min
{S

(k)
O

,P(k)}K

k=1

K
∑

k=1

tr
(

(S
(k)
O −P

(k))Ĉ
(k)
O

)

−log det(S
(k)
O −P

(k))

+ ρk∥S
(k)
O ∥0

+
∑

k<k′

ρkk′dS(S
(k)
O ,S

(k′)
O ) + βkk′dP (P

(k),P(k′))

s. t. P
(k)

≽ 0; S
(k) −P

(k) ≻ 0; S
(k)
O ∈ S,

rank(P(k)) ≤ H. (4)

First, note that the maximum likelihood terms involve the

expression S
(k)
O − P

(k) to account for the influence of hid-

den nodes in assumption (AS2). Second, the rank constraint

rank(P(k)) ≤ H captures the fact that the matrices P
(k)

involve the multiplication by H × H matrices. Then, the

ℓ0 promotes sparsity on the estimated GSOs and the set S
represents the set of admissible GSOs; see [11].

Regarding (AS3), to harness the similarity of the K graphs

on the whole GSOs (instead of only on the observed blocks),

the objective function in (4) includes two distances. Inspired

by other standard joint inference approaches [26], we capture

the similarity between the observed GSOs via the function

dS(·, ·). Then, the function dP (·, ·) captures the graph similar-

ity between the unobserved blocks of the GSOs by minimizing

the distance between the matrices P
(k). This important dis-

tinction allows us to incorporate additional structure reducing

the degrees of freedom and rendering the problem more

manageable.

While there are several ways of measuring graph similarity,

in this work we focus on the commonly used assumption

that the K graphs present a similar support [13], [26]. The

influence on the observed nodes is straightforward since such

an assumption implies that the sparsity pattern of the matrices

S
(k)
O is similar, so we can set

dS(S
(k)
O ,S

(k′)
O ) = ∥S

(k)
O − S

(k′)
O ∥0. (5)

On the other hand, to select an appropriate function dP (·, ·)

we recall that P(k) = S
(k)
OH(S

(k)
H )−1

S
(k)
HO. From this expression,

it follows that the submatrices S
(k)
OH and S

(k)
HO determine the

sparsity pattern of the matrices P
(k), and hence, the graph

similarity assumption also implies that the sparsity pattern of

the matrices P(k) has to be similar across the different graphs.

Therefore, we select the function

dP (P
(k),P(k′)) = ∥P(k) −P

(k′)∥0. (6)

Although the resulting distance is simple, it builds upon the

known structure of the matrices {P(k)}Kk=1 to harness the

similarity assumption over hidden nodes.

Once the graph similarity distance is set, the final ingredient

to approach the joint graph learning problem in the presence of

hidden nodes is to deal with the non-convexity of (4). The non-

convexity of the optimization problem arises from the presence

of the ℓ0 norm and the rank constraint. Following the classical

approach in the literature, we replace the ℓ0 norm by its convex

surrogate the ℓ1 norm, and instead of setting a maximum value

for the rank of each P
(k), we minimize its nuclear norm. This

result in the following convex optimization problem

min
{S

(k)
O

,P(k)}K

k=1

K
∑

k=1

tr
(

(S
(k)
O −P

(k))Ĉ
(k)
O

)

−log det(S
(k)
O −P

(k))

+ ρk∥S
(k)
O ∥1 + βk∥P

(k)∥∗

+
∑

k<k′

ρkk′∥S
(k)
O −S

(k′)
O ∥1+βkk′∥P(k)−P

(k′)∥1

s. t. P
(k)

≽ 0; S
(k) −P

(k) ≻ 0; S
(k)
O ∈ S, (7)

where ∥S
(k)
O ∥1 denotes the ℓ1 norm of the vectorized form of

S
(k)
O , and ∥P(k)∥∗ denotes the nuclear norm of P(k).

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

algorithms over both synthetic and real-world graphs. The

code related to the implementation of our graph learning
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algorithm and the code for all the simulations presented in

this paper is available in GitHub1.

The results of the experiments conducted are shown in

Fig. 1, where we compare the estimated graphs obtained with

our algorithm in (7), denoted as ªJoint-Hidº in the legend, with

other popular graphical models. The algorithms considered

as baselines are: (i) the graphical Lasso algorithm, denoted

as ªGLº [21]; (ii) group graphical Lasso, a variant of the

graphical Lasso algorithm modified to jointly estimate several

related graphs that is denoted as ªGGLº [26]; and (iii) latent-

variable graphical Lasso, a variant of graphical Lasso that

accounts for the presence of hidden nodes that is denoted as

ªLVGLº [29]. Then, to prevent additional errors associated

with the scale ambiguity that often appears in graph learning

algorithms, we consider the following mean error metric

1

K

K
∑

k=1

∥

∥

∥

∥

∥

Ŝ
(k)
O

∥Ŝ
(k)
O ∥F

−
S
(k)
O

∥S
(k)
O ∥F

∥

∥

∥

∥

∥

2

F

, (8)

where Ŝ
(k)
O and S

(k)
O respectively denote the estimated and

the true observed GSO. The error reported in the experiments

is the average of 100 independent realizations. The different

experiments and the obtained results are detailed next.

Test case 1. We start by assessing the benefits of implementing

a joint graph learning approach. The results are depicted in

Fig. 1a, where the x-axis shows the number of related graphs

that need to be estimated and the y-axis the error computed

as in (8). The first graph G(1) is generated as an Erdős-RÂenyi

(ER) with N = 20 nodes and a link probability of p = 0.2
and the remaining K − 1 graphs are generated by randomly

rewiring a fix number of edges. Among the 20 nodes, H = 2
nodes are selected as hidden nodes according to a uniform

distribution so only O = 18 nodes are observed. Then, for

each graph we create Mk = 200 graph signals drawn from a

multivariate Gaussian distribution N (0, (S(k))−1). From the

results in Fig. 1a, we observe that the error of ªJoint-Hidº

and ªGGLº drops as the number of related graphs increases,

showcasing the benefit of the joint graph learning approach. In

addition, we also observe the importance of accounting for the

presence of hidden variables since ªLVGLº outperforms both

ªGLº and ªGGLº when the number of graphs being estimated

is small. Finally, we remark that the ªJoint-Hidº algorithm

outperforms the other alternatives, which was expected since

it considers both the influence of hidden nodes and the joint

estimation of the graphs.

Test case 2. The second experiment compares the performance

of different algorithms as the number of observed signals

increases. The results are depicted in Fig. 1b where the x-

axis shows the number of samples Mk, which is the same

for the K = 4 graphs. In this case, the graphs considered

are small world (SW) graphs [33] with N = 20 nodes, each

node is connected to 3 neighbors, and the rewiring probability

is p = 0.15. From the 20 nodes, O = 18 are observed

1https://github.com/reysam93/hidden joint gaussian inf

nodes while the remaining H = 2 stay hidden. The results

in Fig. 1b show that the performance of all the algorithms

is similar when the number of signals is small but, as more

signals are available, the proposed ªJoint-Hidº method swiftly

outperforms the alternatives. On the opposite side, the ªGLº

method requires a larger amount of signals to obtain an

error below 0.1. As a result, this experiment highlights that

following a joint approach that takes into account the hidden

variables allows more efficient usage of the available signals,

rendering a smaller error with fewer observed signals.

Test case 3. Finally, we close the numerical evaluation by

studying the influence of the number of hidden nodes. In this

case, we employ K = 4 real-world graphs extracted from the

network of students of the University of Ljubljana dataset2. All

the graphs are composed of the same set of 32 nodes, which

represent students, and the different networks capture different

types of interactions among the students. The graph signals

have been generated according to a GMRF as in the previous

experiments. The error as the number of observed nodes

increases (and hence, the number of hidden nodes becomes

smaller), is illustrated in Fig. 1c. Looking at the figure, it is

clear that the proposed ªJoint-Hidº algorithm outperforms the

other alternatives. Moreover, we note that, as the number of

hidden nodes gets closer to 0, the performances of ªGLº and

ªLVGLº seems to converge. The same happens with ªGGLº

and ªJoint-Hidº. Interestingly, this behavior suggests that no

evident prejudice follows from accounting for hidden nodes

when all the nodes are being observed.

V. CONCLUSIONS

In this paper, we approached the challenging task of

joint graph learning of several closely related graphs in the

presence of hidden nodes. To establish a relation between

the observed signals and the unknown graphs, we assumed

that the signals were drawn from a GMRF model, i.e.,

X
(k) ∼ N (0, (S(k))−1). Because the presence of hidden

nodes renders the problem ill-conditioned, we further assumed

that the number of observed nodes is much larger than the

number of hidden nodes (O ≫ H) to ensure the tractability

of the problem. Then, we modified the GMRF assumption to

account for the hidden nodes by exploiting the block structure

of S
(k) and Ĉ

(k), resulting in the definition of the low-

rank matrices P
(k). Moreover, after studying the definition

of these matrices, we arrived at the conclusion that we could

harness the graph similarity between blocks of S(k) associated

with hidden nodes by estimating matrices P
(k) with a similar

sparsity pattern. This observation allowed us to leverage the

graph similarity on the whole graphs. Finally, we presented a

convex algorithm employing the ℓ1 norm and the nuclear norm

as convex surrogates for the ℓ0 norm and the matrix rank. The

performance of the proposed algorithm was compared with

other popular Gaussian graphical models over synthetic and

real-world graphs.

2The original data can be found at http://vladowiki.fmf.uni-lj.si/doku.php?id=

pajek:data:pajek:students
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Fig. 1: Mean error of the estimated matrices Ŝ
(k) through several algorithms and in different types of graphs. The error is

computed according to (8) and we report the mean of 100 independent realizations. a) Graphs being estimated are ER graphs

with N = 20 nodes and p = 0.15. b) Graphs are drawn from an SW random graph model with N = 20 nodes, 3 neighbors

per node, and a rewiring probability of p = 0.15. c) Graphs are obtained from the students of Ljubljana dataset.
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