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Abstract. We investigate a mortar technique for mixed finite element approximations of a class
of domain decomposition saddle point problems on nonmatching grids in which the variable associated
with the essential boundary condition, referred to as flux, is chosen as the coupling variable. It plays
the role of a Lagrange multiplier to impose weakly continuity of the variable associated with the
natural boundary condition. The flux-mortar variable is incorporated with the use of a discrete
extension operator. We present well-posedness and error analysis in an abstract setting under a set
of suitable assumptions, followed by a nonoverlapping domain decomposition algorithm that reduces
the global problem to a positive definite interface problem. The abstract theory is illustrated for
Darcy flow, where the normal flux is the mortar variable used to impose continuity of pressure,
and for Stokes flow, where the velocity vector is the mortar variable used to impose continuity
of normal stress. In both examples, suitable discrete extension operators are developed and the
assumptions from the abstract theory are verified. Numerical studies illustrating the theoretical
results are presented for Darcy flow.

Key words. flux-mortar method, mixed finite element, domain decomposition, nonmatching
grids, a priori error analysis

AMS subject classifications. 65N12, 65N15, 66N55

DOI. 10.1137/20M1361407

1. Introduction. The mortar mixed finite element method [4, 5] has proven to
be an efficient and flexible nonoverlapping domain decomposition technique for solving
a wide range of single-physics or multiphysics problems described by partial differential
equations in mixed formulations coupled through interfaces with nonmatching grids.
The key attribute of this method is the introduction of a Lagrange multiplier, referred
to as the mortar variable, on the interface that enforces continuity of the solution. The
method can be implemented as an iterative algorithm that requires only subdomain
solves on each iteration.

In this context of porous media flow in a mixed form, the two most natural
choices for the mortar variable are the pressure or the normal Darcy flux. In the case
of matching grids, domain decomposition methods with these two types of Lagrange
multipliers were introduced in [20]. In [4], a mortar mixed finite element method on
nonmatching grids with a pressure mortar was developed. A multiscale version of the
method, the multiscale mortar mixed finite element method (MMMFEM), was devel-
oped in [5]. In this case pressure continuity is enforced by construction and normal
flux continuity is enforced in a weak sense. This strategy has been successfully applied
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to more general applications as well, including coupled single-phase and multiphase
flows in porous media [31], nonlinear elliptic problems [6], coupled Stokes and Darcy
flows [17, 19, 26], and mixed formulations of linear elasticity [23].

In this work, we develop a mortar mixed finite element method for a class of
domain decomposition saddle point problems in which the variable associated with
the essential boundary condition, referred to as flux, acts as the mortar variable.
In this case, the continuity of the trace of the flux is imposed by construction and
continuity of the variable associated with the natural boundary condition is imposed
weakly. Our specific interest lies in deriving a priori error estimates in the presence of
nonmatching grids, i.e., subdomain grids that are chosen entirely independently. To
the best of our knowledge, such analysis has not been previously done.

A challenge that arises in this approach is that the interface mortar variable
of essential flux type needs to be incorporated into the scheme. We achieve this by
introducing an appropriate discrete extension operator in the definition of the discrete
flux space. This involves solving subdomain problems with flux boundary conditions.
We employ a Lagrange multiplier to remedy both the potential incompatibility of the
data as well as the uniqueness of the solution.

Let us highlight the main contributions of this work. First, we develop the method
and the theory in a general setting that is applicable to a broad class of saddle
point problems. The theory includes well-posedness and a priori error analysis. Our
focus is on nonmatching grids and we quantify the role this nonconformity plays
in the accuracy of the method. Second, we consider a reduction of the problem to
a symmetric, positive definite system that contains only the mortar variable. An
iterative scheme is then proposed to solve this reduced system such that the solution
possesses a suitable conservation property across the interface at each iteration. Third,
we apply the general theory for three important examples, verifying in each case all
general assumptions. The leading example is Darcy flow in mixed form, in which the
normal flux is the mortar variable that is used to impose weakly continuity of pressure.
Two projection operators are proposed that require separate analyses and lead to
slightly different error estimates. The second example is Stokes flow, in which the full
trace of the velocity vector is the mortar variable, which is used to impose weakly
continuity of normal stress. Previously, only normal stress mortar methods for Stokes
have been considered, with the mortar variable being used to impose weakly continuity
of the velocity [8, 19, 24]. While a velocity Lagrange multiplier has been employed in
domain decomposition methods for Stokes with matching grids [27, 29], to the best of
our knowledge this is the first Stokes discretization on nonmatching grids with velocity
mortar variable. The last example, which is presented as supplementary material
(fluxmortar_suppl.pdf [local/web 299KB]), is coupled Stokes-Darcy problems [13, 17,
19, 26], for which the error analysis of flux-mortar mixed finite element methods has
not been studied. This example illustrates the applicability of the general theory to
multiphysics problems.

For the sake of clarity of the presentation, we focus on the case of subdomain and
mortar grids being on the same scale. However, the flux-mortar mixed finite element
method can be formulated as a multiscale method via the use of coarse scale mortar
grids, as was done in [5]. In this case, following the approach in [18], the method can
be implemented using an interface multiscale pressure basis, which can be computed
by solving local subdomain problems with specified mortar flux boundary data.

We note several similarities and relationships between the flux-mortar method
and existing schemes. First, as mentioned, our approach is dual to the natural-type
mortar technique that is central to the pressure-mortar MMMFEM [4, 5]. Second,
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the multiscale hybrid-mixed (MHM) method for second order elliptic problems in
primal form [1, 7, 21] similarly introduces flux degrees of freedom on the interfaces
between elements to impose weakly continuity of pressure. The analysis of the primal
MHM method in an abstract setting can be found in [22]. A MHM method for Stokes
flow with a normal stress Lagrange multiplier to impose continuity of the velocity is
developed in [2]. In all these instances, the MHM method uses a Lagrange multiplier
associated with the natural boundary condition and therefore it does not fit in our flux-
mortar framework. Instead, it fits in the natural-type mortar framework. For example,
the Stokes method from [2] is closely related to the method developed previously
in [19]. Recently, an MHM method for Darcy flow using mixed finite elements for
the local solves, which fits in our flux-mortar framework, was investigated in [14]. A
main difference with our work is that the method in [14] is defined on a single global
grid, allowing for nested refinements of the subdomain grids, whereas the flux-mortar
method proposed herein is defined on entirely nonmatching subdomain grids. Our
analysis therefore does not exploit the nestedness of the grids and instead relies on the
use of discrete projection operators, allowing for more general grid configurations. The
MHM method is related to the mixed subgrid upscaling method proposed in [3]. The
latter does not involve a Lagrange multiplier, but incorporates global flux continuity
via a coarse scale mixed finite element velocity space, which may include additional
degrees of freedom internal to the subdomains. In contrast, our method reduces to an
interface problem involving only mortar degrees of freedom. Furthermore, the analysis
in [3] does not allow for nonmatching grids along the coarse scale interfaces. Finally, we
note that the flux-mortar mixed finite element method has been successfully applied
in the context of fracture flows [11, 28] and coupled Stokes-Darcy flows [10]. The
analysis in [11] exploits that there is tangential flow along the fractures and does not
cover the domain decomposition framework considered in this work, while the analysis
in [10] focuses on robust preconditioning.

The article is structured as follows. In section 2 we develop the method and theory
for a general class of saddle point problems. Section 3 is devoted to the application of
the theory to Darcy flow. In section 4 we present and analyze the method for Stokes
flow. We verify the theory in the case of Darcy flow with numerical tests in section 5.
Conclusions are presented in section 6.

2. General setting. In this section, we introduce the flux-mortar mixed finite
element method in a general setting for a wide class of saddle point problems.

2.1. Domain decomposition and notation. Let Q@ C R", n = 2,3, be a
bounded polygonal domain, decomposed into disjoint polygonal subdomains €;, i €
Io ={1,2,...,nq}. We assume that the measure of 2 and of each ; is of order one.
Let v; denote the outward unit vector normal to the boundary 9€2;. The interface
between two subdomains §2; and §2; is denoted by I';; := 0§2; N 0€);. Each interface
I';; is assumed to be Lipschitz and endowed with a unique, unit normal vector v such
that v:=v; = —vjon Ly, i < j. LetI' := UK]. I';; and I'; := I'N9Q;. We categorize
Q; as an interior subdomain if 9Q; C T, i.e., if none of its boundaries coincide with
the boundary of the domain Q. Let I :={i € I : 9Q; CT}.

We will use the following standard notation. A subscript ¢ on a variable de-
notes its restriction to €, ie., w; := w|g,. For G a domain in R”, n = 2,3,
or a manifold in R"~!, the Sobolev spaces on G are denoted by WHP(G). Let
H¥(G) = WFk2(G) and L?(G) := H°(G). The L?*(G)-inner product is denoted
by (-,-)g. Let {-,")xxx’ denote the duality pairing between X and its dual X', for
which we generally omit the subscript. For G C R", let H(div,G) = {v € (L?(G))" :
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Vv € L*(G)}. We use the following shorthand notation to denote the norms of these
spaces:

1fllkc =l Ifle = flloe Ivl&v.e = IvEa.e = IvIE+ 1V - vllE-

We use the binary relation a < b to imply that a constant C' > 0 exists, independent
of the mesh size h, such that a < Cb. The relationship 2 is defined analogously.

2.2. The continuous problem. Given a pair of function spaces V x W on ,
we consider the following problem: Find (u,p) € V x W such that

(2].3,) Zai(ui,vi) — Z bz(v“pl) = Z<gl, Ui> Yo € V,

K3
(2.1b) Zbi(uiawi) = Z<fiawi> Vw e W.
i i
Here a; and b; are bilinear forms and g; and f; are functionals. We note that this
formulation allows for both essential and natural boundary conditions on 0€2. Essen-
tial boundary conditions are incorporated in the definition of V' x W. Extensions to
other boundary conditions can readily be made.
Let V; and W; be the respective restrictions of V' and W to subdomain §2; and let
Il Ilv; and || - ||w, be the associated norms. We then endow V x W with the norms
(2.2) [vllv = lvillvi, lwllw ==Y [lwillw, -
i i

The space V is assumed to have sufficient regularity such that a trace operator Tr;
onto I'; for each V; is well defined. For homogeneous domain decomposition problems
where the same model holds on all subdomains, the space V' is characterized by

(2.3) V:{UE@%: Tr; v; = Trj v, oneachl"ij}.

On the other hand, we assume that W is discontinuous across interfaces such that
W =@, W;. We then introduce the interface space A on I' such that

A|1"i c Tr; V;

and endow it with a suitable norm || - ||s. We next list three examples that fit in the
general setting. The first two are studied in detail in the forthcoming sections.

Ezample 2.1 (mixed formulation of Darcy flow, section 3). To model Darcy flow,
we let w model the velocity and p the pressure. We then set V' x W := H(div, ) x
L?(Q2) and Tr; as the normal trace of the velocity on T';, Tr; w; := v - u;|r,, ensuring
mass conservation. The local bilinear forms are given by a;(u;, v;) = (K 1u;,v;)q,
with K the conductivity tensor and b;(v;,p;) = (V- vi,pi)a,-

Ezample 2.2 (Stokes flow, section 4). Stokes flow can be modeled in this frame-
work by defining V- x W = (H'(Q))" x L?(Q), a;(u,v) = (fic(u),e(v))q, with i the
viscosity and e(u) the symmetric gradient, and b;(v;,p;) = (V - v;,pi)q,. In turn,

Tr; w is the trace of the entire velocity vector w on I';, Tr; u; := w;|r;.
Ezample 2.3 (mixed linear elasticity). Let w € V' = H(div, Q; Ry (") be the sym-

metric Cauchy stress tensor and let p € W := (L?(£2))" be the displacement field.
The operator Tr; is given by the normal trace on T';, Tr; u; := u;v|r;; here it enforces
conservation of linear momentum. The local systems are then given by a;(u;,v;) =
(C7lu;, v;)q, in which C~! models Hooke’s law and b;(v;, p;) = (V - v3, pi)a.
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2.3. Discretization. We next construct the discretization of (2.1). For a sub-
domain €2;, let €25 ; be a shape-regular tessellation with typical mesh size h consisting
of affine finite elements. The grids Q,; and €2, ; may be nonmatching along the in-
terface I';;. For the interfaces, we introduce a shape-regular affine tessellation of I'
denoted by I'y, ;;, with a typical mesh size hp. Let I'y, = Ui<j Ty ij

For each 7, let Vj, ; x W}, ; C V; x W; be a pair of conforming finite element spaces
that is stable for the subproblem defined on €2;. Let Vho’ , denote the subspace of V}, ;

with zero trace on I' and let Vhlj , denote the trace space of V}, ; on I';:

K

(2.4) V2= {vh; € Vii: Tryvp, =0}, Ve =P,
(2.5) Virs o= Ty Vi, Vi =i

Let A, C A be the discretization of the interface space. Let Sy be the null-space

(26) SHJ; = {whyi S W}m : bi(vgyi,wh’i) =0, V’Ug’i c Vh?,z} s SH = @SH,z

The subscript H is the characteristic subdomain size.

Next, we define a discrete extension operator Ry ; : A = V4 ; in two steps. First,
let Q, : A — VI be a chosen projection operator and let Qy; : A — Vhlji be its
restriction to the trace space of V3, ;. Then, for given A € A, we consider the following
problem: Find (RhJ)\,pﬁ’i,ri) € Vs X Wi x Su,; such that

2.7a) a; (Rui\vp;) — b (vj 1, 0h4) =0 Yoy ; € Vi,
2.7b) bi('RhJ‘/\, wh,i) — (Tiawh,i)ﬂi =0 thﬂ- S Whﬂ',
27(2) (p,);i, Si)Q, =0 Vsi S SH,iy
27(21) TI‘i Rh,i>\ = Qh,i/\ on FZ
Remark 2.1. The space Sp; serves two purposes. First, it ensures that the prob-

lem is solvable, with the Lagrange multiplier r; acting as compatible data. Second,
due to (2.7¢), the auxiliary variable piyi is uniquely defined, i.e., orthogonal to S ;.

Let Ry, := €D, Ri,i- In turn, we define the composite spaces V;, and W, as

(2.8) Vi = @ (V;?’Z ©® Rh,iAh) = V;? ® RuAn, Wy, = @ Whi-

i

We are now ready to set up the flux-mortar mixed finite element method for
problem (2.1): Find (u9, Ap,pr) € V2 x Aj, x W), such that

(2.92) > ai (uf ; + Ruidn,vp,) = bi (V) pni) = > _(givh,)  Vop € VY,

(2.9b)
> ai (uh; + Riidn, Ruittn) = bi(Ruiptn, i) = Y (i, Ruitin)  Vpin € An,

(2

(2.9(}) Z b; (u?m + Rh,z)\h) ,wh,i) = Z(fi,wh,l) Ywy, € Wy,

% %

Remark 2.2. Equation (2.9b) imposes weakly continuity of the variable associated
with the natural boundary condition.
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To shorten notation, let uy, := u + RpA, and vy = v) + Rpun. Moreover,

define CL(’LL,’U) = Zz ai(uiavi)v b(’U,p) = Zz bi(viapi)v <g,’U> = Zi<givvi>7 and
(f,w) =3 .(fi,w;). Then (2.9) can be equivalently written as follows: Find u; € V}
and pp € Wy, such that

(2.10a) a(up,vp) — b(vy, pr) = (g, vn) Yoy, € W,
(21013) b(uh,wh) = <f, wh> Ywy € Wy,
Note that the flux-mortar mixed finite element method (2.10) is a nonconforming

discretization of the weak formulation (2.1), since we generally have V}, ¢ V. On the
other hand, the definitions do ensure that Wj, = @, Wy, C @, W; = W.

2.4. Well-posedness and error analysis. The main results in the a priori
analysis of the discrete problem (2.10) are presented in the following three theorems.

THEOREM 2.1. Assume the following:
Al. Problem (2.7) has a unique solution and the resulting extension operator Ry, :
A — Vj, is continuous, i.e.,

[ReAv S 1A Y€ A.

A2. The following four inequalities, known as the Brezzi conditions, hold:

(2.11a)  Vup,vp € Vj, ¢ a(up,vp) < Jurllvivelv,
(2.11b)  Vw, €V}, and wy € Wy, : b(vp,wr) < lvwllv lwnllw,
(2.11c¢) Yo, € Vi, with b(vh,wh) =0 Yw, € Wy : a(vh,vh) P ||'UhH%/,

(2.11d)  Vwp € Wy, 30 # vy, € V), such that : b(vp, wp) 2 ||vnllv]we|w.

Then the discrete problem (2.10) admits a unique solution that satisfies

(2.12) lunllv + llpellw S gl + 1w
Proof. Assumption Al ensures that the space Vj, is well-defined. The well-
posedness of (2.10) then follows from (2.11) and standard saddle point theory [9]. O

THEOREM 2.2. Assume, in addition to assumptions A1-A2, the following:
A3. The following mortar condition holds:

lunlle,; S 1Qniknllry; + 1Qnjunllry; VT

A4. The following discrete trace inequality holds:
Vieln, |Trvnlr, <Crullvnillv, Yon: € Vi,

with Cr,p, possibly depending on h.
Then the mortar solution A\p, of (2.10) is unique.

Proof. Since up = u% + Ry A, it holds that Tr; up ; = Qp ;An. Then we use A3
and A4 to obtain

IAelle D 1Qnidnlie, < Crn Y
7 7

v; = Cropllunllv.

The result now follows from (2.12). d
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Remark 2.3. We emphasize that A3 is not necessary to ensure uniqueness of the
solution (up,pp) € Vi X Wp, only for the uniqueness of the mortar variable Ay,.

We proceed with the error analysis. Let II'Y and II'"Y" denote interpolants onto V},
and W}, respectively, with suitable approximation properties.

THEOREM 2.3. Assume, in addition to assumptions A1-A2, that the following
holds:
A5. The interpolant IIV is b-compatible in the sense that

(2.13) blu —TTVu,wy) =0 Yw, € Wy,
Then the following a priori error estimate holds:
(2.14) [ — v + [lp = pallw < T w = ully + [[TYp = pllw + &,

with &. the consistency error defined as

(2.15) £ = sup o) Zb(OwP) (g 0n)
0Fvn €V [vnllv

Proof. From (2.10) and (2.1b), we obtain the error equations
(2.16a) a(u — up,vp) — (v, TV p — pr) = a(u,vy) — b(vn, TV p) — (g, v4),
(2.16b) b(ITV w — up,wy) = 0,

Y (vn,wp) € Vi, x Wy, where we used the b-compatibility of IIV (2.13) from A5 and
the fact that W), C W. It is important to note that we did not use (2.1a), which
requires a test function in V. We now set the test functions as

(2.17) v, =10u —uy, — vl wp = o%Vp — p,
where v}, € V}, is constructed, using the inf-sup condition on b (2.11d) to satisfy
(2.18) b (v, TV p—pn) = 1V p = pulliy, [opllv S 1T p = pallw,
and ¢ > 0 is a constant to be chosen later. Now (2.16) leads to

a(HVu —up, 1TV — up)+ 5||HWP - ph”%/v

=a(lVu — u, 11w — up) + a(u — up, 6v})

(2.19) — b(on, Tp — p) + [a(u, vp) — b(vp,p) — (g, vn)] -
For the left-hand side of (2.19), (2.16b) and the coercivity of a (2.11c) in A2 imply
(2.20a) IV % — up||? < a(Vu — wp, TV u — uy,).

For first term on the right-hand side of (2.19), we use the continuity of a in A2 and
Young’s inequality to derive
1

(2.20b) a(MVu —u, TV u —up) < 5
€1

€
I — wllf + ST —

with €; > 0 to be determined later. Similarly, for the second term on the right in
(2.19), using €3 > 0 and the bound on v} from (2.18), we obtain
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alw —up,0vp) < (M w —ully + [TV w — uplv)[|6v)]|v

1 1 1
@200 S g u-uly + FI (54 g ) Rl

For the third right-hand-side term, we use the continuity of b, the properties (2.18),
and Young’s inequality with €3 > 0 to derive

b(vn, 1"p = p) < llonlv I p — pllw
< (1Y — |y + 8T p — pallw) 1T — pllw

€3 1 1 1
20 S I u - wll Il (4 g ) T8 - ol

Finally, we note that the bracketed terms in (2.19) form the numerator in the
consistency error &.. Using the same steps as in (2.20d) with ¢4 > 0 then gives us

G/(’LL7’Uh) - b(Uh7p) - <g,'Uh> S thHVgC
€ 1 1 1
(2.20¢) S I w — [} + 57T = palliy + (5 + 5 ) €2
2 2 2¢4 2
Collecting (2.20) and setting all ¢, sufficiently small, it follows that

Y — wnlf + 61" p — paly
S MY — alfy + [1TYp — plffy + 8211 p — pul[fy + &2.

Subsequently, we set ¢ sufficiently small to obtain
221)  [Yu —uplly + [T = pallw < 1Y w = ully + [TV p = pllw + &

Combining this with the triangle inequality gives us (2.14). d

Remark 2.4. To complete the error estimate, a bound on &, needs to be obtained.
We derive such a bound for each example considered in the paper.

2.5. Reduction to an interface problem. We continue by presenting an it-
erative solution method for the flux-mortar mixed finite element method (2.10) based
on the ideas developed in [20] and [36]. In this section, we assume that A3 holds,
ensuring that the mortar solution Ay is unique by Lemma 2.2. The decomposition
(2.8) of V}, into interior and interface degrees of freedom then allows us to reformulate
the method as an equivalent problem only in the flux mortar variable Aj. We recall
that the method (2.10) can be written equivalently in the domain decomposition form
(2.9). Equation (2.9b) forms the basis for the interface problem. In order to set up
this reduced problem, we first solve two subproblems that incorporate the term f and
provide the right-hand side for the problem. Next, the reduced problem is set up and
solved. Finally, a postprocessing step is necessary to obtain the full solution to the
original problem (2.10). For notational brevity, we omit the subscript h on all func-
tions in this section, keeping in mind that all functions are discrete. In the solution
process we will utilize a generic extension 7i’,h,u € @, Vi,i such that Tr 7~2h,i,u = Ot
on I';. In practice, ﬁh’iu can be simply chosen to have all degrees of freedom not
associated with I'; equal to zero. Recall that V}, = @, (V,?Z ® Rp,iA) with Ry, ; the

discrete extension (2.7). Since Rh b = Ruipt + 'u ; for some v ; € V;? the spaces
B,(VY; ® RniA) and ;(Vy, © Rp.iA) are the same.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/15/22 to 132.174.255.116 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1201

We will also utilize the orthogonal decomposition Ay, = A) @ Ay, where
(2.22) A :={ueAy: b(Rup,s)=0Vse Sy}

To continue, we make the following assumption.
A6. The following inf-sup condition holds for the spaces A, X Sg:

Vsg € Su, 30 # pp € Ay, such that:  bB(Rupn, sg) 2 |unllallsellw.

Let B : Ay, — S} be defined as ¥V u € Ay, (B, s) := b(Rup,s) Vs € Sy.

LEMMA 2.4. If A6 holds, then B is an isomorphism from Ay to Sty and BT s
an isomorphism from Sy to K;l.

Proof. The two statements are equivalent and we prove the latter. We note that
ker B = A). Using [33, Proposition 7.4.1], the inf-sup condition A6 implies that BT is
an isomorphism from Sy to the polar set of ker B, {g € A}, : (g, u) =0V € ker B},
which is exactly K/h. O

With these prerequisites in place, we describe the iterative solution method in
four steps.

The first step aims to capture the influence of f in (2.9¢) with respect to the space
Sp (cf. (2.6)). We solve the following global coarse problem: Find Ay € Aj, such that

(2.23) b(RiAs,s) = (f,s) Vs € Sy.

This problem has the form BXf = f with f € S%. Thus, it has a unique solution,
since B : A, — S’ is an isomorphism.

Second, we use Xf to solve independent, local subproblems to satisfy (2.9a) and
capture the remaining influence of f in (2.9¢): Find (u?e,p?c, r¢) € V2 x W, x Sy such
that

(2.24a) a (u(},vo) —b (vo,p(}) = —a(RpAs,v°) + (g,v°) Vol € V2,
(2.24b) b (ul,w) — (rp,w)a = —b(RuAs, w) + (f,w) Yw € Wy,
(2.24¢) (0},5)0 =0 Vs € Spy.

Here, we enforce p(} L Sg with the use of a Lagrange multiplier ry. The well-posedness
of (2.24) follows from the solvability of the discrete extension problem (2.7) in Al.
We further note that setting w = ry € Sy and using (2.23) implies that ry = 0.
Therefore, the variable u; := u? + Ry satisfies (2.9¢). In addition, uf and p(}
satisfy (2.9a).

It remains to satisfy the continuity equation (2.9b), which is done in two steps.
To satisfy it in A, we solve the interface problem: Find A\° € A) such that

(2.25)  a(RpA°, Rppl) — b(?éhuo,pAo) = —a(uys, Rpp®) + b(ﬁhuo,p?) Vu® € A9,

in which the pair (Rp\°, pAO) solves the discrete extension problem (2.7). The solv-
ability of (2.25) is established in Lemma 2.5 below.

After solving the interface problem, we require a fourth, final step to guarantee
that (2.9b) holds in A, which is also used to obtain the correct variable p. Thus, we
construct py € Sy such that

(2.26) b(Rufi, Py) = a(ws + RuA%, Ryft) — b(Ramt, p* + p}) Vi € Ay,
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which results in a coarse grid problem of the form BTp, =g in Ah Since BT : Sy —

Ah is an isomorphism, the problem has a unique solution.
We now have all the necessary ingredients to construct

227)  wi=up+ RN =l + RN+ Ridy,  pi=p% 40N 4Dy

It is elementary to check that (u,p) € V, x W}, indeed solves (2.10). The corresponding
mortar variable is A = A? + A;. We next show the solvability of (2.25).

LEMMA 2.5. If A3 holds, then the bilinear form of the reduced problem (2.25),
given by

(2.28) ar(\, 1) == a(RuA, Rup) — (R, p),

is symmetric and positive definite in A9 x AY.

Proof. Using that Ryp = R+ vo for some vo € V2, we have

ar(A 1) = a(RpA, Rup) — b(Rap, p*) + a (Rud,vp) — b (v), p*)
= G,(Rh)\, Rh/’b) —b (Rh,uﬂpk> = G(Rh)\, Rh/’(‘)

Here we used (2.7a) in the second equality. For the last equality we used that, on
the one hand, b;(Rp,ipt, sH,i) = b (Rh i — #175Hz) = 0Vsg; € Su,; due to the
fact that u € A9 and (2.6). On the other hand, (2.7b) gives us that b;(Rp, ip, wp,;) =
(ri,wni)a, = 0 Vwp; L Sy, thus b(Rup,p*) = 0. We conclude that ap(\, u) is
symmetrlc and positive semidefinite in A) x AY. Moreover, if Ry = 0, then its trace
Op A is zero as well and so A = 0 due to A3. Hence ar is positive definite. 0

The main implication of Lemma 2.5 is that the interface problem (2.25) can be
solved using iterative methods such as the conjugate gradient method. An important
observation is that the second equation (2.10b) is satisfied by construction, even if
the iterative solver is terminated before convergence. Specifically, the component
uy is computed a priori and the update defined by A0 only improves the accuracy
of the solution with respect to (2.10a). This property is particularly attractive if
(2.10b) describes a physically important conservation equation and (2.10a) models a
constitutive relationship between u and p.

Remark 2.5. The implementation of problems (2.23) and (2.26) requires solving a
system with the same coarse matrix. The same system also occurs in the computation
of the projection onto AY required in (2.25). We refer the reader to [37] for an algebraic
formulation for solving a global saddle problem with singular subdomain problems of
a type similar to (2.10), which is based on the FETI method [36]. We note that the
incorporation of the coarse problem results in convergence of the interface iterative
solver that is independent of the subdomain size.

3. Darcy flow. We exemplify the flux-mortar mixed finite element method using
an accessible model problem given by the mixed formulation of the Poisson problem:

(3.1) u=—-KVp, V-u=f inQ, p=0 on 9N.

We will use the terminology common to porous media flow modeling. Hence, we refer
to u as the Darcy velocity, p is the pressure, K is a uniformly bounded symmetric
positive definite conductivity tensor, and f € L?(Q) is a source function. We assume
that there exist 0 < kyin < Emaz < 00 such that Va € Q,
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(3.2) Emin€T€ < ETK(2)€ < kpmae€T€ VEER™

The variational formulation of (3.1) is, Find (u,p) € V x W := H(div, Q) x L*(Q)
such that

(3.3a) (K 'u,v)q — (V-v,p)a =0 Yo eV,
(3.3b) (V- -u,w)g = (f,w)a Yw € W.

It is well known that (3.3) has a unique solution [9]. Note that (3.3a) implies that
p € H}(Q), hence the solution to (3.3) satisfies (3.1).

For given €Q;, the local velocity and pressure function spaces are defined as V; :=
H(div,Q;) and W; := L?(€);), respectively. Problem (3.3) attains the form (2.1) with

(3.4)
ai(uivvi) = (K_luiavi)ﬁiv bi(’l}i,pi) = (v : vivpi)ﬂia g= 0, <fa w> = (fv U))Q.

The global space V' possesses continuity of the normal trace on I'. Thus, following
(2.3), we set

TI‘l' u; = (V . ui)‘r‘“ A= L2(F)

We note that A has more regularity than the normal trace of V', which is a distribu-
tional space with a norm related to H—/2(I'). This choice allows us to employ the
L2-projection in the definition of the projection operator Qp; : A — Vhlji. The L2-
projection is easier to implement and the L?(T')-norm for the mortar variable is easier
to compute than their distributional counterparts. For A € A, we use a subscript to
indicate its relative orientation with respect to the adjacent subdomains:

A=A, /\j =—\ on Fij, 1< J.

In particular, A\; models v; - w and A\; models v; - u on I';;.

Next, we associate appropriate norms to the function spaces. The spaces W and
A are equipped with the standard L?(2) and L?(I') norms, respectively, and the space
V is equipped with a broken H(div) norm:

lollv = lvillai.a, [wllw = [[wllo, leella = [l pllr-
i

3.1. Discretization. In this section we describe the flux-mortar mixed finite
element method for (3.3). Since the local finite element spaces are required to be
stable for the subproblems defined on each €2;, we choose V}, ; x W, ; such that

(3.5&) V- Vh,i = Wh,ia
(3.5b)  VYwn; € Wiy, 30# v, € Vit (V- vns, whi)a; 2 1Vnlaiv.o

Wi || -

Stable Darcy pairs (see, e.g., [9, Chapter 2]) include the Raviart-Thomas and the
Brezzi-Douglas-Marini elements. Let the discrete interface space Ay ;; C LQ(Fij)
contain continuous or discontinuous piecewise polynomials on I'y, ;5.

For the projection operator Qj, : A — V;I' (see (2.5)), we consider two options,
which we distinguish using a superscript b or #. The first option (b) is defined using
the L2-projection to each trace space V}E ; such that the extension satisfies

(3.68,) (/\i —v; - R?l7iA7§hai)Fi =0 th,,i € Vi{:i'
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The second option () results in an extension such that its normal trace has zero jump
with respect to the mortar space:

(3.6b) > Wi Ry A pn)r, =0 Vi, € A,
3

The construction of these projection operators is described in detail in sections
3.1.2 and 3.1.1. The extension operator R}, is then defined according to (2.7), which
we describe in detail in section 3.1.3.

After choosing R}, the composite spaces V}, and W}, are given by (2.8). The two
variants of V}, that arise due to the choice of Qj, ; are denoted by V,g and Vhb . We will
present the results that concern both variants by omitting the superscript.

Following (2.9) and (2.10), the flux-mortar mixed finite element method is as
follows: Find uy € Vj, and p, € W}, such that

(3.7a) (K™ 'un,vn)o — 3 (V- v, pr)o, =0 Yoy, € Vi,

3

(37b) Z(V . ’U,h,wh)gi = (f, wh)g th S Wh.

)

Equation (2.9b), which here is Zl ((K‘lu;m,Rh,iUh)Qi — (V- Rh,iﬂhaph,i)ﬂi) =0
Yun € Ay, imposes weakly continuity of pressure.

We next focus on the two types of extension operators R% and RZ

3.1.1. Projection to the trace spaces. The projection operator Q';L A=V,
that leads to (3.6a) is the L?(I';)-orthogonal projection onto V,{ ;» which is computed
for each 7 by solving the problem, Given A € A, find Ql;m‘/\ € V}E , such that

(3.8) (Vi = QX e, =0 Vi € Vi
We will make use of the property
(39) ()‘z - Q?z,i)‘v 1)Fij =0 vrija

which follows from the fact that the indicator function of I';; is in the space Vhlji.
By solving (2.7), the extension R?“ is then created such that v; - Rﬁi)\ = Q*;L,i)\
on T; (see section 3.1.3). We refer to the resulting function space as V;? := V@RS Ay,.

3.1.2. Projection to the space of weakly continuous functions. An alter-
native choice of the projection operator (§) aims to satisfy (3.6b). In its construction,
we use the concept of weakly continuous functions, as introduced in [4] in the pressure-
mortar method. In particular, let the space of weakly continuous fluxes V}, . and the
associated trace space V}E . be given by

Vhe = {'Uh €@ Vit > (Wi vnirpn)r, =0V € Ah} ;

%

?

Vhr,c = {fh € Vhr : Z(ﬁh,uuh)m =0Vup € Ah} .

We construct the projection Q?L : A — V' by solving the following auxiliary
problem, obtained from [4]: Given XA € A, find Q%)\ € VI and x5, € Aj, such that
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(3.10a) D> (i = Q5 A = xnEni)r, =0 vE, € VE,

i

(3.10D) > (9 A un)r, =0 Y € Ap.

i
LEmMA 3.1. If A3 holds for Q%, then problem (3.10) admits a unique solution.
Proof. Since (3.10) corresponds to a square system of equations, it suffices to

show uniqueness. Hence, we set A = 0 and choose ,; = ng.)\ and pup = xp. It

follows after summation of the two equations that Qam.)\ = 0. The first equation then

implies that Q% x;, = 0 and, using A3 for Q% we have y; = 0. 0

LEMMA 3.2. The solution Qi/\ of (3.10) is the L?-projection of X\ onto V,EC.
Moreover, it satisfies

(3.11) (\i— Q5 A D, =0 YTy

Proof. First, we note that Q?L)\ € V}Ec due to (3.10b). By choosing &, in (3.10a)
from V,E . C ViF, we obtain

> (i = Q5 A&, =0 Vén € Vi
i
Hence, Qi)\ is the L2-projection of A onto Vhlj .- For the second result, we consider a
given I';; and note that 1 € VhF,i N Vij' Taking &, = €n; = 1 on I'y; in (3.10a) and
using that 1 € Ay 4; and Q%)\ € V}ZC, we derive

Q(th 1)1"71‘7' = (Ai - Qi,i)‘v 1)1"71‘7' + (>‘j - Qi,g)‘v 1)1—‘7‘4’
= (\i + A, Dy, — (@54 + Q) A Dy, =0.
Thus, taking &,; = 1 and &, ; = 0 on I';; in (3.10a) gives (A\; — Qf A, 1)r,, =0. O

The second step is to define the bounded extension Rfm to the discrete space Vj, ;
using (2.7) such that ui-R%,i)\ = Qgim/\ on I'; (see section 3.1.3). Let V,f = V,?GBRuhAh
be the resulting discrete function space.

Remark 3.1. Lemma 3.1 shows that A3 for Q% is needed for ng to be well-defined.
From here on, we will therefore assume that this condition is satisfied whenever Q}uI
or Rgb is used.

Remark 3.2. Assumption A3 is the conventional mortar assumption (see, e.g.,
[4, 5]) implying that the mortar variable is controlled on each interface by its L2-
projection onto one of the two neighboring subdomains. The assumption is easy to
satisfy in practice by choosing a sufficiently coarse mortar grid I';, and it has been
shown to hold for some very general mesh configurations [30], including cases with
a polynomial degree in Aj; higher than the polynomial degree in V;F. A related
coarseness assumption is considered in [7]. Furthermore, A3 holds trivially in the
special case Ay ; C V,EZ-, which is considered in [14].

Remark 3.3. Due to Lemma 3.2, we note that V}f C Vh,.. However, the converse
inclusion does not hold in general since the projection Q,ﬁI is not necessarily surjective
on Vhljc when acting on Aj. Therefore, the problem we set up in Vhﬁ is closely related,
but not equivalent, to the one introduced in [4, section 3]. To be specific, we have used
Ri to generate a strict subspace of V}, . whereas the problem in [4] is posed on V}, ..
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Remark 3.4. The spaces Vhﬁ and Vhb are different in general, with none contained
in the other. This can be seen by the fact that both spaces have the same, finite
dimensionality but the extension RZ does not satisfy (3.6b) in general.

3.1.3. The extension operator. We next present the extension operator Ry, ;
into V}, ;. It is denoted by R% ; Or R',’” depending on the associated projection operator

Q?L or Qz. We refer to results concerning both extension operators by omitting the
superscript.

Following (2.7), the discrete extension operator on each subdomain €; will be
defined using a subdomain problem with Neumann data on I';. For interior subdo-
mains, ¢ € I;,4, this results in Neumann boundary conditions on the entire boundary
09);. To deal with possibly singular subdomain problems, we define the space Sy as
in (2.6), which in this case is given by

R7 (XS Iintv
(312) SHJ; = ) SH = SH,i'
Oa 1 ¢ Iint7 @

We now set up problem (2.7) to define the extension Ry ;A for given A € A: Find
(Rh,i)npﬁ,i,n’) € Vi, X Wh; x Sg; such that

(3.13a) (K" Ruidvh i), — (Vb D) g, =0 vop ;€ VY,
(3.13b) (V- Rpidwhi)a, — (T, whi)o, =0 Ywp.; € Wh i,
(3.13c) (Ph.i»si)e, =0 Vs; € Sui,
(3.13d) Vi - Rp A= QpiA on I';.

We note that (3.13d) is an essential boundary condition and that, for subdomains
adjacent to 9, the boundary condition p} = 0 on 99; \ I'; is natural and has been
incorporated in (3.13a). We emphasize the use of Qp ;A = Q?L,i)\ from (3.8) in (3.13d)

leads to Ry,; = R?M-, while Qp ;A = Q%’Z)\ from (3.10) results in Ry, ; = R&H

Remark 3.5. Problem (3.13) is similar to the downscaling stage in [14]. The main
difference is that here, the boundary data is first projected using Qp to account for
the fact that Ap; € Vhr’l-.

LEMMA 3.3 (Al). Problem (3.13) admits a unique solution with
(3.14) V- -Rpix= i and 1RhiMdiv,0: S AT -

Proof. We first show that

_ Q=L ) 1 .
TP = N\ = ‘ Z| ()‘17 1)F17 Z € I’L’ﬂt’
07 2 ¢ Iint~

If i ¢ Iy, this follows by the definition of Sy since we then have 7, = \; = 0. If
i € Iint, we set wp; = 1 in (3.13b):

(ri — X Do, = (V- RpiXd Do, — (A, D, = (Qnid — Ai, D, =0 Vi € iy,
using (3.9) and (3.11) in the final equality. Now (3.13b) implies that V - Rp ;A = A;.

Since this is a square, finite-dimensional linear system, uniqueness implies exis-
tence. Thus, we set A = 0 and note that r; = A\; = 0. In addition, 9 ;A = 0, thus
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Ruir € V)0, Setting test functions (RpiA,pp ;) in the first two equations and sum-
ming them gives Ry ;A = 0. Finally, we use (3.5a) to derive that W), ; = V~V£i@SH’i
which implies pj, ; = 0, using (3.13a) and (3.13¢).

We continue with the stability estimate by first obtaining a bound on the auxiliary
variable pﬁl Recall that the discrete pair Vj, ; x Wy, ; is stable (see (3.5b)), and note

that pai has zero mean for i € I;,;. Thus, there exists vg,p,i S V}gi such that

V. vg,p,i = pﬁ,i in §;, Hvz,p,i”div,ﬂi /S sz,z”Qq

Using v}, ,; as a test function in (3.13a), we derive

HPQJ ?zi = (K_th,i)\»UIOz,p,i)Qi < ||K_1Rh,i)‘| Q; vfoz,p,i| 0; S IRriAla, Pﬁz‘ Qs
implying
(3.15) Ip7 illo: S IRniAls-

Second, we note that V- Ry, ;A = 0 Vi ¢ I, since A; = 0. For the remaining
indexes, i.e., i € I;,;, we derive

(3.16a)

IV - RuiMle, = [Xlle, = 161720 Dr, = [72(Qni\ D,  11Qn.i|
Third, we introduce the discrete H(div,{);)-extension operator from [32, sect.

4.1.2], and denote it by R}, ; Vhr)i — Vh,i. This extension satisfies, for ¢y ; € Vhlji,

;-

Vi Ry ¥ni = Ynion Uiy v Ry n: =000 0\ Ty, |[RE, Wnillaiv.a: S 1¥n.l

;-

The next step is to set the test functions U?M- =Rhir— 73;‘L71-(Qh,i)\)7 Wh; = pgm and
s; = r; in (3.13). After summation of the equations, we have

(K" Ruad, Riih — R (Qnid))a, + (V- R (Qni)), piyi)a, = 0.

Using bound (3.15) and the continuity bound for || R}, ;(Qn,iA)lldiv,@,, We obtain

IRAiAG, S IRk, + 127 slle) IR #(Qn.iM laiv.e: S IRriMe,1QniMlr,
which implies
(3.16b) IRhiMa; S N1QniMllr,-

Collecting (3.16) and using that || Qp ;A||lr; < [|[A|lr;, since both variants are generated
using an L2-projection, proves the stability estimate. ]

3.2. Well-posedness. In this section, we establish existence, uniqueness, and
stability of the solution to the discrete problem (3.7) by showing that the assumptions
from section 2.4 hold within this setting.

LEMMA 3.4 (A2). The bilinear forms a(-,-) and b(-,-) satisfy bounds (2.11).

Proof. Bounds (2.11a) and (2.11b) describe the continuity of the bilinear forms.
These follow directly from the Cauchy—Schwarz inequality and the boundedness of K;
cf. (3.2). Bound (2.11c) concerns coercivity. Recall that V -V}, ; C Wy, ; from (3.5a)
and that Vj, C @, V3. In turn, the assumption b(vy, wy,) = 0 Vwy, € W, implies that
V - vyp,; = 0 Vi. Using this in combination with (3.2) gives
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a(vn,vp) = [ K 2oplfy 2 lonlld = lloall5-

Finally, inequality (2.11d) describes the discrete inf-sup condition. Let wy € W}, be
given. Consider a global divergence problem on Q:

(3.17) V-vY =w, in Q, oY =g" on 09,

where g € HY/2(0Q) is such that (v - g™, 1)sq = (wp, 1)q and 19"111.00 S llwnllo-
This problem has a solution v € (H!(Q))" satisfying [16]:

[v“llhe S llwalle +19%11 00 < llwnlle-

Let pp € Ap, be defined on each interface I';; as the mean value of v - v*. We have

lenle £ lanale, S0 i 0”le, S 110 e, S llwallo-

icln i€ln i€ln

Moreover, on each interior subdomain €2;, i.e., with I'; = 0€2;, we have that
(Bhisoa, = (Vi - v, 1)aq, = (V-0 1)q, = (Wns,1)a,.
Consider the extension Ry, ;i and note that on each interior subdomain §2;,

(Whi — V- R, Do, = (Whyi, Vo, — (Vi - Ruittn, 1)oq,
= (Wh,s, 1)a, — (i, 1)aq, = 0.

Then, the local discrete inf-sup condition (3.5b) implies that in each §2; there exists
vj; € V), such that

0 .
Vewvp; =whi =V - Rpipn in

and, using Lemma 3.3,

S lvpllave, S lwni = V- Ruipnlle, < (lwnille, + IV - Ruipnlle,)

i€lqg i€l i€l

S Y (llwnl

i€ln

o, + lunilr,) S llwnlla-

The final step is to define v) € V}! such that v}
and note that

i )0 e 20
Q, 1=V, set vy 1= vy, +Rppn € Vi,

(3.18a) b(vn,wr) = (V- (v} + Rupn), wn)a = ||wn |3,
(3.18D) lonllv < llopllv + [Rapnllv S llopllv + lleale S lwnllw-
Combining equations (3.18) yields (2.11d). |

LEMMA 3.5 (A4). It holds that

(319) Vi€ IQ, ||1/z . vh,i' T, 5 h_l/QH’Uhﬂ“

Q; V’Uh’i c Vh,i'

Proof. The proof follows from a simple scaling argument. ]

We are now ready to establish the well-posedness of the flux-mortar mixed finite
element method for the Darcy problem.
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THEOREM 3.6. Problem (3.7) with R}, or Rfl from (3.13) admits a unique solu-
tion (up,pp) € V)L’ x Wh or V,f x Wh, respectively. In both cases, it holds that

(3.20) lunllv + lpallw < N1 flle-

Moreover, if the mortar condition A3 holds for the corresponding projection Qp,, then
the mortar solution A\, € Ay, is unique.

Proof. We follow the assumptions of Theorem 2.1. Al is shown in Lemma 3.3
and A2 in Lemma 3.4. In turn, Theorem 2.1 ensures uniqueness of (up,pr) and the
stability estimate (3.20) in both cases. Next, with A3 and A4, shown in Lemma 3.5,
the application of Theorem 2.2 ensures the uniqueness of \j. 0

3.3. Interpolation operators. One of the main tools in deriving the error
estimates is the construction of an appropriate interpolant associated with the discrete
space Vj. The building blocks in our construction are the canonical interpolation
operators associated with the subdomain finite element spaces Vj ;, namely 1T} :
Vi (He(,))" — Vi, ; with € > 0, with the properties
(321) (V . (Ui — HY’UZ) ,wh,i)ﬂi =0 th,i € Wh,i;

(322) (l/l' . (’Ui — HY’UZ) ’wh’i)BQi = O V’Ujhﬂ' S Whﬂ'.

In addition, let TI}V : L2(;) — W, and H% : L2(Ty;) — Apj denote the L2-
projection operators onto Wy, ; and Ay, ;;, respectively. Together with the projection
Q‘;m onto V}E ; introduced earlier, we recall the approximation properties [9]:

(3.23a) v - v, <E™ |0, 0. 0<ry <ky,+1,
(3.23b) IV - (v =T/ v)[la, S h™ |V - 0|, 0 0 <71y < ky+1,
(3.23¢) lw =T wllo, $ A" lwlr, 0<ry < ky+1,
(3.23d) e =Tl S AF llvarsy s 0<ry <ka+1,
(3.23¢) e = Qhitellrs; S B il sy 0<7ry <hy+1

The constants k,, k., and kj represent the polynomial order of the spaces V},, W}, and
Ay, respectively, and 4,5 € Ig. To exemplify, we present two choices of stable mixed
finite element pairs. For the pair of Raviart—Thomas of order k, and discontinuous
Lagrange elements of order k,,, we have k, = k,,. On the other hand, choosing the
Brezzi-Douglas—Marini elements of order k, with discontinuous Lagrange elements of
polynomial order k,,, we obtain a stable pair if k, = k., + 1. For more examples of
stable finite element pairs, we refer the reader to [9, Chapter 2].

Let I : W — W), and II* : A — A}, be defined as the L2-projections IV :=
D, oY and oA .= D.. j H% The approximation properties of these operators follow
directly from (3.23).

Next, we introduce the composite interpolant IV : V' — Vj,, where V = {v € V :
vlg, € (H(Q;))" and (v - u)|r € A} with € > 0. Given u € V with normal trace
A= (v-u)|r € A, we define [TV u € V}, as

(3.242) T w:=REIN + P (uw; — R} A) = Ry (A = \) + DI ws,

(3.24b) I} u:=REIAN+ I (w; — R}, A) = 1Y w + RYITAN — R ITAA,
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We note that (3.13d) for R}, ;A and (3.22) imply v; -1} (u; =R}, ;A) = Q) ;A— Q) ;A =
0, so (3.24) gives Hg/u € Vhb and Hg/u € V,f. In the following, the use of IIV indicates

that the result is valid for both choices. We emphasize that the definitions of 11V u
and wuyp, combined with (3.13d), imply

(325) v MVu=v; Ry I\ = QpIIMN, vy wp, = v R idn = Qnidn
LEMMA 3.7 (A5). The interpolation operator 11V satisfies
(3.26) b(u — IV u,wp) =0 Ywy, € W,

Proof. In the case of IIY, we first note that, due to (3.14), V - R?m(HA)\ -\ =
TIAN; — A; = 0. Then the statement of the lemma follows from (3.21). In the case of
Hj‘j/, due to (3.14), V - (R%JHA)\ — RZ)iHAA) =0, and the result follows. d

We proceed with the approximation properties of the interpolants IV and H;’.

LEMMA 3.8. Assuming that w has sufficient reqularity, then

(3.272) ||lu — IV uly <h”2||u||mg +h“’ZHV llr, 0 + B A,

1<J

(3:27b) lu - HVUIIvSh”ZIIUIIn,n +h’"“’ZHV Wl R Y Il s

1<J
+ hrv Z ||A||Tu» Tij

1<J
Jor0<r, <k,+1,0<71, <ky+1,0<7ry <kra+1, and0<7, <k, +1.

Proof. Using (3.24a), bound (3.27a) for IV follows from (3.14) and the approx-
imation bounds (3.23a), (3.23b), and (3.23d). For I}, using (3.24b), we need to

bound ||7?,§l JIAN RS HA)\HdW ;- Since this is the extension that solves (3.13) with
boundary data Qli HA)\ Q) lHA)\ we have Rﬁ JIAN — R?L JAN =R l(Qu TIAN —
QEL’ZHA)\). We use thls observation in comblnatlon with (3.14) to obtain the bound

IR} TN — Ry T M Jaiv.o, < 11Q5 T4\ — Q) 11
<9} m* Q5 Allr, + 1195, 4N — Q)

In order to bound the final term, we use [4, Lemma 3.2], which states that if A3 holds
for QZ, then

(3.28) D IQh A= QA S AT Il 0 <7y <yt 1.
i<j i<j
The proof of (3.27b) is completed by using (3.23d) and (3.28). d

3.4. Error estimates. We now turn to the a priori error analysis. By Lemma 3.7,
assumption A5 is satisfied and we therefore invoke Theorem 2.3 to obtain the a priori
error estimate (2.14). Thus, to complete the error estimate, we need to derive a bound
on the consistency error £.. Before we do that, we remark that, since V-V, ; = Wy ;
(cf. (3.5a)), we can obtain a standalone bound for V - (u — up). In particular, the
error equation (2.16b) implies that V - (IIVw — uy) = 0 in €2;; therefore, using (3.26),
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(329) V-(u—up)=V-(u-T"u)=V - u-TY(V-u)=f-T"f in Q,

which is simply the approximation error of the source term f in Wj,.
The next step is to derive a bound on the consistency error £.. For that, we recall
its definition (2.15) and apply integration by parts on each €; with p = 0 on 99Q:

gc = Ssup ||'Uh||‘_/'1 ((Kﬁl’u’a Uh)Q - Z(pa V- ’l)h)Qi>

v EVR i

(3.30) = sup [loally" Y —(p,vi - vni)r.
v EVh p
In the last equality we used that K ~'u = —Vp from (3.1).
We continue the derivation using arguments that depend on the choice of exten-

sion operator, as outlined in the following two subsections.

3.4.1. Consistency error using R%. For this choice of extension operator (cf.
section 3.1.2), we use the weak continuity from Lemma 3.2 to bound the consistency
error (3.30). Let the discrete subspace consisting of continuous mortar functions be
denoted by Ay . C Ay. Next, let TIA : H(T') — Ay, . be the Scott—Zhang interpolant
[34] into Ay, .. This interpolant has the approximation property

(3.31) lp = Tepllspr S AR M pllrar, 1<7a<ka+1 0<sa <L

Importantly, the Scott—Zhang interpolant can be constructed to use only trace values
on JT'. Recalling that p = 0 on 952, this implies that (I —II2)p = 0 on OT. This allows
us to extend it continuously by zero on 92 and we let Eq (I —TI%)p denote the extended
function. On each subdomain ), it satisfies || Eo(] — Hé\)pH%ﬁQi < - Hé\)p||%7pi.

Recall that v, € Vf? is weakly continuous due to Lemma 3.2. Consequently,
> (I2p,v; - vp,)r, = 0 and we use this to derive

Z(Z% Vi Upi)r, = Z((I —I)p, vi - vna)r, = Z(Eo(f —I)p,vi - vni)oe,

7 7 [

A
(3.32) S S IE( ~ Tl o,

(3

Onillaiv.e, SN =T)plls plloallv,

2
gives a bound on the consistency error &, from (3.30). We arrive at the main result

of this subsection.

THEOREM 3.9. Let Ry, = ’Ri If A3 holds for Q?L and the solution s sufficiently
regular, then

where we used the normal trace inequality ||v; - vnill_1 g0, S [|Vnillaiv.e, [9]. This

[l —wnllv +[lp = prllw

< pRot? (Z [llky 1,0, + Y |>\|k1,+1,rij>
i

i<j

kat+a
BRSNS (Y a1+ ol 00 RS M ey + Rt 2 Il

i 1<J
Proof. Noting that assumption A5 has been verified in Lemma 3.7, we invoke
Theorem 2.3. Bound (2.14), combined with (3.30) and (3.32), implies

lw = wnllv + [lp = pallw < 1T @ = wlly + [TVp = pllw + [T2p - plly r-

The assertion of the theorem follows by combining the above bound with the approx-
imation properties (3.23), (3.27b), and (3.31). d
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3.4.2. Consistency error using R',’l For this choice of extension operator (cf.
section 3.1.1), we require a different strategy to bound the consistency error (3.30)
since weak continuity of normal traces in Vhb is not guaranteed. We note that vy, € V)L’
can be decomposed as vy, =: v\ + R up,, with (v), up) € V2 x Ap,. Using that Q';m is
the L%-projection onto V;F; (cf. (3.8)) and that p is single-valued on I', we derive

Z(p, Vi p)r, = Z(P, Q) ibna)r, = Z(QZ,JL hi)T;

)

T, || pnillr; -

7 %

- Z(Q?sz_pa /J'hﬂ')l_‘i S Z ||Q?17’Lp_p|
i i

We continue the bound using the mortar condition A3 and the trace inequality (3.19):

D v D194 —plr =Y 11 —pl
7 7

(3.33) S NG —ple i P onlla, S 7YY 11Q 0 — pliellvallv-

Qil)z,iuh.,i‘ v; - Uh,i|

i r; r;

This gives a bound on the consistency error &, from (3.30), which leads us to the main
result of this subsection.

THEOREM 3.10. Let Ry, = RZ If A3 holds and the solution is sufficiently regu-
lar, then

v k 1
lw—wnlly + I = pallw S 2wl ., + 22 I e 41rs,
i 1<J

1
+ B S T (IV  ulliy g+ Iplkas,) + 2572 S bl
) 7

2

Proof. We again invoke Theorem 2.3. Bound (2.14), combined with (3.30) and
(3.33), for which A3 is utilized, gives

lu —wnlly + llp = pullw < 10w —ully + [0Vp = pllw + 272D 115 20—l

7

;-

An application of (3.23) and (3.27a) completes the proof. ad

3.4.3. Comparison. The previous two sections indicate that theoretically the
choice of extension operator affects the resulting discretization error. Most impor-
tantly, the estimates from Theorems 3.9 and 3.10 differ in the interface pressure

terms

h’;A+1/2 hkru+1/2

[pllks+1,0  versus [Pllk,+1,r-

Both choices lead to a suboptimal convergence rate if ky = k,, i.e., if the polynomial
orders of Ay and V), are equal. This loss can be remediated in the case of the weakly
continuous projection Rfl by setting kp > k,, i.e., by choosing a higher order mortar
space Ay within the limit of the mortar condition A3; c¢f. Remark 3.2. This behavior
is similar to the pressure-mortar method [4, 5]. It is important to note, however, that

the two projections behave numerically in a very similar way, as observed in section 5.

Remark 3.6. In the special case Ay ; C Vhlji, one can simply take Qj ; = I. Then,

Z(pa v; - vh)Fi = Z(pa ,u'h,i)Fq‘, = 07

7 7

implying that £ = 0 and there is no suboptimal term in the error bound.
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3.4.4. The interface flux. The error estimates derived in the previous sections
show convergence of the subdomain variables u; and p,. However, convergence of the
mortar variable Ay, itself has not been obtained. We therefore devote this section to
finding error estimates of the mortar variable for both types of projection operators.
The results are presented in a general setting. However, we recall that the discrete
solution (up,pp) € Vi x Wy, implicitly depends on the chosen projection operator.

In the following theorem we consider two measures of the interface flux error,
comparing the true interface flux A to either the mortar flux A\, or to the normal
trace of the velocity up on I', v; - up, = Qp i Ap.

THEOREM 3.11. If A3 holds and the solution is sufficiently regular, then

IA=Alle S AR My ey +RTVE(IY w0,

i<j
DI = Quadnlles S ALY A kg s1,ry + AT — v + &)
i i<y
+ APt Z ||)‘||1€v+1,rij'

i<j

Proof. Using A3, (3.25), and the discrete trace inequality (3.19), we obtain

1A= Anlle < A = TN 0+ [T = Aulle S A = TN + > 19 (TN = An) I,
= A =T\ e + D [l - (T — ) |,
[

(3.34) <IA=TN|p + 220V w — wp |y

The next step is to note that (3.5a) implies b(vy,, 1" p — p) = 0. In turn, the bound
(2.20d) in Theorem 2.3 is obsolete and (2.21) can be improved to

I — |y + [TV — pallw S [TV w —ully + &

Combining this with (3.34) and the approximation property (3.23d) then give us the
first bound. The second bound follows from the triangle inequality,

1A — On.iAn] r; +119ni(A— An)|

r; <A — Qi

r; <A — QniA

ri A=Al

Ti»

and the use of the approximation property (3.23¢). ]

Remark 3.7. The estimates from Theorem 3.11 can be further developed by in-
voking the approximation properties (3.23) and bounding the consistency error &. as
in sections 3.4.1 and 3.4.2. In their presented form, however, these results emphasize
that there is a half order reduction in convergence for the mortar variable compared
to the velocity. Such reduction is expected, since we measure the mortar error in the
L?(T)-norm, rather than the H—/2(I")-norm.

3.5. Interface problem. By following the steps of section 2.5, the flux-mortar
mixed finite element method can be reduced to an interface problem concerning only
the mortar variable A. In order to do so, we need to verify assumption AG6.

LEMMA 3.12 (A6). The following inf-sup condition holds for the spaces Ap X Spr:

Vs € Sy, 30 7é Ln € Ay, such that b(Rth,SH) Z ||Nh||AH5H||W
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Proof. Setting wy, := sy € Sy C W), in the proof of (2.11d) in Lemma 3.4
leads to a pair (v), uy) with v) = 0 that satisfies (3.18), i.e., [|unlla < lsullw, and
b(Roin, 511) = 51120 X

As noted in section 2.5, the interface problem (2.25) improves the solution with
respect to (2.9b), which in this case is based on Darcy’s law and enforces continuity
of pressure. On the other hand, mass conservation is already ensured, locally, after
solving (2.24) and the iterative solution of (2.25) effectively updates the velocity with
divergence-free functions.

4. Stokes flow. As our next example, we consider Stokes flow and follow the
steps from section 2 to formulate and analyze the corresponding flux-mortar mixed
finite element method. The governing equations are

(4.1a) o= je(u) — pl in Q,
(4.1b) —-V.o=g, Veu=f in Q,
(4.1c) u=0 on 0,Q, ov =0 on 0,€2.

Here, [i represents the viscosity, g is a body force, f is the mass source, and € denotes
the symmetric gradient, i.c., e(v) := 3(Vv + (Vov)T). Moreover, 8,2 U 8,9 forms a
disjoint decomposition of 9 with |9, Q| > 0 and |0,| > 0. For simplicity, we assume
that the interface I" only touches the boundary on 90,f2.

Let us continue by defining the function spaces V x W:

Vi={veH(Q)", wvlsa=0}, W= L*(Q).

The variational formulation of problem (4.1) obtains the form (2.1) by defining
the bilinear forms:

(4.2) ai(ui, ’Ui) = (/]E(’U,i),f(’vi))gi, bi(ui, wi) = (V . ui,wi)gi.

In line with (2.3), we let Tr; v; := v;|p, be the trace of all components of the
vector function v; € V; onto T';. We define the trace space A := (H'/2(I'))" and
endow it with the norm [[p|a := >, || il a,, with

R ,_{ Hru’iH%,Bin t € Iing,

(4.3) [ s 1B omills 00, @& Lint,

where E; ¢ is the extension by zero to 0€;.

We end this subsection with a statement of a version of Korn’s inequality [12,
(1.8)], which will be used to establish coercivity of the bilinear form a(-,-). Let
O C R™, n = 2,3, be a connected bounded domain and let G with |G| > 0 be a section
of its boundary. Then, Vv € (H*(0))",

(4.4) o S | lle(@)llo + sup (v,m)g |,
meRM(O)
Imllg =1, f, m ds=0

where RM(O) is the space of rigid body motions on O. Combined with Poincaré
inequality [32], Vv € (H'(0))" with [;vds = 0, [[v[lo < |v[1,0, (4.4) implies that
Vv € (H(0))" with (v,m)g =0 Vm € RM(0),

(4.5) [v

Lo S lle(v)lo-
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4.1. Discretization. For each i € Ig, we choose a finite element pair V},; X
Wh.i C Vi x W; such that it is stable for the Stokes subproblem on €2y, ;. Stable mixed
finite element pairs for the Stokes subproblems (see, e.g., [9, Chapter 8]) include the
Taylor—-Hood pair, the MINI mixed finite element, and the Bernardi-Raugel pair.
Note that the essential boundary condition ug = 0 on 9,2 is built in V}, ;.

We next define the discrete flux space A, C A by introducing a globally conform-
ing shape-regular mesh on I'. Such mesh can be obtained as the trace of a mesh Qn
on () that is aligned with the domain decomposition. Let Vi, C V]qa be a conforming
Lagrange finite element space on Q. We then define the discrete flux space on I' as
Ah ="Tr Vh.

Following definition (2.6), the space Sy is given by Sp,; = Rif 99, N 9,2 =0
and zero otherwise. Let Wf?’i = Wp: N Sf;l We emphasize that the stability of the
finite element pair ensures the following inf-sup condition for each i € Ig:

(4.6) Vw?m- IS W,?’Z-7 30 # 1)2’2- € V,gi such that b; (vgyi,w,om) > ||v?”|

i

We continue with the definition of the operator 9y, ; : A — Tr; V3, ;. This operator
needs to satisfy

(47) (l/i . (Q}m)\ — }\), l)pi =0, 1€ lq,

which is needed for inf-sup stability (cf. A2) and b-compatibility of the interpolant
I (cf. A5). The L?-projection onto Tr; Vi, ; does not satisfy (4.7), since the space
Tr; V}, ; is continuous on I';, but the normal vector v; is discontinuous at the corners of
the subdomains. We therefore need a different construction. Let I, : A; — Tr; Vj, ; be
a suitable interpolant or projection with optimal approximation properties. Specific
choices of Zp, will be discussed below. Since Zr, may not satisfy (4.7), we correct
it on each flat face I’ of I';. We assume that, given A € A;, there exists cf; ; €
Tr; Vi i|lp 0 (Hg (F))™ such that

(48) (el xni) p = A= Te A Xna)r Yxna € Vil llelilly p S 1A= ZoAlly s

where V;f is a suitably defined finite element space on F such that v;|p € V;f;. We
refer to [19, Appendix] for examples of spaces and constructions of ci ;- In particular,
in two dimensions, assuming that XA € C%(T';), we can take Zp, A to be the Lagrange
interpolant and use the constructions from [19, section 7.1]. Alternatively, in both
two and three dimensions we can take Zr, to be the L2%-projection onto Tr; Vh,i and
use the construction from [19, section 7.2]. We then define

Qh,i)\ = Ipi)\ + Z Cii,

FcCr;

which satisfies for each face F,
(4.9) (QhiX =X Xni)F =0 VYxn € foi-

Since v;|p € Vhl“: ;» then (4.7) holds. A scaling argument similar to the one in [19,
Lemma 5.1] shows that that Qp ; is stable and has optimal approximation properties
in || - ||a,- We further note that the approximation property of the space V{Z on I';,

Vibilp := V), does not affect the approximation property of Qy i, but it affects the
consistency error &.; cf. Lemma 4.5.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/15/22 to 132.174.255.116 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1216 W. M. BOON, D. GLASER, R. HELMIG, AND 1. YOTOV

Remark 4.1. The mortar condition A3 requires that the space Ay, is controlled by
the traces of the neighboring velocity spaces. We refer the reader to [19, section 7]
for specific examples of V, and Aj, that satisfy A3.

We now have all the ingredients to set up problem (2.7) and therewith de-
fine the extension operator Rp;. In turn, the discrete spaces Vj x W}, are de-
fined as in (2.8). The discrete Stokes problem is then defined by (2.10), posed on
Vi, X Wy, with the bilinear forms from (4.2). Equation (2.9b), which in this case
is >, ((ae(wn,i), e(Ruimn))o, — (V- Ruittns Phi)o, — (9, Ruiktn)o,) = 0 Yy € Ap,
imposes weakly continuity of normal stress.

4.2. Well-posedness. We next verify assumptions Al, A2, and A4 needed for
the proofs of Theorems 2.1 and 2.2.

LEMMA 4.1 (Al). Problem (2.7) has a unique solution and the resulting exten-
sion operator Ry, : A — Vj, is continuous, i.e., |[RpA||v S| Ala VA € A.

Proof. We first consider uniqueness by setting A = 0. Setting wy,; = 1 in (2.7b)
and using the divergence theorem and (2.7d), we obtain r; = 0. Next, setting the
test functions in (2.7a)—(2.7b) to (Rh,i)\,pﬁ)i) and summing the equations gives us

RhpiX =0, using Korn’s inequality (4.5). Moreover, we have pai 1 Sy, from (2.7¢),
so we use the inf-sup condition (4.6) and (2.7a) to derive that pﬁﬂv = 0.
It remains to show continuity. The first step is to obtain a bound on pﬁz Since

ppi L Su.i, we use vf) ; from the inf-sup condition (4.6) as a test function and use the
continuity of a;(,-) to obtain

PQZHW S b (Ivg,i?pz,i) = a; (Rh,iA,v}g,i) SR

v illv, villvp allv,.-

Thus, ||p2,z||WL S HRh,ZA| Vi~
Next, let R} ;A € Vj,; be a continuous discrete extension operator [32, Theo-
rem 4.1.3] satisfying Tr; Ry A= @QpiAonl; and

(RN

v, S 19|

A;-

We take as test functions in (2.7) vp ; = ¢} ; = (Rni — R )N € V)i, wni = pp 4,
s; = ry, and combine the equations. Using Korn’s inequality (4.5), the continuity of
a; and b;, Young’s inequality, and the bounds on pﬁ,i and Rj, ; A, we derive

%/i Sa; (‘Pg,m ‘P?m') =4 (RZ,R\, Sa?m') +b; (_ Z,i)‘apz,i)
SR Al (195 illve + lpn s llw) S IR, + € (199 115, + I1RAsAlIT,) -

Combining this bound with [Ra A2, < e, 12, +[Ri A2, < led, I3, +IA]3, and
taking e small enough, we obtain ||} ;[|v; < [|Alla,, which implies [Rp iX[v, < [|Alla,
for i € I, concluding the proof. ]

LEMMA 4.2 (A2). The four inequalities (2.11) hold for Vi, x Wy,

Proof. First, the continuity of a; and b; from (4.2) follow from the Cauchy—
Schwarz inequality. Summing over all ¢ € I provides (2.11a)—(2.11b).

For (2.11c), the coercivity of a;, Korn’s inequality (4.4) cannot be applied locally,
since the velocity is not restricted on subdomain boundaries. To that end, we recall
that A, = TrV},, where V}, C V is a conforming Lagrange finite element space on
a mesh Qh that is aligned with the domain decomposition. We can write f/hﬂv =

]
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f/,?’i D 5h,iAh, where ‘7}?’1 = {'f)h,,’ S Vhﬂ' : Tri 'f)h,i =0on F,’} and 5h,z’ : Ah — Vhﬂ' is a
discrete extension operator such that &, ;u, = pp on I'; and

(4.10) a; (Enipn, 05 ;) =0 Yoy, € VP,

Problem (4.10) is well-posed, since, due to (4.5), a;(-, -) is coercive on f/,?l Now, given

Up,; = u?w- + Rp,iAn, consider the local problem: Find uj; = fL?m + EhiAn € ‘N/h’i
such that

(4.11)  a; (ﬁ?” + 5h7¢>\h,f)2,i + EniAn) = a; (un,, 17271' + EniAn) Vf’g,i € Vi?z

Note that uy, ; and Aj, are given data. Problem (4.11) is well-posed, since, using (4.10),
a; (B, + EniXn, 08, + Enidn) = ai(ah ., 00 )+ ai(EniXn, EniAn), and the coercivity
follows from (4.5). We further note that (4.’11) implies that a;(wpn,; — @pq, Un ) = 0.
Also, (4.9) implies that, Vm € RM(;), (up,i —Uns, m)r, = (Qnidn —Ap, m)r, = 0.
Hence, Korn’s inequality (4.5) on €2; gives ||u;”—'&;”||%Q S ai(Wh,i—Uh i, Uh,i—Thi)-
Then, with @y, € V, defined as Up|q, = Uh,i, we have

Z a;(Whi, Up,;) = Z a;(Whi — Uh i, Uh i — Wh,i) + Z a; (p, i, Uh;)
i i

i
2D i = anllf o, + l@nllf o 2 lunili o,
‘ i

K2

where in the first inequality we used Korn’s inequality (4.5) applied globally on .
This completes the proof of (2.11c).

Next, we prove the inf-sup condition (2.11d) by constructing vy, € V}, for a given
wp, € Wh. As in Lemma 3.4, we consider a global divergence problem on §2 (cf. (3.17))
to construct v € (H(Q2))™ with the properties

V-vY=w,inQ, v*=00n0d,Q, |[v*

1o S lwnllo-

The approach used in Lemma 3.4 to construct pp € Aj does not work here, due to
the global continuity of Aj. Instead, we consider a discrete Stokes problem in €2 based
on the finite element pair Vi, X W, where we recall that A, = Tr Vj, and we define
Wy to be the space of piecewise constants on the partition formed by the subdomains
;. Assuming that there is at least one interior vertex in each I';;, the pair Vi, x Wy
is inf-sup stable; see [35, Lemma 3.3]. Let u}’ € Vi, be a discrete Stokes projection of
v" in  based on solving the problem, Find (u}’,pY) € Vi, x Wy such that

(4.12a) (Vay, Vop)g — (V- 0n, p%)a = (Vo Vo,)g Vo, € Vi,
(41213) (V~ﬁ}l”,wH)Q = (V~'vw,wH)Q Ywg € Wg.
The continuity of the Stokes finite element approximation implies ||@} 1,0 S [|[v™]1,0-

We now define pp, := Tru’ € Ap. The trace inequality implies
D lenlla: S llay
i i

Moreover, (4.12b) gives

[Lo: S v e S llwallo-

(Vi *Hh, ]‘)Fi = (V : ﬁ}fa 1)91 = (V ’ ,Uw’ 1)94, = (wh; 1)97
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Now, using (2.7d) and (4.7), we obtain
(V- Ruiptn, Do, = (Vi Qnibtn, Vr, = Wi - pn, D1, = (w0 1)g; -
Using the discrete inf-sup condition (4.6), we construct vy ; € V;?; such that
Vv =wni =V Ruipn i Qo |vpslhie: S lwni = V- Ruamnlle,
and set vp,; = ”2,1‘ + R, iptn. We have
(4.13a) Zbi(vh,uwh,i) = [lwnld,
(4.13b) > lwnillve £ IRmattnllv; + lwnlle < llwnllw,

using Lemma 4.1 in the last inequality. This implies the inf-sup condition (2.11d). O
LEMMA 4.3 (A4). For each subdomain Q;, it holds that

(4.14) | r: S llonllve Yoni € Vi

Proof. The statement follows from the trace inequality [[v[[1 p, S [lvillie,. O

4.3. Interpolation operators. We next define appropriate interpolants in the
discrete spaces. We define IT" as the L2-projection onto W, II* as the L?-projection
onto Ay, and HZVF as the L2-projection onto Vhr)i.

For the interpolant IIY, we note that the construction from section 3.3 uses
Tr; 1Y = Qp,; Try on I';. However, canonical b-compatible interpolants for Stokes
finite elements do not typically satisfy this property. For this reason, we define II} as
a suitable Stokes elliptic projection. More precisely, for i € I, given u;, we consider
the discrete Stokes problem: Find (Hyui,pg z) € Vi X W}ii such that

(4.15a) (V(Hvul) Vvh Z) (V vh i Dh Z) (Vui,va_’i)Qi

(415b) (V . Hi U;, wh’i)gi = (V c Uy, wh,i)Qi th,i S Wh,i>
(4.15¢) Tr; Y w; = Qpi Tr; u; on T;.

0 0
Vvhyi S Vh,iv

The well-posedness of the above problem and optimal approximation properties of
Y follow from standard Stokes finite element analysis [9].

Let A\ = Tru. Note that, by construction, we have Tr; IV = O, Tr; on Iy,
Therefore I} (u; — Ry ;A) € V2,. Using this observation, the interpolant I onto V,
is defined similarly to (3.24a):

(4.16) IV w = Ry + @I (w; — Rpid) = Ry (TN — ) EBHVUI

The continuity of Ry, established in Lemma 4.1, implies the following approximation
property of IIV:

(4.17) [ =TV ully S llu =T ulluo, + A = T*A| A

LEMMA 4.4 (A5). The interpolation operator 11V has the property
(4.18) blu — TV u,wy) =0 Yw, € Wy,

Proof. We first note that b-compatibility of IT} is ensured by (4.15b). The argu-
ments from Lemma 3.7 now provide the result. O
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4.4. Consistency error.

LEMMA 4.5. Given A3, then the consistency error &, satisfies

£ < I (ov) - ov|

;-

Proof. We consider the term in the numerator of the definition (2.15) of £&. We
recall the definitions of the bilinear forms in (4.2) and apply integration by parts.
Given (u,p) the solution to (4.1), we substitute the momentum balance (4.1b) and
the boundary conditions (4.1c) to derive

Z (ai(u,vp) — bi(va,p) — (9, v1)0,) = Z(Owwh,i)am = Z(Uw,vh,i)m-

We proceed as in section 3.4.2. Let vy, ; = ’Ug)i + Rp,iptr. Using the continuity of o
on I' and assumption A3, we obtain

Z(Uw, Vhi)r, = Z(Ul/i7 Qhniln)T,

4
i

= Z <(ou¢ - HIVF (ovs), Qh,iﬂh)r + (HYF (UVi),Hh)r,)

i

= Z <(CTVi - HzVF (ovi), Qh,iﬂh>r + (HZVF(UW) - UViaMh)Fz)

0. || Qh it r,

r
S lovi =10 (ovy))]
i

T
=Y llovi =117 (av) e, [ on,ilr,
i
r
S lovi =10 (ovi) I, llvn.ill1.o.
i
using the trace inequality, Vi € Iq, ||[vnllr; S lvnilla; S onalle;- 0

4.5. Main result. We conclude this section with its main result, which follows
directly from Lemmas 4.1-4.5 combined with Theorems 2.1-2.3.

THEOREM 4.6. The fluz-mortar mized finite element method for the Stokes prob-
lem given by (2.10) with (4.2) admits a unique solution (up,pp) € Vi x Wy, that
satisfies

lunlly + llpallw < D llgill-ve, + [1flle.
i

Furthermore, if A3 holds, then the mortar solution A\, € Ay, is unique and the error
with respect to the true solution (u,p) satisfies

r
[ = wnllv + [lp = pallw S ITTVw = wlly + [TV p = pllw + > [T} (ov) = ov]|r,.

K3

Remark 4.2. A bound on the mortar error |A — Ap|/a can be derived using an
argument similar to the proof of Theorem 3.11, under the stronger mortar condition
leenlla, S NQnitnlla; ¥ pan € Ap. Examples for the latter are given in [19, section 7].
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4.6. Interface problem. We end this section by reducing the Stokes flow prob-
lem to a flux-mortar interface problem following the four steps (2.23)-(2.26) from
section 2.5. To accommodate its construction, we require A6, presented in the follow-
ing lemma.

LEMMA 4.7 (A6). The following inf-sup condition holds for the spaces Aj, X Sk :
Vsy € SH, 30 7& Kmh € Ay such that b(Rh/,Lh,SH) 2 Hlth”AHSHHW

Proof. Setting wy, := sy € Sy C W), in the proof of the inf-sup condition (2.11d)
in Lemma 4.2 leads to a pair (v), uy,) with v = 0 that satisfies (4.13). d

5. Numerical results. In this section, we return to the model problem describ-
ing porous medium flow and test the theoretical results from section 3.4 with the use
of numerical experiments. The numerical code, implemented in DuMu*® [15, 25], is
available for download at git.iws.uni-stuttgart.de/dumux-pub/boon2019a. The low-
est order Raviart-Thomas mixed finite element method reduced to a finite volume
scheme with a two-point flux approximation is applied in each subdomain and we
solve the problem using the iterative scheme described in section 2.5. On the mortar
grids, we investigate two options, namely the use of piecewise constant functions (Py)
and linear Lagrange basis functions (P;). Moreover, both the projection operators
Q‘;L and Q?L are considered in order to cover all results from section 3.4.

The setup of the test is as follows. Let the domain Q = (0,1) x (0,2), the
permeability K = 1, and the pressure and velocity be given by

(5.1a) p(z,y) =1y° (1 - %) + (1 —xz)ysin(27x),

y ((1 = 2zx)sin (27x) — 27 (x — 1) z cos (27x))

(5.1b) u(z,y) =— [ (2—1y)y+ (1 — x)sin (272)

We prescribe the pressure on the boundary 02 and define the source function f := V-u
to match with these chosen distributions.

We partition the domain into four subdomains by introducing interfaces along the
lines x = 0.5 and y = 1. In order to investigate the convergence rates from section 3.4,
we test a sequence of refinements by a factor two. Each subdomain is meshed with a
rectangular grid such that the meshes are nonmatching at each of the four interfaces.
The meshes on the coarsest level are 5x 9 on (0,0.5) x (0,1), 5x 13 on (0.5,1) x (0, 1),
7x 13 on (0,0.5) x (1,2), and 7x 9 on (0.5,1) x (1,2). The mortar grids are generated
such that each interface has the same number of elements. We refer to the number
of mortar grid elements per interface on the coarsest level as nl and we consider the
two cases n € {2,3}. For an illustration of the grid and the solution (up,pp), we
refer to Figure 1.

We analyze the decrease of the errors of the velocity e, := [[u—up|q and egiy(u) :=
> IV (uw —up)llq,, the pressure e, := ||p — pp|q, the flux-mortar ey := ||A — A4,
and the projected flux-mortar egy := ||A — QuAu||r. Convergence results for nd = 2

are presented in Tables 1 and 2 for P; and Py mortars, respectively. The mortar grid
is sufficiently coarse to fulfill the mortar condition A3 for both Q?l and Q?L. The rates
r, and r, from Table 1 indicate first order convergence for the velocity and pressure
for both projectors Q% and Q,’i1 in the case of P; mortars. Table 2 shows that the
choice of Py mortars results in a reduction for the velocity with the rate approaching
O(h'/?). We note that Theorems 3.9 and 3.10 predict O(h) convergence for Q% with

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://git.iws.uni-stuttgart.de/dumux-pub/boon2019a

Downloaded 06/15/22 to 132.174.255.116 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1221

[ 11 11]]
mEE 8
(][] L TTH
LT
T

i
[ |
[ |
|
||
[
L
1

Fia. 1. Pressure (left) and velocity (center and right) distributions computed after the first
refinement using continuous, piecewise linear mortars (P1), and initial mortar grid with ng = 2.
The wvertical (center) and horizontal (right) mortar grids are visualized as tubes with white circles
indicating the vertices.

TABLE 1
Errors and convergence rates for nl(l = 2 and P1 mortars.

P1 | el Ty @Ziu(u) rtbii'u(u) ‘ e‘; 7"';’7 ebx TK el’QA TbQ)\
0 7.05e-2 2.78e+0 4.43e-2 3.78e-2 1.05e-1
1 2.76e-2 1.35 1.39e+0 1.00 2.18e-2  1.02 1.78e-2 1.08 | 5.22¢-2 1.01
2 1.26e-2 1.14 6.96e-1 1.00 1.08e-2 1.01 1.13e-2  0.65 2.79-2 091
3 6.11e-3  1.04 | 3.48e-1 1.00 5.42e-3 1.00 | 7.91e-3 0.52 1.59e-2  0.81
4 3.03e-3 1.01 1.74e-1 1.00 2.71le-3 1.00 | 5.58¢-3 0.50 | 9.62¢-3 0.72
5 1.51e-3  1.00 | 8.70e-2 1.00 1.35e-3 1.00 | 3.95e-3 0.50 | 6.15e-3 0.64
6 7.56e-4  1.00 | 4.35e-2 1.00 6.77e-4  1.00 | 2.79¢e-3 0.50 | 4.10e-3 0.58
7 3.78e-4  1.00 2.17e-2 1.00 3.38¢-4  1.00 1.97e-3 0.50 | 2.81e-3 0.55
e"ul Tg‘ egliv(u) r(ﬂiiv(u) eg’ 7"2 et)t\ Tg\ eﬁQ)x Tgk
0 7.05e-2 2.78e+0 4.43e-2 3.78e-2 1.05e-1
1 2.76e-2 1.35 1.39e+40 1.00 2.18e-2 1.02 1.79e-2 1.08 5.23e-2 1.01
2 1.26e-2 1.14 | 6.96e-1 1.00 1.08e-2 1.01 1.14e-2  0.65 2.7%9-2 091
3 6.11e-3 1.04 3.48e-1 1.00 5.42e-3 1.00 7.92e-3  0.52 1.59e-2  0.81
4 3.03e-3 1.01 1.74e-1 1.00 2.71le-3 1.00 | 5.59e-3 0.50 | 9.62e-3 0.72
5 1.51e-3  1.00 | 8.70e-2 1.00 1.35e-3  1.00 | 3.95e-3 0.50 | 6.16e-3 0.64
6 7.56e-4  1.00 | 4.35e-2 1.00 6.77e-4  1.00 | 2.79¢-3 0.50 | 4.11e-3  0.58
7 3.78e-4  1.00 2.17e-2 1.00 3.38¢e-4  1.00 1.98e-3 0.50 | 2.81e-3 0.55

P, mortars, while O(h'/?) is predicted in the other cases. For the mortar variable, the
rates vy and rgy are lower by approximately one half compared to r, and r,. This
is in agreement with Theorem 3.11. Finally, we note that the error eg;,(,) is identical
and first order convergent in all cases, which is consistent with (3.29).

The most striking observation in both of these tables is that the two extension
operators RZ and R?l produce nearly indistinguishable solutions. However, we have
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TABLE 2
Errors and convergence rates for n% = 2 and Py mortars.

Po | e e e(bii'u(u) TZiv(u) ‘ e p e ™ ebQA Tbg,\
0 1.37e-1 2.78e+0 4.48e-2 3.41e-1 4.20e-1
1 4.78e-2 1.51 | 1.39e+0 1.00 2.18¢-2 1.04 | 1.70e-1 1.01 | 2.06e-1 1.03
2 1.85e-2  1.37 | 6.96e-1 1.00 1.08e-2 1.01 | 8.56e-2 0.99 | 1.03e-1 0.99
3 7.91e-3 1.23 | 3.48e-1 1.00 5.42e-3  1.00 | 4.49e-2 093 | 5.41le-2 0.93
4 3.72¢-3  1.09 | 1.74e-1 1.00 2.71le-3 1.00 | 2.62e-2 0.77 | 3.18e-2 0.76
5 1.92e-3  0.96 | 8.70e-2 1.00 1.35e-3  1.00 | 1.88e-2 0.48 | 2.33e-:2 0.45
6 1.07e-3  0.83 | 4.35e-2 1.00 6.77e-4 1.00 | 1.64e-2 0.20 | 2.08e-2 0.17
7 6.50e-4  0.72 | 2.17e-2 1.00 3.38e-4 1.00 | 1.57e-2 0.06 | 2.0le-2 0.05

ch rh € div(u) ngm(u) < rh A i euQA TuQA
0 1.37e-1 2.78e+0 4.48e-2 3.4le-1 4.19e-1
1 4.78e-2 1.52 | 1.39e+0 1.00 2.18¢-2  1.04 | 1.70e-1 1.01 | 2.05e-1 1.03
2 1.85e-2  1.37 | 6.96e-1 1.00 1.08e-2  1.01 | 8.56e-2 0.99 | 1.03e-1 0.99
3 7.91e-3 1.23 | 3.48e-1 1.00 5.42e-3  1.00 | 4.49e-2 093 | 5.40e-2 0.93
4 3.72e-3  1.09 | 1.74e-1 1.00 2.71le-3  1.00 | 2.62e-2 0.77 | 3.18e-2 0.76
5 1.92e-3  0.96 | 8.70e-2 1.00 1.35e-3 1.00 | 1.88e-2 0.48 | 2.33e-2 0.45
6 1.07e-3  0.83 | 4.35e-2 1.00 6.77e-4  1.00 | 1.64e-2 0.20 | 2.08e-2 0.17
7 6.50e-4  0.72 | 2.17e-2 1.00 3.38¢-4 1.00 | 1.57e-2 0.06 | 2.0le-2 0.05

TABLE 3
Errors and convergence rates for n% = 3 and P1 mortars.

ez T"Z e':liv(u) TZiv(u) ‘ 6; T; eg\ Tg\ ebQ)\ TbQ)\
0 | 7.08e-2 2.78e+0 4.43e-2 4.51e-2 1.10e-1
1 | 2.82-2 133 | 1.39e+0 1.00 2.18¢-2  1.02 | 3.37e-2 042 | 6.37e-2 0.79
2 | 1.29e-2  1.13 | 6.96e-1 1.00 1.08e-2  1.01 | 2.41e-2 0.48 | 3.90e-2 0.71
3 | 6.31e-3 1.03 | 3.48e-1 1.00 5.42e-3  1.00 | 1.74e-2 0.47 | 2.55e-2 0.61
4 | 3.15e-3  1.00 | 1.74e-1 1.00 2.71le-3  1.00 | 1.29e-2 0.43 | 1.78e-2  0.52
5 | 1.60e-3 0.98 | 8.70e-2 1.00 1.35e-3 1.00 | 9.91e-3 0.38 | 1.34e-2 0.42
6 | 8.19e-4 0.96 | 4.35e-2 1.00 6.77e-4  1.00 | 8.03e-3 0.30 | 1.07e-2  0.32
7 | 4.30e-4 0.93 | 2.17e-2 1.00 3.38¢-4 1.00 | 6.91e-3 0.22 | 9.21e-3 0.22

verified numerically that RZ does not produce velocity fields with weakly continuous
fluxes across the interfaces, so it is indeed different from R?L The closeness of the
results indicates that the interface consistency error £, is dominated by the subdomain
discretization error. It may also be possible to improve the consistency error bound
(3.33) for R} and make it comparable to the bound (3.32) for Rgl

We next consider the case of finer mortar grids with n = 3, focusing on P;
mortars. In Table 3, we show the errors and convergence rates with the projection
operator Q‘;L, noting that the results with Q‘;L are similar. We observe a deterioration in
the rates r,, 7, and rg), compared to the case with n% = 2; cf. Table 1. To illustrate
this effect, we show in Figure 2 the mortar solution A\, obtained on refinement level 5
with the coarser mortar grid n = 2 and the finer mortar grid n = 3. We first note
that in both cases an oscillation appears at the junction of the two mortar grids. It is
likely due to the Gibbs phenomenon at the end points of the interfaces, in combination
with the effect of the nonmatching grids. This oscillation is localized and it does not
affect the global accuracy. However, in the finer mortar grid case, an oscillation is
also observed along the entire interface. This indicates that the mortar condition A3
may be violated in this case.
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FiG. 2. Plot of the true flur A\ and the discrete mortar solution A; along the line y = 1, on
refinement level 5 with initial mortar grid n% =2 (left) and n[ll = 3 (right).

6. Conclusions. We have proposed a mortar method for a wide class of saddle
point problems in which the continuity of the essential boundary condition variable,
which is typically flux in flow or stress in elasticity, is enforced strongly using an
interface variable. The method is capable of handling nonmatching grids under the
mortar assumption A3. The method was presented and analyzed in an abstract
setting. Specific examples concerning Darcy flow, Stokes flow, and Stokes—Darcy flow
were shown to fit the framework. Numerical examples for Darcy flow were presented,
verifying the theoretical convergence rates. It was further observed that violating A3
may result in spurious oscillations and reduced convergence in the mortar flux.
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