
Hierarchical Self-Assembly of ABC-Type Bottlebrush Copolymers
Qingliang Song, Qingshu Dong, Ruiqi Liang, Yazhen Xue, Mingjiang Zhong,* and Weihua Li*

Cite This: https://doi.org/10.1021/acs.macromol.3c00440 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We have performed dissipative particle dynamics
simulations to study the self-assembly of ABC-type bottlebrush
copolymers (BBCPs), one portion of whose backbone is grafted by
pairs of A-blocks and the other portion is grafted by B/C-blocks in
pairs, focusing on the effects of the number of A side chains, the
length of B side chains relative to that of C side chains, and the
rigidity of the backbone on the formation of hierarchical structures.
A number of hierarchical structures with the superstructures
formed by the phase separation between A and B/C-blocks and the
substructures formed by the phase separation between B and C-
blocks are observed. Some hierarchical structures are similar to
those self-assembled by ABC star copolymers, whereas their stable parameter regions of ABC-type BBCPs are much larger. On the
other hand, the ABC-type BBCPs can also form some novel hierarchical structures that are hard to form in ABC star copolymers.
Though the formation of the A-superstructure and the B-substructure in many hierarchical structures can be independently
controlled, there are also some hierarchical structures in which the transitions of the superstructure and substructures are coupled. In
other words, the A-superstructure changes along with the transformation of the B-substructure for fixed fA. In addition, our results
demonstrate that the rigidity of the backbone has a significant effect on the formation of the hierarchical structure in ABC-type
BBCPs, i.e., a rigid backbone favors the normal arrangement of B-substructures to A-superstructures. Our work not only deepens the
understanding of the self-assembly mechanism of ABC-type BBCPs but also provides helpful guidance for experiments to fabricate
interesting hierarchical structures.

■ INTRODUCTION
The self-assembly of block copolymers has been attracting
intensive interest as it can form a variety of ordered
nanostructures with length scales typically in the range of
10−100 nm.1−4 The self-assembly behavior of the AB diblock
copolymer, which is the simplest block copolymer, is mainly
controlled by two parameters, i.e., the volume fraction of A-
block ( f) and the product χN, where N is the number of
monomers and χ is the Flory−Huggins parameter quantifying
the immiscibility between A and B-blocks. The formation of
the equilibrium structure is dictated by the delicate balance
between the two tendencies of minimizing the interaction
energy and maximizing the chain configurational entropy. As f
decreases from 0.5 to 0, the AB diblock copolymer self-
assembles into a few ordered phases in sequence, mainly
including lamellae, bicontinuous double-gyroid network, a
hexagonal array of cylinders, and a body-centered-cubic lattice
of spheres.5,6

For polymers, one important variable is their controllable
architecture. In particular, as modern synthesis techniques
advance, a large multitude of chain architectures can be
accessed.7−11 Chain architectures have been made full use of to
modulate the properties of polymeric materials. Indeed, the
chain architecture plays an irreplaceable role in controlling the
self-assembly behavior of block copolymers.4,12−14 In the past

few decades, block copolymers with different architectures
have been extensively studied by experiment and theory. Novel
structures were experimentally obtained from the self-assembly
of architecture-engineered block copolymers.15−23 Accord-
ingly, these experimental results promoted theoretical studies
to explore the self-assembly mechanism of these new block
copolymers.24−33 In particular, recent theoretical works have
been devoted to achieving nonclassical ordered structures by
purposely designing the architectures of block copoly-
mers,27,33−39 and great progress has been made. For example,
the spherical phase region has been largely expanded by
tailoring the asymmetric architectures of AB-type block
copolymers, stabilizing complex Frank−Kasper spherical
phases.27,36−38 The synergistic effect of the released packing
frustration and stretched bridging block has been applied to
stabilize many nonclassical low-coordinated phases, such as
simple cubic spheres and square cylinders.40 Encouragingly,
some theoretical predictions have been confirmed. Ahn et al.
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synthesized the ABAB tetrablock copolymer of symmetric
volume fractions and observed a transition sequence from
lamella to cylinder to gyroid and back to lamella along
lengthening the middle B-block, which was predicted by the
self-consistent field theory (SCFT).41 Seo et al. experimentally
confirmed that the phase boundaries of the A(AB)3 copolymer
can be largely tuned by changing the length ratio of the two
different A-blocks.20 The concerted interplay between
experimental and theoretical studies has accelerated the
study on the self-assembly of block copolymers, thereby
deepening the understanding of the self-assembly mechanisms.
One class of chain architectures that has recently emerged

and attracted special research interest in experiments is the
bottlebrush-like polymer.7,8,11,14,29,42−51 The bottlebrush co-
polymer (BBCP) is composed of two or more types of
chemically distinct blocks that are grafted to a backbone.52−54

The conformations of the backbone can be influenced by the
solvent quality55−57 as well as grafting density.58 Usually, the
backbone is densely grafted by side chains and tends to adopt
extended conformations as a result of the strong excluded-
volume effect between side chains, that is, effectively exhibiting
a certain degree of rigidity. The rigidity of the backbone has
been evidenced by the scaling relationship between the
lamellar period D and the contour length L of the backbone
of diblock-type BBCPs, D ∝ L0.9.58,59 The backbone of an AB
diblock-type BBCP is divided into two parts that are grafted by
A and B side chains, respectively. Though some AB diblock-
type BBCPs have been observed to exhibit similar self-
assembly behaviors to conventional AB diblock copolymers,
there is apparently another nontrivial parameter in addition to f
and χN that impacts its self-assembly, i.e., the length ratio of
single A and B side chains.29,60,61 Specifically, the length
asymmetry between single A and B side chains should cause
some additional effect on the spontaneous curvature. It is
worth mentioning that the molecular weight of AB diblock-
type BBCPs can be readily increased by adding side chains
without causing significant entanglement effects. Accordingly,
ordered structures of large domain periods can be self-
assembled by high-molecular-weight BBCPs, which can be
used as photonic crystals8,62−66 or templates of photonic

crystals.67,68 In addition to diblock-type BBCPs, there is
another AB-type BBCP, where A and B side chains are
tethered to the backbone in a Janus-type architecture.11,69−71

Since A and B side chains tend to phase-separate with the
backbone residing at the A/B interface, this new type of BBCP
is referred to as the Janus type. As long as the Janus-type BBCP
contains enough side chains, it can phase-separate into ordered
structures even for very short side chains. Contrary to diblock-
type BBCPs, the Janus-type BBCPs can be used to generate
ordered structures with a very small domain spacing.11,69

Inspired by these unique features of BBCPs, BBCPs with
higher-order structure complexity have been designed and
synthesized. Very recently, Liang et al. developed a multi-
component BBCP containing chemically distinct blocks (A, B,
and C). The A side chains are grafted to one portion of the
backbone, while the B and C side chains are tethered to the
other portion in a Janus-type architecture. The basic design
idea adopted by them is that the self-assembly of the
multicomponent BBCPs can be regarded as the combination
of assemblies by diblock-type BBCP and Janus-type BBCP
(Figure 1a). In other words, the combined architecture of
BBCPs can form a hierarchical structure, whose superstructure
is formed by the phase separation between A-blocks and B/C-
blocks, while the substructure is generated from the phase
separation between B and C-blocks. By changing the ratio of
the number of A side chains to that of B/C side chains as well
as the length ratio of B and C side chains, they experimentally
obtained some intriguing hierarchical structures, including
lamellae-within-lamellae, cylinders-within-lamellae, lamellae-
within-cylinders, and cylinders-out-cylinders47 (Figure 1b1−
b4). The arrangement of the subdomains within the super-
structure for the first three hierarchical structures (Figure
1b1−b3) is relatively straightforward, while that in the last one
(Figure 1b4) is more complicated. Intuitively, the cylinders-
out-cylinders structure should be composed of a hexagonal
array of A-cylinders, in the matrix of which the B-blocks further
aggregate into B-cylinders. Due to the special architecture of
ABC-type BBCPs, the B-cylinders prefer being perpendicular
to the surface of A-cylinders. On the other hand, the B-
cylinders tend to be packed into a hexagonal array to minimize

Figure 1. (a) Schematics illustrating the self-assembly of ABC-type bottlebrush copolymers into cylinders-within-lamellae hierarchical structures.
Since the ABC-type bottlebrush architecture can be seen as the combination of the Janus-type and diblock-type architectures, its self-assembled
structure may be deduced from the self-assembled structures of the two constituent bicomponent bottlebrush copolymers. Red, yellow, and blue
represent A, B, and C components, respectively. (b) Schematics illustrating the possible morphologies of self-assembled ABC-type bottlebrush
copolymers. (c) DPD model of the considered ABC-type bottlebrush copolymer, where red, yellow, blue, and green beads represent A, B, C, and D
(backbone) monomers, respectively. Each D-bead is tethered by a pair of A side chains or by a pair of B and C side chains.
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the packing frustration of C-blocks. The two tendencies make
the arrangement of B-cylinders within the periodic interstitial
space between these hexagonally arranged A-cylinders very
complicated. In experiments, it is also very difficult to clearly
characterize such complex hierarchical structures due to the
small feature size of the substructures. Liang et al. speculated
that the B-cylinders are parallelly oriented and perpendicular to
the surface of A-cylinders (Figure 1b4). Then, they attempted
to use computer simulations to clarify the cylinders-out-
cylinders structure.47 However, their simulations did not
display the parallelly oriented arrangement of B-cylinders in
the cylinders-out-cylinders structure (Figure 1b4); instead,
there was another arrangement of B-cylinders radiating
outward from each A-cylinder (Figure 1b5). In fact, the
ABC-type BBCPs can form a number of complex hierarchical
structures, where the arrangement of their substructures is hard
to infer. In order to explore more complex hierarchical
structures and to fully understand the self-assembly mechanism
of the ABC-type BBCPs, systematic simulation studies are
needed.
The above simple scenario of rationalizing the formation of

the hierarchical structures in the ABC-type BBCPs is based on
the assumption that the backbone is completely rigid. The rigid
backbone has a strong constraint on the packing of the side
chains and thus on the formation of substructures. Reasonably,
if the backbone cannot bend, the B/C interface can only be
oriented perpendicular to the surface of the A-superdomain,
preventing some hierarchical structures (e.g., spheres-within-
lamellae structure) from being formed. However, the backbone
of many BBCPs with the contour length larger than the
persistence length should not be ideally rigid, but semiflexible.
The semiflexibility of the backbone must have a significant role
in the self-assembly behaviors of BBCPs. Therefore, in this
work, we systematically investigate the self-assembly of the
ABC-type BBCPs using dissipative particle dynamics (DPD)
simulations, focusing on the effect of three important factors:
the semiflexibility of the backbone, the number of A side
chains while fixing the total number of side chains, and the
length ratio of B and C side chains.

■ MODEL AND METHOD
We consider a melt composed of n chains of ABC-type BBCPs,
each of which is grafted by 2nA A side chains, nB B side chains,
and nC C side chains.
A Janus fashion between B and C beads is modeled in the

same way as the model used by Salinas-Soto and Liu et al.57,71

To avoid the difference of grafting density, the grafting density
of the backbone that consists of ND D beads is set equal for the
part of the A side chains and that of B/C side chains. That is to
say, each D-bead is tethered with each pair of A side chains or
each pair of B and C side chains. Each A, B, and C side chain
contains NA A beads, NB B beads, and NC C beads, respectively
(Figure 1c). Given the dense grafting of the side chains, the
interactions experienced by the backbone should remain
relatively constant,59 which allows us to ignore the interactions
involving the backbones. Therefore, the backbone beads do
not contribute to the calculation of the volume fractions.47,51

Accordingly, the volume fraction of i-beads (i = A, B and C) is
approximately defined as f i = λni × Ni/(2nA × NA + nB × NB +
nC × NC), where λ = 2 for A side chains, while λ = 1 for B and
C side chains.

DPD simulations are performed in the canonical ensemble.
The time evolution of DPD beads with unit mass is governed
by Newton’s equations of motion72−74
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part is pairwise-additive, repulsive, and short-range with a
cutoff at r = 1.0.
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where rij = ri − rj is the vector pointing from beads j to i, rij = |
rij| denotes the distance between beads i and j, and rîj = rij/|rij|
represents the unit vector pointing from beads j to i.
The repulsive interaction between beads i and j is specified

as aij (i, j = A, B, C, and D). To qualitatively mimic the
immiscibility between different types of monomers in the
current system, the repulsive interaction parameters chosen are
shown by a symmetric matrix,47

=

i

k

jjjjjjjjjjjjjjjjjjjj

y

{
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a

A B C D
A 25 50 50 0
B 50 25 150 0
C 50 150 25 0
D 0 0 0 25

ij

The number density of the beads is fixed as ρ = 3 so that aij
is related to the Flory−Huggins parameter χ by the expression
aij = 25 + 3.27χij.74
The dissipative force Fij

D is proportional to the relative
velocity and takes the form

= ·w rF r v r( )( )ij ij ij ij ij
D D

(4)

where vij = vi − vj is the relative velocity and γ is the friction
coefficient. The random force Fij

R acts as a heat source to
equilibrate the thermal motion of unresolved scales and takes
the form

= w rF r( )ij ij ij ij
R R

(5)

where σ is the noise level controlling the intensity of the
random force and is set to be 3.74 θij(t) is a randomly
fluctuating variable with zero mean and unit variance, satisfying
Gaussian statistics

=t( ) 0ij (6)

= +t t t t( ) ( ) ( ) ( )ij kl ik jl il jk (7)

The random force is related to the dissipative force so that
they satisfy the fluctuation−dissipation relation73

= k T22
B (8)
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The weight functions wD and wR provide the range of
interactions for DPD particles with a common choice

= [ ] =
<l
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r r
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(1 ) , ( 1)

0, ( 1)
D R 2

2

(9)

Both dissipative force and random force act along the line of
centers so that the linear and angular momenta are
conservative; the combined effect of these two forces is that
of a thermostat, ensuring that the simulation is performed in a
canonical ensemble.
Each pair of beads on the polymeric chain is connected by a

harmonic spring potential as

=V r k r r( )
1
2

( )bond b b
2

(10)

where rb is the reference length, r is the distance between the
beads, and kb is the spring constant. The two constants are set
as rb = 0 and kb = 4 for the conventional blocks.75 It should be
noted that the calculation of the nonbonded conservative
forces is also applied to the bonded beads.
Park et al.58 used molecular dynamics (MD) to investigate

the effect of grafting density on the domain spacing of BBCPs
and their self-assembly; the approach used by them can induce
backbone stiffness naturally. Due to the use of “soft potential”
in the DPD model, which allows overlap between the coarse-
grained beads, the evolution toward the thermodynamic
equilibrium states is faster than “hard potential” model.
However, the excluded-volume effect of the side chains cannot
be captured by such a “soft potential” model of DPD. The
steric hindrance-induced stiffness of the backbone can be
incorporated by modeling it as a wormlike chain.59,76 The fixed
contour length allows the wormlike chain to handle highly
extended conformations;59 thus, the semiflexibility of the
backbone is introduced by imposing a harmonic angle
potential between the adjacent bonds

=V k( )
1
2

( )angle a 0
2

(11)

where θ0 is the equilibrium angle and is set as π. The potential
strength ka dictates the rigidity of the backbone, and ka = 0, 2,
and 10 are considered in this work.
The reduced unit of dimensionless time of the system is
= R m k T/c B . The velocity−Verlet integration scheme is

applied to integrate the equations of motion. The time step is
set to be 0.01τ to achieve a balance between simulation
stability and performance.
All of the simulated BBCP molecules are randomly

positioned in the simulation box and are simulated 2 × 104τ
to generate a disordered state. The disordered state is
generated by setting a quite low value of the nonbonded
interactions in the early stage of the simulation. To facilitate
the formation of equilibrium hierarchical structures with
multidimensional periodicity, the annealing is performed in a
stepwise manner similar to the method by Horsch et al.,77

which used the “hard potential”. We found that the annealing
in the “soft potential” system can reduce defects and avoid
kinetic trapping efficiently in a relatively rigid system that
contains cubic cage-like “monomers”,39 but the efficiency of
the annealing may depend on the simulated system.
Each simulation of at least 5.4 × 105τ is performed to anneal

each sample toward the equilibrium morphology. In addition,

for a given set of parameters, we run the DPD simulations with
different cubic box sizes between 20 and 40 as well as different
initial conditions. The equilibrium morphology is determined
when different initial conditions lead to the same morphology.
Feng et al. recently developed a method to search for the bulk
periodicity of hexagonal cylinders and lamellae.78,79 However,
the method may not be applicable to the current three-
component system, which has multidimensional periodicity.
Our simulations are performed with the GALAMOST (version
4.0.1) simulation package, which was developed and
maintained by Zhu.80

Since the hierarchical structures are hard to be clearly
identified from instantaneous configurations due to thermal
fluctuations, we calculate the local concentration by perform-
ing time average on the instantaneous configurations of bead
positions within one period where the morphology does not
change notably. Specifically, the box is divided into 64 × 64 ×
64 lattices. First, we count the number of monomers α on
lattice r, mα = ∑n=1

Mα H(r − ri), where Mα is the total number of
monomers α contained in the whole simulation box. H(r − ri)
is a step function, defined as H(r − ri) = 1 if |r − ri| ≤ rcut and
H(r − ri) = 0 otherwise. Then, the local concentration of
component α on lattice r is computed by ϕ(r) = Tα(r)/[TA(r)
+ TB(r) + TC(r)].

■ RESULTS AND DISCUSSION
For the ABC-type BBCPs, there are too many parameters to
explore. To give prominence to some important factors,
including the rigidity parameter ka of the backbone, the
numbers of various side chains, and the length ratio between B
and C side chains, we purposely fix some parameters. In our
DPD model, we fix the length of the backbone, i.e., the number
of D beads, as 12. In other words, the total number of side
chains is 24. The number of A-beads on each A side chain and
the total number of beads on each pair of B and C side chains
are fixed as 6 and 12, respectively. Accordingly, the self-
assembly of the ABC-type BBCPs is controlled by nA (nA + nB
= 12), the length NB of the B side chain (NB + NC = 12), and
the backbone rigidity ka.
In order to elucidate how the rigidity of the backbone is

controlled by ka, we calculate the effective Kuhn length bK of
the backbone of the ABC-type BBCPs for different values of ka
and architectural parameters in the disordered state with aAB =
aAC = aBC = 25 (Figure S1), using the method proposed by
Liang et al.81 For ka = 0, 2, and 10, bK ≈ 1.9, 3.7, and 19.2.
According to the ratio of the contour length to bK, ka = 0, 2,
and 10 qualitatively correspond to nearly flexible, semiflexible,
and rigid, respectively, which are evidenced by the snapshots of
the typical conformations (Figure S1).
We first investigate the self-assembly of the ABC-type

BBCPs at ka = 2 and nA = 6 (nB = nC = 6) by changing the
length ratio of B and C side chains, τ = NB/(NB + NC) = NB/
12. Note that τ is also equal to the ratio of the volume fractions
between B and C-blocks, i.e., τ = f B/( f B + f C). Reasonably, the
interface between the A-domain and the B/C-domains should
be flat due to the symmetric volume fraction of fA = 1/2. As
expected, the lamellae-within-lamellae hierarchical structure is
observed with τ = 1/2 (i.e., NB = 6) (upper right of Figure 2),
which is denoted as LL

⊥, where the “L” in the normal font size
and the “L” in the subscript indicate the lamellar superstructure
and substructure, respectively, while the superscript “⊥”
represents that the substructure is perpendicular to the
superstructure. When τ is reduced to 1/3 (NB = 4), the
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substructure transforms from lamellae to cylinders while
maintaining the lamellar superstructure (upper middle of
Figure 2). The transition from lamellae-within-lamellae to
cylinders-within-lamellae (denoted as LC

⊥) is consistent with
the experimental results,47 and it is easy to understand.
As τ is reduced to 1/6 (NB = 2), surprisingly another

cylinders-within-lamellae structure (LC
∥) is observed (upper left

of Figure 2), where the B-cylinders are aligned parallel to the
A/C interface rather than normal to the A-lamellae like those
in the usual LC

⊥ structure. In order to make B-cylinders locate
on the A/C interface, the backbone has to be significantly bent,
which is evidenced by the snapshot of a typical chain
conformation in Figure 3a and the bending angle of the
backbone in Figure 4a as well as the increased bending energy
of the backbone in Figure S2. As we will see later, when the
rigidity of the backbone increases, the range of τ for the
formation of LC

∥ will narrow and even vanish. Compared with
LC

⊥, the portion of the backbone of B/C side chains is more
coiled in the LC

∥ morphology (Figure 3a), giving rise to more
relaxed conformations of C side chains. In other words, the
formation of LC

∥ gains the conformational entropy of C side
chains at the expense of the bending energy of the backbone.
As τ decreases or C side chains are lengthened, the
conformational entropy of C side chains becomes more
dominant, inducing the transition from LC

⊥ to LC
∥ .

For the lamellar superstructure, the arrangement of B-
domains normal to or within the surface of the A-domain is
rather simple, while it becomes obviously more complicated
when the A-domain becomes nonlamellar, such as cylinders.
To explore the complex arrangement of B-domains within
nonlamellar superstructures, we decrease fA to 1/4 (nA = 3) to
simulate the self-assembly of the ABC-type BBCPs. At fA = 1/
4, A-blocks aggregate into hexagonally arranged cylinders
(lower part in Figure 2), and the B-domain changes from a
lamella to a cylinder as τ = 1/2 decreases to 1/3. Accordingly,
the hierarchical structure transforms from lamellae-out-
cylinders (CL

⊥) (lower right in Figure 2) to cylinders-out-
cylinders (CC

⊥,r) (lower middle in Figure 2). In the CC
⊥,r

structure, each piece of B-cylinder is located in the interstitial
space between each pair of neighboring A-cylinders, and its
orientation prefers being perpendicular to the surface of the A-
cylinders at both ends as possible. As a result, a group of B-
cylinders radiates outward from each A-cylinder. The super-
script “r” of CC

⊥,r denotes the radiation distribution of B-
cylinders that differs from the parallel arrangement of B-
cylinders with the axial direction normal to the axial direction
of A-cylinders in the cylinders-out-cylinders structure (CC

⊥,∥)
speculated in the previous work (Figure 1b4).47 In the CC

⊥,r

morphology, each B-cylinder is nearly perpendicular to the
surface of the A-cylinder, allowing the bottlebrush to adopt the
comfortable conformation normal to the surface of the A-
cylinder. While in the CC

⊥,∥ morphology, all B-cylinders are
oriented along one direction perpendicular to A-cylinders, it is
impossible to make these unidirectional B-cylinders be
perfectly perpendicular to the circular surface of A-cylinders.
This may be the reason why CC

⊥,r is more stable than CC
⊥,∥.

Similar to the transition from LC
⊥ to LC

∥ , the CC
⊥,r structure

transfers to the parallel cylinders-on-cylinders structure (CC
∥)

(lower left in Figure 2) as τ decreases from 1/3 to 1/6. The
transition mechanism is evidenced by Figures 3b and4b as well
as the increased bending energy of the backbone in Figure S2.
To gain a more complete understanding of the effect of the

two control parameters (i.e., nA and NB) on the formation of
the hierarchical structures in the ABC-type BBCPs, we
construct the “phase diagram” with respect to nA and NB
(Figure 5). The observed structures in our simulations are
presented in Figure 6. Besides the two transition sequences at
nA = 6 and nA = 3 discussed above, the phase diagram consists
of more interesting phase transitions as well as some new
hierarchical structures. One category of unusual transitions is
the superstructural transition induced by the substructural

Figure 2. Hierarchical structures formed by ABC-type BBCPs at fA =
1/2, 1/4 for τ = 1/6, 1/3, 1/2. Red, yellow, and blue represent A, B,
and C components, respectively. C and L denote cylinders and
lamellae, respectively.

Figure 3. Hierarchical structures as well as their corresponding typical chain conformations of LC
∥ (nA = 6, NB = 2) and LC

⊥ (nA = 6, NB = 4) (a), and
CC

∥ (nA = 3, NB = 2) and CC
⊥,r (nA = 3, NB = 4) (b). Red, yellow, and blue represent A, B, and C components, respectively. For reasons of clarity, the

backbone beads are divided into (blue) and (green) beads, which are grafted by A beads (red) and B(yellow)/C(blue) beads, respectively.
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transition along increasing NB for fixed nA. For instance, at nA =
2, the cylinders-on-spheres structure (SC) at NB = 2 transfers to
cylinders-out-spheres (SC⊥) at NB = 3 and 4 and to lamellae-out-
cylinders (CL

⊥) at NB = 5 and 6. Along the transition from SC⊥ at
NB = 4 to CL

⊥ at NB = 5, the A-superstructure changes from a
sphere to a cylinder as the B-substructure transforms from a
cylinder to a lamella. The synchronous change of the
superstructure is mainly to generate a translation-invariant
regular space for facilitating symmetric B/C side chains to pack
into the lamellar substructure. Obviously, symmetric B/C side
chains can form lamellae stacked along the axial direction of
aligned cylinders, but their packing becomes frustrated within
the three-dimensional periodic interstitial space outside A-

spheres (Figure 7a−c). A similar transition also appears at nA =
10, i.e., the transition from cylinders-on-spheres (iSC, where “i”
indicates the inverse spherical superstructure) to lamellae-
within-cylinders (iCL

⊥) (Figure 7d−f).
Similarly, the superstructural transition accompanied by the

substructural transition occurs at nA = 4, where the parallel
cylinders-out-cylinders structure (CC

∥) at NB = 2 transfers to
the perpendicular cylinders-out-perforated lamellae structure
(PLC

⊥) at NB = 3. In the PLC
⊥ structure, the B-blocks form

hexagonal cylinders within the C-matrix, and the excess C-
blocks fill the holes in the A-perforated lamellae (A-PL).
Indeed, the A-PL superstructure is formed under the constraint
of the layering arrangement of the B/C-bottlebrush due to the
rigidity of the backbone, which is similar to the formation of
the PL structure in thin films.82 Other types of perforated-
lamellar superstructures are observed at nA = 8; the spheres-
within-inverse perforated lamellae (iPLS) at NB = 2 transfer to
cylinders-within-inverse perforated lamellae (iPLC) at NB = 3
and 4 and to perpendicular lamellae-within-inverse perforated
lamellae (iPLL

⊥) at NB = 5.
Another kind of interesting hierarchical structure observed is

the helices-on-cylinders structure at 3 ≤ NB ≤ 5 and nA = 9.
The helical substructure transforms from triple-helix (iCHd3

)
(Figure S3(a)) to double-helix (iCHd2

) (Figure S3(b)) as NB

increases from 4 to 5. The principal mechanism for the
formation of the B-helices is that both the cylindrical B-domain
and C-domain have their own preferred radii due to the
delicate balance between the stretching energy and the
interfacial energy, most likely resulting in a noninteger length
ratio between the B-cylinder and C-cylinder. Previous works
have demonstrated that the B-cylinder of a lower volume
fraction should be smaller and longer than the C-cylinder of a
higher volume fraction.83,84 To wrap the longer B-cylinder
around the shorter C-cylinder evenly, forming B-helices is an
efficient way to accommodate the two cylindrical domains of
different lengths into the same structure, so that the length
ratio can be continuously tuned by changing the pitch angle of
the helices as well as the number of helical strands.83−85 As NB
increases, the B-helix thickens and its length relative to the C-
cylinder decreases, leading to the decrease of helical strands.

Figure 4. Comparison of the bending angle of the backbone in a pair of hierarchical structures composed of a similar superstructure and
substructure but a different orientation of the substructure: LC

∥ and LC
⊥ (a) and CC

∥ and CC
⊥ (b). For reasons of clarity, the backbone beads are

divided into D1 (blue) and D2 (green) beads, which are grafted by A beads (red) and B(yellow)/C(blue) beads, respectively (c).

Figure 5. Phase diagram of ABC-type BBCPs with ka = 2.
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The formation mechanism of the helices is similar to that in a
frustrated ABC linear triblock copolymer melt.83,86 However,
the arrangement of B-helices on the C-cylinder results from the
Janus-type bottlebrush architecture of B and C side chains in
the ABC-type BBCPs and from the frustrated interactions in
the ABC linear triblock architecture.

It is worth noting that some hierarchical structures self-
assembled by the ABC-type BBCPs are similar to those formed
by ABC star copolymers,16,87−92 such as LL

⊥ and iCL
⊥. In these

hierarchical structures, symmetric B and C-blocks phase-
separate into the substructure of B/C-lamellae embedded in
the superstructure of A-lamellae or A-matrix. For the ABC star

Figure 6. Ordered structures observed in the self-assembly of ABC-type BBCPs. (a) Cylinders-on-spheres (SC at nA = 2, NB = 2). (b) Cylinders-
out-spheres (SC⊥ at nA = 2, NB = 3). (c) Perpendicular lamellae-out-cylinders (CL

⊥ at nA = 3, NB = 6). (d) Parallel cylinders-on-cylinders (CC
∥ at nA =

3, NB = 2). (e) Perpendicular cylinders-out-cylinders (CC
⊥,r at nA = 3, NB = 4). (f) Perpendicular cylinders-out-perforated lamellae (PLC

⊥ at nA = 4,
NB = 3). (g) Perpendicular lamellae-within-lamellae (LL

⊥ at nA = 6, NB = 6). (h) Parallel cylinders-within-lamellae (LC
∥ at nA = 6, NB = 2). (i)

Perpendicular cylinders-within-lamellae (LC
⊥ at nA = 6, NB = 4). (j) Spheres-within-inverse perforated lamellae (iPLS at nA = 8, NB = 2). (k)

Cylinders-within-inverse perforated lamellae (iPLC at nA = 8, NB = 3). (l) Lamellae-within-inverse perforated lamellae (iPLL at nA = 8, NB = 4). (m)
Spheres on inverse cylinders (iCS at nA = 9, NB = 2). (n) Triple helices-on-inverse cylinders (iCH3 at nA = 9, NB = 3). (o) Double helices-on-inverse
cylinders (iCH2 at nA = 9, NB = 5).(p) Perpendicular lamellae-within-inverse cylinders (iCL

⊥ at nA = 10, NB = 6). (q) Spheres-on-inverse spheres (iSS
at nA = 10, NB = 2). (r) Cylinders-on-inverse spheres (iSC at nA = 10, NB = 4). Only one layer of perforated lamellae is shown for the eye. Red,
yellow, and blue represent A, B, and C components, respectively. S, C, L, and H denote spheres, cylinders, lamellae, and helices, respectively.

Figure 7. (a) CL
⊥ structure (nA = 2, NB = 6), (b) typical chain conformation of the ABC-type bottlebrush copolymer in the CL

⊥ structure, (c)
schematics illustrating why the A-supercylinder is more favorable for chain packing than the A-supersphere. (d) iCL

⊥ structure (nA = 10, NB = 6), (e)
typical chain conformation in iCL

⊥, (f) analogous schematics to that of (b) for iCL
⊥. Red, yellow, and blue represent A, B, and C components,

respectively. For reasons of clarity, the backbone beads are divided into (blue) and (green) beads, which are grafted by A beads (red) and B
(yellow)/C(blue) beads, respectively.
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architecture, the junction points have to aggregate at the
intersection of A/B, A/C, and B/C interfaces, which
constitutes a constraint on the size of the B/C-domain along
the direction normal to the interface delimiting the A-domain
and the B/C-domain (Figure 8a). In other words, as the
volume fractions of B and C-blocks get larger (or the volume
fraction of A-block decreases), these perpendicular hierarchical
structures tend to transform into polygon-tiling structures
where the junction points can readily aggregate at the
intersections of three different interfaces. In contrast, for the
ABC-type BBCPs, the backbone grafted by B/C-blocks tends
to be aligned normal to the interface between the A-domain
and B/C-domains and is nearly uniformly distributed on the
B/C interface in the perpendicular hierarchical structures
(Figure 8b). As a consequence, the size of the B/C-domain
along the direction normal to the A-domain depends on the
length of the backbone grafted by B/C-blocks, but not the
volume fractions of B/C-blocks (Figure 8c,d). These
discussions lead to the conclusion that these perpendicular
hierarchical structures have larger stable regions with respect to
the volume fraction of B/C-block in the ABC-type BBCPs than
in the ABC star copolymers. For example, the LL

⊥ morphology

is observed in the range of the volume fraction of the A block
about 0.33 ≲ fA ≲ 0.66 in the ABC-type BBCPs, while the
width of the stable region is about ΔfA ≈ 0.2 for ABC star
block copolymers.90,93 It is necessary to mention that some of
the other perpendicular hierarchical structures are difficult to
form in ABC star copolymers, such as lamellae-out-cylinders
(CL

⊥).
Reasonably, those parallel hierarchical structures (e.g., LC

∥

and CC
∥) will transfer to their perpendicular counterparts as the

backbone becomes more rigid. To demonstrate the trans-
formation, we construct the phase diagram for ka = 10 (Figure
9a) and compare it with that of ka = 2. Except for the
parameter points of na = 7 and NB = 2, the LC

∥ structure of all
parameter points changes to the LC

⊥ structure. The bending
angle of the backbone in Figure S4(a) as well as the increased
bending energy of the backbone in Figure S5 shows that the
transition is driven by the increased bending energy of the
backbone. A similar transition is also observed for other
structures (Figure S4(b−d)), such as that from CC

∥ to CC
⊥ at nA

= 3 and NB = 2. Oppositely, we also construct the phase
diagram for the flexible backbone with ka = 0 (Figure 9b).
Compared with the phase diagram of ka = 2, the stable regions

Figure 8. Schematic illustration of molecular packing frustration when ABC star copolymers (a) and ABC-type BBCPs (b) form the lamellae-
within-lamellae structure (LL

⊥), controlling the domain spacing of the substructure (c) and superstructure (d) by changing the side-chain length and
grafted number of side chains, respectively. Red, yellow, and blue represent A, B, and C components and chains. Green represents the junction
point of the ABC star copolymer or the backbone of the ABC-type BBCP.

Figure 9. Phase diagrams of ABC-type BBCPs with stiffness parameters ka = 10 (a) and ka = 0 (b).
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of perpendicular hierarchical structures notably contract. Due
to the flexibility of the backbone, three new hierarchical
structures, lamellae-out-spheres (SL), perforated lamellae-out-
lamellae (PLL

∥), and oblate spheres-within-lamellae (LS), are
observed at the parameter points of (nA, NB) = (2, 5), (4, 5),
and (7, 2), respectively (Figure S6).

■ CONCLUSIONS
We have systemically investigated the self-assembly of ABC-
type BBCPs with respect to the number of A side chains nA,
the length of B side chains NB, as well as the backbone rigidity
through dissipative particle dynamics simulations. It is shown
that ABC-type BBCPs can spontaneously phase-separate into a
variety of hierarchical structures, such as perpendicular
lamellae-within-lamellae (LL

⊥), perpendicular cylinders-within-
lamellae (LC

⊥), and perpendicular lamellae-within-inverse
cylinders (iCL

⊥). Though some of these hierarchical structures
are similar to those formed by ABC star copolymers, ABC-type
BBCPs exhibit much larger stable parameter regions for them
than ABC star copolymers. The main reason is that the
junction of the ABC star architecture disfavors the formation
of these perpendicular hierarchical structures, while the
backbone of BBCPs does not. Moreover, the ABC-type
BBCPs can also form some novel hierarchical structures that
are hard to form in ABC star copolymers, e.g., lamellae-out-
cylinders (CL

⊥).
Intuitively, the A-superstructure and B-substructure in the

perpendicular hierarchical structure are independently con-
trolled by the volume fraction of the A-block and the volume
fraction of the B-block relative to that of the C-block. For
example, for symmetric fA ∼ 0.5, the A-blocks form the lamellar
superstructure, while the B-substructure can be regulated to
change from lamellae to cylinders by lowering the f B. However,
this simple scenario does not always hold. We find that the A-
superstructure changes along with the transformation of the B-
substructure when fA remains unchanged. Specifically, for fA =
1/6, the A-superstructure transforms from a sphere to a
cylinder accompanied by the change of the B-substructure
from a cylinder to a lamella. The transformation of the A-
superstructure from a sphere to a cylinder is mainly because
the interstitial space outside A-cylinders is translationally
invariant along the axial direction of A-cylinders, enabling B/
C-lamellae to be perfectly arranged along the axial direction,
while the interstitial space outside A-spheres does not have
translational invariance along any direction.
Our results demonstrate that the rigidity of the backbone

plays an important role in the self-assembly behavior of ABC-
type BBCPs. When the backbone is semiflexible, in addition to
the perpendicular hierarchical structures, parallel hierarchical
structures can also be formed, such as parallel cylinders-within-
lamellae (LC

∥) and cylinders-on-cylinders (CC
∥). Although the

backbone is unfavorably bent, the parallel arrangement of B-
substructures on the A/C interface is beneficial to raise the
conformational entropy arising from the increased asymmetry
between B and C side chains. The formation of parallel
hierarchical structures is suppressed by increasing the back-
bone rigidity. Since our simulations can clearly visualize these
complex hierarchical structures, especially the arrangement of
the subdomains within the superstructures, this work provides
helpful guidance for relevant experiments. One of the most
remarkable conclusions is that the transformation of the A-
superstructure can be coupled with that of the B-substructure
to some extent, which was thought to be completely decoupled

in the original experimental work. Furthermore, we found that
the coupling degree is affected by the volume fraction of the A
side chain.
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