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Abstract—Unsupervised Domain Adaptation (UDA) provides
a promising solution for learning without supervision, which
transfers knowledge from relevant source domains with accessible
labeled training data. Existing UDA solutions hinge on clean
training data with a short-tail distribution from the source
domain, which can be fragile when the source domain data is cor-
rupted either inherently or via adversarial attacks. In this work,
we propose an effective framework to address the challenges of
UDA from corrupted source domains in a principled manner.
Specifically, we perform knowledge ensemble from multiple
domain-invariant models that are learned on random partitions
of training data. To further address the distribution shift from
the source to the target domain, we refine each of the learned
models via mutual information maximization, which adaptively
obtains the predictive information of the target domain with
high confidence. Extensive empirical studies demonstrate that the
proposed approach is robust against various types of poisoned
data attacks while achieving high asymptotic performance on the
target domain.

Index Terms—Unsupervised Domain Adaptation, Robust
Learning, Poison Data Attack

I. INTRODUCTION

Deep learning techniques have been thriving over the last
decade as a powerful tool for predictive modeling in a vari-
ety of domains, including computer vision [1], autonomous
vehicles [2], and healthcare [3], to name just a few. The
over-parameterization design of deep models gives them ultra-
high model flexibility, which gives them the power to capture
complex mappings between input data points and target la-
bels. The success of deep learning-based predictive modeling,
however, hinges on massive training data with accurate labels,
which hinders its application to tasks with limited training
label supervision, where collecting accurate labels can be eco-
nomically prohibitive. Longitudinal studies, strict enrollment
conditions, data coding errors, and high costs associated with
the data collection often result in only very small datasets
being available for supervised learning [4].

Domain adaptation (DA) has emerged as an effective so-
lution, which transfers knowledge learned from a related but
different domain (i.e. the source domain) to assist the learning
of the target domain. In particular, a challenging and practical
problem along this line is unsupervised domain adaptation
(UDA), in which the target domain has access to only a few
unlabeled training samples. While UDA has been extensively
studied for typical machine learning settings, most existing
UDA methods are usually built upon an implicit assumption
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that source domain data is clean. Under this assumption,
UDA methods are prone to performance degradation when the
source domain samples are corrupted, either unintentionally
during data collection or deliberately by vicious attackers.
Consequently, models learned on the corrupted source data
can be easily under attack even on the source domain, not to
mention confronting the challenges of domain distribution shift
when adapting to the target domain. Such model performance
degradation can be exacerbated under adversarial attacks. For
instance, as illustrated in Figure 1, a minimal corruption in
source domain samples shifts the model’s hypothesis plane
drastically when performing domain adaptation, especially due
to the lack of labeled supervision in the target domain.

Given the challenge of UDA under the corrupted source
domain, in this work, we propose a simple yet effective
solution for robust UDA that addresses various types of data
corruption. Specifically, inspired by the principle of Median
of Means (MoM) estimators [5], we alleviate the impacts
of corrupted training samples by ensemble learning on a
group of lightweight models with domain-invariant features,
which is shown to be effective in confronting poisoned data.
To further address the distribution shift inherent in domain
adaptation, we refine the learned models by maximizing the
mutual information between the latent feature representations
and the posterior distributions. Eventually, the final ensemble
model can attain the predictive knowledge of the target domain
with high confidence.

The merits of our proposed approach are multi-fold: i) It
is a principled and effective solution in defending contam-
inated training samples. ii) The proposed solution to UDA
is generally robust against agnostic types of data corruption.
In particular, our approach can successfully tackle notorious
backdoor attacks, where both the training samples and corre-
sponding labels may be maliciously modified by attackers. iii)
The proposed learning framework can be flexibly combined
with existing UDA approaches that are orthogonal to our work
to improve their robustness under corrupted data.

II. RELATED WORK

Domain Adaptation (DA) has been applied to a number
of practical applications, including semantic segmentation
[6], objective detection [7], etc. In this work, we work on
the problem setting of unsupervised domain adaptation
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Fig. 1: Source domain data corruption may lead to failure in
many existing domain adaptation approaches.

(UDA), which is more challenging than semi-supervised do-
main adaptation [8] where a few labeled samples of the
target domain are available to assist learning. Among various
UDA approaches, domain invariant representations reside at
their core. A plethora of work has been proposed to learn
feature representations that are discriminative for prediction
while being invariant among domains. Earlier work leveraged
the idea of minimizing the Maximum Mean Discrepancy
(MMD) to achieve feature invariance [9]. Adversarial train-
ing approaches emerged to minimize the discrepancy of the
latent feature distributions between different domains [10].
Moment matching was also widely utilized for learning latent
representations [11], which can be combined with generative
adversarial learning for improving such domain-invariance
[12]. Another direction towards solving UDA is based on data
reconstruction [13]. Most existing approaches did not tackle
the issue of source domain corruption.

Learning with noisy data has been extensively studied in
traditional, non-domain adaptation settings. Numerous robust
learning methods have been proposed for tackling feature
corruption, label corruption, and data poisoning attacks [14],
[15]. However, the problem of learning with noisy data for DA
is not well studied. Most of the existing robust DA methods
are limited to one or two particular types of noise in data.
[16] addressed domain adaptation under missing classes by
performing a unilateral alignment. [17], [18] solves DA in a
scenario where only the labels are noisy, with input features
untouched. [19] proposed a marginalized Stacked denoising
autoencoders (mSDA) to address feature corruption for DA.
[20] developed an offline curriculum learning approach to
tackle the label noise of DA, and adopted a proxy distribution
based margin discrepancy to alleviate feature noise.

Median of Means (MoM) Estimators [5] are robust estima-
tors utilizing the median of the predictions. [21] showed that
MoM has a theoretical advantage over classical ERM-based
approaches given long-tailed data with outliers, which can be
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very effective for solving general noisy data problems. [22],
[23] applied MoM for robust predictive learning. In this paper,
we leverage MoM to solve UDA with data corruption.

III. PROBLEM SETTING

Unsupervised Domain Adaptation (UDA) addresses learning
in a target domain without any label supervision via leveraging
knowledge obtained from a source domain. Denote PV :=
Ps(X) x Ps(Y) as the distribution of the source domain, and
PrY = Pr(X)xP(Y) as the distribution of the target domain,
respectively. One can access labeled samples from the source
domain, denoted as Dy := {z,yi}1*; C P¥. Accordingly,
let D; := {xg}f’;l C Pi(X) be the set of unlabeled samples
accessible in the target domain, Denote the loss function for
the target domain as £ : AY x Y — R*, where AY is
the simplex over the label space, with || = C denoting the
number of unique labels. Let © be the parameter space of the
learning model, and f(-; ) be the post-activation, prediction
output of model @ ~ ©. The objective for UDA is to optimize
the learning model performance on the target domain:

6" = argminE, ,pv [£(f(2:6).9)].
6coO

(D

In practice, the learning model is derived based on acces-
sible samples from both domains, i.e. @ < ®(Dy, D;), where
® is the learning procedure. Without loss of generality, in this
work, we focus on single domain adaptation, and our learning
framework can be readily extended to address multi-domain
adaptation problems.

UDA with Source Domain Corruption tackles domain adap-
tation from a corrupted source domain. One can consider
that there is a one-to-one mapping between the clean source
domain P?¥ and the corrupted source domain P*¥. The input
feature . can be disrupted with probability p,.:

Pe =By 51 p, () ey 1(E # 7).

Accordingly, labels of noisy samples are transformed based on
an unknown transition probability matrix 7~ € R¢*¢ where
C' is the cardinality of label types. Each entry 7 (i,5) in T
denotes the probability that a label ¢ € [C] is flipped to j € [C]
after data corruption:

T() = Byi gioip, )90 L5 = Jlys = 2)]-

Denote D, = {#%,7%} Y+, the noisy samples from P*Y, the
model learned under corrupted source domain is hence derived
by noisy source domain samples instead: 6 < @(f)s,Dt).
Such data corruption can be unconsciously introduced during
data collection by human mistakes or sensor malfunction, or
maliciously triggered via malicious attacks. It is a challenging
yet practical problem setting, potentially undermining most
existing UDA approaches that do not consider the risk of noisy
source domains (as illustrated in Figure 1).
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IV. METHODOLOGY
A. Preliminaries of Median of Means

Given a model 6, there exists a gap between the empirical
risk E(0) ‘%ZIND L(f(x;0),y), and the true risk
E0) = Ez,ywpmy‘[ﬁ(f(:c;G),y)}, which can be exacerbated
when the data are heavily tailed or contain contaminated
samples. Therefore, models that are learned to soley minimize
E (0) can be sensitive to outliers. Median of Means estimators
alleviate such issue by finding a more proper approximation
of the true risk, compared with an empirical risk minimizer
(ERM). Formally, let {z'}Y, be N iid. samples from an
unknown distribution P. Let the MoM estimator associated
with a parameter § € [e!~/2 1], then one can evenly separate
{x*}X¥, into K blocks, where K = [In(6~')]. The MoM
estimator fpzopr(0) is then defined as the median of the K
arithmetic mean of each block Xj:

1
ronr (8) = median | ——
piaon (6) = median <|Zk

The MoM estimator can probably attain subgaussian proper-
ties under mild assumptions on the variance of input features.
Particularly, VN > 4, one can derive that [24]:

) <s

Unlike the ERM estimator i = % Zf\;1 2%, MoM estimator is
robust to data with outliers or heavy-tailed inputs. Inspired by
MoM, we aim to approximate and minimize the centroid of
the excessive risks by ensemble learning, which is resemblant
to the median of means when we treat x; as a sample-wise
loss value.

1+ In(6-1)

P (MM0M(5) —Ep[z])| > C N

B. Robust UDA via Ensemble Learning

We now elaborate on our learning paradigm. We first
randomly split the source domain data D, := {3, 3}, into
K even blocks {DF}E | and apply the same random split
for the unlabelded target domain data: {DF}X . Next, we
learn K separate models with parameters {6}%_,, while each
optimizing towards a domain-adaptation objective using one
pair of the (source, target) domain data block, respectively, to
minimize the empirical risk:

K

D By it s JoA (T Yss 1, Ok), ()
k=1

1

{Bkrjlér}lf: K
in which Jpa (s, ys, 2¢; 0) is the domain-adaptation risk func-
tion. One highlight of our work is that, we do not constrain
the specific form of Jpa, hence a variety of UDA approaches
proposed by prior arts can be flexibly integrated into our
learning framework, by applying different forms of Jps as
in need. In practice, Jpa is usually derived by adversarial
learning to attain a saddle-point solution that captures domain-
invariant latent representations [25], [10]. Without the loss of
generality, we present one form of Jpa as below, although
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any other legitimate objective forms are also applicable:
JDA(SUSastt,;e) :

log(1 — D(g(xs;0)))] + log(D(g(x+;0)))
(A)

+ ‘C(f(xsv 0)7 yS)L

—_———

(B)

in which D is a discriminator model inspired by adversarial
generative training [26], and g(-; @) is the latent feature map
of model 6. The term (A) in Equation 3 encourages learning a
domain-invariant feature representation, while the term (B) in
Equation 3 reinforces the predictive power of the model using
labeled supervision from the source domain.

Once the K models have been learned, the centroid predic-
tion of arbitrary sample x can be derived by their ensemble
voting:

max
D:X—[0,1)

3

7 = ensemble(z; {0 }5_)
K

= arg maxZ]I(arg max f(z;0). = y),
y~Y 1 e~y

“

where I is an indicator function; f(z;0y) is the posterior
distribution output of model 0y, and f(z;8y). indicates the
predictive probability of input feature belonging to class c.
Therefore, 3 of an input feature = is the most voted label by
the K models, which alleviates the influences of potentially
contaminated models induced by data corruption.

C. Hypothesis Adaptation by Information Maximization

Up to now, one can derive a conceptual robust model by
using the ensemble results from multiple models. To reinforce
the performance of models before the final ensemble, we
can adapt their hypothesis to the target domain by further
leveraging the unlabeled target domain samples. More con-
cretely, we refine each learned model 6; by maximizing the
mutual information between its latent feature representations
and its posterior distribution. using the following information
maximization objective:

min JIM (Dt; Gk)
0y

=By, ~p, [H (f(2;0))] = H (softmax(Eqz~p, [f (245 0k)))),
A

B

(&)

where H (p) is the entropy for input p ~ AY.

This refinement objective aligns with a common perception
that, an ideal model shall be confident in its sample-wise
predictions (minimize term A), and be diversified on domain-
wise predictions (maximize term B). A resemblant strategy has
been applied by prior work to address source-free DA [27]. In
our setting, optimizing toward this objective shows significant
benefits in weakening the impacts of source data corruption,
which can adaptively tune the potentially contaminated model
to fit in the target domain hypothesis.

Moreover, when refining a model 6y using target do-
main samples, we can obtain the pseudo label g
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arg max f(x¢;0). for each sample z;, as well as the class-
c~[C]
wise centroid representation gi:

Vk € [C], gk = By, go=r [9(24; 01)) - (6)

where g(xy;0y) is the latent feature representation of xy,
i.e. the penultimate layer output of model 8. We find it
beneficial to correct the pseudo labels of z; by finding the

nearest centroid: §; := arg min cos(g(z; 0x), gk ), then use the
ke[C]

corrected pseudo labels ¢, to adjust the model. More concretly,

this augmented objective Jpy, is derived as follows:

n;in JpL i = Eqpynp, g, [~ log(f (24 0k)g,)] - @)
k

-: Potentially Contaminated Model . : Clean Model
Source Domain Samples D

Data Splitting
&> s

PN

77777 Information
Maximization

Target Domain Training D) t

Fig. 2: Process of robust domain adaptation learning.

Based on the above building blocks, we now summarize our
robust domain adaptation approach in Algorithm 1, in which
K models are independently learned using separated training
blocks, then refined to adapt their model hypothesis into the
target domain by optimizing Equation 5 and Equation 7, where
« and [ are the constant w.r.t the gradient of Equation 5 and
Equation 7, respectively. Note that for each learning batch 1,
we iteratively adjust the centroid g; using the updated model.
Eventually, their ensemble voting is used as the final prediction
for the target domain.

V. EVALUATION

In this section, we conduct extensive experiments' on multi-
ple benchmark datasets to investigate the following question:
whether our approach is effective for unsupervised domain
adaptation, given a corrupted source domain data?

A. Experiment Setup

Dataset: We conducted experiments using the following
datasets: 1) Digit datasets: the UDA tasks from MNIST [28]
to USPS [29] M—U), and from USPS to MNIST (U—M),
respectively. 2) Image datasets: the UDA task from CIFAR10
[30] to STL [31] with the non-overlapping class of these two
detests removed. Hence, these two domains are redefined as 9-
class classification tasks. We also downscale the original image
dimension of STL to the image dimension of CIFAR10.

'The code is available at https:/github.com/illidanlab/RobustUDA
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Algorithm 1 Robust Unsupervised Domain Adaptation
1:

Inputs: labeled source domain dataset Dg; unlabeled
target domain dataset D;; constant K, DA risk function
Joa + X X X x Y — RT; K models {0;}5 | ~ ©.
training steps E7, adaptation steps Fo; constant o, 5 > 0.

2: Randomly split D,,D; into K blocks of pairs:
E pEVK k |Ds | k |Ds|
{DsaDt }k:l’ stV k7 |,Ds‘ < [717 ‘Dt ‘ < [T—l
3: for k ~ [K] in parallel do
4: for1<i< F; do
5: Ok %Ok 7n*vﬂk;ED§,Df [JDA(-Ts,yszt)}-
6:  end for
7: end for
8: for k ~ [K] in parallel do
9: for1<i< F5do
10: O +— 0, —n (OéVetJIM(Dt; ek) + QJPL(Dt; Gk))
11:  end for
12: end for
13: Return ensemble{6; } X .
DA Task Poison ratio  Bnum Clean acc T  Poison acc T  Success rate |
0 (clean) T 8880 1126 9.62
001 T 8879 857 9233
- 10 8625 12.21 8.77
M—U o0 T 8934 877 97.06
; 15 8386 11.61 28.65
003 T 8844 8.62 95.17
DANN ; 20 8276 11.21 35.87
0 (clean) T 9554 956 9.89
001 T 9538 10.02 94.89
; 10 8500 10.24 12.88
U—=M o0 T 9330 1021 97.82
- 10 8322 10.50 18.09
003 T 95.02 10.10 99.12
- 20 7531 10.57 18.87
0 (clean) T 9347 1241 957
001 T 9352 852 9427
: 10 8784 1276 9.97
M—U o0 T 9407 857 97.46
; 15 8545 12.01 19.18
003 T 9402 882 99.15
CDAN 5 20 8271 10.96 38.22
0 (clean) T 9296 968 10.04
001 T 9629 10.17 93.49
) 10 83.09 10.48 15.62
UM o0 T 934 0.1 97.27
- 15 7171 10.56 17.51
003 T 9722 0.13 98.39
e 20 7439 10.53 20.76

TABLE I. Accuracy(%) and attack success rates(%) for MoM
using under BadNet attacks. 1 indicates that a larger value is
desirable, and vice versa. Bold numbers are best performers.
Bnum indicates block number. By applying MoM, we can
significantly bring down the attack success rate and also
improve the target poison test accuracy, while maintaining the
target clean sample accuracy.

Compared Approaches: We compare our method against the
following approaches: 1) DANN is a representative UDA
method based on generative-adversarial learning [25]. 2)
CDAN is short for conditional adversarial domain adaptation,
which conditions the model posterior on the discriminative
information from the classifier [32].

Implementation: We choose backdoor attacks as our cor-
ruption method because it is a more challenging attack than
feature noise or label noise attacks that existing robust DA
methods managed to solve. We implement two kinds of
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backdoor attacks:
1) BadNet Attack : BadNet [33] is one of the most common
backdoor attacks. According to a set poison ratio, we add
a 5 x b trigger to the upper right corner of each poisoned
sample from the source domain. These poisoned samples are
also assigned with attacker-specified target labels. Then these
poisoned source samples are fed into DNNs along with the
remaining clean source samples and a few unlabeled target
samples for training. The network is evaluated both on the
clean target samples and poisoned target samples which are
corrupted the same way as source samples.
2) Clean Label Backdoor Attack (CLBD): Compared with
BadNet, CLBD [14] does not change the label of poison
samples, but adds a learned adversarial perturbation to each
base image. We craft the poison samples on a pre-trained
Resnet-18 model using the CIFAR10 dataset, then modify
them with a trigger. Note that the poison ratio for CLBD
represents the fraction of examples poisoned from a single
class, instead of the entire source training samples.

For the digit tasks, we utilize the LeNet-5 [34] network,
while for image tasks, we adopt the Resnet-18 network.

Evaluations are performed w.r.z. the following criteria:

1) Target clean accuracy (Clean acc) refers to the accu-
racy evaluated on the clean target dataset. 2) Target poison
accuracy (Poison acc) refers to the accuracy evaluated on
the poisoned target data with clean labels. 3) Attack success
rate (Success rate) refers to the accuracy evaluated on the
poisoned target data with poisoned labels. This criterion can
help us find out whether hidden backdoors are activated by
attacker-specified trigger patterns.

B. Results and Discussions

For the digits tasks (M«>U), we apply BadNet attacks and
vary the poison ratio from 0.01 to 0.03. For image adaptations
between CIFAR10 and STL, we fix the poison ratio to be 0.02
for BadNet attacks and 0.5 for CLBD attacks.

Effects of MoM on defending poison data attacks: For
digit adaptation tasks, we evaluate the accuracy and attack
success rates w.r.t. different poison ratios for two different base
DA approaches: DANN and CDAN, respectively. As shown
in Table I, our proposed MoM method is consistently robust
given different base DA algorithms. When the poison ratio is
0, there are no poisoning attacks on source data, hence the
poison acc and success rate for poison ratio = 0 is evaluated
on poisoned testing samples, with a model trained on clean
samples. We use this result as a reference for the following
experiments. The performance of MoM for image task under
BadNet and CLBD attacks is shown in Figure 3. Block number
= 1 refers to training without applying MoM, which we use
as the baselines for our proposed algorithm. We found that
by applying MoM, we significantly bring down the attack
success rate and improve the target poison test accuracy while
maintaining the target clean sample accuracy. The results for
both tasks can be further improved by adaptation with IM or
PL which will be covered later.
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Effects of different block numbers for MoM: We also inves-
tigate how the number of blocks would affect the performance
of our approach. We observe that increasing the number of
blocks within a certain range is beneficial for improving the
performance. The best block number is related to the poison
ratio and can be task dependent. For instance, adaptation tasks
between CIFAR10 and STL need more blocks to achieve a
low attack success rate, compared with digits adaptations.
Meanwhile, we show that adaptation with IM or PL (Section
IV-C) is more beneficial for enhancing the robustness of our
approach, instead of keeping increasing the block number.

= Clean acc
Poison acc
—— Success rate

= Clean acc
Poison acc
—— Success rate

Accuravy(%)
Accuravy(%)

] B '] B

0 25 5 20 2
Block size Block size

(a) BadNet attacks using DANN (b) CLBD attacks using DANN

Fig. 3: Clean test accuracy, poison test accuracy and attack
success rate for MOM w.r:t. different block number. Increasing
the number of blocks within a certain range is beneficial for
improving the performance.

Effects of defending poison data attack using adaptation:
To further improve the results, we refine our model with
adaptation method IM and PL (section IV-C). IM and PL are
verified to be effective to not only further decrease the attack
success rate but also increase the target poison accuracy. To
the best of our knowledge, our proposed method is the most
robust DA method given corrupted source samples compared
with existing methods. For the digits tasks, we evaluate our
proposed MoM + adaptation algorithm with poison ratio=0.03
and block number=20, using two models: DANN and CDAN,
respectively, as shown in Table II. For image task, the accuracy

DA model Task Clean acc T  Poison acc T  Success rate |  Adaptation
82.76 11.21 35.87 /
M—-U  80.67 11.71 19.03 ™M
81.22 11.96 16.49 IM+PL
DANN 7531 1057 18.87
U—-M 7895 10.62 10.11 M
79.46 10.76 9.89 IM+PL
82.71 10.96 38.22
M—U 8142 12.51 7.08 ™M
81.81 12.16 10.66 IM+PL
CDAN 7339 1053 2076
U—-M 78.90 10.50 11.58 ™M
80.67 10.56 10.60 IM+PL

TABLE II: Accuracy(%) and attack success rates(%) for digit
task. Our adaptation method is consistently robust given dif-
ferent DA algorithms. IM and PL are verified to be effective to
not only further decrease attack success rate but also increase
the target poison test accuracy.

and attack success rates for BadNet attacks and CLBD attacks
with the best block size 40 are shown in Table III. Both IM and
PL can be used to further improve the results for defending
BadNet and CLBD attacks while IM shows the best results.
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Attack  Clean acc T Poison acc T  Success rate |  Adaptation
62.00 55.76 19.28 /

BadNet 62.00 56.76 16.64 M
60.85 50.79 18.38 IM+PL
63.98 48.97 25.96 /

CLBD 61.99 50.38 23.45 M
62.41 50.71 24.37 IM+PL

TABLE III: Accuracy(%) and attack success rates(%) using
base approach DANN for the task CIFAR10 — STL under
BadNet and CLBD attack. Our adaptation method is consis-
tently robust given different kinds of tasks and corruptions.

VI. CONCLUSION

In this work, we tackled the problem of unsupervised
domain adaptation under corrupted source domain samples.
Inspired by the Median of Means estimators, we proposed a
principled and robust ensemble learning algorithm powered
by hypothesis transfer via information maximization, which
can defend corrupted training samples with high performance
on the target domain. Extensive empirical studies showed that
our UDA approach is robust against agnostic data corruption,
which can serve as a general framework to improve the
robustness of orthogonal UDA approaches. We leave more
complex scenarios, such as corrupted multi-domain adaptation,
to our future work.
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