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Critical nematic correlations throughout
the superconducting doping range in
Bi2−zPbzSr2−yLayCuO6+x

Can-Li Song 1, Elizabeth J. Main1, Forrest Simmons2,3, Shuo Liu2,
Benjamin Phillabaum2, Karin A. Dahmen4, Eric W. Hudson 5,
Jennifer E. Hoffman 1 & Erica W. Carlson 2,3

Charge modulations have been widely observed in cuprates, suggesting their
centrality for understanding the high-Tc superconductivity in these materials.
However, the dimensionality of these modulations remains controversial,
including whether their wavevector is unidirectional or bidirectional, and also
whether they extend seamlessly from the surface of thematerial into the bulk.
Material disorder presents severe challenges to understanding the charge
modulations through bulk scattering techniques. We use a local technique,
scanning tunneling microscopy, to image the static charge modulations on
Bi2−zPbzSr2−yLayCuO6+x. The ratio of the phase correlation length ξCDW to the
orientation correlation length ξorient points to unidirectional charge modula-
tions. By computing new critical exponents at free surfaces including that of
thepair connectivity correlation function,we show that these locally 1D charge
modulations are actually a bulk effect resulting from classical 3D criticality of
the random field Ising model throughout the entire superconducting dop-
ing range.

Charge order (CO), long seen on the surface of Bi22121–3, Bi22014, and
Na-CCOC3,5, has recently been demonstrated in the bulk of many
superconducting cuprates by NMR and scattering techniques6–18. Its
apparent universality prioritizes its microscopic understanding and
the question of its relationship to superconductivity (SC). However,
severe material disorder presents both a challenge and an
opportunity19. The challenge is that material disorder disrupts long-
range order and limits macroscopic experimental probes to reporting
spatially averaged properties. In particular, while numerous theories
rest upon the 1D (stripe) or 2D (checker) nature of the CO, bulk probes
may collect signal from multiple domains, obscuring the underlying
dimensionality within a single domain.

The opportunity is for local probes to employ disorder as a
knob that spatially varies parameters such as doping and strain

within a single sample, to test and quantify the relationship of CO to
SC. However, this strategy rests on the premise that what is seen on
the surface is notmerely a surface effect, but is reflective of the bulk
of the sample. In Bi2201, while CO has been observed in the bulk
(via, e.g., resonant X-ray scattering9) with the same average wave-
vector as on the surface, it has not yet been demonstrated that they
are locally the same phenomenon. That work also left open the
question of whether the CO is locally unidirectional (“stripe-like”) or
bidirectional (a “checkerboard”). Here, we combine a local probe,
scanning tunneling microscopy (STM), with a theoretical frame-
work known as cluster analysis19, appropriate near a critical point, in
order to test whether the surface CO is connected to the bulk CO.
We find that the charge modulations in Bi2201 have significant
stripe character. By computing new critical exponents at free
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surfaces including that of the pair connectivity correlation function,
we moreover show that these charge modulations pervade the bulk
of the sample, and that their spatial correlations are critical
throughout the doping range of superconductivity.

We use STM to study the cuprate high-temperature super-
conductor Bi2−zPbzSr2−yLayCuO6+x (Bi2201) at the dopings shown in
Fig. 1a, from underdoped to overdoped superconducting samples, as
well as an optimally doped sample with superconducting transition
temperature Tc = 35 K, as a function of hole concentration p. Figure 1b
shows a topographic image of slightly underdoped Bi2201 with tran-
sition temperature Tc = 32 K (UD32K), drift-corrected as described in
Ref. 20. La and O doping supplies the holes, while Pb doping sup-
presses the structural supermodulation, leaving only the atomic cor-
rugations with a periodicity of a0 = 3.8 Åbetween copper atoms in the
Cu-O planes.

Results
Stripes vs. checkers
To identify the nature of the charge modulations, we focus on the R-
map, where R(r,V) = I(r,V)/I(r, −V), and I(r, ±V) represents the STM
tunneling current at ±V as a function of position r on the surface of the
sample3. The R-map has the advantage that it cancels out certain
unmeasurable quantities, such as the tunneling matrix element and
tunnel barrier height. Figure 1c shows theR-mapwithV = 100mV in the
same field of view (FOV) as Fig. 1b. A localmodulationwith period near
4a0 is readily apparent, as confirmed by the two-dimensional Fourier
transform (FT) of the R-map in Fig. 1d, showing peaks at
Q**

x ∼ ð±3=4,0Þ2π=a0 and Q**
y ∼ ð0, ±3=4Þ2π=a0. The Q** peaks carry

information about the same charge modulation as the peaks at
Q*

x ∼ ð±1=4,0Þ2π=a0 and Q*
y ∼ ð0, ±1=4Þ2π=a0

21, 22, and because they are
well-separated from the central broad FT peak, there is less measure-
ment error associated with tracking Q**. We therefore focus on the
Q** peaks.

There has been experimental evidence in several families of
cuprate superconductors for both stripe order (unidirectional
CDW)2,23–25 and checkerboard order (bidirectional CDW)1,26–28. Recent
experiments on YBCO show that the issue of dimensionality of the CO
in cuprates can be quite complex: while the zero field CDW is 2D
correlated, the field-induced CDW is both 3D correlated29 and
unidirectional30. Recent experiments on LSCO point to a multi-faceted
relationshipbetweenCOandSC:while short-rangeCOexists above the
superconducting dome, the CO is unidirectional in the super-
conducting regime31. It is difficult to discern from direct observation
which tendency (stripes or checkerboards) would dominate in a
hypothetical zero disorder limit32,33, because the quenched disorder
that is always present in real materials can favor the appearance of
stripe correlations33. One metric for distinguishing whether the
underlying electronic tendency favors stripes or checkerboards is to
compare the correlation length of the periodic density modulations
ξCDW with the correlation length of the orientation of the modulations
ξorient. Two different theoretical approaches32,33 predict that
ξorient >

1
2 ξCDW when the underlying tendency is toward stripes rather

than checkerboard modulations.
In order to infer whether the charge modulations would tend

toward stripes or checkerboards in Bi2201 in a hypothetical zero dis-
order limit, we construct the local Fourier components of the R-map at
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Fig. 1 | Phase diagram and stripe order. a Schematic temperature (T) versus
chemical-doping (p) phase diagram of Bi2201, displaying both superconducting
(SC) and pseudogap (PG) phases. Inset shows the crystal structure of Bi2201. The
five white dots and thin lines denote the five samples studied, namely UD25K,
UD32K, OPT35K, OD16K, and OD15K (from left to right), where p has been inferred
from the measured Tc

50. b Constant-current STM topography of UD32K sample
acquired at I = 400 pA and Vs = − 200mV, over a 30 nm× 30nm field of view. The
arrows corresponds to the two orthogonal Cu-O bond directions throughout this
paper. c A typical tunneling asymmetry R-map taken at 100mV (i.e. R(r, 100

mV) = I(r, 100mV)/I(r, − 100mV)) in the same field of view shown in (b). A dis-
ordered chargemodulation with a period of ~ 4a0 is evident in real space.d Fourier
transform (FT) of R-map over the entire FOV in (c), with Bragg vectors (±1, 0)2π/a0
and (0, ±1)2π/a0 marked by black circles. The wavevectorsQ**

x ∼ ð3=4,0Þ2π=a0 and
Q**

y ∼ ð0,3=4Þ2π=a0 from the charge modulation are identified by dashed red and
blue circles. e ξorient/ξCDW extracted from two different definitions in Refs. 32
(circles) and 33 (diamonds). Ratios of ξorient/ξCDW appear >0.5 for all samples, con-
sistent with a striped nature of the charge order. The purple and yellow regions
indicate the stripe and checkerboard phases, respectively.
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Fig. 2 | Mapping Ising domains. a A 65 nm×65 nm Fourier-filtered R(r, 100mV)
map of UD32K, colored red (σ = 1,Q**

x dominates) and blue (σ = � 1,Q**
y dominates)

to indicate the localQ** unidirectional orientations. The unidirectional domains are
derived from peaks aroundQ**

x andQ**
y with details in the text. The R-map has been

Fourier-filtered to include only the power spectral density surrounding the fourQ**

peaks (dashed circles in Fig. 1d). b, c Fourier transform of red- and blue-colored
regions of non-filtered R-map in (a), respectively. Q**

x dominates in the red regions
(b), whereas Q**

y in the blue regions (c).

Fig. 3 | Cluster structure and power-law statistical analysis in UD32K sample.
a Finite-size-scaling ofmoments for cluster size distribution, fromwhich the Fisher
exponent τ is calculated. Here p corresponds to the power indexes for the first
(p = 1), second (p = 2) and third (p = 3) moments. b The radius of gyration R versus
cluster areaA showing a power law between them, fromwhich the critical exponent
d*
v is extracted. c The radius of gyration R versus effective cluster perimeter P. The

perimeter P also shows a power law dependence on R, from which the critical
exponent d*

h is extracted. d Spatial correlation functions Gconn(r) (circles) and
Gspin(r) (triangles). The black line shows the best fit of the pair connectivity cor-
relation function by Gconn / r�ðd�2 +ηpair Þ expð�r=ξclusterÞ, whereas the dashed line is
only a guide to the eye. Logarithmic binning has been used in (b–d)48.
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wavevector q,

Aðq,rÞ= 1

2π2L2

Z
RðrÞeiq�r0e�ðr�r0 Þ2=2πL2d2r0 ð1Þ

Throughout the paper, we use L =0.6a0 for all R-maps. The correlation
lengths ξCDW and ξorient are then formed from the scalar fields
AxðrÞ=AðQ**

x ,rÞ and AyðrÞ=AðQ**
y ,rÞ using two different methods as

described in Refs. 32,33. Figure 1e summarizes the ratio of ξorient/ξCDW
obtained from each dataset. In every sample, both methods yield
ξorient/ξCDW >0.5, revealing that Bi2201 tends more towards stripes
than checkerboards, and that stripe order likely would also be present
in the zerodisorder limit. Regardless of whether the tendency to stripe
modulations survives the hypothetical zero disorder limit, in the
Bi2201 samples under consideration, our analyses show that there are
local stripe domains present.

Ising domains
Having identified the stripe nature of the local charge modulations in
Bi2201, we map out where in the sample there are locally x-oriented
domains, and where there are locally y-oriented domains. In Fig. 2, we
show this mapping for the UD32K sample, constructed as follows: At
each position r, the local FT A(q, r) is calculated according to Eqn. (1),
which employs a Gaussian window of width L, with L optimized as
described in the Supplementary information.We then integrate the FT
intensity in a 2Dgaussianwindowcenteredonq = ±Q**

x , anddivide it by
the integrated FT intensity around q= ±Q**

y . If this ratio is greater than
a threshold f ~ 1 (i.e. Q**

x is dominant), the region is colored red in
Fig. 2a, otherwise the region is colored blue. The pattern thus derived
in Fig. 2a is largely insensitive to changes in detail such as the exact
center of the integration window, the size of the integration window,

and the threshold fbywhich a cluster is colored. Similar results are also
obtained in other samples with different chemical doping p by quan-
tifying the FT intensity around Q** and Q*. (See Supplementary
Material.)

We analyze the pattern formation under the assumption that it is
driven by a critical point under the superconducting dome. At the
critical point of a second order phase transition, a system exhibits
correlated fluctuations on all length scales, resulting in power law
behavior formeasurable quantities, with a different “critical exponent”
controlling the power law of each quantity.

If the complex pattern formation shown in Fig. 2 is due to
proximity to a critical point, then the critical exponents would be
encoded in the geometric pattern, and the quantitative character-
istics of the clusters would act like a fingerprint to identify the critical
point controlling the pattern formation. This reveals information
such as the relative importance of disorder and interactions. Because
critical exponents are particularly sensitive to dimension, this ana-
lysis can also reveal whether the clusters form only on the surface of
the material (like frost on a window), or whether they extend seam-
lessly from the surface into the bulk (like a tree whose roots reach
deep underground). Unless the structures seen on the surface per-
vade the bulk of thematerial, they cannot be responsible for the bulk
superconductivity.

Critical exponents
Near a critical point, the number of clusters D of a particular size s is
power-law distributed, D(s)∝ s−τ, where s is the number of sites in the
cluster and τ is the Fisher critical exponent34. Figure 3a shows the first
〈s〉, second 〈s2〉, and third 〈s3〉moments of the cluster size distribution
as a functionof thewindow sizeW, where s is the observed area of each
cluster. Consistent with a system near criticality, the behavior of the

Fig. 4 | Critical exponents fromexperiment. Experimentally determinedvalues of
critical exponents derived from cluster maps based on Q** (solid circles) and Q*

(open circles, see Supplementary information). a The Fisher exponent τ; b the
volume fractal dimension d*

v; c the combination d − 2 + ηconn where ηconn is the
anomalous dimension of the pair connectivity function; and (d) the hull fractal
dimension d*

h. For the critical exponent τ, the error bars are estimated as the

standard deviation of τ calculated from different gaussian width L and crop size W.
For the critical exponents d*

v, d
*
h, No obvious chemical doping dependence is

observed, indicative of generic critical stripe correlations inBi2201. Square symbols
represent the average and standard deviation from cluster maps based on Q** and
on Q* over all dopings.
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moments vs. window size W displays robust power law behavior. The
cluster moments are related to critical exponents by hsni / W ðn+ 1�τÞd*

v ,
where d*

v is the effective volume fractal dimension. Since the first
moment hsi depends only weakly on W (leading to larger error in the
estimate of the power law), we combine the information from 〈s2〉 and
〈s3〉 to derive τ. In the UD32K sample (Fig. 3a), we find τ = 1.97 ± 0.08.

The boundaries of clusters become fractal in the vicinity of a cri-
tical point, scaling as H / Rdh where H is the size of each cluster’s hull
(outer perimeter), R is the radius of gyration of each cluster, and dh is
the fractal dimension of the hull. The interiors of the clusters also
become fractal, scaling as V / Rdv , where dv is the volume fractal
dimension of the clusters. Since STM probes only the sample surface,
the observable quantities are the area A / Rd*

v and perimeter P / Rd*
h

of each cluster, where d*
v and d*

h represent the effective volume and
hull fractal dimension, respectively. In Fig. 3b and c, the cluster
properties A and P are plotted vs. R, revealing a robust power law
spanning 2.5 decades for bothd*

h andd*
v. Using a straightforward linear

fit of the log-log plots (where the first point is omitted from the fit,
since short-distance fluctuations are nonuniversal), we obtain the cri-
tical exponents d*

v = 1:83±0:08 [Fig. 3b] and d*
h = 1:36 ±0:07 [Fig. 3c].

We turn now to the orientation-orientation correlation function
Gorient(r), which is the analog of the spin-spin correlation function
familiar from Ising models, Gorient(r) =Gspin(r) = 〈S(r)S(0)〉 − 〈S(0)〉2,
where r = ∣Ri −Rj∣ is the distance between (x, y) positions, here mea-
sured only on the surface. Near criticality, this function displays power
law behavior as GorientðrÞ / 1=rd�2 +η∣∣ , where η∣∣ is the anomalous
dimension asmeasured at the surface, and d is the physical dimension
of the phenomenon being studied, whether d = 2 for a surface phe-
nomenon, or d = 3 for physics arising from the bulk interior of the
material. Figure 3d shows Gorient(r) for UD32K (triangles). For the
UD32K sample as well as the other samples studied, Gorient(r) does not
have the standard power-law behavior expected near a critical point,
but instead it decays more quickly with r.

Whereas the orientation-orientation correlation function is not
power law in the data, the pair connectivity function, which is the
probability that two aligned regions a distance r apart are in the same
connected cluster35, does display robust power law behavior in the
data, withGconnðrÞ / r�ðd�2 +ηconnÞ, with d − 2 + ηconn = 0.29 +/−0.036, as
shown in Fig. 3d (circles).

While the pair connectivity function has beenwidely discussed for
uncorrelated percolation fixed points35, where it is a power law, it has
not previously been characterized at other fixed points. Our simula-
tions of both the clean and random field Ising models show that the
pair connectivity function is also a power law at the 2D clean Ising (C-
2D) and the 2D random field Ising (RF-2D) fixed points (see Supple-
mentary information). We find that it also displays power law behavior
on interior 2D slices36 and at a free surface for the 3D clean Ising (C-3D)
and 3D random field Ising (RF-3D) fixed points. In addition, our simu-
lations of the clean and random field models close to but not at criti-
cality show that there is a regime in which a short correlation length
ξspin is evident in the spin-spin correlation function, in conjunction
with robust power lawbehavior with a long correlation length ξcluster in
the pair connectivity function, consistent with this dataset (see Sup-
plementary information).

Figure 4 shows the experimentally determined critical exponents
for five dopings spanning from underdoped to overdoped, using
cluster maps based on both Q** and Q*. We find similar results at all
dopings, which also show robust power laws, with the same exponents
within error bars as the UD32K sample, and a cluster correlation length
ξcluster which exceeds the FOV (see Supplementary information). Fig-
ure 5 shows a comparisonbetween the theoretical critical exponents of
Eqn. (2) and the experimentally determined values averaged over both
Q** and Q* maps and over all dopings. The data-derived value of d*

h is
inconsistent with the 2D percolation (P-2D) fixed point, indicating that
interactions between stripe orientations must be present. In addition,
the data-derived value for d − 2 + ηconn is inconsistent with that of the

Fig. 5 | Critical exponent comparison.Comparison of experimentally determined
exponents to theoretical values of exponents for candidate fixed points: a The
Fisher exponent τ; b the volume fractal dimension d*

v; c the combination
d − 2 + ηconn where ηconn is the anomalous dimension of the pair connectivity

function; and d the hull fractal dimension d*
h. Circles represent theoretical values.

Thin dark lines (thick transparent lines) are the average (standard deviation) of
experimental values from cluster maps based on Q** and on Q* over all dopings.
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C-2D fixed point, and the data-derived value of d*
h is inconsistent with

the RF-2D fixed point. The remaining candidate fixed points control-
ling the power law order of stripe orientations are C-3D and RF-3D
(denoted C-3Ds and RF-3Ds, respectively, in the figure because we
report theoretical values of the exponents at a free surface of the 3D
models). Therefore, we find that the data-derived exponents are con-
sistent with those of a layered clean or random field Ising model with
J⊥ > 0 near criticality.

This shows that the fractal patterns observed here via STMare not
confined to the surface, like frost growing on a window pane. Rather,
these fractal stripe clusters fill the bulk of the material, more like a
tree viewed through a 2D window. In the same way that transverse
stripe fluctuations help electron pairs condense into a super-
conducting state rather than into the competing (insulating) pair
crystal phase37–39, the stripe orientation fluctuations observed here
could also have a profound effect on superconductivity, since orien-
tation fluctuations of stripes also frustrate the pair crystal.

The doping independence evident in Fig. 4 is surprising, since one
would expect there to be a phase transition from ordered to dis-
ordered stripe orientations as doping (a source of quenched disorder)
is increased, with the critical, power law behavior observed here lim-
ited to the vicinity of the phase transition. While a broad region of
critical behavior like that observed here is not natural near the C-3D
fixed point, a broad region of critical behavior is characteristic of the
RF-3D fixed point: for example, the cluster size distribution D(S) dis-
plays 2 decades of scaling, 50% away from the RF-3D critical point40.
Therefore, the overall phenomenology, taking into account the cluster
exponents, the static nature of the correlations, and the broad critical
region, is consistent with the critical nematic correlations being con-
trolled by the RF-3D fixed point.

Discussion
While our findings suggest a prominent role for criticality in the phase
diagram of cuprate superconductors, the spatial structures reported
here are inconsistent with quantum criticality because these correla-
tions are static on the timescales of several seconds, whereas quantum
critical correlationsfluctuate in time. In addition, for a quantumcritical
point tuned by doping, quantumcritical scaling is confined to a narrow
region close to the critical doping, in a “wedge” emanating from the
critical doping and extending up in temperature. By contrast, we find
critical, power law correlations at low temperature throughout the
entire doping range measured. Whereas the lack of detectable doping
dependence in finite FOV’s is inconsistent with quantum criticality, it is
natural in the classical, three-dimensional random field Ising model.
What the RF-3D fixed point shares in commonwith quantum criticality
is that it is also a zero temperature critical point. However, it is tuned
by disorder rather than by quantum fluctuations.

In addition, RF-3D is notoriously difficult to equilibrate in the
vicinity of the critical point, since the relaxation time scales expo-
nentially with the spin-spin correlation length: τrel ∼ exp½ξθspin�, where
the violation of hyperscaling exponent θ = 1.5. If the spin-spin corre-
lation length reaches even 10 unit cells, the relaxation time will be
exp½101:5�≈ 5 × 1013 times any bare microscopic timescale. Compare
this with critical scaling near the C-3D fixed point, where for a corre-
lation length of 10 unit cells, the relaxation time is on the order of
τrel / ξzspin ≈ 10 times the bare timescale (where z is the dynamical
critical exponent, which is of order 1).

As temperature is lowered on any given sample, it falls out of
equilibrium if the relaxation time exceeds a timescale t0which is set by
the cooling protocol, τrel / exp½ξθspin�≳ t0. Thus the orientational cor-
relation length depends on the cooling protocol, rather than on dop-
ing, when approaching an ordered ground state (i.e. for doping p < pc),
where the correlation length scales as ξspin∝ 1/∣T − Tc∣ν. Beyond that
doping, the correlation length scales as ξspin∝ 1/∣p − pc∣ν at low
temperature.

Our model unifies the observed power law scaling of stripe
orientations in this material with the four decades of scaling seen in
stripe orientations in NCCOC19. The fact that we see scaling all the
way out to the FOV among four different critical exponents that are
consistent with each other is strong evidence that the effect is due to
criticality. If the scaling were to arise from some other mechanism, it
is highly unlikely that all four exponents would line up with any
theoretical model. Further tests of our model include the following:
(1) At larger FOV, the cluster correlation length diverges as the critical
doping is approached from large doping, as ξcluster / ∣p� pc∣

�νcluster .
Such a finding would also serve to identify the critical doping con-
centration for the vestigial nematic41. (2) The pair connectivity
function will show a scaling collapse40 as a function of doping in the
vicinity of the critical doping. (3) As a function of uniaxial in-plane
strain, stripe orientations will experience switching events (ava-
lanches) displaying Barkhausen noise40 in the vicinity of the critical
point, typical of 3D RFIM criticality. (4) Finally, more fully aligned
stripe orientations can be trained into the sample by cooling in the
presence of in-plane strain19.

Our discovery that the charge modulations observed at the
surface of Bi2−zPbzSr2−yLayCuO6+x are locally one dimensional and
also extend throughout the bulk of the material has important
implications for the mechanism of superconductivity in cuprate
superconductors. The fractal stripe clusters may have a profound
effect on superconductivity, by frustrating competing orders like the
pair crystal. The cluster analysis framework demonstrated here
extends the capability of all surface probes used to study quantum
materials to distinguish surface from bulk behavior. Furthermore,
our finding that fractal stripe patterns both permeate the bulk of a
cuprate superconductor and that they share universal features
throughout the superconducting dome, raises important questions.
Because doping naturally introduces disorder, a disorder-driven,
zero temperature critical point for electronic nematicity is a very real
possibility in other cuprates as well. Indeed, the fact that the CO
in La2−xSrxCuO4 is relatively unaffected by the onset of
superconductivity31 may indicate that the superconducting dome in
LSCO is far from a quantum critical point, as argued in Ref. 42,
making it a good candidate to look for disorder-driven criticality as
discussed here. More work is needed to further elucidate the con-
nection between fractal electronic textures and superconductivity.
For example, the connectivity correlation length of the stripes
exceeds the field of view of our experiments throughout the doping
range. An important open question for future studies is to establish
the relationship between this correlation length and the optimal
superconducting transition temperature.

Methods
STM measurements
Two different home-built STMs were used to acquire the data in this
paper, both in cryogenic ultra-high vacuum. The samples were
cleaved in situ at ~25 K and inserted immediately into the STM
sample stage for imaging at 6 K. A mechanically cut polycrystalline
PtIr tip was firstly calibrated in Au single crystals to eliminate large
tip anisotropy. To obtain a tunneling current, we applied a bias to
the sample while the tip was held at virtual ground. All tunneling
spectra, which are proportional to the local density of states at
given sample voltage, were measured using a standard lock-in
technique.

Theoretical models
Because there are only two orientations of the unidirectional domains,
we can map the orientations to an Ising variable19,43,44, σ = ±1, where
the + sign corresponds to red regions in Fig. 2, and the − sign corre-
sponds to the blue regions. We model the tendency of neighboring
unidirectional regions to align by a ferromagnetic interaction within
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each plane J ∣∣ as well as an interlayer coupling J⊥

H = �
X
hiji∣∣

J∣∣σiσj �
X
hiji?

J?σiσj �
X
i

ðhi +hÞσi: ð2Þ

Any net orienting field, whether applied or intrinsic to the crystal,
contributes to the bulk orienting field h19. In any given region, the local
pattern of quenched disorder breaks the rotational symmetry of the
host crystal, corresponding to random field disorder hi in the Ising
model. Quenched disorder can also introduce randomness in the
couplings J, also known as random bond disorder. In the presence of
both random bond and random field disorder, the critical behavior is
controlled by the random field fixed point. In the model, hi is chosen
from a gaussian distribution of width Δ, which quantifies the disorder
strength.

Simulation methods
When comparing to a 2D model, the effective fractal dimensions
observed at the surface can be compared directly with those of the
model, d*

v =dv,d
*
h =dh. When comparing to a 3D model, we have cal-

culated the cluster critical exponents of the model at a free surface,
denoted C-3Ds and RF-3Ds in Fig. 5.

For the clean Ising model in three dimensions, because the fixed
point (C-3D) controlling the continuous phase transition is at finite
temperature, we use Monte Carlo simulations to generate stripe
orientation configurations. To calculate the critical exponents of the
3D clean Isingmodel at a free surface, a 840 × 840× 840 3D clean Ising
model with periodic boundary conditions in the x and y direction and
open boundary conditions in the z direction was simulated at Tc = 4.51J
with 20,000 steps of the parallel Metropolis algorithm. To compare
with the finite field of view of the experiments, we average over nine
windows of size 256 × 256, taken from a free surface of the final spin
configuration. The averages of these critical exponents are shown in
Fig. 5. The standard deviations are smaller than the symbol size.

For the random field Ising model in three dimensions, the fixed
point (RF-3D) controlling the continuous phase transition is at zero
temperature, and we use a mapping to the max-flow min-cut
algorithm45–47 to calculate exact ground state spin orientation config-
urations. The critical point of the 3D random field Ising model occurs
at zero temperature. To calculate the 3D random field Ising model
surface exponents, ground states were computed for 10 different
disorder configurations of a 512 × 512 × 512 3D RFIM with open
boundary conditions in the z direction and periodic boundary condi-
tions in the x and y directions with R = 3, using a mapping between
RFIM and the max-flow/min-cut problem45–47. To compare with the
finite field of view of the experiments, the top surface of these ground
states was windowed to system size 256× 256 and critical exponents
were extracted from the corresponding windows. The averages of
these critical exponents are shown in Fig. 5. The standard deviations
are smaller than the symbol size.

Cluster methods
While the exponent τ derived from STM data is close to the narrow
range allowed by the theoretical models, it is slightly below this range.
Estimates of this exponent derived from a finite FOV are known to be
skewed toward low values due to a bump in the scaling function,
especially in the presence of random field effects40. To mitigate this
effect, weperformfinite-size scaling by analyzing the data as a function
of window size W.

Tomitigate possiblewindoweffects associatedwith afinite FOV in
deriving the fractal dimensionsdh anddv, only the internal clusters that
touch no edge of the Ising map have been included in the analyses of
experimental data aswell as simulation results. To extract the effective
fractal dimensions, we adopt a standard logarithmic binning technique

for analyzing power-law behavior48. (See also Supplementary Infor-
mation and Refs. 51–67 therein.)

Data availability
All STM data presented here in the paper are available at https://doi.
org/10.5281/zenodo.7682140.
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