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We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element
method for the coupled problem arising in the interaction between a free fluid and a poroelastic
medium. The flows in the free fluid and poroelastic regions are governed by the Navier—Stokes and
Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of
fluid force, conservation of momentum and the Beavers—Joseph—Saffman condition. We apply dual-mixed
formulations in both domains, where the symmetry of the Navier—Stokes and poroelastic stress tensors is
imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the
fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and
the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore,
since the fluid convective term requires the velocity to live in a smaller space than usual, we augment
the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are
established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation
with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of
convergence. Several numerical experiments are presented to verify the theoretical results and illustrate
the performance of the method for applications to arterial flow and flow through a filter.

Keywords: Navier-Stokes—Biot; poroelastic structure interaction; fully mixed formulation.

1. Introduction

The interaction between free fluid and flow in adjacent deformable poroelastic medium, referred to as
fluid—poroelastic structure interaction (FPSI), is motivated by a variety of applications, such as modeling
of blood flow, design of industrial filters and cleanup of groundwater flow in aquifers, to name a few.
The free fluid flow is typically modeled by the Stokes or the Navier—Stokes equations, with the Navier—
Stokes equations being more suitable for fast flows. The fluid flow within the poroelastic medium is
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modeled by the Biot system, which takes into account the effect of the deformation of the medium on
the flow and vice versa. The two regions are coupled across the interface through dynamic and kinematic
transmission conditions. The FPSI problem exhibits features of coupled Stokes—Darcy flows and fluid—
structure interaction.

One of the first works on the analysis of the Stokes—Biot problem is Showalter (2005), where the
coupled system is resolved by semigroup methods for a suitable variational formulation. Numerical
studies for the coupled Navier—Stokes and Biot system are presented in Badia et al. (2009), where both
monolithic solvers and heterogeneous domain decomposition strategies are considered. In Bukac et al.
(2015Db), a noniterative operator splitting scheme for a Navier—Stokes—Biot model with nonmixed Darcy
formulation is developed. The approach is extended in Bukac¢ (2016) to coupling between fluid, elastic
structure and poroelastic material. Mixed Darcy formulations, where the continuity of flux condition is
of essential type, are considered in Bukac er al. (2015a), using the Nitsche’s interior penalty method,
and in Ambartsumyan et al. (2018), using a Lagrange multiplier method. Well-posedness for the fully
dynamic Navier—Stokes—Biot system with a nonmixed Darcy formulation is established in Cesmelioglu
(2017). A nonlinear Stokes—Biot system for non-Newtonian fluids is analyzed in Ambartsumyan et al.
(2019a) by means of a reduced parabolic-type system for the pressure and stress in the poroelastic region
and classical results on nonlinear monotone operators in Sobolev space setting. A numerical scheme for
the Stokes—Biot model with inf-sup stable Stokes elements for the Biot displacement—pressure pair is
developed in Cesmelioglu & Chidyagwai (2020). A Stokes—Biot model with a total pressure formulation
is studied in Ruiz-Baier et al. (2022). Well-posedness for a Stokes—Biot system with a multilayered
porous medium using Rothe’s method is obtained in Bociu ez al. (2021). A Lagrange multiplier method
for a fully dynamic Navier—Stokes—Biot system with a mixed Darcy formulation is developed in (Wang
& Yotov, Preprint). Additional works include optimization-based decoupling method (Cesmelioglu er
al., 2016), a second order in time split scheme (Kunwar et al., 2020), dimensionally reduced model for
flow through fractures (Bukac et al., 2017), coupling with transport (Ambartsumyan et al., 2019b) and
porohyperelastic media (Seboldt et al., 2021). All of the above-mentioned works utilize displacement
formulations for the elasticity equation. In a recent work (Li & Yotov, 2022), the first mathematical
and numerical analysis of a stress—displacement mixed elasticity formulation for the Stokes—Biot model
is presented. More recently, a fully mixed formulation of the quasistatic Stokes—Biot model based on
dual mixed formulations for Darcy, elasticity and Stokes is developed in Caucao et al. (2022). The
resulting three-field dual mixed Stokes formulation and five-field dual mixed Biot formulation lead
to the development of a multipoint stress—flux mixed finite element method that can be reduced to a
positive definite cell-centered pressure—velocities—traces system. This approach is extended numerically
to the Navier—Stokes—Biot system in Caucao et al. (2020).

In this paper, we consider the quasistatic Navier—Stokes—Biot model. The model is better suitable
than the Stokes—Biot model for fast flows that may occur in many applications, including blood
flow, flows through industrial filters and coupling of surface and subsurface flows. The problem is
much harder from mathematical point of view, due to the nonlinear convective term in the Navier—
Stokes equations. Only two of the above mentioned works, Cesmelioglu (2017) and (Wang & Yotov,
Preprint), deal with the analysis of the weak formulation or the numerical approximation of the
Navier—Stokes—Biot model. Both consider the fully dynamic problem and utilize a velocity—pressure
Navier—Stokes formulation and a displacement-based elasticity formulation. In this paper, we combine
techniques developed in Camano et al. (2017, 2018), Caucao et al. (2022) and Li & Yotov (2022)
to study a fully mixed formulation of the quasistatic Navier—Stokes—Biot model, which is based on
dual mixed formulations for all three components—Navier—Stokes, Darcy and elasticity. To deal with
the nonlinearity, we consider a pseudostress-based formulation for the Navier—Stokes equations. Such
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formulations allow for a unified analysis for Newtonian and non-Newtonian flows (Camafio et al., 2016;
Caucao et al., 2017). Here, similarly to Camaiio et al. (2017), we introduce a nonlinear pseudostress
tensor combining the fluid stress tensor with the convective term. Together with the fluid velocity, it
yields a pseudostress—velocity Navier—Stokes formulation. Furthermore, in order to control the fluid
variables in their natural norms, i.e., the norms associated with the differential operators in the strong
form of the equations, and avoid the need for inf-sup stable finite elements, we augment the mixed
formulation with some redundant Galerkin-type terms arising from the equilibrium and constitutive
equations. In particular, the fluid stress is in H(div) and the fluid velocity is in H!, resulting in smooth
and accurate finite element approximations of both variables. We further note that the computational
overhead due to adding the stabilization terms is minimal, since they do not involve additional variables.
For the Biot system, we employ a five-field dual mixed formulation based on the model developed in
Lee (2016), and studied in Caucao et al. (2022) and Li & Yotov (2022) for the Stokes—Biot model. In
particular, we use a velocity—pressure Darcy formulation and a weakly symmetric stress—displacement—
rotation elasticity formulation. While we focus on weakly symmetric elasticity, which in certain cases
allows for stress and rotation elimination and a reduction to an efficient cell-centered displacement
system (Ambartsumyan et al., 2020a,b; Caucao et al., 2022), our methodology also applies to the
strongly symmetric stress—displacement elasticity formulation and the resulting four-field mixed Biot
formulation (Yi, 2014). In turn, the transmission conditions consisting of mass conservation, balance
of fluid force, conservation of momentum and the Beavers—Joseph—Saffman slip with friction condition
are imposed weakly through the introduction of two Lagrange multipliers: the traces of the structure
velocity and the Darcy pressure on the interface. The advantages of the resulting fully mixed formulation
for the Navier—Stokes—Biot model include local mass conservation for the Darcy fluid, local momentum
conservation for the poroelastic stress, accurate approximations for the Darcy velocity, the poroelastic
stress and the fluid pseudostress with continuous normal components across element edges or faces,
locking-free behavior and robustness with respect to the physical parameters. We emphasize that
accurate and locally conservative stress computations are important in many applications, including
flows in fractured subsurface formations and blood flow, which is one of the numerical examples we
present in Section 6.

The main contributions of this paper are as follows. Since the proposed augmented fully mixed
formulation is new, we first study its well-posedness. Because the model is quasistatic, it is not possible
to utilize the theory of ordinary differential equations for the semidiscrete Galerkin approximation,
in contrast to Cesmelioglu (2017) and (Wang & Yotov, Preprint) where the fully dynamic problem is
considered. Instead, we rewrite the system as a parabolic problem for the poroelastic stress and Darcy
pressure and employ the classical semigroup theory for differential equations with monotone operators
(Showalter, 1997), combined with a fixed point approach for the solvability of the resolvent system.
We then present a semidiscrete continuous-in-time formulation based on employing stable mixed finite
element spaces for the Navier—Stokes, Darcy and elasticity equations with possibly nonmatching grids
along the interface, together with suitable choices for the Lagrange multiplier finite element spaces.
Well-posedness and stability analysis results are established using a similar argument to the continuous
case. We then develop error analysis and establish rates of convergence for all variables. We further
present a fully discrete finite element method based on the backward Euler time discretization and give
a roadmap for its analysis. Finally, we present several numerical experiments to verify the theoretical
rates of convergence and illustrate the behavior of the method for modeling blood flow in an arterial
bifurcation as well as air flow through a filter.

The rest of the paper is organized as follows. The remainder of this section describes standard
notation and functional spaces to be employed throughout the paper. In Section 2, we introduce the
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mathematical model, whereas in Section 3, we derive the continuous weak formulation and establish
some stability properties for the associated operators. Section 4 is devoted to the well-posedness
of the continuous weak formulation, where, a suitable fixed point approach is applied to establish
existence, uniqueness and stability of the solution. The semidiscrete continuous-in-time approximation
is introduced and analyzed in Section 5, including its well-posedness, stability and error analysis. The
fully discrete scheme is presented at the end of the section. Numerical experiments are presented in
Section 6, followed by conclusions in Section 7.

We end this section by introducing some definitions and fixing some notation. Let M, S and N denote
the sets of n x n matrices, n X n symmetric matrices and n x n skew-symmetric matrices, respectively.
For a bounded domain O C R”, n € {2,3}, standard notation is adopted for Lebesgue spaces L7 (0O),
Hilbert spaces H*(©) and Sobolev spaces WX (0). By Z and Z, we denote the corresponding vectorial
and tensorial counterparts of a generic scalar functional space Z. The L?(0) inner product for scalar,
vector or tensor valued functions is denoted by (-, -) ». For a section of the boundary I, the L%(I") inner
product or duality pairing is denoted by (-, -) . For a Banach space V, we denote its dual space by V'.
For an operator A : V — U, its adjoint operator is denoted by A’ : U — V'. For any vector fields
V=)= nandw=w;);_ ,, wesetthe gradient, symmetric part of the gradient, divergence and
tensor product operators, as

av; 1 ) "o,
Vv = (a—’) . e(v) = E(VV +(VW)Y),  divy) =D 8_x; and VO W := (W), iz1
ij=1,....,n j=1

)

,.» we define the transpose, the

..........

trace, the tensor inner product and the deviatoric tensor, respectively, as

n n
1
= (Tji)i,j=1,...,n’ tr(t) := Zrﬁ, T:¢:= Z 7;i8ij and td:=7— ;tr(r)l, (1.1)
i=1 ij=1

where I is the identity matrix in R"*”. In addition, we recall the Hilbert space

H(div: 0) := {v cL20): div(y) e Lz((’))},

equipped with the norm ||v||%1( div:0) = ||V||i2 ) + ||div(v) ”12} ©)° The space of matrix valued functions

whose rows belong to H(div; O) is denoted by H(div; O) and endowed with the norm ||t ||]%I(div,o) =

11242((9) + ||div(1')||i2 ) Finally, given a separable Banach space V endowed with the norm || -

Iy, we introduce the Bochner spaces L2(0, T;V), H*(0,T; V), with integer s > 1, L*°(0,7;V) and
W12 (0, T; V), endowed with the norms

Izl

T T §
120720y = /0 FOIR e 1 oy = /0 D oI de,
i=0

”f”LOO(o,T;V) = esssup [fDlly» Hf”wl,oo(oj;v) = ess sup{|[f(t)||V + ||3;f(t)||v}
t€[0,7T] te[0,T]
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AN AUGMENTED FULLY MIXED FORMULATION 5

2. The model problem

Let 2 C R", n € {2,3} be a Lipschitz domain with polytopal boundary, which is subdivided into two
nonoverlapping and possibly nonconnected regions: a fluid region £2; and a poroelastic region §2,,. Let

= 082, N 982, denote the (nonempty) interface between these regions and let Iy = 982, \ I';, and
I, = 082, \ I';, denote the external parts of the boundary 9£2. We denote by n; and n,, the unit normal
vectors, which point outward from 8.Qf and B.QP, respectively, noting that n; = —n,on Ffp. Let (u,,p,)
be the velocity—pressure pair in £2, with x € {f, p}, and let 5,, be the displacement in £2,,. Let u > 0 be
the fluid viscosity, let p be the density, let f, be the body force terms, which do not depend on time, and
let g, be external source or sink term. The flow in §2; is governed by the Navier—Stokes equations:

0 (Vuf) u — div(af) = f}c div(uf) =0 in .Qf x (0,T], (2.1a)
0, —p@u)n=0 on I} x(0,T], u=0 on I x0TI, (2.1b)
where o = —py I+2u e(uy) denotes the stress tensor and [, = = F Nur, fD While the standard Navier—

Stokes equations are presented above to describe the behavior of the fluid in §2¢, in this work, we make
use of an equivalent version of (2.1) based on the introduction of a pseudostress tensor combining the
stress tensor o, with the convective term. More precisely, analogously to Camaiio ez al. (2016, 2017,
2018); Caucao et al. (2017); and Gatica et al. (2020), we introduce the nonlinear-pseudostress tensor

In this way, applying the matrix trace to the tensor T, and utilizing the incompressibility condition
diV(uf) =0in .Qf x (0, T], one arrives at

1
pp=— (tr(Tf) + ptr(uy ®uf)) in 2% (0,71, 2.3)

Hence, replacing back (2.3) into (2.2), and using the definition of the deviatoric operator (1.1), we obtain
Tf =2pe(uy) —p W ® uf)d Therefore, (2.1) can be rewritten, equivalently, as the set of equations
with unknowns T, and u;, given by

p : :
3 U=y v - e u)l, —div(T) =f;, T,=T; in 2,x(0,T], (24a)

T, =0 on I} x(0,T], u=0 on I x(0,T], (2.4b)

1
where y(uy) := 3 (Vuf - (Vuf)t) is the vorticity (or the skew-symmetric part of the velocity gradient

tensor Vuy). Notice that, as suggested by (2.3), p; is eliminated from the present formulation and
can be computed afterwards in terms of Tf and uy. In addition, the fluid stress o can be recovered

from (2.2). For simplicity, we assume that |FfN| > 0, which will allow us to control Tf by T}i, cf.

(3.26). The case |FfN| = 0 can be handled as in Gatica et al. (2011, 2014, 2020) by introducing an
additional variable corresponding to the mean value of tr(T;). We further note that it is also possible to

consider the boundary condition o'/n, = 0 on FfN, leading to the Robin-type boundary condition Tn,+
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6 T. LI ET AL.

p (U @uen, = Oon I fN. In this case the space for T is unrestricted on FfN and the third and fourth
terms in (3.6b) below become <Tfnf, Vf> e <uf ngug - Vf> Which can be handled in the

same way. In addition, the control of T, by T can be achieved 51m11arly to the case |FN| =0.
In turn, let o, and o/, be the elastic and poroelastlc stress tensors, respectively: g

A(o,) :e(np) and o, ;= 0, —«

) e —,p, I in £2,x(0.T], 2.5)

where 0 < o, < 1 is the Biot—Willis constant, and A : S — M is the symmetric and positive definite

compliance tensor, satisfying, for some 0 < a,;, < dpp. < 00,

VT e R, auT:T SA[@) T < Gy 7:T VYXER, (2.6)

In the isotropic case A has the form, for all symmetric tensors t,

1 A
A(T) = - P w()I), with A"'(z)=2 A, tr() 1, 2.7
(1) 2Mp (r 2,up+n)»p 1(T) ) wi (1) My T+ A, 1(T) 2.7

where 0 < Ay < A,(X) < Ay and 0 < ppiy < 1, (X) <y are the Lamé parameters. In this

case, 0, = A, div(p,) I+ 2pn,em,), api, = m and a,,, = T As in Lee (2016), we

extend the definition of A on M such that it is a positive constant multiple of the identity map on N. The
poroelasticity region £2,, is governed by the quasistatic Biot system (Biot, 1941):

. N -1 _ ;
— le(Gp) =f, uK u,+Vp,= 0 in .Qp x (0,T], (2.8a)
3 . . .
= (s0p, + o, div(n,)) +divi,) =g, in 2, x .7, (2.8b)
w,-n,=0 on I)x (0Tl p,=0 on I, x0TI, (2.8¢)
_ ~N _ ~D
o,n, = 0 on I, x (0,71, n, = 0 on I,y x (0,71, (2.8d)

where I, = FN U FD FpN u FD 5o > 01is a constant storage coefficient and K the symmetric and
umformly pos1t1ve deflmte rock permeablllty tensor, satisfying, for some constants 0 < k_;;, < k...

YweR" kpy,w-w<(Kw -w<k, w-w Vxe,. (2.9)

We consider a range 0 < 5o in < 8o < Somax fOr the storage coefficient. Since locking in poroelasticity
may occur for small values of s, in the analysis, we explicitly track the dependence of the constants on
50.min and note that they may depend on s, ... To avoid the issue with restricting the mean value of the
pressure, we assume that |FpD| > (. We also assume that FPD and pr are not adjacent to the interface
Ffp, i.e., 35 > 0 such that dist (FPD, Ffp) > s > 0 and dist (I:I,D, Ffp) > s > 0. This assumption is used
to simplify the characterization of the normal trace spaces on I7,.
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AN AUGMENTED FULLY MIXED FORMULATION 7
Next, we introduce the transmission conditions on the interface Ffp:

an
uf~nf+(a—p+up)-np=0, om+o,m,=0 on I} x(0,T], (2.10a)

ofnf—l—pLaBJSZ,/ ((uf ) th) t;=—pn; on I} x(0.T], (2.10b)

where t;;, 1 <j <n — 1, is an orthogonal system of unit tangent vectors on I';, K; = (Kt; ) - t;;, and
apsg > 0 is an experimentally determined friction coefficient. The equations 1n (2.10a) correspond
to mass conservation and conservation of momentum on I, respectively, whereas (2.10b) can be
decomposed into its normal and tangential components, as follows:

an
fie—1
(o) -mp=—p,, (o)t = —pagsg Kj (uf - B_tp) te; on I x (0,71,

representing balance of force and the Beavers—Joseph—Saffman (BJS) slip with friction condition,
respectively. The second equation in (2.10a) and (2.10b) can be rewritten in terms of tensor Tf as
follows:

Ty + p(uy @upn, +o,n, =0 on I} x (0,71, (2.11a)

n—1
- an,
Tfnf+p(uf®uf)nf+w3,5Z,/Kj1((uf a;) th)th —p,n; on I, x (0,T]. (2.11b)
j=1

Finally, the above system of equations is complemented by the initial condition p,(x,0) = p, ;(X)
in £2,. In Lemma 4.11 below, we will construct compatible initial data for the rest of the variables from
Ppo In a way that all equations in the system (2.4)—(2.11), except for the unsteady conservation of mass
equation in (2.8b), hold at t = 0.

3. The weak formulation

In this section, we proceed analogously to Ambartsumyan et al. (2019a, Section 3) (see also Gatica et
al., 2014; Caucao et al., 2017) and derive a weak formulation of the coupled problem given by (2.4),
(2.8), (2.10) and (2.11).

3.1 Preliminaries

We first introduce further notation and definitions. Given » € {f,p}, we set
Pwg, :=/ pw, (@Vv)go :=/ u-v and (T.R)g, :=/ T:R.

In addition, similarly to Camaifio ef al. (2016); Caucao et al. (2017), in the sequel, we will employ the
following Hilbert spaces to deal with the nonlinear pseudostress tensor and velocity of the Navier—Stokes
equation, respectively:

X, = {RfeH(div;.Qf): R, =0 on 1}N}, V, = {vfeHl(.Qf): v,=0 on 1}D},
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8 T. LI ET AL.

endowed with the corresponding norms
||Rf||xf = ”Rf”H(div;Qf)’ ”Vf”Vf = [Vl ©p-
For the unknowns in the Biot region, we introduce the following Hilbert spaces:

R . . _ N 12
X, = {rp € H(div; 2,) : 7,n, =0 on I } V, = LA(£2,),

Q, = {x,, eL*(2,): xp=— x,,},
._ . . _ N 12
vV = {Vp € H(le,.Qp) DV, = 0 on Fp }, Wp =L (.Qp),

p p

endowed with the standard norms

17l = 1Tyl 1Vslv, = IVslliag,) 10, = 1,2,
1,0y, = ¥, i, Wyl = 1w,llzg,)-

1 1 P / P /

Finally, we need to introduce the spaces of traces Ap = (Vp . npl 1}?) and A, = (Xp np| Ff,,) .

According to the normal trace theorem, since v, € Vp C H(div; Qp), then Vv, n, € H~/ 2(G.QP).

It is shown in Galvis & Sarkis (2007) that, if v, -m, = 0 on 9 £, \ I}, then v, - m, € H™/3(I}).
This argument has been modified in Ambartsumyan ez al. (2018) for the case v, - m,, = 0 on FPN and
dist (FpD, Ffp) > s > 0. In particular, it holds that

(v,, : n,,,s>% < CIV,lnwive) 1€l2,) YV, €V, § € HYA(T,). 3.1)

Similarly,

(1,1,.0) 5, < Cllt @iy 19 luir i, Y1, € X, ¢ e HA(T,). (32)

Therefore, we can take

A, =H"X(I}) and A, :=H"*(I}) (3.3)
endowed with the norms [|§ 114 := 1€ llyy1/2(,) and 9l 4, = IDllg12 (-

3.2 Lagrange multiplier weak formulation

‘We now proceed with the derivation of the Lagrange multiplier weak formulation for the coupling of the
Navier—Stokes and Biot problems. To this end, and inspired by Ambartsumyan et al. (2019a), we begin
by introducing the structure velocity u, := 9,9, € V; and two Lagrange multipliers that represent the
traces of the structure velocity and the Darcy pressure on the interface, respectively:

0 :=up €Ay and X:=p,l €4,

where we use the notation 9, := % In order to impose the symmetry of o, in a weak sense, we introduce

the rotation operator p p 1= %(V n, — (Vny p)t). In the weak formulation, we will use its time derivative,
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AN AUGMENTED FULLY MIXED FORMULATION 9

that is, the structure rotation velocity
1
Yy i=0p, = E(Vus - (Vuy)') € Q,.

From the definition of the elastic and poroelastic stress tensors o, & » (cf. (2.5)) and recalling that o, is
connected to the displacement » through the relation A(o,) = e(y p), we deduce the identities

div(n,) = t(e(n,) = tr(A(0,)) = tr(A(o, +a,p, D), (3.4)
and atA(ap +a,p, D =Vu, - Yp 3.5)

Then we test the first equation in (2.4a), the second equation of (2.8a) and (3.5) with arbitrary Rf € Xf,
v, € V,and 7, € X, respectively, integrate by parts and utilize the fact that TJ‘E Ry = T]? : R}i.
We further test (2.8b) with w, € W, employing (3.4) and impose the remaining equations weakly, as

well as the symmetry of o, and the transmission conditions in the first equation of (2.10a) and (2.11) to

obtain the following varlatlonal problem. Given ff € LZ(SZJ) f e L2(Q ) and qp : [0,T] — L2(.Q ),

fmd(T U, 0,,u,Y,, p,pp,)» 0):[0,T] — Xf fo XX ><V X Q xV ><W X A x A such

thatforallRf eXf,vf € Vf,r € X , Vg eVS,xp eQ ,V eV Wy, EW 5 € A , P e A andfor

ae.te (0,7),

I 4 od . p d
3 (TR, + (W, divR)) g, + (7). Ry, — <anf,uf>rfp + 5, (W @' Rg =0,
(3.6a)
— iV g, — (T ¥, + (T vy) 4 p (0 np g - vy)
’ 1% 1%

+ wags Z<F (uf o) ST th>F + <vf : nf,k>1}p = @) 0, (3.6b)
/4

A, +,p,D.7,) 0, + . diV(T, g, + 7,: ), = (7,1,6) L =0 660

— (v div(e,)) o = (f,.v)q (3.6d)

= (0, Xp)0, =0 (3.6e)

K0,V g, = (e AV, + (Y, -np,x>% =0, (3.6

80 (0:ps Wy, + (A0, +a,p,D,a,w, Do + (w,,divw,)) o = (g, W), (3.6g)
— <uf ‘ny+ (0 + up) g} N (3.6h)

<a,,n,,, > MaBJSZ<F(uf 0)'th’¢'th>pﬁ,+<¢'n”"\>rfp:O' (3.6i)

Note that (3.6a)—(3.6b) correspond to the Navier—Stokes equations, (3.6¢)—(3.6¢e) are the elasticity
equations and (3.6f)—(3.6g) are the Darcy equations, whereas (3.6h)—(3.61), together with the interface
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10 T.LIET AL.

terms in (3.6b), enforce weakly the interface conditions. We will discuss the construction of initial
conditions for the problem (3.6) later on in Lemma 4.11.

REMARK 3.1 The time differentiated equation (3.6¢) allows us to eliminate the displacement variable 7,
and obtain a formulation that uses only u,. As part of the analysis we will construct suitable initial data
such that, by integrating (3.6¢) in time, we can recover the original equation

Ao, +ap,D,t,)o +,,div(z,) o +(p,, 7))o, — (T,0,,¥), (3.7)

where ¥ = np|1~fp.

We observe that, similarly to Alvarez et al. (2019, eq. (3.5)) (see also Gatica et al., 2020, for an
alternative approach) and since {yf(vf) TS Hl(.Qf)} is a proper-subspace of the skew-symmetric
tensor space, the term (Ty, yf(vf)) 2 in (3.6b) imposes the symmetry of Tf in an ultra-weak sense.

Notice also that the terms ((uf ® uf)d, Rf) o in (3.6a) and (uf ‘N ug - Vf> oy in (3.6b) require u; to live
in a smaller space than L2(.Qf). In fact, by applying the Cauchy—Schwarz and Hélder inequalities, the
continuous injections i, of H' (.Qf) into L4(.Qf) and i, of H'/ 2(8.Qf) into L4(8.Qf) and the continuous
trace operator y,, : H' (£2/) — LD .Qf), there hold

(@ ® W) R g | = il 1l gy 10 N gy IR D2 (338)
and

[owp - mgu v L= IR 1w i g 1l () IV T (3.9)
for all Uy, Vi, Wy € H! (.Qf) and Rf € ]Lz(.Qf). Accordingly, we look for uy in Vf. We also have
|(Ryny, vf>rfp} < ClRyllgaivszp 1Vl o) YRy € Xy v € Ve (3.10)

In the case of FN adjacent to Ffp, (3.10) follows similarly to (3.2). In the case of FD adjacent to Fﬂ,,, it

follows from (anf Vr) oy = (Ryng, Vf) a2 where v Vp € e HY 2(8S2f) is the extensmn by zero of v| e
In addition, it holds that

[Vt -t | < ol Vel o) 102, Y Vr € Vi @ € A (.11
|<Vf : nf‘,s)rfp| = ”y()””Vf”H'(Qf)”é”Lz(Ffp) VVf € Vf» IS Ap- (3.12)

Finally, in order to obtain control on Tf in the H(div; £2;)-norm and on u; in the H! (£2¢)-norm, we
augment the system with the following redundant Galerkin-type terms:

Ky (div(Tf) + ff, div(Rf))_Qf =0 VR, e Xf, (3.13a)
W) — 2 (u, ® )d—de v)) =0 Vv,eV (3.13b)
Ky € Uf 2# Uf Uf 2# f,e Vf o = Vf € o .
f

where k| and k, are positive parameters to be specified later. Notice that the above terms are consistent
expressions arising from the equilibrium and constitutive equations. It is easy to see that each solution
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AN AUGMENTED FULLY MIXED FORMULATION 11

of the original system is also a solution of the augmented one, and hence by solving the latter we find
all solutions of the former. We emphasize that without the augmented terms, it is not possible to control
Tf in the H(div; §2¢)-norm and uy in the Hl(.Qf)—norm, so they are needed to obtain a well-posed
formulation with the current choice of functional spaces.

There are many different ways of ordering the equations in (3.6). For the sake of the subsequent
analysis, we proceed as in Ambartsumyan et al. (2019a) and Gatica et al. (2020), and adopt one leading
to an evolution problem in a mixed form, by grouping the spaces, unknowns and test functions as
follows:

Q:=X,xW, xV, xX; x Ve x A, S:=A4,xV;xQ,
p = (ap9pp9 up7 vauf50) € Q9 ri= ()‘" up )’p) € S»
q:= (Tp,Wp,Vp,Rf,Vf,¢) GQ’ S = (E?VX’XP) GS’
where the spaces Q and S are respectively endowed with the norms
lalg = T 0%, + Iw, Iy, + 19,115, + IRAIZ, + 115, + 16115,
IsI§ = 1§15, + IV, lI%, + X, 13,

Furthermore, given W € Vf, we set the bilinear forms
ae(ap,pp; rp,wp) = (A(ap + apppl), T,+ ozpwpI)Qp, ap(up,vp) = (K_lup,vp)gp, (3.14a)
1 . .
ar(Tp,up Ry, vy) 1= M (T{,R?) o+ (div(Ty), div(Ry)) o, +k; (e(uy), e(vy)) o,

— 5 (Thewp) , + @ divR))g — (v div(T)g,

2p
+ @) Rp) g, — (T ¥, (V) g, + <Tfnf’vf>pjp - <anf’uf> 5’ (3.14b)
0
Ky (Tf, U; Rf, Vf) = m((uf Q Wf)d, Rf — K e(Vf))Qf +p <Wf ‘D, We - Yf>[}"p’ (3.14¢)
bay (7o $) 1= (10 8) o by 7)) = (T (3.14d)
o
b,(w,,v,) == — (wp,div(vp))gp, by(vs,7,) 1= (Vs,div(rp))gp, (3.14¢)
and the interface terms
n—1
s (U, 03V, @) = pagys D <\/K,‘1(uf —0) 4, (=)t J>F : (3.15)
j=1 o
br (Vs ¥y $:8) = (v -1y + @ +V,) - myu6) (3.15b)
i
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12 T.LIET AL.

Hence, the Lagrange variational formulation for the system (3.6) and (3.13) results in
$0(0Pps Wp) g, +ae(3,0,,0,Py3 Ty W) + a, (W, V) + ap (T up Ry, Vi) + ey (T ups Ry, vy)
+ apgs (U, 0:V5,0) +b,(p). v,) = b,(wp,w) + by, (0,,8) — by, (T,,0)
+ by T,) + by (7). T,) +brV, VLB A) = (g w))g, + BV, — ky divR) g
— by(vy,0,) = by (X,,0,) —br(u,,u.,0:8) = (£,v)g . (3.16)
We can write (3.16) in an operator notation as a degenerate evolution problem in a mixed form:
L E@O) + A+ Ky ()00) + B E(0) = @) inQ,
-Bp@®) = G ¥,

(3.17)

where, given w, € Vy, the operators £ : Q — Q. A:Q—-Q, Kw, : Q— Q. B:Q — S and the
functionals F € Q', G € S’ are defined as follows:

E@@ = 39y W), + (0023 Ty ), (3.18a)

A(p)(q) = ap(up’ Vp) + af(va uf9Rf7vf) + aBJS(uf70;Vf’ ¢)

+b,(pp V) = b, (W, w,) + by (0,,8) — by (7,0, (3.18b)

Ky (D)@ = sy, (T 05 Ry, vp), (3.18¢)

B@)(S) = by(ves 7)) + by (X T,) + b (v, ¥y, $:6), (3.18d)
F(@) = (g, W), + (B v — iy divRY) g, (3.18¢)
G(s) = (£, V) g (3.180)

3.3 Stability properties
Let us now discuss the continuity properties of the operators and functionals in (3.18).
LEMMA 3.2 The operators &, A and B are linear and continuous:

E@@| < Celpllglallg:  [A®@]| < C4llpliglaly. |B@®)| < Cslialglisls. (3.19)

where the constant C¢ > 0 depends on sy, &, and a,,,, whereas C 4 and Cp are positive constants
depending on u, K, p, ap g, k1 and k,. The operator K, , 18 linear and continuous:

Ky, @] = Cic Wy, Ipllgllallo: (3.20)

where

14+, . .
Cii=p (Tﬂmuz + ||1p||2||y0||). (3.21)
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AN AUGMENTED FULLY MIXED FORMULATION 13

The linear functionals F € Q' and G € S’ are continuous:

[F@| < Crldllg, [G®)| < Cglisllss (3.22)

1/2
with Cp = (Ilq,,llizmp) + 1+ Kf)llfflliz(gf)) and Cg = IIf,ll 2, -
Proof. We first note that
”e(vf)”L2(Qf) = ”Vf”Vf and ||}’f(Vf)||]L2(Qf) = ”Vf”Vf Vv, e Hl(Qf)- (3.23)
We recall that the operators and functionals are defined in (3.18), with the associated bilinear forms
defined in (3.14) and (3.15). The continuity of £ follows from (2.6). The continuity of A follows

from (2.9), (3.23), (3.10), (3.11) and (3.2). The continuity of B follows from (3.12) and (3.1). For the
continuity of KCy, , for a given W € Vf, using (3.8)—(3.9) and (3.23), we deduce that

Ky, @] < Cic IWglly, lluglly, R, v | < Cie Wz lly, Ipliglallg-
with Cy defined in (3.21), where
IRy VI = IR, + VIS,

Finally, the continuity of F and G (3.22) follows easily from their definitions. (]

In the sequel, we make use of the Korn inequality: there exists a positive constant Cg,, such that
Co IV/II, = 1€z, Y Vp € Vy, (3.24)

as well as the following well-known estimates: there exist positive constants ¢ (£2¢) and ¢, (82¢), such
that (see, Brezzi & Fortin, 1991, Proposition IV.3.1, and Gatica, 2014, Lemma 2.5, respectively)

c1(82) ||Rf,0||§42(9/) < ||R]‘3||i2(9[) + [div(R)II7 @ YR =Ry +leHdiv2) (325
and

2 (2) IRgI%, < IRpol%, YRy =Ry +eleX, (3.26)

where Rf,o € H(div; .Qf) = {Rf € H(div; .Qf) : (tr(Rf), I)Qf = O} and ¢ € R. We emphasize that

(3.26) holds since each Rf € Xf satisfies the boundary condition anf =0on FfN with |I}N| > 0.
Next, we present a lemma that establishes positivity bounds for the operators A + K, . and &. For
any r > 0, let W, be the closed ball defined by

W, = {wf eVit lwly, < r}. (3.27)
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14 T.LIET AL.

LEMMA 3.3 Assume that «; € (0, +00) and k, € (0,4u), and let Wy € W, with r € (0,ry) and
(X ,
ro = -1, (3.28)
2Cx

where Cy is defined in (3.21) and o is defined in (3.31) below. Then, £ and A + K, , are monotone.
Moreover, there exists a constant & 4 > 0 depending on 1, K, a5, Ck,, €1 (82¢) and ¢, (§2;), such that

E@@ = sollw, iz ) + 142, + o, w, D2, YaeQ, (3.29)

and
A+ K )@@ = i (190720, ) + IR DI+ 1y = dl255)  YaeQ (3.30)

Proof. First, (3.29) follows in a straightforward way from the definition of the operator £ (cf. (3.18a),
(3.14a)). In addition, using (3.29) and the fact that £ is linear, the monotonicity property is obtained. In
turn, from the definition of a; (cf. (3.14b)), using Young’s inequality and (3.23), and simple algebraic
computations, we find that

) 2 2

) 1 d . Ko 2
af(Rf,Vf,Rf, Vf) = m (1 - E) ”Rf”Lz(Qf) + K ||d1V(Rf)||L2(Q/) + ? ”e(vf)”]l,z(:?f)

for all (Ry,vy) € Xf x V. Then, assuming the stipulated ranges on « and «,, and applying inequalities
(3.25) and (3.26), we can define the positive constants

. 1 K2 K] . K] . K2
Q) = min 2 1 - )20 oy 1= ¢,(£2;) min {cl(.Qf) a, 7}, o 1= min {al, > CKO},
(3.31)
which, together with the Korn inequality (3.24), allows us to conclude
K
ar Ry, Vi Ry V) = @ IR¢IE, + T Co VIR, = oy IRy, v I (3.32)

Next, combining (3.32) with (3.20) and the assumption ||Wf||Vf < r, withr € (0, ry) defined by (3.28),
we deduce that

(07
a Ry Vpi Ry V) + iy, R ViR V) 2 (o = Cic Iyl ) IRvIP 2 2 IRy v I (3.33)

Finally, from the definition of the bilinear forms a, and ag ;¢ (cf. (3.14a), (3.15a)), the estimate (2.9)
and simple computations, we obtain

2

12(2,) and

—1
>
a,(V,,V,) = ke IV,

n—1
aBJs(Vf’¢;Vf’ @) = nogg z<\/ Kfl (Vf —¢)- te s (v — é) - th>F Z Cpgs |Vf - ¢|213Js,
j=1 7

P

(3.34)
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AN AUGMENTED FULLY MIXED FORMULATION 15

where, |Vf — ¢|%JS = Zj’.’;ll ”(Vf —¢)- th||i2(1}p) for all (Vf, ¢) € Vf x Ag, and cg g is a positive
constant that only depends on (, ap ;5 and K. The monotonicity of A + K, and (3.30) follow from the
fact that the forms ay, ky, , @, and ag;g are linear, and the estimates (3.33) and (3.34). O

REMARK 3.4 In the computations, we choose a value of «, in the middle of its admissible range (0, 4):
k, = 2u, which results in all constants defined in (3.31) being bounded strictly away from zero. We
further set k; = ﬁ, which maximizes o and gives o] = O(ﬁ), providing strong control on ||Tf||X : in
the regime of small viscosity.

Next, we provide inf-sup conditions for some operators involved in (3.16), which will be used later
on to derive stability bounds for the solution of (3.16).

LeEMMA 3.5 There exist constants ;, B, > 0 such that for all (v, x,,¢) € Vi x Q, x A,

by("”p’ Vs) + bxk(rp’ Xp) + bnp (Tp9 ¢)

B Uvglly, + 11 x,llp, + @l < sup , (3.35)
1 ( sV P Qp AS) O#I,,GXP ”Tp”Xp
and for all (wp,é) € Wp X Ap,
b,(v,,w,) +br(v,,0,0;¢)
By (Iwllw, +1615,) = sup L—=2=F I (3.36)

0+£v,eV, v, llv,

Proof. The proof of (3.35) follows from similar arguments to Gatica (2014, eq. (2.59), Section 2.4.3.2)
for the elasticity problem with mixed boundary conditions, whereas (3.36) follows from a slight
modification of Ervin et al. (2009, Lemmas 3.1 and 3.2) to account for |1’le > 0. [l

4. Well-posedness of the model

In this section, we establish the well-posedness of (3.17) (equivalently (3.16)).

4.1 Preliminaries

We begin by recalling the following key result to establish the existence of a solution to (3.17) (see
Showalter, 1997, Theorem IV.6.1(b), for details). In what follows, an operator A from a real vector
space E to its algebraic dual E’ is symmetric and monotone if, respectively,

A =AM and (AX) —A@)x—y) =0 VxyekE.

In addition, Rg(A) denotes the range of A.

THEOREM 4.1 Let the linear, symmetric and monotone operator N be given from the real vector space
E to its algebraic dual E’, and let E; be the Hilbert space, which is the dual of E with the seminorm

I, = (Nw)"? xeE.

Let M C E x E; be arelation with domain D = {x eE : M) £ VJ}.
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16 T.LIET AL.

Assume M is monotone and Rg(N + M) = E,. Then, for each u, € D and for each f €
whl 0, T; Eg), there is a solution u of

d%(./\f(u(t))) + M(u®) > f(t) ae 0<t<T, 4.1)
with

N@u) € W0, T;E,), u(r) eD, forall0<t<T, and N(u(0)) =N (up).

REMARK 4.2 The problem (3.17) is a degenerate evolution problem in a mixed form, which fits the
structure of the problem (4.1) in Theorem 4.1. However, f is restricted to the space Wl’l(O, T;E;])
arising from N If we would like u(¢) in the theorem to represent all the variables in our case, we will
have to restrict the data as ff = 0and f[7 = 0. To avoid this restriction, we will reformulate the problem
as a parabolic problem for u = (0, p,,) as in Ambartsumyan et al. (2019a).

LetE := Xp X Wp and let N : E — E’ be defined as, (cf. (3.18a)),

N(op,pp)(tp,wp) 1= S0Wp Wp)a, + (0 Pp3 Ty W) 4.2)

From the definition of a, (cf. (3.14a)) and the bounds on the operator A (cf. (2.6)), as well as the fact that
)1 /2

s

sy > 0, it follows that the norm induced by A\ is equivalent to the L* norm (||rp ||ILZ @) +lw, ”wp
which implies that Ej, = L.2(£2,) x L*(£2,) C X}, x W,,. Now, let us set Q) := L*(£2,) x L*(£2,) x
{0} x Lz(.Qf) X Lz(.Qf) x {0} c Q'. Next, similarly to Ambartsumyan et al. (2019a, Section 4.1), we

consider the domain associated with the resolvent system of (3.17) (cf. (3.16)). For r € (0,r,) with r,
given in (3.28), define

D = {(op,pp) € Xp X Wl, : for given (f},fp) € Lz(Qf) X L2(.Qp), there exist
((up,Tf,uf,O), (A,us,yp)) € (Vp X Xf X Vf x Ag) x S with u € W, such that
so (0 Wp)gp + ag(o'p,Pp; Tps Wp) + ap(up’ Vp) + af(Tf, U, Rf, Vf) + K, (Tf, Uy, Rf, Vf)
+ aggs (W, 05V, ) + b, V) — b, (W, u)) + by (0,,9) — by (7,,0)
+ bW, T,) + by (¥, T,) + b (v, Ve 83 0) = €, T, ) + @), + (B v — Kk diVRY) o,
— b(vy,0,) = by (X.0,) —br(u,u.,0:8) =, v)q (4.3)

for all (q,s) € Q x S and for some @ ,’q\p) € E;, satisfying
B2y + 19,2y = Cop (i) + 1 li2q) (4.4)

with ?:ep a fixed positive constant}.

The constant 621, is determined in the construction of the initial data, which is required to be in the
domain D, cf. (4.34) and (4.46) below.
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AN AUGMENTED FULLY MIXED FORMULATION 17

Note that the resolvent system (4.3) can be written in an operator form as

E+A+K,)P) +B@x) =F inQ,

(4.5)
—B(p) =G in¥,
where F € Q) C Q' is the functional on the right-hand side of (4.3), that is,
F@) = (7,0, + @pwpe, + @ v —k divRY)) g VaeQ (4.6)
which, thanks to (4.4), is bounded by
5 2 A2 2 =2 2 172

Note that there may be more than one (f ,’c]p) € E, that generate the same (o ) € D. In view of this,

we introduce the multivalued operator M (-) with domain D defined by

pPp

M(a,.p,) = {@,'e]p) ~N(o,.p,) : (6,.p,) satisfy (4.3) for @,'sz) € Ej, satisfying (4.4)}, (4.8)

where N is the operator defined in (4.2). We observe that the relation M C E x E,’] is associated with
the domain D in the sense that [v,f] € M if v e D and f € M(v).
Next, we establish a connection between (3.16) and the following parabolic problem: given

1,1 T2 1,1 12
(g, 1, ) € WO, TsL2(2,) x W0, TsLA(82,)).

find (0,,p,) : [0,T] — D, satisfying
d a,(1) o (1) h, (©)
_ p » )
wN(%@)+M(m®)3(mm) ae. i€ 0,1, (4.9)

Lemma 4.3 1If (0, p,) : [0, 7] — D solves (4.9) for (h, .1, ) = (0,g,) with g, € Wb, T;L%(2,)),
then the associated solution to (4.3) also solves (3.16).

Proof. Let (ap(t), pp(t)) € D solve (4.9) for (hap, hpp) = (0, qp). Note that the resolvent system (4.3)
from the definition of the domain D directly implies (3.16) when is tested with q = (0,0,v,,, Ry, v,
¢)ands = (§,v,, xp). Thus, it remains to show (3.16) with q = (Tp, Wy, 0,0,0,0) ands = 0.

Since (op(t),pp(t)) solves (4.9) for (ha,,’hp,,) = (0, qp), there exists @,Zip) € ]Lz(.Qp) X Lz(.Qp)

such that (f. ,Z]‘p) — N(ap,pp) € M(o,,p,) satisties

() ()~ ()= (2)
dr pp qP pp qP
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18 T.LIET AL.

which implies that for all (z e wp) IS Xp x W_, there holds

d o T ’tT o .
— P p p _ » » _
() AN =

In turn, using the definition of A (cf. (4.2)) and testing the first equation of (4.3) with q = (= 2 Wps 0,0,
0,0) € Q, we deduce that

()=~ (C)

which, combined with (4.10), yields

€. Tp) 0, T @ Wy g, = (0 )Py Ty w,) = (SoPp W) g,

= —b,(w,,w,) = by (1,,0) +b(T,,u,) + by (¥, 7)),

a,(0,0 5,0, P)3 Ty W) + (590, s W),
— bp(up,wp) — bnp(rp,ﬂ) + bs(Tp’us) + bsk(yp, rp) = (qp,wp)gp V(rp,wp) € Xp X Wp.

Therefore, the first equation of (3.16) tested with q = (tp,wp,O, 0,0,0) holds, completing the
proof. 0

4.2 Existence and uniqueness of a solution of the reduced parabolic problem

We will utilize Theorem 4.1 to show that the problem (4.9) has a solution, which will be used later on
to prove the well-posedness of problem (3.17). We proceed as follows.

Step 1. Introduce a fixed-point operator [J associated to problem (4.5) and derive a continuity bound.
Step 2. Prove that 7 is a contraction mapping and conclude that the domain D (cf. (4.3)) is nonempty.
Step 3. Show the solvability of the parabolic problem (4.9).

4.2.1 Step 1: A fixed-point approach. We begin the solvability analysis of (4.5) or equivalently that
the domain D (cf. (4.3)) is nonempty by defining the operator J : V, — V, as

where p := (o pPpr Wy, Tf, u, 0) € Q is the first component of the unique solution (to be confirmed
below) of the problem: find (p,r) € Q x S, such that

E+A+Ky )@ + B F in Q,

4.12)
—Bp) = G in S.

Thus, (p,r) € Q x S is a solution of (4.3) if and only if u € Vf is a fixed-point of 7, that is,

J(up) = . (4.13)
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In what follows, we focus on proving that 7 possesses a unique fixed-point. We remark in advance that
the definition of 7 will make sense only in the ball W, cf. (3.27).

The solvability of (4.12) is established using a suitable regularization, adding some extra terms
to (4.12) multiplied by an arbitrary € > 0 that provide coercivity for all unknowns, which yields a
well-posed problem. Then, taking ¢ — 0, we recover (4.12). More precisely, let Rap X, - X;),

R, :W,— W;,,R 'V, — V;,,L V- V., and Ly,, : (@p — (@;, be defined by:

Pp u, u

Rap (ap)('rp) =75, (ap, Tp) = (a[,, ‘[p)gp + (diV(ap),diV(rp))Qp,
R, ) W,) =1, (P, w,) i= Py W), Ry, (W) (V,) =ry (u,,v,) = (div(u,),div(v,)) g .
Lux(us)(v_y) = lux(up VS) = (usavs)_Qp’ Lyp (}’p)(Xp) = lyp (}’p’ Xp) = (}’Ir XP)-Q,;'

The following operator properties follow immediately from the above definitions.

LEMMA 4.4 The operators Rap, Rpp, Lux and Ly are bounded, continuous and coercive. In addition, Rup
4
is bounded, continuous and monotone.

On the other hand, recalling from (3.3) the trace spaces Ap and A, we define L, : Ap — A;) as

L, W)(E) =5, 8) := (VY (W), VY (§)) g,

where (1) € H! (£2,) is the weak solution of the auxiliary problem
—div(Vy(2)) =0 in £,

Yy(0)=1 on Iy, Vy()-m,=0 on I, ¥y(A)=0 on I, .

It is shown in Ambartsumyan ez al. (2019a) using elliptic regularity and the trace inequality that there
exist positive constants ¢; and ¢, such that

L Ml < 1A, < IV M g, (4.14)

Similarly, we define Ry : A, — A as

Ry(0)(9) =19(0,¢) := (Vo (0). V() g,
where @(0) € H' (.Qp) is the weak solution of

—div(Ve(@)) =0 in 2,,
@@)=6 on I, V(p(0)-np=0 on pr, @) =0 on Ip.

Similarly to (4.14), there exist positive constants ¢; and ¢, such that

& 1o ® g, < 1814, < & lo®lg g, (4.15)
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LeEMMA 4.5 The operators L, and Ry are bounded, continuous, coercive and monotone.

Proof. The assertion follows from the definition of the operators L, , Ry and the equivalence of norms
statements (4.14) and (4.15). In particular, there exist positive constants ¢, C, ¢ and c r such that

LE) < Crlidlig €y, L0 = cp il .

A

Ry@)(@®) < Cr 1814 1014 Ro@®)(@) = Cr 1017,

forall ,& € AI7 and forall 0,¢ € A,. O

According to the above, we define the operators R : Q — Q' and £ : S — §' as

RE)(@ =R, (6,)(T,) + R, (,)09,) + Ry (0,)(¥,) + Ry(6)($),

LOYS) =L, 0)E) + Ly, @)V + L, (7,)(X,)-

THEOREM 4.6 Let r € (0, ry), with r, given by (3.28), and let f; € L*(£2y) and f, € L*(£2,). Assume

that the conditions in Lemma 3.3 are satisfied. Then for each w, € W, and for each (f ,’q},) satisfying
(4.4), there exists a unique solution of the resolvent system (4.12). Moreover, there exists a constant
Cz > 0, independent of s, .;,, W, and the data f; and f,, such that

1Ty, = 1®.Dlgxs = Co (IElizy + 1Kz, )- (4.16)

Proof. Given W € W, with r € (0,7y) (cf. (3.28)), for each 0 < € < 1, consider a regularization of

(4.12): Find p, = (ap Tf’e,ufﬁ,Oe) €Qandr, = (A ,u ) € S, such that

e Ppe uP,E ’ 5,€° yp,e

F in Q).

- B, +eL(r,) = G in S.

(R+E+A+K, )P+ B'(r)

4.17)

Let ¥ : Q x S — Q' x S’ be the operator induced by (4.17):

() - ER+E+A+K,, B Q)
s -B eL S
The continuity bounds in Lemmas 3.2, 4.4 and 4.5 imply that ¥ is bounded and continuous. In turn, we
note that

v ( v ) ( . ) = (R+E+A+Ky, ) @)@ +B®@ — BO)S) +LE)E).

r S
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The positivity bounds in Lemmas 3.3, 4.4 and 4.5 imply

Y (q) (q) - (GR+5+A+’CW ) (@)(Q) + €£(s)(5)

S S e

= Grap(Tp, Tp) + €Ty, (Wp, Wp) + EVu,,(Vp, Vp) +erg(d,¢) + (SOWp’ Wp) + ae(Tp7 Wi T, Wp)
+a, (v, V) + (R, Vi Ry, Vi) + Ky (Rp, Vs Ry, Vp) + aggg (Vy, 63V, 6)

+ élk(g, é) + elux (Vs, V_y) + Elyp (Xp’ Xp)

>C (enr,,n%gp +€lw, Iy, + €ldive) T o + €l + sollw, Iy, +14"2(T, + a,w,Dllf2q
IV 152, + IR, + VAN, + 1V = Blags +€lE1, +€lvly, + enxpn@,,), (4.18)

which implies that ¥ is coercive. Thus, the Lax—Milgram theorem implies the existence of a unique
solution (p,,r,.) € Q x S of (4.17).
On the other hand, using (4.17) and (4.18), and the Cauchy—Schwarz inequality, we deduce that

€lloy %, +€lpp.liiy, +€ldiv, Ol o+ €0, +501p,.c iy, + 1412, +@,p, DliEag

10, 72 g+ Il + g IS, + 10 = O + €llAcla, +€llug Iy, +€lly, I,

< C(”ff”Lz(_Qf) (T s 18, L2, 10 2,y 1, 202, 125w, + I, I 2, 10 e IILz(gp))-

(4.19)

In addition, the inf-sup conditions (3.35) and (3.36) in Lemma 3.5, in combination with the first equation
of (4.17), yield

g elly, + 17y ellg, + 18114, < C (||A1/2(a,,,e +a,p, Dliza,) +€llo, lx, + |@||Lz(9p)),
1Ppellw, + Wrels, = € (18,2, + €ldiva, Ol 2, ) (4.20)

In turn, taking v, = div(op’e) and wy, = div(up’e) in (4.17), we deduce that

ldivo, Ol < €luglly, + I, 2, -

Idiv, Ol 2,y < € (14720, +ayp, Dl g, + 6o+ Olppelly, + 13,2, ). @2

Next, combining (4.19) with (4.20) and (4.21), using Young’s inequality, some algebraic computations
and the estimate

lo,elliag,) < C (||A1/2(a,,,€ +a, Py Dlliag,) + ||p,,,€||wp), (4.22)
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which follows from (2.6) and the triangle inequality, we deduce that

2 2 2 2 2 2 2
l0,.ellic, + 1Ppcllw, + 0, Ny, + 1Tyl + g iy, + 10 = Oclags + 1004, + Al 4,

g, 17, = C (102 g + 16122 + 162 + 13,002 ): 423)

with C > 0 independent of s, ,;;, and €. Thus, from (4.23) and the assumption (4.4), we deduce that the

solution of (4.17) is bounded independently of €. More precisely, there exists C 7 > 0 independent of

50.min> € and Wy, such that

IR TOllgus = Cr (Ifrlzigy + I li2c,))- (4.24)

Now, we take ¢ — 0 in (4.17). Similarly to Showalter (2010, Theorem 3.2), and since Q and S
are reflexive Banach spaces, we can extract weakly convergent subsequences {p, ,},2; and {r ,}°2,
such that Pen — P in Q, r., =T in S, which combined with the fact that £, A, ICWf, B, F and G are
continuous implies that (p,r) is a solution to (4.12). Moreover, proceeding analogously to (4.24), but
now, considering € = 0 in (4.19)~(4.21), we are able to derive (4.16), with C; > 0 independent of
80,min and Wy.

Finally, we prove that the solution of (4.12) is unique. Since (4.12) is linear, it is sufficient to prove
that the problem with zero data has only the zero solution. Taking (F, G) = (0,0) in (4.12), testing it
with the solution (p, r) and using Lemma 3.3 yield

50 1P, I, + 1420, + @,p, DIz ) + Cax (||up||iz(g,,> + I(Tpup)* + oy — 0|§Js) <0,

so it follows that Al/z(ap + apppl) =0, u, = 0, Tf = 0 and u = 0. Next, combining the inf-sup
conditions (3.35) and (3.36) in Lemma 3.5 with the first equation of (4.12), we deduce that Py = 0,
o,= 0,0 =0,2=0,u;,=0and Yy = 0, concluding the proof.

4.2.2 Step 2: The domain D is nonempty. In this section, we proceed analogously to Caucao et al.
(2017) and employ the Banach fixed-point theorem to show that D (cf. (4.3)) is nonempty.

LemmMA 4.7 Let r € (0, r,), with ry given by (3.28) and assume that the conditions in Lemma 3.3 are
satisfied. Then, for all Wy, va € W, there holds

_ c _
1T %) — TGy, < r—oj (K2 ey + 162 ) 17 = 5l (4.25)

where C 7 is the constant from (4.16).
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Proof. Given Wy, va e W,, we let up = J (wf) and ﬁf =J (va). According to the definition of J
(cf. (4.11)=(4.12)), it follows that

E+A+K)P—-P)(@+ B (-1
—B(p —p)(s)

Taking ¢ = p — p and s = r — T in the foregoing equations, we obtain

~Kyyy—5, (@ YqeQ,
0 Vs eS.

€+ A+K)P—DP - =Ky, _5®® D),

which, together with the continuity of K, . with W € W, (cf. (3.20)) and the positivity bounds of £ and
A+ ICWf (cf. (3.29), (3.30), (3.33)) in Lemma 3.3, implies that

& T =12 ~ < & ~
o 1T =Tpw, =) |” = Cc[0]ly, W =%y, [(Tp = Tpow, =T,
Therefore, using the bound of ||ﬁf||Vf, cf. (4.16), we get
~ 2Ck ~
lluy —Ully, < CJ? (uffuLz(gf) + ||f,,||Lz(9p)) Ilwy = Welly,

which, combined with the definition of r, cf. (3.28), yields (4.25), concluding the proof. [l
We are now in position to establish the main result of this section.

THEOREM 4.8 Let r € (0,r,), with ry given by (3.28), and assume that the conditions in Lemma 3.3
hold. Furthermore, assume that the data satisfy

Cr (I lizgy + I li2e,) = (4.26)

Then, for each @,’c}p) € EL satisfying (4.4), the resolvent problem (4.5) has a unique solution
(p,r) € Q x S with u; € W, and there holds

10 Dllgxs = € (IElizey + 162, )- (427)

Proof. Let us fix an arbitrary @,ﬁp) € E, satisfying (4.4). We note that (4.16) and (4.26) imply that
J : W, — W, Combining bound (4.25) and assumption (4.26), we have

1T W) = T@plly, = — Wy = Wylly,.
0

which implies that 7 is a contraction mapping. Therefore, by the classical Banach fixed-point theorem,
we conclude that 7 has a unique fixed-point u, € W,, or equivalently, (4.5) has a unique solution,
hence the domain D (cf. (4.3)) is nonempty. In addition, (4.27) follows directly from (4.16). [l
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4.2.3 Step 3: Solvability of the parabolic problem. 1In this section, we establish the existence of a
solution to (4.9) as a direct application of Theorem 4.1. We begin by showing that M defined by (4.8)
is a monotone operator.

LEMMA 4.9 Let r € (0,r,) with r, defined by (3.28). Assume that the parameters «, k, satisfy the
conditions in Lemma 3.3. Furthermore, assume that the data satisfy (4.26). Then, the operator M
defined by (4.8) is monotone.

Proof. For each (a;,p;',) eD,ic{l,2},let(
i.e., (4.3) holds. Then we have

p,qp) € Ej; be such that(p,qp) N(ap,pp) € M(ap,pp)
f — N(gi.p
((£,.q) (GP,P,,))(T,,,W,,)
= @ 1)q, + @ Wy, — A0, +o,p,D.7, +a,w,Dg, — (575 W,)g,

= —b, (W, W) = by (7,,0) + bW, 7)) + by (¥, 7,) VY (T,w,) X, x W,
Then, using the association v/ = (a;,p;) and f' = ( ;,,2}’1',) - N(o;,,p;,), i € {1,2}, we deduce that

# =)' =) = b, (p, — ppuy — ) = by, (0, —0,,0' —0%) +b(u; —u},0, —0})

+ by (¥ = .0, =), (4.28)

In turn, from (4.3), it follows that ((u;',, Tj’},uf,0 ), Al ul, yp) satisfy

so (0, wWya, + ae(a;,pﬁ,; T, W,) + ap(u;,, v,) + af(T}, u}; R, vp) + Ky (T}, u}; R, vp)
+ gy (Uf, 05V, @) + b, (P, V) — by (W, W) + by (0}, 8) — by (7,601 + by, 7,)
+ b)) + b Vi A = @7, + @ w))g, + BV, — K diVR)) g

= by(¥,,0h) = by (X, 0p) — bp(uh,uf, 0:8) = (£, v),  V(q,s) €QxS. (4.29)

Testing (4.29) with q = (0,0,u} —u2, T} — T}, u}

f—u% 0' —6%) ands = (\' — 22, u —us,yp Y» 2y,
for i € {1,2}, we find that

—b (pp —pp,ll —u ) b, (a 2,01 —0%) + by(u! —u?,a1 —02) +bsk(y[1, - yiz,,al —012,)

_ 1 2 )
= ap(up—up,u )+af(Tf Tf, . uf,Tf Tf uf)+/c 1(Tf uf Tf Tf, )

. 1 . 2
_K“]%(Tf’uf’Tf - Tf’uf _Uf) +aBJS(Uf —llf,0 - 0 ,Uf —llf,01 - 0 ),
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which, replaced back into (4.28) together with the stability properties developed for a s > Apgg in
(3.33)—(3.34) (cf. Lemma 3.3) and the continuity of Kups cf. (3.20), yields

" =) (V' —v) = a,(u} —ul,u} —w2) +ap(T} — T;,u} ’ uf,Tf Tf, uy)
1 1.
+Kuf1—uj%(Tf’uf’Tf Tf’ llf)—I-K z(Tf Tf’ L “f’Tf Tf’ )
2, 2
+aBJS(uf uf,é’l 0°; uf—uf, —0°)

> (o = Ce(luflly, + 192l ) 1T} — T2, 0l — ud)).

Finally, recalling from the definition of the domain D (cf. (4.3)) that both ”“f”V and ||uf||Vj are
bounded by r, we obtain

" =)' =V = 2 Cpc (g — N I(T} = T, up —up)|* = 0,

which implies the monotonicity of M. O
Now, we are in position to establish the well-posedness of (4.9).

Lemma 4.10 Under the conditions of Lemma 4.9, for each (h, .h,) € W0, T;L2(82,)) x

whlo,T; L2(.Qp)) and each (050:Pp0) € D, there exists a solution (0,.p) : [0,TT] — D to (4.9)
with

(@,,7,) € WH(0, T L2(£2,)) x WH(0,T5W,)  and  (0,(0),p,(0) = (5,,0,P,0)-

Proof. We recall that (4.9) fits in the framework of Theorem 4.1 with E = Xp X Wp, E, = L2 (.Qp) X
Lz(.Qp) and N, M defined in (4.2) and (4.8), respectively. Note that N is linear, symmetric and
monotone. In addition, from Lemma 4.9, we obtain that M is monotone. On the other hand, for the
range condition Rg(N + M) = E} in Theorem 4.1, we note that in our case Rg(N + M) is a subset of
E, »> see its definition (4.8). Therefore, it is enough to establish the range condition RgN + M) = 2

where Eb = {(f ,qp) € E; : (4.4) holds}. This follows from Theorem 4.8, where we established that
for each (f ,qp) € E|, there exists (or , p ) € D a solution to (4.5). Therefore, applying Theorem
4.1 in our context, we conclude that there exists a solution (ap, pp) [0,T] — D to (4.9), with

(@,.p,) € WH(0,T;L2(£2,)) x W'(0,T;W,) and (,(0),p, (0) = (6.7, 0)- O

pPp

4.2.4 Construction of compatible initial data. ~We next construct initial data (o p0:Ppo) € D, which
is needed in Lemma 4.10.

LEMMA 4.11 Let (ff,fp) € L2(S2f) X L2(.Qp). Assume that the conditions of Lemma 3.3 are satisfied.
Assume that the initial condition Ppo € Hp, where

H, = {wpeHl(.Qp): KVw, cH(2,), KVw,-n,=0onl}, w, _OOnFD} (4.30)
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Furthermore, assume that there exists C > 0 such that

||P,,,o||H1(Qp) + ”Kvpp,()”Hl(gp) = Co (”ff”Lz(Q_/) + ”fp”LZ(_Qp))s (4.31)
and  Cyr, (Il + 1Ppoli o, + IKYPp0llu g, ) = 7 (4.32)
for r € (0, ry), where r is defined in (3.28) and C T > 0 is defined in (4.38) below. Then, there exists

0,0 € X, such that (¢,,,p, ) € D. In particular, there exist py := (0, 0,2, 0. W, 0, Ty, U, 00) € Q
and r 1= (Ao, g0, ¥, 0) €S withug; € W, such that

(E+ A+ Ky )B) + By = Fy in Q,

_B(po) = GO in S/,

(4.33)

where G (s) := (f,,vy) g, Vs € Sandfo(q) = (fp,o,rp)9p+('67p’0,wp)9p+(f}-,Yf—Kldiv(Rf))Qf Vqe
Q. with some (£, ,G,, ) € E},, satisfying

pollzzay + 1polizi, = Co (2, + I li2,))- (4.34)
where azP is specified in (4.46) below.
Proof. We proceed as in Ambartsumyan et al. (2019a, Lemma 4.15). We solve a sequence of well-

defined sub-problems, using the previously obtained solutions as data to guarantee that we obtain a
solution of the coupled problem. We take the following steps.

1
1. Define u,, , := ~ KVp, o, with p, 5 € Hy, cf. (4.30). It follows that u,, ;, € H(div; £2,) and

1
nKw, o= —Vp,o diviu,g) = — div(KVpyg) in 2, wyy-m,=0 on Y. (435)

Next, defining A := pp’0| r, € AP, (4.35) yields

ap(up,o,vp) + bp(vp,ppyo) + bp(vp, 0,0;1,) =0 va IS Vp. (4.36)

2. Define (Ty . uz ) € X, x V, associated to the problem

ap(Tp 00703 Ry, Vi) + iy, (Tr o003 Ry, V)

n—1
1 .
= —Hagys Z<v K w0t vy tf,/'>r — Ve Aoy, + @ vy — ki diVRy)) o (437)
=1 T

for all (Rf, Vf) € Xf X Vf. Notice that (4.37) is well-posed, since it corresponds to the weak solution
of the augmented mixed formulation for the Navier—Stokes problem with mixed boundary conditions.
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Notice that u,, ; and A, are data for this problem. The well-posedness of (4.37) follows from a fixed
point approach as in (4.11) combined with the a priori estimate

1Tr0: 901 = € (W lizey + 120l gy + KV 0l o,)) (4.38)

and the data assumption (4.32). We refer to Camaifio et al. (2017) for a similar approach applied to the
stationary Navier—Stokes problem. We note that (4.32) and (4.38) imply thatu,, € W,.
3. Define (6,9, 0,0, 0, ¥o) € X, X V; x Q, x A such that

(Aa’p’()’ Tp)_Qp + bx(np’07 Tp) + bsk(pp,()’ Tp) - bnp ("ﬁ()’ Tp) = _(Aapp,()l’ Tp).Qp V Tp S XP’

_bs(o’p’()avs) = (fp7 VS)QI’ VVS € VS’
—by (0,0, X,) =0 Vx,€Q,
n—1
by, (@ 0. $) = —1 aBJSZ<,/Kj_1up,O b th>F — (¢, 00)p, Ve A,
j=1 /4
(4.39)

This is a well-posed problem corresponding to the weak solution of the mixed elasticity system with
mixed boundary conditions on I,. Note that p,, ;, u,,  and A, are data for this problem. The following
stability bound holds:

I00llx, + Impollv, + 19,0llg, + 1Walla, = € (IPp0lki e, + IKVPp0ll (g, + Il
(4.40)

We note that 0500 Ppo and ¥ are auxiliary variables that are not part of the constructed initial data.
However, they can be used to recover the variables N, P, and ¢ that satisfy the nondifferentiated
equation (3.7).

4. Define 0, € A, as

00 == Uf’o - up’o on 1}17, (441)

where u;  and u,, ; are data obtained in the previous steps. It holds that

”00”AS < C(”uf,o”Hl(gf) + ”up,OHHl(Qp)) =< C(“f}”[}(gf) + ”pp,OHH'(Qp) + ”KVPP,OHHI(QP))-
4.42)

Note that (4.41) implies that the BJS terms in (4.37) and (4.39) can be rewritten with u,- tf =
(“f,o OE te; and that (3.6h) holds for the initial data.
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5. Finally, define (&\p’o, ug o, Y p,O) € Xp x V, x Q,), as the unique solution of the problem

(AEP’O, Tp)_Qp +by(usy,7,) + by (¥,0.7,) = bnp 0.7, Vr,eX,

—bS(Ap’O,VS) =0 Vv, €V, (4.43)
—bsk(ap,o, Xp) =0 pr € Qp‘

This is a well-posed problem, since it corresponds to the weak solution of the mixed elasticity system
with Dirichlet data 6, on Ffp. Using (4.42), we have the stability bound

150llx, + Igolly, + 17,00, < Clbolla, < C(IHlizig)) + 1m0l a, + KD, ol (g,))-
(4.44)

We note that @,  is an auxiliary variable not used in the initial data.
Combining (4.35):(4.43), we obtain (0,0, 0, W, 0, T, 8r0.00) € Q and (Ag,u,4,7,0) € S
satisfying (4.33) with fp,O and ﬁp’o such that

€0 Tp) 2, = 4e(0,0:Pp0: 75 0) = (A(@0). 7)) . and

@p.0:Wp) 2, = (S0Pp0> Wp) @, T @e(0 ) 0:Pp0: 0:w,) — by (W, 5, ). (4.45)

Using (4.40), (4.44) and (4.31), we obtain

||fp’0||]LZ(_Qp) + ”/q\p’OHLZ(QI)) <C (”ff”LZ(gf) + ”fp”Lz(_Qp) + ”Pp,()”Hl(_Qp) + ”Kvpp,o”HI(_Qp))
< Cop (Ifllr2 gy + I, M2 (4.46)
hence (f, 4.4, 0) € Ej, and (4.34) holds. O

4.3  Main result

We establish the existence of a solution to (3.16) as a direct consequence of Lemma 4.10 and
Lemma 4.3.

THEOREM 4.12 Assume that the conditions of Lemma 3.3 are satisfied. Then, for each

f e L2, f,eL’(@,). q,e WO.TLA82,). by € H, (. (430)),

under the assumptions of Theorem 4.8 (cf. (4.26)) and Lemma 4.11 (cf. (4.31) and (4.32)), there
exists a unique solution of (3.16), (p,r) : [0,7] — Q x S with uf(t) e W, (cf. (3.27)), (op,pp) €
W, T; LZ(QP)) x Wh (0, T; W,) and (0,(0),p,(0)) = (5,,9,p,), where @, is constructed in
Lemma4.11. In addition, u (0) = .0 Tf(O) = Tf,O’ Uf(o) = Uf’o, 0(0) = 00 and )\.(O) = )\.O
Proof. First, existence of a solution (p,r) : [0,7] — Q x S of (3.16) with

(@ ,.p,) € W0, T;L7(£2,)) x WH™(0,T; W)

pPp
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and (ap(O), Py 0)) = (Gp,O’ pp’o) follows from Lemmas 4.10 and 4.3. Moreover, since (ap 0, Py ") eD
for each ¢t € [0, T] (cf. Lemma 4.10), it follows from the definition of the domain D (cf. (4.3)) that
u (1) € W, fort € [0,T].

We next show that the solution of (3.16) is unique. To that end, let (p, r) and (p,T) be two solutions
corresponding to the same data and denote p = p — p with similar notations for the rest of variables.
We find that

HEM (@ +AD (@ +K, P (@+Ky®(@+B@®@=0 VqeQ,

—B@) (s)=0 VseS. (4.47)

Taking (4.47) with q = p and s = T, making use of the continuity of K, ’ in (3.20) and the estimates
(3.29), (3.33) and (3.34) in Lemma 3.3 for £ and A + Iwa, we deduce that

1 1/2 5 D2 |2 [T
24 (142 @, +0,2, Dl g, + 501y, ) + kbl By g (4.48)

+ (= Cc(Iuglly, + 1rlly,) ) 1T TN + sy — Blas < 0.
Integrating in time (4.48) from O to 7 € (0, T, using E[,(O) =0and f?p(O) = 0, we obtain
12 2 2 ' 2 gy 2
14'2 @, + 0,5, DIIT g, + 50 1B, IR, + /0 18,1132, 5 +2Cic(rg = 1) /O (T, 6,1 ds < 0,

which implies that AY2(@, + «,p, (1) = 0,u,(1) = 0,T;() = 0 and Us(r) = 0 for all € (0, 7).
In turn, using the inf-sup conditions (3.35) and (3.36) in Lemma 3.5 for (v,, xp,(b) = (ﬁs,7p,§) and
(wp, =@ ,X), respectively, and the first row of (4.47), we get

18,0y, + 17, llg, + 1814, + 17, I, + K],

Ad,@, +oa p D, 7)o + K a,v)
<C sup e Al L I oo ity
0£(zp.v))EX, XV, (T, V)l

Then, u,(?) =0, 7p(t) = O,ﬁp(t) =0, A(t) = 0 and 5(:) = 0 for all t € (0, T'], which implies Ep(t) =0
for all ¢ € (0, T, concluding the proof of uniqueness of the solution to (3.16).

Finally, let ﬁf,o = ) — us, with a similar definition and notation for the rest of the variables.
Due to the fact that ff, fp are independent of time, and the assumed smoothness in time of q,, We can
take # — 07 in (3.16). Using that the initial data (p, ) constructed in Lemma 4.11 satisfies (4.3) at
t = 0, and that Ep,O = 0and ﬁp,O = 0, we obtain

a,(@,0.v,) +ap(Tpo. s 03 Ry, Vp) + g o (Tp(0),up(0): Ry, vp) + iy (T 0.8y 0 Ry )
+ apys (W0, 00: V@) + b (v, Vy, $3 2g) =0, (4.492)

— br(@, (1, 0,00:6) = 0. (4.49b)

€202 dunp 1.z uo 1sanb AQq 00¥66 1 2/9S0PBIp/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/woo dno olwapeose//:sdiy Wolj papeojumo(]



30 T.LIET AL.

Taking (vp, Rf, Vs, ¢.8) = (ﬁp’o, Tf,o’ ﬁf,o’ 50, XO) in (4.49), using that Uy € W, (cf. Lemma 4.11) and
uf(O) € W,, and proceeding as in (4.48), we get

18,017 2, + 2Cic o = M I (T, W12 + [0 — g5 < O,

which implies that u,, = 0, Tf,() =0,u, = 0and 0, - t,; = 0. In addition, (4.49b) implies that
0, - n[i,g> r, = 0forall§ H'/2(I%,). Since H'/2(I,) is dense in L?(I7,), it Eollows that 6, -, = 0;
hence 0, = 0. The inf-sup condition (3.36), together with (4.49a), implies that A, = 0. O

REMARK 4.13 As we noted in Remark 3.1, the time differentiated equation (3.6¢) can be used to recover
the nondifferentiated equation (3.7). In particular, recalling the initial data construction (4.39), let

t

t t
Vie[0,T], n,(H)=m,p +/0 u,(s)ds, Py = ppo —|—/0 Y,(5) ds, ¥v@® =1, +/0 0(s) ds.

Then (3.7) follows from integrating (3.6¢c) from 0 to ¢ € (0, T] and using the first equation in (4.39).
Before proving a stability bound for the solution of (3.16), we establish a bound at = 0.

LEMMA 4.14 Under the assumptions of Theorem 4.12, there exists a positive constant C, independent
Of $o min» SUch that

|42 @, + e, 2, DO 2, + 17, Oy, < € (||p,,,0||H1(Q,,) +IKVp, gl ) + ||f,,||Lz(9p)),
(4.50)

and
lo,AY*(a, + a,p,D(0) ||]Lz(9p) + /5 [8,2,(0) ”WP

1
) (12p0lir ) + IKIPp0 gy + I l2c) )

1
<C (_ ||‘Ip(0)||]_2(gp) + (1 + \/_S_O
4.51)

V5

Proof. First, since (GP(O), pp(O)) = (Gp,()’ Pp,o)’ bound (4.40) gives (4.50). On the other hand, using
the facts that (ap,pp) e W0, T; ILZ(.QP)) x WH(0, T; Lz(.Qp)) and fp is independent of ¢, we can
differentiate in time (3.6d)—(3.6e) and combine them with (3.6c) and (3.6g) at time ¢+ = 0. Choosing
(T) Wy, Vo Xpp) = (8,0,(0),9,p,(0),u (0), y,(0)) implies

18,A2(0, + a,p,DO)f2 g ) + 50118, POy,

= (3,0, (00, 0(0)) , + (8,7,(0).div(w) ) g + (4, (0).9p,(0)g . (452)
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Using the normal trace inequality (3.2) and estimate (4.22) to bound the first term on the right-hand
side, as well as the Cauchy—Schwarz and Young’s inequalities, we obtain

18,42, + 0P, DO)f2q ) + 50132,
. 1
< c(natdw(a,,)(on@z(m ||q,7<0>||L2(m (1 + s—) 100115, + ||dw<u DO ))
0

+5(||a A6, +a ppI)(0)||]L2(Q)+s0||8tpp(0)||wp) (4.53)

In turn, using the fact that 6(0) = 6, up(O) =u,, (cf. Theorem 4.12), bound (4.42) and the identity
(4.35), we find that

1014, < C(Hllzegy) + IPpolli g, + KD, ol g,

. (4.54)
”le(up)(O)”LZ(_Q y = <C ||d1V(KVP,, O)HLZ(Q )
In addition, from (3.6d) and the fact that fp does not depend on ¢, we deduce
I 3tdiv(orp)(0) ||L2(9,,) = 0. (4.55)
Then, combining (4.53) with (4.54)—(4.55), and taking § small enough, we obtain (4.51). [l

We end this section with establishing regularity and a stability bound for the solution of (3.16).

THEOREM 4.15 Under the assumptions of Theorem 4.12, if q, € H! o,T; LZ(QP)), then the solution of
(3.16) has regularity T, € H'(0,T;X,), uy € H'(0,T;Vy), 6, € Wh®(0,T;X,), u, € L®(0,T; V),
Y, €L®(0,T:Q,),u, € L*(0,T; V,) NH' (0, T;L*(£2,)), p, € W'¥(0,T;W,), 1 € H'(0,T; A,) and
0 cL>0,T; A ). In addition, there exists a positive constant C, independent of 50.min> such that

1A2(0, + appD i 0,20, + 14IV@ )2 g
+ VSolpylwreeo.r:w,) + 1Pl 0.7:w,) T 1 I20.7:v,) + 19,1200 7022,)) + 1 Telle 0.7
+ el o.rvy) + 10 = Ol 0.7:35) T 1000754, + 10120,7:4,) + 1M1 0,74,

sl oy +19lz20 v, T 17pllieorg,) + 1752010,

1
(”ff”]}(gf) + |If ”LZ(_Q ) + ||6],,||H (0,T;L2(£2))) +— \/_ ||6],,(0)||L2(g )

1
+ /5 ol + (1 + ﬁ) (Ippolir ) + ||KVpp,0||Hu(9p))). (4.56)
Proof. Choosing (T Rf, Vf,¢ &, Vs,xp) = (ap,pp, Tf, uf,0 A us,yp) in (3.16), we get

30,(1A2(0, + ppI)IILz(Q )+ 5ollppliy,) + @y, ) + a(Tyup Ty, up)

+ ey, (Tp, ups Ty ) + ap e (ug, 0505, 0) = (q,,p)) o, + B0 — iy div(Ty)) o + (£, u0) g .
(4.57)
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We integrate (4.57) from O to t € (0, 7] and use the fact that ug [0,T] — W, (cf. (3.27)), the stability
bounds (3.29) and (3.30) in Lemma 3.3 and the Cauchy—Schwarz and Young’s inequalities, to deduce

t
1a"?(e, +a PpI)(t)I|1L2(Q)+SO||Pp(t)”W /(”u ”L2(9)+”(Tf’“f)”2+|“f_0|éJS)ds
<C(||ff||Lz(Q)+nf IRz, + / laylizq,, ds + 14120, + PpI)(O)H]Lz(_Q)+So||17p(0)||w)
t
+ 6 /0 (1T up P + i, Iy, + I3, ) ds. (4.58)

In turn, taking (rp, Wy, Vs Rf, Ve, ¢) = (rp, 0, A 0,0, 0) in the first equation of (3.16), we obtain
by(ug, 7,) + by (¥,,T,) — by (rp,0) +b,P,.v,) +bp(0,v,,0;2)
= —0a,(0,0,,0,p,;7,,0) —a,(u,,v,),
which, combined with the inf-sup conditions (3.35)—(3.36) in Lemma 3.5, yields

luglly, + 117, g, + 1814, + Ip,llw, + 11Xl 4, < € (||atA‘/2<a,,+a,,p,,1>||u<g,,) + ||u,,||Lz(9p)).
(4.59)

On the other hand, choosing v, = div(ap) and w, = div(up) in (3.16), and applying the Cauchy—
Schwarz inequality, we deduce that

||diV(Gp)||L2(9p) =< ”fp”Lz(Qp), and
ldiv@,)l 2, = € (1,2, + 19,4720, + @,p, Dl g, + 50 10p,l, ). 460)

Then, combining (4.58) with (4.59) and (4.60), and choosing § small enough, we obtain

14120, + e, DOz g, + 50lIp, OIRy, + 1div©@)IT2 g

t
2 2 2 2 2 2 2 2
+ /0 (Mo, + N, I3, + 1T w12 + g — 01356 + 1015, + 1212, + I3, + 17,13, ) ds
! 2 1/2 2
(||ff||Lz(m+||f 220, + / 19,12, , 45 + 1410, + a1, p, DO) 25

+ 5ollp, )13, + / (1,420, + 0,p, DI g + 53 ||a,p,,||w)ds) (4.61)

Next, in order to bound the last two terms in (4.61), we take a finite difference in time of the whole
system (3.16). In particular, given ¢ € [0,7) and s > O witht 4+ s < T, let 3¢ := M . Applying
this operator to (3. 16) notlng that 9;f, = 0 and 9;f, = 0 since both f; and f, are 1ndependent of f,

and testing with (‘r Rf, Vf,¢ &, Vpr) = (Bfop,atpp,afup,a Tf,afuf, 970,9} A, Bfug,asyp)
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similarly to (4.57), we get

50,(I0; A0, + a,p, D)2, T Y EN pp||%vp) +a, (35w, 85u,) + a; (07T, 9 ug; 0; Ty, B uy)

= (9dp,9Pp) 2, -

We integrate from O to t € (0, T), use that u : [0,T] > W, the continuity of «,. (cf. (3.20)) and the
positivity bounds of a,, ag and ag ;¢ in Lemma 3.3 (cf. (3.33) and (3.34)) and take s — 0, obtaining

18,A2(@, + D2 ) + 50122, Dy,
t
+ /O (||8,u,,||iz(9p) +2Cx (g = DI OTy B I + [y — 01355 ds
1
< C(/o IIatqpllfz(gp) ds+ [10,A'*(o, + apppl)(O)llﬁz(Qp) + 50 ||a,pp(0)||%Vp)

t
+6 /0 ||3tpp||%vp ds. (4.62)

In turn, using the inf-sup conditions (3.35)—(3.36) in Lemma 3.5, we find that for a.e. t € (0, T)

A

lus@lly, + 17,0 lg, + 10@ll4, < ClI3,AY*(@, +,p, DDll2g,):

and 18, p,Dllw, + 13,2014, = ClIdw, Dl 2, (4.63)

where the second bound is obtained by applying the operator d; and taking s — 0. Then, combining
(4.62) with (4.63), and taking § small enough, yields

18,42 (@), +a,p, DO g ) + 501182y D Ry, + IO, + 17,1, + 10D,

t
+ /0 (||a,pp||%vp 10,172 ) + 10Ty Dup) I + 10y — 901556 + ||8,A||2Ap) ds
t
<C ( /0 19,4, 117> (2 45+ 19 Ao, + OépppI)(O)Hiz(Qp) + 50 119, pp(0)||%vp). (4.64)

Bound (4.56) follows by combining (4.61) and (4.64) with the bounds at t = 0 (4.50)—(4.51). The bound
implies the stated solution regularity. O

5. Semidiscrete continuous-in-time approximation

In this section, we introduce and analyze the semidiscrete continuous-in-time approximation of (3.17).
We analyze its solvability by employing the strategy developed in Section 4. In addition, we derive error
estimates with rates of convergence. At the end of the section, we introduce the fully discrete scheme
based on the backward Euler time discretization.
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Let 7;{ and 775’ be shape-regular and quasi-uniform (Ciarlet, 1978) affine finite element partitions
of §2; and §2,,, respectively, where / is the maximum element diameter. The two partitions may be
nonmatching along the interface I7%,. For the discretization, we consider the following conforming finite
element spaces:

g x Vg CXpx Ve, X x Vg xQ, CX, xVixQ, V,xW,CV, xW,

We choose (X, V. Q) to be any stable triple for mixed elasticity with weakly imposed stress
symmetry, such as the Amara—Thomas (Amara & Thomas, 1979), PEERS (Arnold er al., 1984),
Stenberg (Stenberg, 1988), Arnold—-Falk—Winther (Arnold et al., 2007; Awanou, 2013) or Cockburn—
Gopalakrishnan—-Guzman (Cockburn et al., 2010) families of spaces. We take (Vph,th) to be any
stable mixed finite element Darcy spaces, such as the Raviart-Thomas (RT) or Brezzi—-Douglas—Marini
(BDM) spaces Brezzi & Fortin (1991). We note that these spaces satisfy

div(X,) = V. div(V,) = W,,. (5.1)

Since Vg, and W, contain discontinuous piecewise polynomials, the method exhibits local poroelastic
momentum conservation (cf. (3.6d)) and local mass conservation for the Darcy fluid (cf. (3.6g)).
We further note that an inf-sup condition is not required for the pair (Xg,, Vg,). Therefore, we can
take any H(div; §2;)-conforming space for Xp, such as the RT or BDM spaces, combined with
continuous piecewise polynomials for Vg,. For the Lagrange multipliers, we choose the nonconforming
approximations

Aph = Vph . np|1~ﬂ], Aél’l = Xphnp“—}p, (5.2)

which consist of discontinuous piecewise polynomials and are equipped with L2-norms.

REMARK 5.1 We note that, since H'/ 2(I"ﬁ,) is dense in LZ(Ffp), (3.6h) and (3.61) in the continuous weak
formulation hold for test functions in L2(Ffp), assuming that the solution is smooth enough so that the

traces are well-defined in Lz(l}p); e.g,u, € H!/2+e (.Qp) for some € > 0. In particular, these equations
hold for §, € A, and ¢, € A, respectively.

Now, we group the spaces, unknowns and test functions similarly to the continuous case:
Q, = Xph X th X Vph X th X th X Ag, S,:= Aph x Vg X Qph’
p, = (oph,pph,uph,Tfh,ufh,Oh) €Q), r1,:= ()Lh,ush,yph) €S,
qy = (rph,wph,vph,th,vfh,(bh) €Q, s, = (“g‘h,vsh,xph) €S,
where the spaces Q and S are respectively endowed with the norms
lanlg, = 17ml%, + 1wl + 19,4015, + IRgIE, + 1415, + 16415,

2 2 2 2
”Sh”Sh = ”sh”Aph + ||Vsh||vp + ”Xph”Qp’
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with [1¢,ll4,,
approximation to (3.17) is: find (py, ;) : [0,T] — Q,, x S;, such that for a.e. r € (0, T),

”¢h”L2(1}p) and ”Eh”APh = ||§h||L2(Ffp)- The semidiscrete continuous-in-time

9
37 E@L0) + (A+ Ky, ) (0, (0) + B'(r,0) = F(@0) i Q,
—B(p,(H) =G in S} (5.3)

REMARK 5.2 Lemma 3.2 holds for the nonconforming Lagrange multipliers spaces (cf. (5.2)), even
though the trace inequalities (3.1) and (3.2) no longer hold. In particular, for the continuity of the bilinear
forms bnp (Tpp> @) and by (Vg vy, @) 6)), using the discrete trace-inverse inequality for piecewise

polynomial functions, ||g0||Lz(Ffp) < Ch_1/2||g0||L2(Qp), we have

—-1/2
by, T 1) < Ch™ 21T 2,y B0l 1y

. —1/2
br O Vo 81360 = € (INally, + 021,020, + I0li2cr) ) 1601201

Therefore, these bilinear forms are continuous for any given mesh and so are the operators A and B;
hence Lemma 3.2 holds.

We next state the discrete inf-sup conditions that are satisfied by the finite element spaces.

LEMMA 5.3 There exists constants f,, 8, > 0 such that for all (v, Xpn: @) € Vg x Qp X A,

bs(Tph, Vo) + bsk(rph’ Xph) + bn,, (Tpns ¢p)

B (Ivally, + 1,llg, +14lla,) < sup L (54
1 shllv phllQ, nllAg, 0T meX “Tph“X,,
and for all (w,,, &) € W, x A,
Br (Iwpullw, + Elay,) = sup  ZF - . (5.5)

O#V,,hEVph ”Vph ”Vp

Proof. Inequality (5.4) can be shown using the arguments developed in Ambartsumyan et al. (2020a,
Theorem 4.1), whereas (5.5) can be proved similarly to Ambartsumyan et al. (2019a, eq. (5.7) and
Lemma 5.1). U

5.1 Existence and uniqueness of a solution

The existence of a solution to (5.3) will be established following the proof of solvability of the
continuous formulation (3.16) developed in Section 4. To this end, we define a discrete version of the
domain D:

D, = {(aph,pph) € Xph X th : for given (ff, fp) € L2(.Qf) X Lz(.Qp), there exist
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(. Typoug, 05), (Mg, ¥ ) € (V) X Xy x Vg X Ag) x S, withug, € W, such that

(E + A+ Ky, ) + B'x,) =F, in Q},
—B(p,) =G in S}, (5.6)

where

F(ap) = Ep T o), + @i Won) o, + &, vy — k1 divR)) o, V@, € Qy,
for some (?ph,’q\ph) € Ej satisfying

Bz, + Gtz < Con (2 + 162, (5.7)

with /C\‘ep’h a fixed positive constant }

The constant /Cep,h is determined from the construction of compatible discrete initial data (p;, o, 1y, ),

which is discussed next.

LEMMA 5.4 Let (f},fp) € L2(.Qf) X L2(.Qp). Assume that the conditions of Lemma 3.3 and Lemma
4.11 are satisfied. Assume in addition that the data satisfy

Cjo (”ff'”LQ(Qf) + ”pp,()”Hl(_Qp) + ||KVPp,o||HI(QP)) =, (5-8)

for r € (0, ry), where ) is defined in (3.28) and C 7 is defined in (5.14) below. Then, there exist discrete
initial data (aph,O’pph,O) € D,,. In particular, there exist Pro == (aph,O’pph,O’ w00 Tﬂz,O’ Uy 0, 0h’0) €Q,
and ry, 5 1= (A0, Wy 0. ¥ pno) € Sy Withug, o € W, satisfying

(€ + A+ Ky, ) Pro) + B (r,0) =Fyq in Q)

—B(p,o) =Gy in S}, (5.9)

@ph,o,wph)gp Vq, € Q, for some (fph,O’/q\ph,O) € E;}, satisfying

I€n0llL2(2,) + ||21\ph,o||L2(9p) < 661,,;, (||ff||L2(9f) + IIfPIILz(_Qp)), (5.10)

where 6ep,h is specified in (5.20) below.

Proof. The construction is based on a modification of the step-by-step procedure for the continuous
initial data (py,r,) presented in Lemma 4.11. In each step, the discrete initial data is defined as a
suitable projection of the continuous initial data.
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1. Define 6, := P,’?S(GO), where P,’l‘s : A, — A, is the L2-projection operator, satisfying,
V¢ e L(I},),

(¢ — P @), 90, =0 V¢, €A, (5.11)

It holds that

”0}"0”1‘2(1}1)) =< ”00”L2(1}p)' (5-12)

2. Define (Ty, 5, Wy, 0, W, 0, Ppi o> Ano) € Xpy X Vg X Vo x W, X A, associated to the problem

ar (Tpn 0 W0 Ryns Vi) + kg, o (T 02 W 03 Ry Vi)

n—1
—1
+iags DK g = 040) -ty Vit (Vg mp o),
j=1

= af(Tf,(), Uros th, th) + Kllf,o (Tf,(), Uros Rﬂ,, th)

n—1
f—
+ nagg Z( Kj (“f,() —0) - th, Vin tfﬁ[}p + (th Mg, k())rfp
=1
= (ffs A KldiV(Rﬂ,))_Qf,
ap Wy 02 Vi) + by Ppn 0 Vpn) + (Vpn =My Apo) 1y, = (W 0. V) + 5y (P02 Vo) + (Vo * By o) 1, = 0,
.
- bp(th, uph,O) = _bp(th, up,o) = __(dIV(KVPp,()), th)_pr

— (U0 M+ B+ Uy0) My &) = — (g M+ (B +1,0) 1 E,) =0, (5.13)

for all Ry, € Xy, vy € Vp, Vph € Vo w, € Wy &, € Apy- Notice .that (5.13)is wgll—posed, since it
corresponds to the weak solution of the augmented mixed formulation for the Navier—Stokes/Darcy
coupled problem (see Gatica et al., 2020, for a similar approach). Note that 0, is datum for this
problem. The well-posedness of (5.13) follows from a fixed point approach as in (4.11) combined with
the a priori estimate

||Tﬂ,,o||xf + ||uﬂ,,o||vf + ||uph,o||vp + ||Pph,o||wp + “)‘h,OHAph

= Cz, (Il + WPpollt ) + IKYPp0 g ) (5.14)

and the data assumption (5.8). In the above estimate, we have used (5.12) and (4.42). We note that (5.8)
and (5.14) imply that ug, , € W,.
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3. Define (0 05 Mp,00 Ppio> ¥ 1,0) € Xpjy X Vg X Q) X Ay, as the unique solution of the problem
(A0 1.0)> Tpi) 2, + DsMpi0> Tp) + D (010> Tpi) = by, (T ¥ 0) + (A, Py Dy Tpi)
= (A(Gp’())9 rph).Qp + bs(”p,Os rph) + bsk(pp,Oa rph) - bnp(rplp 7/,0) + (A(apppyo 1)9 Tph).Qp = O’

- bs(vsh’ o'ph,O) = _bs(vsh’ ap,O) = (fp’ vsh).Qp’

- bsk(Xph’ oph,O) = _bsk(Xp}p ap,o) = 03 (515)

by, (0 ppo D) — MO‘BJSZ\/ (“fho 010) Yo ®n Yy, + (D)1 Ayodp,

j=1
n—1
—1
= bnp(o'p,o,(bh) — K dpyg Z(\/ Kj (uf,o -0y - tf,j’¢h : th')Ffp + (@, - l'lp,)xo)pfp =0,
j=1

forall 7,, € X, vy, € Vg, Xpp € Qpp. @, € Ay, Note that (5.15) is a mixed elasticity system with
mixed boundary conditions on I, and its well-posedness follows from the classical BabuSka—Brezzi
theory. Note also that p,, o, g, o, 0}, 9 and A, ) are data for this problem. It holds that

||6ph’0||xp +lnpnollv, + ||pph,o||Qp +¥0lla, =C (”pp’OHHl(Qp) + ||Kvpp,o||Hl(_Qp) + ||fp||L2(Qp)) )

(5.16)

where we have used (5.12), (4.42) and (5.14).
4. Finally, define ((’fph’o, Wy, 0. ¥ pno) € Xpp X Vg x Q) as the unique solution of the problem

(A@ pp0)s Ton) @, + b5 (Tpns U 0) + by (Tpps ¥ pg) = b, (T, 00)
- bs(aph’o,vxh) == 0, (517)
bsk(a.\ph’()s Xph) = O,

forall 7,, € X,,, vy € Vg, X,n € Q. Problem (5.17) is well-posed as a direct application of the
classical BabuSka—Brezzi theory. Note that 8, , is datum for this problem. It holds that

1@ ol + 1gsolly, + 17m0llg, < Uz + 1m0l g, + KD ol cg,).  (5:18)

where we have used that bnp (rph, 0,0 = bn,, (Tph, 0,) (cf. (5.11) and (5.2)), (3.2) and (4.42).

We then define ph’o = (Gph,o’pph,o’ uph’o, Tfh,()’ u‘fh’o, 0,1,0) and rh’o = ()\.h’o, uxh’o, }’p/’t,o)' The abOVe
construction implies that (p, o, rh’o) satisfy (5.9) with

& .00 Tpi) 2, = @e(0 . 0s Ppn 03 Tpi 0) — (A@10)- Tpn) -
(5.19)

@ph,O’ th).Qp = (s()pph,O’ th).Qp +a, (aph,O’pph,O; 0, th) - bp (uph,O’ th)'
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From the stability bounds (5.14), (5.16), (5.18) and (4.31), we obtain

||fph,0||]L2(Qp) + ||’q\ph,0”L2(_Qp) < C (Hff“Lz(Qf) + ”fp”LZ(Qp) + ”pp,OHHl(QP) + ||KVpp’0||H1(Qp))
< CopnlIf iz + Il ) (5.20)
hence (F,, 0. Gn0) € Ej, and (5.10) holds. O

REMARK 5.5 The above construction provides compatible initial data for the nondifferentiated elasticity
variables (1,5, 0,0, ¥ ,0) in the sense of the first equation in (5.15).

Now, we establish the well-posedness of problem (5.3) and the corresponding stability bound.

THEOREM 5.6 Assume that the conditions of Lemma 3.3 are satisfied. Then, for each
fr e L322, £, eL2(R2,). g, e WHO.T:LXR,). pyo €H, (¢f. (430),

satisfying (4.26), (4.31), (4.32) and (5.8), and for each compatible discrete initial data (pj, o, ), o) con-
structed in Lemma 5.4, there exists a unique solution of (5.3), (p;,, ;) : [0, T] — Q,, x S;, with ug, v e

W, (cf. 3:27), (0 o ppp) € WHP(0,T;X,) x WH(0,T; W) and (0 ,,,(0),p,;,(0), 1,,,(0), Ty, (0),

uﬂ’l (O), Oh(O), A’/’L (0)) = (Gph,o’pph,o’ uph’o, Tfh,()’ u‘}th’o, 0,1,0, )\.h’o) MOreOVer, if qP S H1 (0, T, LZ(QP)),
there exists a positive constant C, independent of /2 and s ,;;,, such that

1/2 .
l1A / (Gph + appphl)”WLOO(O,T;JLZ(.QP)) + ||le(Gph)||L2(Qp) + S()”pph”Wl,OO(()’T;wp) + ”pph”Hl(o,T;wp)

+ ”uph“Lz(O,T;Vp) + 19, “ph||L2(o,T;L2(9p)) + ”TthHl(O,T;X_/-) + ”uﬂz”I-Il(O,T;Vf)

+1ug, = 0ply 01855 T 104llLo©7:a,) T 104l20.7:4,) + 120l 0,74,

+lugllieo.rv,) + 10l orv,) + 17 pnliieo.ra,) T 17 pmllzorg,

1
= C(”f}”[}(gf) + ”fp”Lz(Qp) + “‘Ip”Hl(O,T;Lz(.Qp)) + \/_S_O ||61p(0)||L2(:2p)
1
+ /5o I ollw, + (1 + ﬁ) (1ppolir ey + ||KVp,,,o||H1(9p))) . (5.21)

Proof. With the discrete inf-sup conditions (5.4)—(5.5) and the discrete initial data construction
described in (5.11)—(5.17), the proof is similar to the proofs of Theorem 4.12 and Theorem 4.15, with
several differences. First, due to nonconforming choices of the Lagrange multiplier spaces equipped
with L2-norms, the operators L, and R, from Lemma 4.5 are now defined as L, : Aph — A;]h,
L, ()&, = <)‘h’5h>1_7,, and Ry : Ay, — A/Sh, Ry (0,)(¢}) = <0hv¢h>17,,- The fact that L, and

Ry are continuous and coercive follows immediately from their definitions, since L, (§,)(§;,) = |I§ ||%‘ph

and Ry(¢,)(¢;,) = ”¢h”irh' Second, the proof in Theorem 4.12 that the solution at t = 0 equals
the initial data works in the discrete case due to the choice of the discrete initial data as the elliptic
projection of the continuous initial data, cf. (5.13) and (5.15). Third, the control of Pphs 0, A, ugy and
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Y oh follows from the discrete inf-sup conditions (5.4) and (5.5). Fourth, the discrete version of the initial
data bound (4.50) follows from (5.14) and (5.16). Finally, in the discrete version of (4.52), we apply the
orthogonallity prope?rty (5.11) Fo deduce that (.8,0 ph(O)np, 0,00)) n, = (a[q oh (O)np, 0(0)) oy and then the
proof continues as in the continuous case, using the normal trace inequality (3.2). U

REMARK 5.7 As in the continuous case, we can recover the nondifferentiated elasticity variables with

t
Vrel0,T], nph(t) = Nph0 +/ ug, (s) ds,
0

t

t
Pon(®) = Pupo +/0 Y pu () ds, ¥,(0) =1V, +/0 0,,(s) ds.

Then (3.7) holds discretely, which follows from integrating the equation associated to 7, in (5.3) from
0to ¢ € (0, T] and using the first equation in (5.15).

5.2 Error analysis

We proceed with establishing rates of convergence. Let the polynomial degrees in X, x W, XV, x
X x Vg x Ay, x Ay x Vg, x Q) be, respectively, 56,2 Spy Sup> ST Sug 565 i Sugs Sy - Let us set
V e {WP,VS,QP}, A e (A, Ap} and let V,, A, be the discrete counterparts. Let P}[ :V = V, and
P;l‘ : A — Ay bethe L2-projection operators, satisfying

=P, v)g, =0 Vv, eV, (O—PO.¢) =0 V¢, €A, (5.22)

where u € {p,,u,,y p}, 0 € {6,1} and v;, ¢,, are the corresponding discrete test functions. We have the
approximation properties (Ciarlet, 1978):

lu =Py 2, < CH lullguri g,y 18 = Pit@)lla, < CH T 0lgsgn ), (5.23)

where s, € {spp, Su,» sy,,} and s, € {sp,5,}.
Slnf:e the discrete Lagrange multiplier spaces are chosenas A, = Xphnp | p and A, =V, -n| Iy
respectively, we have

Ap
<0 - PZ‘Y(G), Tphnp> = O Vrph € Xph’ ()\, - Ph[ ()\‘)’Vph . np>1'}?7 = O vah € Vph' (524)

T}

Next, denote X € {Xf, Xp, Vp}, o€ {Tf, 0, up} € X and let X, 7;, be their discrete counterparts.

Let I;f - X NH! (£2,) — X,, be the mixed finite element projection operator (Brezzi & Fortin, 1991),
satisfying

(div(EXo), wy) = (div(e),w,) Yw, €W, <I,)f(o)n*,thn*>r ={on.mn), Vo e X,
/4

V4
(5.25)
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AN AUGMENTED FULLY MIXED FORMULATION 41

and

lo = @)z, < CH Mo lgorig,.  Idivie — KON 2g,) < CH VO g0t (g,

(5.26)
where » € {f,p}, w), € {Vp Vg W} Wy € [V Vo W, b and s, € {5,525, }-

’o-p

Finally, let SZf be the Scott—Zhang interpolation operators onto Vy,, satisfying Scott & Zhang (1990)

v su
vy —S,” VPl g < ch™ (5.27)

f ||Vf||Hsuf+l(9f).

Now, let (ap,pp,up,Tf, uf~,0,k,us, yp) and (aph,pph,uph,Tﬂ,,qﬂ,,ah, Ap> Uy, th) be the solutions
of (3.17) and (5.3), respectively. We introduce the error terms as the difference of these two solutions
and decompose them into approximation and discretization errors using the interpolation operators:

e, =0 —0,=(0—I(@)+Uy0)—0y) =€, +ei, oe(To,u,l
- _ \Y \Y% ol h
e, =u—u,=@w—P,w)+ P, W) —u, =e¢,+e,, ucip,u, yp},

A A I h (5.28)
e =60—-60,=0—-P,0)+P,0)—06),) :=e,+e,;, 0cibr}

v v
€y, ‘= Uy —up = (uy — Shfuf) + (Shfuf —uy) = e{lf + ef’,f.

Then, we set the global errors endowed with the above decomposition:
e, = (eap,epp,eup,erf,euf,eo), e = (ek,eux,e},p).

We form the error equation by subtracting the discrete equations (5.3) from the continuous one
(3.17):

9, E(ey)(qy) + Aley)(qy) + Ky (p) (@) — Ky, (0))(qy) + B'(e)(q,) =0 VYq,€Q,

— B(ep)(sh) =0 Vs, eS8, (5.29)
‘We now establish the main result of this section.

THEOREM 5.8 Let the assumptions in Theorem 5.6 holds. For the solutions of the continuous and
semidiscrete problems (3.17) and (5.3), respectively, assuming sufficient regularity of the true solution
according to (5.23), (5.26) and (5.27), there exists a positive constant C depending on the solution
regularity, but independent of £, such that

1A (e, + @, €, Dllwiooo 20, + 14iVEs 2o ) + vSolley, lwio.rw,)
+ley, I o.rw,) + ey, 207y, + 1380, 12070202, T lex, I 0%,
+ eyl o.:v) + 1€, — €glut0.1:85s) T € llL0,7:4,) T I€0ll20.7:4,) T 13111 0.7:4,0)
tlley, Ieeorvy + lewlliz oy, 18y, lLeorag, t ey, 207,

= CVexp(T) (Wt 4 pot! et 4 ), (5.30)

where s, = min {s p’suysy,,}* Sg = min {sg,s;,} and s, = min {sy,5, .8y }.
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h  oh

Proof. We start by taking q; = (eap o €, eTf uf eo) and s, = (e e ) in (5.29), to obtain

1 hoh 1 e el
ESO o, (epp,epp)gp +§8 (eap €, €5, e )+a (eu ,eup)—i—af(eTf, uf,eTf e )

+ Ky, (e’%f,eﬁf;e}ff,eﬁf) + "eﬁf (Tf,uf;e’ff,eﬁf) + aBJS(eﬁf,eZ;eﬁf,eZ)
= —ae(8te , 0, epp' ,,p 1p) - ap(e{,p,eﬁp) - af(eITf,eﬂf,e%/,eﬁf)
- Kujh(e%f,eflf;e%f,euf) - Keflf (T, uf-;e%f,eﬁf) - aBJS(eflf,eé;eﬁf,eZ) - bsk(ei,p,eﬁp)
+ bsk(e}}',p,ef,p) — (eﬁf -nf,e§>,~fp + <e{,f ‘ny, eﬁ)rfp — (e .np,e§>rfp +(eh -n eﬁ)rf (5.31)

where, the right-hand side of (5.31) has been simplified, since the projection properties (5.22) and
(5.24)—(5.25), and the fact that div(Xph) =V, diV(Vph) = th (cf. (5.1)), imply that the following
terms are zero:

so(at Dp 7e )_Q ) b (e ’e ) b (P s u) b (e Z)’ bnp(egp’eé)a

h ! 1 h
by(el, 5 ), (e el ), (€y, "1y, €30, (€, -1, €) .

Then, using the fact that uf(t),ufh () : [0, T] - W, cf. (3.27), the positivity estimates (3.29)—(3.30)
and the continuity bounds (3.19)—(3.20) of the bilinear forms involved and the Cauchy—Schwarz and
Young’s inequalities, we get

soa lep, I3, + 5 anAl/z(e , e, Dltag )
Mhinasllen, 12 o ) +2Cic(ro = NIl €4 1> + s leh, — €5l25s

= C(lleh, I1220q,, + 10,4 2], +ayel DI o )+ 116y, 122 ) + (1420 €)1

— op ]LZ(QP) Op p Pp ]LZ(Q) up LZ(Q) Tf uy

! 12 12 12 I 2
by — €bl3os - lepllh,, + lef 10y, + I, I, )

+ |e
h 2 h h 2 h h2

81 (I 125 g, + €k €I+ I, — ehlZse)

+5, (||A1/2<eﬁ,, oy, DIl ) + lle p,,nw,,+||e2||ﬁxh+||e§||i,,h+||eﬁp||@p), (5.32)

where we have used the estimate

1
blel, € ) = (A1/2 LAV Yo < Cle g (”Al/z(ef;p +a,ep D2, + ||ej;p||wp),
(5.33)
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which, follows from the definition of A due to the extension from S to M as in Lee (2016). Next, we
choose r = /2 and §; small enough in (5.32) and integrate from 0 to ¢ € (0, T to find

t
h 2 1/2 / h h 2 ho2 h hoyp2 h h2
solle, D1y, + 1412 ey, + apey DTz ) + /0 (e 122 + 116 €I + lel, — fids) ds
t
<C /O (ef, 1220, + 10A"2(€5, + eyl DIz g + el 22+ 1k, €I + lehll,,

+ b, = ¢hdos + eI, + ey, I3, ) ds + sollel, )1, + 1472k, + el DO

t
+ 52/0 (”Al/z(e’;p + apeﬁpl)llliz(gp) +lley I3y, + lleglia,, + ledl%, + ||e’;p||@)) ds. (5.34)

On the other hand, from discrete inf-sup conditions (5.4)—(5.5) in Lemma 5.3 and the first equation
in (5.29), we have

leglla,, + llew,llv, + e} llg, <€ (||a,A‘/2<e,,p +a,e, Dlli2g,) + ||e’yp||Q,,),

h h I h
and €} llw, + e, = C (lleh, 2o, + el 2, ) (535)

whereas, using (5.1), and taking W = div(eﬁp) and vy, = div(eﬁp) in (5.29), we obtain, respectively

Idiveeh )iz, = € (19,42, +a, €, Dz, + 5 13,8 Iy, )- 536
. h _ ’
and ||d1V(ea,,)||L2(gp) = 0.

Thus, combining (5.34) with (5.35)—(5.36), and choosing 8, small enough, we get

t
sollen, OIRy, +1412 (€5, + o€ DOz g, +Idivees )Tz o+ / (el 13, + el I3,
0

h h 2 h h2 h2 h 2 h 2 h 2
€l € )12 + leh, — €hlBs + ef I, + el + ek I3, + lej, I3, ) ds

t
I 2 1/2 .1 ! 2 I 2 1 ! 2 1 1,2
E C(/O (||eap||L2(Qp)+||atA / (e6p+apeppI)I|L2(Qp)+”eup||L2(Qp)+”(eTf’euf)” + |euf_e0|BJS

12 12 I 2 h 2 1/2,h h 2
+ lefIR,, + Ieh 1, + lieh 13, ) ds + solleh Oy, + 14"/2(el, +o,eh DO g

t
+ /O (|| AV2EL +ayel DT o )+ solel IRy, + 10,412 (€l + apeﬁpl)nizmp)) ds). (5.37)

Bounds on time derivatives.

In order to bound the terms s0||8,e2p ”%V,, and ||8TA1/ 2 (eﬁp + apeﬁpl)niz @) in the right-hand side of
h

(5.37), we differentiate in time the whole system (5.29), test with q;, = (B,eap, 8,e1/jp, 8teﬁp, Btefff,
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8,eﬁf, 8,e/5) and s, = (8te§, 8teﬁx, 8,eﬁp) and proceed similarly to (5.31), to find that

1 h h. h
)_Q+ 50 ac (e, 08y, 8e o€l )+a(3eup dey,)

p

1 h
550 8 (B¢}, . €},

+ af(a eTf 0, e ;0 eTf d eu/) +Kdeh (Tf,uf,a eTf 9, e )
h
+ Kuy, (ateTf’ al‘eU[’ a eTf teu/) + dggs (al‘eU[’ ateo’ d eu/ teo)

—a (3,, o 9, €, ,Beh o,e P) — ap(ateup,ateup) —af(ateTf,ate BeTf ,euf)

e - .9 ah h ) h
— Ky, (eTf B,eTf ,euf) kel (0,Tf, d,ug; B,eTf, d,€y,) — Fajel, (T, uy BteTf, d,€y,)
I o .goh h .9 eh h
~ Kyup, (eTf,euf, 8teTf, 8,euf) - /ce{lf (0, Ty, 0u; a,eTf, 8teuf) Kup, (0 eTf 0, e ;0 eTf 0 euf)

— gDy, degs O,y . djeg) — by (3, L djeq ) — (3, -1y 0,€5)  + (ey, 1y, 9,€0)

+ (3ep -1, 080)p + bsk(a,e’;p, o€y ) + (3,5 -1y, 3,€5) (5.38)

where, usmg again the projection properties (5.22) and (5.24)—(5.25), and the fact that div(X h)

div(V h) ph’ cf. (5.1), we have dropped from (5.38) the following terms:

50(0

M p,aeh )a,s b, (0,e} ,8e ) b(aeh,ae s by (8e a,e’,}), bnp(a,egp,ate{,),

bx(ateus,ate[,p), bx(a,eux,a,edp), (8teup -np,ate/\)l},p, (8te{1p -np,atef)rfp.

We next comment on the control of the terms involving the functional Ky . The two terms on the
left are controlled by as (9, eT ,0, e ;0 eTf,Z) e ) using that uf(t) ufh(t) e W,, the continuity of

(3 20) and the coercivity bound for as (3. 32) The two terms on the right involving u, and ug,
usmg that uf(t) u, (1) € W,, as well as the Cauchy—Schwarz and Young inequalities, are bounded
by 8||(8teTf 8teuf)||2 + C||(8teTf teuf)||2 The other four terms are bounded by 8| (3, e ,a,euf)n2
C(l|o “f”V =+l 8tuﬂl ||Vf)(||euf ||Vf + ||e ||V ). We also use the following identities to control the last two
terms in (5 38):

by (0,€) .95 ) = B, byc(€) del ) — by (€} o€} ),

(3¢ - 1,,0,€}) ;= 0,(€f -1, 0,€5) . — (€ -1, 3,€0)

Then, integrating (5.38) for O to # € (0, T], proceeding as in (5.34), using that uf(t), ufh(t) € W,, the
bounds (3.19)—(3.20) and (3.29)—(3.30), the Cauchy—Schwarz and Young inequalities and the estimate

1 h 1 1/2,h h h
bycdrey el ) = Clioey g, (10,4172, +a,eh Dllzaa,, + e Iy, )
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which follows analogously to (5.33), we get

solldjep, (DI, + 19,4'(eg, + arpep, D32 )
t
h hoy2 h h2
+ /0 (nogel, 320, + 13, 0l )I” + [3,€l, — ¢5125) ds
< C( / (1,42 e, +a, ¢, Dli2a(q,) + 10€5, 1220, + 190, 12 ) + 1@, de) 11

+ |9l — dehlags + 19,€h11%,, + 19,1115, +118,€L 1%, + 19} I3, )ds + 18,65, 0172,

sh

+ 19,01, + 19€5, Ol 2o ) + ||a,ei<0>||iph) +8; ( / (na, e, Iy, + 1@}, 3,e0)11°

hy2
+ lleglls

sh

+ el 13, + A€k, ) ds + g, + ||e’;p(r>||%@p)
t
+C (/O 18,A7%(eG, + ey, DIz g ) ds + solldes Oy, + 18,A(eG, + apey DOV,

t
+ 15O, + lleh 13, + /0 (o1, + ol ) (el 13, + lieh, 13,) ds). (5.39)

Note that for the last term we can use the fact that both || dpuglly 2 O.T:V)) and || oug,|l; 2 (0.1:vy) are bounded
by data (cf. (4.56), (5.21)), to obtain

t
2 2 I 2 h o2 I 2 h 2
/0 (a1, + 18,513, ) (lel, 13, + Nl 13, ) ds = € (led, o v,y + el ooy, ) (5:40)
In turn, testing (5.29) with q;, = (0,0, 0, 8te}%f, 8teﬁf, 0) and using that uf(t), ug, () € W,, we deduce
t
I, b @I < ca+n /O (1l e )12 + et €h )12 + leg I, + N1, ) ds
t
+(ef, eq) O + 3, / 1(3,€%,, 3¢ ) I ds,
’ 0
which implies

t
1€, €4 IF e 03, wvy) < € /0 (||<eTf, eu)I1” + Il el )1 + llegls, + lell%
(5.41)

Hleh,, + l1€h12,, ) ds + 1€, eh )OI + 8, /O 13,€ly, 3yl )1 ds.
We further utilize the inf-sup condition bound given in the first equation in (5.35), as well as the bound

/ (el Iy, + el , ) ds < / (19,84, 120, + 10l 1320 ) s (5:42)
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which follows similarly to the second equation in (5.35). In addition, noting that the term fot ||e§ ||%‘ph ds
on the right-hand side of (5.41) needs to be controlled by Gronwall’s inequality, we utilize Sobolev
embedding to obtain

t
101, < ¢ [ (11, +1e1,,) ds (5.43)

We now combine (5.37) with (5.39)—(5.43) and the first equation in (5.35). We use Gronwall’s inequality
to control the terms

t
/ (||A1/2(eﬁp + a[,ezpl)llizmp) + s0||3tehp||%vp + ||8,A1/2(e’$,, +a, ppI)||]L2(_Q )) ds,
0

which appear in (5.37), and the terms

t
hy 2
/0 (“(eTf’ u/)” + ”e0||Avh + ”eA”APh) ds,

which appear in (5.41), and choose §5, §, small enough, to obtain

sollen, DR, + o€, DIy, + 1412 (€5, + o DOz ) + Idivies DIT2 g |

+ 19,412(eG, + apep DO g ) + e, O, + lley, O, + leg®I7, + el O,

t
hoyi2
+/0 (Ile IIw +|Iae,, ||wp+||eupllv +|I3eup||Lz(Q)+||(eTf e )|| +|I(3€ o> Or€u,)

h

hp2 hy2 B2 hy2 o2 hop2
+ ley, — & l5gs + 19, e — 0,8y lzgs + lleglly, +llexlla,, +110,€50%, + leyly, + “eyP”Qp) ds

12 1/2
SCeXp(T)( /0 (||aA (€, +ayel, DIt )+ 19,4"2(€h, +a,el DIZs o )+ 10,85 12 )
I 2 I 2 I 2 ! / 2 / 2
165, 2, + 16b, 1200, + 137l T2 )+ 16T, €l)I” + 1@t diey, )

I I 12 2 12 2 12 2
+ ley, — €lzgs + 19,6, — dglass + lleglia,, + 19.€qlla,, +llella,, +19.€1%4, +19,€1%,

sh

+ Nl 13, + el 13, ) ds + el Iy, + 105, 01220 + I3l @13, + 13€), 1

+ ||3tex(0)||A,,h + Solle,,p (O)IIW,, + IIAI/Z(e.,p + apeppl)(O)IILz(Qp) + II(eTf,euf)(O)ll + leg )%,

+ llef O, +solld e, Oy, + 18,4 (e, + oepez,,1><0>||izmp)). (5:44)
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Bounds on initial data.

Finally, to bound the initial data terms in (5.44), we recall from Theorems 4.12 and 5.6 that
(@,(0), P, (0), 0, (0), T;(0), ur(0),8(0). A(0) = (00: 01 U0 Ty 0. 70,0 ) and (&, (0). p,y, (0),
uph(O),Tfh(O),ufh(O),()h(O),Ah(O)) = (aph,O’ pph,O’uph,O’Tfh,O?“fh,O’eh,O’)‘h,O)’ respectively. Note that
ez (0) = 0 by definition of 6 70 (c.f. (5.11)). Recall also that the discrete initial data satisfy (5.13) and
(5.15). Then, in a way similar to (5.14) and (5.16), we obtain

e, O llw, + 14'72 €} + ey DO)l2g,) + (], €4 ) O]
< C(lepOlig + €5l 4, + e}, O)lg,)- (5.45)

Next, we differentiate in time the equations in (5.29) with test functions vy, and x,, and combine
them with the equations with test functions 7, and w,, at 1 = 0. Choosing (T, Wy, Ve Xpp) =

(8,€5,(0), 9, (0). €} (0). €} (0)), we obtain

solldiep, (O[3, + 1A (eg, + ey DOV )
=_ (8tAelI,p (0), at(e’;p + ape’;pl) 0)g, — (apell,pI(O), ate’;p O)g,
— (e}, (0).3,€5 (0)g, — (3¢5, (0). €, (0)g .

where we have used the orthogonality properties (5.22), (5.24) and (5.25), as well as bp(wph,up,o —
w,,0) =0Vw,, € W, (cf. (5.13)). Using the Cauchy—Schwarz and Young inequalities for the terms

on the right-hand side, as well as (5.42) at t = 0 to control ||e;ip ) ”Qp’ we deduce

solldjep, ()13, + 18,42 (eg, + ey DOV ) + ey O)IIF,

1 1 2 1 2 1 2
=c((1+ %)na,e(,p(O)uXp + llo,¢), Oy, + llej, O3, ). (5.46)

Thus, combining (5.44) with (5.45) and (5.46), making use of triangle inequality and the approximation
properties (5.23), (5.26) and (5.27), we obtain (5.30). [l

REMARK 5.9 The only dependence on % of the constant C in the error estimate (5.30) comes from the

term Jl—fo l5,e5 (0l in (5.46).

5.3 Fully discrete scheme

For the fully discrete scheme utilized in the numerical tests, we employ the backward Euler method for
the time discretization. Let At be the time step, T = NAt, t,, = mAt, m = 0,...,N. Let d,u™ :=
(AD~L (W™ — w™1) be the first order (backward) discrete time derivative, where u™ := u(t,). Then
the fully discrete model reads: given (pg, rg) = (Py0-Tpp) satisfying (5.9), find (pj', 1)) € Q; x S,
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m=1,...,N, such that

d, € (py)(qy) + (A+ Icu_f»;) ) + B (g, =F"(q,) Vg, <cQ,

=B (p;)(s,) =G(s,) Vs, €S, (5.47)

The fully discrete method results in the solution of a nonlinear algebraic system at each time step. The
system is similar to the discrete resolvent system (5.6), which was analyzed in Theorem 4.8. The well
posedness and error analysis of the fully discrete scheme is beyond the scope of the paper.

6. Numerical results

In this section, we present numerical results that illustrate the behavior of the fully discrete method
(5.47). We use the Newton—Rhapson method to solve this nonlinear algebraic system at each time step.
Our implementation is based on a FreeFem++ code (Hecht, 2012) on triangular grids, in conjunction
with the direct linear solver UMFPACK Davis (2004). For spatial discretization, we use the following
finite element spaces: BDM; — P, for stress—velocity in Navier—Stokes, BDM,; — P, — IP; for stress—
displacement-rotation in elasticity, BDM; — P, for Darcy velocity—pressure and P?C — P‘llc for the
the traces of structure velocity and Darcy pressure, where P‘l1C denotes discontinuous piecewise linear
polynomials.

The examples considered in this section are described next. Example 1 is used to corroborate the
rates of convergence. In Example 2, we present a simulation of blood flow in an arterial bifurcation.
Air flow through a filter is simulated in Example 3. In all examples, we set k| = ﬁ and ky = 2u, cf.
Remark 3.4.

6.1 Example 1: convergence test

In this test, we study the convergence for the space discretization using an analytical solution. The
domainis £ = £2,UI, U, with 2, = (0,1)x(0,1), I};, = (0, 1) x{0} and £2, = (0, 1) x(—1,0); i.e.,
the upper half is associated with the Navier—Stokes flow, while the lower half represents the poroelastic
medium governed by the Biot system, see Fig. 1 (Ieft). The analytical solution is given in Fig. 1 (right).
It satisfies the appropriate interface conditions along the interface I%,.

The model parameters are

u=1, p=1, 1 =1, /Lp=1, so=1, K=1I, otpzl, aggg = 1.

The right-hand side functions ff, fp and q, are computed from (2.1)—(2.8) using the analytical solution.
The model problem is then complemented with the appropriate boundary conditions, as shown in Fig. 1
(left), and initial data. Notice that the boundary conditions are not homogeneous and therefore the right-
hand side of the resulting system must be modified accordingly. The total simulation time for this test
case is 7 = 0.01 and the time step is Az = 1073, The time step is sufficiently small, so that the
time discretization error does not affect the spatial convergence rates. Table 1 shows the convergence
history for a sequence of quasi-uniform mesh refinements, where /i, and h, denote the mesh sizes
in £2; and £2,,, respectively. The grids are nonmatching on the interface I, see Fig. 1 (left) for the

coarsest level, with the mesh sizes for their traces, denoted by /¢ and h,,, satistying h,, = %th- We note
that the Navier—Stokes pressure and displacement at f,, are recovered by the post-processed formulae
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Solution in the Navier—Stokes region:

sin(m x) cos(m y) >

uy = exp(t) (‘ sin(m y) cos(r x)
Ty

py = exp(t) sin(mz) cos (?) + 27 cos(mt)

Solution in the Biot region:

pp = exp(t) sin(mz) cos (%y)
o —3x + cos(y)
np = sin(mt) ( y+1 )

FiG. 1. Example 1, Left: computational domain and boundaries. Right: analytical solution.

P = —% (tr(Tf";’,)—}- p tr(ug, ®uf’2)) (cf. (2.3)) and ), = Atug';l—i-n;"h_l, respectively. The results illustrate
that at least the optimal spatial rate of convergence O(h) established in Theorem 5.8 is attained for all
subdomain variables. The Lagrange multiplier variables, which are approximated in P‘l1C — P‘lic, exhibit a
rate of convergence O(h?) in the L2-norm on I, which is consistent with the order of approximation.

6.2 Example 2: blood flow in an arterial bifurcation

In this example, we present a simulation of blood flow in an arterial bifurcation. The Navier—Stokes
equations model the flow in the lumen of the artery, whereas the Biot system models the flow in the
arterial wall. We use the fully dynamic Navier—Stokes—Biot model, which is better suitable for this
application. In particular, the Navier—Stokes momentum equation in the fluid region is

0 atuf — p(Vuf)uf — div(af) = ff in Qf x (0,T],
and the elasticity equation in the Biot system is
Pp a,,np - B n, — div(ap) = fp in QP x (0, T],

where p,, is the fluid density in the poroelastic region. The additional term f 5, comes from the axially
symmetric two dimensional formulation, accounting for the recoil due to the circumferential strain
(Bukac, 2015a). The physical parameters are chosen based on Bukac (2015a) and fall within the range
of physiological values for blood flow:

n=0.035g/em-s, p=1 g/cm3, sop=5x 1076 cmz/dyn, K=10"" x I cm?

s Py = 1.1 g/cm3,
A, =4.28 x 10° dyn/em?®, p, = 1.07 x 10% dyn/em®, B =5 x 10" dyn/em*, a, =1, apsq = 1.

The body force terms f and f, and external source g, are set to zero, as well as the initial conditions.
The computational domain and boundary conditions are shown in Fig. 2. We note that the flow is driven
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TABLE 1  Example 1, Mesh sizes, errors, rates of convergences and average Newton iterations for the
fully discrete system (BDM,; —P,) — (BDM; — P, —P,) — (BDM, — P,) — (P‘IIC — P’i’c) approximation
for the Navier—Stokes/Biot model in no-matching grids

lex, lle20,;) lew le2rvy eyl
hf cIror rate eIror rate eIror rate

0.1964 1.79E—-01 - 4.57E—-02 - 3.42E-03 -

0.0997 9.12E—02  0.9957 233E—-02 0.9920 1.29E—03 1.4332
0.0487 443E—02 1.0057 1.19E—02 0.9451 5.79E—04 1.1208
0.0250 223E-02 1.0294 591E-03 1.0411 2.32E-04 1.3702
0.0136 1.11IE-02  1.1423 294E—03 1.1455 1.11E—04 1.2136
0.0072 5.51E-03 1.1066 1.46E—03 1.0997 4.68E—05 1.3551

les, lle=0.7:x,) ll€, leoo0,7:w,) llew, lle20.7:v,) llew le20.7:v,)
h CIror rate error rate eIror rate eIror rate

14
0.2828 2.73E-01 - 7.54E—-02 - 1.04E-01 - 4.31E-02 -

0.1646 1.37E—-01 12731 3.84E—02 1.2480 5.01E—02 1.3513 2.22E—02 1.2249
0.0779 6.67E—02  0.9650 1.91E—02 0.9328 2.39E—02 0.9888 1.08E—02 0.9616
0.0434 337E-02 1.1690 9.39E—03 1.2150 1.16E—02 1.2359 5.41E—-03 1.1865
0.0227 1.69E—-02 1.0634 4.70E—03 1.0658 5.79E—03 1.0738 2.71E—03 1.0668

0.0124 843E—-03 1.1462 2.35E—-03 1.1429 2.89E—-03 1.1452 1.35E—-03 1.1456

ley o0, lley, le20.7:2(2,)) legllzo )y lerlleeorizay,)
error rate error rate htp error rate error rate iter
5.02E—02 2.67TE—04 0.2000 6.80E—03 1.07E—03 22

141E—-02 2.3489 1.38E—04 1.2234 0.1000 2.42E—03 1.4894 2.69E—04 2.0007 2.2
3.01E-03 2.0649 6.72E-05 0.9613 0.0500 5.82E—04 2.0571 6.71E—05 2.0005 2.2
727E—04 24280 3.36E-05 1.1864 0.0250 1.46E—04 1.9928 1.69E—05 1.9935 2.2
1.80E—04 2.1517 1.68E—05 1.0667 0.0125 3.65E—05 2.0037 4.26E—06 1.9833 2.2
4.80E—-05 2.1819 8.40E—06 1.1456 0.0063 9.25E—06 1.9799 1.09E—06 1.9632 2.2

by the time-dependent pressure data on the inflow boundary I}i”:

%(1 —cos(%)), ifr<T

max?

Pin(0) = 6.1)

0, ift>T

max?

where P,,, = 13,334 dyn/cm? and T,,,, = 0.003 s. The total simulation time is 7 = 0.006 s with a
time step of size Ar = 10~* s. The final time T is chosen so that the pressure wave barely reaches the
outflow boundary.

We present the results of a simulation on a grid with a characteristic parameter 4 four times smaller
than that of the grid shown in Fig. 2 (left). We start by emphasizing that the values s, = 5 x 1076 and
K = 10~ x I are in the typical locking regime for the Biot system of poroelasticity (Yi, 2017). Our
mixed finite element scheme provides a solution free of numerical oscillations, illustrating its locking-
free behavior. We display the computed velocity and pressure at times + = 1.8,3.6,5.4 ms in Fig. 3.
On the top row, the arrows represent the velocity vectors ug, and u,, in the fluid and poroelastic regions,
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out
rP

rout .
rrrrrr e : orng=—pipny on I'f', orny=0 on F?c“t

out
rP

roe s =0 on U, opn, =0 on Iy"
s u,-n,=0 on I'"yrwt =0 on It

rast p Tp = p=tp o Pp T »

P

FiG. 2. Example 2, Left: computational domain and boundaries; arterial lumen £2; surrounded by arterial wall §2,. Right: boundary
conditions.

uh Magnitude uh Magnitude uh Magnitude
0.0e+00 1 45 2 25 3 85 4 5.0e+00 0.0e+00 1 16 2 256 3 &6 4 5.0e+00 0.0e+00 1 15 2 25 3 35 4 5.0e+00
U s l— ——
ph

-50e+02 2000 4000 6000 8000 1.0e+04 -50e+02 2000 4000 6000 8000 1.0e+04 -50e+02 2000 4000 6000 8000 1.0e+04
| I | |

FiG. 3. Example 2, Computed solution at time t = 1.8 ms, t = 3.6 ms and t = 5.4 ms. Top: velocities ug, and up, (arrows), [ug|
and |up| (color); bottom: pressures pg, and ppy, (color). (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

while the color shows the vector magnitude. The bottom plots present the fluid pressure pg, and Darcy
pressure p,,;, in their corresponding regions. One can clearly see a wave propagating from left to right.
The blood infiltrates from the lumen into the wall ahead of and near the highest pressure, while it flows
back into the lumen after the pressure wave has passed. We also observe singularity of ug, near the
bifurcation of the fluid region at t = 5.4 ms, which is typical for such geometry.

In Fig. 4, the first and second rows of the stress tensors o, and o, are shown. The fluid stress o g,
has been recovered from the formula ani = Tf"”ll +p (uj’;‘l ® uf";l) (cf. (2.2)). We observe large stresses
in the region of high pressure as the wave propagates. The continuity of stress across the artery-wall
interfaces is also evident. To further illustrate the interface continuity conditions, we present several plots
of various components of the solution along the top artery-wall interface in Fig. 5. The top row displays
the normal components of the fluid velocity ug, - n, the total poroelastic velocity —(u,, + ugy) - n,,
and the Darcy velocity —u,,;, - n,. We observe a good match between ug, - ne and —(u,;, +ug,) - n,, as
expected from the conservation of mass interface condition, whereas the Darcy velocity —u,, -n,, differs.
We note that —u,, - n, is significantly smaller that the total velocity —(u,;, +ug,) - n,, due to relatively
small permeability of the arterial wall. The bottom row shows the fluid wall shear stress o 4,n; - t;, the
poroelastic shear stress o ,,n, - t, and the normal displacement —1,,;, - n,,. We emphasize that our mixed
formulation allows for direct and accurate computation of the wall shear stress, which is an important
clinical marker. The profiles of o'g,n - t; and ¢ ,,n, - t, match, which is consistent with the continuity
of normal stress condition. The profiles of the normal displacement at the three different times illustrate
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stress1 Magnitude
00e+00 2000 4000 6000 8000 1.0e+04
|

-_—

stress1 Magnitude
00e+00 2000 4000 6000 8000 1.0e+04
|

- e

stress1 Magnitude
0.0e+00 2000 4000 6000 8000 1.0e+04
!

-—

 —

stress2 Magnitude stress2 Magnitude stress2 Magnitude
0.0e+00 2000 4000 6000 8000 1.0e+04 0.0e+00 2000 4000 6000 8000 1.0e+04 0.0e+00 2000 4000 6000 8000 1.0e+04
U — — D ie— -_— U —

Fi6. 4. Example 2, Computed solution at time t = 1.8 ms, t = 3.6 ms and t = 5.4 ms. Top: first row of stresses (6,11, aﬂ,?lg)t
and (0 pp,11,0 ph:n)t (ar.rows) and their magnitudes (c'olor); bottom: se'cond row of stresses (0,2 1.0 m,22)t and (6 pp 21,0 p.h’zz)t
(arrows) and their magnitudes (color). (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
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FiG. 5. Example 2, Computed solution on the top interface. Top: ug, - ng, —(up, + ugy) - np, —upy - Np; bottom: o gy - ty,
Opilp - tp, —Mpp - Np.

the propagating pressure wave, with large displacement in the regions of large fluid pressure. Moreover,
we observe a correlation between the normal Darcy velocity —u,, - n, and the normal displacement

_"ph . np.
6.3 Example 3: air flow through a filter

In this example, we simulate air flow through a filter. The setting is similar to the one presented in
Schneider et al. (2020). We consider a two-dimensional rectangular channel with length 0.75 m and
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Fic. 6. Example 3, Left: computational domain and boundaries; channel §2f in outer region, filter £2, in center region. Right:
boundary conditions.

width 0.25 m, which on the bottom center is partially blocked by a rectangular poroelastic filter of
length 0.25 m and width 0.2 m, see Fig. 6 (left).
The model parameters are set as

w=181x10"3kPas, p=1225x10"°Mg/m’, s5=7x10"2kPa™!,
K = [0.505,0.495;0.495,0.505] x 107 ®m?, ag;q =10, o« =10.

Note that u and p are parameters for air. The permeability tensor K is obtained by rotating the identity
tensor by a —45° rotation angle in order to consider the effect of material anisotropy on the flow. We
further consider two different kinds of material in the poroelastic region: ‘hard’ material with parameters

Ay =1x10"kPa, p,=1x 10"kPa,
and ‘soft’ material with parameters
Ay =1x10"kPa, p,=1x 10°kPa.

The top and bottom of the domain are rigid, impermeable walls. The flow is driven by a pressure
difference Ap = 1072 kPa between the left and right boundary, see Fig. 6 (right) for the boundary
conditions. The body force terms f; and f, and external source g, are set to zero. For the initial
conditions, we consider

pp,O =100 kPa, Gp,O = _(xppp,o I, Uf’o = 0 m/s.
The computational grid has a characteristic parameter 4 four times smaller than that of the grid shown
in Fig. 6 (left). The total simulation time is 7 = 80 s with Ar = 1 s.

In Figs 7-9, we present various components of the computed solution at the final time. The plots
on the left are for the hard material, whereas the plots on the right are for the soft material. Since the
pressure variation is small relative to its value, for visualization purpose we plot its difference from the
reference pressure, pg, — p,,r and p,, — p,,¢ in the corresponding regions. We do the same for the stress
tensors, showing oy +apland o, + op,l, respectively. In addition, the arrows representing the
velocity and stress vectors are not scaled with their magnitudes.
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Fig. 7. Computed velocities ug, and w,;, and pressures pyy, — pref and ppj, — pref for the hard material (left) and soft material (right)
at time T = 80 s. Top: velocities (arrows, not scaled) and their magnitudes (color); bottom: pressures (color). (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

The velocity plots in Fig. 7 show that most of the air passes through the constricted section above
the filter with higher velocity in this region, due to the flow resistance in the porous medium. The effect
of anisotropy is clearly visible in both the pressure and velocity profiles, with the pressure gradient
and streamlines following the inclined principal direction of the permeability tensor. We also observe
continuous normal velocity across all three interfaces and discontinuous tangential velocity, especially
at the interfaces where the Navier—Stokes velocity is higher. This is consistent with the continuity of
flux and BJS interface conditions.

Figure 8 shows the first and second rows of the fluid stress tensor 04, and the poroelastic stress
tensor ¢ ,,. The stress is larger in the poroelastic region, especially along the bottom boundary, where
the displacement is set to zero. We observe continuity of the first row of the stress on the vertical
interfaces and of the second row on the horizontal interface. Thus, the scheme exhibits continuity of the
normal stress vector oy +0,,n, = 0, since n; = =£(1, 0)! on the vertical interfaces and n, = —(0, Dt
on the horizontal interface.

Furthermore, the elasticity material parameters have a significant effect not only on the displacement
field, but also on the velocity field outside of the poroelastic region. In particular, we observe a large
vortex behind the obstacle for the soft material, as well as a smaller vortex in front of it, cf. Fig. 7
(right). This is related to both the displacement and the structure velocity having larger magnitude for
the soft material, as shown in Fig. 9. We also note that the use of the inertial term in the Navier—Stokes
equations plays a critical role for the accurate approximation of the recirculation zones. This example
illustrates the ability of the model to capture the interplay between solid deformation and fluid flow,
including the effect of material parameters and faster flows. It also shows the importance of including
the poroelastic model on resolving critical flow characteristics compared with the Navier—Stokes—Darcy
model considered in Schneider et al. (2020).
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Fic. 8. Computed stress tensors o, + o prerl and 0 + & prefl for the hard material (left) and soft material (right) at time
T = 80 s. Top: first rows of the stress tensors (arrows, not scaled) and their magnitudes (color); bottom: second rows of the stress
tensors (arrows) and their magnitudes (color). (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)
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FiG. 9. Computed displacement 1, and structure velocity ug, for the hard material (left) and soft material (right) at time
T = 80 s. Top: displacement (arrows) and its magnitude (color); bottom: structure velocity (arrows) and its magnitude (color).
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

7. Conclusions

In this paper, we develop an augmented fully mixed formulation for the quasistatic Navier—Stokes—
Biot model and its mixed finite element approximation. The variables are pseudostress—velocity for
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Navier—Stokes, velocity—pressure for Darcy flow and stress—displacement-rotation for elasticity. The
traces of the structure velocity and the Darcy pressure on the interface are introduced as Lagrange
multipliers to impose weakly the interface transmission conditions. In order to obtain control on the
fluid pseudostress and velocity in their natural norms, the Navier—Stokes scheme is augmented with
redundant Galerkin-type terms arising from the equilibrium and constitutive equations. The scheme
exhibits local mass conservation for the Darcy fluid, local momentum conservation for the poroelastic
stress, accurate approximations for the Darcy velocity, the poroelastic stress and the fluid pseudostress
with continuous normal components across element edges or faces, locking-free behavior and robustness
with respect to the physical parameters. We establish well-posedness of the weak formulation and
its mixed finite element approximation, employing the semigroup theory for differential equations
with monotone operators, combined with a fixed point argument. We further derive error estimates
with rates of convergence. The presented numerical results verify the convergence rates and show the
performance of the method for modeling blood flow in an arterial bifurcation and air flow through a
filter using realistic parameters. The results illustrate the importance of including poroelastic and inertial
effects in the model. Furthermore, we observe correct imposition of the interface conditions, accurate
stress and velocity computation and oscillation-free solution for parameters in the locking regime for
poroelasticity.

Funding

DoD grant MURI ONR N00014-20-1-2595; NSF (DMS 1818775 and DMS 2111129); ANID-Chile
through the projects CENTRO DE MODELAMIENTO MATEMATICO (FB210005) and Fondecyt 11220393.

REFERENCES

ALVAREZ, M., GATICA, G. N., GOMEZ-VARGAS, B. & Ru1z-BAIER, R. (2019) New mixed finite element methods
for natural convection with phase-change in porous media. J. Sci. Comput., 80, 141-174.

AMARA, M. & THOMAS, J. M. (1979) Equilibrium finite elements for the linear elastic problem. Numer. Math., 33,
367-383.

AMBARTSUMYAN, L., ErvIN, V. J., NGUYEN, T. & Yotov, 1. (2019a) A nonlinear Stokes—-Biot model for the
interaction of a non-Newtonian fluid with poroelastic media. ESAIM Math. Model. Numer. Anal., 53,
1915-1955.

AMBARTSUMYAN, L., KHATTATOV, E., NGUYEN, T. & YOTOV, 1. (2019b) Flow and transport in fractured poroelastic
media. GEM Int. J. Geomath., 10, 1-34.

AMBARTSUMYAN, I., KHATTATOV, E., NORDBOTTEN, J. M. & YoTtov, 1. (2020a) A multipoint stress mixed finite
element method for elasticity on simplicial grids. SIAM J. Numer. Anal., 58, 630-656.

AMBARTSUMYAN, L., KHATTATOV, E. & YOTOV, 1. (2020b) A coupled multipoint stress—multipoint flux mixed finite
element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Engrg., 372, 113407.

AMBARTSUMYAN, L., KHATTATOV, E., YOTOV, I. & ZUNINO, P. (2018) A Lagrange multiplier method for a Stokes—
Biot fluid—poroelastic structure interaction model. Numer. Math., 140, 513-553.

ARNOLD, D. N, BrREzz1, F. & DouGLAs, J. (1984) PEERS: a new mixed finite element for plane elasticity. Japan
J. Appl. Math., 1, 347-367.

ARNOLD, D. N., FALK, R. S. & WINTER, R. (2007) Mixed finite element methods for linear elasticity with weakly
imposed symmetry. Math. Comp., 76, 1699-1724.

AwANOU, G. (2013) Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv.
Comput. Math., 38, 351-367.

BaDIA, S., QuaIN, A. & QUARTERONI, A. (2009) Coupling Biot and Navier—Stokes equations for modelling fluid-
poroelastic media interaction. J. Comput. Phys., 228, 7986-8014.

€202 dunp 1.z uo 1sanb AQq 00¥66 1 2/9S0PBIp/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/woo dno olwapeose//:sdiy Wolj papeojumo(]



AN AUGMENTED FULLY MIXED FORMULATION 57

Bior, M. (1941) General theory of three-dimensional consolidation. J. Appl. Phys., 12, 155-164.

Bociu, L., CANIC, S., MUHA, B. & WEBSTER, J. T. (2021) Multilayered poroelasticity interacting with Stokes flow.
SIAM J. Math. Anal., 53, 6243-6279.

Brezzi, F. & ForTIN, M. (1991) Mixed and Hybrid Finite Element Methods. Springer Series in Computational
Mathematics, vol. 15. New York: Springer.

BUKAC, M. (2016) A loosely-coupled scheme for the interaction between a fluid, elastic structure and poroelastic
material. J. Comput. Phys., 313, 377-399.

Bukac, M., Yotov, 1., ZAKERZADEH, R. & ZUNINO, P. (2015a) Partitioning strategies for the interaction of a fluid
with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Engrg.,
292, 138-170.

Bukac, M., Yortov, I. & ZuNiNo, P. (2015b) An operator splitting approach for the interaction between a fluid and
a multilayered poroelastic structure. Numer. Methods Partial Differential Eq., 31, 1054-1100.

Bukac¢, M., Yotov, 1. & ZuNiNo, P. (2017) Dimensional model reduction for flow through fractures in poroelastic
media. ESAIM Math. Model. Numer. Anal., 51, 1429-1471.

CamARoO, J., GaTICA, G., OYARZUA, R. & TIERRA, G. (2016) An augmented mixed finite element method for the
Navier—Stokes equations with variable viscosity. SIAM J. Numer. Anal., 54, 1069-1092.

CaMARO, J., OYARZUA, R., RUIZ-BAIER, R. & TIERRA, G. (2018) Error analysis of an augmented mixed method for
the Navier—Stokes problem with mixed boundary conditions. IMA J. Numer. Anal., 38, 1452-1484.

CamaRo, J., OYARZUA, R. & TIERRA, G. (2017) Analysis of an augmented mixed-FEM for the Navier—Stokes
problem. Math. Comp., 86, 589-615.

CAuUCAO, S., GATICA, G. N., OYARZUA, R. & gEBESTovA, 1. (2017) A fully-mixed finite element method for the
Navier—Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math., 25, 55-88.

Caucao, S., L1, T. & Yorov, 1. (2020) A cell-centered finite volume method for the Navier—Stokes/Biot model.
Finite Volumes for Complex Applications IX—Methods, Theoretical Aspects, Examples. Cham: Springer
International Publishing, pp. 325-333.

Caucao, S., L1, T. & Yotov, 1. (2022) A multipoint stress-flux mixed finite element method for the Stokes—Biot
model. Numer. Math., 152, 411-473.

CESMELIOGLU, A. (2017) Analysis of the coupled Navier—Stokes/Biot problem. J. Math. Anal. Appl., 456, 970-991.

CESMELIOGLU, A. & CHIDYAGWAL, P. (2020) Numerical analysis of the coupling of free fluid with a poroelastic
material. Numer. Methods Partial Differential Eq., 36, 463—-494.

CESMELIOGLU, A., LEE, H., QuaINI, A., WANG, K. & Y1, S.-Y. (2016) Optimization-based decoupling algorithms
for a fluid-poroelastic system. Topics in numerical partial differential equations and scientific computing,
volume 160 of IMA Vol. Math. Appl. New York, NY: Springer, pp. 79-98.

CIARLET, P. (1978) The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications,
vol. 4. Amsterdam—New York—Oxford: North-Holland Publishing Co.

COCKBURN, B., GOPALAKRISHNAN, J. & GUzMAN, J. (2010) A new elasticity element made for enforcing weak
stress symmetry. Math. Comp., 79, 1331-1349.

Davis, T. (2004) Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. Assoc. Comput.
Machin. Trans. Math. Softw., 30, 196-199.

ErvINn, V. J., JENKINS, E. W. & SuN, S. (2009) Coupled generalized nonlinear Stokes flow with flow through a
porous medium. SIAM J. Numer. Anal., 47, 929-952.

GALvis, J. & Sarkis, M. (2007) Non-matching mortar discretization analysis for the coupling Stokes—Darcy
equations. Electron. Trans. Numer. Anal., 26, 350-384.

GATICA, G. N. (2014) A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer
Briefs in Mathematics. Cham: Springer.

GATICA, G. N., MARQUEZ, A., OYARZUA, R. & REBOLLEDO, R. (2014) Analysis of an augmented fully-mixed
approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg.,
270, 76-112.

GATICA, G. N., OYARZUA, R. & SAvas, F. (2011) Analysis of fully-mixed finite element methods for the Stokes—
Darcy coupled problem. Math. Comp., 80, 1911-1948.

€202 dunp 1.z uo 1sanb AQq 00¥66 1 2/9S0PBIp/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/woo dno olwapeose//:sdiy Wolj papeojumo(]



58 T.LIET AL.

GATICA, G. N., OYARZUA, R. & VALENZUELA, N. (2020) A five-field augmented fully-mixed finite element method
for the Navier—Stokes/Darcy coupled problem. Comput. Math. Appl., 80, 1944—1963.

HEcHT, F. (2012) New development in FreeFem++. J. Numer. Math., 20, 251-265.

KuNwaAR, H., LEE, H. & SEELMAN, K. (2020) Second-order time discretization for a coupled quasi-Newtonian
fluid-poroelastic system. Int. J. Numer. Meth. Fluids, 92, 687-702.

LEE, J. (2016) Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput., 69,
610-632.

L1, T. & Yorov, L. (2022) A mixed elasticity formulation for fluid—poroelastic structure interaction. ESAIM Math.
Model. Numer. Anal., 56, 1-40.

Ru1z-BAIER, R., TAFFETANI, M., WESTERMEYER, H. D. & Yorov, L. (2022) The Biot-Stokes coupling using total
pressure: formulation, analysis and application to interfacial flow in the eye. Comput. Methods Appl. Mech.
Engrg., 389, Paper No. 114384, 30.

SCHNEIDER, M., WEISHAUPT, K., GLASER, D., Boon, W. M. & HELMIG, R. (2020) Coupling staggered-grid and
MPFA finite volume methods for free flow/porous-medium flow problems. J. Comput. Phys., 401, 109012.

Scort, L. R. & ZHANG, S. (1990) Finite element interpolation of nonsmooth functions satisfying boundary
conditions. Math. Comp., 54, 483—-493.

SEBOLDT, A., OYEKOLE, O., TAMBACA, J. & BUKAC, M. (2021) Numerical modeling of the fluid-porohyperelastic
structure interaction. SIAM J. Sci. Comput., 43, A2923-A2948.

SHOWALTER, R. E. (1997) Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.
Mathematical Surveys and Monographs, vol. 49. Providence, RI: American Mathematical Society.

SHOWALTER, R. E. (2005) Poroelastic filtration coupled to Stokes flow. Control Theory of Partial Differential
Equations. Lect. Notes Pure Appl. Math., vol. 242. Boca Raton, FL: Chapman & Hall/CRC, pp. 229-241.

SHOWALTER, R. E. (2010) Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal.,
42,2114-2131.

STENBERG, R. (1988) A family of mixed finite elements for the elasticity problem. Numer. Math., 53, 513-538.

WANG, X. & Yorov, I. A Lagrange multiplier method for the fully dynamic Navier—Stokes—Biot system. Preprint.

YL, S.-Y. (2014) Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer.
Methods Partial Differ. Equ., 30, 1189-1210.

Y1, S.-Y. (2017) A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal., 55, 1915-1936.

€202 dunp 1.z uo 1sanb AQq 00¥66 1 2/9S0PBIp/WNUBWI/SE0 | 01 /10P/3[0Ie-aoueApe/eulewl/woo dno olwapeose//:sdiy Wolj papeojumo(]



	 An augmented fully mixed formulation for the quasistatic Navier--Stokes--Biot model
	1. Introduction
	2. The model problem
	3. The weak formulation
	4. Well-posedness of the model
	5. Semidiscrete continuous-in-time approximation
	6. Numerical results
	7. Conclusions


