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Abstract

We propose and analyze an augmented mixed formulation for the time-dependent Brinkman—Forchheimer equations written
in terms of vorticity, velocity and pressure. The weak formulation is based on the introduction of suitable least squares terms
arising from the incompressibility condition and the constitutive equation relating the vorticity and velocity. We establish
existence and uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds, employing
classical results on nonlinear monotone operators. We then propose a semidiscrete continuous-in-time approximation based on
stable Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial spaces for the
vorticity. In addition, by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme.
We prove well-posedness and derive the stability bounds for both schemes, and establish the corresponding error estimates. We
provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility
of the method for a range of domain configurations and model parameters.
©2022 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid flows through porous media with high Reynolds numbers occur in many industrial applications, such as
environmental, chemical, and petroleum engineering. For instance, in groundwater remediation and oil and gas
extraction, the flow may be fast near injection or production wells or if the aquifer/reservoir is highly porous. Many
of the investigations in porous media have focused on the use of Darcy’s law. Nevertheless, this fundamental equation
may be inaccurate for modeling fluid flow through porous media with high Reynolds numbers or through media
with high porosity. To overcome this deficiency, it is possible to consider the Brinkman—Forchheimer equations (see
for instance [1,2]), where terms are added to Darcy’s law in order to take into account high velocity flow and high
porosity.

Several numerical methods for the Brinkman—Forchheimer problem have been developed previously. In [3] the
authors propose and study a perturbed compressible system that approximates the Brinkman—Forchheimer equations.
A numerical method for the perturbed system based on a semi-implicit Euler scheme for time discretization and
the lowest-order Raviart-Thomas element for spatial discretization is developed. In [4] the authors propose and
analyze a pressure-stabilization method, where the incompressibility constraint is perturbed as div(u) — e Ap = 0.
Then, a first-order time discretization and a finite element method based on piecewise continuous polynomials for
the spatial discretization are considered. Second order error estimates in time are also obtained. In [5] the coupling
of the unsteady Brinkman—Forchheimer model with a variable porosity Darcy model is developed and applied
for simulating wormhole propagation. A semi-analytic time stepping scheme is employed to handle the variable
porosity. An error analysis for the spatial and temporal discretization errors is performed. In [6] a mixed formulation
based on the pseudostress tensor and the velocity field is presented. By employing classical results on nonlinear
monotone operators and a suitable regularization technique in Banach spaces, existence and uniqueness are proved.
A finite element method for space discretization based on the Raviart—-Thomas spaces for the pseudostress tensor and
discontinuous piecewise polynomial elements for the velocity, combined with a backward Euler time discretization,
is proposed and sub-optimal error estimates are derived. More recently, a three-field Banach spaces-based mixed
variational formulation is analyzed in [7], where the velocity, velocity gradient, and pseudostress tensor are the main
unknowns of the system. Existence and uniqueness of a solution to the weak formulation, as well as stability bounds
are derived by employing classical results on nonlinear monotone operators. A semidiscrete continuous-in-time
mixed finite element approximation and a fully discrete scheme are introduced and sub-optimal rates of convergence
improving the ones obtained in [6] are established. A staggered DG method for a velocity—velocity gradient—pressure
formulation of the unsteady Brinkman—Forchheimer problem is developed in [8]. Well-posedness and error analysis
are presented for the semi-discrete and fully discrete schemes. The method is robust with respect to the Brinkman
parameter. In [9] the steady state Darcy—Brinkman—Forchheimer problem with mixed boundary condition is studied.
The authors prove existence of a unique solution under small data conditions. Then, the convergence of a Taylor—
Hood finite element approximation using a finite element interpolation of the porosity is proved under similar
smallness assumptions. In addition, optimal error estimates are obtained. In turn, in [10], the steady Brinkman—
Forchheimer model is coupled with a double-diffusion equation. The velocity gradient, the pseudostress tensor, the
temperature and concentration gradients, and a pair of flux vectors are introduced as additional unknowns. Well-
posedness for the resulting fully mixed continuous and discrete problems is established in a Banach space setting,
and error analysis is carried out.

On the other hand, there is another approach that is increasingly studied to solve fluid flow problems, which
incorporates the vorticity field as a new unknown in the system and results in different weak formulations, see
[11-15]. This new strategy exhibits the advantage that the vorticity (which is a sought quantity of practical interest
in industrial applications) can be approximated directly with the same accuracy as the velocity, see [13]. Vorticity
plays a fundamental role in fluid flow problems as well as in their mathematical analysis; in many cases it is
advantageous to describe the flow dynamics in terms of the evolution of the vorticity. In particular, for a vorticity—
velocity—pressure formulation, since no postprocessing of the velocity is needed to compute the additional field,
boundary conditions for external flows can be treated in a natural way, and non-inertial effects can be readily
included by simply modifying initial and boundary data [14]. Moreover, the formulation allows for smooth vorticity
approximations using continuous finite element spaces, in contrast to the discontinuous approximation obtained by
postprocessing the velocity.

The purpose of the present work is to develop and analyze a new vorticity-based mixed formulation of the
unsteady Brinkman—Forchheimer problem and study a suitable conforming numerical discretization. To that end,
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unlike previous Brinkman—Forchheimer works and motivated by [11,12], we introduce the vorticity as an additional
unknown besides the fluid velocity and pressure. In the addition to the advantage of a direct, accurate, and smooth
approximation of the vorticity, our approach improves the suboptimal theoretical rates of convergence obtained
in [6,7] for the pseudostress—velocity and velocity—velocity gradient—pseudostress formulations, respectively. In
particular, optimal rates of convergence are obtained without any quasi-uniformity assumption on the mesh.

We remark that our formulation is based on the natural H'-L? spaces for the velocity—pressure pair, thus allowing
for classical stable Stokes elements to be used. Since the three-field formulation does not provide control of the
velocity in the H'-norm, it is augmented with two terms to control the curl and the divergence of the velocity. It is
illustrated in Example 1 in the numerical section that these terms may improve the robustness in the convergence
of the velocity and vorticity for small values of the viscosity, as well as its divergence-free property.

We establish existence and uniqueness of a solution to the continuous weak formulation by employing techniques
from [10,16], combined with the classical monotone operator theory in a Hilbert space setting. Stability for the weak
solution is established by means of an energy estimate. We further develop semidiscrete continuous-in-time and
fully discrete finite element approximations. The velocity and pressure are approximated by stable Stokes elements,
whereas, continuous or discontinuous piecewise polynomial spaces are employed to approximate the vorticity. We
make use of the backward Euler method for the discretization in time. Adapting the tools employed for the analysis
of the continuous problem, we prove well-posedness of the discrete schemes and derive the corresponding stability
estimates. We further perform error analysis for the semidiscrete and fully discrete schemes, establishing optimal
rates of convergence in space and time.

Outline. We have organized the contents of this paper as follows. In the remainder of this section we introduce
some standard notation and needed functional spaces, and describe the model problem of interest. In Section 2 we
develop the velocity—vorticity—pressure variational formulation. In Section 3 we show that it is well posed using
classical results on nonlinear monotone operators. Next, in Section 4 we present the semidiscrete continuous-in-
time approximation, provide particular families of stable finite elements, and obtain error estimates for the proposed
methods. Section 5 is devoted to the fully discrete approximation. Finally, the performance of the method is studied
in Section 6 with several numerical examples in 2D and 3D, verifying the aforementioned rates of convergence, as
well as illustrating its flexibility to handle spatially varying parameters in complex geometries.

Preliminary notations. Let 2 C R?, d € {2, 3}, denote a domain with Lipschitz boundary I'. For s > 0 and
p € [1, +00], we denote by LP(§2) and W*P({2) the usual Lebesgue and Sobolev spaces endowed with the norms
| - lLpc2y and | - [lwsp(s), respectively. Note that WOP(£2) = LP(£2). If p = 2, we write H*({2) in place of W*2({2),
and denote the corresponding norm by || - ||us(). By H and H we will denote the corresponding vectorial and
tensorial counterparts of a generic scalar functional space H. The L2(£2) inner product for scalar, vector, or tensor
valued functions is denoted by (-, ). The L?(I") inner product or duality pairing is denoted by (-, -) . Moreover,
given a separable Banach space V endowed with the norm || - ||y, we introduce the Bochner spaces LP(0, T'; V),
L0, T: V), WL1(0, T; V), and W->(0, T; V), endowed with the norms

T
1 IEe0 7y = / IFOIVdt, N fllLe.rv) = esssup,eo 7l f v,
0

T
Il fllwiio,rvy = /o (||f(t)||v + ||3rf(f)||v) dt, |1 fllwreo,7:v) = €SSSUP,co 77 { If@llv, 10 fFOlIv}.

In turn, for any vector field v := (v;);=1,4, We set the gradient and divergence operators, as

0 v; 4 dv;
Vv = <—l) and div(v) = Z —.
dx; i j=1,d = dx;

In addition, in the sequel we will make use of the well-known Hélder inequality given by
) 1 1

/ If gl = I fllecey lIglliacey YV f € LP(£2), Vg € LY(£2),  with 5+ s 1,

Q

and the Young inequality, for a,b >0, 1/p+1/q=1, and § > 0,

b (1.1)
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Finally, we recall that H'(£2) is continuously embedded into LP(£2) for p > 1if d =2 or p € [1, 6] if d = 3. More
precisely, we have the following inequality

lwlleey < llipll lwllgioy Yw € H'(£2), (1.2)

with ||i,|| > O depending only on |£2| and p (see [17, Theorem 1.3.4]).

The model problem. Our model of interest is given by the unsteady Brinkman—Forchheimer equations (see for
instance [1,3,6,7,18]). More precisely, given the body force term f and a suitable initial data ug, the aforementioned
system of equations is given by

3
a—‘t’—vAu+au+F|u|P*2u+vp=f, diviw) = 0 in 2 x (0, T], w3

u=0 on I'x(0,T], w0 =u in 2, (p,)p =0 in (O,T],

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant v > 0 is the
Brinkman coefficient, @ > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and p € [3, 4] is a given
number.

2. The velocity—vorticity-pressure formulation

In this section we introduce a new velocity—vorticity-pressure formulation for (1.3). To that end, we proceed as
in [11] (see similar approaches in [12,15]) and introduce as a further unknown the vorticity @, which is defined by

du, Jup

— = — , ford=2,
® = curl(u) = 0 x1 d x>

V xu , ford =3.

Note that the curl of a two-dimensional vector field is a scalar, whereas for a three-dimensional one it is a vector.
In order to avoid a multiplicity of notation, we agree nevertheless to denote it like a vector, provided there is no

P t
confusion. In addition, in 2-D the curl of a scalar field ¢ is a vector given by curl(g) = (:7‘12, —;7’]1) . Then,
employing the well-known identity [19, Section 1.2.3]:

curl(curl(v)) = —Av + V(div(v)) 2.1

in combination with the incompressibility condition div(u) = 0 in 2 x (0, 7], we find that (1.3) can be rewritten,
equivalently, as follows: Find (u, @, p) in suitable spaces to be indicated below such that

0
a—l; +au+Fluflutveurlw)+Vp=f w=curlw), divm)=0 in 2 x (0, 7], 2.2)

u=0 on I'x(0, 7], u0) =wuw in £, (p,)op =0 in (0, T].
Next, multiplying the first equation of (2.2) by a suitable test function v, we obtain

B u, V) +a@ Vo +F(uP?u,v)g +v(urkw), Vo +(Vp, Vo = Ev)g, (2.3)

0
where we use the notation 9, := —. Notice that the third term in the left-hand side of (2.3) requires u to live in a

smaller space than L2(£2). In fact, by applying Cauchy—Schwarz and Hélder’s inequalities and then the continuous
injection i, of H'(2) into LP(£2), with p € [3, 4] (cf. (1.2)), we find that

_2 -1 . —1 1
[(uP 2w v)o| < Tulfpin, Vi) < HipIP uly! s Vi, Yu.veH(®), (2.4)

which together with the Dirichlet boundary condition w = 0 on I" (cf. (2.2)) suggest to look for the unknown u in
H/(£2) and to restrict the set of corresponding test functions v to the same space. In addition, employing Green’s
formula [19, Theorem 1.2.11], the fourth term in the left-hand side in (2.3), can be rewritten as

(curl(w), v)o = (@, curl(v))p — (vx n, @) = (o, curl(v)), Vve H(l)(Q). (2.5)

Note that in 2-D the boundary term in (2.5) needs to be replaced by (v -t, ). Thus, replacing back (2.5) into
(2.3), integrating by parts the term (V p, V), and incorporating the second and third equations of (2.2) in a weak
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sense, we obtain the system

B u, Vo +a@ V) +F(uP?u,v)g+v(, curlv), — (p,diviv)e = Vg,
v(w, ¥)o — v, curl(w) o = 0, (2.6)
(g, div(w)) = 0,

for all (v, ¥, ) € HY(22) x LX(12) x L(2), where L2(£2) := {q cLXQ): (¢, 1o = 0}.
The formulation (2.6) provides control of the velocity u in L2({2), but not in H(IJ(Q), which is needed for the
well-posedness analysis. In order to obtain such control, motivated by the well-known identity

IVVIZs ) = leurd )2, ) + IdivIP,, Vv e HY(R), 2.7)

which follows from (2.1), we proceed to augment the system (2.6) by adding the following residual terms arising
from the second and third equations in (2.2):

k1 (curl(u) — @, curl(v) + ¥)p and «; (div(u), div(v)) g, (2.8)

where k| and k, are positive parameters to be specified later on. The inclusion of these terms allows us to establish
strong monotonicity in the variable u in the Hé(())—norm, cf. Lemma 3.4.

Remark 2.1. We note that the first term in (2.8) is chosen to be skew-symmetric. While the symmetric version of
the term also results in a monotone operator, it leads to complications in the stability bound for [9,ull 2 7.12(2)
(cf. (3.36)). In particular, the identity stated in (3.37) for the skew-symmetric scheme cannot be derived for the
symmetric version, which is needed for the derivation of the pressure stability bound. On the other hand, there are
no significant differences between the two schemes in terms of their numerical performance, including for small
values of v.

Next, in order to write the above formulation in a more suitable way for the analysis to be developed below, we
now set

u = (u, ) € H)(2) x L2(2),
with corresponding norm given by
2 2 12 1 2
vl = 1091 = (Vg + 1 12g) V= (v W) € H(2) x LA(@).
Hence, the weak form associated with the Brinkman—Forchheimer Eq. (2.6)—(2.8) reads: Given f: [0, T] — L2(0)
and uy € H})(Q), find (u, p): [0, T] — (H(l)((}) X Lz(Q)) X L%(Q) such that u(0) = uy and, for a.e. r € (0, T),
d
7 [E@®), V] + [A@O). VI + B (p(1),¥] = [F@),¥] ¥veHy(2) x LX), (2.9)
—[Bu()), q1 =0 Vg e Lj(2),

where, the operators £, A : (H)(2) x L2(2)) — (H}(£2) x Lz(Q))/, and B : (H)(£2) x L*(2)) — L3(2) are
defined, respectively, as

[E@),v] == (w, V), (2.10)
[A@), v] = o W, Vo +F(ufu, v)e + v (@, ¥ + v (@, curl(v) o — v (¥, curl(w))
+ ki (curl(u) — o, curl(v) + ¥) o + k2 (div(w), div(v)) o , (2.11)
[B(v), q] = —(g.div(V))e, (2.12)
and F € (H)(£2) x L*(£2)) is the bounded linear functional given by
[F,v] == (f, V). 2.13)

In all the terms above, [-, -] denotes the duality pairing induced by the corresponding operators. In addition,
we let B : L§(2) — (Hi(2) x L2(Q))/ be the adjoint of B, which satisfy [B'(g),v] = [B(v),q] for all
v=(v,¥) € H(2) x L}(2) and g € L{(£2).
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Note that the seminorm identity (2.7) is stated for the case of Dirichlet boundary conditions for velocity
everywhere on I'. As indicated in [19, Section 3.2], the requirement can be relaxed to imposing either u-n = 0
or u X n = 0 (where n denotes the outward unit normal on the boundary) whenever I is of class C L or if it is
piecewise smooth without reentrant corners.

3. Well-posedness of the model

In this section we establish the solvability of (2.9). To that end we first collect some previous results that will
be used in the forthcoming analysis.

3.1. Preliminary results

We begin by recalling the key result [16, Theorem IV.6.1(b)], which will be used to establish the existence of a
solution to (2.9). In what follows, Rg(A) denotes the range of A.

Theorem 3.1. Let the linear, symmetric and monotone operator N' be given for the real vector space E fo its
algebraic dual E*, and let E, be the Hilbert space which is the dual of E with the seminorm

xl, = (W x(x)'”* xeE.

Let M C E x E,; be a relation with domain D = {x € E : M(x)# @}.

Assume M is monotone and Rg(N + M) = E,. Then, for each f € wilo, T; E,) and for each ug € D, there
is a solution u of

%(Nu(t)) +M(u@®) > ft) ae 0<t<T, 3.1
with
NueW'>0,T;E), ut)yeD, forall 0<t<T, and Nu(0)=N u.

In addition, in order to provide the range condition in Theorem 3.1 we will require the following abstract
result [10, Theorem 3.1], which in turn, is a modification of [20, Theorem 3.1].

Theorem 3.2. Let X, X, and Y be separable and reflexive Banach spaces, being X, and X, uniformly convex,
and set X .= X x X,. Let A: X — X' be a nonlinear operator, B € L(X,Y'), and let V be the kernel of B, that
is,

Vo= {v —(Lv)eX: B = 0}.
Assume that

(i) there exist constants L o, > 0 and py, p2 > 2, such that

2
1AW =A@l = La Y fllur = villx, + (sl + ol s = willx, .
i=1
forall u = (uy, uz), v = (v, 1) € X.
(ii) the family of operators {A(- +2): V>V : zeX } is uniformly strongly monotone, that is there exists
y > 0, such that

[Aw +2) — A +2),u —v] > y llu — 3,

forall z € X, and for all u,v € V, and
(iii) there exists B > 0 such that
[B(v), q1

> Blqlly VqgeY.
ozvex lvllx
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Then, for each (F,G) € X' x Y' there exists a unique (1, p) € X x Y such that

[A@w), v1+ [B(v), p] = [F,v] YveX,
[Bw),ql = 19,91 VYqe¥Y.
Next, we establish the stability properties of the operators involved in (2.9). We begin by observing that the

operators &£, B and the functional F are linear. In turn, from (2.10), (2.12) and (2.13), and employing Holder and
Cauchy—Schwarz inequalities, there hold

B, 1] < ¥l ligllize) Y. q) € (Hy(2) x L(2)) x Li(02), (3.2)
|[F»X]| < W2 VN2 < Ifllp2g) ¥l Yy e H(l)(Q) x L*(1), (3.3)

and
E@. V]| < lul ¥l [E®.¥] = V2, YuyeHy2) x LA1), (3.4)

which implies that B and F are bounded and continuous, and £ is bounded, continuous, and monotone. In addition,
employing the Cauchy-Schwarz and Holder inequalities, the continuous injection of H'(f2) into LP(£2), with
p € [3, 4], it is readily seen that, the nonlinear operator A (cf. (2.11)) is bounded, that is

LA@. VI = Ca{Illico, + Ml g, + @l | 1¥11 (3.5)

with C 4 > 0 depending on ||i,||, &, F, v, k1, and k3. On the other hand, for later use, we deduce from [21, Lemma
2.1, Egs. (2.1a) and (2.1b)], and using the Holder inequality, that for all u, v € LP({2) there exist constants c,, Cp, > 0
depending only on |{2| and p, such that

_ _ —2
[P0 — (VP2 ) < 6 (Il + IVIe)” ™ Ile = Vi) - (3.6)
with 1/p+1/q =1, and
(lulPu— |vP2v,u—v), > Cpllu—Vlp - (3.7)

In addition, it can be shown in a way similar to (3.6) that for all u, v € L*P~D(£2) there exists a constant ¢, > 0
depending only on |{2| and p, such that

-2 -2 ~ p—2
[Tl =2a = VP2V o) < G (Illae-neg) + IVIl2e-ne2)" 10 = Viig2e-n(g) - (3.8)

Finally, recalling the definition of the operators &£, A, and B (cf. (2.10), (2.11), (2.12)), we stress that problem
(2.9) can be written in the form of (3.1) with

E = (H(£2) x L*(2)) x L§(1), u::(i), N::(g g), M::(_/Z, ﬁ) (3.9)

Let E), be the Hilbert space that is the dual of Hj(£2) x L2(£2) with the seminorm induced by the operator £ := (} 3)
(cf. (2.10)), which is [[Ve = (v, V)" = IVl22) ¥¥ € HY(2) x LA(£2). Note that E; = L2(£2) x {0}. Then we
define the spaces

E; = (L*(2) x {0}) x {0}, D := {(g, p) € (Hy(2) x L2(2)) x L§(2):  M(u, p) € E,;}. (3.10)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.9).
3.2. Range condition and initial data

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolvent system
associated with (2.9): Find (u, p) € (H(l)(!?) X LZ(Q)) X L%(Q) such that

[(E+ AW, v+ [B(p),v] = [F,y] VveH\2)x LX),
(3.11)
B, q] =0 Vg e L3(Q),

7
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where F € L2(2) x {0} C (H(l,(.Q))’ x {0} is a functional given by f(y) = (Af, V) for some T € L2(£2). Next,
a solution to (3.11) is established by employing Theorem 3.2. We begin by observing that, thanks to the uniform
convexity and separability of LP({2) for p € (1, +00), the spaces H(l)(Q), L2(£2), and L%(!Z) are uniformly convex
and separable as well.

We continue our analysis by proving that the nonlinear operator £ + A satisfies hypothesis (i) of Theorem 3.2
with p; =p € [3,4] and p, = 2.

Lemma 3.3. Let p € [3, 4]. Then, there exists Lgr > 0, depending on |lip|l, |2], v, F, a, k1, and k> such that
€ + A — (€ + AW

-2 3.12
< Lae {0 = Vi + 10 = ¥l + (e, + W)™ 10 = Vi o} G12

forallu=(,w),v=(v,¥) € Hé((!) x L2(02).

Proof. Letu = (u, ), v= (v, ¥),w = (W, ¢) € H(l)(Q) x L2(£2). From the definition of the operators &, A (cf.
(2.10), (2.11)), and using the Cauchy—Schwarz and Holder inequalities, we deduce that
[(€ + D@ — €+ HW, Wl < F [uP2u— vP2v] o Wl
+2 (\1 + max{l + a, k1, Kz}) (||u = Vllgi) + llo — 1/’||L2(Q)) l(w, @)l .

Then, using (3.6) to bound the first term on the right-hand side of (3.13), and using the continuous injection i, of
H!(£2) into LP(2) (cf. (1.2)), we obtain

(3.13)

. 2
1€ + D@ — (€ + DD < FllipIPep (allgio) + 1¥Im@) lw— vl
+ 2 (v+max{l + a, &1, k2}) (0 = Vg o + o — ¥l2) .

which implies (3.12) with Lgs = max{z (v + max{1 + a, &1, 2}), F [lipI? cp}. 0
Next, the following lemma shows that the operator £ + A satisfies hypothesis (ii) of Theorem 3.2 with

pi=p€[3,4] and p, = 2.

Lemma 3.4. Assume that k; € (0,v) and ky € (0,400). Then, the family of operators {(5 + A +2) :
H(l)(Q) x L2() — (H})(Q) X Lz(Q))/ . Z € H(l](_Q) X Lz(Q)} is uniformly strongly monotone, that is, there
exists ygr > 0, such that

[(E+ADu+2)—(E+AV+2.u—y] = yrllu—v> VuyveHy(2) x L*(£2). (3.14)
Proof. Letu = (0, w),v=(v,¥),z = (z,9) € H(l)(Q) x L2(£2). Then, from the definition of the operators £, A
(cf. (2.10), (2.11)), we get

[(E+ADu+2z) —(E+ANV+2),0—V]

= (l+a)[u=Vlfyq +F(lu+zPP@+2) - v+2P (v +2),u—v), (3.15)

+ w1 lleurl( = VI, o) + &2 [divia = V[T o)+ © = kD) |0 = ¥ lif2 ) -

Hence, using (3.7) to bound the second term on the right-hand side of (3.15), and using the Cauchy—Schwarz and
Young inequalities we find that for all u = (u, ®),v= (v, ¥) € H(l)(Q) x L2(£2), there holds

[(E+ADu+2)—(E+ANV+2,u—V]
> (1 +a)u-— Vlliz(m + k1 ||curl(a — V)”iz(g) + o ||div(u — V)Iliz(g) (3.16)

2
+FCpllu = Vlpgy + (v = 1) @ = ¥l -
Then, assuming the stipulated ranges on «; and x, we can define the positive constants

Y= min{fq,xz} and y=v—«y, (3.17)
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which together with the identity (2.7), and neglecting the LP({2)-term in the right-hand side of (3.16), yields
[(E+A+2) —(E+ A +2), u—¥] = (I+)[u=VITs o +11 IVO=WIs o +12 lo =¥ {20 (3:18)

which implies (3.14) with ygr := min{(l + @), y1, )/2}. O

Remark 3.1. The terms (1 + «)|ju — V”iz(ﬂ) and y |[V(u — V)||H2‘2(Q) in (3.18) and the definition of y; in (3.17)
imply that the control on the velocity u in the L?({2)-norm is independent of v, «;, and k>, while control on Vu
in the L?({2)-norm can be maintained for small values of the viscosity v by keeping «; and k, independent of v.
However, the condition «; € (0, v) is needed for the control of the vorticity . In the case x; > v, one can consider
modification of the operator A defined in (2.11), obtained by subtracting the terms with test function ¥ in (2.6)

and (2.8), resulting in

[A@), v] == a @, V)o +F(ulu,v)g —v (@, ¥ + v (o, curl(v) o + v (¥, curlw))
+ k1 (curl(u) — o, curl(v) — ¥) o + & (div(u), div(v)) .

The terms involving «; and v on the right-hand side of (3.15) then become
(e = v)leurl@ — v) — (@ — P15, + vlieurl@ — V{5,

which, combined with ||@ — ¢ ||i2(9) <2|curl(u —v) — (w — '/’)”iz(!z) + 2||curl(u — v)||i2(m, results in control on

lmin{K — v, 2}l — ¥l + = llcurlu — )|
2 1 ) 2 LZ(Q) 2 LZ(Q)'

Therefore the well-posedness analysis of the model can also be extended to the case x| > v. Similar techniques
can be used in the stability analysis of the continuous and discrete formulations, as well as in the error analysis.
To keep the presentation simpler and easier to follow, we focus on the case x| € (0, v). We note, however, that the
numerical study in Example 1 in Section 6 indicates that the numerical method is stable and convergent in the case
k1 > v, and in particular it converges optimally for the velocity in the H'(£2)-norm in the regime of small viscosity
when « is kept fixed.

Remark 3.2. The kernel of the operator B (cf. (2.12)) can be written as V := K x L?({2), where
K= {v cH\(®): diviy=0 in Q} . (3.19)

In turn, since the strong monotonicity bound (3.14) holds on H(l)(Q) x L2(2), it is clear that it also holds on V.
Notice also that v € K (cf. (3.19)) implies that the term « (div(u), div(v)); is not longer required in (2.11) to prove
that the operator A is strongly monotone on V but in order to consider classical conforming discrete spaces that are
not divergence-free, we keep the x,-term and state the result on the whole space H(l)(Q) x L2(£2). Furthermore, the
term «; ||div(u — V)||i2 @ in (3.15) implies that increasing k, improved the divergence-free property of the method.
This is illustrated in Example 1 in Section 6.

Remark 3.3. We also note that for computational purposes, and in order to maximize the strong monotonicity
constant ygr (cf. (3.17)), we can choose explicitly the parameter k; and «, by taking «; as the middle point of its
feasible range and «x, > min{l + «, «;}. More precisely, we can simply take
v . v
K| = 5 and «p zmln{l—i-a, E}

We end the verification of the hypotheses of Theorem 3.2, with the corresponding inf-sup condition for the
operator B (cf. (2.12)).

Lemma 3.5. There exists a constant B > 0 such that
[Bv). q]
sup —_—

= Blalize Yq €Li(). (3.20)
0£veH)(2)xL2(£2) vl

9
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Proof. First, we recall from [22, Corollary B.71] the inf—sup condition

/qdiv(v)
sup L > Blgllian Vg €L§(2). (321)
0£veH)(12) IVlia (o)

Thus, (3.20) follows straightforwardly from (3.21) and the definition of the operator B (cf. (2.12)). O

The main result of this section is established now.

Lemma 3.6. Assume «1 and k, as in Lemma 3.4. Then, given F = (f 0) € L2(f2) x {0}, there exists a unique
solution (u, p) € (H(l)(Q) x L2(12)) x L(z)(Q) of the resolvent system (3.11).

Proof. First, we recall from (3.2) and (3.3) that B and F are linear and bounded. Then, as a consequence of
Lemmas 3.3, 3.4, and 3.5, and a straightforward application of Theorem 3.2 we conclude the result. [

We end this section establishing a suitable initial condition result, which is necessary to apply Theorem 3.1 to
our context.
Lemma 3.7. Assume the initial condition uy € Hx, where
H, = {v cHVO): AveLX() and divi)=0 in Q} . (3.22)

Then, there exists (wg, po) € L2(£2) x L%(Q) such that u, = (uy, wo) and
A B u
( ‘B 0 ) ( 1—;; ) e (L*(2) x {0}) x {0}. (3.23)

Proof. We proceed as in [6, Lemma 3.6]. In fact, we define wy := curl(uy) and choose py = 0 in {2, with ug € Hp
(cf. (3.22)). It follows that o € L*(£2) and py € L%(!Z). In addition, using (2.1), we get

veurl(wg) = —v Aug in (2. (3.24)

Next, multiplying the identities (3.24), v (wy — curl(ug)) = 0 and div(uy) = 0 in 2 by v € H(IJ(Q), ¥ e L),
and g € Lg(()), respectively, integrating by parts as in (2.5), considering the fact that «; (curl(uyp) — @wo) = 0 and
ko div(ug) = 0 in {2, and after a minor algebraic manipulation, we deduce

A B’ u _ Fy
(4 5)()-(%)
where, Fy = (fy, 0) and

(fo, V)2 == (—v Aug + @ ug + F [ug|P2ug, v)g,

which together with the additional regularity of u,, and the continuous injection of H'({2) into L2®P~D(2), with
2(p— 1) € [4, 6], cf. (1.2), implies that

—1
|(fo, V)| < {v | Auolly 20y + e lwolly2) + F ||110||pLz<p—|>(m} Vil 20 ;
(3.26)

<C i”AUOHLZ(Q) + ||110||L2((2) + ||UO||§{|(Q)} ||V||L2((2)-

Thus, Fy € L2(£2) x {0} so then (3.23) holds, completing the proof. [

Remark 3.4. The assumption on the initial condition uy in (3.22) is not necessary for all the results that follow but
we shall assume it from now on for simplicity. A similar assumption to ug is also made in [6, Lemma 3.6] (see
also [7, Lemma 3.7] and [18, Eq. (2.2)]). Note also that (u,, po) satisfying (3.23) is not unique.

10
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3.3. Main result
We now establish the well-posedness of problem (2.9).

Theorem 3.8. Assume k1 and K, as in Lemma 3.4. Then, for each f € W50, T; L*(2)) and uy € Ha (cf. (3.22)),
there exists a unique (u, p) = (W, ®),p) : [0,T] - (H{(2) x L*(2)) x Li(2) solution to (2.9), such that
u e W0, T; L2(£2)) and u(0) = uy. In addition, ®(0) = wy = curl(uy).

Proof. We recall that (2.9) fits the problem in Theorem 3.1 with the definitions (3.9) and (3.10). Note that A is
linear, symmetric and monotone since £ is (cf. (3.4)). In addition, since A is strongly monotone, it is not difficult to
see that M is monotone. On the other hand, from Lemma 3.6 we know that for some (f, 0) € E; with F= (’f\, 0),
there is a (u, p) = ((w, ®), p) € (HY(2) x L2(£2)) x L(£2), such that (F,0) = (M + M)(u, p) which implies
Rg(N + M) = E;. Finally, considering ug € Hx (cf. (3.22)), from a straightforward application of Lemma 3.7 we
are able to find (wg, py) € L*(£2) x L(Z)(.Q) such that (u,, po) = (g, @g), po) € D. Therefore, applying Theorem 3.1
to our context, we conclude the existence of a solution (u, p) = ((u, ®), p) to (2.9), with u € WH>(0, T; L2(£2))
and u(0) = ug.

We next show that the solution of (2.9) is unique. To that end, let (w;, p;) = ((w;, w;), p;), with i € {1, 2},
be two solutions corresponding to the same data. Then, taking (2.9) with (v,q) = (@, — u,, p1 — p2) €
(H(£2) x L2(£2)) x L3(£2), subtracting the problems, we deduce that

1
5 o |luy — u2||i2(g) + [-A(El) - A(Ez), u—w] =0,

which together with the strong monotonicity bound of A (cf. (3.16)—(3.17)), yields

1 ~
5 0l =Wl o) + 7l = ol o) + 72 01 — @212, < 0, (3.27)

where y; = min{a, K1, Kz} and y», is defined in (3.17). Integrating in time (3.27) from O to ¢ € (0, T], and using
that u;(0) = u,(0), we obtain

t
1 (1) = wa®)f 2, + f (Il = w2l ) + ot — @215, ) ds < 0. (3.28)
0

Therefore, it follows from (3.28) that u;(¢) = u,(¢) and @ (t) = w,(¢) for all + € (0, T']. Next, from the inf-sup
condition of the operator B (cf. (3.20)) and the first equation of (2.9), we get

Blipt— pallizg < sup _([az E —w), v]+ [A(,) — A(Ez), X])
L2(2) —=

0£veH ) (2)xL2(2) [A4]

=0,

which implies that p(¢) = p,(¢) for all # € (0, T], and therefore (2.9) has a unique solution.

Finally, since Theorem 3.1 implies that M(u) € L>(0, T; E;), we can take t — 0 in all equations without time
derivatives in (2.9). Using that the initial data (u,, pg) = ((up, @), po) satisfies the same equations at ¢ = 0 (cf.
(3.23)), and that u(0) = uy, we obtain

v — k) (@0) — @, Yo =0 Yy e L(). (3.29)
Thus, taking ¥ = @(0) — w in (3.29) we deduce that ®(0) = @¢, completing the proof. []
We conclude this section with stability bounds for the solution of (2.9).
Theorem 3.9. Let p € [3, 4]. Suppose that the stabilization parameters k| and k, are taken as in Lemma 3.4. Assume

further that £ € W10, T; L2(02)) N L0, T; L2(02)) and uy € Hy satisfying (3.23). Then, there exist constants
Csr,1, Cer2 > 0 only depending on |ip|l, 12|, v, @, F, B, k1, and Ky such that

lallLeco, 71202y + 0ll20. 711 2)) + @l20, 70202 + 1P I20,7:1202))
2(p—1) —1 2 2(p—1)
< Cont {IFI25, 0, )+ Iflla iz + 1001t + 1001850, + 180l ™ + Iolice |

(3.30)
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and

2
Il rmey = Cora | Il raz + 100l + ol o)) - (3.31)
Proof. We proceed as in [6, Theorem 3.3]. In fact, we begin choosing (v, ¢g) = (u, p) in (2.9) to get

1
> 0 (u, ) + [A®), u] = (£, u)q.

Next, from the definition of the operator A (cf. (2.11)), employing similar arguments to (3.16) and using
Cauchy—Schwarz and Young’s inequalities, we obtain

1 2 2 p 2 : 2
5 al‘||u||L2(_Q) + (%4 ”u”LZ(Q) + F ”u”LP(_Q) + K1 ”curl(u)”LZ(Q) + K2 ”dlv(u)”LZ(Q) (332)

8 1
+ 12 10120y = FIfIE2 ) + 75 10Tz,

where y, is defined in (3.17). Then, choosing § = 1/« and integrating (3.32) from 0 to ¢ € (0, T'], we obtain

t
a2 ) + f (a||u||iz(9)+2K1||curl(u)||iz(m+2Kz||div(u>||iz(m+2y2||w||iz(m)ds
0 (3.33)

1 ! 2 2

Notice that, in order to simplify the stability bound, we have neglected the term ||u||ip( @ 1n the left hand side of
(3.32).

On the other hand, from the inf-sup condition of 5 (cf. (3.21)), the first equation of (2.9) related to v, the stability
bounds of F, & (cf. (3.3), (3.4)), the definition of A (cf. (2.11)), and the continuous injection of H'({2) into LP({2),
with p € [3, 4], we deduce that

[Fa (Vv 0)] - [at E(E), (Vv 0)] - [-A(H), (Va 0)]
Bliplhizgo <  sup
0£veH)(2) VIl (o) (334)
= ||f||L2(Q) +oalull2) +F llip I ||u||¥;(19) + 1 [lcurl(W)| 2 g,
+ 2 [[diviw)[[ 2.0y + V2 @22y + 110 tll2p) -

Then, taking square in (3.34), integrating from O to ¢ € (0, T'], and using (3.33), we get

t t t
2 2 2 2(p—1) 2
/0 ||p||L2(Q)dsscl{ /0 16125, ds + 0122, + /0 (Fnunm+||a,u||L2(Q))ds}, (3.35)

with C; > 0 depending on |{2|, |li,||, v, F, @, B, k1 and k». Next, in order to bound the last two terms in (3.35),
we differentiate in time the equations of (2.9) related to ¥ and ¢, choose (v,q) = ((0;u, w), p), and employ
Cauchy—Schwarz and Young’s inequalities, to find that

1 2 2F P : 2 2 2
5 00 (e Il g, + Ml + k2 HAVWIT g + v 1@11220,) + 19, ullZ2

(3.36)
1 1
+ i1 (curl(w) — , 9; eurl(w); + 1 (3 (curl(@) — @), @)o = Sl g, + 519, UlE2 )
Using the linearity of the time derivative, it follows that
1

ci(eurl(w) — . deurl(W)o + s @ (eurlw) — @) ©)0 = 5 3 (kileurlW|; o, —klllsg, ). 337

Thus, replacing back (3.37) into (3.36), integrating from O to ¢ € (0, 7] and using (2.7), we get

2 2F p \V/ 2 2 ' 9 2 d

@ Oz g, + == IOy + AT VO g+ 72 10Wz0) + [ 13wl 0, ds .

! 2F
< /0 11135, 5, ds + @ [a(O)IIF s, ) + S 10O 1oy + V1 IVUOIT s ) + 72 [@O)IF2 )

12
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with y; and y, defined in (3.17). Combining (3.38) with (3.35), yields

t t 2(p—1)/p t 21
/O P20 ds < C { ( fo ||f||iz(mds) + fo IE11F 2, s + 0O

4(p—1)/p
H!(£2)

(3.39)

+ [[a(0)[IF5 ) + (O] + 10031 ) + 10OIE )P + o)}

L2(£2) L2(2) [’

with C; > 0 depending on |{2|, |li||, v,F,a, B, k1 and k,, which, combined with (3.33) and the fact that
(u(0), ®(0)) = (ug, ®p) and wy = curl(uy) in 2 (cf. Lemma 3.7), implies (3.30). In addition, the first and third
terms in the left-hand side of (3.38) and some algebraic computations yields (3.31) concluding the proof. [l

Remark 3.5. We note that (3.31) can be expanded to include a bound on |[uflyi 7.12(02)) » 1@, 7:12(02))> and
| Pl 7:12(2))> Using (3.38) and (3.39). We state it in this simpler form, since the bound on |[ul o 7.m1 () Will
be employed in the next section to deal with the nonlinear term associated to the operator A (cf. (2.11)), which is
necessary to obtain the error estimate.

Remark 3.6. Bound (3.33) and the identity (2.7) show that the stability constant for |[Vu(l; 2 7.12(0) is linearly

dependent on #yl y1 = min{ky, k3}, while the one for ||w||Lz(0,T;Lz(Q)) is linearly dependent on +/2 Yy =V —KJ.

In addition, bounds (3.33) and (3.39) show that the stability constants for [lull\2¢ 7.12(2) and | PllL20.7:12(0) do
11 1

not depend on -, —, or —.
VoK k2

4. Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (2.9). We analyze
its solvability by employing the strategy developed in Section 3. Finally, we derive the error estimates and obtain
the corresponding rates of convergence.

4.1. Existence and uniqueness of a solution

Let 7, be a shape-regular triangulation of {2 consisting of triangles K (when d = 2) or tetrahedra K (when
d = 3) of diameter /g, and define the mesh-size h := max{h xk: K e 77,}.~ Let (HY, Hfl' ) be a pair of stable Stokes
elements satisfying the discrete inf—sup condition: there exists a constant 8 > 0, independent of £, such that

/ qndiv(vi)
sup 2 > Bllgnlli2o Yan€HL. “4.1)
ozvyeny Vil o)

We refer the reader to [23,24] for examples of stable Stokes elements. To simplify the presentation, we focus
on Taylor—Hood [25] finite elements for velocity and pressure, and continuous piecewise polynomials spaces for
vorticity. Given an integer / > 0 and a subset S of RY, we denote by P;(S) the space of polynomials of total degree
at most / defined on S. For any k > 1, we consider:

Y = {v e [CO17: wilk e PR VK € Ty} nHj@),
HY = {qh eC(): qulxk €P(K) YK e T,} NL2(0). 4.2)
Hy = o) e [COI2 0 wylx € [PUKD? VE T,

It is well known that the pair (H}, H,f ) in (4.2) satisfies (4.1) [26]. We observe that similarly to [12,15], we can
also consider discontinuous piecewise polynomials spaces for the vorticity, that is,

B = [0, € @120 aplx € PO VK e T,

In addition to the Taylor-Hood elements for the velocity and pressure, in the numerical experiments in Section 6
we also consider the classical MINI-element [23, Sections 8.4.2, 8.6 and 8.7] and Crouzeix—Raviart elements with

13
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tangential jump penalization (see [27] for the discrete inf—sup condition for the lowest-order case and, e.g., the
recent paper [28] for cubic order).

Now, defining w, := (u;, wp), v, = (vsr, ¥;,) € H) x H, the semidiscrete continuous-in-time problem associated
with (2.9) reads: Find (uw,, p;) : [0, T] — (H}l1 X Hf) X Hﬁ such that, for a.e. t € (0, T),

3
- [E@,), v, ]+ [A@y), v,] + [B(y,), prl = [F,v,] Yy, € Hj x HY,
—[B,), gxl =0 Vg, € HY.

As initial condition we take (W, o> Pn.0) = ((Wy0, @n0), Pr.o) to be a suitable approximations of (u,, po), the solution
of (3.25), that is, we chose (w, o, ps.0) solving

[A(Eh,o), Yh] + [B(Xh), prol = [Fo, !h] Vyh € Hz X Hﬁ,
—[B(u,, ), gnl =0 Y g, € HY,

(4.3)

(4.4)

with Fy € L2(2) x {0} being the right-hand side of (3.25). This choice is necessary to guarantee that the discrete
initial data is compatible in the sense of Lemma 3.7, which is needed for the application of Theorem 3.1. Notice
that the well-posedness of problem (4.4) follows from similar arguments to the proof of Lemma 3.6. In addition,
taking (v, gn) = (w, o, Pr.o) in (4.4), we deduce from the definition of the operator A (cf. (2.11)), the identity
(2.7), and the continuity bound of Fy (cf. (3.26)) that, there exists a constant Cy > 0, depending only on |{2], [li,]l,
v, a, F, k1, and &3, and hence independent of 4, such that

2 2 2(p—1) 2 2
195,080y + 100013 ) + 000122 = Co{I00lh ) + 1AWl g, + NU0liZs g |- (4.5)

In this way, the well-posedness of (4.3) follows analogously to its continuous counterpart provided in Theorem 3.8.
More precisely, we first address the discrete counterparts of Lemmas 3.3 and 3.4, whose proofs, being almost
verbatim of the continuous ones, are omitted.

Lemma 4.1. Let p € [3, 4]. Assume «y and k, as in Lemma 3.4. Then, the family of operators {(5 + A +z,):

H} xHY - (H; xHYY : z, e H} x HZ’} is uniformly strongly monotone with the same constant ygr > 0 from
(3.14), that is, there holds

[+ D, +2,) — €+ AW, +2,). 0, —v,] > e u, — v, 1%,

for each z, = (z;,, ¢;,) € H}) x HY, and for all w, = (uy, ), v, = (vu, ¥,,) € H x HY. In addition, the operator
E+A:H) x HY) — (H}} x H?) is continuous in the sense of (3.12), with the same constant Lgg.

We continue with the discrete inf-sup condition of B.

Lemma 4.2. There exists a constant ,g > 0, such that
[B(Xh)v Qh]
sup —_—

> Bllgnlhi2e) Yan € Hj . (4.6)
ozv,entxue 1Vl

Proof. The statement follows directly from (4.1). O

We are now in a position to establish the semi-discrete continuous in time analogue of Theorems 3.8 and 3.9.

Theorem 4.3. Let p € [3,4]. Assume k| and k, as in Lemma 3.4. Then, for each compatible initial data
(gh,o, Pro) = (W0, @n0), pro) satisfying (4.4) and f € W0, T; L2(02)), there exists a unique (W, py) =
((wp, wp), pp) 1 [0, T] = (H} x HY) x HZ solution to (4.3), satisfying u, € WH>(0, T; H}) and (u,(0), w,(0)) =
(Ws.0, @p.0). Moreover;, assuming that uy € Hx satisfies (3.23) and that £ € 1L*(0, T; L*({2)), there exist constants
6}31?,17 631:,2 > 0 depending only on |{2|, |li,|l, v, @, F, E, k1, and Kk, such that

I llLoo . 7:L2¢2)) + 20 w2y + @i 2. 22y + 1 Pall2o. 70200

=~ 2(p-1)/p 2(p-1)%/p p-1
< Cer,1 { ”f||L2(0,T;L2(Q)) + Ifll 20, 702020 T “uOHHl(Q) + ||“0||H1(Q) 4.7
2p—1) 2(p-1)
+ 1 Aug |22 4 || Auglly 20y + ol 5 + o]l 20
L2(02) L=(£2)

14
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and

=~ -1
i llLeco,7:11 2y = CBF,Z{ €Nl L20,7:12¢02)) + [lW0] ;1(9) + [ Ao Iy ) + ||u0||L2(_Q)} . (4.8)

Proof. According to Lemma 4.1, the discrete inf-sup condition for B provided by (4.6) (cf. Lemma 4.2), and
considering that (u;, o, pno) satisfies (4.4), the proof of existence and uniqueness of solution of (4.3) with w, €
W0, T; H}) and u,(0) = w0, follows similarly to the proof of Theorem 3.8 by applying Theorem 3.1.
Moreover, from the discrete version of (3.29), we deduce that @;(0) = @ ¢.

On the other hand, mimicking the steps followed in the proof of Theorem 3.9, we obtain the discrete versions of
(3.33)—(3.39). Then, using the fact that (u;(0), ®,(0)) = (w0, @, ) and estimate (4.5), we derive (4.7) and (4.8),
thus completing the proof. [

4.2. Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.3). To that end, we first introduce the
discrete kernel of B, that is, V;, := K;, x H?, where

h>
K, = {vh eH': (ghdivivi)e =0 Vg€ H,f}, 4.9)

and recall that the discrete inf-sup condition of B (cf. (4.6)), and a classical result on mixed methods (see, for
instance [29, Eq. (2.89) in Theorem 2.6]) ensure the existence of a constant C > 0, independent of 4, such that:
inf Jlu—y,| =C inf Ju—y,|. (4.10)
v,€V) v, eH) xHy
Next, in order to obtain the theoretical rates of convergence for the discrete scheme (4.3), we recall the
approximation properties of the finite element subspaces Hj, Hy, and H;': (cf. (4.2)), that can be found in [23,24],
and [22]. Assume that u € H'**(02), w € [H*(£2)]9¢~D/2_and p € H*({2), for some s € (1/2, k + 1]. Then there
exists C > 0, independent of &, such that

inf Jlu—v,llgio = Ch° ullgis ), (4.11)

VhGHh

inf Jlo—9,l20 = CHlolwsw, (4.12)
= hIL2(02) £2)

inf [p —qnllizey = CH Il - (4.13)

qn€Hy

Owing to (4.10) and (4.11)—(4.13), it follows that, under an extra regularity assumption on the exact solution, there
exist positive constants C(u), C(d; u), C(p), and C(9; p), depending on u, @ and p, respectively, such that
inf Jlu—vy,| < Cwh*, inf [Gu—v,| < COwWh",
v, €Vh v, €V

inf ||p—gnllizn < C(p)h*, and inf [|3; p — qulli2n) < CO, p)h°.
qneH) qneHy

(4.14)

In turn, in order to simplify the subsequent analysis, we write e, = (ey, €,) = (W—uy, @ —®;), and e, = p — py,.
Next, given arbitrary ¥, := Vi, @) : [0, T] — V, (cf. (4.9)) and g, : [0, T] — H}, as usual, we shall then
decompose the errors into

eg=82+77!=(8u,8w)+(77ua "a))s ep =8p+”p7 (415)
with
6u:u_,v\h’ 8&):“’_'/,117 Sp:p_zl\h»
. (4.16)
Ny = Vi — Uy, n(z):'/,h_wh’ ﬂpzf]h—Ph~
In addition, we stress for later use that d;v, : [0,T] — V, for each v,(z) € V, (cf. (4.9)). In fact, given
¥, q1) : [0, T] = V;, x H/, after simple algebraic computations, we obtain

[B(3: ¥,,), gn]l = 3 (IBX,) qnl) — [B(¥,), 3 gl = 0, (4.17)
where, the latter is obtained by observing that 9, g,(¢) € H}.
15
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In this way, by subtracting the discrete and continuous problems (2.9) and (4.3), respectively, we obtain the
following system:

d
7 [E(ew). ] + [AW — Aw,). v, ] + [B(,). e,] = 0 Vy, € Hy x Hp, @.18)

[B(eg)v qnl = 0 Vg€ Hg .

We now establish the main result of this section, namely, the theoretical rate of convergence of the discrete scheme
(4.3). Notice that, optimal rates of convergences are obtained for all the unknowns.

Theorem 4.4. Let p € [3, 4]. Assume k1 and i, as in Lemma 3.4. Let (w, w), p) : [0, T] — (Hj(£2) xL*(£2)) xL§({2)

with u € Who°(0, T; L2(£2)) and ((uy,, @), p) : [0, T] — (HZ X HZ)) X HZ with w, € WH(0, T; H}), be the

unique solutions of the continuous and semidiscrete problems (2.9) and (4.3), respectively. Assume further that there

exists s € (1/2, k+ 1], such that u € H'* (), @ € [H*()]**V72 and p €~HS(Q). Then, there exists C(u, p) > 0

depending only on C(w), C(3; w), C(p), C(9; p), |£2], llip I, li2p-nll, v, &, F, B, k1, k2, and data, such that
lleullLoo,7:L2¢2y) T NeullL2.7:m1 2

+ llewll2. 71202y T+ l€pllizo.r120) < CQ, p) (hs + hx(p_])) . (4.19)

Proof. First, adding and subtracting suitable terms in the first equation of (4.18), with v, =5, = (y, 1) : [0, T] —
Vi, (cf. (4.9)), proceeding as in (3.16) and using the fact that n,(t) € Vy, thus [B(ny), n,]1 = 0, we deduce that

1
5 0 Imullt2 o) + @ 1malliago) +F Collmall oo, + ft lleurkmy)lig o,

+ i V)12 ) + 721100172 ) (4.20)
S _(afaua ”u)Q - a(aua ”u)Q - F(|u|p72u - |Vh|p72Vh’ nu)Q - V(swv ”w + curl("u))ﬂ
+v(1,, curl(8y)) o — «i(curl(8,) — 3, curl(y,) + n,) 0 + (8, — k2div(8y), div(n,)) e ,

with y, defined in (3.17). The terms on the right hand side can be bounded using the Cauchy—Schwarz and Young’s
inequalities (cf. (1.1)), and (3.8), as follows:

— (38w, Mo — «@Bu, e < énatauuiz(m +aldullf ) + %nnuniz(m, 4.21)
— F(lul’u — [Vy[" Vi, ny)e

<F& (lullp2e-neo) + ||Vh||L2<p—1)(;g))p_2 18ullL20-1(2) 1Mulli2c0)

< F& (2 ullg2e-neg) + ||3u||142<p—1>(9))p_2 [8ull20-1(0) IMall2ce2)

jod —2 —2
< C (Il + 180, ) 1Bl Il

2C _ _ o
= = (gt o 18all o, + 18ullb ) + 5 17l (4.22)
V2 V2
2 (curl(du) = 80, 1) < - lleurl®u) = 8otz g, + 5 I1Mlli2(o) (4.23)
— V(8. curl(n,) o — ki(curl(3y) — 8, curl(n,)
2
v 2 2 K1 2
S K_] ”8&) ”LZ(Q) + K1 ||Cul'l(8u) - 8(0 ||L2(Q) + ? ”curl("u)”LZ(Q)’ (424)
) . 1 . Ky
(8 — k2div(8y), div(n,)) e < K—znapniz(m +alldiv@ Tz o) + 7 14Vl ), (4.25)

where C > 0 depends on |{2], [lizp—n)ll, and F. We note that in (4.22) we used the continuous injection of H'(2)
into L2P=D(42), with 2(p — 1) € [4, 6], cf. (1.2). Combining (4.20)—(4.25), using the identity (2.7), and neglecting
the term ||17u||ipm) in (4.20) to obtain a simplified error estimate, we get

2 2 2 2
af ””u”LZ(Q) + ”r'uHLZ(Q) + Y1 ||V”u||L2(Q) + y2||”w||L2(Q)
< C1 (18 8ull?s, o 4+ I8ullZP Y + (14 12 P 2) 18ul2 o) + 180122, o) F 18,112, )
= 1A% Pulle2g) T 1%ullgi (o) H!(2)/ 170l (2 T 1%l Pl

16
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with y; defined in (3.17) and C; is a positive constant depending on |{2|, |lixp—n I, v, @, F, k1, and k. Integrating
(4.26) from 0 to 1 € (0, T'], recalling that |[ull e 7.11(s) is bounded by data (cf. (3.31)), we find that

t
1112, + f (e 1malZa gy + 70 IVl )+ 7201122 ) s
0

) 4.27)
<G /0 (101 8uliaggy + 1Bull5 ) + 18l + 18, 1220 ) 5 + (O

with C, > 0 depending on [£2], [lixp—n)ll, v, &, F, k1, k2, and data.
Next, in order to bound the last term in (4.27), we subtract the continuous and discrete initial condition problems
(3.25) and (4.4), to obtain the error system:

[A(a,) — A, o). v, ] + [B(¥,). po — prol = 0 Vv, e Hi xHy,
- [B(Eo - Eh,o)» qn) = 0 Vg,e Hﬁ .

Then, proceeding as in (4.26), recalling from Theorems 3.8 and 4.3 that (u(0), @(0)) = (ug, @y) and (u,(0), @,(0)) =
(uy.0, @n.0), respectively, we get

& 1Oy + 11 VIO ) + 12102 = Co (I8P ) + 180 + 1851250 . (428)

where, 51m11ar1y to (4.16), we denote 8y, = (Su,» ,,,0) = (ug — v4(0), wy — l/lh(())) and &,, = po — qx(0), with
arbitrary (v;,(0), 1,0,,(0)) €V, and g;,(0) € Hh, and Co is a positive constant depending on |{2|, [lizp-1)ll, v, @, F, k1,
and k,. Thus, combining (4.27) and (4.28), and using the error decomposition (4.15), there holds

t
eI, + / (a leullfzgg, + v1 1Veullfa o) + yznewniz(m) ds < C ¥(u, p), (4.29)
0

where
t
U, p) = 80 + f (100 8l + 18P0 + 180> + 18, 122, ) ds
0

2(p—1 2 2
+ 18y 127D 4 118wy 17 + 185 172, -

On the other hand, to estimate e[| 2 7.12(5), We observe that from the discrete inf-sup condition of B (cf.
(4.6)), the first equation of (4.18), and the continuity bounds of &, A, B (cf. (3.4), (3.12), (3.2)), there holds

- —(19: ECew), v, ] + [A@) — Aw,), v,1 + [B,), 8,)
< u
Byl = 0¢ghsel:II‘;‘xHﬁ (N

p—2
=< C3(||3teu||L2(Q) + lleullyi o) + (”u“Hl(Q) + ”uh”Hl(Q)) leulluio) + llewll2o) + ||5p||L2(Q)) ;

with C3 > 0 depending linearly on |£2|, [li,|l, v, &, F, k1, and «». Then, taking square in the above inequality,
integrating from 0 to ¢ € (0, T], recalling that both |lull o 7.mi(2) and [l 7:ml (o) are bounded by data
(cf. (3.31), (4.8)), and employing (4.29), we deduce that

/ 1,172 ds < a{mu P+ / 18, 1122, s } (430)

with C4 > 0 depending on |£2], [lip]l, li2p—pll, v, o, F, ﬂ, K1, k2, and data. Next, in order to bound the last term in
(4.30), we differentiate in time the equation of (4.18) related to ¥, choose v, = (9; 1y, 1,,), and use the identity
(3.37), to find that

1 .
18 MallF2 gy + 5 20 (@ IMallFzggy + 1 Ul 2 )+ 2 IV 2 g + 0 = 1) [0 20)

= —(3 8u, % o — & (Bu, 3 M) — F(ulP2u — [uy 2wy, 3 ny) 2 — v(d; 80, M) 02
— V(80, curl(d, 1)) + v, curl(d,84)) 0 — «i(curl(8,) — 8, curl(d,,) — 3,n,)0 (4.31)
— k18, (eurl(8y) — 80y, Ny) 02 — k2(div(8y), div(d ) + (8, div(d ) e -

17
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Notice that (g, div(d,n,))» = 0 since (,(2), 0) € V;, (cf. (4.9) and (4.17)). Then, using the identities
p u u g

(0, curl(d,; )2 = 9 (80, curl(ny))o — (3,80, curl(n,)) e,
(curl(8y) — 8, curl(d,;n,) — 9 n,) = 0; (curl(dy) — 8o, curl(n,) — n,)0
— (curl(9;8y) — 9,84, curl(n,) — n,)02 (4.32)
(div(du), div(3;my)) 2 = 9; (div(u), div(n,)) e — (div(9;8u), div(ny))e
(B, div(0rmy)) e = 0: (8, div(ny)) e — (38, div(n,)) e -

In turn, using the Cauchy-Schwarz inequality, (3.8), and the continuous injection of H'(£2) into L*P~D(£2) we
deduce that there exists a constant Cs > 0 depending on [{2| and [lix,—1)|l such that

-2 -2 ~ p—2
(lufP™"a — [u,; [P"uy, 9 9y < G (”u”LZ(P*l)(Q) + ”uh”LZ(P*l)(Q)) lleullL20-n2) 10 MyllL2(g2)
p—2
< Cs (Ilullg o) + Il )" lewllm o)l18: i) - (4.33)

Thus, integrating (4.31) from O to ¢ € (0, T], using the identities (2.7) and (4.32), the estimate (4.33), and the
Cauchy—Schwarz and Young’s inequalities, in a way similar to (4.21)—(4.25), we find that

A

t
& 1O, + 71 IV ) + 72 00O + f 10, 7122, ds
0
t
2(p—2)
< Co ( / (10 8ul + 10,8125 g + 18ullZ2 ) + (10l + Nl )™ Neals ) s
0

t
F 18u (I + 18, (D12, ) + 18u 12 + 1850122, + / a2 ds + 1, (0)]12 )
0

1

o Vi V2 1
+ 5 ””u(t)"iZ(Q) + E) ||V77u(f)||]2Lz(m + > ”nw(t)HiZ(Q) + 5/0 I3 r’u”iZ(Q) ds,

where Cs > 0 depends on |£2], [lizp—1)ll, v, @, F, k1, and k,. Then, recalling that |[u| cc(. .11 2y, and [0 |50 (0. 7:11(2))
are bounded by data (cf. (3.31) and (4.8)), employing estimates (4.27) and (4.28), and some algebraic manipulations,
we deduce that

t
@ 11320, + V1 IV 2 ) + V2 116D 12 ) + f 19: 15 ) s
0
t
2(p—1
<G ( / (||a, Sull” + 198, 172, + I18ullyhy) + 18ull> + ||8,J||§2(Q)) ds (4.34)
0
2(p—1
+18u(OI + 18, (D12 ) + 18ug 13" ) + 18y > + 118,55 172 ) :

with C; > 0 depending on 2], |li, I, [li2p-pll, v, o, F, E, K1, k2, and data. Thus, combining (4.30) with (4.34), and
using the error decomposition (4.15), yields

t t
| sl ds < Cg{wg, PIH 18Ol + [ nazspnizm,ds}, 435)
0 0

with Cg > 0 depending on |£2], [lil, [li2p-n I, v, @, F, ,5, K1, k2, and data. Finally, using the fact that ’fh 1[0, T] —
Vy and gy : [0, T] — HY are arbitrary, taking infimum in (4.29) and (4.35) over the corresponding discrete subspaces
V, and H/, and applying the approximation properties (4.14), we derive (4.19) and conclude the proof. [

Remark 4.1. Bounds (4.21)—(4.25) imply that the constant C on the right-hand side of (4.29) is linearly dependent
2
on z—l and é Combined with the constants on the left-hand side of (4.29), this shows that the convergence constant

for |leullL2¢.7:12(s2) 18 linearly dependent on \/LKT and J%, the one for [|Veull 2 7.12(02)) 18 linearly dependent on
1 v 1 _ : : : 1 v
@, NG and NG y1 = min{xy, k»}, and the one for ||ew||Lz(0’T;L2(Q)) is linearly dependent on T T and

=V —K]j.

JV2K2° n2
5. Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (2.9) (cf. (4.3)). To that end, for the
time discretization we employ the backward Euler method. Let Ar be the time step, T = N At, and let ¢, = nAt,

18
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n=0,..., N. More precisely, we let d,u" = (At)~!(u" —u"~") be the first order (backward) discrete time derivative,

where u" = u(t,). Then the fully discrete method reads: given f' € L*(£2) and (u), p)) = (W0, @4.0), Pr.0)

satisfying (4.4) find (u}, p}) := ((u};, ®}), py) € (H; x HY) x H’, n=1,..., N, such that
d[Euy), v, ] + [AW}), v, 1 + [B(y,), p;] (F*,v,] Vy, € H, xH},
~[B(}), 4] =0 Van € Hy .

where [F",v,] .= (", v;) 0.

In what follows, given a separable Banach space V endowed with the norm || - ||y, we make use of the following
discrete in time norms

(5.1)

p . P .
lallfo rovy = At 3" Iy and - Jullew.r:v) = max fu”llv. (5.2)
n=1 -

Next, we state the main results for method (5.1).

Theorem 5.1. Let p € [3,4]. Assume k| and k, as in Lemma 3.4. Then, for each (uh, D 0y = ((ap.0, ®n0), Pro)
satisfying (4.4) and ' € L2(2),n = 1,..., N, there exists a unique solution (u;, p;) = ((u}, w},), p}) €
(H“ X H"’) X H‘” to (5.1). Moreover, under a sultable extra regularity assumption on the data, there exist constants
CBF 1, CBFZ > 0 depending only on |{2|, |li,||, v, @, F, ,3 K1, and k,, such that

s llgoo0,7:0202)) + Atldranll 20 712060y + 1 lle20, 7.1 (2)) + ll@nll 20, I 122y T 1Pnlle2. .22

~ 2(p—1)/p 20-17/p
= CBF,l { ”f”Lz(O,T;LZ(.Q)) + ”f”Lz(O,T;LZ(.Q)) + ”uO”Hl(Q) + ”uO”Hl(Q) (53)
2(p—1) 2(p—1)
+11 w0l )" + 1l Aol + luollgh )" + luolliace
and
lan o0, ;11 (2)) = CBF 2{ ||f||L2(0 T:1202) T ||u0||H1(Q) + ||Au0||L2(Q) + ||u0||L2(Q)} . (5.4
Proof. First, we note that at each time step the well-posedness of the fully discrete problem (5.1), withn =1,..., N,

follows from similar arguments to the proof of Lemma 3.6.
On the other hand, the derivation of (5.3) and (5.4) can be obtained similarly as in the proof of Theorem 3.9. In
fact, we choose (v, gy) = (U}, p;) in (5.1), use the identity

no..n 1 n2 1 n 2
(dt uh’ uh).o = 5 dl‘ ”uh”LZ(Q) + E At ”dl‘uh ”LZ(Q) ) (55)

the definition of the operator A (cf. (2.11)), the identity (2.7), and the Cauchy—Schwarz and Young’s inequalities
(cf. (1.1)), to obtain

2
dl ”uZ ||L2(.Q) + At ”dluh ||L2(Q)+a ”uh ”LZ(Q) + F”“Z ”]])_,P(Q)

+i ||curl<uh)||Lz(m + 2 VDI ) + 72 19 T2 ) = 5 I T2 + 55 G2,
where y, is defined in (3.17). Then, choosing § = 1/« and summing up over the time index n = 1, ..., m, with
m=1,...,N,in (5.6) and multiplying by At, we get
5 15 2 ) + (AP Y Nt l132 ) + A2 Y (anuzniz(m + 26 fleurl (W) 25, )
n=1 n=1
m (5.7)
+AY (2K2 Idiva)F2 ) + 272 @} ||iz(9)) — Z 111320, + D15 2 )
n=1

Notice that, in order to simplify the stability bound, we have neglected the term |uj ||Lp( @ 1n the left-hand side of
(5.6).

On the other hand, from the discrete inf—sup condition of 5 (cf. (4.1)) and the first equation of (5.1) related to
v, we deduce that

B ”pZ”LZ(Q) = ||fn||L2(Q) +o ||uh||L2(_Q) + F iyl ”uh”LP(Q) (5.8)
+ it [leurl(up) 2 o) + 2 Idiv(up)ll 2 o) + v2 @ 22) + gl o) -
19
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Then, taking square in (5.8), using (5.7), we deduce the analogous estimate of (3.35), that is

Ay 1Pl < € {Ar D I 2 )+ D12 )
n=1 m n=1 (59)
2(p— n .
a0 Y (FINGIETG) + 1d 1 ) } with m=1,.... N,

n=1

with C; > 0 depending on |£2], [liy|, v, o, F, ,5, k1, and «,. Next, in order to bound the last two terms in (5.9),
we choose (v, gn) = ((d; u, ®}), py) in (5.1), apply some algebraic manipulation, use the identity (5.5) and the
Cauchy—-Schwarz and Young’s inequalities, to obtain the discrete version of (3.36):

1
2 2 . 2 2 -2
A1 2, + 5 i (@ 10512 )+ €2 IRV )+ v 1] ) + F (0GP0 dru

1 3 n n
3 A (@ 1] )+ 2 IV g, + v i) 2 ) (5.10)

1 1
+ 1 (curl(u}) — @}, drcurl(w;) o + k1 (di (curl(w)) — @), @))o < S 2 o) + 5 11T g,

where, using again (5.5), analogously to (3.37), we can obtain the identity

ki(curl(uy) — oy, dicurl(u})) o + k1 (d;(curl(uy) — ®}), ®)) o

K1 n " K1 n n 5.11
= S (leurl @)1 g, = 10715 ) + 5 At (leurl@upI s g, = 1} 2 ) - G-AD
In turn, employing Hoélder and Young’s inequalities, we are able to deduce (cf. [7, Eq. (5.13)]):
n|p— n n (At)71 n — 1 n
("2l o = = (15 oy = 0 ) = 195 o (5.12)
Thus, combining (5.10) with (5.11) and (5.12), summing up over the time indexn = 1,...,m, withm =1,..., N
and multiplying by Az, we get
2F m
m 2 m P my 2 m (2 ny2
o I 2 ) + 10 oy 71 IVOE 2 ) + 72 107 ) + A > ld}lifa g,
m oF n=! (5.13)
< A Y 20, + @ )l ) + > I} ) + 11 IVURIE2 ) + 72 1051175 )
n=1
where y; and y; are defined in (3.17). Then, combining (5.9) and (5.13) yields
m m 2(p71)/p m
ALY Pl s, < C { (At > ||t"||iz(m) + ALY I
n=1 n=1 n=1 (514)
2p—1 4(p—1 4(p—1
+ IRl + 19 1o, + 100 b o)™ + 163 130 ) + R IS ™ + 001 } ,
withm =1,..., N and C, > 0 depending on |£2|, [li, |, v, o, F, B, k1, and k>, which combined with (5.7), the fact

that (ug, a)g) = (w0, wp ) and the estimate (4.5), implies (5.3). In addition, (4.5) and (5.13) yields (5.4), which
concludes the proof. [J

Remark 5.1. Similarly to Remark 3.6 for the continuous solution, bound (5.7) and the identity (2.7) show that
the stability constant for ||Vuy|| 200.7:L2(52)) is linearly dependent on ﬁ, y1 = min{xy, k»}, while the one for

lwnll 20,7122y is linearly dependent on «/L;Tz’ y» = v — k1. In addition, bounds (5.7) and (5.14) show that the
i 11 1
stability constants for [[uyl,2¢ 7.12(2) and | pnlle2.7:12(2) do not depend on , R

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that end, we
subtract the fully discrete problem (5.1) from the continuous counterparts (2.9) at each time stepn =1,..., N, to
obtain the following error system:

di [E(€y), v, ] + [A@") — Auy), v, 1 + [B(y,,), €] (ra(), Vi)

[B(eﬁ) ) Qh] == 0 N
20

(5.15)
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for all v, € H! x H? and ¢, € H), where r, denotes the difference between the time derivative and its discrete
analogue, that is

r,(u) = d,u" — 9; u(t,).

In addition, we recall from [30, Lemma 4] that for sufficiently smooth u, there holds

N
At Y @, < COw(AD?,  with C@u) = C |3, ull},

n=1

O.T;L2(2)" (5.16)

Then, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the structure of
the proof of Theorem 4.4, using discrete-in-time arguments as in the proof of Theorem 5.1 and the estimate (5.16)
(see [7, Theorem 5.4] for a similar approach).

Theorem 5.2. Let the assumptions of Theorem 4.4 @gld, with p € [3,4] and s € (1/2,k + 1]. Then, for the
solution of the fully discrete problem (5.1) there exists C(u, p) > 0 depending only on C(uw), C(9, w), C(9,, ), C(p),
C(d; p), 1920, lipll, 21l v, @, F, B, k1, k2, and data, such that

l€ull ooo,7:12(52)) + A 1ds €ull20.7:12¢29) T ll€ulle20,7:11 2
- o ¢ (p—1
+ ”ew”ﬁ(O,T;LZ(Q)) + ||ep||£2(0,T;L2(Q)) S C(g, p) (hé + I’lé (p ) + A t) . (517)

Remark 5.2. For the fully discrete scheme (5.1) we have considered the backward Euler method only for the sake
of simplicity. The analysis developed in Section 5 can be adapted to other time discretizations, such as high order
BDF schemes or the Crank—Nicholson method.

6. Numerical results

In this section we present some examples illustrating the performance of the augmented mixed formulation.
The numerical methods have been implemented using open source finite element libraries: FEniCS [31] and
FreeFem++ [32]. We have used FreeFem++ for the 2D test cases, Examples 1, 3, and 4, and FEniCS for the
3D ones, Examples 2 and 5.

Example 1: Verification of spatial convergence

The analysis of convergence established in the previous sections is illustrated numerically using a classical
manufactured solution approach. Convergence rates under mesh refinement are computed with respect to the
closed-form velocity and pressure

_ ( t cos(x) sin(rry)

_ sin(nx)cos(ny)) , p=tsin(wx)sin(wy), (6.1)

and @ = curl(u), defined on the unit square 2 = (0, 1)?, up to a time T = 0.05 and using a fixed time step
At = 0.01 (sufficiently small not to interfere with the accuracy verification of the spatial discretization). Non-
homogeneous Dirichlet boundary conditions for velocity as well as the forcing term f are imposed according to
the exact manufactured solutions, and the average of the approximate pressure is constrained to match that of
the exact pressure (the constraint being imposed through a real Lagrange multiplier). As the Dirichlet boundary
conditions depend on time, this needs to be taken into consideration when implementing the initialization of inner
Newton—Raphson iterates for each time step.

After backward Euler discretization, the nonlinear algebraic system encountered at each time iteration is solved
with a Newton—Raphson algorithm with an absolute incremental tolerance of 10~ (on the ¢>—norm of the finite
element incremental vector), and each linear solve of the tangent system is done with the unsymmetric multi-frontal
direct solver MUMPS [33]. The finite element family used for these numerical tests is Taylor-Hood-Lagrange
(i.e., the three finite dimensional subspaces in (4.2) with k = 1).

Table 6.1 illustrates the numerical convergence of the proposed method for this case, which uses the following

1

model parameters values @ = 100, v = 0.01, F = 10, and p = 3.5. According to Remark 3.3, we take «; = SV
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o

26e-17 002 5.0e-02 -3.1e01 0 3.1e-01 25606 002 5.0e-02
|uh| 1 W, | Ph 1

Fig. 6.1. Samples of numerical solutions for the accuracy test up to 7 = 0.05, using the base-line parameters o = 100, v = 0.01, F = 10,
and p = 3.5 and a Taylor-Hood-Lagrange method.

Table 6.1
Example 1. Error history with respect to mesh refinement, computed at 7 = 0.05 using the base-line parameters
o =100, v =0.01, F = 10, and p = 3.5 and with a Taylo—Hood-Lagrange method.

DoF h eu rate e rate ep rate avg_it
69 0.71 3.67e—02 * 3.70e—02 * 9.12e—03 * 3.00
213 0.35 9.97e—03 1.88 8.98e—03 2.04 1.66e—03 2.46 3.00
741 0.18 3.36e—03 1.57 2.08e—03 2.11 3.42e—04 2.28 3.00
2757 0.09 1.12e—03 1.59 5.09¢e—04 2.03 8.12e—05 2.08 3.00
10629 0.04 2.71e—04 2.05 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 5.20e—05 2.38 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.05e—05 2.30 7.89e—06 2.00 1.26e—06 2.00 3.00

and k; = k. We display velocity errors in the H'(£2)—norm, vorticity in the L?*(£2)—norm and pressure in the
L?(£2)—norm, computed at the final time

ew = [ —wllg)y eo =l —-oll2g), € =I1p—prllia)> (6.2)
together with experimental rates of convergence

log(e/e(.)
rate = ———
log(h/h")

where i and i’ denote two consecutive mesh sizes with errors e, and eE.), respectively. We also tabulate the average
of Newton—Raphson iterates (avg_it) needed through all time steps on each refinement level. Approximate solutions
for this case are plotted in Fig. 6.1.

Next we perform similar tests but now varying the Forchheimer exponent p and the Forchheimer number F
(Table 6.2). In Table 6.2 (top) very slight differences (with respect to the error history reported in Table 6.1) in
absolute individual errors are observed for coarser meshes, but after the first two mesh refinements the convergences
are identical for all cases, showing the optimal O(h**!) rate as predicted by the theory. In Table 6.2 (bottom) the
iteration count increases due to the strength of the nonlinearity (for F = 10000) but the convergence rates remain
optimal.

The next set of runs focuses on varying the Darcy number (¢ = 107* 10%) and the viscosity (v =
1073, 107*, 1073), taking x| = 5 and k> = k1 (see Table 6.3). Optimal convergence rates are observed independently
of the chosen Darcy number (see top table). Regarding the variation in viscosity, Table 6.3 (bottom) indicates an
optimal convergence for vorticity and pressure, whereas for velocity a clear sub-optimal convergence is attained for
the case of smaller viscosities. The latter is consistent with Remark 4.1, which indicates that for x; = k, = O(v) the
convergence constant for ||Veyll;2¢ .12 depends linearly on % According to Remark 4.1, we expect to recover
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Table 6.2
Example 1. Error history with respect to mesh refinement, computed at 7 = 0.05 using the base-line parameters
o =100, v =0.01, and varying p with F = 10 fixed (top) and varying F with p = 3.5 fixed (bottom).

DoF h eu rate €w rate ep rate avg_it
p=3
69 0.71 3.67e—02 * 3.70e—02 * 9.17e—03 * 3.00
213 0.35 9.97e—03 1.88 8.98e—03 2.04 1.66e—03 2.47 3.00
741 0.18 3.36e—03 1.57 2.08e—03 2.11 3.42e—04 2.28 3.00
2757 0.09 1.12e—03 1.59 5.09¢e—04 2.03 8.12e—05 2.08 3.00
10629 0.04 2.71e—04 2.05 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 5.20e—05 2.38 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.05e—05 2.30 7.89e—06 2.00 1.26e—06 2.00 3.00
p=4
69 0.71 3.67e—02 * 3.70e—02 * 9.17e—03 * 3.00
213 0.35 9.97e—03 1.88 8.98e—03 2.04 1.66e—03 2.47 3.00
741 0.18 3.36e—03 1.57 2.08e—03 2.11 3.42¢—-04 2.28 3.00
2757 0.09 1.12e—03 1.59 5.09¢e—04 2.03 8.12e—05 2.08 3.00
10629 0.04 2.71e—04 2.05 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 5.20e—05 2.38 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.05e—05 2.30 7.89¢e—06 2.00 1.26e—06 2.00 3.00
DoF h eu rate e rate ep rate avg_it
F=10"*
69 0.71 3.67e—02 * 3.70e—02 * 9.11e—03 * 2.00
213 0.35 9.97e—03 1.88 8.98e—03 2.04 1.66e—03 2.46 2.60
741 0.18 3.37e—03 1.57 2.08e—03 2.11 3.42e—04 2.28 2.80
2757 0.09 1.12e—03 1.59 5.09¢e—04 2.03 8.12e—05 2.08 3.00
10629 0.04 2.71e—04 2.05 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 5.20e—05 2.38 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.05e—05 2.30 7.89e—06 2.00 1.26e—06 2.00 3.00
F=10*
69 0.71 3.68e—02 * 3.70e—02 * 2.64e—02 * 4.00
213 0.35 9.54e—03 1.95 8.98e—03 2.04 2.31e—03 3.52 4.20
741 0.18 2.76e—03 1.79 2.08e—03 2.11 3.63e—04 2.67 4.00
2757 0.09 8.57e—04 1.69 5.09¢e—04 2.03 8.16e—05 2.15 4.00
10629 0.04 2.31e—04 1.89 1.26e—04 2.01 2.01e—05 2.02 4.20
41733 0.02 4.98e—05 2.21 3.16e—05 2.00 5.02e—06 2.00 4.60
165381 0.01 1.05e—05 2.25 7.89¢e—06 2.00 1.26e—06 2.00 4.60
Table 6.3

Example 1. Error history with respect to mesh refinement at 7 = 0.05, computed using the base-line parameters
p=3.5, F =10, and varying o with v = 0.01 fixed (top) and varying v with & = 100 fixed (bottom). Here we
have used k1 = k2 = 5. A sub-optimal convergence in the velocity is observed for small viscosity.

DoF h ey rate €w rate ep rate avg_it
a=10"*

69 0.71 3.73e—02 * 3.70e—02 * 4.98¢—03 * 3.00
213 0.35 1.52e—02 1.29 9.07e—03 2.03 1.53e—03 1.71 3.00
741 0.18 7.27e—03 1.07 2.09e—03 2.12 3.35e—04 2.19 3.00
2757 0.09 1.94e—03 1.91 5.09e—04 2.04 8.10e—05 2.05 3.00
10629 0.04 3.29¢e—04 2.56 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 5.40e—05 2.61 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.06e—05 2.35 7.89e—06 2.00 1.26e—06 2.00 3.00

(continued on next page)
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Table 6.3 (continued).

DoF h ey rate [ rate ep rate avg_it
o«=10"*
o = 10*
69 0.71 3.67e—02 * 3.70e—02 * 6.46e—01 * 3.00
213 0.35 9.36e—03 1.97 8.98¢—03 2.04 5.09¢—02 3.67 3.00
741 0.18 2.39¢e—03 1.97 2.08e—03 2.11 4.57e—03 3.48 3.00
2757 0.09 5.98e—04 2.00 5.09¢e—04 2.03 3.37e—04 3.76 3.00
10629 0.04 1.50e—04 2.00 1.26e—04 2.01 2.93e—05 3.53 3.00
41733 0.02 3.76e—05 1.99 3.16e—05 2.00 5.20e—06 2.49 3.00
165381 0.01 9.48e—06 1.99 7.89¢e—06 2.00 1.26e—06 2.05 3.00
DoF h €u rate [ rate ep rate avg_it
v=10"
69 0.71 3.67e—02 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 1.00e—02 1.87 8.98e—03 2.04 1.67e—03 2.45 3.00
741 0.18 3.64e—03 1.46 2.09¢e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.69e—03 1.11 5.09e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 8.41e—04 1.00 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 4.21e—04 1.00 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 2.05e—04 1.04 7.89e—06 2.00 1.26e—06 2.00 3.00
v=10"*
69 0.71 3.67e—02 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 1.00e—02 1.87 8.98¢—03 2.04 1.67e—03 2.45 3.00
741 0.18 3.64e—03 1.46 2.09¢e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.68e—03 1.12 5.09e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 8.21e—04 1.03 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 3.82e—04 1.10 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.48e—04 1.37 7.89e—06 2.00 1.26e—06 2.00 3.00
=103
69 0.71 3.67e—02 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 1.00e—02 1.88 8.98e—03 2.04 1.66e—03 2.45 3.00
741 0.18 3.61e—03 1.47 2.09e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.59¢e—03 1.18 5.09¢e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 6.66e—04 1.26 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 2.06e—04 1.69 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 4.12e—05 2.32 7.89e—06 2.00 1.26e—06 2.00 3.00

the optimal convergence by either setting the augmentation constants «; and «, independent of v or by modifying
the velocity norm to

6: = [lu— uh”]}(()) +v||Vu - Vuh”]LZ(Q)

when ;1 = O(v) or k, = O(v). This is verified by the results reported in Table 6.4, where in the top part we
take k; = kp = 0.5 and in the bottom part we take k| = k, = % The first remedy indicates that the x; and «;
augmentation terms may be explored to improve the robustness of the method for small viscosity values. We note
that while the choice of x; = 0.5 does not align with Remark 3.3, it is consistent with Remark 3.1 about the case
K1 > V.

As usual for grad—div type stabilizations, the divergence-free property of the approximate solutions is modulated
by the parameter «;. This is exemplified in Table 6.5 where the effect of increasing k, is tested. We denote by
Po(div(uy)) the L2-projection of div(uy,) into the space of piecewise constant functions. As the mesh is refined, the
£°° norm of the coefficient vector associated with Py(div(u,)) decreases down to 5.03e—11.
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Table 6.4

Example 1. Error history with respect to mesh refinement at 7 = 0.05, computed using the base-line parameters
p=3.5,F =10, « = 100, varying v and using «; = k2 = 0.5 (top), and k1 = k2 = v/2 with a different velocity
norm (bottom).

DoF h eu rate [ rate ep rate avg_it
v=10"
69 0.71 3.48e—02 * 3.71e—02 * 4.82e—03 * 3.00
213 0.35 9.67e—03 1.85 8.99¢—03 2.04 1.51e—03 1.68 3.00
741 0.18 2.43e—03 1.99 2.09¢—03 2.11 3.36e—04 2.17 3.00
2757 0.09 6.01e—04 2.01 5.10e—04 2.03 8.11e—05 2.05 3.00
10629 0.04 1.50e—04 2.00 1.27e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 3.76e—05 2.00 3.18e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 9.44e—06 1.99 8.01e—06 1.99 1.26e—06 2.00 3.00
v=10"*
69 0.71 3.48e—02 * 3.71e—02 * 4.82e—03 * 3.00
213 0.35 9.67e—03 1.85 8.99¢—03 2.04 1.51e—03 1.68 3.00
741 0.18 2.43e—03 1.99 2.09¢e—03 2.11 3.36e—04 2.17 3.00
2757 0.09 6.01e—04 2.01 5.10e—04 2.03 8.11e—05 2.05 3.00
10629 0.04 1.50e—04 2.00 1.27e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 3.75e—05 2.00 3.18e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 9.42e—06 1.99 7.99¢—06 1.99 1.26e—06 2.00 3.00
v=10"3
69 0.71 3.48e—02 * 3.71e—02 * 4.82e—03 * 3.00
213 0.35 9.67e—03 1.85 8.99¢—03 2.04 1.51e—03 1.68 3.00
741 0.18 2.43e—03 1.99 2.09e—03 2.11 3.36e—04 2.17 3.00
2757 0.09 6.01e—04 2.01 5.10e—04 2.03 8.11e—05 2.05 3.00
10629 0.04 1.50e—04 2.00 1.27e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 3.75e—05 2.00 3.17e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 9.36e—06 2.00 7.92e—06 2.00 1.26e—06 2.00 3.00
DoF h el’; rate e rate ep rate avg_it
v=10"
69 0.71 1.87e—03 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 2.74e—04 2.77 8.98e—03 2.04 1.67e—03 2.45 3.00
741 0.18 5.51e—05 2.32 2.09¢e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.30e—05 2.09 5.09e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 3.23e—06 2.01 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 8.06e—07 2.00 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.96e—07 2.04 7.89¢e—06 2.00 1.26e—06 2.00 3.00
v=10"*
69 0.71 1.87e—03 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 2.74e—04 2.77 8.98¢—03 2.04 1.67e—03 2.45 3.00
741 0.18 5.51e—05 2.32 2.09¢e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.29e—05 2.09 5.09¢e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 3.16e—06 2.03 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 7.38e—07 2.10 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 1.45e—07 2.35 7.89e—06 2.00 1.26e—06 2.00 3.00
v=1073
69 0.71 1.87e—03 * 3.70e—02 * 9.13e—03 * 3.00
213 0.35 2.74e—04 2.77 8.98e—03 2.04 1.66e—03 2.45 3.00
741 0.18 5.47e—05 2.33 2.09e—03 2.11 3.44e—04 2.27 3.00
2757 0.09 1.24e—05 2.14 5.09¢e—04 2.03 8.13e—05 2.08 3.00
10629 0.04 2.68e—06 2.21 1.26e—04 2.01 2.01e—05 2.01 3.00
41733 0.02 4.54e—07 2.56 3.16e—05 2.00 5.02e—06 2.00 3.00
165381 0.01 7.80e—08 2.57 7.89e—06 2.00 1.26e—06 2.00 3.00

25



V. Anaya, R. Caraballo, S. Caucao et al. Computer Methods in Applied Mechanics and Engineering 404 (2023) 115829

Table 6.5

Example 1. Decay of div(u;) (projected into the space of piecewise constants) with
respect to mesh refinement at 7 = 0.05, computed using the base-line parameters
p=3.5,F=10, « =100, v = 0.01, using «; = v/2 and increasing ;.

DoF h I Po(div(ap)) e
k2 = 0.005 Ky =1 ko =100 k2 = 50000

69 0.71 2.81e—03 3.47e—03 8.30e—04 2.00e—06
213 0.35 3.43e—03 8.91e—04 1.14e—04 2.64e—07
741 0.18 2.28¢—03 1.40e—04 1.10e—05 2.44e—08
2757 0.09 1.13e—03 1.91e-05 1.57e—-06 3.55e—09
10629 0.04 4.66e—04 2.50e—06 3.23e—07 8.50e—10
41733 0.02 1.34e—04 3.20e—07 8.44e—08 1.27e—10
165381 0.01 3.82e—05 9.01e—08 7.39e—09 5.03e—11

Table 6.6

Example 2. Error history with respect to mesh refinement in 3D, computed up to the final time 7 = 0.03 using
the parameters « = 100, v = 0.01, F = 10, and p = 4 and with three different discretizations. In all cases we
take overall continuous and piecewise linear vorticity approximations.

DoF h ey rate [ rate ep rate avg_it

Taylor-Hood-Lagrange

484 0.87 4.81e—01 - 4.22e—01 - 7.81e—02 - 3.00
2688 0.43 1.32e—01 1.86 1.26e—01 1.74 1.30e—02 2.58 3.00
17656 0.22 3.98e—02 1.73 2.93e—02 2.11 2.45e—03 2.41 3.00
127464 0.11 1.19e—02 1.74 7.12e—03 2.04 5.39e—04 2.19 3.00
967624 0.05 2.85e—03 2.06 1.76e—03 2.01 1.32e—04 2.02 2.67
MINI Element-Lagrange
334 0.87 2.56e+-00 - 5.32e—01 - 7.79e—02 - 2.67
2028 0.43 1.45e+00 0.82 1.67e—01 1.68 2.23e—02 1.52 3.00
14320 0.22 4.93e—01 1.56 4.94e—02 1.75 1.41e—02 1.19 3.00
108120 0.11 1.96e—01 1.33 1.66e—02 1.57 5.92e—03 1.25 3.00
841384 0.05 9.15e—02 1.10 5.60e—03 1.57 1.76e—03 1.61 3.67
Crouzeix—Raviart-Lagrange
490 0.87 7.64e—01 - 6.46e—01 - 7.52e—02 - 3.00
3352 0.43 4.05e—01 0.92 2.14e—01 1.59 3.07e—02 0.77 3.00
24844 0.22 2.15e—01 091 6.06e—02 1.82 1.74e—02 0.94 3.00
191380 0.11 1.04e—01 0.99 1.94e—02 1.64 8.94e—03 0.95 3.00
1502500 0.05 5.03e—01 0.99 7.43e—03 1.47 4.50e—03 0.96 3.67

Example 2: Verification of spatial convergence in 3D

We also test the implementation and the accuracy of the method in 3D. This constitutes Example 2, where we
consider the exact solutions
t sin(;rx) cos(mwy) cos(mw z)
u= | —2tcos(rx)sin(wry)cos(wz) |, p =tsin(mwx)sin(ry)sin(wz),
t cos(mrx) cos(mry) sin(w z)

and @ = curl(u), defined on the unit cube 2 = (0, 1)*, and now up to a time T = 0.03 and using a fixed time
step At = 0.01. We also use different discretizations, but in all of them the discrete space H consists of overall
continuous piecewise linear elements. For this case we have used the parameters @ = 100, v = 0.01,F = 10,p =4
and tabulate the results in Table 6.6, which indicate an optimal convergence.
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Table 6.7

Example 3. Error history with respect to time step refinement, computed up to the final time 7 = 1 using the

parameters « = 1, v=0.1, F=1, and p=4.
At Ey rate E, rate E, rate avg_it
0.5 2.82e—02 - 2.80e—02 - 2.80e—02 - 3.00
0.25 1.35e—02 1.06 1.34e—02 1.06 1.35e—02 1.05 3.00
0.125 6.62e—03 1.03 6.57e—03 1.03 6.63e—03 1.03 3.00
0.0625 3.28e—03 1.02 3.25e—03 1.02 3.28e—03 1.02 3.00
0.0312 1.63e—03 1.01 1.62e—03 1.01 1.63e—03 1.01 3.00
0.0156 8.15e—04 1.00 8.05e—04 1.00 8.20e—04 0.99 3.00

Example 3: Verification of temporal convergence

To close the verification of convergence, we conduct a test to illustrate the convergence in time. The time interval
is subdivided, and instead of (6.1) we consider the following manufactured solutions

_ sin(r)xy _ A A

u= <_ sin(r)(1y? +x)>, p=exp(=t)(x" —y),

and @ = curl(u). A fixed structured mesh of 40 elements per side is used to discretize the unit square, and the
parameters are « = 1, v = 0.1, F = 1, and p = 4. The time interval (0, 1) is discretized into successively refined
segments and the convergence history is displayed in Table 6.7. There we show the errors in the £2(0, T; V) norm
(cf. (5.2)), denoted as

N 1/2 N 1/2 N 1/2
Ey = (Z Atllu - uzuip(m) . Eyi= (Z Atllo — wzniz(m) L Epi= (Z Atllp — pzuiz(m) :
n=1 n=1 n=1
and the corresponding rates of convergence are
_ log(E()/E(,)

" Tog(Ar/TATY

where Ar and [Ar] denote two consecutive time steps with errors E(., and E(’,), respectively. The expected linear
convergence is observed for all fields. For this case it suffices to take k, = «; = 0.05 to achieve optimal convergence.

Example 4: Flow in fractured porous media

Next we focus on two problems of application relevance, where closed-form solutions are not available. We
consider as computational domain a regularization of the upper-right quarter of the well-known five spot geometry
(see, e.g., [34]), that is, 2 = (0, 1)? \ (Bo.05(0,0) U Byos(1, 1)), where B,(x°) denotes the ball of radius r centered
at a given point x° = (x¢, y°). We generate a simple network of relatively large fractures and generate a relatively
coarse unstructured mesh made of 16954 triangles. The bottom left circle arc is an inlet section (or injection well)
I, on which we impose a constantly increasing inflow velocity u;, = ﬁ. On the walls we set no-slip velocity, and
on the outlet Iy (the producer well, located at the top-right circle arc) we prescribe a zero traction condition. For
this we use a condition on the pseudo-stress, as the formulation does not easily allow for exact stress reconstruction.

More precisely, we set on = 0 on Iy, by imposing

(&l’l, V>F0ul = ((l), Vv X n>F0uL + <p7 \ n>Foul = 0

For this example the external force is zero, the Forchheimer exponent is p = 3.2, the viscosity is v = 0.0001,
the final time is 7 = 3 and the fixed time step is Az = 0.2. In order to illustrate the ability of the model to capture
the Stokes and Darcy regimes, the Forchheimer and Darcy coefficients are taken heterogeneous in the following
manner: On the bulk domain we use a normal random field 5(x) between —0.1 and 0.1, and take case A

omax (0.9 4+ 1(x)) in the rock, Finax(0.9 + n(x)) in the rock,

o(x) = . F(x) = .
min in the fractures, Fmin in the fractures,
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Fig. 6.2. Example 4. Samples at r = 3, of numerical solutions for the quarter five-spot filtration problem with embedded fractures. Velocity
magnitude (left) velocity line integral convolution (center left), vorticity (center right) and pressure (right) for fractures much less permeable
than rock (top row) and fractures much more permeable than rock (bottom).

and case B as

Omin(0.9 4+ n(x)) in the rock, Fmin(0.9 + n(x)) in the rock,
a(x) = . F(x) = .

max in the fractures, Fnax in the fractures.
That is, case A has fractures that are much less permeable than the rest of the domain while case B follows the
opposite arrangement. Here we have considered the constants Fp,x = 5000, Fryin = 1, omin = 0.1, amax = 500.
Note that we do not impose any transmission conditions as the same set of equations is solved on both subdomains
defined simply by the discontinuous parameters indicated above. In Fig. 6.2 we show line convolution integrals
of velocity, pressure, and vorticity profiles at the final time for both permeability distributions. A steep pressure
gradient is observed near the injection wells in both cases. We also see from the different velocity and vorticity
patterns in case B, that the flow avoids the region with lowest permeability. Both cases required almost the same
average number of Newton—Raphson iterations (3.73 vs 3.86) to reach the prescribed tolerance of 1077.

Example 5: Lid-driven heterogeneous cubic cavity

Finally, we conduct a simulation of the 3D lid-driven cavity flow within an inhomogeneous unit cube {2 = (0, 1)3.
On the top lid z = 1 we set the tangential velocity u = (1, 0, 0) whereas the remainder of the boundary has no-slip
conditions. The fluid inside the cavity is initially at rest. With this configuration, high pressure gradients are expected
to develop near the discontinuity of the Dirichlet data. We use a tetrahedral mesh of 82944 elements, a time step
of At = 0.05 and run the test until 7 = 1. The velocity—pressure pair is approximated with the MINI element.
The body force is f = 0 and the model parameters are v = 0.015, p = 4, o = {1 if x < 0.5, or 100 otherwise},
and F = {100 if x < 0.5, or 1 otherwise}. The numerical results are represented in Fig. 6.3 showing velocity and
vorticity streamlines. A large-scale recirculation influenced by the transfer of momentum from the top surface to
the rest of the fluid is observed, but the usually expected symmetric flow structure (when projecting the solution
into the xz plane) is disrupted by the discontinuity of the Darcy and Forchheimer numbers across the mid-plane
x =0.5.
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Fig. 6.3. Example 5. Samples of velocity streamlines (left), vorticity streamlines (center) and pressure distribution (right) at 7 = 1 for the
lid-driven cavity test with discontinuous Darcy and Forchheimer coefficients.
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