
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. © 2022 Society for Industrial and Applied Mathematics
Vol. 60, No. 3, pp. 1193–1225

FLUX-MORTAR MIXED FINITE ELEMENT METHODS ON
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Abstract. We investigate a mortar technique for mixed finite element approximations of a class
of domain decomposition saddle point problems on nonmatching grids in which the variable associated
with the essential boundary condition, referred to as flux, is chosen as the coupling variable. It plays
the role of a Lagrange multiplier to impose weakly continuity of the variable associated with the
natural boundary condition. The flux-mortar variable is incorporated with the use of a discrete
extension operator. We present well-posedness and error analysis in an abstract setting under a set
of suitable assumptions, followed by a nonoverlapping domain decomposition algorithm that reduces
the global problem to a positive definite interface problem. The abstract theory is illustrated for
Darcy flow, where the normal flux is the mortar variable used to impose continuity of pressure,
and for Stokes flow, where the velocity vector is the mortar variable used to impose continuity
of normal stress. In both examples, suitable discrete extension operators are developed and the
assumptions from the abstract theory are verified. Numerical studies illustrating the theoretical
results are presented for Darcy flow.

Key words. flux-mortar method, mixed finite element, domain decomposition, nonmatching
grids, a priori error analysis
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1. Introduction. The mortar mixed finite element method [4, 5] has proven to
be an efficient and flexible nonoverlapping domain decomposition technique for solving
a wide range of single-physics or multiphysics problems described by partial differential
equations in mixed formulations coupled through interfaces with nonmatching grids.
The key attribute of this method is the introduction of a Lagrange multiplier, referred
to as the mortar variable, on the interface that enforces continuity of the solution. The
method can be implemented as an iterative algorithm that requires only subdomain
solves on each iteration.

In this context of porous media flow in a mixed form, the two most natural
choices for the mortar variable are the pressure or the normal Darcy flux. In the case
of matching grids, domain decomposition methods with these two types of Lagrange
multipliers were introduced in [20]. In [4], a mortar mixed finite element method on
nonmatching grids with a pressure mortar was developed. A multiscale version of the
method, the multiscale mortar mixed finite element method (MMMFEM), was devel-
oped in [5]. In this case pressure continuity is enforced by construction and normal
flux continuity is enforced in a weak sense. This strategy has been successfully applied
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1194 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

to more general applications as well, including coupled single-phase and multiphase
flows in porous media [31], nonlinear elliptic problems [6], coupled Stokes and Darcy
flows [17, 19, 26], and mixed formulations of linear elasticity [23].

In this work, we develop a mortar mixed finite element method for a class of
domain decomposition saddle point problems in which the variable associated with
the essential boundary condition, referred to as flux, acts as the mortar variable.
In this case, the continuity of the trace of the flux is imposed by construction and
continuity of the variable associated with the natural boundary condition is imposed
weakly. Our specific interest lies in deriving a priori error estimates in the presence of
nonmatching grids, i.e., subdomain grids that are chosen entirely independently. To
the best of our knowledge, such analysis has not been previously done.

A challenge that arises in this approach is that the interface mortar variable
of essential flux type needs to be incorporated into the scheme. We achieve this by
introducing an appropriate discrete extension operator in the definition of the discrete
flux space. This involves solving subdomain problems with flux boundary conditions.
We employ a Lagrange multiplier to remedy both the potential incompatibility of the
data as well as the uniqueness of the solution.

Let us highlight the main contributions of this work. First, we develop the method
and the theory in a general setting that is applicable to a broad class of saddle
point problems. The theory includes well-posedness and a priori error analysis. Our
focus is on nonmatching grids and we quantify the role this nonconformity plays
in the accuracy of the method. Second, we consider a reduction of the problem to
a symmetric, positive definite system that contains only the mortar variable. An
iterative scheme is then proposed to solve this reduced system such that the solution
possesses a suitable conservation property across the interface at each iteration. Third,
we apply the general theory for three important examples, verifying in each case all
general assumptions. The leading example is Darcy flow in mixed form, in which the
normal flux is the mortar variable that is used to impose weakly continuity of pressure.
Two projection operators are proposed that require separate analyses and lead to
slightly different error estimates. The second example is Stokes flow, in which the full
trace of the velocity vector is the mortar variable, which is used to impose weakly
continuity of normal stress. Previously, only normal stress mortar methods for Stokes
have been considered, with the mortar variable being used to impose weakly continuity
of the velocity [8, 19, 24]. While a velocity Lagrange multiplier has been employed in
domain decomposition methods for Stokes with matching grids [27, 29], to the best of
our knowledge this is the first Stokes discretization on nonmatching grids with velocity
mortar variable. The last example, which is presented as supplementary material
(fluxmortar suppl.pdf [local/web 299KB]), is coupled Stokes–Darcy problems [13, 17,
19, 26], for which the error analysis of flux-mortar mixed finite element methods has
not been studied. This example illustrates the applicability of the general theory to
multiphysics problems.

For the sake of clarity of the presentation, we focus on the case of subdomain and
mortar grids being on the same scale. However, the flux-mortar mixed finite element
method can be formulated as a multiscale method via the use of coarse scale mortar
grids, as was done in [5]. In this case, following the approach in [18], the method can
be implemented using an interface multiscale pressure basis, which can be computed
by solving local subdomain problems with specified mortar flux boundary data.

We note several similarities and relationships between the flux-mortar method
and existing schemes. First, as mentioned, our approach is dual to the natural-type
mortar technique that is central to the pressure-mortar MMMFEM [4, 5]. Second,
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FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1195

the multiscale hybrid-mixed (MHM) method for second order elliptic problems in
primal form [1, 7, 21] similarly introduces flux degrees of freedom on the interfaces
between elements to impose weakly continuity of pressure. The analysis of the primal
MHM method in an abstract setting can be found in [22]. A MHM method for Stokes
flow with a normal stress Lagrange multiplier to impose continuity of the velocity is
developed in [2]. In all these instances, the MHM method uses a Lagrange multiplier
associated with the natural boundary condition and therefore it does not fit in our flux-
mortar framework. Instead, it fits in the natural-type mortar framework. For example,
the Stokes method from [2] is closely related to the method developed previously
in [19]. Recently, an MHM method for Darcy flow using mixed finite elements for
the local solves, which fits in our flux-mortar framework, was investigated in [14]. A
main difference with our work is that the method in [14] is defined on a single global
grid, allowing for nested refinements of the subdomain grids, whereas the flux-mortar
method proposed herein is defined on entirely nonmatching subdomain grids. Our
analysis therefore does not exploit the nestedness of the grids and instead relies on the
use of discrete projection operators, allowing for more general grid configurations. The
MHM method is related to the mixed subgrid upscaling method proposed in [3]. The
latter does not involve a Lagrange multiplier, but incorporates global flux continuity
via a coarse scale mixed finite element velocity space, which may include additional
degrees of freedom internal to the subdomains. In contrast, our method reduces to an
interface problem involving only mortar degrees of freedom. Furthermore, the analysis
in [3] does not allow for nonmatching grids along the coarse scale interfaces. Finally, we
note that the flux-mortar mixed finite element method has been successfully applied
in the context of fracture flows [11, 28] and coupled Stokes–Darcy flows [10]. The
analysis in [11] exploits that there is tangential flow along the fractures and does not
cover the domain decomposition framework considered in this work, while the analysis
in [10] focuses on robust preconditioning.

The article is structured as follows. In section 2 we develop the method and theory
for a general class of saddle point problems. Section 3 is devoted to the application of
the theory to Darcy flow. In section 4 we present and analyze the method for Stokes
flow. We verify the theory in the case of Darcy flow with numerical tests in section 5.
Conclusions are presented in section 6.

2. General setting. In this section, we introduce the flux-mortar mixed finite
element method in a general setting for a wide class of saddle point problems.

2.1. Domain decomposition and notation. Let Ω ⊂ Rn, n = 2, 3, be a
bounded polygonal domain, decomposed into disjoint polygonal subdomains Ωi, i ∈
IΩ = {1, 2, . . . , nΩ}. We assume that the measure of Ω and of each Ωi is of order one.
Let νi denote the outward unit vector normal to the boundary ∂Ωi. The interface
between two subdomains Ωi and Ωj is denoted by Γij := ∂Ωi ∩ ∂Ωj . Each interface
Γij is assumed to be Lipschitz and endowed with a unique, unit normal vector ν such
that ν := νi = −νj on Γij , i < j. Let Γ :=

⋃
i<j Γij and Γi := Γ∩∂Ωi. We categorize

Ωi as an interior subdomain if ∂Ωi ⊆ Γ, i.e., if none of its boundaries coincide with
the boundary of the domain Ω. Let Iint := {i ∈ IΩ : ∂Ωi ⊆ Γ}.

We will use the following standard notation. A subscript i on a variable de-
notes its restriction to Ωi, i.e., wi := w|Ωi . For G a domain in Rn, n = 2, 3,
or a manifold in Rn−1, the Sobolev spaces on G are denoted by W k,p(G). Let
Hk(G) := W k,2(G) and L2(G) := H0(G). The L2(G)-inner product is denoted
by (·, ·)G. Let ⟨·, ·⟩X×X′ denote the duality pairing between X and its dual X ′, for
which we generally omit the subscript. For G ⊂ Rn, let H(div, G) = {v ∈ (L2(G))n :
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1196 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

∇·v ∈ L2(G)}.We use the following shorthand notation to denote the norms of these
spaces:

∥f∥k,G := ∥f∥Hk(G), ∥f∥G := ∥f∥0,G, ∥v∥2div,G := ∥v∥2H(div,G) = ∥v∥2G + ∥∇ · v∥2G.

We use the binary relation a ≲ b to imply that a constant C > 0 exists, independent
of the mesh size h, such that a ≤ Cb. The relationship ≳ is defined analogously.

2.2. The continuous problem. Given a pair of function spaces V ×W on Ω,
we consider the following problem: Find (u, p) ∈ V ×W such that∑

i

ai(ui,vi)−
∑
i

bi(vi, pi) =
∑
i

⟨gi,vi⟩ ∀v ∈ V,(2.1a) ∑
i

bi(ui, wi) =
∑
i

⟨fi, wi⟩ ∀w ∈W.(2.1b)

Here ai and bi are bilinear forms and gi and fi are functionals. We note that this
formulation allows for both essential and natural boundary conditions on ∂Ω. Essen-
tial boundary conditions are incorporated in the definition of V ×W . Extensions to
other boundary conditions can readily be made.

Let Vi and Wi be the respective restrictions of V and W to subdomain Ωi and let
∥ · ∥Vi and ∥ · ∥Wi be the associated norms. We then endow V ×W with the norms

∥v∥V :=
∑
i

∥vi∥Vi
, ∥w∥W :=

∑
i

∥wi∥Wi
.(2.2)

The space V is assumed to have sufficient regularity such that a trace operator Tri
onto Γi for each Vi is well defined. For homogeneous domain decomposition problems
where the same model holds on all subdomains, the space V is characterized by

V =

{
v ∈

⊕
i

Vi : Tri vi = Trj vj on each Γij

}
.(2.3)

On the other hand, we assume that W is discontinuous across interfaces such that
W =

⊕
iWi. We then introduce the interface space Λ on Γ such that

Λ|Γi ⊂ Tri Vi

and endow it with a suitable norm ∥ · ∥Λ. We next list three examples that fit in the
general setting. The first two are studied in detail in the forthcoming sections.

Example 2.1 (mixed formulation of Darcy flow, section 3). To model Darcy flow,
we let u model the velocity and p the pressure. We then set V ×W := H(div,Ω) ×
L2(Ω) and Tri as the normal trace of the velocity on Γi, Tri ui := ν · ui|Γi , ensuring
mass conservation. The local bilinear forms are given by ai(ui,vi) = (K−1ui,vi)Ωi

with K the conductivity tensor and bi(vi, pi) = (∇ · vi, pi)Ωi
.

Example 2.2 (Stokes flow, section 4). Stokes flow can be modeled in this frame-
work by defining V ×W = (H1(Ω))n × L2(Ω), ai(u,v) = (µ̃ε(u), ε(v))Ωi

with µ̃ the
viscosity and ε(u) the symmetric gradient, and bi(vi, pi) = (∇ · vi, pi)Ωi

. In turn,
Tri u is the trace of the entire velocity vector u on Γi, Tri ui := ui|Γi

.

Example 2.3 (mixed linear elasticity). Let u ∈ V = H(div,Ω;Rn×n
sym ) be the sym-

metric Cauchy stress tensor and let p ∈ W := (L2(Ω))n be the displacement field.
The operator Tri is given by the normal trace on Γi, Tri ui := uiν|Γi

; here it enforces
conservation of linear momentum. The local systems are then given by ai(ui,vi) =
(C−1ui,vi)Ωi in which C−1 models Hooke’s law and bi(vi, pi) = (∇ · vi, pi)Ωi .
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2.3. Discretization. We next construct the discretization of (2.1). For a sub-
domain Ωi, let Ωh,i be a shape-regular tessellation with typical mesh size h consisting
of affine finite elements. The grids Ωh,i and Ωh,j may be nonmatching along the in-
terface Γij . For the interfaces, we introduce a shape-regular affine tessellation of Γij ,
denoted by Γh,ij , with a typical mesh size hΓ. Let Γh =

⋃
i<j Γh,ij

For each i, let Vh,i×Wh,i ⊂ Vi×Wi be a pair of conforming finite element spaces
that is stable for the subproblem defined on Ωi. Let V

0
h,i denote the subspace of Vh,i

with zero trace on Γ and let V Γ
h,i denote the trace space of Vh,i on Γi:

V 0
h,i := {v0

h,i ∈ Vh,i : Tri v
0
h,i = 0}, V 0

h :=
⊕
i

V 0
h,i,(2.4)

V Γ
h,i := Tri Vh,i, V Γ

h :=
⊕
i

V Γ
h,i.(2.5)

Let Λh ⊂ Λ be the discretization of the interface space. Let SH be the null-space

SH,i :=
{
wh,i ∈Wh,i : bi(v

0
h,i, wh,i) = 0, ∀v0

h,i ∈ V 0
h,i

}
, SH :=

⊕
i

SH,i.(2.6)

The subscript H is the characteristic subdomain size.
Next, we define a discrete extension operator Rh,i : Λ → Vh,i in two steps. First,

let Qh : Λ → V Γ
h be a chosen projection operator and let Qh,i : Λ → V Γ

h,i be its
restriction to the trace space of Vh,i. Then, for given λ ∈ Λ, we consider the following
problem: Find (Rh,iλ, p

λ
h,i, ri) ∈ Vh,i ×Wh,i × SH,i such that

ai
(
Rh,iλ,v

0
h,i

)
− bi

(
v0
h,i, p

λ
h,i

)
= 0 ∀v0

h,i ∈ V 0
h,i,(2.7a)

bi(Rh,iλ,wh,i)− (ri, wh,i)Ωi = 0 ∀wh,i ∈Wh,i,(2.7b) (
pλh,i, si

)
Ωi

= 0 ∀si ∈ SH,i,(2.7c)

Tri Rh,iλ = Qh,iλ on Γi.(2.7d)

Remark 2.1. The space SH,i serves two purposes. First, it ensures that the prob-
lem is solvable, with the Lagrange multiplier ri acting as compatible data. Second,
due to (2.7c), the auxiliary variable pλh,i is uniquely defined, i.e., orthogonal to SH,i.

Let Rh :=
⊕

i Rh,i. In turn, we define the composite spaces Vh and Wh as

Vh :=
⊕
i

(
V 0
h,i ⊕Rh,iΛh

)
= V 0

h ⊕RhΛh, Wh :=
⊕
i

Wh,i.(2.8)

We are now ready to set up the flux-mortar mixed finite element method for
problem (2.1): Find (u0

h, λh, ph) ∈ V 0
h × Λh ×Wh such that∑

i

ai
(
u0
h,i +Rh,iλh,v

0
h,i

)
− bi

(
v0
h,i, ph,i

)
=

∑
i

⟨gi,v0
h,i⟩ ∀v0

h ∈ V 0
h ,(2.9a)

∑
i

ai
(
u0
h,i +Rh,iλh,Rh,iµh

)
− bi(Rh,iµh, ph,i) =

∑
i

⟨gi,Rh,iµh⟩ ∀µh ∈ Λh,

(2.9b)

∑
i

bi
(
u0
h,i +Rh,iλh

)
, wh,i) =

∑
i

⟨fi, wh,i⟩ ∀wh ∈Wh.(2.9c)

Remark 2.2. Equation (2.9b) imposes weakly continuity of the variable associated
with the natural boundary condition.
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To shorten notation, let uh := u0
h + Rhλh and vh := v0

h + Rhµh. Moreover,
define a(u,v) :=

∑
i ai(ui,vi), b(v, p) :=

∑
i bi(vi, pi), ⟨g,v⟩ :=

∑
i⟨gi,vi⟩, and

⟨f, w⟩ :=
∑

i⟨fi, wi⟩. Then (2.9) can be equivalently written as follows: Find uh ∈ Vh
and ph ∈Wh such that

a(uh,vh)− b(vh, ph) = ⟨g,vh⟩ ∀vh ∈ Vh,(2.10a)

b(uh, wh) = ⟨f, wh⟩ ∀wh ∈Wh.(2.10b)

Note that the flux-mortar mixed finite element method (2.10) is a nonconforming
discretization of the weak formulation (2.1), since we generally have Vh ̸⊂ V . On the
other hand, the definitions do ensure that Wh =

⊕
iWh,i ⊂

⊕
iWi =W .

2.4. Well-posedness and error analysis. The main results in the a priori
analysis of the discrete problem (2.10) are presented in the following three theorems.

Theorem 2.1. Assume the following:
A1. Problem (2.7) has a unique solution and the resulting extension operator Rh :

Λ → Vh is continuous, i.e.,

∥Rhλ∥V ≲ ∥λ∥Λ ∀λ ∈ Λ.

A2. The following four inequalities, known as the Brezzi conditions, hold:

∀uh,vh ∈ Vh : a(uh,vh) ≲ ∥uh∥V ∥vh∥V ,(2.11a)

∀vh ∈ Vh and wh ∈Wh : b(vh, wh) ≲ ∥vh∥V ∥wh∥W ,(2.11b)

∀vh ∈ Vh with b(vh, wh) = 0 ∀wh ∈Wh : a(vh,vh) ≳ ∥vh∥2V ,(2.11c)

∀wh ∈Wh, ∃ 0 ̸= vh ∈ Vh such that : b(vh, wh) ≳ ∥vh∥V ∥wh∥W .(2.11d)

Then the discrete problem (2.10) admits a unique solution that satisfies

∥uh∥V + ∥ph∥W ≲ ∥g∥V ′ + ∥f∥W ′ .(2.12)

Proof. Assumption A1 ensures that the space Vh is well-defined. The well-
posedness of (2.10) then follows from (2.11) and standard saddle point theory [9].

Theorem 2.2. Assume, in addition to assumptions A1–A2, the following:
A3. The following mortar condition holds:

∥µh∥Γij
≲ ∥Qh,iµh∥Γij

+ ∥Qh,jµh∥Γij
∀Γij .

A4. The following discrete trace inequality holds:

∀ i ∈ IΩ, ∥Tri vh,i∥Γi
≤ CΓ,h∥vh,i∥Vi

∀vh,i ∈ Vh,i,

with CΓ,h possibly depending on h.
Then the mortar solution λh of (2.10) is unique.

Proof. Since uh = u0
h +Rhλh, it holds that Tri uh,i = Qh,iλh. Then we use A3

and A4 to obtain

∥λh∥Γ ≲
∑
i

∥Qh,iλh∥Γi
≤ CΓ,h

∑
i

∥uh,i∥Vi
= CΓ,h∥uh∥V .

The result now follows from (2.12).
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Remark 2.3. We emphasize that A3 is not necessary to ensure uniqueness of the
solution (uh, ph) ∈ Vh ×Wh, only for the uniqueness of the mortar variable λh.

We proceed with the error analysis. Let ΠV and ΠW denote interpolants onto Vh
and Wh, respectively, with suitable approximation properties.

Theorem 2.3. Assume, in addition to assumptions A1–A2, that the following
holds:

A5. The interpolant ΠV is b-compatible in the sense that

b(u−ΠV u, wh) = 0 ∀wh ∈Wh.(2.13)

Then the following a priori error estimate holds:

∥u− uh∥V + ∥p− ph∥W ≲ ∥ΠV u− u∥V + ∥ΠW p− p∥W + Ec,(2.14)

with Ec the consistency error defined as

Ec := sup
0 ̸=vh∈Vh

a(u,vh)− b(vh, p)− ⟨g,vh⟩
∥vh∥V

.(2.15)

Proof. From (2.10) and (2.1b), we obtain the error equations

a(u− uh,vh)− b(vh,Π
W p− ph) = a(u,vh)− b(vh,Π

W p)− ⟨g,vh⟩,(2.16a)

b(ΠV u− uh, wh) = 0,(2.16b)

∀ (vh, wh) ∈ Vh ×Wh, where we used the b-compatibility of ΠV (2.13) from A5 and
the fact that Wh ⊂ W . It is important to note that we did not use (2.1a), which
requires a test function in V . We now set the test functions as

vh := ΠV u− uh − δvp
h, wh := ΠW p− ph,(2.17)

where vp
h ∈ Vh is constructed, using the inf-sup condition on b (2.11d) to satisfy

b
(
vp
h,Π

W p− ph
)
= ∥ΠW p− ph∥2W , ∥vp

h∥V ≲ ∥ΠW p− ph∥W ,(2.18)

and δ > 0 is a constant to be chosen later. Now (2.16) leads to

a(ΠV u− uh,Π
V u− uh)+ δ∥ΠW p− ph∥2W

= a(ΠV u− u,ΠV u− uh) + a(u− uh, δv
p
h)

− b(vh,Π
W p− p) + [a(u,vh)− b(vh, p)− ⟨g,vh⟩] .(2.19)

For the left-hand side of (2.19), (2.16b) and the coercivity of a (2.11c) in A2 imply

∥ΠV u− uh∥2V ≲ a(ΠV u− uh,Π
V u− uh).(2.20a)

For first term on the right-hand side of (2.19), we use the continuity of a in A2 and
Young’s inequality to derive

a(ΠV u− u,ΠV u− uh) ≲
1

2ϵ1
∥ΠV u− u∥2V +

ϵ1
2
∥ΠV u− uh∥2V(2.20b)

with ϵ1 > 0 to be determined later. Similarly, for the second term on the right in
(2.19), using ϵ2 > 0 and the bound on vp

h from (2.18), we obtain
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a(u− uh, δv
p
h) ≲ (∥ΠV u− u∥V + ∥ΠV u− uh∥V )∥δvp

h∥V

≲
1

2
∥ΠV u− u∥2V +

ϵ2
2
∥ΠV u− uh∥2V +

(
1

2
+

1

2ϵ2

)
δ2∥ΠW p− ph∥2W .(2.20c)

For the third right-hand-side term, we use the continuity of b, the properties (2.18),
and Young’s inequality with ϵ3 > 0 to derive

b(vh,Π
W p− p) ≲ ∥vh∥V ∥ΠW p− p∥W

≲
(
∥ΠV u− uh∥V + δ∥ΠW p− ph∥W

)
∥ΠW p− p∥W

≲
ϵ3
2
∥ΠV u− uh∥2V +

1

2
δ2∥ΠW p− ph∥2W +

(
1

2ϵ3
+

1

2

)
∥ΠW p− p∥2W .(2.20d)

Finally, we note that the bracketed terms in (2.19) form the numerator in the
consistency error Ec. Using the same steps as in (2.20d) with ϵ4 > 0 then gives us

a(u,vh)− b(vh, p)− ⟨g,vh⟩ ≤ ∥vh∥V Ec

≲
ϵ4
2
∥ΠV u− uh∥2V +

1

2
δ2∥ΠW p− ph∥2W +

(
1

2ϵ4
+

1

2

)
E2
c .(2.20e)

Collecting (2.20) and setting all ϵi sufficiently small, it follows that

∥ΠV u− uh∥2V + δ∥ΠW p− ph∥2W
≲ ∥ΠV u− u∥2V + ∥ΠW p− p∥2W + δ2∥ΠW p− ph∥2W + E2

c .

Subsequently, we set δ sufficiently small to obtain

∥ΠV u− uh∥V + ∥ΠW p− ph∥W ≲ ∥ΠV u− u∥V + ∥ΠW p− p∥W + Ec.(2.21)

Combining this with the triangle inequality gives us (2.14).

Remark 2.4. To complete the error estimate, a bound on Ec needs to be obtained.
We derive such a bound for each example considered in the paper.

2.5. Reduction to an interface problem. We continue by presenting an it-
erative solution method for the flux-mortar mixed finite element method (2.10) based
on the ideas developed in [20] and [36]. In this section, we assume that A3 holds,
ensuring that the mortar solution λh is unique by Lemma 2.2. The decomposition
(2.8) of Vh into interior and interface degrees of freedom then allows us to reformulate
the method as an equivalent problem only in the flux mortar variable λh. We recall
that the method (2.10) can be written equivalently in the domain decomposition form
(2.9). Equation (2.9b) forms the basis for the interface problem. In order to set up
this reduced problem, we first solve two subproblems that incorporate the term f and
provide the right-hand side for the problem. Next, the reduced problem is set up and
solved. Finally, a postprocessing step is necessary to obtain the full solution to the
original problem (2.10). For notational brevity, we omit the subscript h on all func-
tions in this section, keeping in mind that all functions are discrete. In the solution
process we will utilize a generic extension R̃hµ ∈

⊕
i Vh,i such that Tr R̃h,iµ = Qh,iµ

on Γi. In practice, R̃h,iµ can be simply chosen to have all degrees of freedom not
associated with Γi equal to zero. Recall that Vh =

⊕
i(V

0
h,i ⊕ Rh,iΛ) with Rh,i the

discrete extension (2.7). Since R̃h,iµ = Rh,iµ + v0
µ,i for some v0

µ,i ∈ V 0
h,i, the spaces⊕

i(V
0
h,i ⊕Rh,iΛ) and

⊕
i(V

0
h,i ⊕ R̃h,iΛ) are the same.
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FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1201

We will also utilize the orthogonal decomposition Λh = Λ0
h ⊕ Λh, where

Λ0
h := {µ ∈ Λh : b(R̃hµ, s) = 0 ∀s ∈ SH}.(2.22)

To continue, we make the following assumption.
A6. The following inf-sup condition holds for the spaces Λh × SH :

∀sH ∈ SH , ∃ 0 ̸= µh ∈ Λh such that: b(Rhµh, sH) ≳ ∥µh∥Λ∥sH∥W .

Let B : Λh → S′
H be defined as ∀µ ∈ Λh, ⟨Bµ, s⟩ := b(R̃hµ, s) ∀ s ∈ SH .

Lemma 2.4. If A6 holds, then B is an isomorphism from Λh to S′
H and BT is

an isomorphism from SH to Λ
′
h.

Proof. The two statements are equivalent and we prove the latter. We note that
kerB = Λ0

h. Using [33, Proposition 7.4.1], the inf-sup condition A6 implies that BT is
an isomorphism from SH to the polar set of kerB, {g ∈ Λ′

h : ⟨g, µ⟩ = 0 ∀µ ∈ kerB},
which is exactly Λ

′
h.

With these prerequisites in place, we describe the iterative solution method in
four steps.

The first step aims to capture the influence of f in (2.9c) with respect to the space
SH (cf. (2.6)). We solve the following global coarse problem: Find λf ∈ Λh such that

b(R̃hλf , s) = ⟨f, s⟩ ∀s ∈ SH .(2.23)

This problem has the form Bλf = f with f ∈ S′
H . Thus, it has a unique solution,

since B : Λh → S′
H is an isomorphism.

Second, we use λf to solve independent, local subproblems to satisfy (2.9a) and
capture the remaining influence of f in (2.9c): Find (u0

f , p
0
f , rf ) ∈ V 0

h ×Wh×SH such
that

a
(
u0
f ,v

0
)
− b

(
v0, p0f

)
= −a(R̃hλf ,v

0) + ⟨g,v0⟩ ∀v0 ∈ V 0
h ,(2.24a)

b
(
u0
f , w

)
− (rf , w)Ω = −b(R̃hλf , w) + ⟨f, w⟩ ∀w ∈Wh,(2.24b)

(p0f , s)Ω = 0 ∀s ∈ SH .(2.24c)

Here, we enforce p0f ⊥ SH with the use of a Lagrange multiplier rf . The well-posedness
of (2.24) follows from the solvability of the discrete extension problem (2.7) in A1.
We further note that setting w = rf ∈ SH and using (2.23) implies that rf = 0.

Therefore, the variable uf := u0
f + R̃hλf satisfies (2.9c). In addition, uf and p0f

satisfy (2.9a).
It remains to satisfy the continuity equation (2.9b), which is done in two steps.

To satisfy it in Λ0
h, we solve the interface problem: Find λ0 ∈ Λ0

h such that

a(Rhλ
0, R̃hµ

0)− b(R̃hµ
0, pλ

0

) = −a(uf , R̃hµ
0) + b(R̃hµ

0, p0f ) ∀µ0 ∈ Λ0
h,(2.25)

in which the pair (Rhλ
0, pλ

0

) solves the discrete extension problem (2.7). The solv-
ability of (2.25) is established in Lemma 2.5 below.

After solving the interface problem, we require a fourth, final step to guarantee
that (2.9b) holds in Λh, which is also used to obtain the correct variable p. Thus, we
construct pλ ∈ SH such that

b(R̃hµ, pλ) = a(uf +Rhλ
0, R̃hµ)− b(R̃hµ, p

λ0

+ p0f ) ∀µ ∈ Λh,(2.26)

D
ow

nl
oa

de
d 

06
/1

5/
22

 to
 1

32
.1

74
.2

55
.1

16
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1202 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

which results in a coarse grid problem of the form BT pλ = g in Λ
′
h. Since B

T : SH →
Λ
′
h is an isomorphism, the problem has a unique solution.

We now have all the necessary ingredients to construct

u := uf +Rhλ
0 = u0

f +Rhλ
0 + R̃hλf , p := p0f + pλ

0

+ pλ.(2.27)

It is elementary to check that (u, p) ∈ Vh×Wh indeed solves (2.10). The corresponding
mortar variable is λ = λ0 + λf . We next show the solvability of (2.25).

Lemma 2.5. If A3 holds, then the bilinear form of the reduced problem (2.25),
given by

aΓ(λ, µ) := a(Rhλ, R̃hµ)− b(R̃hµ, p
λ),(2.28)

is symmetric and positive definite in Λ0
h × Λ0

h.

Proof. Using that R̃hµ = Rhµ+ v0
µ for some v0

µ ∈ V 0
h , we have

aΓ(λ, µ) = a(Rhλ,Rhµ)− b(Rhµ, p
λ) + a

(
Rhλ,v

0
µ

)
− b

(
v0
µ, p

λ
)

= a(Rhλ,Rhµ)− b
(
Rhµ, p

λ
)
= a(Rhλ,Rhµ).

Here we used (2.7a) in the second equality. For the last equality we used that, on
the one hand, bi(Rh,iµ, sH,i) = bi(R̃h,iµ − v0

µ,i, sH,i) = 0 ∀ sH,i ∈ SH,i due to the

fact that µ ∈ Λ0
h and (2.6). On the other hand, (2.7b) gives us that bi(Rh,iµ,wh,i) =

(ri, wh,i)Ωi = 0 ∀wh,i ⊥ SH,i, thus b(Rhµ, p
λ) = 0. We conclude that aΓ(λ, µ) is

symmetric and positive semidefinite in Λ0
h ×Λ0

h. Moreover, if Rhλ = 0, then its trace
Qhλ is zero as well and so λ = 0 due to A3. Hence aΓ is positive definite.

The main implication of Lemma 2.5 is that the interface problem (2.25) can be
solved using iterative methods such as the conjugate gradient method. An important
observation is that the second equation (2.10b) is satisfied by construction, even if
the iterative solver is terminated before convergence. Specifically, the component
uf is computed a priori and the update defined by λ0 only improves the accuracy
of the solution with respect to (2.10a). This property is particularly attractive if
(2.10b) describes a physically important conservation equation and (2.10a) models a
constitutive relationship between u and p.

Remark 2.5. The implementation of problems (2.23) and (2.26) requires solving a
system with the same coarse matrix. The same system also occurs in the computation
of the projection onto Λ0

h required in (2.25). We refer the reader to [37] for an algebraic
formulation for solving a global saddle problem with singular subdomain problems of
a type similar to (2.10), which is based on the FETI method [36]. We note that the
incorporation of the coarse problem results in convergence of the interface iterative
solver that is independent of the subdomain size.

3. Darcy flow. We exemplify the flux-mortar mixed finite element method using
an accessible model problem given by the mixed formulation of the Poisson problem:

u = −K∇p, ∇ · u = f in Ω, p = 0 on ∂Ω.(3.1)

We will use the terminology common to porous media flow modeling. Hence, we refer
to u as the Darcy velocity, p is the pressure, K is a uniformly bounded symmetric
positive definite conductivity tensor, and f ∈ L2(Ω) is a source function. We assume
that there exist 0 < kmin ≤ kmax <∞ such that ∀x ∈ Ω,
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FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1203

kminξ
T ξ ≤ ξTK(x)ξ ≤ kmaxξ

T ξ ∀ξ ∈ Rn.(3.2)

The variational formulation of (3.1) is, Find (u, p) ∈ V ×W := H(div,Ω)×L2(Ω)
such that

(K−1u,v)Ω − (∇ · v, p)Ω = 0 ∀v ∈ V,(3.3a)

(∇ · u, w)Ω = (f, w)Ω ∀w ∈W.(3.3b)

It is well known that (3.3) has a unique solution [9]. Note that (3.3a) implies that
p ∈ H1

0 (Ω), hence the solution to (3.3) satisfies (3.1).
For given Ωi, the local velocity and pressure function spaces are defined as Vi :=

H(div,Ωi) and Wi := L2(Ωi), respectively. Problem (3.3) attains the form (2.1) with

ai(ui,vi) = (K−1ui,vi)Ωi
, bi(vi, pi) = (∇ · vi, pi)Ωi

, g = 0, ⟨f, w⟩ = (f, w)Ω.

(3.4)

The global space V possesses continuity of the normal trace on Γ. Thus, following
(2.3), we set

Tri ui := (ν · ui)|Γi
, Λ := L2(Γ).

We note that Λ has more regularity than the normal trace of V , which is a distribu-
tional space with a norm related to H−1/2(Γ). This choice allows us to employ the
L2-projection in the definition of the projection operator Qh,i : Λ → V Γ

h,i. The L2-

projection is easier to implement and the L2(Γ)-norm for the mortar variable is easier
to compute than their distributional counterparts. For λ ∈ Λ, we use a subscript to
indicate its relative orientation with respect to the adjacent subdomains:

λi := λ, λj := −λ on Γij , i < j.

In particular, λi models νi · u and λj models νj · u on Γij .
Next, we associate appropriate norms to the function spaces. The spaces W and

Λ are equipped with the standard L2(Ω) and L2(Γ) norms, respectively, and the space
V is equipped with a broken H(div) norm:

∥v∥V :=
∑
i

∥vi∥div,Ωi , ∥w∥W := ∥w∥Ω, ∥µ∥Λ := ∥µ∥Γ.

3.1. Discretization. In this section we describe the flux-mortar mixed finite
element method for (3.3). Since the local finite element spaces are required to be
stable for the subproblems defined on each Ωi, we choose Vh,i ×Wh,i such that

∇ · Vh,i =Wh,i,(3.5a)

∀wh,i ∈Wh,i, ∃ 0 ̸= vh,i ∈ Vh,i : (∇ · vh,i, wh,i)Ωi
≳ ∥vh,i∥div,Ωi

∥wh,i∥Ωi
.(3.5b)

Stable Darcy pairs (see, e.g., [9, Chapter 2]) include the Raviart–Thomas and the
Brezzi–Douglas–Marini elements. Let the discrete interface space Λh,ij ⊂ L2(Γij)
contain continuous or discontinuous piecewise polynomials on Γh,ij .

For the projection operator Qh : Λ → V Γ
h (see (2.5)), we consider two options,

which we distinguish using a superscript ♭ or ♯. The first option (♭) is defined using
the L2-projection to each trace space V Γ

h,i such that the extension satisfies

(λi − νi · R♭
h,iλ, ξh,i)Γi = 0 ∀ξh,i ∈ V Γ

h,i.(3.6a)
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1204 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

The second option (♯) results in an extension such that its normal trace has zero jump
with respect to the mortar space:∑

i

(νi · R♯
h,iλ, µh)Γi = 0 ∀µh ∈ Λh.(3.6b)

The construction of these projection operators is described in detail in sections
3.1.2 and 3.1.1. The extension operator Rh is then defined according to (2.7), which
we describe in detail in section 3.1.3.

After choosing Rh, the composite spaces Vh and Wh are given by (2.8). The two

variants of Vh that arise due to the choice of Qh,i are denoted by V ♯
h and V ♭

h . We will
present the results that concern both variants by omitting the superscript.

Following (2.9) and (2.10), the flux-mortar mixed finite element method is as
follows: Find uh ∈ Vh and ph ∈Wh such that

(K−1uh,vh)Ω −
∑
i

(∇ · vh, ph)Ωi
= 0 ∀vh ∈ Vh,(3.7a) ∑

i

(∇ · uh, wh)Ωi = (f, wh)Ω ∀wh ∈Wh.(3.7b)

Equation (2.9b), which here is
∑

i

(
(K−1uh,i,Rh,iµh)Ωi

− (∇ · Rh,iµh, ph,i)Ωi

)
= 0

∀µh ∈ Λh, imposes weakly continuity of pressure.
We next focus on the two types of extension operators R♯

h and R♭
h.

3.1.1. Projection to the trace spaces. The projection operator Q♭
h : Λ → Vh

that leads to (3.6a) is the L2(Γi)-orthogonal projection onto V Γ
h,i, which is computed

for each i by solving the problem, Given λ ∈ Λ, find Q♭
h,iλ ∈ V Γ

h,i such that

(λi −Q♭
h,iλ, ξh,i)Γi = 0 ∀ ξh,i ∈ V Γ

h,i.(3.8)

We will make use of the property

(λi −Q♭
h,iλ, 1)Γij = 0 ∀Γij ,(3.9)

which follows from the fact that the indicator function of Γij is in the space V Γ
h,i.

By solving (2.7), the extension R♭
h,i is then created such that νi · R♭

h,iλ = Q♭
h,iλ

on Γi (see section 3.1.3). We refer to the resulting function space as V ♭
h := V 0

h ⊕R♭
hΛh.

3.1.2. Projection to the space of weakly continuous functions. An alter-
native choice of the projection operator (♯) aims to satisfy (3.6b). In its construction,
we use the concept of weakly continuous functions, as introduced in [4] in the pressure-
mortar method. In particular, let the space of weakly continuous fluxes Vh,c and the
associated trace space V Γ

h,c be given by

Vh,c :=

{
vh ∈

⊕
i

Vh,i :
∑
i

(νi · vh,i, µh)Γi
= 0 ∀µh ∈ Λh

}
,

V Γ
h,c :=

{
ξh ∈ V Γ

h :
∑
i

(ξh,i, µh)Γi
= 0 ∀µh ∈ Λh

}
.

We construct the projection Q♯
h : Λ → V Γ

h by solving the following auxiliary

problem, obtained from [4]: Given λ ∈ Λ, find Q♯
hλ ∈ V Γ

h and χh ∈ Λh such that
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FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1205∑
i

(λi −Q♯
h,iλ− χh, ξh,i)Γi

= 0 ∀ξh ∈ V Γ
h ,(3.10a) ∑

i

(Q♯
h,iλ, µh)Γi = 0 ∀µh ∈ Λh.(3.10b)

Lemma 3.1. If A3 holds for Q♭
h, then problem (3.10) admits a unique solution.

Proof. Since (3.10) corresponds to a square system of equations, it suffices to

show uniqueness. Hence, we set λ = 0 and choose ξh,i = Q♯
h,iλ and µh = χh. It

follows after summation of the two equations that Q♯
h,iλ = 0. The first equation then

implies that Q♭
hχh = 0 and, using A3 for Q♭

h, we have χh = 0.

Lemma 3.2. The solution Q♯
hλ of (3.10) is the L2-projection of λ onto V Γ

h,c.
Moreover, it satisfies

(λi −Q♯
h,iλ, 1)Γij

= 0 ∀Γij .(3.11)

Proof. First, we note that Q♯
hλ ∈ V Γ

h,c due to (3.10b). By choosing ξh in (3.10a)

from V Γ
h,c ⊂ V Γ

h , we obtain∑
i

(λi −Q♯
h,iλ, ξh,i)Γi

= 0 ∀ξh ∈ V Γ
h,c.

Hence, Q♯
hλ is the L2-projection of λ onto V Γ

h,c. For the second result, we consider a

given Γij and note that 1 ∈ V Γ
h,i ∩ V Γ

h,j . Taking ξh,i = ξh,j = 1 on Γij in (3.10a) and

using that 1 ∈ Λh,ij and Q♯
hλ ∈ V Γ

h,c, we derive

2(χh, 1)Γij = (λi −Q♯
h,iλ, 1)Γij + (λj −Q♯

h,jλ, 1)Γij

= (λi + λj , 1)Γij − (Q♯
h,iλ+Q♯

h,jλ, 1)Γij = 0.

Thus, taking ξh,i = 1 and ξh,j = 0 on Γij in (3.10a) gives (λi −Q♯
h,iλ, 1)Γij

= 0.

The second step is to define the bounded extension R♯
h,i to the discrete space Vh,i

using (2.7) such that νi ·R♯
h,iλ = Q♯

h,iλ on Γi (see section 3.1.3). Let V ♯
h := V 0

h ⊕R♯
hΛh

be the resulting discrete function space.

Remark 3.1. Lemma 3.1 shows that A3 forQ♭
h is needed forQ♯

h to be well-defined.

From here on, we will therefore assume that this condition is satisfied whenever Q♯
h

or R♯
h is used.

Remark 3.2. Assumption A3 is the conventional mortar assumption (see, e.g.,
[4, 5]) implying that the mortar variable is controlled on each interface by its L2-
projection onto one of the two neighboring subdomains. The assumption is easy to
satisfy in practice by choosing a sufficiently coarse mortar grid Γh and it has been
shown to hold for some very general mesh configurations [30], including cases with
a polynomial degree in Λh higher than the polynomial degree in V Γ

h . A related
coarseness assumption is considered in [7]. Furthermore, A3 holds trivially in the
special case Λh,i ⊆ V Γ

h,i, which is considered in [14].

Remark 3.3. Due to Lemma 3.2, we note that V ♯
h ⊆ Vh,c. However, the converse

inclusion does not hold in general since the projection Q♯
h is not necessarily surjective

on V Γ
h,c when acting on Λh. Therefore, the problem we set up in V ♯

h is closely related,
but not equivalent, to the one introduced in [4, section 3]. To be specific, we have used

R♯
h to generate a strict subspace of Vh,c whereas the problem in [4] is posed on Vh,c.
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1206 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

Remark 3.4. The spaces V ♯
h and V ♭

h are different in general, with none contained
in the other. This can be seen by the fact that both spaces have the same, finite
dimensionality but the extension R♭

h does not satisfy (3.6b) in general.

3.1.3. The extension operator. We next present the extension operator Rh,i

into Vh,i. It is denoted byR♯
h,i orR♭

h,i depending on the associated projection operator

Q♯
h or Q♭

h. We refer to results concerning both extension operators by omitting the
superscript.

Following (2.7), the discrete extension operator on each subdomain Ωi will be
defined using a subdomain problem with Neumann data on Γi. For interior subdo-
mains, i ∈ Iint, this results in Neumann boundary conditions on the entire boundary
∂Ωi. To deal with possibly singular subdomain problems, we define the space SH as
in (2.6), which in this case is given by

SH,i :=

{
R, i ∈ Iint,

0, i /∈ Iint,
SH :=

⊕
i

SH,i.(3.12)

We now set up problem (2.7) to define the extension Rh,iλ for given λ ∈ Λ: Find
(Rh,iλ, p

λ
h,i, ri) ∈ Vh,i ×Wh,i × SH,i such that(

K−1Rh,iλ,v
0
h,i

)
Ωi

−
(
∇ · v0

h,i, p
λ
h,i

)
Ωi

= 0 ∀v0
h,i ∈ V 0

h,i,(3.13a)

(∇ · Rh,iλ,wh,i)Ωi − (ri, wh,i)Ωi = 0 ∀wh,i ∈Wh,i,(3.13b)

(pλh,i, si)Ωi = 0 ∀si ∈ SH,i,(3.13c)

νi · Rh,iλ = Qh,iλ on Γi.(3.13d)

We note that (3.13d) is an essential boundary condition and that, for subdomains
adjacent to ∂Ω, the boundary condition pλi = 0 on ∂Ωi \ Γi is natural and has been
incorporated in (3.13a). We emphasize the use of Qh,iλ = Q♭

h,iλ from (3.8) in (3.13d)

leads to Rh,i = R♭
h,i, while Qh,iλ = Q♯

h,iλ from (3.10) results in Rh,i = R♯
h,i.

Remark 3.5. Problem (3.13) is similar to the downscaling stage in [14]. The main
difference is that here, the boundary data is first projected using Qh to account for
the fact that Λh,i ̸⊆ V Γ

h,i.

Lemma 3.3 (A1). Problem (3.13) admits a unique solution with

∇ · Rh,iλ = λi and ∥Rh,iλ∥div,Ωi ≲ ∥λ∥Γi .(3.14)

Proof. We first show that

ri = λi :=

{
|Ωi|−1(λi, 1)Γi

, i ∈ Iint,

0, i /∈ Iint.

If i /∈ Iint, this follows by the definition of SH since we then have ri = λi = 0. If
i ∈ Iint, we set wh,i = 1 in (3.13b):

(ri − λi, 1)Ωi
= (∇ · Rh,iλ, 1)Ωi

− (λi, 1)Ωi
= (Qh,iλ− λi, 1)Γi

= 0 ∀i ∈ Iint,

using (3.9) and (3.11) in the final equality. Now (3.13b) implies that ∇ · Rh,iλ = λi.
Since this is a square, finite-dimensional linear system, uniqueness implies exis-

tence. Thus, we set λ = 0 and note that ri = λi = 0. In addition, Qh,iλ = 0, thus
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Rh,iλ ∈ V 0
h,i. Setting test functions (Rh,iλ, p

λ
h,i) in the first two equations and sum-

ming them gives Rh,iλ = 0. Finally, we use (3.5a) to derive thatWh,i = ∇·V 0
h,i⊕SH,i

which implies pλh,i = 0, using (3.13a) and (3.13c).
We continue with the stability estimate by first obtaining a bound on the auxiliary

variable pλh,i. Recall that the discrete pair Vh,i ×Wh,i is stable (see (3.5b)), and note

that pλh,i has zero mean for i ∈ Iint. Thus, there exists v0
h,p,i ∈ V 0

h,i such that

∇ · v0
h,p,i = pλh,i in Ωi, ∥v0

h,p,i∥div,Ωi
≲ ∥pλh,i∥Ωi

.

Using v0
h,p,i as a test function in (3.13a), we derive

∥pλh,i∥2Ωi
=

(
K−1Rh,iλ,v

0
h,p,i

)
Ωi

≤ ∥K−1Rh,iλ∥Ωi
∥v0

h,p,i∥Ωi
≲ ∥Rh,iλ∥Ωi

∥pλh,i∥Ωi
,

implying

∥pλh,i∥Ωi
≲ ∥Rh,iλ∥Ωi

.(3.15)

Second, we note that ∇ · Rh,iλ = 0 ∀i /∈ Iint since λi = 0. For the remaining
indexes, i.e., i ∈ Iint, we derive

∥∇ · Rh,iλ∥Ωi
= ∥λi∥Ωi

= |Ωi|−1/2(λ, 1)Γi
= |Ωi|−1/2(Qh,iλ, 1)Γi

≲ ∥Qh,iλ∥Γi
.

(3.16a)

Third, we introduce the discrete H(div,Ωi)–extension operator from [32, sect.
4.1.2], and denote it by R⋆

h,i : V
Γ
h,i → Vh,i. This extension satisfies, for ψh,i ∈ V Γ

h,i,

νi · R⋆
h,iψh,i = ψh,i on Γi, νi · R⋆

h,iψh,i = 0 on ∂Ωi \ Γi, ∥R⋆
h,iψh,i∥div,Ωi

≲ ∥ψh,i∥Γi
.

The next step is to set the test functions v0
h,i = Rh,iλ−R⋆

h,i(Qh,iλ), wh,i = pλh,i, and
si = ri in (3.13). After summation of the equations, we have

(K−1Rh,iλ,Rh,iλ−R⋆
h,i(Qh,iλ))Ωi + (∇ · R⋆

h,i(Qh,iλ), p
λ
h,i)Ωi = 0.

Using bound (3.15) and the continuity bound for ∥R⋆
h,i(Qh,iλ)∥div,Ωi

, we obtain

∥Rh,iλ∥2Ωi
≲ (∥Rh,iλ∥Ωi

+ ∥pλh,i∥Ωi
)∥R⋆

h,i(Qh,iλ)∥div,Ωi
≲ ∥Rh,iλ∥Ωi

∥Qh,iλ∥Γi
,

which implies

∥Rh,iλ∥Ωi
≲ ∥Qh,iλ∥Γi

.(3.16b)

Collecting (3.16) and using that ∥Qh,iλ∥Γi
≲ ∥λ∥Γi

, since both variants are generated
using an L2-projection, proves the stability estimate.

3.2. Well-posedness. In this section, we establish existence, uniqueness, and
stability of the solution to the discrete problem (3.7) by showing that the assumptions
from section 2.4 hold within this setting.

Lemma 3.4 (A2). The bilinear forms a(·, ·) and b(·, ·) satisfy bounds (2.11).

Proof. Bounds (2.11a) and (2.11b) describe the continuity of the bilinear forms.
These follow directly from the Cauchy–Schwarz inequality and the boundedness of K;
cf. (3.2). Bound (2.11c) concerns coercivity. Recall that ∇ · Vh,i ⊆ Wh,i from (3.5a)
and that Vh ⊆

⊕
i Vh,i. In turn, the assumption b(vh, wh) = 0 ∀wh ∈Wh implies that

∇ · vh,i = 0 ∀i. Using this in combination with (3.2) gives
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1208 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

a(vh,vh) = ∥K−1/2vh∥2Ω ≳ ∥vh∥2Ω = ∥vh∥2V .

Finally, inequality (2.11d) describes the discrete inf-sup condition. Let wh ∈ Wh be
given. Consider a global divergence problem on Ω:

∇ · vw = wh in Ω, vw = gw on ∂Ω,(3.17)

where gw ∈ H1/2(∂Ω) is such that (ν · gw, 1)∂Ω = (wh, 1)Ω and ∥gw∥ 1
2 ,∂Ω

≲ ∥wh∥Ω.
This problem has a solution vw ∈ (H1(Ω))n satisfying [16]:

∥vw∥1,Ω ≲ ∥wh∥Ω + ∥gw∥ 1
2 ,∂Ω

≲ ∥wh∥Ω.

Let µh ∈ Λh be defined on each interface Γij as the mean value of ν · vw. We have

∥µh∥Γ ≲
∑
i∈IΩ

∥µh,i∥Γi
≲

∑
i∈IΩ

∥νi · vw∥Γi
≲

∑
i∈IΩ

∥vw∥1,Ωi
≲ ∥wh∥Ω.

Moreover, on each interior subdomain Ωi, i.e., with Γi = ∂Ωi, we have that

(µh,i, 1)∂Ωi
= (νi · vw, 1)∂Ωi

= (∇ · vw, 1)Ωi
= (wh,i, 1)Ωi

.

Consider the extension Rh,iµh and note that on each interior subdomain Ωi,

(wh,i −∇ · Rh,iµh, 1)Ωi
= (wh,i, 1)Ωi

− (νi · Rh,iµh, 1)∂Ωi

= (wh,i, 1)Ωi
− (µh,i, 1)∂Ωi

= 0.

Then, the local discrete inf-sup condition (3.5b) implies that in each Ωi there exists
v0
h,i ∈ V 0

h,i such that

∇ · v0
h,i = wh,i −∇ · Rh,iµh in Ωi,

and, using Lemma 3.3,∑
i∈IΩ

∥v0
h,i∥div,Ωi

≲
∑
i∈IΩ

∥wh,i −∇ · Rh,iµh∥Ωi
≤

∑
i∈IΩ

(∥wh,i∥Ωi
+ ∥∇ · Rh,iµh∥Ωi

)

≲
∑
i∈IΩ

(∥wh,i∥Ωi + ∥µh,i∥Γi) ≲ ∥wh∥Ω.

The final step is to define v0
h ∈ V 0

h such that v0
h|Ωi

:= v0
h,i, set vh := v0

h+Rhµh ∈ Vh,
and note that

b(vh, wh) = (∇ · (v0
h +Rhµh), wh)Ω = ∥wh∥2W ,(3.18a)

∥vh∥V ≤ ∥v0
h∥V + ∥Rhµh∥V ≲ ∥v0

h∥V + ∥µh∥Γ ≲ ∥wh∥W .(3.18b)

Combining equations (3.18) yields (2.11d).

Lemma 3.5 (A4). It holds that

∀ i ∈ IΩ, ∥νi · vh,i∥Γi
≲ h−1/2∥vh,i∥Ωi

∀vh,i ∈ Vh,i.(3.19)

Proof. The proof follows from a simple scaling argument.

We are now ready to establish the well-posedness of the flux-mortar mixed finite
element method for the Darcy problem.
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Theorem 3.6. Problem (3.7) with R♭
h or R♯

h from (3.13) admits a unique solu-

tion (uh, ph) ∈ V ♭
h ×Wh or V ♯

h ×Wh, respectively. In both cases, it holds that

∥uh∥V + ∥ph∥W ≲ ∥f∥Ω.(3.20)

Moreover, if the mortar condition A3 holds for the corresponding projection Qh, then
the mortar solution λh ∈ Λh is unique.

Proof. We follow the assumptions of Theorem 2.1. A1 is shown in Lemma 3.3
and A2 in Lemma 3.4. In turn, Theorem 2.1 ensures uniqueness of (uh, ph) and the
stability estimate (3.20) in both cases. Next, with A3 and A4, shown in Lemma 3.5,
the application of Theorem 2.2 ensures the uniqueness of λh.

3.3. Interpolation operators. One of the main tools in deriving the error
estimates is the construction of an appropriate interpolant associated with the discrete
space Vh. The building blocks in our construction are the canonical interpolation
operators associated with the subdomain finite element spaces Vh,i, namely ΠV

i :
Vi ∩ (Hϵ(Ωi))

n → Vh,i with ϵ > 0, with the properties(
∇ ·

(
vi −ΠV

i vi

)
, wh,i

)
Ωi

= 0 ∀wh,i ∈Wh,i,(3.21) (
νi ·

(
vi −ΠV

i vi

)
, wh,i

)
∂Ωi

= 0 ∀wh,i ∈Wh,i.(3.22)

In addition, let ΠW
i : L2(Ωi) → Wh,i and ΠΛ

ij : L2(Γij) → Λh,ij denote the L2-
projection operators onto Wh,i and Λh,ij , respectively. Together with the projection
Q♭

h,i onto V
Γ
h,i introduced earlier, we recall the approximation properties [9]:

∥v −ΠV
i v∥Ωi

≲ hrv∥v∥rv,Ωi
, 0 < rv ≤ kv + 1,(3.23a)

∥∇ · (v −ΠV
i v)∥Ωi ≲ hrw∥∇ · v∥rw,Ωi , 0 ≤ rw ≤ kw + 1,(3.23b)

∥w −ΠW
i w∥Ωi

≲ hrw∥w∥rw,Ωi
, 0 ≤ rw ≤ kw + 1,(3.23c)

∥µ−ΠΛ
ijµ∥Γij

≲ hrΛΓ ∥µ∥rΛ,Γij
, 0 ≤ rΛ ≤ kΛ + 1,(3.23d)

∥µ−Q♭
h,iµ∥Γij

≲ hrv∥µ∥rv,Γij
, 0 ≤ rv ≤ kv + 1.(3.23e)

The constants kv, kw, and kΛ represent the polynomial order of the spaces Vh,Wh, and
Λh, respectively, and i, j ∈ IΩ. To exemplify, we present two choices of stable mixed
finite element pairs. For the pair of Raviart–Thomas of order kv and discontinuous
Lagrange elements of order kw, we have kv = kw. On the other hand, choosing the
Brezzi–Douglas–Marini elements of order kv with discontinuous Lagrange elements of
polynomial order kw, we obtain a stable pair if kv = kw + 1. For more examples of
stable finite element pairs, we refer the reader to [9, Chapter 2].

Let ΠW : W → Wh and ΠΛ : Λ → Λh be defined as the L2-projections ΠW :=⊕
i Π

W
i and ΠΛ :=

⊕
i<j Π

Λ
ij . The approximation properties of these operators follow

directly from (3.23).
Next, we introduce the composite interpolant ΠV : V → Vh, where V = {v ∈ V :

v|Ωi ∈ (Hϵ(Ωi))
n and (ν · u)|Γ ∈ Λ} with ϵ > 0. Given u ∈ V with normal trace

λ := (ν · u)|Γ ∈ Λ, we define ΠV u ∈ Vh as

ΠV
♭ u := R♭

hΠ
Λλ+

⊕
i

ΠV
i (ui −R♭

h,iλ) = R♭
h(Π

Λλ− λ) +
⊕
i

ΠV
i ui,(3.24a)

ΠV
♯ u := R♯

hΠ
Λλ+

⊕
i

ΠV
i (ui −R♭

h,iλ) = ΠV
♭ u+R♯

hΠ
Λλ−R♭

hΠ
Λλ.(3.24b)
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We note that (3.13d) for R♭
h,iλ and (3.22) imply νi ·ΠV

i (ui−R♭
h,iλ) = Q♭

h,iλ−Q♭
h,iλ =

0, so (3.24) gives ΠV
♭ u ∈ V ♭

h and ΠV
♯ u ∈ V ♯

h . In the following, the use of ΠV indicates

that the result is valid for both choices. We emphasize that the definitions of ΠV u
and uh, combined with (3.13d), imply

νi ·ΠV u = νi · Rh,iΠ
Λλ = Qh,iΠ

Λλ, νi · uh = νi · Rh,iλh = Qh,iλh.(3.25)

Lemma 3.7 (A5). The interpolation operator ΠV satisfies

b(u−ΠV u, wh) = 0 ∀wh ∈Wh.(3.26)

Proof. In the case of ΠV
♭ , we first note that, due to (3.14), ∇ · R♭

h,i(Π
Λλ − λ) =

ΠΛλi − λi = 0. Then the statement of the lemma follows from (3.21). In the case of

ΠV
♯ , due to (3.14), ∇ · (R♯

h,iΠ
Λλ−R♭

h,iΠ
Λλ) = 0, and the result follows.

We proceed with the approximation properties of the interpolants ΠV
♭ and ΠV

♯ .

Lemma 3.8. Assuming that u has sufficient regularity, then

∥u−ΠV
♭ u∥V ≲ hrv

∑
i

∥u∥rv,Ωi
+ hrw

∑
i

∥∇ · u∥rw,Ωi
+ hrΛΓ

∑
i<j

∥λ∥rΛ,Γij
,(3.27a)

∥u−ΠV
♯ u∥V ≲ hrv

∑
i

∥u∥rv,Ωi
+ hrw

∑
i

∥∇ · u∥rw,Ωi
+ hrΛΓ

∑
i<j

∥λ∥rΛ,Γij
(3.27b)

+ hr̃v
∑
i<j

∥λ∥r̃v,Γij

for 0 < rv ≤ kv + 1, 0 ≤ rw ≤ kw + 1, 0 ≤ rΛ ≤ kΛ + 1, and 0 ≤ r̃v ≤ kv + 1.

Proof. Using (3.24a), bound (3.27a) for ΠV
♭ follows from (3.14) and the approx-

imation bounds (3.23a), (3.23b), and (3.23d). For ΠV
♯ , using (3.24b), we need to

bound ∥R♯
h,iΠ

Λλ−R♭
h,iΠ

Λλ∥div,Ωi . Since this is the extension that solves (3.13) with

boundary data Q♯
h,iΠ

Λλ−Q♭
h,iΠ

Λλ, we have R♯
h,iΠ

Λλ−R♭
h,iΠ

Λλ = R♭
h,i(Q

♯
h,iΠ

Λλ−
Q♭

h,iΠ
Λλ). We use this observation in combination with (3.14) to obtain the bound

∥R♯
h,iΠ

Λλ−R♭
h,iΠ

Λλ∥div,Ωi
≲ ∥Q♯

h,iΠ
Λλ−Q♭

h,iΠ
Λλ∥Γi

≤ ∥Q♯
h,iΠ

Λλ−Q♯
h,iλ∥Γi

+ ∥Q♯
h,iλ−Q♭

h,iλ∥Γi
+ ∥Q♭

h,iΠ
Λλ−Q♭

h,iλ∥Γi

≤ 2∥ΠΛλ− λ∥Γi
+ ∥Q♯

h,iλ−Q♭
h,iλ∥Γi

.

In order to bound the final term, we use [4, Lemma 3.2], which states that if A3 holds
for Q♭

h, then∑
i<j

∥Q♯
h,iλ−Q♭

h,iλ∥Γij
≲ hr̃v

∑
i<j

∥λ∥r̃v,Γij
, 0 ≤ r̃v ≤ kv + 1.(3.28)

The proof of (3.27b) is completed by using (3.23d) and (3.28).

3.4. Error estimates. We now turn to the a priori error analysis. By Lemma 3.7,
assumption A5 is satisfied and we therefore invoke Theorem 2.3 to obtain the a priori
error estimate (2.14). Thus, to complete the error estimate, we need to derive a bound
on the consistency error Ec. Before we do that, we remark that, since ∇ · Vh,i =Wh,i

(cf. (3.5a)), we can obtain a standalone bound for ∇ · (u − uh). In particular, the
error equation (2.16b) implies that ∇ · (ΠV u−uh) = 0 in Ωi; therefore, using (3.26),
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FLUX-MORTAR MIXED FINITE ELEMENT METHODS 1211

∇ · (u− uh) = ∇ · (u−ΠV u) = ∇ · u−ΠW
i (∇ · u) = f −ΠW

i f in Ωi,(3.29)

which is simply the approximation error of the source term f in Wh.
The next step is to derive a bound on the consistency error Ec. For that, we recall

its definition (2.15) and apply integration by parts on each Ωi with p = 0 on ∂Ω:

Ec = sup
vh∈Vh

∥vh∥−1
V

(
(K−1u,vh)Ω −

∑
i

(p,∇ · vh)Ωi

)
= sup

vh∈Vh

∥vh∥−1
V

∑
i

−(p,νi · vh,i)Γi
.(3.30)

In the last equality we used that K−1u = −∇p from (3.1).
We continue the derivation using arguments that depend on the choice of exten-

sion operator, as outlined in the following two subsections.

3.4.1. Consistency error using R♯
h. For this choice of extension operator (cf.

section 3.1.2), we use the weak continuity from Lemma 3.2 to bound the consistency
error (3.30). Let the discrete subspace consisting of continuous mortar functions be
denoted by Λh,c ⊂ Λh. Next, let ΠΛ

c : H1(Γ) → Λh,c be the Scott–Zhang interpolant
[34] into Λh,c. This interpolant has the approximation property

∥p−ΠΛ
c p∥sΛ,Γ ≲ hrΛ−sΛ

Γ ∥p∥rΛ,Γ, 1 ≤ rΛ ≤ kΛ + 1, 0 ≤ sΛ ≤ 1.(3.31)

Importantly, the Scott–Zhang interpolant can be constructed to use only trace values
on ∂Γ. Recalling that p = 0 on ∂Ω, this implies that (I−ΠΛ

c )p = 0 on ∂Γ. This allows
us to extend it continuously by zero on ∂Ω and we let E0(I−ΠΛ

c )p denote the extended
function. On each subdomain Ωi, it satisfies ∥E0(I −ΠΛ

c )p∥ 1
2 ,∂Ωi

≲ ∥(I −ΠΛ
c )p∥ 1

2 ,Γi
.

Recall that vh ∈ V ♯
h is weakly continuous due to Lemma 3.2. Consequently,∑

i(Π
Λ
c p,νi · vh,i)Γi

= 0 and we use this to derive∑
i

(p,νi · vh,i)Γi
=

∑
i

((I −ΠΛ
c )p,νi · vh,i)Γi

=
∑
i

(E0(I −ΠΛ
c )p,νi · vh,i)∂Ωi

≲
∑
i

∥E0(I −ΠΛ
c )p∥ 1

2 ,∂Ωi
∥vh,i∥div,Ωi

≲ ∥(I −ΠΛ
c )p∥ 1

2 ,Γ
∥vh∥V ,(3.32)

where we used the normal trace inequality ∥νi · vh,i∥− 1
2 ,∂Ωi

≲ ∥vh,i∥div,Ωi
[9]. This

gives a bound on the consistency error Ec from (3.30). We arrive at the main result
of this subsection.

Theorem 3.9. Let Rh = R♯
h. If A3 holds for Q♭

h and the solution is sufficiently
regular, then

∥u− uh∥V + ∥p− ph∥W

≲ hkv+1

(∑
i

∥u∥kv+1,Ωi +
∑
i<j

∥λ∥kv+1,Γij

)

+ hkw+1
∑
i

(∥∇ · u∥kw+1,Ωi + ∥p∥kw+1,Ωi) + hkΛ+1
Γ

∑
i<j

∥λ∥kΛ+1,Γij + h
kΛ+ 1

2
Γ ∥p∥kΛ+1,Γ.

Proof. Noting that assumption A5 has been verified in Lemma 3.7, we invoke
Theorem 2.3. Bound (2.14), combined with (3.30) and (3.32), implies

∥u− uh∥V + ∥p− ph∥W ≲ ∥ΠV
♯ u− u∥V + ∥ΠW p− p∥W + ∥ΠΛ

c p− p∥ 1
2 ,Γ
.

The assertion of the theorem follows by combining the above bound with the approx-
imation properties (3.23), (3.27b), and (3.31).
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1212 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

3.4.2. Consistency error using R♭
h. For this choice of extension operator (cf.

section 3.1.1), we require a different strategy to bound the consistency error (3.30)
since weak continuity of normal traces in V ♭

h is not guaranteed. We note that vh ∈ V ♭
h

can be decomposed as vh =: v0
h +R♭

hµh, with (v0
h, µh) ∈ V 0

h ×Λh. Using that Q♭
h,i is

the L2-projection onto V Γ
h,i (cf. (3.8)) and that p is single-valued on Γ, we derive∑

i

(p,νi · vh)Γi
=

∑
i

(p,Q♭
h,iµh,i)Γi

=
∑
i

(Q♭
h,ip, µh,i)Γi

=
∑
i

(Q♭
h,ip− p, µh,i)Γi

≤
∑
i

∥Q♭
h,ip− p∥Γi

∥µh,i∥Γi
.

We continue the bound using the mortar condition A3 and the trace inequality (3.19):∑
i

(p,νi · vh)Γi
≲

∑
i

∥Q♭
h,ip− p∥Γi

∥Q♭
h,iµh,i∥Γi

=
∑
i

∥Q♭
h,ip− p∥Γi

∥νi · vh,i∥Γi

≲
∑
i

∥Q♭
h,ip− p∥Γih

−1/2∥vh,i∥Ωi ≲ h−1/2
∑
i

∥Q♭
h,ip− p∥Γi∥vh∥V .(3.33)

This gives a bound on the consistency error Ec from (3.30), which leads us to the main
result of this subsection.

Theorem 3.10. Let Rh = R♭
h. If A3 holds and the solution is sufficiently regu-

lar, then

∥u− uh∥V + ∥p− ph∥W ≲ hkv+1
∑
i

∥u∥kv+1,Ωi
+ hkΛ+1

Γ

∑
i<j

∥λ∥kΛ+1,Γij

+ hkw+1
∑
i

(∥∇ · u∥kw+1,Ωi
+ ∥p∥kw+1,Ωi

) + hkv+
1
2

∑
i

∥p∥kv+1,Γi
.

Proof. We again invoke Theorem 2.3. Bound (2.14), combined with (3.30) and
(3.33), for which A3 is utilized, gives

∥u− uh∥V + ∥p− ph∥W ≲ ∥ΠV
♭ u− u∥V + ∥ΠW p− p∥W + h−1/2

∑
i

∥Q♭
h,ip− p∥Γi

.

An application of (3.23) and (3.27a) completes the proof.

3.4.3. Comparison. The previous two sections indicate that theoretically the
choice of extension operator affects the resulting discretization error. Most impor-
tantly, the estimates from Theorems 3.9 and 3.10 differ in the interface pressure
terms

h
kΛ+1/2
Γ ∥p∥kΛ+1,Γ versus hkv+1/2∥p∥kv+1,Γ.

Both choices lead to a suboptimal convergence rate if kΛ = kv, i.e., if the polynomial
orders of Λh and Vh are equal. This loss can be remediated in the case of the weakly
continuous projection R♯

h by setting kΛ > kv, i.e., by choosing a higher order mortar
space Λh within the limit of the mortar condition A3; cf. Remark 3.2. This behavior
is similar to the pressure-mortar method [4, 5]. It is important to note, however, that
the two projections behave numerically in a very similar way, as observed in section 5.

Remark 3.6. In the special case Λh,i ⊆ V Γ
h,i, one can simply take Qh,i = I. Then,∑

i

(p,νi · vh)Γi =
∑
i

(p, µh,i)Γi = 0,

implying that Ec = 0 and there is no suboptimal term in the error bound.
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3.4.4. The interface flux. The error estimates derived in the previous sections
show convergence of the subdomain variables uh and ph. However, convergence of the
mortar variable λh itself has not been obtained. We therefore devote this section to
finding error estimates of the mortar variable for both types of projection operators.
The results are presented in a general setting. However, we recall that the discrete
solution (uh, ph) ∈ Vh ×Wh implicitly depends on the chosen projection operator.

In the following theorem we consider two measures of the interface flux error,
comparing the true interface flux λ to either the mortar flux λh or to the normal
trace of the velocity uh on Γ, νi · uh = Qh,iλh.

Theorem 3.11. If A3 holds and the solution is sufficiently regular, then

∥λ− λh∥Γ ≲ hkΛ+1
Γ

∑
i<j

∥λ∥kΛ+1,Γij + h−1/2(∥ΠV u− u∥V + Ec),∑
i

∥λ−Qh,iλh∥Γi
≲ hkΛ+1

Γ

∑
i<j

∥λ∥kΛ+1,Γij
+ h−1/2(∥ΠV u− u∥V + Ec)

+ hkv+1
∑
i<j

∥λ∥kv+1,Γij
.

Proof. Using A3, (3.25), and the discrete trace inequality (3.19), we obtain

∥λ− λh∥Γ ≤ ∥λ−ΠΛλ∥Γ + ∥ΠΛλ− λh∥Γ ≲ ∥λ−ΠΛλ∥Γ +
∑
i

∥Qh,i(Π
Λλ− λh)∥Γi

= ∥λ−ΠΛλ∥Γ +
∑
i

∥νi · (ΠV u− uh)∥Γi

≲ ∥λ−ΠΛλ∥Γ + h−1/2∥ΠV u− uh∥V .(3.34)

The next step is to note that (3.5a) implies b(vh,Π
W p− p) = 0. In turn, the bound

(2.20d) in Theorem 2.3 is obsolete and (2.21) can be improved to

∥ΠV u− uh∥V + ∥ΠW p− ph∥W ≲ ∥ΠV u− u∥V + Ec.

Combining this with (3.34) and the approximation property (3.23d) then give us the
first bound. The second bound follows from the triangle inequality,

∥λ−Qh,iλh∥Γi
≤ ∥λ−Qh,iλ∥Γi

+ ∥Qh,i(λ− λh)∥Γi
≤ ∥λ−Qh,iλ∥Γi

+ ∥λ− λh∥Γi
,

and the use of the approximation property (3.23e).

Remark 3.7. The estimates from Theorem 3.11 can be further developed by in-
voking the approximation properties (3.23) and bounding the consistency error Ec as
in sections 3.4.1 and 3.4.2. In their presented form, however, these results emphasize
that there is a half order reduction in convergence for the mortar variable compared
to the velocity. Such reduction is expected, since we measure the mortar error in the
L2(Γ)-norm, rather than the H−1/2(Γ)-norm.

3.5. Interface problem. By following the steps of section 2.5, the flux-mortar
mixed finite element method can be reduced to an interface problem concerning only
the mortar variable λ. In order to do so, we need to verify assumption A6.

Lemma 3.12 (A6). The following inf-sup condition holds for the spaces Λh×SH :

∀sH ∈ SH , ∃0 ̸= µh ∈ Λh such that b(Rhµh, sH) ≳ ∥µh∥Λ∥sH∥W .
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1214 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

Proof. Setting wh := sH ∈ SH ⊆ Wh in the proof of (2.11d) in Lemma 3.4
leads to a pair (v0

h, µh) with v0
h = 0 that satisfies (3.18), i.e., ∥µh∥Λ ≲ ∥sH∥W , and

b(Rhµh, sH) = ∥sH∥2W .

As noted in section 2.5, the interface problem (2.25) improves the solution with
respect to (2.9b), which in this case is based on Darcy’s law and enforces continuity
of pressure. On the other hand, mass conservation is already ensured, locally, after
solving (2.24) and the iterative solution of (2.25) effectively updates the velocity with
divergence-free functions.

4. Stokes flow. As our next example, we consider Stokes flow and follow the
steps from section 2 to formulate and analyze the corresponding flux-mortar mixed
finite element method. The governing equations are

σ := µ̃ε(u)− pI in Ω,(4.1a)

−∇ · σ = g, ∇ · u = f in Ω,(4.1b)

u = 0 on ∂uΩ, σν = 0 on ∂σΩ.(4.1c)

Here, µ̃ represents the viscosity, g is a body force, f is the mass source, and ε denotes
the symmetric gradient, i.e., ε(v) := 1

2 (∇v + (∇v)T ). Moreover, ∂uΩ ∪ ∂σΩ forms a
disjoint decomposition of ∂Ω with |∂uΩ| > 0 and |∂σΩ| > 0. For simplicity, we assume
that the interface Γ only touches the boundary on ∂uΩ.

Let us continue by defining the function spaces V ×W :

V :=
{
v ∈ (H1(Ω))n, v|∂uΩ = 0

}
, W := L2(Ω).

The variational formulation of problem (4.1) obtains the form (2.1) by defining
the bilinear forms:

ai(ui,vi) := (µ̃ε(ui), ε(vi))Ωi
, bi(ui, wi) := (∇ · ui, wi)Ωi

.(4.2)

In line with (2.3), we let Tri vi := vi|Γi
be the trace of all components of the

vector function vi ∈ Vi onto Γi. We define the trace space Λ := (H1/2(Γ))n and
endow it with the norm ∥µ∥Λ :=

∑
i ∥µi∥Λi

, with

∥µi∥Λi
:=

{ ∥µi∥ 1
2 ,∂Ωi

, i ∈ Iint,

∥Ei,0µi∥ 1
2 ,∂Ωi

, i ̸∈ Iint,
(4.3)

where Ei,0 is the extension by zero to ∂Ωi.
We end this subsection with a statement of a version of Korn’s inequality [12,

(1.8)], which will be used to establish coercivity of the bilinear form a(·, ·). Let
O ⊂ Rn, n = 2, 3, be a connected bounded domain and let G with |G| > 0 be a section
of its boundary. Then, ∀v ∈ (H1(O))n,

|v|1,O ≲

∥ε(v)∥O + sup
m∈RM(O)

∥m∥G=1,
∫
G m ds=0

(v,m)G

 ,(4.4)

where RM(O) is the space of rigid body motions on O. Combined with Poincaré
inequality [32], ∀v ∈ (H1(O))n with

∫
G v ds = 0, ∥v∥O ≲ |v|1,O, (4.4) implies that

∀v ∈ (H1(O))n with (v,m)G = 0 ∀m ∈ RM(O),

∥v∥1,O ≲ ∥ε(v)∥O.(4.5)
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4.1. Discretization. For each i ∈ IΩ, we choose a finite element pair Vh,i ×
Wh,i ⊂ Vi×Wi such that it is stable for the Stokes subproblem on Ωh,i. Stable mixed
finite element pairs for the Stokes subproblems (see, e.g., [9, Chapter 8]) include the
Taylor–Hood pair, the MINI mixed finite element, and the Bernardi–Raugel pair.
Note that the essential boundary condition uS = 0 on ∂uΩ is built in Vh,i.

We next define the discrete flux space Λh ⊂ Λ by introducing a globally conform-
ing shape-regular mesh on Γ. Such mesh can be obtained as the trace of a mesh Ω̃h

on Ω that is aligned with the domain decomposition. Let Ṽh ⊂ V |Ω be a conforming
Lagrange finite element space on Ω̃h. We then define the discrete flux space on Γ as
Λh := Tr Ṽh.

Following definition (2.6), the space SH is given by SH,i = R if ∂Ωi ∩ ∂σΩ = ∅
and zero otherwise. Let W 0

h,i := Wh,i ∩ S⊥
H,i. We emphasize that the stability of the

finite element pair ensures the following inf-sup condition for each i ∈ IΩ:

∀w0
h,i ∈W 0

h,i, ∃ 0 ̸= v0
h,i ∈ V 0

h,i such that bi
(
v0
h,i, w

0
h,i

)
≳ ∥v0

h,i∥Vi
∥w0

h,i∥Wi
.(4.6)

We continue with the definition of the operator Qh,i : Λ → Tri Vh,i. This operator
needs to satisfy

(νi · (Qh,iλ− λ), 1)Γi
= 0, i ∈ IΩ,(4.7)

which is needed for inf-sup stability (cf. A2) and b-compatibility of the interpolant
ΠV (cf. A5). The L2-projection onto Tri Vh,i does not satisfy (4.7), since the space
Tri Vh,i is continuous on Γi, but the normal vector νi is discontinuous at the corners of
the subdomains. We therefore need a different construction. Let IΓi

: Λi → Tri Vh,i be
a suitable interpolant or projection with optimal approximation properties. Specific
choices of IΓi will be discussed below. Since IΓi may not satisfy (4.7), we correct
it on each flat face F of Γi. We assume that, given λ ∈ Λi, there exists cFh,i ∈
Tri Vh,i|F ∩ (H1

0 (F ))
n such that(

cFh,i,χh,i

)
F
= (λ− IΓi

λ,χh,i)F ∀χh,i ∈ V F
h,i, ∥cFh,i∥ 1

2 ,F
≲ ∥λ− IΓi

λ∥ 1
2 ,F

,(4.8)

where V F
h,i is a suitably defined finite element space on F such that νi|F ∈ V F

h,i. We

refer to [19, Appendix] for examples of spaces and constructions of cFh,i. In particular,

in two dimensions, assuming that λ ∈ C0(Γi), we can take IΓi
λ to be the Lagrange

interpolant and use the constructions from [19, section 7.1]. Alternatively, in both
two and three dimensions we can take IΓi to be the L2-projection onto Tri Vh,i and
use the construction from [19, section 7.2]. We then define

Qh,iλ := IΓi
λ+

∑
F⊂Γi

cFh,i,

which satisfies for each face F ,

(Qh,iλ− λ,χh,i)F = 0 ∀χh,i ∈ V F
h,i.(4.9)

Since νi|F ∈ V F
h,i, then (4.7) holds. A scaling argument similar to the one in [19,

Lemma 5.1] shows that that Qh,i is stable and has optimal approximation properties
in ∥ · ∥Λi . We further note that the approximation property of the space V Γ

h,i on Γi,

V Γ
h,i|F := V F

h,i, does not affect the approximation property of Qh,i, but it affects the
consistency error Ec; cf. Lemma 4.5.
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Remark 4.1. The mortar condition A3 requires that the space Λh is controlled by
the traces of the neighboring velocity spaces. We refer the reader to [19, section 7]
for specific examples of Vh and Λh that satisfy A3.

We now have all the ingredients to set up problem (2.7) and therewith de-
fine the extension operator Rh,i. In turn, the discrete spaces Vh × Wh are de-
fined as in (2.8). The discrete Stokes problem is then defined by (2.10), posed on
Vh × Wh, with the bilinear forms from (4.2). Equation (2.9b), which in this case
is

∑
i ((µ̃ε(uh,i), ε(Rh,iµh))Ωi

− (∇ · Rh,iµh, ph,i)Ωi
− (g,Rh,iµh)Ωi

) = 0 ∀µh ∈ Λh,
imposes weakly continuity of normal stress.

4.2. Well-posedness. We next verify assumptions A1, A2, and A4 needed for
the proofs of Theorems 2.1 and 2.2.

Lemma 4.1 (A1). Problem (2.7) has a unique solution and the resulting exten-
sion operator Rh : Λ → Vh is continuous, i.e., ∥Rhλ∥V ≲ ∥λ∥Λ ∀λ ∈ Λ.

Proof. We first consider uniqueness by setting λ = 0. Setting wh,i = 1 in (2.7b)
and using the divergence theorem and (2.7d), we obtain ri = 0. Next, setting the
test functions in (2.7a)–(2.7b) to (Rh,iλ, p

λ
h,i) and summing the equations gives us

Rh,iλ = 0, using Korn’s inequality (4.5). Moreover, we have pλh,i ⊥ SH,i from (2.7c),

so we use the inf-sup condition (4.6) and (2.7a) to derive that pλh,i = 0.

It remains to show continuity. The first step is to obtain a bound on pλh,i. Since

pλh,i ⊥ SH,i, we use v
0
h,i from the inf-sup condition (4.6) as a test function and use the

continuity of ai(·, ·) to obtain

∥v0
h,i∥Vi

∥pλh,i∥Wi
≲ bi

(
v0
h,i, p

λ
h,i

)
= ai

(
Rh,iλ,v

0
h,i

)
≲ ∥Rh,iλ∥Vi

∥v0
h,i∥Vi

.

Thus, ∥pλh,i∥Wi ≲ ∥Rh,iλ∥Vi .
Next, let R⋆

h,iλ ∈ Vh,i be a continuous discrete extension operator [32, Theo-
rem 4.1.3] satisfying Tri R⋆

h,iλ = Qh,iλ on Γi and

∥R⋆
h,iλ∥Vi

≲ ∥Qh,iλ∥Λi
≲ ∥λ∥Λi

.

We take as test functions in (2.7) v0
h,i = φ0

h,i := (Rh,i − R⋆
h,i)λ ∈ V 0

h,i, wh,i = pλh,i,
si = ri, and combine the equations. Using Korn’s inequality (4.5), the continuity of
ai and bi, Young’s inequality, and the bounds on pλh,i and R∗

h,iλ, we derive

∥φ0
h,i∥2Vi

≲ ai
(
φ0

h,i,φ
0
h,i

)
= −ai

(
R⋆

h,iλ,φ
0
h,i

)
+ bi

(
−R⋆

h,iλ, p
λ
h,i

)
≲ ∥R⋆

h,iλ∥Vi

(
∥φ0

h,i∥Vi
+ ∥pλh,i∥Wi

)
≲ ∥λ∥2Λi

+ ϵ
(
∥φ0

h,i∥2Vi
+ ∥Rh,iλ∥2Vi

)
.

Combining this bound with ∥Rh,iλ∥2Vi
≲ ∥φ0

h,i∥2Vi
+∥R⋆

h,iλ∥2Vi
≲ ∥φ0

h,i∥2Vi
+∥λ∥2Λi

and

taking ϵ small enough, we obtain ∥φ0
h,i∥Vi

≲ ∥λ∥Λi
, which implies ∥Rh,iλ∥Vi

≲ ∥λ∥Λi

for i ∈ IΩ, concluding the proof.

Lemma 4.2 (A2). The four inequalities (2.11) hold for Vh ×Wh.

Proof. First, the continuity of ai and bi from (4.2) follow from the Cauchy–
Schwarz inequality. Summing over all i ∈ IΩ provides (2.11a)–(2.11b).

For (2.11c), the coercivity of ai, Korn’s inequality (4.4) cannot be applied locally,
since the velocity is not restricted on subdomain boundaries. To that end, we recall
that Λh = Tr Ṽh, where Ṽh ⊂ V is a conforming Lagrange finite element space on
a mesh Ω̃h that is aligned with the domain decomposition. We can write Ṽh,i =
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Ṽ 0
h,i ⊕ Eh,iΛh, where Ṽ

0
h,i = {ṽh,i ∈ Ṽh,i : Tri ṽh,i = 0 on Γi} and Eh,i : Λh → Ṽh,i is a

discrete extension operator such that Eh,iµh = µh on Γi and

ai
(
Eh,iµh, ṽ

0
h,i

)
= 0 ∀ ṽ0

h,i ∈ Ṽ 0
h,i.(4.10)

Problem (4.10) is well-posed, since, due to (4.5), ai(·, ·) is coercive on Ṽ 0
h,i. Now, given

uh,i = u0
h,i + Rh,iλh, consider the local problem: Find ũh,i = ũ0

h,i + Eh,iλh ∈ Ṽh,i
such that

ai
(
ũ0
h,i + Eh,iλh, ṽ

0
h,i + Eh,iλh

)
= ai

(
uh,i, ṽ

0
h,i + Eh,iλh

)
∀ ṽ0

h,i ∈ Ṽ 0
h,i.(4.11)

Note that uh,i and λh are given data. Problem (4.11) is well-posed, since, using (4.10),
ai(ũ

0
h,i + Eh,iλh, ṽ

0
h,i + Eh,iλh) = ai(ũ

0
h,i, ṽ

0
h,i)+ ai(Eh,iλh, Eh,iλh), and the coercivity

follows from (4.5). We further note that (4.11) implies that ai(uh,i − ũh,i, ũh,i) = 0.
Also, (4.9) implies that, ∀m ∈ RM(Ωi), (uh,i− ũh,i,m)Γi

= (Qh,iλh−λh,m)Γi
= 0.

Hence, Korn’s inequality (4.5) on Ωi gives ∥uh,i−ũh,i∥21,Ωi
≲ ai(uh,i−ũh,i,uh,i−ũh,i).

Then, with ũh ∈ Ṽh defined as ũh|Ωi = ũh,i, we have∑
i

ai(uh,i,uh,i) =
∑
i

ai(uh,i − ũh,i,uh,i − ũh,i) +
∑
i

ai(ũh,i, ũh,i)

≳
∑
i

∥uh,i − ũh,i∥21,Ωi
+ ∥ũh∥21,Ω ≳

∑
i

∥uh,i∥21,Ωi
,

where in the first inequality we used Korn’s inequality (4.5) applied globally on Ω.
This completes the proof of (2.11c).

Next, we prove the inf-sup condition (2.11d) by constructing vh ∈ Vh for a given
wh ∈Wh. As in Lemma 3.4, we consider a global divergence problem on Ω (cf. (3.17))
to construct vw ∈ (H1(Ω))n with the properties

∇ · vw = wh in Ω, vw = 0 on ∂uΩ, ∥vw∥1,Ω ≲ ∥wh∥Ω.

The approach used in Lemma 3.4 to construct µh ∈ Λh does not work here, due to
the global continuity of Λh. Instead, we consider a discrete Stokes problem in Ω based
on the finite element pair Ṽh ×WH , where we recall that Λh = Tr Ṽh and we define
WH to be the space of piecewise constants on the partition formed by the subdomains
Ωi. Assuming that there is at least one interior vertex in each Γij , the pair Ṽh ×WH

is inf-sup stable; see [35, Lemma 3.3]. Let ũw
h ∈ Ṽh be a discrete Stokes projection of

vw in Ω based on solving the problem, Find (ũw
h , p

w
H) ∈ Ṽh ×WH such that

(∇ũw
h ,∇ṽh)Ω − (∇ · ṽh, p

w
H)Ω = (∇vw,∇ṽh)Ω ∀ ṽh ∈ Ṽh,(4.12a)

(∇ · ũw
h , wH)Ω = (∇ · vw, wH)Ω ∀wH ∈WH .(4.12b)

The continuity of the Stokes finite element approximation implies ∥ũw
h ∥1,Ω ≲ ∥vw∥1,Ω.

We now define µh := Tr ũw
h ∈ Λh. The trace inequality implies∑

i

∥µh∥Λi ≲
∑
i

∥ũw
h ∥1,Ωi ≲ ∥vw∥1,Ω ≲ ∥wh∥Ω.

Moreover, (4.12b) gives

(νi · µh, 1)Γi
= (∇ · ũw

h , 1)Ωi
= (∇ · vw, 1)Ωi

= (wh, 1)Ωi
.
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1218 W. M. BOON, D. GLÄSER, R. HELMIG, AND I. YOTOV

Now, using (2.7d) and (4.7), we obtain

(∇ · Rh,iµh, 1)Ωi = (νi · Qh,iµh, 1)Γi = (νi · µh, 1)Γi = (wh, 1)Ωi .

Using the discrete inf-sup condition (4.6), we construct v0
h,i ∈ V 0

h,i such that

∇ · v0
h,i = wh,i −∇ · Rh,iµh in Ωi, ∥v0

h,i∥1,Ωi
≲ ∥wh,i −∇ · Rh,iµh∥Ωi

,

and set vh,i = v0
h,i +Rh,iµh. We have ∑

i

bi(vh,i, wh,i) = ∥wh∥2Ω,(4.13a) ∑
i

∥vh,i∥Vi
≲

∑
i

∥Rh,iµh∥Vi
+ ∥wh∥Ω ≲ ∥wh∥W ,(4.13b)

using Lemma 4.1 in the last inequality. This implies the inf-sup condition (2.11d).

Lemma 4.3 (A4). For each subdomain Ωi, it holds that

∥vh,i∥Γi
≲ ∥vh,i∥Vi

∀vh,i ∈ Vh,i.(4.14)

Proof. The statement follows from the trace inequality ∥vi∥ 1
2 ,Γi

≲ ∥vi∥1,Ωi
.

4.3. Interpolation operators. We next define appropriate interpolants in the
discrete spaces. We define ΠW as the L2-projection ontoWh, Π

Λ as the L2-projection
onto Λh, and ΠV Γ

i as the L2-projection onto V Γ
h,i.

For the interpolant ΠV , we note that the construction from section 3.3 uses
Tri Π

V
i = Qh,i Tri on Γi. However, canonical b-compatible interpolants for Stokes

finite elements do not typically satisfy this property. For this reason, we define ΠV
i as

a suitable Stokes elliptic projection. More precisely, for i ∈ IΩ, given ui, we consider
the discrete Stokes problem: Find (ΠV

i ui, p
u
h,i) ∈ Vh,i ×W 0

h,i such that(
∇(ΠV

i ui),∇v0
h,i

)
Ωi

−
(
∇ · v0

h,i, p
u
h,i

)
Ωi

=
(
∇ui,∇v0

h,i

)
Ωi

∀v0
h,i ∈ V 0

h,i,(4.15a)

(∇ ·ΠV
i ui, wh,i)Ωi

= (∇ · ui, wh,i)Ωi
∀wh,i ∈Wh,i,(4.15b)

Tri Π
V
i ui = Qh,i Tri ui on Γi.(4.15c)

The well-posedness of the above problem and optimal approximation properties of
ΠV

i follow from standard Stokes finite element analysis [9].
Let λ = Tru. Note that, by construction, we have Tri Π

V
i = Qh,i Tri on Γi.

Therefore ΠV
i (ui −Rh,iλ) ∈ V 0

h,i. Using this observation, the interpolant ΠV onto Vh
is defined similarly to (3.24a):

ΠV u := RhΠ
Λλ+

⊕
i

ΠV
i (ui −Rh,iλ) = Rh(Π

Λλ− λ) +
⊕
i

ΠV
i ui.(4.16)

The continuity of Rh, established in Lemma 4.1, implies the following approximation
property of ΠV :

∥u−ΠV u∥V ≲
∑
i

∥u−ΠV
i u∥1,Ωi + ∥λ−ΠΛλ∥Λ.(4.17)

Lemma 4.4 (A5). The interpolation operator ΠV has the property

b(u−ΠV u, wh) = 0 ∀wh ∈Wh.(4.18)

Proof. We first note that b-compatibility of ΠV
i is ensured by (4.15b). The argu-

ments from Lemma 3.7 now provide the result.
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4.4. Consistency error.

Lemma 4.5. Given A3, then the consistency error Ec satisfies

Ec ≲
∑
i

∥ΠV Γ

i (σν)− σν∥Γi
.

Proof. We consider the term in the numerator of the definition (2.15) of Ec. We
recall the definitions of the bilinear forms in (4.2) and apply integration by parts.
Given (u, p) the solution to (4.1), we substitute the momentum balance (4.1b) and
the boundary conditions (4.1c) to derive∑

i

(
ai(u,vh)− bi(vh, p)− (g,vh)Ωi

)
=

∑
i

(σνi,vh,i)∂Ωi
=

∑
i

(σνi,vh,i)Γi
.

We proceed as in section 3.4.2. Let vh,i = v0
h,i +Rh,iµh. Using the continuity of σ

on Γ and assumption A3, we obtain∑
i

(σνi,vh,i)Γi
=

∑
i

(σνi,Qh,iµh)Γi

=
∑
i

((
σνi −ΠV Γ

i (σνi),Qh,iµh

)
Γi

+ (ΠV Γ

i (σνi),µh)Γi

)
=

∑
i

((
σνi −ΠV Γ

i (σνi),Qh,iµh

)
Γi

+ (ΠV Γ

i (σνi)− σνi,µh)Γi

)
≲

∑
i

∥σνi −ΠV Γ

i (σνi)∥Γi
∥Qh,iµh∥Γi

=
∑
i

∥σνi −ΠV Γ

i (σνi)∥Γi
∥vh,i∥Γi

≲
∑
i

∥σνi −ΠV Γ

i (σνi)∥Γi
∥vh,i∥1,Ωi

,

using the trace inequality, ∀i ∈ IΩ, ∥vh,i∥Γi
≲ ∥vh,i∥Λi

≲ ∥vh,i∥1,Ωi
.

4.5. Main result. We conclude this section with its main result, which follows
directly from Lemmas 4.1–4.5 combined with Theorems 2.1–2.3.

Theorem 4.6. The flux-mortar mixed finite element method for the Stokes prob-
lem given by (2.10) with (4.2) admits a unique solution (uh, ph) ∈ Vh × Wh that
satisfies

∥uh∥V + ∥ph∥W ≲
∑
i

∥gi∥−1,Ωi
+ ∥f∥Ω.

Furthermore, if A3 holds, then the mortar solution λh ∈ Λh is unique and the error
with respect to the true solution (u, p) satisfies

∥u− uh∥V + ∥p− ph∥W ≲ ∥ΠV u− u∥V + ∥ΠW p− p∥W +
∑
i

∥ΠV Γ

i (σν)− σν∥Γi
.

Remark 4.2. A bound on the mortar error ∥λ − λh∥Λ can be derived using an
argument similar to the proof of Theorem 3.11, under the stronger mortar condition
∥µh∥Λi

≲ ∥Qh,iµh∥Λi
∀µh ∈ Λh. Examples for the latter are given in [19, section 7].
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4.6. Interface problem. We end this section by reducing the Stokes flow prob-
lem to a flux-mortar interface problem following the four steps (2.23)–(2.26) from
section 2.5. To accommodate its construction, we require A6, presented in the follow-
ing lemma.

Lemma 4.7 (A6). The following inf-sup condition holds for the spaces Λh ×SH :

∀sH ∈ SH , ∃0 ̸= µh ∈ Λh such that b(Rhµh, sH) ≳ ∥µh∥Λ∥sH∥W .

Proof. Setting wh := sH ∈ SH ⊆Wh in the proof of the inf-sup condition (2.11d)
in Lemma 4.2 leads to a pair (v0

h,µh) with v0
h = 0 that satisfies (4.13).

5. Numerical results. In this section, we return to the model problem describ-
ing porous medium flow and test the theoretical results from section 3.4 with the use
of numerical experiments. The numerical code, implemented in DuMuX [15, 25], is
available for download at git.iws.uni-stuttgart.de/dumux-pub/boon2019a. The low-
est order Raviart–Thomas mixed finite element method reduced to a finite volume
scheme with a two-point flux approximation is applied in each subdomain and we
solve the problem using the iterative scheme described in section 2.5. On the mortar
grids, we investigate two options, namely the use of piecewise constant functions (P0)
and linear Lagrange basis functions (P1). Moreover, both the projection operators

Q♭
h and Q♯

h are considered in order to cover all results from section 3.4.
The setup of the test is as follows. Let the domain Ω = (0, 1) × (0, 2), the

permeability K = 1, and the pressure and velocity be given by

p (x, y) = y2
(
1− y

3

)
+ x (1− x) y sin (2πx) ,(5.1a)

u (x, y) = −
[
y ((1− 2x) sin (2πx)− 2π (x− 1)x cos (2πx))

(2− y) y + x (1− x) sin (2πx)

]
.(5.1b)

We prescribe the pressure on the boundary ∂Ω and define the source function f := ∇·u
to match with these chosen distributions.

We partition the domain into four subdomains by introducing interfaces along the
lines x = 0.5 and y = 1. In order to investigate the convergence rates from section 3.4,
we test a sequence of refinements by a factor two. Each subdomain is meshed with a
rectangular grid such that the meshes are nonmatching at each of the four interfaces.
The meshes on the coarsest level are 5×9 on (0, 0.5)× (0, 1), 5×13 on (0.5, 1)× (0, 1),
7×13 on (0, 0.5)× (1, 2), and 7×9 on (0.5, 1)× (1, 2). The mortar grids are generated
such that each interface has the same number of elements. We refer to the number
of mortar grid elements per interface on the coarsest level as n0Γ and we consider the
two cases n0Γ ∈ {2, 3}. For an illustration of the grid and the solution (uh, ph), we
refer to Figure 1.

We analyze the decrease of the errors of the velocity eu := ∥u−uh∥Ω and ediv(u) :=∑
i ∥∇ · (u− uh)∥Ωi

, the pressure ep := ∥p− ph∥Ω, the flux-mortar eλ := ∥λ− λh∥Γ,
and the projected flux-mortar eQλ := ∥λ −Qhλh∥Γ. Convergence results for n0Γ = 2
are presented in Tables 1 and 2 for P1 and P0 mortars, respectively. The mortar grid
is sufficiently coarse to fulfill the mortar condition A3 for both Q♭

h and Q♯
h. The rates

ru and rp from Table 1 indicate first order convergence for the velocity and pressure

for both projectors Q♭
h and Q♯

h in the case of P1 mortars. Table 2 shows that the
choice of P0 mortars results in a reduction for the velocity with the rate approaching
O(h1/2). We note that Theorems 3.9 and 3.10 predict O(h) convergence for Q♯

h with
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Fig. 1. Pressure (left) and velocity (center and right) distributions computed after the first
refinement using continuous, piecewise linear mortars (P1), and initial mortar grid with n0

Γ = 2.
The vertical (center) and horizontal (right) mortar grids are visualized as tubes with white circles
indicating the vertices.

Table 1
Errors and convergence rates for n0

Γ = 2 and P1 mortars.

P1 e♭u r♭u e♭
div(u)

r♭
div(u)

e♭p r♭p e♭λ r♭λ e♭Qλ r♭Qλ

0 7.05e-2 2.78e+0 4.43e-2 3.78e-2 1.05e-1
1 2.76e-2 1.35 1.39e+0 1.00 2.18e-2 1.02 1.78e-2 1.08 5.22e-2 1.01
2 1.26e-2 1.14 6.96e-1 1.00 1.08e-2 1.01 1.13e-2 0.65 2.79e-2 0.91
3 6.11e-3 1.04 3.48e-1 1.00 5.42e-3 1.00 7.91e-3 0.52 1.59e-2 0.81
4 3.03e-3 1.01 1.74e-1 1.00 2.71e-3 1.00 5.58e-3 0.50 9.62e-3 0.72
5 1.51e-3 1.00 8.70e-2 1.00 1.35e-3 1.00 3.95e-3 0.50 6.15e-3 0.64
6 7.56e-4 1.00 4.35e-2 1.00 6.77e-4 1.00 2.79e-3 0.50 4.10e-3 0.58
7 3.78e-4 1.00 2.17e-2 1.00 3.38e-4 1.00 1.97e-3 0.50 2.81e-3 0.55

e♯u r♯u e♯
div(u)

r♯
div(u)

e♯p r♯p e♯λ r♯λ e♯Qλ r♯Qλ

0 7.05e-2 2.78e+0 4.43e-2 3.78e-2 1.05e-1
1 2.76e-2 1.35 1.39e+0 1.00 2.18e-2 1.02 1.79e-2 1.08 5.23e-2 1.01
2 1.26e-2 1.14 6.96e-1 1.00 1.08e-2 1.01 1.14e-2 0.65 2.79e-2 0.91
3 6.11e-3 1.04 3.48e-1 1.00 5.42e-3 1.00 7.92e-3 0.52 1.59e-2 0.81
4 3.03e-3 1.01 1.74e-1 1.00 2.71e-3 1.00 5.59e-3 0.50 9.62e-3 0.72
5 1.51e-3 1.00 8.70e-2 1.00 1.35e-3 1.00 3.95e-3 0.50 6.16e-3 0.64
6 7.56e-4 1.00 4.35e-2 1.00 6.77e-4 1.00 2.79e-3 0.50 4.11e-3 0.58
7 3.78e-4 1.00 2.17e-2 1.00 3.38e-4 1.00 1.98e-3 0.50 2.81e-3 0.55

P1 mortars, while O(h1/2) is predicted in the other cases. For the mortar variable, the
rates rλ and rQλ are lower by approximately one half compared to ru and rp. This
is in agreement with Theorem 3.11. Finally, we note that the error ediv(u) is identical
and first order convergent in all cases, which is consistent with (3.29).

The most striking observation in both of these tables is that the two extension
operators R♭

h and R♯
h produce nearly indistinguishable solutions. However, we have
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Table 2
Errors and convergence rates for n0

Γ = 2 and P0 mortars.

P0 e♭u r♭u e♭
div(u)

r♭
div(u)

e♭p r♭p e♭λ r♭λ e♭Qλ r♭Qλ

0 1.37e-1 2.78e+0 4.48e-2 3.41e-1 4.20e-1
1 4.78e-2 1.51 1.39e+0 1.00 2.18e-2 1.04 1.70e-1 1.01 2.06e-1 1.03
2 1.85e-2 1.37 6.96e-1 1.00 1.08e-2 1.01 8.56e-2 0.99 1.03e-1 0.99
3 7.91e-3 1.23 3.48e-1 1.00 5.42e-3 1.00 4.49e-2 0.93 5.41e-2 0.93
4 3.72e-3 1.09 1.74e-1 1.00 2.71e-3 1.00 2.62e-2 0.77 3.18e-2 0.76
5 1.92e-3 0.96 8.70e-2 1.00 1.35e-3 1.00 1.88e-2 0.48 2.33e-2 0.45
6 1.07e-3 0.83 4.35e-2 1.00 6.77e-4 1.00 1.64e-2 0.20 2.08e-2 0.17
7 6.50e-4 0.72 2.17e-2 1.00 3.38e-4 1.00 1.57e-2 0.06 2.01e-2 0.05

e♯u r♯u e♯
div(u)

r♯
div(u)

e♯p r♯p e♯λ r♯λ e♯Qλ r♯Qλ

0 1.37e-1 2.78e+0 4.48e-2 3.41e-1 4.19e-1
1 4.78e-2 1.52 1.39e+0 1.00 2.18e-2 1.04 1.70e-1 1.01 2.05e-1 1.03
2 1.85e-2 1.37 6.96e-1 1.00 1.08e-2 1.01 8.56e-2 0.99 1.03e-1 0.99
3 7.91e-3 1.23 3.48e-1 1.00 5.42e-3 1.00 4.49e-2 0.93 5.40e-2 0.93
4 3.72e-3 1.09 1.74e-1 1.00 2.71e-3 1.00 2.62e-2 0.77 3.18e-2 0.76
5 1.92e-3 0.96 8.70e-2 1.00 1.35e-3 1.00 1.88e-2 0.48 2.33e-2 0.45
6 1.07e-3 0.83 4.35e-2 1.00 6.77e-4 1.00 1.64e-2 0.20 2.08e-2 0.17
7 6.50e-4 0.72 2.17e-2 1.00 3.38e-4 1.00 1.57e-2 0.06 2.01e-2 0.05

Table 3
Errors and convergence rates for n0

Γ = 3 and P1 mortars.

e♭u r♭u e♭
div(u)

r♭
div(u)

e♭p r♭p e♭λ r♭λ e♭Qλ r♭Qλ

0 7.08e-2 2.78e+0 4.43e-2 4.51e-2 1.10e-1
1 2.82e-2 1.33 1.39e+0 1.00 2.18e-2 1.02 3.37e-2 0.42 6.37e-2 0.79
2 1.29e-2 1.13 6.96e-1 1.00 1.08e-2 1.01 2.41e-2 0.48 3.90e-2 0.71
3 6.31e-3 1.03 3.48e-1 1.00 5.42e-3 1.00 1.74e-2 0.47 2.55e-2 0.61
4 3.15e-3 1.00 1.74e-1 1.00 2.71e-3 1.00 1.29e-2 0.43 1.78e-2 0.52
5 1.60e-3 0.98 8.70e-2 1.00 1.35e-3 1.00 9.91e-3 0.38 1.34e-2 0.42
6 8.19e-4 0.96 4.35e-2 1.00 6.77e-4 1.00 8.03e-3 0.30 1.07e-2 0.32
7 4.30e-4 0.93 2.17e-2 1.00 3.38e-4 1.00 6.91e-3 0.22 9.21e-3 0.22

verified numerically that R♭
h does not produce velocity fields with weakly continuous

fluxes across the interfaces, so it is indeed different from R♯
h. The closeness of the

results indicates that the interface consistency error Ec is dominated by the subdomain
discretization error. It may also be possible to improve the consistency error bound
(3.33) for R♭

h and make it comparable to the bound (3.32) for R♯
h.

We next consider the case of finer mortar grids with n0Γ = 3, focusing on P1

mortars. In Table 3, we show the errors and convergence rates with the projection
operatorQ♭

h, noting that the results withQ♭
h are similar. We observe a deterioration in

the rates ru, rλ, and rQλ, compared to the case with n0Γ = 2; cf. Table 1. To illustrate
this effect, we show in Figure 2 the mortar solution λh obtained on refinement level 5
with the coarser mortar grid n0Γ = 2 and the finer mortar grid n0Γ = 3. We first note
that in both cases an oscillation appears at the junction of the two mortar grids. It is
likely due to the Gibbs phenomenon at the end points of the interfaces, in combination
with the effect of the nonmatching grids. This oscillation is localized and it does not
affect the global accuracy. However, in the finer mortar grid case, an oscillation is
also observed along the entire interface. This indicates that the mortar condition A3
may be violated in this case.
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Fig. 2. Plot of the true flux λ and the discrete mortar solution λh along the line y = 1, on
refinement level 5 with initial mortar grid n0

Γ = 2 (left) and n0
Γ = 3 (right).

6. Conclusions. We have proposed a mortar method for a wide class of saddle
point problems in which the continuity of the essential boundary condition variable,
which is typically flux in flow or stress in elasticity, is enforced strongly using an
interface variable. The method is capable of handling nonmatching grids under the
mortar assumption A3. The method was presented and analyzed in an abstract
setting. Specific examples concerning Darcy flow, Stokes flow, and Stokes–Darcy flow
were shown to fit the framework. Numerical examples for Darcy flow were presented,
verifying the theoretical convergence rates. It was further observed that violating A3
may result in spurious oscillations and reduced convergence in the mortar flux.
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