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ABSTRACT: Seasonal predictions of tropical cyclone (TC) landfalls are challenging because seasonal landfall count not
only depends on the number and spatial distribution of TC genesis, but also whether those TCs are steered toward land or
not. Past studies have separately examined genesis and landfall as a function of large-scale ocean and atmospheric environ-
mental conditions. Here, we introduce a practical statistical framework for estimating the seasonal count of TC landfalls as
the product of a Poisson model for seasonal TC genesis and a logistic model for landfall probability. We compute spatial
variations in TC landfall and genesis by decomposing TC activity in the western North Pacific (WNP) basin into 108 3 108
bins, then identify coherent regions where El Niño–Southern Oscillation (ENSO) and the western extent of the Pacific sub-
tropical high (WPSH) have significant influences on seasonal landfall count. Our framework shows that ENSO and the
WPSH are weakly related to basinwide landfalls but strongly related to regional genesis and landfall probability. ENSO
modulates the zonal distribution of TC genesis, consistent with past work, whereas the WPSH modulates the meridional
distribution of landfall probability due to variations in steering flow associated with the Pacific subtropical high. These spa-
tial patterns result in four coherent subregions of the WNP basin that define seasonal landfall variations: landfall count in-
creases in the southwestern WNP during a positive WPSH and La Niña, the south-central WNP during a positive WPSH
and El Niño, the eastern WNP during a negative WPSH and El Niño, and the northern WNP during a negative WPSH and
La Niña.
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1. Introduction

The East Asia coastline accounts for the most tropical cy-
clone (TC) landfalls globally, posing a significant risk to life,
infrastructure, and local economies. Since the 1970s, landfal-
ling TCs have become ∼15% stronger due to climate change,
highlighting the importance of accurate seasonal forecasts to
assess landfall risk in the coming decades (Mei and Xie 2016;
Wang and Toumi 2021). A body of research has advanced
seasonal TC forecasts by examining climate factors that im-
pact TC activity in the western North Pacific (WNP) basin,
such as spatiotemporal variability in the western Pacific sub-
tropical high and El Niño–Southern Oscillation (ENSO).
These climate factors are used to determine seasonal TC
activity through statistical and dynamical operational models;
however, seasonal landfall forecast skill remains limited be-
cause landfall not only depends on the number of TCs but
also the probability those TCs are steered toward land:

Nlandfall � Ngenesis 3 plandfall: (1)

First, variability in TC genesis depends strongly on its ther-
modynamic environment, and that environment can depend
on many climate factors such as ENSO, which describes sea
surface temperature (SST) variability in the tropical Pacific
(Chan 1985; Lander 1994; Wang and Chan 2002; Camargo
and Sobel 2005; Kim et al. 2011; Zhao and Wang 2019). For

instance, the warm phase of ENSO, El Niño, causes a south-
eastward shift in TC genesis over the WNP basin due to an
eastward shift in positive SST anomalies, a decrease in rela-
tive humidity near Asia, and the eastward migration of both
the lower and upper tropospheric monsoon troughs (Chan
1985; Camargo et al. 2007). This supportive thermodynamic
environment allows TCs that form during an El Niño to last
longer (Wang and Chan 2002). The opposite is true during
ENSO’s cold phase, La Niña (C. Wang et al. 2013; Wang and
Wu 2016). Although there is a deep understanding of ENSO
mechanisms and their influence on TC genesis, predicting
ENSO in advance has proved challenging, complicating
seasonal TC forecasts.

Second, variability in the westward extension of the North
Pacific subtropical high (STH), commonly referred to as the
western Pacific subtropical high (WPSH), modulates the
large-scale steering flow and hence the TC tracks embedded
within that flow (George and Gray 1977; Zhao et al. 2010;
Zhao and Wu 2014). During an El Niño, the Pacific STH
tends to be weaker, thereby allowing midlatitude troughs to
penetrate equatorward, which subsequently favors TCs to re-
curve on the western periphery of the Pacific STH. During a
La Niña, the Pacific STH tends to be stronger, which supports
stronger easterlies and favors westward TC tracks (Wang and
Chan 2002; Elsner and Liu 2003; Wu et al. 2004; Wu and
Wang 2004; Zhang et al. 2012; Zhou and Lu 2019). Other
factors contributing to Pacific STH variability include mon-
soonal heating over land, ocean–atmosphere interactions
outside the tropics, and interbasin interactions (Ting 1994;
Hoskins 1996; Chen et al. 2001; Wu and Liu 2003; Miyasaka
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and Nakamura 2005; Seager et al. 2003; Wang and Wang
2019; Johnson et al. 2020; Sun et al. 2021). B. Wang et al.
(2013) describe a region in the western North Pacific
(158–258N, 1158–1508E) with the highest summertime variance
in 850-hPa geopotential height anomalies, which they use to
define a WPSH index using an average of the anomalies
within this region. Because the WPSH index is highly related
to TC movement, Camp et al. (2019) initialized the U.K. Met
Office Global Seasonal forecasting system version 5 on 1 May
and found significant operational skill predicting the WPSH
index during June–August, paving the way to improve sea-
sonal landfall forecasts. Variability in the WPSH is highly
predictable due to strong ocean–atmosphere coupling forced
by the tropical Pacific, a positive ocean–atmosphere feedback
involving the Indo-Pacific warm pool, the tropical Atlantic,
and underlying WNP SSTs (Ham et al. 2013; B. Wang et al.
2013; Xiang et al. 2013; Xie et al. 2016).

Seasonal TC landfall forecasts require accurate forecasts of
seasonal climate variability such as ENSO and the WPSH and
knowledge on how they separately influence regional genesis
and landfall probability. Dynamical climate models can simu-
late large-scale climate variability relevant to TCs (Camp et al.
2015), but a statistical model better represents basinwide TC
activity (Choi et al. 2016; Zhang et al. 2017). Yet, skillful sea-
sonal predictions of TC landfalls are challenging because
TC genesis, hence landfall probability, responds differently by
region despite using the same environmental parameter
(Wang and Chan 2002; Lu et al. 2010; Kim et al. 2010; Vecchi
and Villarini 2014; Wang et al. 2019). An environmental pre-
dictor may also counteract or compound the number of land-
falls owing to its separate effect on TC genesis and landfall
probability. As past research has focused on genesis and land-
fall separately using one or more predictors (Yonekura and
Hall 2011), to our knowledge, a statistical approach combin-
ing a TC genesis and landfall probability model has not been
implemented before.

Here, we introduce a statistical framework for assessing
seasonal landfall risk related to the WPSH and ENSO. Our
principal research questions are:

1) Can we develop a simple model framework for TC
landfalls that accounts for both genesis and landfall
probability?

2) How do TC landfall probability and genesis in the WNP
basin vary spatially with respect to ENSO and WPSH
variability?

3) Are the results from the statistical framework consistent
with observed tracks in high and low landfall seasons?

To answer these questions, we first statistically model sea-
sonal landfalls by the product of a Poisson regression for sea-
sonal TC genesis and logistic regression for the probability
of landfall for each storm. Next, we decompose the spatial dis-
tributions of each across the entire WNP basin to identify
coherent regions where ENSO and the WPSH significantly
influence TC genesis and landfall probability. Last, we spa-
tially aggregate these coherent regions and examine how gen-
esis, landfall probability, and landfall count from each region

vary with seasonal ENSO and WPSH indices. We detail the
model framework in section 2. Then we describe our results
using the statistical framework in section 3, followed by a dis-
cussion with concluding remarks in section 4.

2. Data and methods

a. Tropical cyclone data

TC data in the WNP basin are obtained from the Inter-
national Best Track Archive for Climate Stewardship, ver-
sion 4 (IBTrACSv4) (Knapp et al. 2010). WNP basin TCs
are extracted from the Joint Typhoon Warming Center
(JTWC) in the IBTrACSv4 dataset from 1979 to 2020 dur-
ing the June–November (JJASON) season. We define two
variables to quantify TC genesis count and landfall proba-
bility, respectively: Ngenesis and plandfall. Genesis is defined
when a TC first achieves tropical depression status, and dissipa-
tion is defined when a TC last falls below tropical depression
status. This study only counts TCs that achieve tropical storm
status (.17.5 m s21). Landfall is determined by the time and
location a cyclone strikes a landmass greater than 1400 km2

within 6 h of the observation in IBTrACS similar to other
studies (e.g., Yang and Chen 2021; Wang and Toumi 2022).
Example landmasses greater than 1400 km2 in the western North
Pacific include Taiwan (∼32260 km2), Jeju Island (∼1826 km2),
most of the Philippines, but not the Babuyan Islands (,200 km2)
nor the surrounding islands near Okinawa (,1207 km2). A
landfall may occur in December if genesis is achieved in the
JJASON season. Long-term trends of TC genesis and land-
fall are not removed in the following analysis.

b. Reanalysis data

To assess the WPSH, we obtain European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis ERA5
monthly 850-hPa geopotential height (Z850) (Hersbach 2016),
calculate anomalies based on the 1979–2020 mean, and produce
an area average over the western North Pacific (158–258N,
1158–1508E), previously defined by B. Wang et al. (2013). Addi-
tionally, we use the Centennial in situ Observation-Based Esti-
mate SST (COBE-SST) (Ishii et al. 2005), calculate anomalies
based on the 1979–2020 mean, and obtain the monthly Niño-3.4
index (58–58N, 1708–1208W). We limit ERA5 and COBE-SST
datasets to the June–November season (JJASON) for the fol-
lowing analyses. The linear trends at each grid point are ex-
tracted from the anomalies to remove the long-term trend,
such as the global warming component.

c. Statistical framework

Landfall requires two components: (i) TC genesis and
(ii) the steering of the TC into the coastline. To keep our
framework as simple as possible, we consider landfall any-
where along the East Asia coastline. Each TC is assigned a
1 if it makes landfall anywhere along the coastline or 0 if it
does not. Once formed, a given TC thus has some probabil-
ity of making landfall. Hence, we model landfall count
(Nlandfall) by considering the temporal variability in both
seasonal TC genesis count (Ngenesis) and the probability
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FIG. 1. The Pacific subtropical high depicted as (a) the 1979–2020 climatology of JJASON
850-hPa geopotential height in geopotential meters (m; contours), 850-hPa UV winds (m s21;
arrows), and SST (8C; colors). The reference vector is located at the top-right of the plot. Z850
contour intervals are 30 m. (b) JJASON Z850 1510-m contours (blue contours) for each season
(1979–2020) and the climatological JJASON Z850 1510-m contour (black). (c) The JJASON
WPSH index and (d) JJASON Niño-3.4 index (light blue) with vertical bars representing
monthly variability of the WPSH and Niño-3.4 indices from maximum to minimum (gray bars)
and interquartile range (25th–75th percentile; black bars). The red box represents the area aver-
aged to produce the WPSH index (158–258N, 1158–1508E) from B. Wang et al. (2013) and
Camp et al. (2019). The Niño-3.4 index is computed by monthly detrended SST anomalies aver-
aged over 58S–58N, 1708–1208W.
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each individual storm to make landfall ( plandfall) as shown
in Eq. (1). The seasonal number of basinwide landfalls
(Nlandfall) is the product of a Poisson regression for sea-
sonal TC genesis (Ngenesis) and a logistic regression model-
ing landfall probability ( plandfall).

d. Statistical models

We model seasonal genesis using a Poisson regression
(i.e., log-link linear), as has been done in past work for
modeling counts (Yonekura and Hall 2011), which are
positive-definite (Elsner and Schmertmann 1993). We include
two covariates: the seasonal JJASON Niño-3.4 and WPSH
indices:

ln(Ngenesis) � bNiño3:4snl
XNiño3:4snl

1 bWPSHsnl
XWPSHsnl

1 b0, (2)

Ngenesis � exp bNiño3:4snl
XNiño3:4snl

1 bWPSHsnl
XWPSHsnl

1 b0

( )
, (3)

where Ngenesis is the seasonal genesis count, XNiño3.4 is the
Niño-3.4 index, XWPSH is the WPSH index, bNiño3.4 and
bWPSH are the regression coefficients for each, and b0 is the
intercept. The subscript “snl” indicates the seasonal JJASON
average.

For landfall probability, where landfall is either 1 or 0 for
yes or no, respectively, the preferred choice for regression is
logistic regression (Saunders et al. 2000; Christensen 2006).
We model landfall probability using a logistic regression with
Niño-3.4 and WPSH indices for each storm as covariates to
describe the log-odds:

ln
plandfall

plandfall 2 1

( )
� bNiño3:4mon

XNiño3:4mon
1 bWPSHmon

XWPSHmon

1 b0, (4)

plandfall �
exp(bNiño3:4mon

XNiño3:4mon
1 bWPSHmon

XWPSHmon
1 b0)

1 1 exp(bNiño3:4mon
XNiño3:4mon

1 bWPSHmon
XWPSHmon

1 b0)
,

(5)

where plandfall is probability of landfall for each storm, XNiño3.4

is the Niño-3.4 index, XWPSH is the WPSH index, bNiño3.4 and
bWPSH are the regression coefficients for each, and b0 is the
intercept. In the logistic model, each TC has an associated
WPSH and Niño-3.4 index. We linearly interpolate monthly
WPSH and Niño-3.4 indices into daily values and compute an
index for each TC track as described by the subscript “mon”
for monthly interpolated values. For instance, if a TC track
from genesis to dissipation lasts 15 days from 25 June to 9 July,
we will assign the daily linearly interpolated indices from
those 15 days and average them to produce a single observa-
tion for the TC track. By linearly interpolating monthly
indices into daily indices, we remove higher frequency
synoptic variability, thereby focusing on the low-frequency

FIG. 2. Climatological TC (a) genesis and (b) landfall probability
split into 108 3 108 bins (colors) from 1979 to 2020. For each given
bin, the number refers to the (a) TC genesis count and (b) TC land-
fall count. Note that some numbers are overlaid on land despite
the tile having a portion over water.

FIG. 3. Heat map of modeled seasonal landfall count for the
entire WNP basin from our statistical framework [Eq. (1)]
with seasonal Niño-3.4 and the WPSH as covariates. Extent
of tiles indicates Niño-3.4 and WPSH indices falling within
observed monthly values with the seasonal averages of those
values within the black outlined polygon.
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components of the WPSH and ENSO that is more relevant to
seasonal forecasting.

e. Model application

Using the model framework, we first apply the Poisson and
logistic regression for the entire WNP basin to describe the
dependencies of seasonal WPSH and ENSO on seasonal
basinwide landfall count. Our framework can also be applied
to any subset of TCs. In our case, we subset spatially:

Ni
landfall � Ni

genesis 3 pilandfall, (6)

where i refers to the region i out of N regions (for the entire
basin N = 1). We next apply the Poisson and logistic regres-
sions within 108 3 108 bins to describe the spatial dependen-
cies of ENSO and the WPSH on seasonal genesis count and
landfall probability within the WNP basin. By doing so, we
expect the sample size to be too small to define significant sig-
nals for any given bin, but it provides an opportunity to iden-
tify coherent regions where ENSO and the WPSH have
significant influences on TC genesis and landfall probability.
We can then aggregate the like-signed coherent regions to in-
crease sample sizes and thus achieve statistical significance as
well as allow for a simpler interpretation of the spatial

variability. We visualize observed genesis and TC tracks for
high and low landfall season in each region based on the
model’s estimate. Finally, we use the model’s estimate to
identify high and low landfall seasons to characterize the
observed track differences.

3. Results

a. Climatology of the North Pacific STH

Before describing the results of the statistical framework,
we begin simply by depicting the climatological state of the
summer–fall Pacific basin. The climatological steering flow
over the WNP basin is dominated by the WPSH, as depicted
in Fig. 1a. A broad area of atmospheric high pressure emerges
over summer and fall (June–November), encompassing most of
the North Pacific with its center over the eastern two-thirds
of the basin at about 358N. A similar feature also emerges
over the North Atlantic Ocean (Seager et al. 2003). This zon-
ally elongated North Pacific high pressure extends toward the
tropics, providing easterly trade winds and promoting warm
water in the WNP basin. Over the WNP basin, the climatolog-
ical easterlies turn to southeasterly winds, allowing a meridio-
nal component to the steering flow at the western periphery
of the Pacific STH. The steering flow over the WNP basin has

FIG. 4. Regression maps of (top) TC genesis and (bottom) TC landfall following the Poisson regression and logistic regression models
where (colors) depict regression coefficients, bWPSH and bNiño3.4, corresponding to (a),(c) Niño-3.4 and (b),(d) WPSH indices, respectively,
within 108 3 108 bins. The top number in each bin represents TC count, and the bottom number represents the associated p value corre-
sponding to the regression coefficients. The p values smaller than 0.1 (90% statistical significance level) are outlined in black. Regression
coefficients are only shown if more than 7 TCs form or otherwise are grayed out.
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significant variability due to changes in the WPSH (Camp
et al. 2015).

b. Variability in the WPSH and ENSO

To identify the mechanism responsible for steering TCs
into land or out to sea, we show the variability in the mean
June–November westward extent of the Pacific STH in Fig. 1b.
The summer and fall average 1510-m Z850 contour exhibits
significant seasonal variability. Some seasons show the 1510-m
Z850 contour extending near the Asia coastline, while other
seasons depict it in the west-central subtropical North Pacific,
corresponding to a stronger and weaker Pacific STH, respec-
tively. To quantify the aforementioned variability, Camp et al.
(2015) produced the western Pacific subtropical high (WPSH)
index shown in Fig. 1c. Seasonal variability in the WPSH ex-
hibits interannual-to-decadal variability (blue line in Fig. 1c),
suggesting season-to-season changes in the steering flow for
TCs (Elsner and Liu 2003; Wu et al. 2004).

Although low-frequency variability in the WPSH exists, we
also see intraseasonal variability as shown in Fig. 1c (vertical
bars). Generally, most seasons feature a month with both a
negative and positive WPSH index, but exceptions exist (e.g.,
1993 and 2009). Some seasons (e.g., 1986, 1994, and 2004)
feature significant intraseasonal variability, while others have
minimal intraseasonal variability (e.g., 1989, 1993, and 2005).

These intraseasonal variations in the WPSH have the poten-
tial to cause changes in TC genesis and/or landfall through
changes in the steering flow pattern (Chen et al. 2009, 2019,
2020).

In contrast with the WPSH, the summer–fall Niño-3.4 index
varies slowly at intraseasonal time scales (Fig. 1d). June–
November seasonal Niño-3.4 and WPSH indices are weakly
correlated (R = 20.10), and the monthly values are also weakly
correlated except for November (R = 0.02, 20.07, 20.25,
20.02, 0.10, and 0.60 for June, July, August, September,
October, and November, respectively). Our statistical frame-
work treats the Niño-3.4 and WPSH indices as independent
factors due to the weak monthly and seasonal correlations.

c. Basinwide TC analysis

Figure 2 shows climatological maps of TC genesis and land-
fall probability from 1979 to 2020 in the June–November TC
season, depicting regional differences between increased gen-
esis and landfall probability. Notably, more TCs form in the
108N–208N band, West of 1508E (Fig. 2a). In contrast, landfall
probability increases toward the South and West and de-
creases toward the east and north (Fig. 2b). In other words,
TCs that form near the Philippines, China, or the Vietnam
coasts have a high climatological likelihood of making landfall
(.80%). In contrast, TCs that form in the central Tropical

FIG. 5. Regression maps of (top) TC genesis and (bottom) TC landfall following the Poisson regression and logistic regression models,
where (colors) depict regression coefficients corresponding to (a),(c) Niño-3.4 and (b),(d) WPSH indices, respectively, for each coherent
region identified in Fig. 4. The top number in each bin represents TC count, and the bottom number depicts the associated p value corre-
sponding to the regression coefficient for the given region. The p values smaller than 0.1 (90% statistical significance level) are in bold.
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Pacific have a lower likelihood of making landfall (∼40%).
Meanwhile, landfall probability and TC genesis are both high
in the South China Sea and the Philippines Sea.

Using the Poisson and logistic regression approach outlined
in the section 2, we find the only statistically significant predic-
tor (i.e., p , 0.1) is the seasonal WPSH index for genesis,
while Niño-3.4 for genesis, and Niño-3.4 and WPSH for land-
fall probability are insignificant (p $ 0.1). We produce a heat
map describing the range of seasonal basinwide landfalls
based on the seasonal Niño-3.4 and the WPSH indices in
Fig. 3. Basinwide, TC landfall dependencies on Niño-3.4
and the WPSH only depict a range from 14 to 16 (within
black box depicting seasonal observations), with a weak
dependence on the WPSH index and no dependence on
Niño-3.4. Figure 3 shows increased landfalls during a weak
WPSH and a La Niña pattern. These results imply that we
must spatially decompose TC genesis and landfall in the
WNP basin to identify coherent regions where the WPSH
and ENSO influence seasonal landfall count.

d. Spatial variability in TC genesis and landfall probability

We next examine the spatial variability in the dependence
of genesis and landfall probability on the WPSH and ENSO
(Fig. 4). For genesis, Fig. 4a shows TC genesis regressed on
the Niño-3.4 index, depicting a coherent ENSO pattern with a
positive relationship in the eastern half of the WNP basin
south of 208N and a negative one in the western half of the

WNP basin. An El Niño pattern promotes a supportive ther-
modynamic environment for TCs south of 208N and east of
1508E, and an inhibiting environment west of 1508E and north
of 208N. Also in Fig. 4a, many tiles contain statistically signifi-
cant p values, mainly for the positive regression coefficients
toward the east (bold brown numbers in Fig. 4a). In contrast
with ENSO, Fig. 4b shows the WPSH having a noisy pattern,
with a general negative relationship with TC genesis, but
nearly all tiles are statistically insignificant. An exception of a
108 3 108 tile centered at 158N, 1158E over the South China
sea shows a p value of 0.07, suggesting TC genesis may
depend on the WPSH there (B. Wang et al. 2013). As a result,
June–November TC genesis is primarily driven by ENSO,
with the WPSH playing a lesser role. These results are consis-
tent with past research describing how ENSO modulates the
zonal distribution of TC genesis (Gray 1979; Chan 1985; Gray
and Sheaffer 1991; Camargo et al. 2007).

For landfall probability (Figs. 4c,d), ENSO depicts an
inconsistent relationship with no tiles achieving statistical
significance, but the WPSH is characterized by a dipolar
north–south pattern for landfall probability. Figure 4d shows
a positive relationship south of 208N and extending from the
Southeast Asia coastline into the central tropical Pacific,
whereas we see a negative relationship in the 208–308N band.
These results suggest that when cyclones form closer to the
equator, they will be steered into (away from) land during
a strong (weak) WPSH. Meanwhile, toward the north, the

TABLE 1. Table of regression coefficients and p values for regions defined in Fig. 5. The Nstorm and Plandfall columns show regression
coefficients for the WPSH and Niño 3.4 indices in each cell. All intercepts are statistically significant (.99.9%).

Region Variable Nstorm (Poisson) Pvalue (Poisson) Plandfall (logistic) Pvalue (logistic) Important terms

Southwest WPSH 20.0067 0.4433 0.0456 0.0005 Poisson: Niño-3.4
Niño-3.4 20.1274 0.025 20.005 0.9747 Logistic: WPSH

South-central WPSH 20.0083 0.5560 0.0413 0.0269 Poisson: Niño-3.4
Niño-3.4 0.3885 ,0.001 20.112 0.5079 Logistic: WPSH

East WPSH 20.0214 0.3253 20.0637 0.0261 Poisson: Niño-3.4
Niño-3.4 0.5067 1.47 3 1025 0.5244 0.0494 Logistic: Niño-3.4, WPSH

North WPSH 20.0537 0.0045 20.0386 0.0683 Poisson: Niño-3.4, WPSH
Niño-3.4 20.5489 ,0.001 0.0965 0.7455 Logistic: WPSH

TABLE 2. Table of Poisson and logistic regression equations for regions defined in Fig. 5 for only statistically significant variables
in Table 1 (right column). All predictors exceed the 95% statistical significance level. We also show the climatological storm count,
landfall probability, and number of landfalls for each region in columns Nstorm, Plandfall, and Nlandfall, respectively.

Region Equation Nstorm (storms yr21) Plandfall Nlandfall (landfalls yr
21)

Southwest ln(Ngenesis) = 20.1213XNiño3.4 1 2.5017 12.26 0.82 10.09

ln
plandfall

plandfall 2 1

( )
� 0:045 65XWPSH 1 1:6665

South-central ln(Ngenesis) = 20.3860XNiño3.4 1 1.5471 4.95 0.58 2.86

ln
plandfall

plandfall 2 1

( )
� 0:0378XWPSH 1 0:3257

East ln(Ngenesis) = 20.4935XNiño3.4 1 0.6851 2.17 0.29 0.62

ln
plandfall

plandfall 2 1

( )
� 0:5244XNiño3:4 2 0:0637XWPSH 2 1:3033

North ln(Ngenesis) = 20.5489XNiño3.4 2 0.0537XWPSH 1 0.9644 2.93 0.52 1.52

ln
plandfall

plandfall 2 1

( )
� 20:0407XWPSH 1 0:0249
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negative relationship suggests when TCs form there, they will
be steered out to sea (into land) during a strong (weak) WPSH.
A strong WPSH corresponds to enhanced easterlies toward the
south, enhanced northerlies at the western periphery of the
STH, and enhanced westerlies toward the north (B. Wang et al.
2013). The opposite is true for a weaker WPSH. These results
complement Fig. 1a, showing climatological steering flow hav-
ing a more easterly component toward the south and a westerly
component to the north.

Based on the zonal contrast of TC genesis when regressed
on the Niño-3.4 index (Fig. 4a) and the meridional contrast of
TC landfall when regressed on the WPSH index (Fig. 4d),
we may define four coherent regions for TC genesis and

landfall probability dependencies on ENSO and the WPSH
(Fig. 5 and Table 1). Statistical significance is achieved in all
regions when we regress TC genesis upon the Niño-3.4
index (Fig. 5a), and only the north region when TC genesis
is regressed upon the WPSH index (Fig. 5b). For TC landfall
probability, statistical significance is achieved in all regions
when we regress TC landfall on the WPSH index (Fig. 5d),
and only the east region in the central tropical Pacific when
TC landfall is regressed on the Niño-3.4 index (Fig. 5c). These
results imply that these four regions have distinct dependen-
cies of ENSO and the WPSH on seasonal landfall count.

In the southwest region in Fig. 5, which accounts for 55%
of all TCs, we find that the Niño-3.4 index is statistically

FIG. 6. Heat map of modeled seasonal landfall count for each given region defined in Fig. 5 from our statistical
framework [Eq. (1)] with seasonal Niño-3.4 and the WPSH as covariates. Extent of tiles indicates Niño-3.4 and
WPSH indices falling within observed monthly values with the seasonal averages of those values within the black out-
lined polygon.
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significant for TC genesis and WPSH index for TC landfall
(Table 1). Similarly, we find the same variables to be statisti-
cally significant for the south-central region. These two re-
gions account for 77% of all TCs, yet they have opposing
Niño-3.4 coefficients due to the close inverse relationship
between the SST anomalies in the western Pacific warm
pool and those in the Niño-3.4 region (Yonekura and Hall
2011; Capotondi et al. 2015). The western extent of the posi-
tive SST anomalies during an El Niño correspond to a
north–south boundary at 1508W, describing the opposite
phase coefficients between the southeast and south-central
regions in Figs. 4a and 5a (Williams and Patricola 2018). In
the east region, which accounts for only 10% of all TCs, the
Niño-3.4 index is a statistically significant predictor for TC
genesis and both Niño-3.4 and the WPSH indices are statis-
tically significant for TC landfall. Last, the north region
shows both Niño-3.4 and the WPSH indices as statistically
significant terms for TC genesis, but only the WPSH for TC
landfall. In the following analysis, we remove the statisti-
cally insignificant predictors, rerun the statistical models,
and show updated regression equations in Table 2. None of
the regression coefficients change phase, with only minor
changes in the coefficient’s amplitude from Table 1.

To examine the range of landfall possibilities, we produce
heat maps of estimated landfall count for storms that form
within each region in Fig. 6 using the equations in Table 2 to
highlight the range of modeled seasonal landfall counts for a
given seasonal WPSH and Niño-3.4 index. In the southwest re-
gion, the number of landfalls is increased from ∼8 to ∼13 during
a strong La Niña and a strong WPSH compared to a strong
El Niño and weak WPSH (Fig. 5d). This result indicates that

La Niña conditions (positive SST anomalies in southwest
WNP) fosters increased TC genesis, and subsequently, during
a strong WPSH, those TCs are more likely to be steered into
land (Table 2).

For the south-central region (Fig. 6d), an El Niño and a
strong WPSH increases the number of landfalls from ∼1 to ∼7
compared to a La Niña and weak WPSH. For the eastern region
encompassing the central and North Pacific (Fig. 6b), an El Niño
favors an increase from 0 to ∼3 landfalls due to the compounding
effect of ENSO on genesis and landfall probability (third row in
Table 2). Last, the north region shows a significant increase in
landfalls during a weak WPSH with a lesser effect of ENSO.
This significant increase in landfalls in the northern region during
a weak WPSH is related to the compounding effect of a negative
WPSH index on genesis and landfall probability (last row in
Table 2) with a possible range from 0 to ∼5 landfalls. While we
find a dependence of seasonal ENSO and theWPSH on seasonal
landfalls in these four regions, when we add them together to
estimate total basinwide landfall count in Fig. 7, we find a
weak dependence, similar to when we apply the statistical
model to the basinwide seasonal genesis and landfalls in Fig. 3.
We see a more complex structure to the dependence in Fig. 7
than found in Fig. 3 because the increased degrees of freedom
that comes from modeling the four regions separately. This
result further supports a weak dependence of seasonal ENSO
and the WPSH on basinwide landfalls. Instead, Fig. 6 supports
strong, offsetting regional variations on the dependence of ENSO
and theWPSH on seasonal landfalls.

e. Tracks in high versus low predicted landfall seasons

Last, Figs. 8 and 9 depict observed composite plots of TC
genesis points and their associated tracks for each region based
on seasons with high and low landfall counts from our statistical
framework (bright and dark colors in Fig. 6, respectively). In
the southwest region, the landfall probability ranges from
∼89% to ∼74% for high and low landfall composites, respec-
tively (Figs. 8c and 9c). The lower landfall probability for low
composites is due to more tracks recurving away from the Asia
coastline, in agreement with a negative mean25.8 WPSH index
associated with TC tracks in those composite seasons (Fig. 9c).
In contrast, Fig. 8c shows more straight-lined tracks for high
composite seasons associated with a strong 17.9 WPSH index.
Meanwhile, the south-central region shows a greater landfall
probability difference: ∼59% compared to ∼17% for high
and low landfall composites, respectively (Figs. 8d and 9d).
Likewise, we see significantly more straight-lined TC tracks
for high composite seasons compared to more recurving TC
tracks in low composite seasons, agreeing with negative
27.4 and positive 16.1 WPSH indices, respectively.

For the east and north regions, more cyclones form and
make landfall for high landfall composite seasons in contrast to
low landfall composite seasons (Figs. 8a,b and 9a,b). For low
composite seasons, only a few storms form in east and north
regions. In the east region for high composite seasons, many
cyclones track toward the Japan coast associated with a WPSH
of 21.16, but a Niño-3.4 index of 11.55 (Fig. 8b). This result is
consistent with the compounding positive effect of ENSO for

FIG. 7. Modeled seasonal basinwide landfall count calculated by
summing modeled landfall counts from all four regions based on
Fig. 6. Extent of tiles indicate Niño-3.4 and WPSH indices falling
within observed monthly values with the seasonal averages of those
values within the black outlined polygon.
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both genesis and landfall probability in the east region (Table 2).
For the north region in Fig. 8a, the high composite shows TC
tracks making landfall in northern China, the Korean Peninsula,
and Japan, but the WPSH is near its climatological mean
(20.85). However, the Niño-3.4 is 20.58, a significant predictor
for TC genesis in the north region (Table 2). Based on the signifi-
cant regression coefficients in our framework and the high land-
fall composites in the north, TC genesis may be the dominant
component for seasonal landfalls there.

Although not explicitly modeled, a relationship exists between
seasonal TC genesis and seasonal TC landfall probability in the
east region (R = 0.5), whereas weak relationships exist in the
other regions (R = 20.04, 0.11, and 20.07 in the southwest,
south-central, and north regions). As a result, when more storms
form in the east region, we have increased landfall probability,
along with the effects of the WPSH and ENSO. Overall, the ob-
served composites based on the modeled seasonal landfall counts
help to visualize the dependencies identified by our statistical
framework for estimating regional variation in high and low land-
fall seasons in theWNP basin.

4. Discussion and conclusions

TC landfall depends on both the genesis of a TC and the prob-
ability that the TC will make landfall. This work developed a sim-
ple statistical framework to estimate seasonal landfall count
dependencies on ENSO and the WPSH using the product of
a Poisson model for genesis and a logistic model for landfall
probability. Our Poisson genesis model demonstrates that ENSO
modulates the zonal distribution of summer–fall TC genesis,

consistent with previous studies (Gray 1979; Chan 1985; Dong
1988; Wu and Lau 1992; Lander 1994; Chia and Ropelewski
2002; Clark and Chu 2002; Zhao et al. 2010). Meanwhile, the
logistic landfall probability model demonstrates that the WPSH
modulates the meridional distribution of landfall probability
due to variations of the western periphery of the Pacific sub-
tropical high. The key findings of this study are as follows:

1) Basinwide seasonal landfall count shows a weak depen-
dence on ENSO and the WPSH.

2) Four coherent regions in the WNP basin characterize the
dependence of ENSO and the WPSH on the seasonal
number of landfalls.

3) An El Niño enhances TC genesis in the eastern WNP
basin and inhibits TC genesis in the western WNP basin,
whereas a strong WPSH increases landfall probability in
the southern WNP basin and decreases landfall probabil-
ity in the northern WNP basin.

4) Accounting for ∼55% of total WNP cyclones, the south-
west WNP basin has the greatest seasonal number of TC
landfalls, but the south-central, eastern, and northern re-
gions in the WNP basin show a wide range of seasonal TC
landfalls depending on ENSO and the WPSH.

5) Our statistical framework shows high landfall seasons are
characterized by increased straight-lined tracks associated
with a stronger WPSH, whereas low landfall seasons are
characterized by recurving tracks out to sea in the north-
ern Pacific associated with a weaker WPSH.

In the southwest region, seasonal landfall count increases
during La Niña and a strong WPSH. In the south-central

FIG. 8. Composite tropical cyclone genesis points and tracks based on five observed seasons that have Niño-3.4 and WPSH indices
located in high modeled landfall count (bright colors) on Fig. 6 for each region. The terms Ngenesis, Nlandfall, and plandfall describe the
number of cyclones, the number of those cyclones that made landfall, and the composite seasonal landfall probability, respectively.
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WNP basin, the seasonal landfall count increases sharply dur-
ing an El Niño and a strong WPSH. In the east WNP basin,
seasonal landfall count increases during an El Niño and a
weak WPSH. Last, in the north WNP basin, seasonal landfall
count increases during a La Niña and a weak WPSH.

One novel aspect of this study is decomposing TC activity
spatially into 108 3 108 bins to identify distinct regions where
genesis and landfall probability are sensitive to environmental
conditions through the product of a Poisson and logistic
model. Through trial and error, 108 3 108 bins provide the
highest resolution to capture the distinct east–west dipole in
TC genesis and the north–south dipole in landfall probability
given the limited data. Although we use the Niño-3.4 and
WPSH indices, this framework was designed to be flexible,
such that it could incorporate additional parameters that are
sensitive to genesis and landfall probability. For instance,
our study does not differentiate between ENSO flavors such
as eastern or central-type events, nor the Pacific meridional
mode (PMM) and the Pacific decadal oscillation (PDO)
(Chan 2008; Zhang et al. 2012; Capotondi et al. 2015). Nor
does this study consider other atmospheric parameters that
may have a dependence on TC genesis or landfall probabil-
ity, such as the tropical intraseasonal oscillation (ISO), the
Madden–Julian oscillation (MJO), or the North Atlantic
Oscillation (NAO) (Chan 1995; Madden and Julian 1972;
B. Wang et al. 2013; Chen et al. 2019; Liu et al. 2021; Nakano
et al. 2021). Instead, to introduce this statistical framework as
simply as possible, we focused on two low-frequency para-
meters that modulate landfalls on monthly-to-seasonal time
scales. Furthermore, we simply define landfall as “yes” or

“no”: in other words, the framework could easily be adopted
and modified to focus on landfall in a specific region such as
the Southeast Asia coast or the Japan coast instead of the en-
tire Asia coastline. In this study, our goal was not to predict
TC landfalls but rather to introduce a new framework eluci-
dating the environmental controls on seasonal landfall by con-
sidering TC genesis and landfall separately. The notion that
high SSTs associated with ENSO support more TCs and
stronger steering flow associated with a WPSH promotes
more landfalls are physically intuitive. Our model framework
serves to quantify these dependencies on genesis and landfall.

Our statistical framework may be applied to other ocean
basins, such as the Indian Ocean, the South Pacific, or the
North Atlantic (Ramsay 2017). For instance, in the Atlantic
basin, Hart et al. (2016) show a similar spatial pattern of land-
fall probability as found here in the WNP and suggest vari-
ability in landfall count is attributed to ENSO. Whereas in
our statistical framework, we consider ENSO primarily as a
thermodynamic variable for WNP genesis, another variable
such as the Atlantic multidecadal oscillation (AMO) may be a
better thermodynamic predictor to assess dependencies on
seasonal Atlantic landfalls. Other studies show similar models
to assess physical mechanisms and estimate TC genesis and
landfalls in the north Indian Ocean through Poisson regres-
sions and generalized additive models (Wahiduzzaman et al.
2021; Wahiduzzaman and Yeasmin 2019). Another study de-
composed TC tracks into basinwide TC frequency, spatial
genesis distribution, and preferable tracks, showing a relation-
ship between decadal components of ENSO and steering flow
related to TC tracks (Yokoi and Takayabu 2013). Compared

FIG. 9. As in Fig. 8, but for seasons that have Niño-3.4 and WPSH indices located in low modeled landfall count (dark colors) in Fig. 6 for
each region.
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to previous studies, we attempt to estimate regional, seasonal
TC landfall count based on the dependencies of certain envi-
ronmental parameters.

While we treat ENSO and the WPSH as independent in
our statistical framework due to the weak summer and early
fall relationship, studies show that these two variables may co-
vary through ocean–atmosphere interactions (Xie et al. 2016).
In contrast to our study, B. Wang et al. (2013) found a signifi-
cant relationship between the WPSH and WNP basin TC gen-
esis through a principal component (PC) analysis of the
WPSH. They decomposed the JJA WPSH into two modes,
accounting for 74% of WPSH variability: PC1 related to the
zonal dipole of SST anomalies in the Indo-Pacific region
and PC2 related to ENSO. Applying a similar method for the
JJA period, we also capture a similar east–west dipole in TC
genesis, but decomposing the WPSH into two modes obscures
the north–south dipole in TC landfall probability found in this
study (not shown). A limitation of our simple framework is it
cannot differentiate between modes of the WPSH if this
framework is applied utilizing ENSO and WPSH predic-
tions from a dynamical model. Another proposed mecha-
nism for the WPSH suggests that post-ENSO summers can
exert a significant impact on the WPSH through changes
in SST anomalies in the Indian Ocean, which induces a
Matsuno (1966)–Gill (1980) response that impacts the WPSH
(Xie et al. 2016). In addition to Indian–tropical Pacific inter-
basin ocean interactions, a source of WPSH and ENSO vari-
ability may originate from the tropical Atlantic Ocean or the
North Atlantic Oscillation (B. Wang et al. 2013; Johnson et al.
2020; Chikamoto et al. 2020). Some studies further suggest
TCs may play an active role in ENSO dynamics. Because
TCs are more common in El Niño years, they may contrib-
ute to westerly wind bursts and potentially amplify El Niño
events through Bjerknes feedbacks (Keen 1982; Harrison
and Giese 1991; Kindle and Phoebus 1995; Sobel and Camargo
2005). These studies suggest a complex relationship between
ENSO, the WPSH, and WNP TC activity, warranting contin-
ued research.
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