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Abstract

We propose and analyze an augmented mixed formulation for the time-dependent Brinkman–Forchheimer equations written
n terms of vorticity, velocity and pressure. The weak formulation is based on the introduction of suitable least squares terms
rising from the incompressibility condition and the constitutive equation relating the vorticity and velocity. We establish
xistence and uniqueness of a solution to the weak formulation, and derive the corresponding stability bounds, employing
lassical results on nonlinear monotone operators. We then propose a semidiscrete continuous-in-time approximation based on
table Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial spaces for the
orticity. In addition, by means of the backward Euler time discretization, we introduce a fully discrete finite element scheme.
e prove well-posedness and derive the stability bounds for both schemes, and establish the corresponding error estimates. We

rovide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility
f the method for a range of domain configurations and model parameters.
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1. Introduction

Fluid flows through porous media with high Reynolds numbers occur in many industrial applications, such as
nvironmental, chemical, and petroleum engineering. For instance, in groundwater remediation and oil and gas
xtraction, the flow may be fast near injection or production wells or if the aquifer/reservoir is highly porous. Many
f the investigations in porous media have focused on the use of Darcy’s law. Nevertheless, this fundamental equation
ay be inaccurate for modeling fluid flow through porous media with high Reynolds numbers or through media
ith high porosity. To overcome this deficiency, it is possible to consider the Brinkman–Forchheimer equations (see

or instance [1,2]), where terms are added to Darcy’s law in order to take into account high velocity flow and high
orosity.

Several numerical methods for the Brinkman–Forchheimer problem have been developed previously. In [3] the
uthors propose and study a perturbed compressible system that approximates the Brinkman–Forchheimer equations.

numerical method for the perturbed system based on a semi-implicit Euler scheme for time discretization and
he lowest-order Raviart–Thomas element for spatial discretization is developed. In [4] the authors propose and
nalyze a pressure-stabilization method, where the incompressibility constraint is perturbed as div(u) − ϵ∆p = 0.

Then, a first-order time discretization and a finite element method based on piecewise continuous polynomials for
the spatial discretization are considered. Second order error estimates in time are also obtained. In [5] the coupling
of the unsteady Brinkman–Forchheimer model with a variable porosity Darcy model is developed and applied
for simulating wormhole propagation. A semi-analytic time stepping scheme is employed to handle the variable
porosity. An error analysis for the spatial and temporal discretization errors is performed. In [6] a mixed formulation
based on the pseudostress tensor and the velocity field is presented. By employing classical results on nonlinear
monotone operators and a suitable regularization technique in Banach spaces, existence and uniqueness are proved.
A finite element method for space discretization based on the Raviart–Thomas spaces for the pseudostress tensor and
discontinuous piecewise polynomial elements for the velocity, combined with a backward Euler time discretization,
is proposed and sub-optimal error estimates are derived. More recently, a three-field Banach spaces-based mixed
variational formulation is analyzed in [7], where the velocity, velocity gradient, and pseudostress tensor are the main
unknowns of the system. Existence and uniqueness of a solution to the weak formulation, as well as stability bounds
are derived by employing classical results on nonlinear monotone operators. A semidiscrete continuous-in-time
mixed finite element approximation and a fully discrete scheme are introduced and sub-optimal rates of convergence
improving the ones obtained in [6] are established. A staggered DG method for a velocity–velocity gradient–pressure
formulation of the unsteady Brinkman–Forchheimer problem is developed in [8]. Well-posedness and error analysis
are presented for the semi-discrete and fully discrete schemes. The method is robust with respect to the Brinkman
parameter. In [9] the steady state Darcy–Brinkman–Forchheimer problem with mixed boundary condition is studied.
The authors prove existence of a unique solution under small data conditions. Then, the convergence of a Taylor–
Hood finite element approximation using a finite element interpolation of the porosity is proved under similar
smallness assumptions. In addition, optimal error estimates are obtained. In turn, in [10], the steady Brinkman–
Forchheimer model is coupled with a double-diffusion equation. The velocity gradient, the pseudostress tensor, the
temperature and concentration gradients, and a pair of flux vectors are introduced as additional unknowns. Well-
posedness for the resulting fully mixed continuous and discrete problems is established in a Banach space setting,
and error analysis is carried out.

On the other hand, there is another approach that is increasingly studied to solve fluid flow problems, which
incorporates the vorticity field as a new unknown in the system and results in different weak formulations, see
[11–15]. This new strategy exhibits the advantage that the vorticity (which is a sought quantity of practical interest
in industrial applications) can be approximated directly with the same accuracy as the velocity, see [13]. Vorticity
plays a fundamental role in fluid flow problems as well as in their mathematical analysis; in many cases it is
advantageous to describe the flow dynamics in terms of the evolution of the vorticity. In particular, for a vorticity–
velocity–pressure formulation, since no postprocessing of the velocity is needed to compute the additional field,
boundary conditions for external flows can be treated in a natural way, and non-inertial effects can be readily
included by simply modifying initial and boundary data [14]. Moreover, the formulation allows for smooth vorticity
approximations using continuous finite element spaces, in contrast to the discontinuous approximation obtained by
postprocessing the velocity.

The purpose of the present work is to develop and analyze a new vorticity-based mixed formulation of the
unsteady Brinkman–Forchheimer problem and study a suitable conforming numerical discretization. To that end,
2
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unlike previous Brinkman–Forchheimer works and motivated by [11,12], we introduce the vorticity as an additional
unknown besides the fluid velocity and pressure. In the addition to the advantage of a direct, accurate, and smooth
approximation of the vorticity, our approach improves the suboptimal theoretical rates of convergence obtained
in [6,7] for the pseudostress–velocity and velocity–velocity gradient–pseudostress formulations, respectively. In
particular, optimal rates of convergence are obtained without any quasi-uniformity assumption on the mesh.

We remark that our formulation is based on the natural H1–L2 spaces for the velocity–pressure pair, thus allowing
or classical stable Stokes elements to be used. Since the three-field formulation does not provide control of the
elocity in the H1-norm, it is augmented with two terms to control the curl and the divergence of the velocity. It is
llustrated in Example 1 in the numerical section that these terms may improve the robustness in the convergence
f the velocity and vorticity for small values of the viscosity, as well as its divergence-free property.

We establish existence and uniqueness of a solution to the continuous weak formulation by employing techniques
rom [10,16], combined with the classical monotone operator theory in a Hilbert space setting. Stability for the weak
olution is established by means of an energy estimate. We further develop semidiscrete continuous-in-time and
ully discrete finite element approximations. The velocity and pressure are approximated by stable Stokes elements,
hereas, continuous or discontinuous piecewise polynomial spaces are employed to approximate the vorticity. We
ake use of the backward Euler method for the discretization in time. Adapting the tools employed for the analysis

f the continuous problem, we prove well-posedness of the discrete schemes and derive the corresponding stability
stimates. We further perform error analysis for the semidiscrete and fully discrete schemes, establishing optimal
ates of convergence in space and time.
utline. We have organized the contents of this paper as follows. In the remainder of this section we introduce

ome standard notation and needed functional spaces, and describe the model problem of interest. In Section 2 we
evelop the velocity–vorticity–pressure variational formulation. In Section 3 we show that it is well posed using
lassical results on nonlinear monotone operators. Next, in Section 4 we present the semidiscrete continuous-in-
ime approximation, provide particular families of stable finite elements, and obtain error estimates for the proposed

ethods. Section 5 is devoted to the fully discrete approximation. Finally, the performance of the method is studied
n Section 6 with several numerical examples in 2D and 3D, verifying the aforementioned rates of convergence, as
ell as illustrating its flexibility to handle spatially varying parameters in complex geometries.
reliminary notations. Let Ω ⊂ Rd , d ∈ {2, 3}, denote a domain with Lipschitz boundary Γ . For s ≥ 0 and
∈ [1, +∞], we denote by Lp(Ω ) and Ws,p(Ω ) the usual Lebesgue and Sobolev spaces endowed with the norms
· ∥Lp(Ω) and ∥ · ∥Ws,p(Ω), respectively. Note that W0,p(Ω ) = Lp(Ω ). If p = 2, we write Hs(Ω ) in place of Ws,2(Ω ),

nd denote the corresponding norm by ∥ · ∥Hs(Ω). By H and H we will denote the corresponding vectorial and
ensorial counterparts of a generic scalar functional space H. The L2(Ω ) inner product for scalar, vector, or tensor
alued functions is denoted by (·, ·)Ω . The L2(Γ ) inner product or duality pairing is denoted by ⟨·, ·⟩Γ . Moreover,
iven a separable Banach space V endowed with the norm ∥ · ∥V, we introduce the Bochner spaces Lp(0, T ; V),
∞(0, T ; V), W1,1(0, T ; V), and W1,∞(0, T ; V), endowed with the norms

∥ f ∥
p
Lp(0,T ;V) :=

∫ T

0
∥ f (t)∥p

V dt, ∥ f ∥L∞(0,T ;V) := ess supt∈[0,T ]∥ f (t)∥V ,

∥ f ∥W1,1(0,T ;V) :=

∫ T

0

(
∥ f (t)∥V + ∥∂t f (t)∥V

)
dt, ∥ f ∥W1,∞(0,T ;V) := ess supt∈[0,T ]

{
∥ f (t)∥V, ∥∂t f (t)∥V} .

n turn, for any vector field v := (vi )i=1,d , we set the gradient and divergence operators, as

∇v :=

(
∂ vi

∂ x j

)
i, j=1,d

and div(v) :=

d∑
j=1

∂ v j

∂ x j
.

n addition, in the sequel we will make use of the well-known Hölder inequality given by∫
Ω

| f g| ≤ ∥ f ∥Lp(Ω) ∥g∥Lq(Ω) ∀ f ∈ Lp(Ω ), ∀ g ∈ Lq(Ω ), with
1
p

+
1
q

= 1,

and the Young inequality, for a, b ≥ 0, 1/p + 1/q = 1, and δ > 0,

a b ≤
δp/2

ap
+

1
q/2 bq . (1.1)
p q δ

3
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Finally, we recall that H1(Ω ) is continuously embedded into Lp(Ω ) for p ≥ 1 if d = 2 or p ∈ [1, 6] if d = 3. More
recisely, we have the following inequality

∥w∥Lp(Ω) ≤ ∥ip∥ ∥w∥H1(Ω) ∀ w ∈ H1(Ω ), (1.2)

with ∥ip∥ > 0 depending only on |Ω | and p (see [17, Theorem 1.3.4]).
The model problem. Our model of interest is given by the unsteady Brinkman–Forchheimer equations (see for
instance [1,3,6,7,18]). More precisely, given the body force term f and a suitable initial data u0, the aforementioned
system of equations is given by

∂ u
∂ t

− ν ∆u + α u + F |u|
p−2u + ∇ p = f, div(u) = 0 in Ω × (0, T ],

u = 0 on Γ × (0, T ], u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T ],
(1.3)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant ν > 0 is the
Brinkman coefficient, α > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and p ∈ [3, 4] is a given
number.

2. The velocity–vorticity-pressure formulation

In this section we introduce a new velocity–vorticity-pressure formulation for (1.3). To that end, we proceed as
in [11] (see similar approaches in [12,15]) and introduce as a further unknown the vorticity ω, which is defined by

ω := curl(u) =

⎧⎨⎩
∂ u2

∂ x1
−

∂ u1

∂ x2
, for d = 2 ,

∇ × u , for d = 3 .

ote that the curl of a two-dimensional vector field is a scalar, whereas for a three-dimensional one it is a vector.
n order to avoid a multiplicity of notation, we agree nevertheless to denote it like a vector, provided there is no
onfusion. In addition, in 2-D the curl of a scalar field q is a vector given by curl(q) =

(
∂ q
∂ x2

, −
∂ q
∂ x1

)t
. Then,

employing the well-known identity [19, Section I.2.3]:

curl(curl(v)) = −∆v + ∇(div(v)) (2.1)

in combination with the incompressibility condition div(u) = 0 in Ω × (0, T ], we find that (1.3) can be rewritten,
equivalently, as follows: Find (u,ω, p) in suitable spaces to be indicated below such that

∂ u
∂ t

+ α u + F |u|
p−2u + ν curl(ω) + ∇ p = f, ω = curl(u), div(u) = 0 in Ω × (0, T ] ,

u = 0 on Γ × (0, T ], u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T ] .

(2.2)

Next, multiplying the first equation of (2.2) by a suitable test function v, we obtain

(∂t u, v)Ω + α (u, v)Ω + F (|u|
p−2u, v)Ω + ν (curl(ω), v)Ω + (∇ p, v)Ω = (f, v)Ω , (2.3)

where we use the notation ∂t :=
∂

∂ t
. Notice that the third term in the left-hand side of (2.3) requires u to live in a

smaller space than L2(Ω ). In fact, by applying Cauchy–Schwarz and Hölder’s inequalities and then the continuous
njection ip of H1(Ω ) into Lp(Ω ), with p ∈ [3, 4] (cf. (1.2)), we find that⏐⏐(|u|

p−2u, v)Ω
⏐⏐ ≤ ∥u∥

p−1
Lp(Ω) ∥v∥Lp(Ω) ≤ ∥ip∥p

∥u∥
p−1
H1(Ω)

∥v∥H1(Ω) ∀ u, v ∈ H1(Ω ) , (2.4)

hich together with the Dirichlet boundary condition u = 0 on Γ (cf. (2.2)) suggest to look for the unknown u in
1
0(Ω ) and to restrict the set of corresponding test functions v to the same space. In addition, employing Green’s

ormula [19, Theorem I.2.11], the fourth term in the left-hand side in (2.3), can be rewritten as

(curl(ω), v)Ω = (ω, curl(v))Ω − ⟨v × n,ω⟩Γ = (ω, curl(v))Ω ∀ v ∈ H1
0(Ω ) . (2.5)

ote that in 2-D the boundary term in (2.5) needs to be replaced by ⟨v · t,ω⟩Γ . Thus, replacing back (2.5) into

2.3), integrating by parts the term (∇ p, v)Ω , and incorporating the second and third equations of (2.2) in a weak

4



V. Anaya, R. Caraballo, S. Caucao et al. Computer Methods in Applied Mechanics and Engineering 404 (2023) 115829

f

w

w
f

w
s

R
t
(
s
n
v

n

w

H
a

w
d

a

w
v

sense, we obtain the system

(∂t u, v)Ω + α (u, v)Ω + F (|u|
p−2u, v)Ω + ν (ω, curl(v))Ω − (p, div(v))Ω = (f, v)Ω ,

ν (ω,ψ)Ω − ν (ψ, curl(u))Ω = 0 ,

(q, div(u))Ω = 0 ,

(2.6)

or all (v,ψ, q) ∈ H1
0(Ω ) × L2(Ω ) × L2

0(Ω ), where L2
0(Ω ) :=

{
q ∈ L2(Ω ) : (q, 1)Ω = 0

}
.

The formulation (2.6) provides control of the velocity u in L2(Ω ), but not in H1
0(Ω ), which is needed for the

ell-posedness analysis. In order to obtain such control, motivated by the well-known identity

∥∇v∥
2
L2(Ω) = ∥curl(v)∥2

L2(Ω) + ∥div(v)∥2
L2(Ω) ∀ v ∈ H1

0(Ω ) , (2.7)

hich follows from (2.1), we proceed to augment the system (2.6) by adding the following residual terms arising
rom the second and third equations in (2.2):

κ1 (curl(u) − ω, curl(v) + ψ)Ω and κ2 (div(u), div(v))Ω , (2.8)

here κ1 and κ2 are positive parameters to be specified later on. The inclusion of these terms allows us to establish
trong monotonicity in the variable u in the H1

0(Ω )-norm, cf. Lemma 3.4.

emark 2.1. We note that the first term in (2.8) is chosen to be skew-symmetric. While the symmetric version of
he term also results in a monotone operator, it leads to complications in the stability bound for ∥∂t u∥L2(0,T ;L2(Ω))
cf. (3.36)). In particular, the identity stated in (3.37) for the skew-symmetric scheme cannot be derived for the
ymmetric version, which is needed for the derivation of the pressure stability bound. On the other hand, there are
o significant differences between the two schemes in terms of their numerical performance, including for small
alues of ν.

Next, in order to write the above formulation in a more suitable way for the analysis to be developed below, we
ow set

u := (u,ω) ∈ H1
0(Ω ) × L2(Ω ),

ith corresponding norm given by

∥v∥ = ∥(v,ψ)∥ :=

(
∥v∥

2
H1(Ω) + ∥ψ∥

2
L2(Ω)

)1/2
∀ v := (v,ψ) ∈ H1

0(Ω ) × L2(Ω ).

ence, the weak form associated with the Brinkman–Forchheimer Eq. (2.6)–(2.8) reads: Given f : [0, T ] → L2(Ω )
nd u0 ∈ H1

0(Ω ), find (u, p) : [0, T ] →
(
H1

0(Ω ) × L2(Ω )
)
× L2

0(Ω ) such that u(0) = u0 and, for a.e. t ∈ (0, T ),

∂

∂ t
[E(u(t)), v] + [A(u(t)), v] + [B′(p(t)), v] = [F(t), v] ∀ v ∈ H1

0(Ω ) × L2(Ω ) ,

− [B(u(t)), q] = 0 ∀ q ∈ L2
0(Ω ) ,

(2.9)

here, the operators E,A :
(
H1

0(Ω ) × L2(Ω )
)

→
(
H1

0(Ω ) × L2(Ω )
)′, and B :

(
H1

0(Ω ) × L2(Ω )
)

→ L2
0(Ω )′ are

efined, respectively, as

[E(u), v] := (u, v)Ω , (2.10)

[A(u), v] := α (u, v)Ω + F (|u|
p−2u, v)Ω + ν (ω,ψ)Ω + ν (ω, curl(v))Ω − ν (ψ, curl(u))Ω

+ κ1 (curl(u) − ω, curl(v) + ψ)Ω + κ2 (div(u), div(v))Ω , (2.11)

[B(v), q] := − (q, div(v))Ω , (2.12)

nd F ∈ (H1
0(Ω ) × L2(Ω ))′ is the bounded linear functional given by

[F, v] := (f, v)Ω . (2.13)

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators. In addition,
e let B′

: L2
0(Ω ) →

(
H1

0(Ω ) × L2(Ω )
)′ be the adjoint of B, which satisfy [B′(q), v] = [B(v), q] for all

= (v,ψ) ∈ H1(Ω ) × L2(Ω ) and q ∈ L2(Ω ).
0 0

5
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Note that the seminorm identity (2.7) is stated for the case of Dirichlet boundary conditions for velocity
verywhere on Γ . As indicated in [19, Section 3.2], the requirement can be relaxed to imposing either u · n = 0

or u × n = 0 (where n denotes the outward unit normal on the boundary) whenever Γ is of class C1,1 or if it is
piecewise smooth without reentrant corners.

3. Well-posedness of the model

In this section we establish the solvability of (2.9). To that end we first collect some previous results that will
be used in the forthcoming analysis.

3.1. Preliminary results

We begin by recalling the key result [16, Theorem IV.6.1(b)], which will be used to establish the existence of a
solution to (2.9). In what follows, Rg(A) denotes the range of A.

heorem 3.1. Let the linear, symmetric and monotone operator N be given for the real vector space E to its
lgebraic dual E∗, and let E ′

b be the Hilbert space which is the dual of E with the seminorm

|x |b =
(
N x(x)

)1/2 x ∈ E .

et M ⊂ E × E ′

b be a relation with domain D =

{
x ∈ E : M(x) ̸= ∅

}
.

Assume M is monotone and Rg(N +M) = E ′

b. Then, for each f ∈ W1,1(0, T ; E ′

b) and for each u0 ∈ D, there
s a solution u of

∂

∂ t

(
N u(t)

)
+ M

(
u(t)

)
∋ f (t) a.e. 0 < t < T, (3.1)

with

N u ∈ W1,∞(0, T ; E ′

b), u(t) ∈ D, for all 0 ≤ t ≤ T, and N u(0) = N u0.

In addition, in order to provide the range condition in Theorem 3.1 we will require the following abstract
result [10, Theorem 3.1], which in turn, is a modification of [20, Theorem 3.1].

Theorem 3.2. Let X1, X2 and Y be separable and reflexive Banach spaces, being X1 and X2 uniformly convex,
and set X := X1 × X2. Let A : X → X ′ be a nonlinear operator, B ∈ L(X, Y ′), and let V be the kernel of B, that
is,

V :=

{
v = (v1, v2) ∈ X : B(v) = 0

}
.

Assume that

(i) there exist constants LA > 0 and p1, p2 ≥ 2, such that

∥A(u) − A(v)∥X ′ ≤ LA

2∑
i=1

{
∥ui − vi∥Xi +

(
∥ui∥Xi + ∥vi∥Xi

)pi −2
∥ui − vi∥Xi

}
,

for all u = (u1, u2), v = (v1, v2) ∈ X.
(ii) the family of operators

{
A(· + z) : V → V ′

: z ∈ X
}

is uniformly strongly monotone, that is there exists
γ > 0, such that

[A(u + z) − A(v + z), u − v] ≥ γ ∥u − v∥
2
X ,

for all z ∈ X, and for all u, v ∈ V , and
(iii) there exists β > 0 such that

sup
[B(v), q]

≥ β ∥q∥Y ∀ q ∈ Y.

0̸=v∈X ∥v∥X

6
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Then, for each (F ,G) ∈ X ′
× Y ′ there exists a unique (u, p) ∈ X × Y such that

[A(u), v] + [B(v), p] = [F , v] ∀ v ∈ X ,

[B(u), q] = [G, q] ∀ q ∈ Y .

Next, we establish the stability properties of the operators involved in (2.9). We begin by observing that the
perators E,B and the functional F are linear. In turn, from (2.10), (2.12) and (2.13), and employing Hölder and

Cauchy–Schwarz inequalities, there hold⏐⏐[B(v), q]
⏐⏐ ≤ ∥v∥ ∥q∥L2(Ω) ∀ (v, q) ∈

(
H1

0(Ω ) × L2(Ω )
)
× L2

0(Ω ) , (3.2)⏐⏐[F, v]
⏐⏐ ≤ ∥f∥L2(Ω) ∥v∥L2(Ω) ≤ ∥f∥L2(Ω) ∥v∥ ∀ v ∈ H1

0(Ω ) × L2(Ω ) , (3.3)

nd ⏐⏐[E(u), v]
⏐⏐ ≤ ∥u∥ ∥v∥, [E(v), v] = ∥v∥

2
L2(Ω) ∀ u, v ∈ H1

0(Ω ) × L2(Ω ) , (3.4)

hich implies that B and F are bounded and continuous, and E is bounded, continuous, and monotone. In addition,
mploying the Cauchy–Schwarz and Hölder inequalities, the continuous injection of H1(Ω ) into Lp(Ω ), with
∈ [3, 4], it is readily seen that, the nonlinear operator A (cf. (2.11)) is bounded, that is⏐⏐[A(u), v]

⏐⏐ ≤ CA

{
∥u∥H1(Ω) + ∥u∥

p−1
H1(Ω)

+ ∥ω∥L2(Ω)

}
∥v∥ , (3.5)

with CA > 0 depending on ∥ip∥, α, F, ν, κ1, and κ2. On the other hand, for later use, we deduce from [21, Lemma
2.1, Eqs. (2.1a) and (2.1b)], and using the Hölder inequality, that for all u, v ∈ Lp(Ω ) there exist constants cp, Cp > 0

epending only on |Ω | and p, such that|u|
p−2u − |v|

p−2v


Lq(Ω) ≤ cp
(
∥u∥Lp(Ω) + ∥v∥Lp(Ω)

)p−2
∥u − v∥Lp(Ω) , (3.6)

ith 1/p + 1/q = 1, and(
|u|

p−2u − |v|
p−2v, u − v

)
Ω

≥ Cp ∥u − v∥
p
Lp(Ω) . (3.7)

n addition, it can be shown in a way similar to (3.6) that for all u, v ∈ L2(p−1)(Ω ) there exists a constant c̃p > 0
epending only on |Ω | and p, such that|u|

p−2u − |v|
p−2v


L2(Ω) ≤ c̃p

(
∥u∥L2(p−1)(Ω) + ∥v∥L2(p−1)(Ω)

)p−2
∥u − v∥L2(p−1)(Ω) . (3.8)

Finally, recalling the definition of the operators E,A, and B (cf. (2.10), (2.11), (2.12)), we stress that problem
2.9) can be written in the form of (3.1) with

E :=
(
H1

0(Ω ) × L2(Ω )
)
× L2

0(Ω ), u :=

(
u
p

)
, N :=

(
E 0
0 0

)
, M :=

(
A B′

−B 0

)
. (3.9)

Let E′

2 be the Hilbert space that is the dual of H1
0(Ω )×L2(Ω ) with the seminorm induced by the operator E :=

(
I 0
0 0

)
cf. (2.10)), which is ∥v∥E = (v, v)1/2

Ω = ∥v∥L2(Ω) ∀ v ∈ H1
0(Ω ) × L2(Ω ). Note that E′

2 = L2(Ω ) × {0}. Then we
efine the spaces

E ′

b :=
(
L2(Ω ) × {0}

)
× {0}, D :=

{
(u, p) ∈

(
H1

0(Ω ) × L2(Ω )
)
× L2

0(Ω ) : M(u, p) ∈ E ′

b

}
. (3.10)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.9).

3.2. Range condition and initial data

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolvent system
associated with (2.9): Find (u, p) ∈

(
H1

0(Ω ) × L2(Ω )
)
× L2

0(Ω ) such that

[(E + A)(u), v] + [B′(p), v] = [̂F, v] ∀ v ∈ H1
0(Ω ) × L2(Ω ) ,

2
(3.11)
[B(u), q] = 0 ∀ q ∈ L0(Ω ) ,

7
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where F̂ ∈ L2(Ω ) × {0} ⊂ (H1
0(Ω ))′ × {0} is a functional given by F̂(v) := (̂f, v)Ω for some f̂ ∈ L2(Ω ). Next,

solution to (3.11) is established by employing Theorem 3.2. We begin by observing that, thanks to the uniform
onvexity and separability of Lp(Ω ) for p ∈ (1, +∞), the spaces H1

0(Ω ), L2(Ω ), and L2
0(Ω ) are uniformly convex

nd separable as well.
We continue our analysis by proving that the nonlinear operator E + A satisfies hypothesis (i) of Theorem 3.2

ith p1 = p ∈ [3, 4] and p2 = 2.

emma 3.3. Let p ∈ [3, 4]. Then, there exists LBF > 0, depending on ∥ip∥, |Ω |, ν, F, α, κ1, and κ2 such that

∥(E + A)(u) − (E + A)(v)∥

≤ LBF

{
∥u − v∥H1(Ω) + ∥ω − ψ∥L2(Ω) +

(
∥u∥H1(Ω) + ∥v∥H1(Ω)

)p−2
∥u − v∥H1(Ω)

}
,

(3.12)

or all u = (u,ω), v = (v,ψ) ∈ H1
0(Ω ) × L2(Ω ).

Proof. Let u = (u,ω), v = (v,ψ), w = (w,φ) ∈ H1
0(Ω ) × L2(Ω ). From the definition of the operators E, A (cf.

2.10), (2.11)), and using the Cauchy–Schwarz and Hölder inequalities, we deduce that

[(E + A)(u) − (E + A)(v), w] ≤ F
|u|

p−2u − |v|
p−2v


Lq(Ω) ∥w∥Lp(Ω)

+ 2
(
ν + max{1 + α, κ1, κ2}

) (
∥u − v∥H1(Ω) + ∥ω − ψ∥L2(Ω)

)
∥(w,φ)∥ .

(3.13)

hen, using (3.6) to bound the first term on the right-hand side of (3.13), and using the continuous injection ip of
1(Ω ) into Lp(Ω ) (cf. (1.2)), we obtain

∥(E + A)(u) − (E + A)(v)∥ ≤ F ∥ip∥p cp
(
∥u∥H1(Ω) + ∥v∥H1(Ω)

)p−2
∥u − v∥H1(Ω)

+ 2
(
ν + max{1 + α, κ1, κ2}

) (
∥u − v∥H1(Ω) + ∥ω − ψ∥L2(Ω)

)
,

hich implies (3.12) with LBF = max
{

2
(
ν + max{1 + α, κ1, κ2}

)
, F ∥ip∥p cp

}
. □

Next, the following lemma shows that the operator E + A satisfies hypothesis (ii) of Theorem 3.2 with
1 = p ∈ [3, 4] and p2 = 2.

emma 3.4. Assume that κ1 ∈ (0, ν) and κ2 ∈ (0, +∞). Then, the family of operators
{
(E + A)(· + z) :

H1
0(Ω ) × L2(Ω ) →

(
H1

0(Ω ) × L2(Ω )
)′

: z ∈ H1
0(Ω ) × L2(Ω )

}
is uniformly strongly monotone, that is, there

xists γBF > 0, such that[
(E + A)(u + z) − (E + A)(v + z), u − v

]
≥ γBF ∥u − v∥

2
∀ u, v ∈ H1

0(Ω ) × L2(Ω ) . (3.14)

roof. Let u = (u,ω), v = (v,ψ), z = (z,φ) ∈ H1
0(Ω ) × L2(Ω ). Then, from the definition of the operators E, A

(cf. (2.10), (2.11)), we get

[(E + A)(u + z) − (E + A)(v + z), u − v]

= (1 + α) ∥u − v∥
2
L2(Ω) + F

(
|u + z|p−2(u + z) − |v + z|p−2(v + z), u − v

)
Ω

+ κ1 ∥curl(u − v)∥2
L2(Ω) + κ2 ∥div(u − v)∥2

L2(Ω) + (ν − κ1) ∥ω − ψ∥
2
L2(Ω) .

(3.15)

ence, using (3.7) to bound the second term on the right-hand side of (3.15), and using the Cauchy–Schwarz and
oung inequalities we find that for all u = (u,ω), v = (v,ψ) ∈ H1

0(Ω ) × L2(Ω ), there holds

[(E + A)(u + z) − (E + A)(v + z), u − v]
≥ (1 + α)∥u − v∥

2
L2(Ω) + κ1∥curl(u − v)∥2

L2(Ω) + κ2∥div(u − v)∥2
L2(Ω)

+ FCp ∥u − v∥
p
Lp(Ω) +

(
ν − κ1

)
∥ω − ψ∥

2
L2(Ω) .

(3.16)

hen, assuming the stipulated ranges on κ1 and κ2, we can define the positive constants

γ := min
{
κ , κ

}
and γ := ν − κ , (3.17)
1 1 2 2 1

8
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which together with the identity (2.7), and neglecting the Lp(Ω )-term in the right-hand side of (3.16), yields

[(E+A)(u+z)− (E+A)(v+z), u−v] ≥ (1+α)∥u−v∥
2
L2(Ω) +γ1 ∥∇(u−v)∥2

L2(Ω) +γ2 ∥ω−ψ∥
2
L2(Ω) , (3.18)

hich implies (3.14) with γBF := min
{
(1 + α), γ1, γ2

}
. □

emark 3.1. The terms (1 + α)∥u − v∥
2
L2(Ω)

and γ1 ∥∇(u − v)∥2
L2(Ω)

in (3.18) and the definition of γ1 in (3.17)
mply that the control on the velocity u in the L2(Ω )-norm is independent of ν, κ1, and κ2, while control on ∇u
n the L2(Ω )-norm can be maintained for small values of the viscosity ν by keeping κ1 and κ2 independent of ν.
owever, the condition κ1 ∈ (0, ν) is needed for the control of the vorticity ω. In the case κ1 > ν, one can consider
odification of the operator A defined in (2.11), obtained by subtracting the terms with test function ψ in (2.6)

nd (2.8), resulting in

[Ã(u), v] := α (u, v)Ω + F (|u|
p−2u, v)Ω − ν (ω,ψ)Ω + ν (ω, curl(v))Ω + ν (ψ, curl(u))Ω

+ κ1 (curl(u) − ω, curl(v) − ψ)Ω + κ2 (div(u), div(v))Ω .

The terms involving κ1 and ν on the right-hand side of (3.15) then become

(κ1 − ν)∥curl(u − v) − (ω − ψ)∥2
L2(Ω) + ν∥curl(u − v)∥2

L2(Ω),

hich, combined with ∥ω−ψ∥
2
L2(Ω)

≤ 2∥curl(u − v) − (ω−ψ)∥2
L2(Ω)

+ 2∥curl(u − v)∥2
L2(Ω)

, results in control on

1
2

min
{
κ1 − ν,

ν

2

}
∥ω − ψ∥

2
L2(Ω) +

ν

2
∥curl(u − v)∥2

L2(Ω).

herefore the well-posedness analysis of the model can also be extended to the case κ1 > ν. Similar techniques
an be used in the stability analysis of the continuous and discrete formulations, as well as in the error analysis.
o keep the presentation simpler and easier to follow, we focus on the case κ1 ∈ (0, ν). We note, however, that the

numerical study in Example 1 in Section 6 indicates that the numerical method is stable and convergent in the case
κ1 > ν, and in particular it converges optimally for the velocity in the H1(Ω )-norm in the regime of small viscosity
when κ1 is kept fixed.

Remark 3.2. The kernel of the operator B (cf. (2.12)) can be written as V := K × L2(Ω ), where

K =

{
v ∈ H1

0(Ω ) : div(v) = 0 in Ω
}

. (3.19)

n turn, since the strong monotonicity bound (3.14) holds on H1
0(Ω ) × L2(Ω ), it is clear that it also holds on V.

otice also that v ∈ K (cf. (3.19)) implies that the term κ2 (div(u), div(v))Ω is not longer required in (2.11) to prove
hat the operator A is strongly monotone on V but in order to consider classical conforming discrete spaces that are
ot divergence-free, we keep the κ2-term and state the result on the whole space H1

0(Ω ) × L2(Ω ). Furthermore, the
erm κ2 ∥div(u − v)∥2

L2(Ω)
in (3.15) implies that increasing κ2 improved the divergence-free property of the method.

his is illustrated in Example 1 in Section 6.

emark 3.3. We also note that for computational purposes, and in order to maximize the strong monotonicity
onstant γBF (cf. (3.17)), we can choose explicitly the parameter κ1 and κ2 by taking κ1 as the middle point of its
easible range and κ2 ≥ min{1 + α, κ1}. More precisely, we can simply take

κ1 =
ν

2
and κ2 ≥ min

{
1 + α,

ν

2

}
.

We end the verification of the hypotheses of Theorem 3.2, with the corresponding inf–sup condition for the
operator B (cf. (2.12)).

Lemma 3.5. There exists a constant β > 0 such that

sup
1 2

[B(v), q]
∥v∥

≥ β ∥q∥L2(Ω) ∀ q ∈ L2
0(Ω ) . (3.20)
0̸=v∈H0(Ω)×L (Ω)

9
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Proof. First, we recall from [22, Corollary B.71] the inf–sup condition

sup
0̸=v∈H1

0(Ω)

∫
Ω

q div(v)

∥v∥H1(Ω)
≥ β ∥q∥L2(Ω) ∀ q ∈ L2

0(Ω ) . (3.21)

Thus, (3.20) follows straightforwardly from (3.21) and the definition of the operator B (cf. (2.12)). □

The main result of this section is established now.

emma 3.6. Assume κ1 and κ2 as in Lemma 3.4. Then, given F̂ = (̂f, 0) ∈ L2(Ω ) × {0}, there exists a unique
olution (u, p) ∈ (H1

0(Ω ) × L2(Ω )) × L2
0(Ω ) of the resolvent system (3.11).

Proof. First, we recall from (3.2) and (3.3) that B and F̂ are linear and bounded. Then, as a consequence of
Lemmas 3.3, 3.4, and 3.5, and a straightforward application of Theorem 3.2 we conclude the result. □

We end this section establishing a suitable initial condition result, which is necessary to apply Theorem 3.1 to
ur context.

emma 3.7. Assume the initial condition u0 ∈ H∆, where

H∆ :=

{
v ∈ H1

0(Ω ) : ∆v ∈ L2(Ω ) and div(v) = 0 in Ω
}

. (3.22)

hen, there exists (ω0, p0) ∈ L2(Ω ) × L2
0(Ω ) such that u0 = (u0,ω0) and(

A B′

−B 0

) (
u0
p0

)
∈

(
L2(Ω ) × {0}

)
× {0} . (3.23)

roof. We proceed as in [6, Lemma 3.6]. In fact, we define ω0 := curl(u0) and choose p0 = 0 in Ω , with u0 ∈ H∆

cf. (3.22)). It follows that ω0 ∈ L2(Ω ) and p0 ∈ L2
0(Ω ). In addition, using (2.1), we get

ν curl(ω0) = −ν ∆u0 in Ω . (3.24)

ext, multiplying the identities (3.24), ν (ω0 − curl(u0)) = 0 and div(u0) = 0 in Ω by v ∈ H1
0(Ω ), ψ ∈ L2(Ω ),

nd q ∈ L2
0(Ω ), respectively, integrating by parts as in (2.5), considering the fact that κ1 (curl(u0) − ω0) = 0 and

2 div(u0) = 0 in Ω , and after a minor algebraic manipulation, we deduce(
A B′

−B 0

) (
u0
p0

)
=

(
F0
0

)
, (3.25)

here, F0 = (f0, 0) and

(f0, v)Ω := (−ν ∆u0 + α u0 + F |u0|
p−2u0, v)Ω ,

hich together with the additional regularity of u0, and the continuous injection of H1(Ω ) into L2(p−1)(Ω ), with
(p − 1) ∈ [4, 6], cf. (1.2), implies that⏐⏐(f0, v)Ω

⏐⏐ ≤

{
ν ∥∆u0∥L2(Ω) + α ∥u0∥L2(Ω) + F ∥u0∥

p−1
L2(p−1)(Ω)

}
∥v∥L2(Ω)

≤ C
{
∥∆u0∥L2(Ω) + ∥u0∥L2(Ω) + ∥u0∥

p−1
H1(Ω)

}
∥v∥L2(Ω) .

(3.26)

hus, F0 ∈ L2(Ω ) × {0} so then (3.23) holds, completing the proof. □

emark 3.4. The assumption on the initial condition u0 in (3.22) is not necessary for all the results that follow but
e shall assume it from now on for simplicity. A similar assumption to u0 is also made in [6, Lemma 3.6] (see

, p ) satisfying (3.23) is not unique.
lso [7, Lemma 3.7] and [18, Eq. (2.2)]). Note also that (u0 0

10
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3.3. Main result

We now establish the well-posedness of problem (2.9).

heorem 3.8. Assume κ1 and κ2 as in Lemma 3.4. Then, for each f ∈ W1,1(0, T ; L2(Ω )) and u0 ∈ H∆ (cf. (3.22)),
here exists a unique (u, p) = ((u,ω), p) : [0, T ] →

(
H1

0(Ω ) × L2(Ω )
)

× L2
0(Ω ) solution to (2.9), such that

∈ W1,∞(0, T ; L2(Ω )) and u(0) = u0. In addition, ω(0) = ω0 = curl(u0).

roof. We recall that (2.9) fits the problem in Theorem 3.1 with the definitions (3.9) and (3.10). Note that N is
inear, symmetric and monotone since E is (cf. (3.4)). In addition, since A is strongly monotone, it is not difficult to
ee that M is monotone. On the other hand, from Lemma 3.6 we know that for some (̂F, 0) ∈ E ′

b with F̂ = (̂f, 0),
here is a (u, p) = ((u,ω), p) ∈

(
H1

0(Ω ) × L2(Ω )
)

× L2
0(Ω ), such that (̂F, 0) = (N + M)(u, p) which implies

Rg(N +M) = E ′

b. Finally, considering u0 ∈ H∆ (cf. (3.22)), from a straightforward application of Lemma 3.7 we
are able to find (ω0, p0) ∈ L2(Ω )×L2

0(Ω ) such that (u0, p0) = ((u0,ω0), p0) ∈ D. Therefore, applying Theorem 3.1
o our context, we conclude the existence of a solution (u, p) = ((u,ω), p) to (2.9), with u ∈ W1,∞(0, T ; L2(Ω ))

and u(0) = u0.
We next show that the solution of (2.9) is unique. To that end, let (ui , pi ) = ((ui ,ωi ), pi ), with i ∈ {1, 2},

be two solutions corresponding to the same data. Then, taking (2.9) with (v, q) = (u1 − u2, p1 − p2) ∈

H1
0(Ω ) × L2(Ω )

)
× L2

0(Ω ), subtracting the problems, we deduce that

1
2

∂t ∥u1 − u2∥
2
L2(Ω) + [A(u1) − A(u2), u1 − u2] = 0,

which together with the strong monotonicity bound of A (cf. (3.16)–(3.17)), yields
1
2

∂t ∥u1 − u2∥
2
L2(Ω) + γ̂1 ∥u1 − u2∥

2
H1(Ω) + γ2 ∥ω1 − ω2∥

2
L2(Ω) ≤ 0 , (3.27)

here γ̂1 := min
{
α, κ1, κ2

}
and γ2 is defined in (3.17). Integrating in time (3.27) from 0 to t ∈ (0, T ], and using

that u1(0) = u2(0), we obtain

∥u1(t) − u2(t)∥2
L2(Ω) +

∫ t

0

(
∥u1 − u2∥

2
H1(Ω) + ∥ω1 − ω2∥

2
L2(Ω)

)
ds ≤ 0 . (3.28)

Therefore, it follows from (3.28) that u1(t) = u2(t) and ω1(t) = ω2(t) for all t ∈ (0, T ]. Next, from the inf–sup
condition of the operator B (cf. (3.20)) and the first equation of (2.9), we get

β ∥p1 − p2∥L2(Ω) ≤ sup
0̸=v∈H1

0(Ω)×L2(Ω)

−
(
[∂t E(u1 − u2), v] + [A(u1) − A(u2), v]

)
∥v∥

= 0 ,

which implies that p1(t) = p2(t) for all t ∈ (0, T ], and therefore (2.9) has a unique solution.
Finally, since Theorem 3.1 implies that M(u) ∈ L∞(0, T ; E ′

b), we can take t → 0 in all equations without time
derivatives in (2.9). Using that the initial data (u0, p0) = ((u0,ω0), p0) satisfies the same equations at t = 0 (cf.
(3.23)), and that u(0) = u0, we obtain

(ν − κ1) (ω(0) − ω0,ψ)Ω = 0 ∀ψ ∈ L2(Ω ) . (3.29)

Thus, taking ψ = ω(0) − ω0 in (3.29) we deduce that ω(0) = ω0, completing the proof. □

We conclude this section with stability bounds for the solution of (2.9).

heorem 3.9. Let p ∈ [3, 4]. Suppose that the stabilization parameters κ1 and κ2 are taken as in Lemma 3.4. Assume
further that f ∈ W1,1(0, T ; L2(Ω )) ∩ L2(0, T ; L2(Ω )) and u0 ∈ H∆ satisfying (3.23). Then, there exist constants
BF,1, CBF,2 > 0 only depending on ∥ip∥, |Ω |, ν, α, F, β, κ1, and κ2 such that

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥L2(0,T ;H1(Ω)) + ∥ω∥L2(0,T ;L2(Ω)) + ∥p∥L2(0,T ;L2(Ω))

≤ CBF,1

{
∥f∥2(p−1)/p

L2(0,T ;L2(Ω))
+ ∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

p−1
Lp(Ω) + ∥u0∥

p/2
Lp(Ω) + ∥u0∥

2(p−1)/p
H1(Ω)

+ ∥u0∥H1(Ω)

}
,

(3.30)

11
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N
C

(

b
w

w

T

and

∥u∥L∞(0,T ;H1(Ω)) ≤ CBF,2

{
∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

p/2
Lp(Ω) + ∥u0∥H1(Ω)

}
. (3.31)

Proof. We proceed as in [6, Theorem 3.3]. In fact, we begin choosing (v, q) = (u, p) in (2.9) to get

1
2

∂t (u, u)Ω + [A(u), u] = (f, u)Ω .

ext, from the definition of the operator A (cf. (2.11)), employing similar arguments to (3.16) and using
auchy–Schwarz and Young’s inequalities, we obtain

1
2

∂t∥u∥
2
L2(Ω) + α ∥u∥

2
L2(Ω) + F ∥u∥

p
Lp(Ω) + κ1 ∥curl(u)∥2

L2(Ω) + κ2 ∥div(u)∥2
L2(Ω)

+ γ2 ∥ω∥
2
L2(Ω) ≤

δ

2
∥f∥2

L2(Ω) +
1

2 δ
∥u∥

2
L2(Ω) ,

(3.32)

where γ2 is defined in (3.17). Then, choosing δ = 1/α and integrating (3.32) from 0 to t ∈ (0, T ], we obtain

∥u(t)∥2
L2(Ω) +

∫ t

0

(
α∥u∥

2
L2(Ω) + 2κ1∥curl(u)∥2

L2(Ω) + 2κ2∥div(u)∥2
L2(Ω) + 2γ2∥ω∥

2
L2(Ω)

)
ds

≤
1
α

∫ t

0
∥f∥2

L2(Ω) ds + ∥u(0)∥2
L2(Ω) .

(3.33)

Notice that, in order to simplify the stability bound, we have neglected the term ∥u∥
p
Lp(Ω) in the left hand side of

3.32).
On the other hand, from the inf–sup condition of B (cf. (3.21)), the first equation of (2.9) related to v, the stability

ounds of F, E (cf. (3.3), (3.4)), the definition of A (cf. (2.11)), and the continuous injection of H1(Ω ) into Lp(Ω ),
ith p ∈ [3, 4], we deduce that

β ∥p∥L2(Ω) ≤ sup
0̸=v∈H1

0(Ω)

[F, (v, 0)] − [∂t E(u), (v, 0)] − [A(u), (v, 0)]
∥v∥H1(Ω)

≤ ∥f∥L2(Ω) + α ∥u∥L2(Ω) + F ∥ip∥ ∥u∥
p−1
Lp(Ω) + κ1 ∥curl(u)∥L2(Ω)

+ κ2 ∥div(u)∥L2(Ω) + γ2 ∥ω∥L2(Ω) + ∥∂t u∥L2(Ω) .

(3.34)

Then, taking square in (3.34), integrating from 0 to t ∈ (0, T ], and using (3.33), we get∫ t

0
∥p∥

2
L2(Ω) ds ≤ C1

{∫ t

0
∥f∥2

L2(Ω) ds + ∥u(0)∥2
L2(Ω) +

∫ t

0

(
F ∥u∥

2(p−1)
Lp(Ω) + ∥∂t u∥

2
L2(Ω)

)
ds

}
, (3.35)

with C1 > 0 depending on |Ω |, ∥ip∥, ν, F, α, β, κ1 and κ2. Next, in order to bound the last two terms in (3.35),
e differentiate in time the equations of (2.9) related to ψ and q , choose (v, q) = ((∂t u,ω), p), and employ

Cauchy–Schwarz and Young’s inequalities, to find that

1
2

∂t

(
α ∥u∥

2
L2(Ω) +

2 F
p

∥u∥
p
Lp(Ω) + κ2 ∥div(u)∥2

L2(Ω) + ν ∥ω∥
2
L2(Ω)

)
+ ∥∂t u∥

2
L2(Ω)

+ κ1(curl(u) − ω, ∂t curl(u))Ω + κ1(∂t (curl(u) − ω),ω)Ω ≤
1
2
∥f∥2

L2(Ω) +
1
2
∥∂t u∥

2
L2(Ω).

(3.36)

Using the linearity of the time derivative, it follows that

κ1(curl(u) − ω, ∂t curl(u))Ω + κ1(∂t (curl(u) − ω),ω)Ω =
1
2

∂t

(
κ1∥curl(u)∥2

L2(Ω) − κ1∥ω∥
2
L2(Ω)

)
. (3.37)

hus, replacing back (3.37) into (3.36), integrating from 0 to t ∈ (0, T ] and using (2.7), we get

α ∥u(t)∥2
L2(Ω) +

2 F
p

∥u(t)∥p
Lp(Ω) + γ1∥∇u(t)∥2

L2(Ω) + γ2 ∥ω(t)∥2
L2(Ω) +

∫ t

0
∥∂t u∥

2
L2(Ω) ds

≤

∫ t

∥f∥2
L2(Ω) ds + α ∥u(0)∥2

L2(Ω) +
2 F

∥u(0)∥p
Lp(Ω) + γ1∥∇u(0)∥2

L2(Ω) + γ2 ∥ω(0)∥2
L2(Ω) ,

(3.38)
0 p
12
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d

with γ1 and γ2 defined in (3.17). Combining (3.38) with (3.35), yields∫ t

0
∥p∥

2
L2(Ω) ds ≤ C2

{ (∫ t

0
∥f∥2

L2(Ω) ds
)2(p−1)/p

+

∫ t

0
∥f∥2

L2(Ω) ds + ∥u(0)∥2(p−1)
Lp(Ω)

+ ∥u(0)∥p
Lp(Ω) + ∥u(0)∥4(p−1)/p

H1(Ω)
+ ∥u(0)∥2

H1(Ω) + ∥ω(0)∥4(p−1)/p
L2(Ω)

+ ∥ω(0)∥2
L2(Ω)

}
,

(3.39)

with C2 > 0 depending on |Ω |, ∥ip∥, ν, F, α, β, κ1 and κ2, which, combined with (3.33) and the fact that
(u(0),ω(0)) = (u0,ω0) and ω0 = curl(u0) in Ω (cf. Lemma 3.7), implies (3.30). In addition, the first and third
terms in the left-hand side of (3.38) and some algebraic computations yields (3.31) concluding the proof. □

Remark 3.5. We note that (3.31) can be expanded to include a bound on ∥u∥H1(0,T ;L2(Ω)) , ∥ω∥L∞(0,T ;L2(Ω)), and
∥p∥L∞(0,T ;L2(Ω)), using (3.38) and (3.39). We state it in this simpler form, since the bound on ∥u∥L∞(0,T ;H1(Ω)) will

e employed in the next section to deal with the nonlinear term associated to the operator A (cf. (2.11)), which is
ecessary to obtain the error estimate.

emark 3.6. Bound (3.33) and the identity (2.7) show that the stability constant for ∥∇u∥L2(0,T ;L2(Ω)) is linearly
ependent on 1

√
γ1

, γ1 = min{κ1, κ2}, while the one for ∥ω∥L2(0,T ;L2(Ω)) is linearly dependent on 1
√

γ2
, γ2 = ν − κ1.

In addition, bounds (3.33) and (3.39) show that the stability constants for ∥u∥L2(0,T ;L2(Ω)) and ∥p∥L2(0,T ;L2(Ω)) do
ot depend on 1

ν
, 1

κ1
, or 1

κ2
.

4. Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (2.9). We analyze
its solvability by employing the strategy developed in Section 3. Finally, we derive the error estimates and obtain
the corresponding rates of convergence.

4.1. Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles K (when d = 2) or tetrahedra K (when
= 3) of diameter hK , and define the mesh-size h := max

{
hK : K ∈ Th

}
. Let (Hu

h, Hp
h ) be a pair of stable Stokes

elements satisfying the discrete inf–sup condition: there exists a constant β̃ > 0, independent of h, such that

sup
0̸=vh∈Hu

h

∫
Ω

qh div(vh)

∥vh∥H1(Ω)
≥ β̃ ∥qh∥L2(Ω) ∀ qh ∈ Hp

h . (4.1)

We refer the reader to [23,24] for examples of stable Stokes elements. To simplify the presentation, we focus
on Taylor–Hood [25] finite elements for velocity and pressure, and continuous piecewise polynomials spaces for
vorticity. Given an integer l ≥ 0 and a subset S of Rd , we denote by Pl(S) the space of polynomials of total degree
at most l defined on S. For any k ≥ 1, we consider:

Hu
h :=

{
vh ∈ [C(Ω )]d

: vh |K ∈ [Pk+1(K )]d
∀ K ∈ Th

}
∩ H1

0(Ω ) ,

Hp
h :=

{
qh ∈ C(Ω ) : qh |K ∈ Pk(K ) ∀ K ∈ Th

}
∩ L2

0(Ω ) , (4.2)

Hω
h :=

{
ωh ∈ [C(Ω )]d(d−1)/2

: ωh |K ∈ [Pk(K )]d(d−1)/2
∀ K ∈ Th

}
.

It is well known that the pair (Hu
h, Hp

h ) in (4.2) satisfies (4.1) [26]. We observe that similarly to [12,15], we can
also consider discontinuous piecewise polynomials spaces for the vorticity, that is,

Hω
h :=

{
ωh ∈ [L2(Ω )]d(d−1)/2

: ωh |K ∈ [Pk(K )]d(d−1)/2
∀ K ∈ Th

}
.

In addition to the Taylor–Hood elements for the velocity and pressure, in the numerical experiments in Section 6

we also consider the classical MINI-element [23, Sections 8.4.2, 8.6 and 8.7] and Crouzeix–Raviart elements with

13
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tangential jump penalization (see [27] for the discrete inf–sup condition for the lowest-order case and, e.g., the
recent paper [28] for cubic order).

Now, defining uh := (uh,ωh), vh := (vh,ψh) ∈ Hu
h ×Hω

h , the semidiscrete continuous-in-time problem associated
with (2.9) reads: Find (uh, ph) : [0, T ] →

(
Hu

h × Hω
h

)
× Hp

h such that, for a.e. t ∈ (0, T ),

∂

∂ t
[E(uh), vh] + [A(uh), vh] + [B(vh), ph] = [F, vh] ∀ vh ∈ Hu

h × Hω
h ,

−[B(uh), qh] = 0 ∀ qh ∈ Hp
h .

(4.3)

s initial condition we take (uh,0, ph,0) = ((uh,0,ωh,0), ph,0) to be a suitable approximations of (u0, p0), the solution
f (3.25), that is, we chose (uh,0, ph,0) solving

[A(uh,0), vh] + [B(vh), ph,0] = [F0, vh] ∀ vh ∈ Hu
h × Hω

h ,

−[B(uh,0), qh] = 0 ∀ qh ∈ Hp
h ,

(4.4)

with F0 ∈ L2(Ω ) × {0} being the right-hand side of (3.25). This choice is necessary to guarantee that the discrete
initial data is compatible in the sense of Lemma 3.7, which is needed for the application of Theorem 3.1. Notice
that the well-posedness of problem (4.4) follows from similar arguments to the proof of Lemma 3.6. In addition,
taking (vh, qh) = (uh,0, ph,0) in (4.4), we deduce from the definition of the operator A (cf. (2.11)), the identity
(2.7), and the continuity bound of F0 (cf. (3.26)) that, there exists a constant C0 > 0, depending only on |Ω |, ∥ip∥,

, α, F, κ1, and κ2, and hence independent of h, such that

∥uh,0∥
p
Lp(Ω) + ∥uh,0∥

2
H1(Ω) + ∥ωh,0∥

2
L2(Ω) ≤ C0

{
∥u0∥

2(p−1)
H1(Ω)

+ ∥∆u0∥
2
L2(Ω) + ∥u0∥

2
L2(Ω)

}
. (4.5)

n this way, the well-posedness of (4.3) follows analogously to its continuous counterpart provided in Theorem 3.8.
ore precisely, we first address the discrete counterparts of Lemmas 3.3 and 3.4, whose proofs, being almost

erbatim of the continuous ones, are omitted.

emma 4.1. Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, the family of operators
{

(E + A)(· + zh) :

Hu
h × Hω

h → (Hu
h × Hω

h )′ : zh ∈ Hu
h × Hω

h

}
is uniformly strongly monotone with the same constant γBF > 0 from

(3.14), that is, there holds[
(E + A)(uh + zh) − (E + A)(vh + zh), uh − vh

]
≥ γBF ∥uh − vh∥

2,

or each zh = (zh,φh) ∈ Hu
h × Hω

h , and for all uh = (uh,ωh), vh = (vh,ψh) ∈ Hu
h × Hω

h . In addition, the operator
+ A : (Hu

h × Hω
h ) → (Hu

h × Hω
h )′ is continuous in the sense of (3.12), with the same constant LBF.

We continue with the discrete inf–sup condition of B.

emma 4.2. There exists a constant β̃ > 0, such that

sup
0̸=vh∈Hu

h×Hωh

[B(vh), qh]
∥vh∥

≥ β̃ ∥qh∥L2(Ω) ∀ qh ∈ Hp
h . (4.6)

Proof. The statement follows directly from (4.1). □

We are now in a position to establish the semi-discrete continuous in time analogue of Theorems 3.8 and 3.9.

Theorem 4.3. Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, for each compatible initial data
(uh,0, ph,0) := ((uh,0,ωh,0), ph,0) satisfying (4.4) and f ∈ W1,1(0, T ; L2(Ω )), there exists a unique (uh, ph) =

(uh,ωh), ph) : [0, T ] → (Hu
h × Hω

h ) × Hp
h solution to (4.3), satisfying uh ∈ W1,∞(0, T ; Hu

h) and (uh(0),ωh(0)) =

uh,0,ωh,0). Moreover, assuming that u0 ∈ H∆ satisfies (3.23) and that f ∈ L2(0, T ; L2(Ω )), there exist constants
B̂F,1, ĈBF,2 > 0 depending only on |Ω |, ∥ip∥, ν, α, F, β̃, κ1, and κ2 such that

∥uh∥L∞(0,T ;L2(Ω)) + ∥uh∥L2(0,T ;H1(Ω)) + ∥ωh∥L2(0,T ;L2(Ω)) + ∥ph∥L2(0,T ;L2(Ω))

≤ ĈBF,1

{
∥f∥2(p−1)/p

L2(0,T ;L2(Ω))
+ ∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

2(p−1)2/p
H1(Ω)

+ ∥u0∥
p−1
H1(Ω)

+ ∥∆u0∥
2(p−1)/p

+ ∥∆u0∥ 2 + ∥u0∥
2(p−1)/p

+ ∥u0∥ 2

} (4.7)
L2(Ω) L (Ω) L2(Ω) L (Ω)

14
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∥uh∥L∞(0,T ;H1(Ω)) ≤ ĈBF,2

{
∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

p−1
H1(Ω)

+ ∥∆u0∥L2(Ω) + ∥u0∥L2(Ω)

}
. (4.8)

roof. According to Lemma 4.1, the discrete inf–sup condition for B provided by (4.6) (cf. Lemma 4.2), and
considering that (uh,0, ph,0) satisfies (4.4), the proof of existence and uniqueness of solution of (4.3) with uh ∈

W1,∞(0, T ; Hu
h) and uh(0) = uh,0, follows similarly to the proof of Theorem 3.8 by applying Theorem 3.1.

Moreover, from the discrete version of (3.29), we deduce that ωh(0) = ωh,0.
On the other hand, mimicking the steps followed in the proof of Theorem 3.9, we obtain the discrete versions of

(3.33)–(3.39). Then, using the fact that (uh(0),ωh(0)) = (uh,0,ωh,0) and estimate (4.5), we derive (4.7) and (4.8),
thus completing the proof. □

4.2. Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.3). To that end, we first introduce the
discrete kernel of B, that is, Vh := Kh × Hω

h , where

Kh =

{
vh ∈ Hu

h : (qh, div(vh))Ω = 0 ∀ qh ∈ Hp
h

}
, (4.9)

and recall that the discrete inf–sup condition of B (cf. (4.6)), and a classical result on mixed methods (see, for
instance [29, Eq. (2.89) in Theorem 2.6]) ensure the existence of a constant C > 0, independent of h, such that:

inf
vh∈Vh

∥u − vh∥ ≤ C inf
vh∈Hu

h×Hωh
∥u − vh∥ . (4.10)

Next, in order to obtain the theoretical rates of convergence for the discrete scheme (4.3), we recall the
pproximation properties of the finite element subspaces Hu

h, Hω
h , and Hp

h (cf. (4.2)), that can be found in [23,24],
and [22]. Assume that u ∈ H1+s(Ω ),ω ∈ [Hs(Ω )]d(d−1)/2, and p ∈ Hs(Ω ), for some s ∈ (1/2, k + 1]. Then there
exists C > 0, independent of h, such that

inf
vh∈Hu

h

∥u − vh∥H1(Ω) ≤ C hs
∥u∥H1+s (Ω) , (4.11)

inf
ψh∈Hωh

∥ω − ψh∥L2(Ω) ≤ C hs
∥ω∥Hs (Ω) , (4.12)

inf
qh∈Hp

h

∥p − qh∥L2(Ω) ≤ C hs
∥p∥Hs (Ω) . (4.13)

Owing to (4.10) and (4.11)–(4.13), it follows that, under an extra regularity assumption on the exact solution, there
exist positive constants C(u), C(∂t u), C(p), and C(∂t p), depending on u,ω and p, respectively, such that

inf
vh∈Vh

∥u − vh∥ ≤ C(u) hs , inf
vh∈Vh

∥∂t u − vh∥ ≤ C(∂t u) hs ,

inf
qh∈Hp

h

∥p − qh∥L2(Ω) ≤ C(p) hs , and inf
qh∈Hp

h

∥∂t p − qh∥L2(Ω) ≤ C(∂t p) hs .
(4.14)

In turn, in order to simplify the subsequent analysis, we write eu = (eu, eω) = (u−uh,ω−ωh), and ep = p− ph .
ext, given arbitrary v̂h := (̂vh, ω̂h) : [0, T ] → Vh (cf. (4.9)) and q̂h : [0, T ] → Hp

h , as usual, we shall then
decompose the errors into

eu = δu + ηu = (δu, δω) + (ηu, ηω) , ep = δ p + ηp , (4.15)

ith
δu = u − v̂h , δω = ω − ψ̂h , δ p = p − q̂h ,

ηu = v̂h − uh , ηω = ψ̂h − ωh , ηp = q̂h − ph .
(4.16)

n addition, we stress for later use that ∂t vh : [0, T ] → Vh for each vh(t) ∈ Vh (cf. (4.9)). In fact, given
vh, qh) : [0, T ] → Vh × Hp

h , after simple algebraic computations, we obtain

[B(∂t vh), qh] = ∂t
(
[B(vh), qh]

)
− [B(vh), ∂t qh] = 0 , (4.17)

here, the latter is obtained by observing that ∂ q (t) ∈ Hp.
t h h

15
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In this way, by subtracting the discrete and continuous problems (2.9) and (4.3), respectively, we obtain the
ollowing system:

∂

∂ t
[E(eu), vh] + [A(u) − A(uh), vh] + [B(vh), ep] = 0 ∀ vh ∈ Hu

h × Hω
h ,

[B(eu), qh] = 0 ∀ qh ∈ Hp
h .

(4.18)

e now establish the main result of this section, namely, the theoretical rate of convergence of the discrete scheme
4.3). Notice that, optimal rates of convergences are obtained for all the unknowns.

heorem 4.4. Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Let ((u,ω), p) : [0, T ] →
(
H1

0(Ω )×L2(Ω )
)
×L2

0(Ω )
ith u ∈ W1,∞(0, T ; L2(Ω )) and ((uh,ωh), ph) : [0, T ] →

(
Hu

h × Hω
h

)
× Hp

h with uh ∈ W1,∞(0, T ; Hu
h), be the

unique solutions of the continuous and semidiscrete problems (2.9) and (4.3), respectively. Assume further that there
exists s ∈ (1/2, k +1], such that u ∈ H1+s(Ω ), ω ∈ [Hs(Ω )]d(d−1)/2, and p ∈ Hs(Ω ). Then, there exists C(u, p) > 0
depending only on C(u), C(∂t u), C(p), C(∂t p), |Ω |, ∥ip∥, ∥i2(p−1)∥, ν, α, F, β̃, κ1, κ2, and data, such that

∥eu∥L∞(0,T ;L2(Ω)) + ∥eu∥L2(0,T ;H1(Ω))

+ ∥eω∥L2(0,T ;L2(Ω)) + ∥ep∥L2(0,T ;L2(Ω)) ≤ C(u, p)
(

hs
+ hs (p−1)

)
. (4.19)

Proof. First, adding and subtracting suitable terms in the first equation of (4.18), with vh = ηu = (ηu, ηω) : [0, T ] →

Vh (cf. (4.9)), proceeding as in (3.16) and using the fact that ηu(t) ∈ Vh , thus [B(ηu), ηp] = 0, we deduce that

1
2

∂t ∥ηu∥
2
L2(Ω) + α ∥ηu∥

2
L2(Ω) + FCp ∥ηu∥

p
Lp(Ω) + κ1 ∥curl(ηu)∥2

L2(Ω)

+ κ2 ∥div(ηu)∥2
L2(Ω) + γ2∥ηω∥

2
L2(Ω)

≤ −(∂tδu, ηu)Ω − α(δu, ηu)Ω − F(|u|
p−2u − |̂vh |

p−2̂vh, ηu)Ω − ν(δω, ηω + curl(ηu))Ω
+ ν(ηω, curl(δu))Ω − κ1(curl(δu) − δω, curl(ηu) + ηω)Ω + (δ p − κ2div(δu), div(ηu))Ω ,

(4.20)

ith γ2 defined in (3.17). The terms on the right hand side can be bounded using the Cauchy–Schwarz and Young’s
nequalities (cf. (1.1)), and (3.8), as follows:

− (∂tδu, ηu)Ω − α(δu, ηu)Ω ≤
1
α

∥∂tδu∥
2
L2(Ω) + α∥δu∥

2
L2(Ω) +

α

2
∥ηu∥

2
L2(Ω), (4.21)

− F(|u|
p−2u − |̂vh |

p−2̂vh, ηu)Ω

≤ F c̃p
(
∥u∥L2(p−1)(Ω) + ∥̂vh∥L2(p−1)(Ω)

)p−2
∥δu∥L2(p−1)(Ω) ∥ηu∥L2(Ω)

≤ F c̃p
(
2 ∥u∥L2(p−1)(Ω) + ∥δu∥L2(p−1)(Ω)

)p−2
∥δu∥L2(p−1)(Ω) ∥ηu∥L2(Ω)

≤ C̃
(
∥u∥

p−2
H1(Ω)

+ ∥δu∥
p−2
H1(Ω)

)
∥δu∥H1(Ω) ∥ηu∥L2(Ω)

≤
2C̃
α

(
∥u∥

2(p−2)
H1(Ω)

∥δu∥
2
H1(Ω) + ∥δu∥

2(p−1)
H1(Ω)

)
+

α

4
∥ηu∥

2
L2(Ω) (4.22)

γ2 (curl(δu) − δω, ηω) ≤
γ2

2
∥curl(δu) − δω∥

2
L2(Ω) +

γ2

2
∥ηω∥

2
L2(Ω), (4.23)

− ν(δω, curl(ηu))Ω − κ1(curl(δu) − δω, curl(ηu))Ω

≤
ν2

κ1
∥δω∥

2
L2(Ω) + κ1∥curl(δu) − δω∥

2
L2(Ω) +

κ1

2
∥curl(ηu)∥2

L2(Ω), (4.24)

(δ p − κ2div(δu), div(ηu))Ω ≤
1
κ2

∥δ p∥
2
L2(Ω) + κ2∥div(δu)∥2

L2(Ω) +
κ2

2
∥div(ηu)∥2

L2(Ω), (4.25)

here C̃ > 0 depends on |Ω |, ∥i2(p−1)∥, and F. We note that in (4.22) we used the continuous injection of H1(Ω )
nto L2(p−1)(Ω ), with 2(p − 1) ∈ [4, 6], cf. (1.2). Combining (4.20)–(4.25), using the identity (2.7), and neglecting
he term ∥ηu∥

p
Lp(Ω) in (4.20) to obtain a simplified error estimate, we get

∂t ∥ηu∥
2
L2(Ω) + α ∥ηu∥

2
L2(Ω) + γ1 ∥∇ηu∥

2
L2(Ω) + γ2∥ηω∥

2
L2(Ω)

≤ C
(
∥∂ δ ∥

2
+ ∥δ ∥

2 (p−1)
+

(
1 + ∥u∥

2 (p−2))
∥δ ∥

2
+ ∥δ ∥

2
+ ∥δ ∥

2 )
,

(4.26)

1 t u L2(Ω) u H1(Ω) H1(Ω) u H1(Ω) ω L2(Ω) p L2(Ω)
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with γ1 defined in (3.17) and C1 is a positive constant depending on |Ω |, ∥i2(p−1)∥, ν, α, F, κ1, and κ2. Integrating
(4.26) from 0 to t ∈ (0, T ], recalling that ∥u∥L∞(0,T ;H1(Ω)) is bounded by data (cf. (3.31)), we find that

∥ηu(t)∥2
L2(Ω) +

∫ t

0

(
α ∥ηu∥

2
L2(Ω) + γ1 ∥∇ηu∥

2
L2(Ω) + γ2∥ηω∥

2
L2(Ω)

)
ds

≤ C2

∫ t

0

(
∥∂t δu∥

2
L2(Ω) + ∥δu∥

2(p−1)
H1(Ω)

+ ∥δu∥
2
+ ∥δ p∥

2
L2(Ω)

)
ds + ∥ηu(0)∥2

L2(Ω),

(4.27)

with C2 > 0 depending on |Ω |, ∥i2(p−1)∥, ν, α, F, κ1, κ2, and data.
Next, in order to bound the last term in (4.27), we subtract the continuous and discrete initial condition problems

(3.25) and (4.4), to obtain the error system:

[A(u0) − A(uh,0), vh] + [B(vh), p0 − ph,0] = 0 ∀ vh ∈ Hu
h × Hω

h ,

− [B(u0 − uh,0), qh] = 0 ∀ qh ∈ Hp
h .

hen, proceeding as in (4.26), recalling from Theorems 3.8 and 4.3 that (u(0),ω(0)) = (u0,ω0) and (uh(0),ωh(0)) =

uh,0,ωh,0), respectively, we get

α ∥ηu(0)∥2
L2(Ω) + γ1 ∥∇ηu(0)∥2

L2(Ω) + γ2∥ηω(0)∥2
L2(Ω) ≤ Ĉ0

(
∥δu0∥

2 (p−1)
H1(Ω)

+ ∥δu0∥
2
+ ∥δ p0∥

2
L2(Ω)

)
, (4.28)

here, similarly to (4.16), we denote δu0 = (δu0 , δω0 ) = (u0 − v̂h(0),ω0 − ψ̂h(0)) and δ p0 = p0 − q̂h(0), with
rbitrary (̂vh(0), ψ̂h(0)) ∈ Vh and q̂h(0) ∈ Hp

h , and Ĉ0 is a positive constant depending on |Ω |, ∥i2(p−1)∥, ν, α, F, κ1,
nd κ2. Thus, combining (4.27) and (4.28), and using the error decomposition (4.15), there holds

∥eu(t)∥2
L2(Ω) +

∫ t

0

(
α ∥eu∥

2
L2(Ω) + γ1 ∥∇eu∥

2
L2(Ω) + γ2∥eω∥2

L2(Ω)

)
ds ≤ C Ψ (u, p) , (4.29)

where

Ψ (u, p) := ∥δu(t)∥2
+

∫ t

0

(
∥∂t δu∥

2
+ ∥δu∥

2 (p−1)
+ ∥δu∥

2
+ ∥δ p∥

2
L2(Ω)

)
ds

+ ∥δu0∥
2 (p−1)

+ ∥δu0∥
2
+ ∥δ p0∥

2
L2(Ω) .

On the other hand, to estimate ∥ep∥L2(0,T ;L2(Ω)), we observe that from the discrete inf–sup condition of B (cf.
(4.6)), the first equation of (4.18), and the continuity bounds of E,A,B (cf. (3.4), (3.12), (3.2)), there holds

β̃ ∥ηp∥L2(Ω) ≤ sup
0̸=vh∈Hu

h×Hωh

−
(
[∂t E(eu), vh] + [A(u) − A(uh), vh] + [B(vh), δ p]

)
∥vh∥

≤ C3

(
∥∂t eu∥L2(Ω) + ∥eu∥H1(Ω) +

(
∥u∥H1(Ω) + ∥uh∥H1(Ω)

)p−2
∥eu∥H1(Ω) + ∥eω∥L2(Ω) + ∥δ p∥L2(Ω)

)
,

ith C3 > 0 depending linearly on |Ω |, ∥ip∥, ν, α, F, κ1, and κ2. Then, taking square in the above inequality,
ntegrating from 0 to t ∈ (0, T ], recalling that both ∥u∥L∞(0,T ;H1(Ω)) and ∥uh∥L∞(0,T ;H1(Ω)) are bounded by data
cf. (3.31), (4.8)), and employing (4.29), we deduce that∫ t

0
∥ηp∥

2
L2(Ω) ds ≤ C4

{
Ψ (u, p) +

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

}
, (4.30)

ith C4 > 0 depending on |Ω |, ∥ip∥, ∥i2(p−1)∥, ν, α, F, β̃, κ1, κ2, and data. Next, in order to bound the last term in
4.30), we differentiate in time the equation of (4.18) related to ψh , choose vh = (∂t ηu, ηω), and use the identity

(3.37), to find that

∥∂t ηu∥
2
L2(Ω) +

1
2

∂t

(
α ∥ηu∥

2
L2(Ω) + κ1 ∥curl(ηu)∥2

L2(Ω) + κ2 ∥div(ηu)∥2
L2(Ω) + (ν − κ1) ∥ηω∥

2
L2(Ω)

)
= −(∂t δu, ∂t ηu)Ω − α (δu, ∂t ηu)Ω − F (|u|

p−2u − |uh |
p−2uh, ∂t ηu)Ω − ν(∂t δω, ηω)Ω

− ν(δω, curl(∂t ηu))Ω + ν(ηω, curl(∂tδu))Ω − κ1(curl(δu) − δω, curl(∂tηu) − ∂tηω)Ω (4.31)

− κ1∂t (curl(δu) − δω, ηω)Ω − κ2(div(δu), div(∂tηu))Ω + (δ p, div(∂tηu))Ω .
17
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Notice that (ηp, div(∂tηu))Ω = 0 since (ηu(t), 0) ∈ Vh (cf. (4.9) and (4.17)). Then, using the identities

(δω, curl(∂tηu))Ω = ∂t (δω, curl(ηu))Ω − (∂tδω, curl(ηu))Ω ,

(curl(δu) − δω, curl(∂tηu) − ∂tηω)Ω = ∂t (curl(δu) − δω, curl(ηu) − ηω)Ω
− (curl(∂tδu) − ∂tδω, curl(ηu) − ηω)Ω , (4.32)

(div(δu), div(∂tηu))Ω = ∂t (div(δu), div(ηu))Ω − (div(∂tδu), div(ηu))Ω ,

(δ p, div(∂tηu))Ω = ∂t (δ p, div(ηu))Ω − (∂tδ p, div(ηu))Ω .

n turn, using the Cauchy–Schwarz inequality, (3.8), and the continuous injection of H1(Ω ) into L2(p−1)(Ω ) we
educe that there exists a constant C5 > 0 depending on |Ω | and ∥i2(p−1)∥ such that

(|u|
p−2u − |uh |

p−2uh, ∂t ηu)Ω ≤ c̃p
(
∥u∥L2(p−1)(Ω) + ∥uh∥L2(p−1)(Ω)

)p−2
∥eu∥L2(p−1)(Ω)∥∂t ηu∥L2(Ω)

≤ C5
(
∥u∥H1(Ω) + ∥uh∥H1(Ω)

)p−2
∥eu∥H1(Ω)∥∂t ηu∥L2(Ω) . (4.33)

hus, integrating (4.31) from 0 to t ∈ (0, T ], using the identities (2.7) and (4.32), the estimate (4.33), and the
auchy–Schwarz and Young’s inequalities, in a way similar to (4.21)–(4.25), we find that

α ∥ηu(t)∥2
L2(Ω) + γ1 ∥∇ηu(t)∥2

L2(Ω) + γ2 ∥ηω(t)∥2
L2(Ω) +

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

≤ C6

( ∫ t

0

(
∥∂t δu∥

2
+ ∥∂tδ p∥

2
L2(Ω) + ∥δu∥

2
L2(Ω) +

(
∥u∥H1(Ω) + ∥uh∥H1(Ω)

)2(p−2)
∥eu∥

2
H1(Ω)

)
ds

+ ∥δu(t)∥2
+ ∥δ p(t)∥2

L2(Ω) + ∥δu0∥
2
+ ∥δ p0∥

2
L2(Ω) +

∫ t

0
∥ηu∥

2 ds + ∥ηu(0)∥2
)

+
α

2
∥ηu(t)∥2

L2(Ω) +
γ1

2
∥∇ηu(t)∥2

L2(Ω) +
γ2

2
∥ηω(t)∥2

L2(Ω) +
1
2

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds ,

here C6 > 0 depends on |Ω |, ∥i2(p−1)∥, ν, α, F, κ1, and κ2. Then, recalling that ∥u∥L∞(0,T ;H1(Ω)) and ∥uh∥L∞(0,T ;H1(Ω)
re bounded by data (cf. (3.31) and (4.8)), employing estimates (4.27) and (4.28), and some algebraic manipulations,
e deduce that

α ∥ηu(t)∥2
L2(Ω) + γ1 ∥∇ηu(t)∥2

L2(Ω) + γ2 ∥ηω(t)∥2
L2(Ω) +

∫ t

0
∥∂t ηu∥

2
L2(Ω) ds

≤ C7

( ∫ t

0

(
∥∂t δu∥

2
+ ∥∂tδ p∥

2
L2(Ω) + ∥δu∥

2(p−1)
H1(Ω)

+ ∥δu∥
2
+ ∥δ p∥

2
L2(Ω)

)
ds

+ ∥δu(t)∥2
+ ∥δ p(t)∥2

L2(Ω) + ∥δu0∥
2 (p−1)
H1(Ω)

+ ∥δu0∥
2
+ ∥δ p0∥

2
L2(Ω)

)
,

(4.34)

ith C7 > 0 depending on |Ω |, ∥ip∥, ∥i2(p−1)∥, ν, α, F, β̃, κ1, κ2, and data. Thus, combining (4.30) with (4.34), and
sing the error decomposition (4.15), yields∫ t

0
∥ep∥

2
L2(Ω) ds ≤ C8

{
Ψ (u, p) + ∥δ p(t)∥2

L2(Ω) +

∫ t

0
∥∂t δ p∥

2
L2(Ω) ds

}
, (4.35)

ith C8 > 0 depending on |Ω |, ∥ip∥, ∥i2(p−1)∥, ν, α, F, β̃, κ1, κ2, and data. Finally, using the fact that v̂h : [0, T ] →

Vh and q̂h : [0, T ] → Hp
h are arbitrary, taking infimum in (4.29) and (4.35) over the corresponding discrete subspaces

Vh and Hp
h , and applying the approximation properties (4.14), we derive (4.19) and conclude the proof. □

Remark 4.1. Bounds (4.21)–(4.25) imply that the constant C on the right-hand side of (4.29) is linearly dependent
on ν2

κ1
and 1

κ2
. Combined with the constants on the left-hand side of (4.29), this shows that the convergence constant

for ∥eu∥L2(0,T ;L2(Ω)) is linearly dependent on ν
√

κ1
and 1

√
κ2

, the one for ∥∇eu∥L2(0,T ;L2(Ω)) is linearly dependent on
1

√
γ1

, ν
√

γ1κ1
, and 1

√
γ1κ2

, γ1 = min{κ1, κ2}, and the one for ∥eω∥L2(0,T ;L2(Ω)) is linearly dependent on 1
√

γ2
, ν

√
γ2κ1

, and
1

√
γ2κ2

, γ2 = ν − κ1.

5. Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (2.9) (cf. (4.3)). To that end, for the

time discretization we employ the backward Euler method. Let ∆t be the time step, T = N∆t , and let tn = n∆t ,

18
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n = 0, . . . , N . More precisely, we let dt un
= (∆t)−1(un

−un−1) be the first order (backward) discrete time derivative,
here un

:= u(tn). Then the fully discrete method reads: given fn
∈ L2(Ω ) and (u0

h, p0
h) = ((uh,0,ωh,0), ph,0)

atisfying (4.4) find (un
h, pn

h ) := ((un
h,ω

n
h), pn

h ) ∈ (Hu
h × Hω

h ) × Hp
h , n = 1, . . . , N , such that

dt [E(un
h), vh] + [A(un

h), vh] + [B(vh), pn
h ] = [Fn, vh] ∀ vh ∈ Hu

h × Hω
h ,

−[B(un
h), qh] = 0 ∀ qh ∈ Hp

h ,
(5.1)

here [Fn, vh] := (fn, vh)Ω .
In what follows, given a separable Banach space V endowed with the norm ∥ · ∥V, we make use of the following

discrete in time norms

∥u∥
p
ℓp(0,T ;V) := ∆t

N∑
n=1

∥un
∥

p
V and ∥u∥ℓ∞(0,T ;V) := max

0≤n≤N
∥un

∥V . (5.2)

Next, we state the main results for method (5.1).

Theorem 5.1. Let p ∈ [3, 4]. Assume κ1 and κ2 as in Lemma 3.4. Then, for each (u0
h, p0

h) := ((uh,0,ωh,0), ph,0)
atisfying (4.4) and fn

∈ L2(Ω ), n = 1, . . . , N, there exists a unique solution (un
h, pn

h ) := ((un
h,ω

n
h), pn

h ) ∈

Hu
h × Hω

h ) × Hp
h to (5.1). Moreover, under a suitable extra regularity assumption on the data, there exist constants

B̃F,1, C̃BF,2 > 0 depending only on |Ω |, ∥ip∥, ν, α, F, β̃, κ1, and κ2, such that

∥uh∥ℓ∞(0,T ;L2(Ω)) + ∆t∥dt uh∥ℓ2(0,T ;L2(Ω)) + ∥uh∥ℓ2(0,T ;H1(Ω)) + ∥ωh∥ℓ2(0,T ;L2(Ω)) + ∥ph∥ℓ2(0,T ;L2(Ω))

≤ C̃BF,1

{
∥f∥2(p−1)/p

L2(0,T ;L2(Ω))
+ ∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

2(p−1)2/p
H1(Ω)

+ ∥u0∥
p−1
H1(Ω)

+ ∥∆u0∥
2(p−1)/p
L2(Ω)

+ ∥∆u0∥L2(Ω) + ∥u0∥
2(p−1)/p
L2(Ω)

+ ∥u0∥L2(Ω)

}
,

(5.3)

nd

∥uh∥ℓ∞(0,T ;H1(Ω)) ≤ C̃BF,2

{
∥f∥L2(0,T ;L2(Ω)) + ∥u0∥

p−1
H1(Ω)

+ ∥∆u0∥L2(Ω) + ∥u0∥L2(Ω)

}
. (5.4)

roof. First, we note that at each time step the well-posedness of the fully discrete problem (5.1), with n = 1, . . . , N ,
ollows from similar arguments to the proof of Lemma 3.6.

On the other hand, the derivation of (5.3) and (5.4) can be obtained similarly as in the proof of Theorem 3.9. In
act, we choose (vh, qh) = (un

h, pn
h ) in (5.1), use the identity

(dt un
h, un

h)Ω =
1
2

dt ∥un
h∥

2
L2(Ω) +

1
2
∆t ∥dt un

h∥
2
L2(Ω) , (5.5)

the definition of the operator A (cf. (2.11)), the identity (2.7), and the Cauchy–Schwarz and Young’s inequalities
(cf. (1.1)), to obtain

1
2

dt∥un
h∥

2
L2(Ω) +

1
2
∆t ∥dt un

h∥
2
L2(Ω)+α ∥un

h∥
2
L2(Ω) + F∥un

h∥
p
Lp(Ω)

+ κ1 ∥curl(un
h)∥2

L2(Ω) + κ2 ∥div(un
h)∥2

L2(Ω) + γ2 ∥ωn
h∥

2
L2(Ω) ≤

δ

2
∥fn

∥
2
L2(Ω) +

1
2 δ

∥un
h∥

2
L2(Ω) ,

(5.6)

where γ2 is defined in (3.17). Then, choosing δ = 1/α and summing up over the time index n = 1, . . . , m, with
m = 1, . . . , N , in (5.6) and multiplying by ∆t , we get

∥um
h ∥

2
L2(Ω) + (∆t)2

m∑
n=1

∥dt un
h∥

2
L2(Ω) + ∆t

m∑
n=1

(
α∥un

h∥
2
L2(Ω) + 2κ1 ∥curl(un

h)∥2
L2(Ω)

)
+∆t

m∑
n=1

(
2κ2 ∥div(un

h)∥2
L2(Ω) + 2γ2 ∥ωn

h∥
2
L2(Ω)

)
≤

∆t
α

m∑
n=1

∥fn
∥

2
L2(Ω) + ∥u0

h∥
2
L2(Ω) .

(5.7)

Notice that, in order to simplify the stability bound, we have neglected the term ∥un
h∥

p
Lp(Ω) in the left-hand side of

5.6).
On the other hand, from the discrete inf–sup condition of B (cf. (4.1)) and the first equation of (5.1) related to

h , we deduce that

β̃ ∥pn
h∥L2(Ω) ≤ ∥fn

∥L2(Ω) + α ∥un
h∥L2(Ω) + F ∥ip∥ ∥un

h∥
p−1
Lp(Ω)

n n n n (5.8)

+ κ1 ∥curl(uh)∥L2(Ω) + κ2 ∥div(uh)∥L2(Ω) + γ2 ∥ωh∥L2(Ω) + ∥dt uh∥L2(Ω) .
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Then, taking square in (5.8), using (5.7), we deduce the analogous estimate of (3.35), that is

∆t
m∑

n=1

∥pn
h∥

2
L2(Ω) ≤ C1

{
∆t

m∑
n=1

∥fn
∥

2
L2(Ω) + ∥u0

h∥
2
L2(Ω)

+∆t
m∑

n=1

(
F ∥un

h∥
2(p−1)
Lp(Ω) + ∥dt un

h∥
2
L2(Ω)

) }
, with m = 1, . . . , N ,

(5.9)

with C1 > 0 depending on |Ω |, ∥ip∥, ν, α, F, β̃, κ1, and κ2. Next, in order to bound the last two terms in (5.9),
we choose (vh, qh) = ((dt un

h,ω
n
h), pn

h ) in (5.1), apply some algebraic manipulation, use the identity (5.5) and the
auchy–Schwarz and Young’s inequalities, to obtain the discrete version of (3.36):

∥dt un
h∥

2
L2(Ω) +

1
2

dt

(
α ∥un

h∥
2
L2(Ω) + κ2 ∥div(un

h)∥2
L2(Ω) + ν ∥ωn

h∥
2
L2(Ω)

)
+ F (|un

h |
p−2un

h, dt un
h)Ω

+
1
2
∆t

(
α ∥dt un

h∥
2
L2(Ω) + κ2 ∥div(dt un

h)∥2
L2(Ω) + ν ∥dtω

n
h∥

2
L2(Ω)

)
(5.10)

+ κ1(curl(un
h) − ωn

h, dt curl(un
h))Ω + κ1(dt (curl(un

h) − ωn
h),ωn

h)Ω ≤
1
2
∥fn

∥
2
L2(Ω) +

1
2
∥dt un

h∥
2
L2(Ω) ,

here, using again (5.5), analogously to (3.37), we can obtain the identity

κ1(curl(un
h) − ωn

h, dt curl(un
h))Ω + κ1(dt (curl(un

h) − ωn
h),ωn

h)Ω
=

κ1

2
dt

(
∥curl(un

h)∥2
L2(Ω) − ∥ωn

h∥
2
L2(Ω)

)
+

κ1

2
∆ t

(
∥curl(dt un

h)∥2
L2(Ω) − ∥dtω

n
h∥

2
L2(Ω)

)
.

(5.11)

n turn, employing Hölder and Young’s inequalities, we are able to deduce (cf. [7, Eq. (5.13)]):

(|un
h |

p−2un
h, dt un

h)Ω ≥
(∆t)−1

p

(
∥un

h∥
p
Lp(Ω) − ∥un−1

h ∥
p
Lp(Ω)

)
=

1
p

dt ∥un
h∥

p
Lp(Ω) . (5.12)

Thus, combining (5.10) with (5.11) and (5.12), summing up over the time index n = 1, . . . , m, with m = 1, . . . , N
nd multiplying by ∆t , we get

α ∥um
h ∥

2
L2(Ω) +

2F
p

∥um
h ∥

p
Lp(Ω) + γ1 ∥∇um

h ∥
2
L2(Ω) + γ2 ∥ωm

h ∥
2
L2(Ω) + ∆t

m∑
n=1

∥dt un
h∥

2
L2(Ω)

≤ ∆t
m∑

n=1

∥fn
∥

2
L2(Ω) + α ∥u0

h∥
2
L2(Ω) +

2 F
p

∥u0
h∥

p
Lp(Ω) + γ1 ∥∇u0

h∥
2
L2(Ω) + γ2 ∥ω0

h∥
2
L2(Ω) ,

(5.13)

here γ1 and γ2 are defined in (3.17). Then, combining (5.9) and (5.13) yields

∆t
m∑

n=1

∥pn
h∥

2
L2(Ω) ≤ C2

{ (
∆t

m∑
n=1

∥fn
∥

2
L2(Ω)

)2(p−1)/p

+ ∆t
m∑

n=1

∥fn
∥

2
L2(Ω)

+ ∥u0
h∥

2(p−1)
Lp(Ω) + ∥u0

h∥
p
Lp(Ω) + ∥u0

h∥
4(p−1)/p
H1(Ω)

+ ∥u0
h∥

2
H1(Ω) + ∥ω0

h∥
4(p−1)/p
L2(Ω)

+ ∥ω0
h∥

2
L2(Ω)

}
,

(5.14)

ith m = 1, . . . , N and C2 > 0 depending on |Ω |, ∥ip∥, ν, α, F, β̃, κ1, and κ2, which combined with (5.7), the fact
hat (u0

h,ω
0
h) = (uh,0,ωh,0) and the estimate (4.5), implies (5.3). In addition, (4.5) and (5.13) yields (5.4), which

oncludes the proof. □

emark 5.1. Similarly to Remark 3.6 for the continuous solution, bound (5.7) and the identity (2.7) show that
he stability constant for ∥∇uh∥ℓ2(0,T ;L2(Ω)) is linearly dependent on 1

√
γ1

, γ1 = min{κ1, κ2}, while the one for
∥ωh∥ℓ2(0,T ;L2(Ω)) is linearly dependent on 1

√
γ2

, γ2 = ν − κ1. In addition, bounds (5.7) and (5.14) show that the
stability constants for ∥uh∥ℓ2(0,T ;L2(Ω)) and ∥ph∥ℓ2(0,T ;L2(Ω)) do not depend on 1

ν
, 1

κ1
, or 1

κ2
.

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that end, we
subtract the fully discrete problem (5.1) from the continuous counterparts (2.9) at each time step n = 1, . . . , N , to

btain the following error system:

dt [E(en
u), vh] + [A(un) − A(un

h), vh] + [B(vh), en
p] = (rn(u), vh)Ω ,

n
(5.15)
[B(eu), qh] = 0 ,
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for all vh ∈ Hu
h × Hω

h and qh ∈ Hp
h , where rn denotes the difference between the time derivative and its discrete

analogue, that is

rn(u) = dt un
− ∂t u(tn).

In addition, we recall from [30, Lemma 4] that for sufficiently smooth u, there holds

∆ t
N∑

n=1

∥rn(u)∥2
L2(Ω) ≤ C(∂t t u) (∆ t)2, with C(∂t t u) := C ∥∂t t u∥

2
L2(0,T ;L2(Ω)). (5.16)

hen, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the structure of
he proof of Theorem 4.4, using discrete-in-time arguments as in the proof of Theorem 5.1 and the estimate (5.16)
see [7, Theorem 5.4] for a similar approach).

heorem 5.2. Let the assumptions of Theorem 4.4 hold, with p ∈ [3, 4] and s ∈ (1/2, k + 1]. Then, for the
olution of the fully discrete problem (5.1) there exists Ĉ(u, p) > 0 depending only on C(u), C(∂t u), C(∂t t u), C(p),
(∂t p), |Ω |, ∥ip∥, ∥i2(p−1)∥, ν, α, F, β̃, κ1, κ2, and data, such that

∥eu∥ℓ∞(0,T ;L2(Ω)) + ∆ t ∥dt eu∥ℓ2(0,T ;L2(Ω)) + ∥eu∥ℓ2(0,T ;H1(Ω))

+ ∥eω∥ℓ2(0,T ;L2(Ω)) + ∥ep∥ℓ2(0,T ;L2(Ω)) ≤ Ĉ(u, p)
(

hs
+ hs (p−1)

+ ∆ t
)

. (5.17)

emark 5.2. For the fully discrete scheme (5.1) we have considered the backward Euler method only for the sake
f simplicity. The analysis developed in Section 5 can be adapted to other time discretizations, such as high order
DF schemes or the Crank–Nicholson method.

. Numerical results

In this section we present some examples illustrating the performance of the augmented mixed formulation.
he numerical methods have been implemented using open source finite element libraries: FEniCS [31] and
reeFem++ [32]. We have used FreeFem++ for the 2D test cases, Examples 1, 3, and 4, and FEniCS for the
D ones, Examples 2 and 5.

xample 1: Verification of spatial convergence

The analysis of convergence established in the previous sections is illustrated numerically using a classical
anufactured solution approach. Convergence rates under mesh refinement are computed with respect to the

losed-form velocity and pressure

u =

(
t cos(πx) sin(πy)

−t sin(πx) cos(πy)

)
, p = t sin(πx) sin(πy), (6.1)

nd ω = curl(u), defined on the unit square Ω = (0, 1)2, up to a time T = 0.05 and using a fixed time step
t = 0.01 (sufficiently small not to interfere with the accuracy verification of the spatial discretization). Non-

omogeneous Dirichlet boundary conditions for velocity as well as the forcing term f are imposed according to
he exact manufactured solutions, and the average of the approximate pressure is constrained to match that of
he exact pressure (the constraint being imposed through a real Lagrange multiplier). As the Dirichlet boundary
onditions depend on time, this needs to be taken into consideration when implementing the initialization of inner
ewton–Raphson iterates for each time step.
After backward Euler discretization, the nonlinear algebraic system encountered at each time iteration is solved

ith a Newton–Raphson algorithm with an absolute incremental tolerance of 10−9 (on the ℓ2
−norm of the finite

lement incremental vector), and each linear solve of the tangent system is done with the unsymmetric multi-frontal
irect solver MUMPS [33]. The finite element family used for these numerical tests is Taylor–Hood–Lagrange
i.e., the three finite dimensional subspaces in (4.2) with k = 1).

Table 6.1 illustrates the numerical convergence of the proposed method for this case, which uses the following
1ν
odel parameters values α = 100, ν = 0.01, F = 10, and p = 3.5. According to Remark 3.3, we take κ1 = 2
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Fig. 6.1. Samples of numerical solutions for the accuracy test up to T = 0.05, using the base-line parameters α = 100, ν = 0.01, F = 10,
nd p = 3.5 and a Taylor–Hood–Lagrange method.

Table 6.1
Example 1. Error history with respect to mesh refinement, computed at T = 0.05 using the base-line parameters
α = 100, ν = 0.01, F = 10, and p = 3.5 and with a Taylor–Hood–Lagrange method.

DoF h eu rate eω rate ep rate avg_it

69 0.71 3.67e−02 * 3.70e−02 * 9.12e−03 * 3.00
213 0.35 9.97e−03 1.88 8.98e−03 2.04 1.66e−03 2.46 3.00
741 0.18 3.36e−03 1.57 2.08e−03 2.11 3.42e−04 2.28 3.00

2757 0.09 1.12e−03 1.59 5.09e−04 2.03 8.12e−05 2.08 3.00
10629 0.04 2.71e−04 2.05 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 5.20e−05 2.38 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.05e−05 2.30 7.89e−06 2.00 1.26e−06 2.00 3.00

and κ2 = κ1. We display velocity errors in the H1(Ω )−norm, vorticity in the L2(Ω )−norm and pressure in the
2(Ω )−norm, computed at the final time

eu := ∥u − uh∥H1(Ω), eω := ∥ω − ωh∥L2(Ω), ep := ∥p − ph∥L2(Ω), (6.2)

ogether with experimental rates of convergence

rate :=
log(e(·)/e′

(·))

log(h/h′)
,

here h and h′ denote two consecutive mesh sizes with errors e(·) and e′

(·), respectively. We also tabulate the average
f Newton–Raphson iterates (avg it) needed through all time steps on each refinement level. Approximate solutions

for this case are plotted in Fig. 6.1.
Next we perform similar tests but now varying the Forchheimer exponent p and the Forchheimer number F

(Table 6.2). In Table 6.2 (top) very slight differences (with respect to the error history reported in Table 6.1) in
absolute individual errors are observed for coarser meshes, but after the first two mesh refinements the convergences
are identical for all cases, showing the optimal O(hk+1) rate as predicted by the theory. In Table 6.2 (bottom) the
iteration count increases due to the strength of the nonlinearity (for F = 10000) but the convergence rates remain
optimal.

The next set of runs focuses on varying the Darcy number (α = 10−4, 104) and the viscosity (ν =

10−3, 10−4, 10−5), taking κ1 =
ν
2 and κ2 = κ1 (see Table 6.3). Optimal convergence rates are observed independently

f the chosen Darcy number (see top table). Regarding the variation in viscosity, Table 6.3 (bottom) indicates an
ptimal convergence for vorticity and pressure, whereas for velocity a clear sub-optimal convergence is attained for
he case of smaller viscosities. The latter is consistent with Remark 4.1, which indicates that for κ1 = κ2 = O(ν) the

1 . According to Remark 4.1, we expect to recover
onvergence constant for ∥∇eu∥L2(0,T ;L2(Ω)) depends linearly on
ν
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Table 6.2
Example 1. Error history with respect to mesh refinement, computed at T = 0.05 using the base-line parameters
α = 100, ν = 0.01, and varying p with F = 10 fixed (top) and varying F with p = 3.5 fixed (bottom).

DoF h eu rate eω rate ep rate avg_it

p = 3

69 0.71 3.67e−02 * 3.70e−02 * 9.17e−03 * 3.00
213 0.35 9.97e−03 1.88 8.98e−03 2.04 1.66e−03 2.47 3.00
741 0.18 3.36e−03 1.57 2.08e−03 2.11 3.42e−04 2.28 3.00

2757 0.09 1.12e−03 1.59 5.09e−04 2.03 8.12e−05 2.08 3.00
10629 0.04 2.71e−04 2.05 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 5.20e−05 2.38 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.05e−05 2.30 7.89e−06 2.00 1.26e−06 2.00 3.00

p = 4

69 0.71 3.67e−02 * 3.70e−02 * 9.17e−03 * 3.00
213 0.35 9.97e−03 1.88 8.98e−03 2.04 1.66e−03 2.47 3.00
741 0.18 3.36e−03 1.57 2.08e−03 2.11 3.42e−04 2.28 3.00

2757 0.09 1.12e−03 1.59 5.09e−04 2.03 8.12e−05 2.08 3.00
10629 0.04 2.71e−04 2.05 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 5.20e−05 2.38 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.05e−05 2.30 7.89e−06 2.00 1.26e−06 2.00 3.00

DoF h eu rate eω rate ep rate avg_it

F = 10−4

69 0.71 3.67e−02 * 3.70e−02 * 9.11e−03 * 2.00
213 0.35 9.97e−03 1.88 8.98e−03 2.04 1.66e−03 2.46 2.60
741 0.18 3.37e−03 1.57 2.08e−03 2.11 3.42e−04 2.28 2.80

2757 0.09 1.12e−03 1.59 5.09e−04 2.03 8.12e−05 2.08 3.00
10629 0.04 2.71e−04 2.05 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 5.20e−05 2.38 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.05e−05 2.30 7.89e−06 2.00 1.26e−06 2.00 3.00

F = 104

69 0.71 3.68e−02 * 3.70e−02 * 2.64e−02 * 4.00
213 0.35 9.54e−03 1.95 8.98e−03 2.04 2.31e−03 3.52 4.20
741 0.18 2.76e−03 1.79 2.08e−03 2.11 3.63e−04 2.67 4.00

2757 0.09 8.57e−04 1.69 5.09e−04 2.03 8.16e−05 2.15 4.00
10629 0.04 2.31e−04 1.89 1.26e−04 2.01 2.01e−05 2.02 4.20
41733 0.02 4.98e−05 2.21 3.16e−05 2.00 5.02e−06 2.00 4.60

165381 0.01 1.05e−05 2.25 7.89e−06 2.00 1.26e−06 2.00 4.60

Table 6.3
Example 1. Error history with respect to mesh refinement at T = 0.05, computed using the base-line parameters
p = 3.5, F = 10, and varying α with ν = 0.01 fixed (top) and varying ν with α = 100 fixed (bottom). Here we
have used κ1 = κ2 =

ν
2 . A sub-optimal convergence in the velocity is observed for small viscosity.

DoF h eu rate eω rate ep rate avg_it

α = 10−4

69 0.71 3.73e−02 * 3.70e−02 * 4.98e−03 * 3.00
213 0.35 1.52e−02 1.29 9.07e−03 2.03 1.53e−03 1.71 3.00
741 0.18 7.27e−03 1.07 2.09e−03 2.12 3.35e−04 2.19 3.00

2757 0.09 1.94e−03 1.91 5.09e−04 2.04 8.10e−05 2.05 3.00
10629 0.04 3.29e−04 2.56 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 5.40e−05 2.61 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.06e−05 2.35 7.89e−06 2.00 1.26e−06 2.00 3.00

(continued on next page)
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κ

b

Table 6.3 (continued).

DoF h eu rate eω rate ep rate avg_it

α = 10−4

α = 104

69 0.71 3.67e−02 * 3.70e−02 * 6.46e−01 * 3.00
213 0.35 9.36e−03 1.97 8.98e−03 2.04 5.09e−02 3.67 3.00
741 0.18 2.39e−03 1.97 2.08e−03 2.11 4.57e−03 3.48 3.00

2757 0.09 5.98e−04 2.00 5.09e−04 2.03 3.37e−04 3.76 3.00
10629 0.04 1.50e−04 2.00 1.26e−04 2.01 2.93e−05 3.53 3.00
41733 0.02 3.76e−05 1.99 3.16e−05 2.00 5.20e−06 2.49 3.00

165381 0.01 9.48e−06 1.99 7.89e−06 2.00 1.26e−06 2.05 3.00

DoF h eu rate eω rate ep rate avg_it

ν = 10−5

69 0.71 3.67e−02 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 1.00e−02 1.87 8.98e−03 2.04 1.67e−03 2.45 3.00
741 0.18 3.64e−03 1.46 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.69e−03 1.11 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 8.41e−04 1.00 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 4.21e−04 1.00 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 2.05e−04 1.04 7.89e−06 2.00 1.26e−06 2.00 3.00

ν = 10−4

69 0.71 3.67e−02 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 1.00e−02 1.87 8.98e−03 2.04 1.67e−03 2.45 3.00
741 0.18 3.64e−03 1.46 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.68e−03 1.12 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 8.21e−04 1.03 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 3.82e−04 1.10 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.48e−04 1.37 7.89e−06 2.00 1.26e−06 2.00 3.00

ν = 10−3

69 0.71 3.67e−02 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 1.00e−02 1.88 8.98e−03 2.04 1.66e−03 2.45 3.00
741 0.18 3.61e−03 1.47 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.59e−03 1.18 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 6.66e−04 1.26 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 2.06e−04 1.69 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 4.12e−05 2.32 7.89e−06 2.00 1.26e−06 2.00 3.00

the optimal convergence by either setting the augmentation constants κ1 and κ2 independent of ν or by modifying
the velocity norm to

e∗

u := ∥u − uh∥L2(Ω) + ν∥∇u − ∇uh∥L2(Ω)

when κ1 = O(ν) or κ2 = O(ν). This is verified by the results reported in Table 6.4, where in the top part we
take κ1 = κ2 = 0.5 and in the bottom part we take κ1 = κ2 =

ν
2 . The first remedy indicates that the κ1 and κ2

augmentation terms may be explored to improve the robustness of the method for small viscosity values. We note
that while the choice of κ1 = 0.5 does not align with Remark 3.3, it is consistent with Remark 3.1 about the case

1 > ν.
As usual for grad–div type stabilizations, the divergence-free property of the approximate solutions is modulated

y the parameter κ2. This is exemplified in Table 6.5 where the effect of increasing κ2 is tested. We denote by
P0(div(uh)) the L2-projection of div(uh) into the space of piecewise constant functions. As the mesh is refined, the

∞
ℓ norm of the coefficient vector associated with P0(div(uh)) decreases down to 5.03e−11.
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Table 6.4
Example 1. Error history with respect to mesh refinement at T = 0.05, computed using the base-line parameters
p = 3.5, F = 10, α = 100, varying ν and using κ1 = κ2 = 0.5 (top), and κ1 = κ2 = ν/2 with a different velocity
norm (bottom).

DoF h eu rate eω rate ep rate avg_it

ν = 10−5

69 0.71 3.48e−02 * 3.71e−02 * 4.82e−03 * 3.00
213 0.35 9.67e−03 1.85 8.99e−03 2.04 1.51e−03 1.68 3.00
741 0.18 2.43e−03 1.99 2.09e−03 2.11 3.36e−04 2.17 3.00

2757 0.09 6.01e−04 2.01 5.10e−04 2.03 8.11e−05 2.05 3.00
10629 0.04 1.50e−04 2.00 1.27e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 3.76e−05 2.00 3.18e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 9.44e−06 1.99 8.01e−06 1.99 1.26e−06 2.00 3.00

ν = 10−4

69 0.71 3.48e−02 * 3.71e−02 * 4.82e−03 * 3.00
213 0.35 9.67e−03 1.85 8.99e−03 2.04 1.51e−03 1.68 3.00
741 0.18 2.43e−03 1.99 2.09e−03 2.11 3.36e−04 2.17 3.00

2757 0.09 6.01e−04 2.01 5.10e−04 2.03 8.11e−05 2.05 3.00
10629 0.04 1.50e−04 2.00 1.27e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 3.75e−05 2.00 3.18e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 9.42e−06 1.99 7.99e−06 1.99 1.26e−06 2.00 3.00

ν = 10−3

69 0.71 3.48e−02 * 3.71e−02 * 4.82e−03 * 3.00
213 0.35 9.67e−03 1.85 8.99e−03 2.04 1.51e−03 1.68 3.00
741 0.18 2.43e−03 1.99 2.09e−03 2.11 3.36e−04 2.17 3.00

2757 0.09 6.01e−04 2.01 5.10e−04 2.03 8.11e−05 2.05 3.00
10629 0.04 1.50e−04 2.00 1.27e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 3.75e−05 2.00 3.17e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 9.36e−06 2.00 7.92e−06 2.00 1.26e−06 2.00 3.00

DoF h e∗
u rate eω rate ep rate avg_it

ν = 10−5

69 0.71 1.87e−03 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 2.74e−04 2.77 8.98e−03 2.04 1.67e−03 2.45 3.00
741 0.18 5.51e−05 2.32 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.30e−05 2.09 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 3.23e−06 2.01 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 8.06e−07 2.00 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.96e−07 2.04 7.89e−06 2.00 1.26e−06 2.00 3.00

ν = 10−4

69 0.71 1.87e−03 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 2.74e−04 2.77 8.98e−03 2.04 1.67e−03 2.45 3.00
741 0.18 5.51e−05 2.32 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.29e−05 2.09 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 3.16e−06 2.03 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 7.38e−07 2.10 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 1.45e−07 2.35 7.89e−06 2.00 1.26e−06 2.00 3.00

ν = 10−3

69 0.71 1.87e−03 * 3.70e−02 * 9.13e−03 * 3.00
213 0.35 2.74e−04 2.77 8.98e−03 2.04 1.66e−03 2.45 3.00
741 0.18 5.47e−05 2.33 2.09e−03 2.11 3.44e−04 2.27 3.00

2757 0.09 1.24e−05 2.14 5.09e−04 2.03 8.13e−05 2.08 3.00
10629 0.04 2.68e−06 2.21 1.26e−04 2.01 2.01e−05 2.01 3.00
41733 0.02 4.54e−07 2.56 3.16e−05 2.00 5.02e−06 2.00 3.00

165381 0.01 7.80e−08 2.57 7.89e−06 2.00 1.26e−06 2.00 3.00
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c

Table 6.5
Example 1. Decay of div(uh ) (projected into the space of piecewise constants) with
respect to mesh refinement at T = 0.05, computed using the base-line parameters
p = 3.5, F = 10, α = 100, ν = 0.01, using κ1 = ν/2 and increasing κ2.

DoF h ∥P0(div(uh ))∥ℓ∞

κ2 = 0.005 κ2 = 1 κ2 = 100 κ2 = 50000

69 0.71 2.81e−03 3.47e−03 8.30e−04 2.00e−06
213 0.35 3.43e−03 8.91e−04 1.14e−04 2.64e−07
741 0.18 2.28e−03 1.40e−04 1.10e−05 2.44e−08

2757 0.09 1.13e−03 1.91e−05 1.57e−06 3.55e−09
10629 0.04 4.66e−04 2.50e−06 3.23e−07 8.50e−10
41733 0.02 1.34e−04 3.20e−07 8.44e−08 1.27e−10

165381 0.01 3.82e−05 9.01e−08 7.39e−09 5.03e−11

Table 6.6
Example 2. Error history with respect to mesh refinement in 3D, computed up to the final time T = 0.03 using
the parameters α = 100, ν = 0.01, F = 10, and p = 4 and with three different discretizations. In all cases we
take overall continuous and piecewise linear vorticity approximations.

DoF h eu rate eω rate ep rate avg_it

Taylor–Hood–Lagrange

484 0.87 4.81e−01 – 4.22e−01 – 7.81e−02 – 3.00
2688 0.43 1.32e−01 1.86 1.26e−01 1.74 1.30e−02 2.58 3.00

17656 0.22 3.98e−02 1.73 2.93e−02 2.11 2.45e−03 2.41 3.00
127464 0.11 1.19e−02 1.74 7.12e−03 2.04 5.39e−04 2.19 3.00
967624 0.05 2.85e−03 2.06 1.76e−03 2.01 1.32e−04 2.02 2.67

MINI Element–Lagrange

334 0.87 2.56e+00 – 5.32e−01 – 7.79e−02 – 2.67
2028 0.43 1.45e+00 0.82 1.67e−01 1.68 2.23e−02 1.52 3.00

14320 0.22 4.93e−01 1.56 4.94e−02 1.75 1.41e−02 1.19 3.00
108120 0.11 1.96e−01 1.33 1.66e−02 1.57 5.92e−03 1.25 3.00
841384 0.05 9.15e−02 1.10 5.60e−03 1.57 1.76e−03 1.61 3.67

Crouzeix–Raviart–Lagrange

490 0.87 7.64e−01 – 6.46e−01 – 7.52e−02 – 3.00
3352 0.43 4.05e−01 0.92 2.14e−01 1.59 3.07e−02 0.77 3.00

24844 0.22 2.15e−01 0.91 6.06e−02 1.82 1.74e−02 0.94 3.00
191380 0.11 1.04e−01 0.99 1.94e−02 1.64 8.94e−03 0.95 3.00

1502500 0.05 5.03e−01 0.99 7.43e−03 1.47 4.50e−03 0.96 3.67

Example 2: Verification of spatial convergence in 3D

We also test the implementation and the accuracy of the method in 3D. This constitutes Example 2, where we
onsider the exact solutions

u =

⎛⎝ t sin(πx) cos(πy) cos(π z)
−2t cos(πx) sin(πy) cos(π z)

t cos(πx) cos(πy) sin(π z)

⎞⎠ , p = t sin(πx) sin(πy) sin(π z),

and ω = curl(u), defined on the unit cube Ω = (0, 1)3, and now up to a time T = 0.03 and using a fixed time
step ∆t = 0.01. We also use different discretizations, but in all of them the discrete space Hω

h consists of overall
continuous piecewise linear elements. For this case we have used the parameters α = 100, ν = 0.01, F = 10, p = 4
and tabulate the results in Table 6.6, which indicate an optimal convergence.
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Table 6.7
Example 3. Error history with respect to time step refinement, computed up to the final time T = 1 using the
parameters α = 1, ν = 0.1, F = 1, and p = 4.

∆t Eu rate Eω rate E p rate avg_it

0.5 2.82e−02 – 2.80e−02 – 2.80e−02 – 3.00
0.25 1.35e−02 1.06 1.34e−02 1.06 1.35e−02 1.05 3.00
0.125 6.62e−03 1.03 6.57e−03 1.03 6.63e−03 1.03 3.00
0.0625 3.28e−03 1.02 3.25e−03 1.02 3.28e−03 1.02 3.00
0.0312 1.63e−03 1.01 1.62e−03 1.01 1.63e−03 1.01 3.00
0.0156 8.15e−04 1.00 8.05e−04 1.00 8.20e−04 0.99 3.00

Example 3: Verification of temporal convergence

To close the verification of convergence, we conduct a test to illustrate the convergence in time. The time interval
s subdivided, and instead of (6.1) we consider the following manufactured solutions

u =

(
sin(t)xy

− sin(t)( 1
2 y2

+ x)

)
, p = exp(−t)(x4

− y4),

and ω = curl(u). A fixed structured mesh of 40 elements per side is used to discretize the unit square, and the
parameters are α = 1, ν = 0.1, F = 1, and p = 4. The time interval (0, 1) is discretized into successively refined
segments and the convergence history is displayed in Table 6.7. There we show the errors in the ℓ2(0, T ; V ) norm
(cf. (5.2)), denoted as

Eu :=

( N∑
n=1

∆t∥u − un
h∥

2
H1(Ω)

)1/2

, Eω :=

( N∑
n=1

∆t∥ω − ωn
h∥

2
L2(Ω)

)1/2

, E p :=

( N∑
n=1

∆t∥p − pn
h∥

2
L2(Ω)

)1/2

,

and the corresponding rates of convergence are

r :=
log(E(·)/E ′

(·))

log(∆t/[∆t]′)
,

here ∆t and [∆t]′ denote two consecutive time steps with errors E(·) and E ′

(·), respectively. The expected linear
onvergence is observed for all fields. For this case it suffices to take κ2 = κ1 = 0.05 to achieve optimal convergence.

xample 4: Flow in fractured porous media

Next we focus on two problems of application relevance, where closed-form solutions are not available. We
onsider as computational domain a regularization of the upper-right quarter of the well-known five spot geometry
see, e.g., [34]), that is, Ω = (0, 1)2

\ (B0.05(0, 0) ∪ B0.05(1, 1)), where Br (xc) denotes the ball of radius r centered
t a given point xc

= (xc, yc). We generate a simple network of relatively large fractures and generate a relatively
oarse unstructured mesh made of 16954 triangles. The bottom left circle arc is an inlet section (or injection well)
in on which we impose a constantly increasing inflow velocity uin =

tx
4|x|

. On the walls we set no-slip velocity, and
on the outlet Γout (the producer well, located at the top-right circle arc) we prescribe a zero traction condition. For
this we use a condition on the pseudo-stress, as the formulation does not easily allow for exact stress reconstruction.
More precisely, we set σ̃n = 0 on Γout by imposing

⟨σ̃n, v⟩Γout = ⟨ω, v × n⟩Γout + ⟨p, v · n⟩Γout = 0.

For this example the external force is zero, the Forchheimer exponent is p = 3.2, the viscosity is ν = 0.0001,
the final time is T = 3 and the fixed time step is ∆t = 0.2. In order to illustrate the ability of the model to capture
the Stokes and Darcy regimes, the Forchheimer and Darcy coefficients are taken heterogeneous in the following
manner: On the bulk domain we use a normal random field η(x) between −0.1 and 0.1, and take case A

α(x) =

{
αmax(0.9 + η(x)) in the rock,

F(x) =

{
Fmax(0.9 + η(x)) in the rock,
αmin in the fractures, Fmin in the fractures,
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Fig. 6.2. Example 4. Samples at t = 3, of numerical solutions for the quarter five-spot filtration problem with embedded fractures. Velocity
agnitude (left) velocity line integral convolution (center left), vorticity (center right) and pressure (right) for fractures much less permeable

han rock (top row) and fractures much more permeable than rock (bottom).

nd case B as

α(x) =

{
αmin(0.9 + η(x)) in the rock,

αmax in the fractures,
F(x) =

{
Fmin(0.9 + η(x)) in the rock,

Fmax in the fractures.

That is, case A has fractures that are much less permeable than the rest of the domain while case B follows the
opposite arrangement. Here we have considered the constants Fmax = 5000, Fmin = 1, αmin = 0.1, αmax = 500.
Note that we do not impose any transmission conditions as the same set of equations is solved on both subdomains
defined simply by the discontinuous parameters indicated above. In Fig. 6.2 we show line convolution integrals
of velocity, pressure, and vorticity profiles at the final time for both permeability distributions. A steep pressure
gradient is observed near the injection wells in both cases. We also see from the different velocity and vorticity
patterns in case B, that the flow avoids the region with lowest permeability. Both cases required almost the same
average number of Newton–Raphson iterations (3.73 vs 3.86) to reach the prescribed tolerance of 10−7.

Example 5: Lid-driven heterogeneous cubic cavity

Finally, we conduct a simulation of the 3D lid-driven cavity flow within an inhomogeneous unit cube Ω = (0, 1)3.
On the top lid z = 1 we set the tangential velocity u = (1, 0, 0) whereas the remainder of the boundary has no-slip
conditions. The fluid inside the cavity is initially at rest. With this configuration, high pressure gradients are expected
to develop near the discontinuity of the Dirichlet data. We use a tetrahedral mesh of 82944 elements, a time step
of ∆t = 0.05 and run the test until T = 1. The velocity–pressure pair is approximated with the MINI element.
The body force is f = 0 and the model parameters are ν = 0.015, p = 4, α = {1 if x ≤ 0.5, or 100 otherwise},
nd F = {100 if x ≤ 0.5, or 1 otherwise}. The numerical results are represented in Fig. 6.3 showing velocity and
orticity streamlines. A large-scale recirculation influenced by the transfer of momentum from the top surface to
he rest of the fluid is observed, but the usually expected symmetric flow structure (when projecting the solution
nto the xz plane) is disrupted by the discontinuity of the Darcy and Forchheimer numbers across the mid-plane
x = 0.5.
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Fig. 6.3. Example 5. Samples of velocity streamlines (left), vorticity streamlines (center) and pressure distribution (right) at T = 1 for the
id-driven cavity test with discontinuous Darcy and Forchheimer coefficients.
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