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Abstract—Unsupervised Domain Adaptation (UDA) provides
a promising solution for learning without supervision, which
transfers knowledge from relevant source domains with accessible
labeled training data. Existing UDA solutions hinge on clean
training data with a short-tail distribution from the source
domain, which can be fragile when the source domain data is cor-
rupted either inherently or via adversarial attacks. In this work,
we propose an effective framework to address the challenges of
UDA from corrupted source domains in a principled manner.
Specifically, we perform knowledge ensemble from multiple
domain-invariant models that are learned on random partitions
of training data. To further address the distribution shift from
the source to the target domain, we refine each of the learned
models via mutual information maximization, which adaptively
obtains the predictive information of the target domain with
high confidence. Extensive empirical studies demonstrate that the
proposed approach is robust against various types of poisoned
data attacks while achieving high asymptotic performance on the
target domain.

Index Terms—Unsupervised Domain Adaptation, Robust
Learning, Poison Data Attack

I. INTRODUCTION

Deep learning techniques have been thriving over the last

decade as a powerful tool for predictive modeling in a vari-

ety of domains, including computer vision [1], autonomous

vehicles [2], and healthcare [3], to name just a few. The

over-parameterization design of deep models gives them ultra-

high model flexibility, which gives them the power to capture

complex mappings between input data points and target la-

bels. The success of deep learning-based predictive modeling,

however, hinges on massive training data with accurate labels,

which hinders its application to tasks with limited training

label supervision, where collecting accurate labels can be eco-

nomically prohibitive. Longitudinal studies, strict enrollment

conditions, data coding errors, and high costs associated with

the data collection often result in only very small datasets

being available for supervised learning [4].

Domain adaptation (DA) has emerged as an effective so-

lution, which transfers knowledge learned from a related but

different domain (i.e. the source domain) to assist the learning

of the target domain. In particular, a challenging and practical

problem along this line is unsupervised domain adaptation
(UDA), in which the target domain has access to only a few

unlabeled training samples. While UDA has been extensively

studied for typical machine learning settings, most existing

UDA methods are usually built upon an implicit assumption

that source domain data is clean. Under this assumption,

UDA methods are prone to performance degradation when the

source domain samples are corrupted, either unintentionally

during data collection or deliberately by vicious attackers.

Consequently, models learned on the corrupted source data

can be easily under attack even on the source domain, not to

mention confronting the challenges of domain distribution shift

when adapting to the target domain. Such model performance

degradation can be exacerbated under adversarial attacks. For

instance, as illustrated in Figure 1, a minimal corruption in

source domain samples shifts the model’s hypothesis plane

drastically when performing domain adaptation, especially due

to the lack of labeled supervision in the target domain.

Given the challenge of UDA under the corrupted source

domain, in this work, we propose a simple yet effective

solution for robust UDA that addresses various types of data

corruption. Specifically, inspired by the principle of Median

of Means (MoM) estimators [5], we alleviate the impacts

of corrupted training samples by ensemble learning on a

group of lightweight models with domain-invariant features,

which is shown to be effective in confronting poisoned data.

To further address the distribution shift inherent in domain

adaptation, we refine the learned models by maximizing the

mutual information between the latent feature representations

and the posterior distributions. Eventually, the final ensemble

model can attain the predictive knowledge of the target domain

with high confidence.

The merits of our proposed approach are multi-fold: i) It

is a principled and effective solution in defending contam-

inated training samples. ii) The proposed solution to UDA

is generally robust against agnostic types of data corruption.

In particular, our approach can successfully tackle notorious

backdoor attacks, where both the training samples and corre-

sponding labels may be maliciously modified by attackers. iii)

The proposed learning framework can be flexibly combined

with existing UDA approaches that are orthogonal to our work

to improve their robustness under corrupted data.

II. RELATED WORK

Domain Adaptation (DA) has been applied to a number

of practical applications, including semantic segmentation

[6], objective detection [7], etc. In this work, we work on

the problem setting of unsupervised domain adaptation
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Fig. 1: Source domain data corruption may lead to failure in

many existing domain adaptation approaches.

(UDA), which is more challenging than semi-supervised do-

main adaptation [8] where a few labeled samples of the

target domain are available to assist learning. Among various

UDA approaches, domain invariant representations reside at

their core. A plethora of work has been proposed to learn

feature representations that are discriminative for prediction

while being invariant among domains. Earlier work leveraged

the idea of minimizing the Maximum Mean Discrepancy

(MMD) to achieve feature invariance [9]. Adversarial train-

ing approaches emerged to minimize the discrepancy of the

latent feature distributions between different domains [10].

Moment matching was also widely utilized for learning latent

representations [11], which can be combined with generative

adversarial learning for improving such domain-invariance

[12]. Another direction towards solving UDA is based on data

reconstruction [13]. Most existing approaches did not tackle

the issue of source domain corruption.

Learning with noisy data has been extensively studied in

traditional, non-domain adaptation settings. Numerous robust

learning methods have been proposed for tackling feature

corruption, label corruption, and data poisoning attacks [14],

[15]. However, the problem of learning with noisy data for DA

is not well studied. Most of the existing robust DA methods

are limited to one or two particular types of noise in data.

[16] addressed domain adaptation under missing classes by

performing a unilateral alignment. [17], [18] solves DA in a

scenario where only the labels are noisy, with input features

untouched. [19] proposed a marginalized Stacked denoising

autoencoders (mSDA) to address feature corruption for DA.

[20] developed an offline curriculum learning approach to

tackle the label noise of DA, and adopted a proxy distribution

based margin discrepancy to alleviate feature noise.

Median of Means (MoM) Estimators [5] are robust estima-

tors utilizing the median of the predictions. [21] showed that

MoM has a theoretical advantage over classical ERM-based

approaches given long-tailed data with outliers, which can be

very effective for solving general noisy data problems. [22],

[23] applied MoM for robust predictive learning. In this paper,

we leverage MoM to solve UDA with data corruption.

III. PROBLEM SETTING

Unsupervised Domain Adaptation (UDA) addresses learning

in a target domain without any label supervision via leveraging

knowledge obtained from a source domain. Denote Pxy
s :=

Ps(X)×Ps(Y ) as the distribution of the source domain, and

Pxy
t = Pt(X)×Pt(Y ) as the distribution of the target domain,

respectively. One can access labeled samples from the source

domain, denoted as Ds := {xi
s, y

i
s}Ns

i=1 ⊂ Pxy
s . Accordingly,

let Dt := {xj
t}Nt

j=1 ⊂ Pt(X) be the set of unlabeled samples

accessible in the target domain, Denote the loss function for

the target domain as L : �Y × Y → R
+, where �Y is

the simplex over the label space, with |Y| = C denoting the

number of unique labels. Let Θ be the parameter space of the

learning model, and f(·;θ) be the post-activation, prediction

output of model θ ∼ Θ. The objective for UDA is to optimize

the learning model performance on the target domain:

θ∗ = argmin
θ∈Θ

Ex,y∼Pxy
t

[L(f(x;θ), y)] . (1)

In practice, the learning model is derived based on acces-

sible samples from both domains, i.e. θ ← Φ(Ds,Dt), where

Φ is the learning procedure. Without loss of generality, in this

work, we focus on single domain adaptation, and our learning

framework can be readily extended to address multi-domain

adaptation problems.

UDA with Source Domain Corruption tackles domain adap-

tation from a corrupted source domain. One can consider

that there is a one-to-one mapping between the clean source

domain Pxy
s and the corrupted source domain P̃xy

s . The input

feature xi
s can be disrupted with probability pe:

pe := Exi
s,x̃

i
s∼〈Ps(X ),P̃s(X )〉[I(x̃

i
s �= xi

s)].

Accordingly, labels of noisy samples are transformed based on

an unknown transition probability matrix T ∈ R
C×C , where

C is the cardinality of label types. Each entry T (i, j) in T
denotes the probability that a label i ∈ [C] is flipped to j ∈ [C]
after data corruption:

T (i, j) = Eyi
s,ỹ

i
s∼〈Ps(Y),Ỹs(X )〉[I(ỹs = j|ys = i)].

Denote D̃s = {x̃i
s, ỹ

i
s}Ns

i=1 the noisy samples from P̃xy
s , the

model learned under corrupted source domain is hence derived

by noisy source domain samples instead: θ ← Φ(D̃s,Dt).
Such data corruption can be unconsciously introduced during

data collection by human mistakes or sensor malfunction, or

maliciously triggered via malicious attacks. It is a challenging

yet practical problem setting, potentially undermining most

existing UDA approaches that do not consider the risk of noisy

source domains (as illustrated in Figure 1).
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IV. METHODOLOGY

A. Preliminaries of Median of Means

Given a model θ, there exists a gap between the empirical

risk Ê(θ) := 1
|D|

∑
x∼D L(f(x; θ), y), and the true risk

E(θ) := Ex,y∼Pxy [L(f(x; θ), y)], which can be exacerbated

when the data are heavily tailed or contain contaminated

samples. Therefore, models that are learned to soley minimize

Ê(θ) can be sensitive to outliers. Median of Means estimators

alleviate such issue by finding a more proper approximation

of the true risk, compared with an empirical risk minimizer

(ERM). Formally, let {xi}Ni=1 be N i.i.d. samples from an

unknown distribution P . Let the MoM estimator associated

with a parameter δ ∈ [e1−N/2, 1], then one can evenly separate

{xi}Ni=1 into K blocks, where K = 	ln(δ−1)
. The MoM

estimator μMoM (δ) is then defined as the median of the K
arithmetic mean of each block Xk:

μMoM (δ) = median

(
1

|Zk|
∑

xi∼Xk

xi;

)K

k=1

.

The MoM estimator can probably attain subgaussian proper-

ties under mild assumptions on the variance of input features.

Particularly, ∀N ≥ 4, one can derive that [24]:

P

(
|μMoM (δ)− EP [x])| > C

√
1 + ln(δ−1)

N

)
≤ δ.

Unlike the ERM estimator μ̂ = 1
N

∑N
i=1 x

i, MoM estimator is

robust to data with outliers or heavy-tailed inputs. Inspired by

MoM, we aim to approximate and minimize the centroid of

the excessive risks by ensemble learning, which is resemblant

to the median of means when we treat xi as a sample-wise

loss value.

B. Robust UDA via Ensemble Learning

We now elaborate on our learning paradigm. We first

randomly split the source domain data D̃s := {x̃i
s, ỹ

i
s}Ns

i=1 into

K even blocks {D̃k
s}Kk=1, and apply the same random split

for the unlabelded target domain data: {Dk
t }Kk=1. Next, we

learn K separate models with parameters {θ}Kk=1, while each

optimizing towards a domain-adaptation objective using one

pair of the 〈source, target〉 domain data block, respectively, to

minimize the empirical risk:

min
{θk∼Θ}K

k=1

1

K

K∑
k=1

Exs,ys∼D̃k
s ,xt∼Dk

t
JDA(xs, ys, xt,θk), (2)

in which JDA(xs, ys, xt; θ) is the domain-adaptation risk func-

tion. One highlight of our work is that, we do not constrain

the specific form of JDA, hence a variety of UDA approaches

proposed by prior arts can be flexibly integrated into our

learning framework, by applying different forms of JDA as

in need. In practice, JDA is usually derived by adversarial

learning to attain a saddle-point solution that captures domain-

invariant latent representations [25], [10]. Without the loss of

generality, we present one form of JDA as below, although

any other legitimate objective forms are also applicable:

JDA(xs, ys, xt; θ) :=

max
D:X→[0,1)

[log(1−D(g(xs;θ)))] + log(D(g(xt;θ)))︸ ︷︷ ︸
(A)

+ L(f(xs;θ), ys)︸ ︷︷ ︸
(B)

], (3)

in which D is a discriminator model inspired by adversarial

generative training [26], and g(·;θ) is the latent feature map

of model θ. The term (A) in Equation 3 encourages learning a

domain-invariant feature representation, while the term (B) in

Equation 3 reinforces the predictive power of the model using

labeled supervision from the source domain.

Once the K models have been learned, the centroid predic-

tion of arbitrary sample x can be derived by their ensemble
voting:

ȳ = ensemble(x; {θk}Kk=1)

= argmax
y∼Y

K∑
k=1

I(argmax
c∼Y

f(x;θk)c = y), (4)

where I is an indicator function; f(x;θk) is the posterior

distribution output of model θk, and f(x;θk)c indicates the

predictive probability of input feature belonging to class c.
Therefore, ȳ of an input feature x is the most voted label by

the K models, which alleviates the influences of potentially

contaminated models induced by data corruption.

C. Hypothesis Adaptation by Information Maximization

Up to now, one can derive a conceptual robust model by

using the ensemble results from multiple models. To reinforce

the performance of models before the final ensemble, we

can adapt their hypothesis to the target domain by further

leveraging the unlabeled target domain samples. More con-

cretely, we refine each learned model θt by maximizing the

mutual information between its latent feature representations

and its posterior distribution. using the following information

maximization objective:

min
θk

JIM(Dt;θk)

:= Ext∼Dt
[H (f(x;θk))]︸ ︷︷ ︸

A

−H (softmax(Ex∼Dt [f(xt;θk)]))︸ ︷︷ ︸
B

,

(5)

where H(p) is the entropy for input p ∼ �Y .

This refinement objective aligns with a common perception

that, an ideal model shall be confident in its sample-wise

predictions (minimize term A), and be diversified on domain-

wise predictions (maximize term B). A resemblant strategy has

been applied by prior work to address source-free DA [27]. In

our setting, optimizing toward this objective shows significant

benefits in weakening the impacts of source data corruption,

which can adaptively tune the potentially contaminated model

to fit in the target domain hypothesis.

Moreover, when refining a model θk using target do-

main samples, we can obtain the pseudo label ŷt =
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argmax
c∼[C]

f(xt;θ)c for each sample xt, as well as the class-

wise centroid representation ḡk:

∀k ∈ [C], ḡk = Ext∼Dt,ŷt=k [g(xt;θk)] . (6)

where g(xt;θk) is the latent feature representation of xt,

i.e. the penultimate layer output of model θ. We find it

beneficial to correct the pseudo labels of xt by finding the

nearest centroid: ȳt := argmin
k∈[C]

cos(g(xt;θk), ḡk), then use the

corrected pseudo labels ȳt to adjust the model. More concretly,

this augmented objective JPL is derived as follows:

min
θk

JPL := Ext∼Dt,ȳt [− log(f(xt;θk)ȳt)] . (7)

Fig. 2: Process of robust domain adaptation learning.

Based on the above building blocks, we now summarize our

robust domain adaptation approach in Algorithm 1, in which

K models are independently learned using separated training

blocks, then refined to adapt their model hypothesis into the

target domain by optimizing Equation 5 and Equation 7, where

α and β are the constant w.r.t the gradient of Equation 5 and

Equation 7, respectively. Note that for each learning batch i,
we iteratively adjust the centroid ḡk using the updated model.

Eventually, their ensemble voting is used as the final prediction

for the target domain.

V. EVALUATION

In this section, we conduct extensive experiments1 on multi-

ple benchmark datasets to investigate the following question:

whether our approach is effective for unsupervised domain

adaptation, given a corrupted source domain data?

A. Experiment Setup

Dataset: We conducted experiments using the following

datasets: 1) Digit datasets: the UDA tasks from MNIST [28]

to USPS [29] (M→U), and from USPS to MNIST (U→M),

respectively. 2) Image datasets: the UDA task from CIFAR10

[30] to STL [31] with the non-overlapping class of these two

detests removed. Hence, these two domains are redefined as 9-

class classification tasks. We also downscale the original image

dimension of STL to the image dimension of CIFAR10.

1The code is available at https://github.com/illidanlab/RobustUDA

Algorithm 1 Robust Unsupervised Domain Adaptation
1: Inputs: labeled source domain dataset Ds; unlabeled

target domain dataset Dt; constant K, DA risk function

JDA : X × X × Y → R
+; K models {θk}Kk=1 ∼ Θ.

training steps E1, adaptation steps E2; constant α, β > 0.

2: Randomly split Ds,Dt into K blocks of pairs:

{Dk
s ,Dk

t }Kk=1, s.t. ∀ k, |Dk
s | ≤ � |Ds|

K �, |Dk
t | ≤ � |Dt|

K �.

3: for k ∼ [K] in parallel do
4: for 1 ≤ i ≤ E1 do
5: θk ← θk − η ∗ ∇θk

EDk
s ,D

k
t
[JDA(xs, ys, xt)] .

6: end for
7: end for
8: for k ∼ [K] in parallel do
9: for 1 ≤ i ≤ E2 do

10: θk ← θk − η (α∇θt
JIM(Dt;θk) + βJPL(Dt;θk)).

11: end for
12: end for
13: Return ensemble{θk}Kk=1.

DA Task Poison ratio Bnum Clean acc ↑ Poison acc ↑ Success rate ↓

DANN

M→U

0 (clean) 1 88.89 11.26 9.62

0.01
1 88.79 8.57 92.33
10 86.25 12.21 8.77

0.02
1 89.34 8.77 97.06
15 83.86 11.61 28.65

0.03
1 88.44 8.62 95.17
20 82.76 11.21 35.87

U→M

0 (clean) 1 95.54 9.56 9.89

0.01
1 95.38 10.02 94.89
10 85.00 10.24 12.88

0.02
1 93.30 10.21 97.82
10 83.22 10.50 18.09

0.03
1 95.02 10.10 99.12
20 75.31 10.57 18.87

CDAN

M→U

0 (clean) 1 93.47 12.41 9.57

0.01
1 93.52 8.52 94.27
10 87.84 12.76 9.97

0.02
1 94.07 8.57 97.46
15 85.45 12.01 19.18

0.03
1 94.02 8.82 99.15
20 82.71 10.96 38.22

U→M

0 (clean) 1 92.96 9.68 10.04

0.01
1 96.29 10.17 93.49
10 83.09 10.48 15.62

0.02
1 93.4 10.1 97.27
15 77.71 10.56 17.51

0.03
1 97.22 10.13 98.39
20 74.39 10.53 20.76

TABLE I: Accuracy(%) and attack success rates(%) for MoM

using under BadNet attacks. ↑ indicates that a larger value is

desirable, and vice versa. Bold numbers are best performers.

Bnum indicates block number. By applying MoM, we can

significantly bring down the attack success rate and also

improve the target poison test accuracy, while maintaining the

target clean sample accuracy.

Compared Approaches: We compare our method against the

following approaches: 1) DANN is a representative UDA

method based on generative-adversarial learning [25]. 2)

CDAN is short for conditional adversarial domain adaptation,

which conditions the model posterior on the discriminative

information from the classifier [32].

Implementation: We choose backdoor attacks as our cor-

ruption method because it is a more challenging attack than

feature noise or label noise attacks that existing robust DA

methods managed to solve. We implement two kinds of
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backdoor attacks:

1) BadNet Attack : BadNet [33] is one of the most common

backdoor attacks. According to a set poison ratio, we add

a 5 × 5 trigger to the upper right corner of each poisoned

sample from the source domain. These poisoned samples are

also assigned with attacker-specified target labels. Then these

poisoned source samples are fed into DNNs along with the

remaining clean source samples and a few unlabeled target

samples for training. The network is evaluated both on the

clean target samples and poisoned target samples which are

corrupted the same way as source samples.

2) Clean Label Backdoor Attack (CLBD): Compared with

BadNet, CLBD [14] does not change the label of poison

samples, but adds a learned adversarial perturbation to each

base image. We craft the poison samples on a pre-trained

Resnet-18 model using the CIFAR10 dataset, then modify

them with a trigger. Note that the poison ratio for CLBD
represents the fraction of examples poisoned from a single

class, instead of the entire source training samples.

For the digit tasks, we utilize the LeNet-5 [34] network,

while for image tasks, we adopt the Resnet-18 network.

Evaluations are performed w.r.t. the following criteria:

1) Target clean accuracy (Clean acc) refers to the accu-

racy evaluated on the clean target dataset. 2) Target poison
accuracy (Poison acc) refers to the accuracy evaluated on

the poisoned target data with clean labels. 3) Attack success
rate (Success rate) refers to the accuracy evaluated on the

poisoned target data with poisoned labels. This criterion can

help us find out whether hidden backdoors are activated by

attacker-specified trigger patterns.

B. Results and Discussions

For the digits tasks (M↔U), we apply BadNet attacks and

vary the poison ratio from 0.01 to 0.03. For image adaptations

between CIFAR10 and STL, we fix the poison ratio to be 0.02
for BadNet attacks and 0.5 for CLBD attacks.

Effects of MoM on defending poison data attacks: For

digit adaptation tasks, we evaluate the accuracy and attack

success rates w.r.t. different poison ratios for two different base

DA approaches: DANN and CDAN, respectively. As shown

in Table I, our proposed MoM method is consistently robust

given different base DA algorithms. When the poison ratio is

0, there are no poisoning attacks on source data, hence the

poison acc and success rate for poison ratio = 0 is evaluated

on poisoned testing samples, with a model trained on clean

samples. We use this result as a reference for the following

experiments. The performance of MoM for image task under

BadNet and CLBD attacks is shown in Figure 3. Block number

= 1 refers to training without applying MoM, which we use

as the baselines for our proposed algorithm. We found that
by applying MoM, we significantly bring down the attack
success rate and improve the target poison test accuracy while
maintaining the target clean sample accuracy. The results for

both tasks can be further improved by adaptation with IM or

PL which will be covered later.

Effects of different block numbers for MoM: We also inves-

tigate how the number of blocks would affect the performance

of our approach. We observe that increasing the number of
blocks within a certain range is beneficial for improving the
performance. The best block number is related to the poison

ratio and can be task dependent. For instance, adaptation tasks

between CIFAR10 and STL need more blocks to achieve a

low attack success rate, compared with digits adaptations.

Meanwhile, we show that adaptation with IM or PL (Section

IV-C) is more beneficial for enhancing the robustness of our

approach, instead of keeping increasing the block number.

(a) BadNet attacks using DANN (b) CLBD attacks using DANN

Fig. 3: Clean test accuracy, poison test accuracy and attack

success rate for MOM w.r.t. different block number. Increasing

the number of blocks within a certain range is beneficial for

improving the performance.

Effects of defending poison data attack using adaptation:
To further improve the results, we refine our model with

adaptation method IM and PL (section IV-C). IM and PL are
verified to be effective to not only further decrease the attack
success rate but also increase the target poison accuracy. To
the best of our knowledge, our proposed method is the most
robust DA method given corrupted source samples compared
with existing methods. For the digits tasks, we evaluate our

proposed MoM + adaptation algorithm with poison ratio=0.03
and block number=20, using two models: DANN and CDAN,

respectively, as shown in Table II. For image task, the accuracy

DA model Task Clean acc ↑ Poison acc ↑ Success rate ↓ Adaptation

DANN

M→U
82.76 11.21 35.87 /
80.67 11.71 19.03 IM
81.22 11.96 16.49 IM+PL

U→M
75.31 10.57 18.87 /
78.95 10.62 10.11 IM
79.46 10.76 9.89 IM+PL

CDAN

M→U
82.71 10.96 38.22 /
81.42 12.51 7.08 IM
81.81 12.16 10.66 IM+PL

U→M
74.39 10.53 20.76 /
78.90 10.50 11.58 IM
80.67 10.56 10.60 IM+PL

TABLE II: Accuracy(%) and attack success rates(%) for digit

task. Our adaptation method is consistently robust given dif-

ferent DA algorithms. IM and PL are verified to be effective to

not only further decrease attack success rate but also increase

the target poison test accuracy.

and attack success rates for BadNet attacks and CLBD attacks

with the best block size 40 are shown in Table III. Both IM and

PL can be used to further improve the results for defending

BadNet and CLBD attacks while IM shows the best results.
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Attack Clean acc ↑ Poison acc ↑ Success rate ↓ Adaptation

BadNet
62.00 55.76 19.28 /
62.00 56.76 16.64 IM
60.85 50.79 18.38 IM+PL

CLBD
63.98 48.97 25.96 /
61.99 50.38 23.45 IM
62.41 50.71 24.37 IM+PL

TABLE III: Accuracy(%) and attack success rates(%) using

base approach DANN for the task CIFAR10 → STL under

BadNet and CLBD attack. Our adaptation method is consis-

tently robust given different kinds of tasks and corruptions.

VI. CONCLUSION

In this work, we tackled the problem of unsupervised

domain adaptation under corrupted source domain samples.

Inspired by the Median of Means estimators, we proposed a

principled and robust ensemble learning algorithm powered

by hypothesis transfer via information maximization, which

can defend corrupted training samples with high performance

on the target domain. Extensive empirical studies showed that

our UDA approach is robust against agnostic data corruption,

which can serve as a general framework to improve the

robustness of orthogonal UDA approaches. We leave more

complex scenarios, such as corrupted multi-domain adaptation,

to our future work.
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