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Abstract

We introduce the problem of domain adaptation under Open Set Label Shift (OSLS)
where the label distribution can change arbitrarily and a new class may arrive dur-
ing deployment, but the class-conditional distributions p(z|y) are domain-invariant.
OSLS subsumes domain adaptation under label shift and Positive-Unlabeled (PU)
learning. The learner’s goals here are two-fold: (a) estimate the target label distri-
bution, including the novel class; and (b) learn a target classifier. First, we establish
necessary and sufficient conditions for identifying these quantities. Second, moti-
vated by advances in label shift and PU learning, we propose practical methods
for both tasks that leverage black-box predictors. Unlike typical open set domain
adaptation problems, which tend to be ill-posed and amenable only to heuristics,
OSLS offers a well-posed problem amenable to more principled machinery. Ex-
periments across numerous semi-synthetic benchmarks on vision, language, and
medical datasets demonstrate that our methods consistently outperform open set
domain adaptation baselines, achieving 10-25% improvements in target domain
accuracy. Finally, we analyze the proposed methods, establishing finite-sample
convergence to the true label marginal and convergence to optimal classifier for
linear models in a Gaussian setup'.

1 Introduction

Suppose that we wished to deploy a machine learning system to recognize diagnoses based on their
clinical manifestations. If the distribution of data were static over time, then we could rely on the
standard machinery of statistical prediction. However, disease prevalences are constantly changing,
violating the assumption of independent and identically distributed (iid) data. In such scenarios,
we might reasonably apply the label shift assumption, where prevalences can change but clinical
manifestations cannot. When only the relative proportion of previously seen diseases can change,
principled methods can detect and correcting for label shift on the fly [56, 78, 45, 4, 1, 27]. But what
if a new disease, like COVID-19, were to arrive suddenly?

Traditional label shift adaptation techniques break when faced with a previously unseen class. A
distinct literature on Open Set Domain Adaptation (OSDA) seeks to handle such cases [51, 5, 14,
70, 43, 73, 58, 59, 25]). Given access to labeled source data and unlabeled farget data, the goal in
OSDA is to adapt classifiers in general settings where previous classes can shift in prevalence (and
even appearance), and novel classes separated out from those previously seen can appear. Most
work on OSDA is driven by the creation of and progress on benchmark datasets (e.g., DomainNet,
OfficeHome). Existing OSDA methods are heuristic in nature, addressing settings where the right
answers seem intuitive but are not identified mathematically. However, absent assumptions on: (i)
the nature of distribution shift among source classes and (ii) the relation between source classes and
novel class, standard impossibility results for domain adaptation condemn us to guesswork [8].

!Code is available at https://github.com/acmi-1lab/0Open-Set-Label-Shift.
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Figure 1: Left: Domain Adaptation under OSLS. An instantiation of OSDA that applies label shift
assumption but allows for a new class to show up in target domain. Right: Aggregated results across
seven semi-synthetic benchmark datasets. For both target classification and novel class prevalence
estimation, PULSE significantly outperforms other methods (lower error is better). For brevity, we
only include result for the best OSDA method. For detailed comparison, refer Sec. 7.

In this work, we introduce domain adaptation under Open Set Label Shift (OSLS), a coherent
instantiation of OSDA that applies the label shift assumption but allows for a new class to show
up in the target distribution. Formally, the label distribution may shift between source and target
ps(y) # pe(y), but the class-conditional distributions among previously seen classes may not (i.e.,
Yy e {1,2,...,k},ps(x|y) = pi(x|y)). Moreover, a new class y = k + 1 may arrive in the target
period. Notably, OSLS subsumes label shift [56, 67, 45] (when p;(y = k+ 1) = 0) and learning from
Positive and Unlabeled (PU) data [20, 42, 24] (when k& = 1). As with label shift and PU learning, our
goals are two-fold. Here, we must (i) estimate the target label distribution p;(y) (including the novel
class prevalence); (ii) train a (k + 1)-way target-domain classifier.

First, we characterize when the parameters of interest are identified (Sec. 4). Namely, we define a
(necessary) weak positivity condition, which states that there exists a subset of each label’s support
that has zero probability mass under the novel class and that the submatrix of p(z|y) consisting only
of rows outside the novel class’s support is full rank. Moreover, we prove that weak positivity alone
is not sufficient. We introduce two sufficient conditions: strong positivity and separability, either of
which (independently) ensures identifiability.

Focusing on cases with strong positivity, we show that OSLS reduces to £ PU learning problems
(Sec. 5). However, we demonstrate that straightforward applications of this idea fail because (i) bias
accumulates across the k£ mixture proportion estimates leading to grossly underestimating the novel
class’s prevalence; and (ii) naive combinations of the k£ PU classifiers are biased and inaccurate.

Thus motivated, we propose the PULSE framework, which combines methods from Positive and
Unlabeled learning and Label Shift Estimation, yielding two-stage techniques for both label marginal
estimation and classification (Sec. 6). Our methods build on recent advances in label shift [45, 4, 1, 27]
and PU learning [38, 35, 29], that leverage appropriately chosen black-box predictors to avoid the
curse of dimensionality. PULSE first estimates the label shift among previously seen classes, and
then re-samples the source data to formulate a single PU learning problem between (reweighted)
source and target data to estimate fraction of novel class and to learn the target classifier. In particular,
our procedure builds on the BBE and CVIR techniques proposed in Garg et al. [29]. PULSE is simple
to implement and compatible with arbitrary hypothesis classes (including deep networks).

We conduct extensive semi-synthetic experiments adapting seven benchmark datasets spanning
vision (CIFAR10, CIFAR100, Entity30), natural language (Newsgroups-20), biology (Tabula Muris),
and medicine (DermNet, BreakHis) (Sec. 7). Across numerous data modalities, draws of the label
distributions, and model architectures, PULSE consistently outperforms generic OSDA methods,
improving by 10-25% in accuracy on target domain. Moreover, PULSE outperforms methods that
naively solve k& PU problems on both label distribution estimation and classification.

Finally, we analyze our framework (Sec. 8). First, we extend Garg et al. [29]’s analysis of BBE to
derive finite-sample error bounds for our estimates of the label marginal. Next, we develop new
analyses of the CVIR objective [29] that PULSE relies in the classification stage. Focusing on a
Gaussian setup and linear models optimized by gradient descent, we prove that CVIR converges to



a true positive versus negative classifier in population. Addressing the overparameterized setting
where parameters exceed dataset size, we conduct an empirical study that helps to elucidate why, on
separable data, CVIR outperforms other consistent objectives, including nnPU [38] and uPU [21].

2 Related Work

(Closed Set) Domain Adaptation (DA) Under DA, the goal is to adapt a predictor from a source
distribution with labeled data to a target distribution from which we observe only unlabeled examples.
DA is classically explored under two distribution shift scenarios [67]: (i) Covariate shift [78, 74, 19,
18, 32] where p(y|x) remains invariant among source and target; and (ii) Label shift [56, 45, 4, 1, 27,
77] where p(x|y) is shared across source and target. In these settings most theoretical analysis requires
that the target distribution’s support is a subset of the source support [8]. However, recent empirically
work in DA [48, 49, 68, 69, 80, 79, 26, 64] focuses on settings motivated by benchmark datasets (e.g.,
WILDS [57, 39], Office-31 [55] OfficeHome [71], DomainNet [52]) where such overlap assumptions
are violated. Instead, they rely on some intuitive notion of semantic equivalence across domains.
These problems are not well-specified and in practice, despite careful hyperparameter tuning, these
methods often do not improve over standard empirical risk minimization on source data alone for
practical, and importantly, previously unseen datasets [57].

Open Set Domain Adaptation (OSDA) OSDA [51, 9, 62] extends DA to settings where along
with distribution shift among previously seen classes, we may observe a novel class in the target
data. This setting is also known as universal domain adaptation [73, 59]. Rather than making precise
assumptions about the nature of shift between source and target as in OSLS, the OSDA literature is
primarily governed by semi-synthetic problems on benchmark DA datasets (e.g. DomainNet, Office-
31 and OfficeHome). Numerous OSDA methods have been proposed [5, 14, 70, 43, 73, 58, 59, 25, 11].
At a high level, most OSDA methods perform two steps: (i) align source and target representation
for previously seen classes; and (ii) train a discrimination to reject novel class from previously seen
classes. The second step typically uses novelty detection heuristics to identify novel samples.

PU Learning Positive and Unlabeled (PU) learning is the base case of OSLS. Here, we observe
labeled data a single source class and unlabeled target data contains data from both the novel class
and the source class. In PU learning, our goals are: (i) Mixture Proportion Estimation (MPE), i.e.,
determining the fraction of previously seen class in target ; and (ii) PU classification, i.e., learning
to discriminate between the novel and the positive (source) class. Several classical methods were
proposed for both MPE [24, 23, 63, 36, 6, 7] and classification [24, 22, 21]. However, classical MPE
methods do not scale to high-dimensional settings [53]. More recent methods alleviate these issues by
operating in classifier output space [29, 35]. For classification, traditional methods fail when deployed
with models classes with high capacity due to their capacity of fitting random labels [75]. Recent
methods [29, 38, 16], avoid over-fitting by employing regularization or self-training techniques.

Other related work A separate line of work looks at the problem of Out-Of-Distribution (OOD)
detection [34, 31, 41, 37, 50, 76]. Here, the goal is to identify novel examples, i.e., samples that lie
out of the support of training distribution. The main different between OOD detection and OSDA is
that in OOD detection we do not have access to unlabeled data containing a novel class. Recently,
Cao et al. [13] proposed open-world semi-supervised learning, where the task is to not only identify
novel classes in target but also to separate out different novel classes in an unsupervised manner.

Our work takes a step back from the hopelessly general OSDA setup, introducing OSLS, a well-
posed OSDA setting where the sought-after parameters can be identified.

3 Open Set Label Shift

Notation For a vector v € RY, we use v; to denote its j" entry, and for an event E, we let [ [E]
denote the binary indicator of the event. By | A|, we denote the cardinality of set A.

Let X € R be the input space and Y = {1,2,...,k + 1} be the output space for multiclass classifica-
tion. Let P, and P, be the source and target distributions and let ps and p; denote the corresponding
probability density (or mass) functions. By E, and E;, we denote expectations over the source and
target distributions. We assume that we are given a loss function ¢ : AF x Y — R, such that ¢ (z,y) is
the loss incurred by predicting z when the true label is y. Unless specified otherwise, we assume that ¢



is the cross entropy loss. As in standard unsupervised domain adaptation, we are given independently
and identically distributed (iid) samples from labeled source data {(z1,y1), (z2,42),-- -, (Tn,yYn)} ~
P” and iid samples from unlabeled target data {x,,+1, Znt2,. -, Tnim} ~ PP

Before formally introducing OSLS, we describe label shift and PU learning settings. Under label
shift, we observe data from £ classes in both source and target where the conditional distribution
remain invariant (i.e., ps(z|y) = p:(z|y) for all classes y € [1, k]) but the target label marginal may
change (i.e., p:(y) # ps(y)). Additionally, for all classes in source have a non-zero support , i.e., for
all y € [1, k], ps(y) = ¢, where ¢ > 0. Under PU learning, we possess labeled source data from a
positive class and unlabeled target data from a mixture of positive and negative class with a goal of
learning a positive-versus-negative classifier on target. We now introduce the OSLS setting:

Definition 1 (Open set label shift). Define Yy = YV and Vs = Y\{k + 1}. Under OSLS, the label
distribution among source classes )s may change but the class conditional p(x|y) for those classes
remain invariant between source and target, and the target domain may contain a novel class, i.e.,

ps(zly =7j) =pi(zly=3j) Viels and pi(y=k+1)=0. (D

Additionally, we have non-zero support for all k (previously-seen) labels in the source distribution,
i.e, forally € Y, ps(y) = cfor some ¢ > 0.

Note that the label shift and PU learning problems can be obtained as special cases of OSLS. When
no novel class is observed in target (i.e., when p,(y = k + 1) = 0), we recover the label shift problem,
and when we observe only one class in source (i.e., when k = 1), the OSLS problem reduces to PU
learning. Under OSLS, our goal naturally breaks down into two tasks: (i) estimate the target label
marginal p; (y) for each class y € V; (ii) train a classifier f : X — A* to approximate p;(y|z).

4 Identifiablity of OSLS

We now introduce conditions for OSLS, under which the solution is identifiable. Throughout the
section, we will assume access to population distribution for labeled source data and unlabeled target
data, i.e., ps(z,y) and p;(z) is given. To keep the discussion simple, we assume finite input domain
X which can then be relaxed to continuous inputs. We relegate proofs to App. B.

We first make a connection between target label marginal p,(y) estimation and learning the tar-
get classifier p;(y|x) showing that recovering p;(y) is enough to identify p;(y|x). In population,
given access to p;(y), the class conditional p:(x|y = k + 1) can be obtained in closed form as
(pe(2) =251 pe(y=0)ps(2ly=1)) /p, (y=k+1). We can then apply Bayes rule to obtain p; (y|z). Henceforth,
we will focus our discussion on identifiability of p;(y) which implies identifiability of p;(y|z). In
following proposition, we present weak positivity, a necessary condition for p;(y) to be identifiable.

Proposition 1 (Necessary conditions). Assume p.(y) > 0 for all y € YV;. Then pi(y) is identified
only if p(x|y = k + 1) and ps(z|y) for all y € Vs satisfy weak positivity, i.e., there must exists a
subdomain X, ¢ X such that:

(i) pe(Xuply =k +1) = 0; and

(ii) the matrix [ps(x|y)] y, is full column-rank.

T€X,)p,YE
Intuitively, Proposition 1 states that if the target marginal doesn’t lie on the vertex of the simplex
AF . then their must exist a subdomain X wp Where the support of novel class is zero and within X,
p:(y) for source classes is identifiable. While it may seem that existence of a subdomain X, is
enough, we show that for the OSLS problem, existence doesn’t imply uniqueness. In App. B.1, we
construct an example, where the weak positivity condition is not sufficient. In that example, we show
that there can exist two subdomains Xy,, and Xv’vp satisfying weak positivity, both of which lead to
separate solutions for p;(y). Next, we extend weak positivity to two stronger conditions, either of
which (alone) implies identifiability.

Proposition 2 (Sufficient conditions). The target marginal p;(y) is identified if for all y € Y\{k + 1},
pi(x|y = k + 1) and ps(z|y) satisfy either:

(i) Strong positivity, i.e., there exists X, < X such that ps(Xs,|y = k + 1) = 0 and the matrix
P P
[Ds (z|y)]xexw yey, 18 full-rank and diagonal; or

4



(ii) Separability, i.e., there exists Xy, C X, such that py(Xsep|ly = k +1) = 0, ps(Xyep) = 1,
and the matrix | S(x‘y)]wexﬂ,,,,yeys is full column-rank.
Strong positivity generalizes the irreducibility condition [10], which is sufficient for identifiability
under PU learning, to & PU learning problems. Note that while the two conditions in Proposition 2
overlap, they cover independent set of OSLS problems. Informally, strong positivity extends weak
positivity by making an additional assumption that the matrix formed by p(z|y) on inputs in X, is
diagonal and the separability assumption extends the weak positivity condition to the full input domain
of source classes instead of just X,. Both of these conditions identify a support region of X" which
purely belongs to source classes where we can either individually estimate the proportion of each
source classes (i.e., under strong positivity) or jointly estimate the proportion (i.e., under separability).

To extend our identifiability conditions for continuous distributions, the linear independence condi-
tions on the matrix [p,(x|y)],. Xupuyey, has the undesirable property of being sensitive to changes on

sets of measure zero. We may introduce stronger notions of linear independence as in Lemma 1 of
Garg et al. [27]. We discuss this in App. B.2.

5 Reduction of OSLS to £ PU Problems

Under the strong positivity condition, the OSLS problem can be broken down into £ PU problems as
follows: By treating a given source class y; € ), as positive and grouping all other classes together
as negative we observe that the unlabeled target data is then a mixture of data from the positive and
negative classes. This yields a PU learning problem and the corresponding mixture proportion is
the fraction p;(y = j) (proportion of class y;) among the target data. By iterating this process for
all source classes, we can solve for the entire target label marginal p;(y). Thus, OSLS reduces to k
instances of PU learning problem. Formally, note that p;(x) can be written as:

o) =y = el = )+ (1= = ) () T2 pilely =)« @
individually for all j € ). By repeating this reduction for all classes, we obtain k£ separate PU
learning problems. Hence, a natural choice is to leverage this structure and solve k£ PU problems
to solve the original OSLS problem. In particular, for each class j € )5, we can first estimate its
prevalence p;(y = j) in the unlabeled target. Then the target marginal for the novel class is given
bypi(ly=k+1)=1— Zle pi(y = ¢). Similarly, for classification, we can train & PU learning
classifiers f;, where f; is trained to classify a source class ¢ versus others in target. An example is
classified as belonging to the class y = k + 1, if it rejected by all classifiers f; as other in target. We
explain this procedure more formally in App. A.1.

This reduction has been mentioned in past work [60, 72]. However, to the best of our knowledge, no
previous work has empirically investigated both classification and target label marginal estimation
jointly. Sanderson and Scott [60] focuses only on target marginal estimation for tabular datasets and
Xu et al. [72] assumes that the target marginal is known and only trains k separate PU classifiers.

In our work, we perform the first large scale experiments to evaluate efficacy of the reduction of the
OSLS problem to k-PU problems. With plugin state-of-the-art PU learning algorithms, we observe
that this naive reduction doesn’t scale to datasets with large number of classes because of error
accumulation in each of the £ MPEs and k one-versus-other PU classifiers. To mitigate the error
accumulation problem, we propose the PULSE framework in the next section.

6 The PULSE Framework for OSLS

We begin with presenting our framework for OSLS problem under strong positivity condition. First,
we explain the structure of OSLS that we leverage in PULSE framework and then elaborate design
decisions we make to exploit the identified structure.

Overview of PULSE framework Rather than simply dividing each OSLS instance into k¥ PU
problems, we exploit the joint structure of the problem to obtain a single PU learning problem. To
begin, we note that if only we could apply a label shift correction to source, i.e., re-sample source
classes according to their relative proportion in the target data, then we could subsequently consider



Algorithm 1 Positive and Unlabeled learning post Label Shift Estimation (PULSE) framework

input : Labeled source data {X*,y*“} and unlabeled target samples X7
1: Randomly split data into training {X?, y7}, X? and hold out partition {X5,y5}, X%,
2: Train a source classifier f, on labeled source data (X7, y7).
pe(y = J)
Zkey pe(y=k)
w(j) among source classes j € Vs.
4: Re-sample training source data according to label distribution p} to get (X5, 55} and {X5,¥5).
5: Using Algorithm 3, train a discriminator f,; and estimate novel class fraction p;(y = k + 1).
@(j) - [fs(@)]; .
6: Assign ~ for all j € Y, and =1- . And
g [ft( )] (fd( )) EJ/S w(k')[fs(ﬁ)]k J y‘ [ft(z)]k-ﬁ-l fd(x)
forall j € Vs, assignpe(y =75) = 1 —pe(y =k + 1)) - pi(y = J).
output : Target marginal estimate p; € AF and target classifier f;(-) € AF.

3: Estimate label shift p}(y = j) = using Algorithm 2 and hence importance ratios

the unlabeled target data as a mixture of (i) the (reweighted) source distribution; and (ii) the novel
class distribution (i.e., p:(x|y = k + 1)). Formally, we have

pe(z) = Y. pily = j)pe(aly = J) Z pt(z:; ps(x,y = 5) + pu(ely =k + Dpi(y = k+1)
JEV
=(1—p(y= k + D))p(@) +pely =k + Dpe(zly = k + 1), 3)

where pj (z) is the label-shift-corrected source distribution, i.e., pi () = >y, w(j)ps(z,y = j),
where w(j) = (PeW=9)/S, p.(y=k))/ps(y = j) for all j € V. Intuitively, p;(j) = r+(w=9)/3, p,(y=k)
is re-normalized label distribution in target among source classes and w(j)’s are the importance
weights. Hence, after applying a label shift correction to the source distribution p/,(x), we have
reduced the OSLS problem to a single PU learning problem, where p,(z) plays the part of the
positive distribution and p;(z|y = k + 1) acts as negative distribution with mixture coefficients
1—pi(y =k+1)and p:(y = k + 1) respectively. We now discuss our methods (i) to estimate the
importance ratios w(y); and (ii) to tackle the PU learning instance obtained from OSLS.

Label shift correction: Target marginal estimation among source classes While traditional
methods for estimating label shift breakdown in high dimensional settings [78], recent methods
exploit black-box classifiers to avoid the curse of dimensionality [45, 4, 1]. However, these recent
techniques require overlapping label distributions, and a direct application would require demarcation
of samples from p/,(x) sub-population in target, creating a cyclic dependency. Instead, to estimate the
relative proportion of previously seen classes in target, we leverage the k& PU reduction described in
Sec. 5 with two crucial distinctions. First, we normalize the obtained estimates of fraction previously
seen classes to obtain the relative proportions in p’,(y). In particular, we do not leverage the estimates
of previously seen class proportions in target to directly estimate the proportion of novel class which
avoids issues due to error accumulation. Second, we exploit a k-way source classifier f; trained
on labeled source data instead of training k one-versus-other PU classifiers. We tailor the recently
proposed Best Bin Estimation (BBE) technique from Garg et al. [29]. We describe the modified BBE
procedure in App. C (Algorithm 2). After estimating the relative fraction of source classes in target
(e, pi(4) = ﬁt(y=j)/zkeys pe(y=F) for all j € )s), we re-sample the source data according to p}(y)
to mimic samples from distribution p’, ().

PU Learning: Separating the novel class from previously seen classes After obtaining a PU
learning problem instance, we resort to PU learning techniques to (i) estimate the fraction of novel
class p;(y = k+1); and (ii) learn a binary classifier f;(z) to discriminate between label shift corrected
source p,(x) and novel class p;(z|y = k + 1). With traditional methods for PU learning involving
domain discrimination, over-parameterized models can memorize the positive instances in unlabeled,
assigning them confidently to the negative class, which can severely hurt generalization on PN
data [38, 29]. Rather, we employ Conditional Value Ignoring Risk (CVIR) loss proposed in Garg et al.
[29] which was shown to outperform alternative approaches. First, we estimate the proportion of novel
class p;(y = k + 1) with BBE. Next, given an estimate p;(y = k + 1), CVIR objective discards the
highest loss (1 — py(y = k + 1)) fraction of examples on each training epoch, removing the incentive
to overfit to the examples from p’, (x). Consequently, we employ the iterative procedure that alternates



between estimating the prevalence of novel class p;(y = k + 1) (with BBE) and minimizing the
CVIR loss with estimated fraction of novel class. We detail this procedure in App. C (Algorithm 3).

Combining PU learning and label shift correction Finally, to obtain a (k + 1)-way classifier
f+(x) on target we combine discriminator f,; and source classifier f; with importance-reweighted label

shift correction. In particular, for all j € Vs, [fi(z)]; = (fd(x))% and [ fi(2)]ks1 =

1 — f4(x). Overall, our approach outlined in Algorithm 1 proceeds as follows: First, we estimate
the label shift among previously seen classes. Then we employ importance re-weighting of source
data to formulate a single PU learning problem to estimate the fraction of novel class p;(y = k + 1)
and to learn a discriminator f; for the novel class. Combining discriminator and label shift corrected
source classifier we get (k + 1)-way target classifier. We analyse crucial steps in PULSE in Sec. 8.

Our ideas for PULSE framework can be extended to separability condition since (3) continues to hold.
However, in our initial experiments, we observe that techniques proposed under strong positivity
were empirically stable and outperform methods developed under separability. This is intuitive for
many benchmark datasets where it is natural to assume that for each class there exists a subdomain
that only belongs to that class. We describe this in more detail in App. C.1.

7 Experiments

Baselines We compare PULSE with several popular methods from OSDA literature. While
these methods are not specifically proposed for OSLS, they are introduced for the more general
OSDA problem. In particular, we make comparions with DANCE [59], UAN [73], CMU [25],
STA [46], Backprop-ODA (or BODA) [58]. We use the open source implementation available
at https://github.com/thuml. For alternative baselines, we experiment with source classifier
directly deployed on the target data which may contain novel class and label shift among source
classes (referred to as source-only). We also train a domain discriminator classifier for source versus
target (referred to as domain disc.). This is adaptation of PU learning baseline[24] which assumes
no label shift among source classes. Finally, per the reduction presented in Sec. 5, we train k¥ PU
classifiers (referred to as k-PU). We include detailed description of each method in App. F.1.

Datasets We conduct experiments with seven benchmark classification datasets across vision, natural
language, biology and medicine. For each dataset, we simulate an OSLS problem as described in next
paragraph. For vision, we use CIFAR10, CIFAR100 [40] and Entity30 [61]. For language, we exper-
iment with Newsgroups-20 (http://qwone. com/~jason/20Newsgroups/) dataset. Additionally,
inspired by applications of OSLS in biology and medicine, we experiment with Tabula Muris [17]
(Gene Ontology prediction), Dermnet (skin disease prediction https://dermnetnz.org/), and
BreakHis [66] (tumor cell classification). These datasets span language, image and table modalities.
We provide interpretation of OSLS problem for each dataset along with other details in App. F.2.

OSLS Setup To simulate an OSLS problem, we experiment with different fraction of novel class
prevalence, source label distribution, and target label distribution. We randomly choose classes that
constitute the novel target class. After randomly choosing source and novel classes, we first split
the training data from each source class randomly into two partitions. This creates a random label
distribution for shared classes among source and target. We then club novel classes to assign them a
new class (i.e. k£ + 1). Finally, we throw away labels for the target data to obtain an unsupervised DA
problem. We repeat the same process on iid hold out data to obtain validation data with no target labels.

Training and Evaluation We use Resnet18 [33] for CIFAR10, CIFAR100, and Entity30. For
newsgroups, we use a convolutional architecture. For Tabular Muris and MNIST, we use a fully
connected MLP. For Dermnet and BreakHis, we use Resnet-50. For all methods, we use the same
backbone for discriminator and source classifier. For kPU, we use a separate final layer for each class
with the same backbone. We use default hyperparameters for all methods. For OSDA methods, we
use default method specific hyperparameters introduced in their works. Since OSDA methods do not
estimate the prevalence of novel class explicitly, we use the fraction of examples predicted in class
k + 1 as a surrogate. We train models till the performance on validation source data (labeled) ceases
to increase. Unlike OSDA methods, note that we do not use early stopping based on performance
on held-out labeled target data. To evaluate classification performance, we report target accuracy
on all classes, seen classes and the novel class. For novel class prevalence estimation, we report
absolute difference between the true and estimated marginal. We open-source our code and by simply



Table 1: Comparison of PULSE with other methods. Across all datasets, PULSE outperforms
alternatives for both target classification and novel class prevalence estimation. Acc (All) is target
accuracy, Acc (Seen) is target accuracy on examples from previously seen classes, and Acc (Novel)
is recall for novel examples. MPE (Novel) is absolute error for novel prevalence estimation. Results
reported by averaging across 3 seeds. Detailed results for each dataset with all methods in App. F.4.

CIFAR-10 CIFAR-100
Acc Acc Acc MPE Acc Acc Acc MPE

Method (All)  (Seen) (Novel) (Novel) (All) (Seen) (Novel) (Novel)
Source-Only 67.1 87.0 - - 46.6 66.4 - -
UAN [73] 15.4 19.7 25.2 0.214 18.1 40.6 14.8 0.133
BODA [58] 63.1 66.2 42.0 0.162 36.1 17.7 81.6 0.41
DANCE [59] 70.4 85.5 14.5 0.174 47.3 66.4 1.2 0.28
STA [46] 57.9 69.6 14.9 0.124 42.6 48.5 34.8 0.14
CMU [25] 62.1 77.9 41.2 0.183 35.4 46.0 15.5 0.161

Domain Disc. [24]  47.4 87.0 30.6 0.331 45.8 66.5 39.1  0.046
k-PU 83.6 79.4 98.9 0.036 36.3 22.6 99.1 0.298
PULSE (Ours) 86.1 91.8 88.4  0.008 63.4 67.2 63.5 0.078

Entity30 Newsgroups20  Tabula Muris BreakHis DermNet
Method Acc MPE Acc MPE Acc MPE Acc MPE Acc MPE
(All) (Novel) (All) (Novel) (All) (Novel) (All) (Novel) (All) (Novel)
Source-Only  32.0 - 39.3 - 33.8 - 70.0 - 41.4 -

BODA [58] 422 0.189 434 0.16 76.5 0.079 715 0.077 43.8 0.207

Domain Disc.  43.2 0.135 509 0.176 73.0 0.071 56.5 0.091 40.6 0.083
k-PU 50.7 0394 52.1 0373 8.9 0307 756 0.059 46.0 0.313
PULSE (Ours) 58.0 0.054 62.2 0.061 878 0.058 79.1 0.054 489 0.043

changing a single config file, new OSLS setups can be generated and experimented with. We provide
precise details about hyperparameters, OSLS setup for each dataset and code in App. F.3.

Results Across different datasets, we observe that PULSE consistently outperforms other methods
for the target classification and novel prevalence estimation (Table 1). For detection of novel classes
(Acc (Novel) column), kPU achieves superior performance as compared to alternative approaches
because of its bias to default to (k+ 1)™ class. This is evident by the sharp decrease in performance on
previously seen classes. For each dataset, we plot evolution of performance with training in App. F.4.
We observe more stability in performance of PULSE as compared to other methods.

We observe that with default hyperparameters, popular OSDA methods significantly under perform
as compared to PULSE. We hypothesize that the primary reasons underlying the poor performance
of OSDA methods are (i) the heuristics employed to detect novel classes; and (ii) loss functions
incorporated to improve alignment between examples from common classes in source and target. To
detect novel classes, a standard heuristic employed in popular OSDA methods involves thresholding
uncertainty estimates (e.g., prediction entropy, softmax confidence [73, 25, 59]) at a predefined
threshold . However, a fixed x, may not for different datasets and different fractions of the novel class.
In App. E.5, we ablate by (i) removing loss function terms incorporated with an aim to improve source
target alignment; and (ii) vary threshold x and show improvements in performance of these methods.
In contrast, our two-stage method PULSE, first estimates the fraction of novel class which then guides
the classification of novel class versus previously seen classes avoiding the need to guess «.

Ablations Different datasets, in our setup span different fraction of novel class prevalence ranging
from 0.22 (in CIFARI10) to 0.64 (in Tabula Muris). For each dataset, we perform more ablations on
the novel class proportion in App. F.6. For kPU and PULSE, in the main paper, we include results with
BBE and CVIR [29]. In App. F.8, we perform experiments with alternative PU learning approaches



and highlight the superiority of BBE and CVIR over other methods. Moreover, since we have access
to unlabeled target data, we experiment with SImCLR [15] pre-training on the mixture of unlabeled
source and target dataset. We include setup details and results in App. F.7. While pre-trained backbone
architecture improves performance for all methods, PULSE continues to dominate other methods.

8 Analysis of PULSE Framework

In this section, we analyse key steps of our PULSE procedure for target label marginal estimation (Step
3,5 Algorithm 1) and learning the domain discriminator classifier (Step 5, Algorithm 1). Due to space
constraints, we present informal results here and relegate formal statements and proofs to App. D.

Theoretical analysis for target marginal estimation Building on BBE results from Garg et al.
[29], we present finite sample results for target label marginal estimation. When the data satisfies
strong positivity, we observe that source classifiers often exhibit a threshold ¢, on softmax output of
each class y € ), above which the rop bin (i.e., [c,, 1]) contains mostly examples from that class y.
We give empirical evidence to this claim in App. D.1. Then, we show that the existence of (nearly)
pure top bin for each class in f; is sufficient for Step 3 in Algorithm 1 to produce (nearly) consistent
estimates:

Theorem 1 (Informal). Assume that for each class y € Vs, there exists a threshold c, such that for
the classifier fs, if [ fs(x)]y > ¢y for any x then the true label for that sample x is y. Then, we have

161 = el < O (V/FTIRRTSY -+ /FToaC0R 5 )

The proof technique simply builds on the proof of Theorem 1 in Garg et al. [29]. By assuming that
we recover close to ground truth label marginal for source classes, we can also extend the above
analysis to Step 5 of Algorithm 1 to show convergence of estimate p;(y = k + 1) to true prevalence
pt(y = k + 1). We discuss this further in App. D.3.

Theoretical analysis of CVIR in population While the CVIR loss was proposed in Garg et al. [29],
no analysis was provided for convergence of the iterative gradient descent procedure. In our work,
we show that in population on a separable Gaussian dataset, CVIR will recover the optimal classifier.

We consider a binary classification problem where we have access to positive distribution (i.e., py),
unlabeled distribution (i.e., p,, := ap, + (1 — @)p,), and mixture coefficient . Making a parallel
connection to Step 5 of PULSE, positive distribution p,, here refers to the label shift corrected source
distribution p’, and p,, refers top; = p:(y = k+ V)pi(zly = k+ 1)+ (1 —p(y = k+1))p’.(x). Our
goal is to recover the classifier that discriminates p,, versus p,, (parallel p/, versus p;(-|ly = k + 1)).

First we introduce some notation. For a classifier f and loss function / (i.e., logistic loss), define
VIR, (f) = inf{r € R : Pyp, (l(x,—1;f) < 7) = 1 — a}. Intuitively, VIR, (f) identifies a
threshold 7 to capture bottom 1 — « fraction of the loss ¢(x, —1) for points = sampled from p,,.
Additionally, define CVIR loss as L(f,w) = o, [((x, 1; f)]+E,, [w(z)l(x, —1; f)] for classifier
f and some weights w(z) € {0, 1}. Formally, given a classifier f; at an iterate ¢, CVIR procedure
proceeds as follows:

wi(x) = 1[l(x,~1; fi) < VIRa(f1)] , )

fer1 = fi —UVLf(ft,wt)~ (5)

We assume that x are drawn from two half multivariate Gaussian with mean zero and identity
covariance, i.e., & ~ pp < & = Yobop + 2| 0oz = 0, and & ~ p, < & = —7ofop + 2[00z <

0, where z ~ N(0, I4). Here 7 is the margin and Oopt € R4 is the true separator. Here, we have
access to distribution py,, p, = ap, + (1 — &)py,, and the true proportion a.

Theorem 2 (Informal). In the data setup detailed above, a linear classifier f(x;0) = o (GT:v) trained
with CVIR procedure as in (4)-(5) will converge to an optimal positive versus negative classifier.

The proof uses a key idea that for any classifier 6 not separating positive and negative data perfectly,
the gradient in (5) is non-zero. Hence, convergence of the CVIR procedure (implied by smoothness of
CVIR loss) implies converge to an optimal classifier. For separable datasets in general, we can extend
the above analysis with some modifications to the CVIR procedure. We discuss this in App. D.4.



Empirical investigation in overparameterized models As noted in our ablation experiments
and in Garg et al. [29], domain discriminator trained with CVIR outperforms classifiers trained
with other consistent objectives (nnPU [38] and uPU [21]). While the above analysis highlights
consistency of CVIR procedure in population, it doesn’t capture the observed empirical efficacy of
CVIR over alternative methods in overparameterized models. In the Gaussian setup described above,
we train overparameterized linear models to compare CVIR with other methods. We discuss precise
experiments and results in App. E, but highlight the key takeaway here. First, we observe that when
a classifier is trained to distinguish positive and unlabeled data, early learning happens [47, 3, 28],
i.e., during the initial phase of learning classifier learns to classify positives in unlabeled correctly
as positives. Next, we show that post early learning rejection of large fraction of positives from
unlabeled training in equation (4) crucially helps CVIR.

9 Conclusion

In this work, we introduce OSLS a well-posed instantiation of OSDA that subsumes label shift and PU
learning into a framework for learning adaptive classifiers. We presented identifiability conditions for
OSLS and proposed PULSE, a simple and effective approach to tackle the OSLS problem. Moreover,
our extensive experiments demonstrate efficacy of PULSE over popular OSDA alternatives when
the OSLS assumptions are met. We would like to highlight the brittle nature of benchmark driven
progress in OSDA and hope that our work can help to stimulate more solid foundations and enable
systematic progress in this area. Finally, we hope that our open source code and benchmarks will
foster further progress on OSLS.

9.1 Limitations and Future Work

Here, we discuss limitations of the PULSE framework. First, to estimate the relative label shift among
source classes in target, we leverage k-PU reductions with several modifications. While we reduce the
issues due to overestimation bias by re-normalizing the label marginal among source classes in target,
in future, we may hope to replace this heuristic step to directly estimate the joint target marginal.

Second, since our methods use CVIR and BBE sub-routines, failure of these methods can lead to
failure of PULSE. For example, efficacy of BBE relies on the existence of an almost pure top bin
in the classifier output space. While this property seems to be satisfied across different datasets
spanning different modalities and applications, failure to identify an almost pure top bin can degrade
the performance of BBE and hence, our PULSE framework.

In future work, we also hope to bridge the gap between the necessary and sufficient identifiability
conditions. While we empirically investigate reasons for CVIR’s efficacy in overparameterized
models, we aim to extend our theory to overparameterized settings in future. In our work, we strictly
operate under the OSLS settings, where we performed semi-synthetic experiments on vision, language
and tabular datasets. In future, it will be interesting to experiment with our PULSE procedure in
relaxed settings where p(z|y) may shift in some natural-seeming ways from source to target.
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Supplementary Materials for Domain Adaptation under Open Set Label Shift

A Preliminaries

Domain adaptation under label shift Under label shift, we observe data from & classes in both
source and target where the conditional distribution remain invariant (i.e., ps(z|y) = p:(z|y) for all
classes y € [1, k]) but the target label marginal may change (i.e., p:(y) # ps(y)). Additionally, for all
classes in source have a non-zero support, i.e., forall y € [1, k], ps(y) = ¢, where ¢ > 0. Here, given
labeled source data and unlabeled target data our tasks are: (i) estimate the shift in label distribution,
i.e., pt(y) for all y € [1, k]; (ii) train a classifier for the target domain f; to approximate p; (y|x).

One common approach to label shift involves estimating the importance ratios p;(y)/ps(y) by
leveraging a blackbox classifier and then employing re-sampling of source data or importance re-
weighted ERM on source to obtain a classifier for the target domain [45, 4, 1].

PU learning Under PU learning, we possess labeled source data from a positive class (p,) and
unlabeled target data from p,, = ap, + (1 — a)p,, a mixture of positive and negative class (p,,). Our
goals naturally break down in to two tasks: (i) MPE, determining the fraction of positives p, in p,,
and (ii) PU classification, learning a positive-versus-negative classifier on target.

Note that given access to population of positives and unlabeled, o can be estimated as
min, p, (z)/pp(z). Next, we briefly discuss recent methods for MPE that operate in the classifier
output space to avoid curse of dimensionality:

(i) EN: Given a domain discriminator classifier f; trained to discriminate between
positive and unlabeled, Elkan and Noto [24] proposed the following estimator:
Zziexp fa(xi)/2s.ex, fa(wi) where X, is the set of positive examples and X, is the set
of unlabeled examples.

(ii) DEDPUL: Given a domain discriminator classifier fy, [vanov [35] proposed an estimator
that leverages density of the data in the output space of the classifier f; to directly estimate

minpu(f(x))/Pp(f(x))-

(iii) BBE: BBE [29] identifies a threshold on probability scores assigned by the classifier fy
such that by estimating the ratio between the fractions of positive and unlabeled points
receiving scores above the threshold, we obtain proportion of positives in unlabeled.

After obtaining an estimate for mixture proportion «, following methods can be employed for PU
classification:

(i) Domain Discriminator: Given positive and unlabeled data, Elkan and Noto [24] trained
a classifier fy to discriminator between them. To make a prediction on test point from
unlabeled data, we can then use Bayes rule to obtain the following transformation on

n 1—fa(z)
are the number of positives and unlabeled examples used to train f; [24].

probabilistic output of the domain discriminator: f = « (7—”) ( fa(@) ), where n and m

(i) uPU: Du Plessis et al. [21] proposed an unbiased loss estimator for positive versus negative
training. In particular, since p, = ap, + (1 — a)p,, the loss on negative examples
E,, [¢(f(z); —1)] can be estimated as:

E,, [0(f(x);—1)] = ——

11—«

[Ep, [6(f(2); =1)] = aEp, [6(f(2); =D)]] . (6)
Thus, a classifier can be trained with the following uPU loss:
Lopu(f) = aByp, [(f(@); +1)] + Ep, [((f(2); =1)] — aEp, [((f(z);=1)] . (D

(iii)) nnPU: While unbiased losses exist that estimate the PvN loss given PU data and the mixture
proportion «, this unbiasedness only holds before the loss is optimized, and becomes
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ineffective with powerful deep learning models capable of memorization. Kiryo et al. [38]
proposed the following non-negative regularization for unbiased PU learning:

Lonpu(f) = By, [£(f (2); +1)] + max {E,, [((f(2); —1)] — oy, [((f(2); —1)] 70}@

(iv) CVIR: Garg et al. [29] proposed CVIR objective, which discards the highest loss « fraction
of unlabeled examples on each training epoch, removing the incentive to overfit to the
unlabeled positive examples. CVIR loss is defined as

Levie(f) = aBy, [z, 15 )] + Ep,, [w(z)l(z, —1; f)] ©)

where weights w(z) = [[l(x, —1; f) < VIR, (f)] for VIR, (f) defined as VIR, (f) =
inf{r e R: Pyp, (l(x,—1; f) < 7) = 1 — a}. Intuitively, VIR, (f) identifies a threshold
T to capture bottom 1 — « fraction of the loss ¢(x, —1) for points = sampled from p,,.

A.1 Reduction of OSLS into k£ PU problems

Under the strong positivity condition, the OSLS problem can be broken down into k£ PU problems as
follows: By treating a given source class y; € ) as positive and grouping all other classes together
as negative we observe that the unlabeled target data is then a mixture of data from the positive and
negative classes. This yields a PU learning problem and the corresponding mixture proportion gives
the fraction «; of class y; among the target data. By iterating this process for all source classes, we
can solve for the entire target label marginal p;(y). Thus, OSLS reduces to k instances of PU learning
problem. Formally, note that p,(x) can be written as:

pe(x) = pely = J)ps(aly = j) + (1 = pely = J)) <2iey\{j} %m(wly = i)) , (10)
;f ;/ = ;, -

individually for all j € ). By repeating this reduction for all classes, we obtain k& separate PU
learning problems. Hence, a natural choice is to leverage this structure and solve k PU problems to
solve the original OSLS problem.

In particular, for each class j € Vs, we can first estimate its prevalence &; in the unlabeled target.
Then the target marginal for the novel class is given by a1 = 1 — >, ;. For classification, we
can train k£ PU learning classifiers f;, where f; is trained to classify a source class ¢ versus others
in target. Assuming that each f; returns a score between [0, 1], during test time, an example x is
classified as f(x) given by

_ f(argmax .y f(z) if maxjey, fj(x) = 0.5
f(@{ml j - (an

That is, if each classifier classifies the example as belonging to other in unlabeled, then we classify
the example as belonging to the class k + 1. In our main experiments, to estimate c; and to train f;
classifiers for all j € ), we use BBE and CVIR as described before which was shown to outperform
alternative approaches in Garg et al. [29]. We ablate with other methods in App. F.8.

Note that mathematically any OSLS problems can be thought of as k-PU problems as per (10).
However, for identifiablity of each of these PU problems, we need the irreduciblity assumption [7].
Put simply, for individual PU problems defined for source classes j € )s, we need existence of a
sub-domain X; such that we only observe example for that class j in X;. Collectively X; gives us
the X, defined in the strong positivity condition.

Failure due to error-accumulation While trading off bias with variance, PU learning algorithms
tend to over-estimate the mixture proportion [29, 7]. This error incurred due to bias can be mild
for a single mixture proportion estimation task but accumulates with increasing number of classes
(i.e., k). This error accumulation can significantly under-estimate the proportion of novel class when
estimated by subtracting the sum of prevalence of source classes in target from 1.
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B Proofs for identifiability of OSLS

For ease, we re-state Proposition 1 and Proposition 2.
Proposition 1 (Necessary conditions). Assume p(y) > 0 for all y € YV;. Then pi(y) is identified

only if p+(x|y = k + 1) and ps(zly) for all y € Vs satisfy weak positivity, i.e., there must exists a
subdomain X, © X such that:

(i) pt(Xuply =k +1) =0; and

(ii) the matrix [ps(z|y)] y, is full column-rank.

r€X,),YE

Proof. We prove this by contradiction. Assume that there exists a unique solution p;(y). We will
obtain contradiction when both (i) and (ii) don’t hold.

First, assume for no subset X,,, = X', we have [ps(z|y)],. Xypyey, s full-rank. Then in that case,

we have vectors [ps(z|y = j)]zex as linearly dependent for j € Vs, i.e., there exists [o] ey, € R¥

such that ). a;ps(zly = j) = 0 for all z € X. Thus for small enough ¢ > 0, we have infinite
j

solutions of the form [p,(y = j) — € - a;]jey,.

Hence, there exists Xy, < & for which we have [p,(z|y)] y, as full-rank. Without loss

€ Xyp,Y€
of generality, we assume that | X,,,| = k. Assume that p,(Xyply = k + 1) > 0, i.e., [p(z]y =
k4 1)]ze X,, Das | < k zero entries. We will now construct another solution for the label marginal p;.
For simplicity we denote A = [ps(z|y)],. Xopoyey, - Consider the vector v(y) = [pe(x) — (pe(y =
k+1) —y)pe(x|y = k + 1)]zex,, for some > 0. Intuitively, when v = 0, we have u = A~'v(0)
where u = [p¢(y)]yey,. i.e., we recover the true label marginal corresponding to source classes.

However, since the solution is not at vertex, there exists a small enough v > 0 such that v’ =
A7l(y) with 3w < 1and w} > 0. Since A is full-rank and v(7y) # v(0), we have v’ # .
Thus we construct a separate solution with " as [p(y)]yey, and pt(2) — 3,y wjps(z|y = j) as
pe(z|y = k + 1). Hence, when there exists X, < & for which we have [ 5(I|y)]xEXWp,y€ys as
full-rank, for uniqueness we obtain a contradiction on the assumption p;(Xyp|ly = kK +1) > 0. O

We now make some comments on the assumption p;(y) > 0 for all y € }; in Proposition 1. Since,
p+(y) needs to satisfy simplex constraints, if the solution is at a vertex of simplex, then OSLS
problem may not require weak positivity. For example, there exists contrived scenarios where
ps(zly = j) = ps(zly = k) forall j,k € Vs and py(xly = k + 1) # ps(z|y = j) forall j € Y.
Then when p;(z) = p:(x|y = k + 1), we can uniquely identify the OSLS solution even when weak
positivity assumption is not satisfied.

Proposition 2 (Sufficient conditions). The target marginal p;(y) is identified if for all y € Y\{k + 1},
pi(x|y = k + 1) and ps(z|y) satisfy either:

(i) Strong positivity, i.e., there exists X, < X such that p;( X,y = k + 1) = 0 and the matrix
P P
ps(T is full-rank and diagonal; or
y mexsmyeys g

(ii) Separability, i.e., there exists Xy, C X, such that py(Xsep|ly = k +1) = 0, ps(Xyep) = 1,

and the matrix [ps (x\y)]mexmyeys is full column-rank.

Proof. For each condition, we will prove identifiability by constructing the unique solution.

Under strong positivity, for all j € ) there exists z € X, such that p;(z|y = k) = 0 for all
ke YVi\{j}. Set oy = mingey p_ (zly=j)>0 % , forall j € V,. For x € X, such that p,(z|y =
k) = 0forall k € Y, \{j}, we get % = p(y = j) and for all 2’ # z, we have % =
pe(y = j). Thus, we get a; = p;(y = j). Finally, we get a1 = 1 — 3., ;. Plugging in values
of the label marginal, we can obtain p;(z|y = k + 1) as pi(x) — X, ¢y, pt(y = J)ps(z[y = j).

Under separability, we can obtain the label marginal p; for source classes by simply considering
the set Xep. Denote A = [p(2|y)]ee X, yey. and v = [pi(7)]zex,,- Then, since A is full column-
rank by assumption, we can define u = (A7A)"'ATv. For all z € X, we have pi(z) =
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Zyeys pt(y)ps(x|y) and hence, u = [p;(y)]yey,. Having obtained [p;(y)]yey,, we recover p;(y =
k+1)=1-3cy pe(y=7)and pi(zly =k + 1) = pr(2) — Djey, Pe(y = J)ps(zly = j). O

B.1 Examples illustrating importance of weak positivity condition

In this section, we present two examples, one, to show that weak positivity isn’t sufficient for
identifiability. Second, we present another example where we show that conditions in Proposition 2
are not necessary for identifiability.

Example 1 Assume X = {x1,x2,x3,24, 25} and V; = {1,2,3}. Suppose the p;(z|y = 1),
pi(x|y = 2), and p;(x) are given as:

pe(zly=1) | pe(zly =2) | pe(z)
1 0.4 0.56 0.356
T2 0.3 0.3 0.207
T3 0.2 0.1 0.0
74 0.1 0.04 0.042
5 0.0 0.0 0.305

Here, there exists two separate p;(z|y = 3) and p;(y) that are consistent with the given p;(x|y = 1),
pt(zly = 2), and p; () and both the solutions satisfy weak positivity for two different Xy, and Xy,

In particular, notice that p;(z|y = 3) = [0.17,0.0675,0.0,0.0,0.7625]% and p;(y) = [0.3,0.3,0.4]
gives us the first solution. ps(z|ly = 3) = [0.0,0.0,0.0645,0.0096,0.9839]7 and p;(y) =
[0.19,0.5, 0.31] gives us another solution. For solution 1, Xy, = {3, 74} and for solution 2, X, =
{71, 2}. To check consistency of each solution notice that } ,;y, p(y = 9)pi(z|y = i) = py(z) for
eachz e X. O

In the above example, the key is to show that absent knowledge of which z’s constitute the set Xy,
we might be able to obtain multiple different solutions, each with different X,,, and both p;(y),
pe(z|ly = k + 1) satisfying the given information and simplex constraints.

Next, we will show that in certain scenarios weak positivity is enough for identifiability.

Example 2 Assume X = {x1,x2, 23,24} and Y, = {1, 2,3}. Suppose the p;(z|y = 1), p;(z|y =
2), and p;(x) are given as,

pe(zly=1) | pi(zly =2) | pi(x)
1 05 0.2 0.24
T2 0.3 0.4 0.2
T3 0.1 0.35 0.35
T4 0.1 0.05 0.21

Here, out of all *Cy possibilities for Xwp, only one possibility yields a solution that satisfies
weak positivity and simplex constraints. In particular, the solution is given by p:(z|ly = 3) =
[0.0,0.0,0.6,0.4] and p;(y) = [0.4,0.2,0.4] with Xy, = {z1, 22}

In this example, we show that conditions in Proposition 2 are not necessary to ensure identifiability.
For discrete domains, this example also highlights that we can check identifiability in exponential
time for any OSLS problem given p;(x) and p,(z|y) for all y € V.

B.2 Extending identifiability conditions to continuous distributions

To extend our identifiability conditions for continuous distributions, the linear independence condi-
tions on the matrix [p,(x|y)],. X vV has the undesirable property of being sensitive to changes
on sets of measure zero. In particular, by changing a collection of linearly dependent distributions
on a set of measure zero, we can make them linearly independent. As a consequence, we may im-
pose a stronger notion of independence, i.e., the set of distributions {p(x|y) : y = 1, ..., k} are such
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that there does not exist v # 0 for which { |3} p(z|y)vy|dz = 0, where X = X, for necessary
condition and X = Xj, for sufficiency. We refer this condition as strict linear independence.

C PULSE Framework

In our PULSE framework, we build on top of BBE and CVIR from Garg et al. [29]. Here, we
elaborate on Step 3 and 5 in Algorithm 1.

Extending BBE algorithm to estimate target marginal among previously seen classes We first
explain the intuition behind BBE approach. In a PU learning problem, given positive and unlabeled
data, BBE estimates the fraction of positives in unlabeled in the push-forward space of the classifier.
In particular, instead of operating in the original input space, BBE maps the inputs to one-dimensional
outputs (i.e., a score between zero and one) which is the predicted probability of an example being
from the positive class. BBE identifies a threshold on probability scores assigned by a domain
discriminator classifier such that the ratio between the fractions of positive and unlabeled points
receiving scores above the threshold is minimized. Intuitively, if their exists a threshold on probability
scores assigned by the classifier such that the examples mapped to a score greater than the threshold
are mostly positive, BBE aims to identify this threshold. Efficacy of BBE procedure relies on existence
of such a threshold. This is referred to as the fop bin property. We provide empirical evidence to the
property in Fig. 2 in App. D.1. We tailor BBE to estimate the relative fraction of previously seen
classes in the target distribution by exploiting a k-way source classifier f; trained on labeled source
data. We describe the procedure in Algorithm 2.

We now introduce some notation needed to introduce the tailored BBE proceudre formally For given
probability density function p and a scalar output function f, define a function ¢(z) = § A

where A, = {x € X : f(z) = z} for all z € [0,1]. Intuitively, ¢(z) captures the cumulatlve
density of points in a top bin, the proportion of input domain that is assigned a value larger than
z by the function f in the transformed space. We define an empirical estimator ¢(z) given a set
X = {x1,22,...,x,} sampled iid from p(z). Let Z = f(X). Define ¢(z) = >, ; [ [z = z] /n.

Our modified BBE procedure proceeds as follows. Given a held-out dataset of source {X35,y5}
and unlabeled target samples X2, we push all examples through the source classifier f to obtain
k dimensional outputs. For all j € ), we repeat the following: Obtain Z; = f;(X5[id,]) and

= f;(X2%). Intuitively, Z, and Zt are the push forward mapping of the source classifier. Next,
Wlth Z, and Z,,, we estimate g5 and g;. Finally, we estimate [p;]; as the ratio ¢;(¢)/qs(¢) at ¢ that
minimizes the upper confidence bound at a pre-specified level § and a fixed parameter y € (0, 1). Our
method is summarized in Algorithm 2. Throughout all the experiments, we fix ¢ at 0.1 and ~y at 0.01.

Algorithm 2 Extending Best Bin Estimation (BBE) for Step 3 in Algorithm 1

input : Validation source {X35,y5} and unlabeled target samples X2'. Source classifier f : X' —
AF~1. Hyperparameter 0 < 6,y < 1.
1 Dy« zeros(size = |Vs])
: for j e Vs do
3. id; < where(y5 = j).
4 ZoZo = [FX3lid;D)];, [F(XD)]-

50 Gs(2),qu(z) < Zase id]j[l Gl Zziezt 22 forall 2 [0,1].

~ gt (c log(4/9) log(4/6
6 & agmingo ( 5 + 753 (x/ ST+ Ozggdj/)))

7 [Py < L),
8: end for '
output : Normalized target marginal among source classes D} «—

el

Extending CVIR to train discriminator f; and estimate novel class prevalence After estimat-
ing the fraction of source classes in target (i.e., p;(j) = PrW=9)/5, ., pi(y=k) for all j € V), we
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re-sample the source data according to p(y) to mimic samples from distribution p/, (). Thus, obtain-
ing a PU learning problem instance, we resort to PU learning techniques to (i) estimate the fraction
of novel class p;(y = k + 1); and (ii) learn a binary classifier f4(z) to discriminate between label
shift corrected source p/,(x) and novel class p;(z|y = k + 1). Assume that sigmoid output fg(x)
indicates predicted probability of an example x belonging to label shift corrected source p/, (). With

L+ (fo; X), we denote the loss incurred by fg when classifying examples from X as positive, i.e.,

¥ (fo3 X) = S} oot Similarly, £ (fo; X) = $X] Aelp=1)

Given an estimate of the fraction of novel class p;(y = k + 1), CVIR objective creates a provisional
set of novel examples XY by removing (1 — p;(y = k + 1)) fraction of examples from X7 that incur
highest loss when predicted as novel class on each training epoch. Next, we update our discriminator

fa by minimizing loss on label shift corrected source )Nif and provisional novel examples X%,
This step is aimed to remove any incentive to overfit to the examples from p’,(z). Consequently,
we employ the iterative procedure that alternates between estimating the prevalence of novel class
pt(y = k + 1) (with BBE) and minimizing the CVIR loss with estimated fraction of novel class.
Algorithm 3 summarizes our approach which is used in Step 3 of Algorithm 1.

Note that we need to warm start with simple domain discrimination training, since in the initial stages
mixture proportion estimate is often close to 1 rejecting all the unlabeled examples. In Garg et al.
[29], it was shown that the procedure is not sensitive to the choice of number of warm start epochs
and in a few cases with large datasets, we can even get away without warm start (i.e., W = 0) without
hurting the performance. In our work, we notice that given an estimate & of prevalence of novel class,
we can use unbiased PU error (7) on validation data as a surrogate to identify warm start epochs for
domain discriminator training. In particular, we train the domain discriminator classifier for a large
number of epochs, say E(>> W), and then choose the discriminator, i.e., warm start epoch W at
which f; achieves minimum unbiased validation loss.

Finally, to obtain a (k + 1)-way classifier f;(x) on target we combine discriminator f; and source
classifier f with importance-reweighted label shift correction. In particular, for all j € YV, [fi(x)]; =

(fa(z ))% and [fi(z)]g+1 = 1 — f4(z). Similarly, to obtain target marginal p;, we

re-scale the label shift estimate among previously seen classes with estimate of prevalence of novel
examples, i.e., forall j € Vs, assignp:(y = 7) = 1 —pe(y =k + 1)) - pi(y = J).

Overall, our approach proceeds as follows (Algorithm 1): First, we estimate the label shift among
previously seen classes. Then we employ importance re-weighting of source data to formulate a single
PU learning problem between source and target to estimate fraction of novel class p;(y = k + 1)
and to learn a discriminator f; for the novel class. Combining discriminator and label shift corrected
source classifier we get (k + 1)-way target classifier.

C.1 PULSE under separability

Our ideas for PULSE framework can be extended to separability condition since (3) continues to
hold. In particular, when OSLS satisfies the separability assumption, we may hope to jointly estimate
the label shift among previously seen classes with label shift estimation techniques [45, 1] and learn
a domain discriminator classifier. This may be achieved by estimating label shift among examples
rejected by domain discriminator classifier as belonging to previously seen classes. However, in our
initial experiments, we observe that techniques proposed under strong positivity were empirically
stable and outperform methods developed under separability. This is intuitive for many benchmark
datasets where it may be more natural to expect that for each class there exists a subdomain that only
belongs to that class than assuming separability only between novel class samples and examples from
source classes.

D Proofs for analysis of OSLS framework

In this section, we provide missing formal statements and proofs for theorems in Sec. 8. This mainly
includes analysing key steps of our PULSE procedure for target label marginal estimation (Step 3, 5
Algorithm 1) and learning the domain discriminator classifier (Step 5, Algorithm 1).
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Algorithm 3 Alternating between CVIR and BBE for Step 5 in Algorithm 1

input : Re-sampled training source data X$, validation source data )~(*29 . Training target data X7
and validation data X2'. Hyperparameter W, B, §, .
1: Initialize a training model fp and an stochastic optimization algorithm .A.
20 XN« XT.
{// Warm start with domain discrimination training }

3: for i — 1to W do
4:  Shuffle (X$,X2) into B mini-batches. With (X5[i], XV[i]) we denote i mini-batch.
5: forz«—ltoBdo R R
6 Set the gradient Vg [ﬁ* (fo; X5[i]) + L (fo; XN [z])] and update 6 with algorithm A.
7
8

: end for
: endfor
9: @ < BBE(X5,XT, fo) {Algorithm 4}
10: Rank samples x € X7 according to their loss values ¢(fg(z), —1).
11: XY — {(XT}, 4 where {XT'},_4 denote the lowest ranked 1 — & fraction of samples.
12: while training error £+ (fp; X5) + £ (fo; XI') is not converged do
13:  Train model f, for one epoch on (X7, X¥) as in Lines 4-7.
14: & < BBE(X5, X7, f5) {Algorithm 4}
15:  Rank samples z € X{ according to their loss values £( fo(z), —1).
16: X « {XT},_4 where {XT};_5 denote the lowest ranked 1 — & fraction of samples.
17: end while
output : Trained discriminator f; < fy and novel class fraction p;(y = k+ 1) — 1 — a.

Algorithm 4 Best Bin Estimation (BBE)

input : Re-sampled source data X5 and target samples X *'. Discriminator classifier f: X —[0,1].
Hyperparameter 0 < 6,y < 1.
It Zs, Zy < f(X5), fF(XT).

ez, lzi=z] Zz»ezt I[z;>z2]

2 Gu(2),8(2) — =S =g forall € [0,1]

3: Estimate ¢ < arg min [ 1] (qz(g qb(c (1 /IZT;??) + 4/ 10;)(346)))

— 3:(¢)
output : & 2.0

D.1 Formal statement and proof of Theorem 1

Before introducing the formal statement, we introduce some additional notation Given probability
density function p and a source classifier f : X — AF~1, define a function ¢(z, 5) SA(z ) pla)de,

where A(z,7) = {x € X : [f(z)]; = =} forall z € [0, 1]. Intuitively, ¢(z, j) captures the cumulative
density of points in a top bin for class j, i.e., the proportion of input domain that is assigned a value
larger than z by the function f at the index j in the transformed space. We define an empirical
estimator ¢(z, j) given aset X = {x1, x2, ..., z,} sampled iid from p(x). Let Z = [f(X)],. Define
4(z,4) = Xy 1z = 2] /n.

For each pdf p; and p;, we define ¢, and ¢, respectively. Moreover, for each class 7 € Vs,
we define ¢;; corresponding to p;; := pi(z|ly = j) and g _; corresponding to p; _; =
Diey () Pr(y=1)pe (x]y=1i)

Zieyt\{j} pe(y=7)

building on BBE results from Garg et al. [29], we present finite sample results for target label marginal
estimation:

. Assume that we have n source examples and m target examples. Now

Theorem 3 (Formal statement of Theorem 1). Define c§ = argmin, o 17 (¢t,—5(¢, 7)/qt,5(c, j)), for

2log(4k/6)

2 ,(F ) ) Then, for every § > 0, D; (in Algorithm 2

all j € Y. Assume min(n, m) > maxjey, (
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with 0 as 0/k) satisfies with probability at least 1 — §, we have:

-l < Y (1-pily = 9)) <q;’t7jﬂ((jf7’$>> e w Bloglhfd) |, ¥ 10%724;@/5)) |

JEYs

When the data satisfies strong positivity, we observe that source classifiers often exhibit a threshold ¢,
on softmax output of each class y € Vs above which the top bin (i e., [cy, 1]) contains mostly examples
from that class y. Formally, as long as there exist a threshold c € (0, 1) such that ¢, J( *) = eand
qs,— ( *) = 0 for some constant ¢ > 0 for all j € )s, we show that our estimator & converges to

the true o with convergence rate min(n, m)~"/2. The proof technique simply builds on the proof of

Theorem 1 in Garg et al. [29]. First, we state Lemma 1 from Garg et al. [29]. Next, for completeness
we provide the proof for Theorem 3 which extends proof of Theorem 1 [29] for k classes.

Lemma 1. Assume two distributions q, and q,, with their empirical estimators denoted by G, and g,
respectively. Then for every § > 0, with probability at least 1 — §, we have for all ¢ € [0, 1]

qu(c)  qulc) 1 log(4/0) . qu(c) [log(4/9)
ap(c)  gp(c) h dp(c) 2ny ap(c) 2n,, '

Proof of Theorem 3. The main idea of the proof is to use the confidence bound derived in Lemma 1
at ¢ and use the fact that ¢ minimizes the upper confidence bound. The proof is split into two parts.
First, we derive a lower bound on ¢; ;(¢;) for all j € ), and next, we use the obtained lower bound
to derive confidence bound on p;(y = j). With &;, we denote py(y = j) for all j € ),. All the
statements in the proof simultaneously hold with probability 1 — §/k. We derive the bounds for a
single j € ), and then use union bound to combine bound for all j € Y. When it is clearly from
context, we denote ¢, ;(c, j) with ¢; ;(c) and g;(c, j) with g,(c). Recall,

¢j 1= argmin Gi(c) «/IOg 4k/6 +7) M and (12)
cef0,1] t.j(c) qt,_] 2nps(y = J)

~ . a(c))
ey =J)i= ==~ - (13)
ar,;(¢;)
Moreover,
c*
¢} := argmin ¢(€) and oz;’f = al j*) . (14)
cef0,1] Gt,5(c) at,5(cF)

Part 1: We establish lower bound on g; ;(¢;). Consider ¢ € [0, 1] such that g; ;(c}) = 21—7(}}7 (ef).

We will now show that Algorithm 2 will select ¢; < ¢,

.. For any c € [0, 1], we have with with
probability 1 — §/k,

~ log(4k/d) log(4k/0) .
) _ < . — A ————= <K .
Gt (c) 2 po(y = J) qe.;(c) and a:(c) om g (c) (15)
Since (C;k) < 2L \we have
qt,j (C ) T ae(e)’
2(O) > aui(©) a(cy)  [log(4k/d) _ Gi(0)— log(4k/5) a(c})  [log(4k/d)
TR gy () om  ~ " 2n-ps(y =17) ) au4(ct) 2m
(16)

Qe _ . 1 < log(4k/8) | ai(c}) | log(4k/s) > an
RGN N

2m ap(cl) \ 2n-ps(y =
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Using Lemma 1 at ¢*, we have

qi(c) ai(c}) 7 1 log 4k/6 i) log(4k/9)
G(©) ~ Galc)) (am« Giole )(V m e *) 2n-ps<y=j>> e

i) 1 log 4kz/5 log 4k/5 (19)
abj(cj) at,j( Qtﬂ 2n - ps(y ’

Qt(c;k)
aej(cy)

where the last inequality follows from the fact that a;’-‘ = < 1. Furthermore, the upper

confidence bound at ¢ is lower bound as follows:

Qi0) 1+ () Jlog(4l/o) | log(dk/d) 20)
a5 (c) 2n - ps(y = J)
a1 (c¥) 1+ 1 log 4k:/6 log 4k/6
> + | = - = A/
Gr,j(c}) Grj(c)  qui(ck 2n - ps(y = )

21

a: (c*
_ Aqt(cj*) P [log( 4k/5 log 4k/5 )
Gt (c¥) Qi) Quile 2n - ps(y = j)

Using (22) at ¢ = ¢, we have the following lower bound on ucb at ¢’

qt( 1 + ’y log 4k/5 log 4k/5 23)
G5 (c qm 2n - ps(y = j)

S (et 1+ 7 /log 4k/5 log( 4k/5) (24)
qm( e 2n - ps(y = J)

Moreover from (22), we also have that the lower bound on ucb at ¢ > ¢’ is strictly greater than the
lower bound on ucb at ¢’. Using definition of ¢, we have

c?t(C? 1+ ’y log 4k/5 log 4k:/§ 25)
Gr,j(cf Qt,j 2n - ps(y
> Qt( 1 —+ 'y log 4k/5 log 4k/5 ’ 26)
Qt,_] Qt7 2n - ps
and hence
c<c. 27)

Part 2: We now establish an upper and lower bound on &;. We start with upper confidence bound on
&;. By definition of ¢;, we have

q:(c ) 1+ 'y log 4k;/6 log 4k/6 (28)
Qt] C Qtj 2n - Ps

< win l Qo) }” ( log(4k/0) | log(4k/d) ﬂ 29
cel0,1] | G, 2m J)

t,j (C) 2”']35(2!:
< ar(c; 1+ *y log 4k/5 log 4k/5 . (30)
Qt,j( qtg 2n - ps(y
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Using Lemma 1 at ¢*, we get
@(cf) _ (g ) 1 log(4k/9) log(4k/6)
Q) " aq(er) T gyt 2m qm 2n - ps(y = j)
_ o [log 4k/5 log 4k/6) 31)
T ct - ps(y = j)

Combining (30) and (31), we get

G = cz <ot i 2+ 7 log 4l<:/6 log 4k/6 .
q,;(C) a5 (c 2n - ps(y = j)

(32)

log(4k/5)

m ASSuming n-Ps (y =

Using DKW inequality on Gy, (c}), we have g; ; (c}) = qr,5(cf) —

, log(4k /5
Jj) = %, we get g ; ( j) < g1,5(c})/2 and hence,
t,g N3

& <at+ 4+ 27 /log 4k:/(5 log 4k/5) . (33)
T (e 2n - ps(y = J)

Finally, we now derive a lower bound on &;. From Lemma 1, we have the following inequality at ¢

Qt(/c:)\ < E]\t(/c:)\ b 1A log(4k/9) N :(C) 10g(4k/5)' . (34)
4 " @ () @ qt,j 2n - ps(y =

Since o < 29 we have
J qt,5(C)

o <

*
J

q:(¢) () log 4k/(5 +(¢) log(4k/8)
q1,5(C ) < a.,;(¢) ( th AN\ 2n-ply = > . (35)

Using (33), we obtain a very loose upper bound on ~ _(()) Assuming min(n - ps(y = j),m) =

2log(4k/d)
quj(czk)

, we have = oy ((%) a +44+2y <5+ 2. Usmg this in (35), we have

oF < q(c ) [log 4k/5 10g(4k/6) ' (36)
1S 5,0 Gy 2n - ps(y = j)

~ PN
Moreover, as ¢ > ¢/, we have ¢; ; (¢) > 2+7 Gt,j(c}) and hence,

ot Ot 2 [log( 4k/§ (542 log(4k/6) - (@) _ o 37)
Var,(c 2n - ps(y = j ;e

2log(4k/d)

Asweassume n-p,(y = j) = =252,
qt,j(cj)

we have g; ;(c}) < q,j(c})/2, which implies the following

lower bound on «:

. 2y + 4 log 4k/5 +2) _log(4k/0) ) _ a. (38)
qt] 271]?5(9:])

Combining lower bound (38) and upper bound (33), we get

log4k5 log(4k/9)
@ —aj| <y (\/ / 2nps/ ) (39)
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Figure 2: Purity and size (in terms of fraction of unlabeled samples) in the top bin for all classes. Bin

size refers to the fraction of examples in the top bin. With purity, we refer to the fraction of examples

from a specific class j in the top bin. Results with ResNet-18 on CIFAR10 OSLS setup. Details of
the setup in App. F.2. As the bin size increases for all classes the purity decreases.

for some constant /;. Additionally by our assumption of OSLS problem p,(y = j) > ¢/k for some
constant ¢ > (, we have

~ , log(4k/d) klog(4k/d)
C”O‘;(Klj(\/ 2m +\/ 2n ) “0)

Combining the above obtained bound for all j € )5 with union bound, we get with probability at

least 1 — 6,
~ k2 log(4k/d) k3 log(4k/0)
Z |aj - a;k| < l:nax (\/ om + m ) (4])

JEYs

for some constant l;.

where I, = max ;. Now, note that for each j € Vs, we have g;(c) = pi(y = j)-q1.;(c)+(1—pi(y =

J
7)) - Gt,—j(c)- Hence of = pi(y = j) + (1 = pi(y = 7)) - a1,—5(¢)/ - q1,5(¢). Plugging this in, we
get the desired bound. O

Intuitively, the guarantees in the previous theorem capture the tradeoff due to the proportion of
negative examples in the top bin (bias) versus the proportion of positives in the top bin (variance).
As a corollary, we can show convergence to true mixture if there exits c;‘-‘ for all j € Y such that
q,—j(cy,j) = 0and g, ;(cF, j) = € for some e > 0. Put simply, efficacy of BBE relies on existence
of a threshold on probability scores assigned by the classifier such that the examples mapped to a score
greater than the threshold are *mostly* positive. Using the terminology from Garg et al. [29], we
refer to this as the top bin property. Next, we provide empirical evidence of this property while using
the source classifier to estimate the relative proportion of target label marginal among source classes.

Empirical evidence of the top bin property We now empirically validate the positive pure top bin
property (Fig. 2). We include results with Resnet-18 trained on the CIFAR10 OSLS setup same as
our main experiments. We observe that source classifier approximately satisfies the positive pure top
bin property for small enough top bin sizes.

D.2 Formal statement and proof of Theorem 2

In this section, we show that in population on a separable Gaussian dataset, CVIR will recover the
optimal classifier. Note that here we consider a binary classification problem similar to the one in
Step 5 in Algorithm 1. Since we are primarily interested in analysing the iterative procedure for
obtaining domain discriminator classifier, we assume that « is known.

In population, we have access to positive distribution (i.e., p,), unlabeled distribution (i.e., p, :=
ap, + (1 — a)py), and mixture coefficient . Our goal is to recover the classifier that discriminates
Dp VEISUS py,.
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For ease, we re-introduce some notation. For a classifier f and loss function ¢, define
VIR, (f) =inf{r e R: Pypop, (U(z,—1;f) <7) = 1—0}. (42)

Intuitively, VIR, (f) identifies a threshold 7 to capture bottom 1 — « fraction of the loss ¢(x, —1) for
points x sampled from p,,. Additionally, define CVIR loss as

L(f,w) = aBp, [((x, 1; )] + By, [w(@)(z, =1; f)] , (43)

for classifier f and some weights w(z) € {0, 1}. Recall that given a classifier f; at an iterate ¢, CVIR
procedure proceeds as follows:

wi(z) = T[(x, —1; f;) < VIR4(ft)] , (44)
Jer1 = fr =V Ly (fe,we) . (45)

We assume a data generating setup with where the support of positive and negative data is completely
disjoint. We assume that z are drawn from two half multivariate Gaussian with mean zero and identity
covariance, i.e.,

T~ pp < T =Yoblopt + 2| Qg;,tz > 0, where z ~ N (0, I)
T~ pp e T =—Ybop + 2| Hg;tz < 0, where z ~ N(0, 1)

Here g is the margin and O € R? is the true separator. Here, we have access to distribution p,, and
Py = app + (1 — a)py,. Assume £ as the logistic loss. For simplicity, we will denote £( fo,, w;) with
L:(gt, wt).

Theorem 4 (Formal statement of Theorem 2). In the data setup described above, a linear classifier
f(x;0) = o (07 x) initialized at some 0y such that L(0o,wo) < log(2), trained with CVIR procedure
as in equations (44)-(45) will converge to an optimal positive versus negative classifier.

Proof of Theorem 4. The proof uses two key ideas. One, at convergence of the CVIR procedure, the
gradient of CVIR loss in (43) converges to zero. Second, for any classifier 6 that is not optimal for
positive versus negative classification, we show that the CVIR gradient in (43) is non-zero.

Part 1 We first show that the loss function £(#, w) in (43) is 2-smooth with respect to 6 for fixed
w. Using gradient descent lemma with the decreasing property of loss in (44)-(45), we show that
gradient converges to zero eventually. Considering gradient of £, we have

VoL(0,w) = aByp, [(f(2;0) — 1)z] + Ep, [w(z)(f(2;6) — 0)x] . (46)
Moreover, V2L is given by
ViL(0,w) = aE, [Vf(z; Q)me] + Ep, [w(@)Vf(z; H)xxT] . 47

Since V f(x;0) < 1, we have vTV2Lv < 2 for all unit vector v € R?. Now, by gradient descent
lemma if n < /2, at any step ¢ we have, L(0;11,w;) < L(6;, w:). Moreover, by definition
of VIR, (0) in (42) and update (44), we have L(0;11,w;+1) < L(0411,w;). Hence, we have
L0411, wy1) < LB, we). Since, the loss is lower bounded from below at 0, for every € > 0, we
have for large enough ¢ (depending on ¢€), [V L(0;, wy)|, < €, ie., [VoL(0s, we)|, — 0ast — co.

Part 2 Consider a general scenario when v > 0. Denote the input domain of p, and p,, as P and
N respectively. At any step ¢, for all points « € X’ such that p, (x) > 0 and w¢(z) = 0, we say that
z is rejected from p,,. We denote the incorrectly rejected subdomain of p,, from p,, as N, and the
incorrectly accepted subdomain of p, from p,, as P,. Formally, N, = {x : p,(z) > 0 and w;(x) =
0} and P, = {z : pp(z) > 0 and wy(x) = 1}. We will show that p,(P,) — 0 as ¢ — oo, and hence,
we will recover the optimal classifier where we reject none of p,, incorrectly.

Observe that at any time ¢, for fixed w; and 6 = 6,, the gradient of CVIR loss in (43), can be
expressed as:

VoL (0, w) :aj ((2:6) — e - py(a)da +(1 — o) f (f(2:6) — 0)a - po(x)da

z€P\ P, z€N\N,.
~ ~~ - ~ ~~ -
1 11
+ ozf (2f(z;6) — Dz - pp(z)dx . (48)
zeP,
< A >

I
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Note that for any , 6, 0 < f(x;0) < 1. Now consider inner product of individual terms above with
BOopt> We get

<I’ 90P‘> = P\P, (f(; 9) - 1)mT9°P‘ 'pp(x)dx < _WOJ P\P, (1 - f(a;‘, 9)) 'pp(x)de, (49)
<H, 90pt> = NN (f(xa 6) - O)xTeopt : pn(x)dx < —7 J AN (f(xv 9) - 0) -pn(ﬁ)d"E?
' ' (50)
<HI; 90pt> = f (2f(.’1?; 9) - 1>$T90pt 'pp(x)d.'lf < _'YOJ (1 - 2f<.’17; 9)) 'pp(l’)d$. (51)
zeP, xeP,

Now, we will argue that individually all the three LHS terms in (49), (50), (51) are negative for all
classifiers that do not separate positive versus negative data begining from £(6y, wg) < log(2). And
hence, we show that these terms approach zero individually only when the linear classifier approaches
an optimal positive versus negative classifier.

First, we consider the term in the LHS of equation (51). When o = 0.5, we have VIR, (6) = 0.5 and
hence, (1 — 2f(x;0)) < 0 for 2 € P,. When o > 0.5, VIR, () < 0.5 because, the proportion « -
pp(P,) matches with proportion (1—a)-p,, (V). Hence, we again have (1—2f(z;0)) < Oforz € P,.

To handle the case with o < 0.5, we use a symmetry of he distribution to because VIR, (6) > 0.5 and
(1—2f(x; 0)) can take positive and negative values. However, note that VIR, (6) will be selected such
that the proportion «- p, (P, ) matches with proportion (1 —«)- P, (N,.). In particular, we can split P,

into three disjoint sets chl)’ Pé2), and P£3) such that for all x € Pél) we have f(x;0) >= 0.5, for all
ze PP U PP we have f(z;0) < 0.5 and pp(Pé?’)) = 12-pp(NN;). Additionally, by symmetry of
distribution around ¢, we have Sa:EPa(l) (1-2f(x;0)) pp(z)dz+ Sxepf) (1—-2f(z;0)) pp(z)dx = 0.
Hence, we get

<HL 90pt> < -7 J

x€EP,

(1—-2f(x;0)) - pp(x)dz = —'yoj (1—2f(z;0)) - pp(x)dz. (52)

x€P§3)
Combining all three cases, we get (I, o) < 0 when p,(P,) > 0.

Now we consider LHS terms in (49) and (50). Note that for all z € P U N, we have 0 < f(x) < 1.
Thus with p,(P\P,) > 0, {I,0,,) — 0 when f(z,0) — 1 for all z € P\P,. Similarly with
Pn(N\N;) > 0, (1, §op ) — 0 when f(z,6) — 0 for all z € N\N,..

From part 1, for gradient |V L(6;,w;)|, to converge to zero as t — o0, we must have that LHS in
equations (49), (50), and (51) converges to zero individually. Since CVIR loss decreases continuously
and L(0y, wo) < log(2), we have that p,(P,) — 0 and hence, f(x,0) — 1 for all z € P and
f(z,0) > 0forallxz € N.

O

The above analysis can be extended to show convergence to max-margin classifier by using arguments
from Soudry et al. [65]. In particular, as p,(P,) — 0, we can show that 6,/ 0; |, will converge to the
max-margin classifier for p,, versus py,, i.e., 8op if p,(P,) — 0 in finite number of steps. Note that we
need an assumption that the initialized model 6 is strictly better than a model that randomly guesses
or initialized at all zeros. This is to avoid convergence to the local minima of § = 0 with CVIR
training. This assumption is satisfied when the classifier is initialized in a way such that {0y, fp;) > 0.
In general, we need a weaker assumption that during training with any randomly initialized classifier,
there exists an iterate ¢ during CVIR training such that {6, 90pt> > 0.

D.3 Extension of Theorem 1
We also extend the analysis in the proof of Theorem 3 to Step 5 of Algorithm 1 to show convergence

of estimate p,(y = k + 1) to true prevalence p;(y = k + 1). In particular, we show that the estimation
error for prevalence of the novel class will primarily depend on sum of two terms: (i) error in
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approximating the label shift corrected source distribution, i.e., p,(z); and (ii) purity of the top bin of
the domain discriminator classifier.

Before formally introducing the result, we introduce some notation. Similar to before, given prob-
ability density function p and a domain discriminator classifier f : X — A, define a function
q= SA(Z) p(z)dx, where A(z) = {x € X : f(x) = z} for all z € [0, 1]. Intuitively, ¢g(z) captures
the cumulative density of points in a top bin, i.e., the proportion of input domain that is assigned
a value larger than z by the function f in the transformed space. We denote p;(x|y = k + 1) with
prk+1. For each pdf p;, p; 41, and pl,, we define q;, g, x+1. and ¢, respectively. Note that since
We define an empirical estimator ¢(z) given a set X = {x1, 2, ..., %, } sampled iid from p(x). Let
Z = f(X). Define q(z) = X, I[z; = =] /n.

Recall that in Step 5 of Algorithm 1, to estimate the proportion of novel class, we have access to
re-sampled data from approximate label shift corrected source distribution ¢, (). Assume that we
the size of re-sampled dataset is n.

Theorem 5. Define ¢* = argmin g 1] (q¢,k+1(c)/q5(c)). Assume min(n,m) > (?alf)(gc(f{fz))

Then, for every 6 > 0, [Dt]i+1 := De(y = k + 1) in Step 5 of Algorithm 1 satisfies with probability at
least 1 — 0, we have:

|g5(c*) = @(c*)| Gt +1(c*)
) N, ()

I[De]k+1 = [Pe)rar] < (1 = [Pe]es1)

e~ % ) *
qs(c*) qs(c*)
~ ~~ - ~ ~- i
Error in estimating Impurity in
label shift corrected source top bin

o ( \/log(f/g) . W)gfit/‘”) .

Proof. We can simply prove this theorem as Corollary of Theorem 1 from Garg et al. [29]. Note
that ¢;(c*) = (1 —pe(y =k + 1)) - ¢4(c*) + pe(y = k + 1) - g1 x+1(c*). Adding and subtracting

’ C* A~ C*
(1—pi(y = k+1))-@.(c*) and dividing by 7., we get gzgfjg = (1—pi(y = k+1))-|qs(§;’(7513()|+

I—ply=k+1))+p(y=k+1)- ‘“'5,?7;&;). Plugging in bound for LHS from Theorem 1 in

Garg et al. [29], we get the desired result. O

D.4 Extensions of Theorem 2 to general separable datasets

For general separable datasets, CVIR has undesirable property of getting stuck at local optima where
gradient in (51) can be zero by maximizing entropy on the subset P, which is (incorrectly) not-
rejected from p,, in CVIR iterations. Intuitively, if the classifier can perfectly separate P\P, and
N\N,. and at the same time maximize the entropy of the region P,, then the classifier trained with
CVIR can get stuck in this local minima.

However, we can extend the above analysis with some modifications to the CVIR procedure. Note
that when the CVIR classifier maximizes the entropy on F,. it makes an error on points in F,. Since,
we have access to the distribution p,,, we can add an additional regularization penalty to the CVIR loss
that ensures that the converged classifier with CVIR correctly classifies all the points in p,. With a
large enough regularization constant for the supervised loss on p,,, we can dominate the gradient term
in (51) which pushes CVIR classifier to correct decision boundary even on P, (instead of maximizing
entropy). We leave formal analysis of this conjecture for future work. Since we warm start CVIR
training with a positive versus unlabeled classifier, if we obtain an initialization close enough to the
true positive versus negative decision boundary, by monotonicity property of CVIR iterations, we
may never get stuck in such a local minima even without modifications to loss.

E Empirical investigation of CVIR in toy setup

As noted in our ablation experiments and in Garg et al. [29], domain discriminator trained with CVIR
outperforms classifiers trained with other consistent objectives (nnPU [38] and uPU [21]). While the
analysis in Sec. 8 highlights consistency of CVIR procedure in population, it doesn’t capture the
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Figure 3: Comparison of different methods in overparameterized toy setup. CVIR (random)
denotes CVIR with random initialization and CVIR (PvU) denotes warm start with a positive versus
negative classifier. Vertical line denotes the epoch at which we switch from PvU to CVIR in CVIR
(PvU) training. (a) We observe that CVIR (PvU) improves significantly even over the best early
stopped PvU model. As training proceeds, we observe that accuracy of nnPU, uPU and PvU training
drops whereas CVIR (random) and CVIR (PvU) maintains superior and stable performance. (b) We
observe that warm start training helps CVIR over randomly initialized model to correctly identity
positives among unlabeled for rejection.

observed empirical efficacy of CVIR over alternative methods in overparameterized models. In the
Gaussian setup described in Sec. D.2, we train overparameterized linear models to compare CVIR
with other methods (Fig. 3). We fix d = 1000 and use n = 250 positive and m = 250 unlabeled
points for training with o = 0.5. We set the margin ~y at 0.05. We compare CVIR with unbiased
losses uPU and nnPU. We also make comparison with a naive positive versus unlabeled classifier
(referred to as PvU). For CVIR, we experiment with a randomly initialized classifier and initialized
with a PvU classifier trained for 200 epochs.

First, we observe that when a classifier is trained to distinguish positive and unlabeled data, early
learning happens [47, 3, 28], i.e., during the initial phase of learning classifier learns to classify
positives in unlabeled correctly as positives achieving high accuracy on validation positive versus
negative data. While the early learning happens with all methods, soon in the later phases of training
PvU starts overfitting to the unlabeled data as negative hurting its validation performance. For uPU
and nnPU, while they improve over PvU training during the initial epochs, the loss soon becomes
biased hurting the performance of classifiers trained with uPU and nnPU on validation data.

For CVIR trained from a randomly initialized classifier, we observe that it improves slightly over the
best PvU or the best nnPU model. Moreover, it maintains a relatively stable performance throughout
the training. CVIR initialized with a PvU classifier significantly improves the performance. In Fig. 3
(b), we show that CVIR initialized with a PvU correctly rejects significantly more fraction of positives
from unlabeled than CVIR trained from scratch. Thus, post early learning rejection of large fraction
of positives from unlabeled training in equation (4) crucially helps CVIR.

F Experimental Details

F.1 Baselines

We compare PULSE with several popular methods from OSDA literature. While these methods are
not specifically proposed for OSLS, they are introduced for the more general OSDA problem. In
particular, we make comparions with DANCE [59], UAN [73], CMU [25], STA [46], Backprop-
ODA (or BODA) [58]. We use the open source implementation available at https://github.com/
thuml and https://github.com/VisionLearningGroup/DANCE/. Since OSDA methods do
not estimate the prevalence of novel class explicitly, we use the fraction of examples predicted in
class k + 1 as a surrogate. We next briefly describe the main idea for each method:

Backprob-ODA  Saito et al. [58] proposed backprob ODA to train a (k + 1)-way classifier. In
particular, the network is trained to correctly classify source samples and for target samples, the
classifier (specifically the last layer) is trained to output 0.5 for the probability of the unknown class.
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The feature extractor is trained adversarially to move the probability of unknown class away from 0.5
on target examples by utilizing the gradient reversal layer.

Separate-To-Adapt (STA) Liu et al. [46] trained a network that learns jointly from source and target
by learning to separate negative (novel) examples from target. The training is divided into two parts.
The first part consists of training a multi-binary Gc\lil‘ classifier on labeled source data for each class
and a binary classifier G, which generates the weights w for rejecting target samples in the novel
class. The second part consists of feature extractor G, a classifier G, and domain discriminator G4
to perform adversarial domain adaptation between source and target data in the source label space.
Gy and G are trained with incorporating weights w predicted by Gy, in the first stage.

Calibrated Multiple Uncertainties (CMU) Fu et al. [25] trained a source classifier and a domain
discriminator to discriminate the novel class from previously seen classes in target. To train the
discriminator network, CMU uses a weighted binary cross entropy loss where w(x) for each example
x in target which is the average of uncertainty estimates, e.g. prediction confidence of source classifier.
During test time, target data = with w(x) > wq (for some pre-defined threshold wy) is classified as an
example from previously seen classes and is given a class prediction with source classifier. Otherwise,
the target example is classified as belonging to the novel class.

DANCE Saito et al. [59] proposed DANCE which combines a self-supervised clustering loss to
cluster neighboring target examples and an entropy separation loss to consider alignment with source.
Similar to CMU, during test time, DANCE uses thresholded prediction entropy of the source classifier
to classifier a target example as belonging to the novel class.

Universal Adaptation Networks (UAN) You et al. [73] proposed UAN which also trains a source
classifier and a domain discriminator to discriminate the novel class from previously seen classes in
target. The objective is similar to CMU where instead of using uncertainty estimates from multiple
classifiers, UAN uses prediction confidence of domain discriminator classifier. Similar to CMU,
at test time, target data  with w(z) < wy (for some pre-defined threshold wy) is classified as an
example from previously seen classes and is given a class prediction with source classifier. Otherwise,
the target example is classified as belonging to the novel class.

For alternative baselines, we experiment with source classifier directly deployed on the target data
which may contain novel class and label shift among source classes (referred to as source-only). This
naive comparison is included to quantify benefits of label shift correction and identifying novel class
over a typical k-way classifiers.

We also train a domain discriminator classifier for source versus target (referred to as domain disc.).
This is an adaptation of PU learning baseline[24] which assumes no label shift among source classes.
We use simple domain discriminator training to distinguish source versus target. To estimate the
fraction of novel examples, we use the EN estimator proposed in Elkan and Noto [24]. For any target
input, we make a prediction with the domain discriminator classifier (after re-scaling the sigmoid
output with the estimate proportion of novel examples). Any example that is classified as target, we
assign it the class k + 1. For examples classified as source, we make a prediction for them using the
k-way source classifier.

Finally, per the reduction presented in Sec. 5, we train k£ PU classifiers (referred to as k-PU). To train
each PU learning classifier, we can plugin any method discussed in Sec. A. In the main paper, we
included results obtained with plugin state-of-the-art PU learning algorithms. In App. F.8, we present
ablations with other PU learning methods.

F.2 Dataset and OSLS Setup Details

We conduct experiments with seven benchmark classification datasets across vision, natural language,
biology and medicine. Our datasets span language, image and table modalities. For each dataset,
we simulate an OSLS problem. We experiment with different fraction of novel class prevalence,
source label distribution, and target label distribution. We randomly choose classes that constitute
the novel target class. After randomly choosing source and novel classes, we first split the training
data from each source class randomly into two partitions. This creates a random label distribution for
shared classes among source and target. We then club novel classes to assign them a new class (i.e.
k + 1). Finally, we throw away labels for the target data to obtain an unsupervised DA problem. We
repeat the same process on iid hold out data to obtain validation data with no target labels. For main
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experiments in the paper, we next describe important details for the OSLS setup simulated. All the
other details can be found in the code repository.

For vision, we use CIFAR10, CIFAR100 [40] and Entity30 [61]. For language, we experiment with
Newsgroups-20 dataset. Additionally, inspired by applications of OSLS in biology and medicine, we
experiment with Tabula Muris [17] (Gene Ontology prediction), Dermnet (skin disease prediction),
and BreakHis [66] (tumor cell classification).

CIFAR10 For CIFAR10, we randomly select 9 classes as the source classes and a novel class
formed by the remaining class. After randomly sampling the label marginal for source and target
randomly, we get the prevalence for novel class as 0.2152.

CIFAR100 For CIFAR100, we randomly select 85 classes as the source classes and a novel class
formed by aggregating the data from 15 remaining classes. After randomly sampling the label
marginal for source and target randomly, we get the prevalence for novel class as 0.2976.

Entity30 Entity30 is a subset of ImageNet [54] with 30 super classes. For Entity30, we randomly
select 24 classes as the source classes and a novel class formed by aggregating the data from 6
remaining classes. After randomly sampling the label marginal for source and target randomly, we
get the prevalence for novel class as 0.3942.

Newgroups-20 For Newsgroups20?, we randomly select 16 classes as the source classes and a novel
class formed by aggregating the data from 4 remaining classes. After randomly sampling the label
marginal for source and target randomly, we get the prevalence for novel class as 0.3733. This dataset
is motivated by scenarios where novel news categories can appear over time but the distribution of
articles given a news category might stay relatively unchanged.

BreakHis BreakHis® contains 8 categories of cell types, 4 types of benign breast tumor and 4 types
malignant tumors (breast cancer). Here, we simulate OSLS problem specifically where 6 cell types
are observed in the source (3 from each) and a novel class appears in the target with 1 cell type from
each category. After randomly sampling the label marginal for source and target randomly, we get
the prevalence for novel class as 0.2708.

Dermnet Dermnet data contains images of 23 types of skin diseases taken from Dermnet NZ*. We
simulate OSLS problem specifically where 18 diseases are observed in the source and a novel class
appears in the target with the rest of the 5 diseases. After randomly sampling the label marginal for
source and target randomly, we get the prevalence for novel class as 0.3133.

Tabula Muris Tabula Muris dataset [17] comprises of different cell types collected across 23 organs
of the mouse model organism. We use the data pre-processing scripts provided in [12]°. We just use
the training set comprising of 57 classes for our experiments. We simulate OSLS problem specifically
where 28 cell types are observed in the source and a novel class appears in the target with the rest of
the 29 cell types. After randomly sampling the label marginal for source and target randomly, we get
the prevalence for novel class as 0.6366.

F.3 Details on the Experimental Setup

We use Resnet18 [33] for CIFAR10, CIFAR100, and Entity30. For all three datasets, in our main
experiments, we train Resnet-18 from scratch. We use SGD training with momentum of 0.9 for
200 epochs. We start with learning rate 0.1 and decay it by multiplying it with 0.1 every 70 epochs.
We use a weight decay of 5 x 10~%. For CIFAR100 and CIFAR10, we use batch size of 200. For
Entity30, we use a batch size of 32. In App. F.7, we experiment with contrastive pre-training instead
of random initialization.

For newsgroups, we use a convolutional architecture®. We use glove embeddings to initialize the
embedding layer. We use Adam optimizer with a learning rate of 0.0001 and no weight decay. We
use a batch size of 200. We train with constant learning rate for 120 epochs.

’http://qwone.com/~ jason/20Newsgroups/
*https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
4h'c‘cp ://www.dermnet.com/dermatology-pictures-skin-disease-pictures
Shttps://github.com/snap-stanford/comet
Shttps://github.com/mireshghallah/20Newsgroups-Pytorch
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For Tabular Muris, we use the fully connected MLP used in Cao et al. [12]. We use the hyperparame-
ters used in Cao et al. [12]. We use Adam optimizer with a learning rate of 0.0001 and no weight
decay. We train with constant learning rate for 40 epochs. We use a batch size of 200.

For Dermnet and BreakHis, we use Resnet-50 pre-trained on Imagenet. We use an initial learning
rate of 0.0001 and decay it by 0.96 every epoch. We use SGD training with momentum of 0.9 and
weight decay of 5 x 10~*. We use a batch size of 32. These are the default hyperparameters used in
Alom et al. [2] and Liao [44].

For all methods, we use the same backbone for discriminator and source classifier. Additionally,
for PULSE and domain disc., we use the exact same set of hyperparameters to train the domain
discriminator and source classifier. For kPU, we use a separate final layer for each class with the
same backbone. We use the same hyperparameters described above for all three methods. For OSDA
methods, we use default method specific hyperparameters introduced in their works. Since we do not
have access to labels from the target data, we do not perform hyperparameter tuning but instead use
the standard hyperparameters used for training on labeled source data. In future, we may hope to
leverage heuristics proposed for accuracy estimation without access to labeled target data [30].

We train models till the performance on validation source data (labeled) ceases to increase. Unlike
OSDA methods, note that we do not use early stopping based on performance on held-out labeled
target data. To evaluate classification performance, we report target accuracy on all classes, seen
classes and the novel class. For target marginal, we separately report estimation error for previously
seen classes and for the novel class. For the novel class, we report absolute difference between true
and estimated marginal. For seen classes, we report average absolute estimation error. We open-
source our code at https://github.com/Neurips2022Anon. By simply changing a single config
file, new OSLS setups can be generated and experimented with.

Note that for our main experiments, for vision datasets (i.e., CIFAR10, CIFAR100, and Entity30) and
for language dataset, we do not initialize with a (supervised) pre-trained model to avoid overlap of
novel classes with the classes in the dataset used for pre-training. For example, labeled Imagenet-1k
is typically used for pre-training. However, Imagenet classes overlaps with all three vision datasets
employed and hence, we avoid pre-trained initialization. In App. F.7, we experiment with contrastive
pre-training on Entity30 and CIFAR100. In contrast, for medical datasets, we leverage Imagenet
pre-trained models as there is no overlap between classes in BreakHis and Dermnet with Imagenet.

F.4 Detailed results from main paper

For completeness, we next include results for all datasets. In particular, for each dataset we tabulate
(1) overall accuracy on target; (ii) accuracy on seen classes in target; (iii) accuracy on the novel
class; (iv) sum of absolute error in estimating target marginal among previously seen classes, i.e.,
2yey, [Pe(y) — pe(y)]; and (v) absolute error for novel fraction estimation, i.e., [p(y = k + 1| —

pt(y = k+1). Table 5 presents results on all the datasets. Fig. 4 and Fig. 5 presents epoch-wise results.

F.5 Investigation into OSDA approaches

We observe that with default hyperparameters, popular OSDA methods significantly under perform
as compared to PULSE. We hypothesize that the primary reasons underlying the poor performance
of OSDA methods are (i) the heuristics employed to detect novel classes; and (ii) loss functions
incorporated to improve alignment between examples from common classes in source and target. To
detect novel classes, a standard heuristic employed popular OSDA methods involves thresholding
uncertainty estimates (e.g., prediction entropy, softmax confidence [73, 25, 59]) at a predefined
threshold «. However, a fixed s, may not for different datasets and different fractions of the novel
class. Here, we ablate by (i) removing loss function terms incorporated with an aim to improve source
target alignment; and (ii) vary threshold s and show improvements in performance of these methods.

For our investigations, we experiment with CIFAR10, with UAN and DANCE methods. For DANCE,
we remove the entropy separation loss employed to encourage align target examples with source
examples. For UAN, we remove the adversarial domain discriminator training employed to align
target examples with source examples. For both the methods, we observe that by removing the
corresponding loss function terms we obtain a marginal improvement. For DANCE on CIFAR10, the
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performance goes up from 70.4 to 72.5 (with the same hyperparameters as the default run). FOR
UAN, we observe similar minor improvements, where the performance goes up from 15.4 to 19.6.

Next, we vary the threshold used for detecting the novel examples. By optimally tuning the threshold
for CIFAR10 with UAN, we obtain a substantial increase. In particular, the overall target accuracy
increases from 19.6 to 33.1. With DANCE on CIFARI10, optimal threshold achieves 75.6 as compared
to the default accuracy 70.4. In contrast, our two-stage method PULSE avoids the need to guess x, by
first estimating the fraction of novel class which then guides the classification of novel class versus
previously seen classes.

F.6 Ablation with novel class fraction

In this section, we ablate on novel class proportion on CIFAR10, CIFAR100 and Newsgroups20. For
each dataset we experiment with three settings, each obtained by varying the number of classes from
the original data that constitutes the novel classes. We tabulate our results in Table 4.

F.7 Contrastive pre-training on unlabeled data

Here, we experiment with contrastive pre-training to pre-train the backbone networks used for feature
extraction. In particular, we initialize the backbone architectures with SimCLR pre-trained weights.
We experiment with CIFAR100 and Entity30 datasets. Instead of pre-training on mixture of source
and target unlabeled data, we leverage the publicly available pre-trained weights’. Table 2 summarizes
our results. We observe that pre-training improves over random initialization for all the methods with
PULSE continuing to outperform other approaches.

Table 2: Comparison with different OSLS approaches with pre-trained feature extractor. We use
SimCLR pre-training to initialize the feature extractor for all the methods. All methods improve over
random initialization (in Table 1). Note that PULSE continues to outperform other approaches.

CIFAR100 Entity30

Acc MPE Acc MPE
(All) (Novel) (All) (Novel)

Method

BODA [58] 37.1 0.34 52.1 0.376
Domain Disc. 49.4 0.041 57.4 0.024
kPU 37.5 0.297 70.1 0.32
PULSE (Ours) 67.3  0.052 72.4  0.002

F.8 Ablation with different PU learning methods

In this section, we experiment with alternative PU learning approaches for PULSE and kPU. In
particular, we experiment with the next best alternatives, i.e., nnPU instead of CVIR for classification
and DEDPUL instead of BBE for target marginal estimation. We refer to these as kPU (alternative)
and PULSE (alternative) in Table 3. We present results on three datasets: CIFAR10, CIFAR100
and Newsgroups20 in the same setting as described in Sec. F.2. We make two key observations:
(i) PULSE continues to dominate kPU with alternative choices; (ii) CVIR and BBE significantly
outperform alternative choices.

F.9 Age Prediction Task

We consider an experiment on UTK Face dataset®. We create an 8-way class classification problem
where we split the age in the following 8 groups: 0-10, 11-20, - - -, 60-70 and > 70. We consider
the first 7 age groups in source and introduce age group > 70 into the target data. OSLS continues to

"For CIFAR100: https://drive.google.com/file/d/1huW-ChBVvKcx7t8HyDaWTQB5Li1Fht9x/
view and for Entity30, we use Imagenet pre-trained weights from here: https://github.com/
AndrewAtanov/simclr-pytorch.

Shttps://susanqq.github.io/UTKFace/
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Table 3: Comparison with different PU learning approaches. ‘Alternative’ denotes results with
employing nnPU for classification and DEDPUL for target marginal estimation instead of ‘default’
which uses CVIR and BBE.

CIFAR10 CIFAR100 Newsgroups20

Acc MPE Acc MPE Acc MPE

Method (All) (Novel) (All) (Novel) (All) (Novel)

k-PU (alternative) 53.4  0.215 12.1  0.298 14.1  0.373
k-PU (default) 83.6 0.036 36.3  0.298 52.1  0.307
PULSE (alternative) 80.5 0.05 30.1  0.231 39.8  0.223
PULSE (default) 86.1  0.008 63.4  0.078 62.2  0.061

Table 4: Comparison with different OSLS approaches for different novel class prevalence. We observe
that for on CIFAR100 and Newsgroups20, PULSE maintains superior performance as compared to
other approaches. On CIFARIO, as the proportion of novel class increases, the performance of of
kPU improves slightly over PULSE for target accuracy.

CIFAR10 CIFAR10 CIFAR10
(pe(k+1) =0.215)  (pi(k+1) = 0.406)  (pe(k + 1) = 0.583)

Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 63.1 0.162 65.5 0.166 48.6 0.265

Domain Disc. 47.4 0.331 57.5 0.232 68.7 0.144

kPU 83.6 0.036 87.8 0.010 89.9 0.036

PULSE (Ours)  86.1 0.008 87.4 0.009 83.7 0.006
CIFAR100 CIFAR100 CIFAR100

(pe(k +1) = 0.2976)  (pe(k +1) = 0.4477)  (ps(k + 1) = 0.5676)
Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 36.1 0.41 41.6 0.075 50.2 0.03
Domain Disc. 45.8 0.046 52.3 0.092 58.7 0.187
kPU 36.3 0.298 52.2 0.448 63.9 0.568
PULSE (Ours)  63.4 0.078 66.6 0.052 68.2 0.088
Newsgroups20 Newsgroups20 Newsgroups20

(pe(k+ 1) = 0.3733) (pe(k + 1) = 0.6452) (pe(k+ 1) = 0.7688)
Method Acc (All) MPE (Novel) Acc (All) MPE (Novel) Acc (All) MPE (Novel)

BODA [58] 43.4 0.16 25.5 0.645 17.7 0.769
Domain Disc. 50.9 0.176 44.8 0.085 47.8 0.064
kPU 52.1 0.373 50.2 0.645 35.5 0.769
PULSE (Ours)  62.2 0.061 1.7 0.044 75.73 0.179

outperform the kPU baseline for novel prevalence estimation. Additionally, for target classification
performance of OSLS is similar to k PU baseline (ref. Table 6).
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Table 5: Comparison of PULSE with other methods. Across all datasets, PULSE outperforms
alternatives for both target classification and novel class prevalence estimation. Acc (All) is target
accuracy, Acc (Seen) is target accuracy on examples from previously seen classes, and Acc (Novel) is
recall for novel examples. MPE (Seen) is sum of absolute error for estimating target marginal among
previously seen classes and MPE (Novel) is absolute error for novel prevalence estimation. Results
reported by averaging across 3 seeds.

CIFAR-10 CIFAR-100
Method Acc Acc Acc MPE MPE Acc Acc Acc MPE MPE
(All) (Seen) (Novel) (Seen) (Novel) (All) (Seen) (Novel) (Seen) (Novel)
Source-Only  67.1 87.0 - - - 46.6 66.4 - - -
UAN [73] 15.4 19.7 25.2 1.44 0.214 18.1 40.6 14.8 1.48 0.133
BODA [58] 63.1 66.2 42.0 0.541 0.162 36.1 17.7 81.6 0.564 041
DANCE [59] 70.4 85.5 14.5 0.784 0.174 47.3 66.4 1.2 0.702 0.28
STA [46] 57.9 69.6 14.9 0409 0.124 42.6 48.5 34.8 0.798 0.14
CMU [25] 62.1 77.9 41.2 0.443 0.183 35.4 46.0 15.5  0.695 0.161
Domain Disc. 47.4 87.0 30.6 - 0.331 45.8 66.5 39.1 - 0.046
k-PU 83.6 794 98.9 0.062 0.036 36.3 226 99.1 6.31  0.298
PULSE (Ours) 86.1 91.8 884 0.091 0.008 634 672 635 0.365 0.078
Entity30 Newsgroup20
Method Acc Acc Acc MPE MPE Acc Acc Acc MPE MPE
(All) (Seen) (Novel) (Seen) (Novel) (All) (Seen) (Novel) (Seen) (Novel)
Source-Only  32.0 53.5 - - - 39.3 64.4 - - -
BODA [58] 42.22 259 67.2 0.367 0.189 43.4 38.0 34.1  0.550 0.167
Domain Disc.  43.2 53.5 68.0 - 0.135 50.9 644 93.2 - 0.176
k-PU 50.7 223 944 099 0.394 52.1 57.8 42.7 0.776  0.373
PULSE (Ours) 58.0 54.3 722 0.215 0.054 62.2 650 83.6 0.232 0.061
Tabula Muris BreakHis
Method Acc Acc Acc MPE MPE Acc Acc Acc MPE MPE
(All)  (Seen) (Novel) (Seen) (Novel) (All) (Seen) (Novel) (Seen) (Novel)
Source-Only  33.8 93.3 - - - 70.0 95.8 - - -
BODA [58] 76.5 59.8 87.0 0.200 0.079 71.5 81.8 44.0 0.163 0.077
Domain Disc.  73.0 93.3 94.7 - 0.071 56.5 95.8 904 - 0.09
k-PU 85.9 91.6 83.3 0.279 0.307 75.6 71.7 86.1  0.094 0.058
PULSE (Ours) 87.8 94.6 888 0.388 0.058 79.1 96.1 76.3 0.090 0.054
Dermnet
Method Acc Acc Acc MPE MPE
(All) (Seen) (Novel) (Seen) (Novel)
Source-Only  41.4 53.6 - - -
BODA [58] 43.8 314 58.4 0.401 0.207
Domain Disc.  40.6 53.6 82.7 - 0.083
k-PU 46.0 26.0 89.9 144 0.313
PULSE (Ours) 48.9 53.7 57.7 041 0.043
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Figure 4: Epoch wise results for target accuracy. Results aggregated over 3 seeds.
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maintains stable and superior performance when compared to alternative methods.

Table 6: Results on age prediction dataset. We observe that the prevalence of the novel class as
estimated with our PULSE framework is significantly closer to the true estimate. Additionally target
classification performance of OSLS is similar to that of kPU both of which significantly improve
over domain discriminator and source only baselines.

UTK Face
Acc MPE
Method (Al)  (Novel)
Source Only 50.1 0.11
Domain Disc. 52.4 0.08
kPU 56.7 0.11
PULSE (Ours) 56.8 0.01
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Figure 5: Epoch wise results for novel prevalence estimation. Results aggregated over 3 seeds.
PULSE maintains stable and superior performance when compared to alternative methods.
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