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Finite Sample Analysis for Structured Discrete System Identification
Xiaotian Xie, Dimitrios Katselis, Carolyn L. Beck, Fellow, IEEE , and R. Srikant, Fellow, IEEE

Abstract— We consider a discrete-time dynamical system over
a discrete state-space, which evolves according to a structured
Markov model called Bernoulli Autoregressive (BAR) model. Our
goal is to obtain sample complexity bounds for the problem of
estimating the parameters of this model using an indirect Maximum
Likelihood Estimator. Our sample complexity bounds exploit the
structure of the BAR model and are established using concentra-
tion inequalities for random matrices and Lipschitz functions.

Index Terms— Discrete state-space dynamical systems,
Identification, Markov chains, Sample complexity

I. INTRODUCTION

System identification aims to build mathematical models of dynam-
ical systems from measurements. Extensive prior work has focused
on the asymptotic properties of different identification methods [1]–
[4]. The necessity of understanding how many observations in a
single trajectory are sufficient to estimate model parameters within a
prescribed level of confidence motivates more recent trends in non-
asymptotic analysis [5]–[10], most of which focus on Linear Time
Invariant (LTI) systems. To properly deal with the dependencies in
observed data, various techniques have been considered in existing
works, e.g., mixing-time arguments [8], [11], Mendelson’s small
ball method [6], [7], [10], [12], [13], and concentration inequalities
for random matrices [14]–[16]. Relying on mixing-time arguments,
one can treat dependent data as almost independent. Naturally, the
resulting bounds degrade if the considered process mixes slowly, e.g.,
in linear dynamical systems with state matrix spectral radius close to
one. In [6], the authors avoid mixing-time arguments by introducing
the Block Martingale Small Ball (BMSB) condition, which corre-
sponds to an adaptation of Mendelson’s small ball method. Their
analysis shows that in the marginal stability regime the statistical
performance of the ordinary least-squares estimator depends on the
minimum eigenvalue of the finite-time controllability Gramian.

Moreover, network (or graph) modeling has recently received
increasing attention in the machine learning literature with various
applications, e.g., in system biology [17], economics [18], epidemi-
ology [19] and social sciences [20]. System identification can be
used as an approach to perform topology inference and edge weight
estimation.

In this note, we investigate the problem of identifying a discrete-
time, discrete-state dynamical system, whose state evolves based on
a particular Markov chain model, called Bernoulli Autoregressive
(BAR) model [4], [8]. For a directed graph with p nodes and ∀k ≥ 0,
the BAR model describes the dynamics of each node i ∈ [p] via

Xi(k + 1) ∼ Ber
(
a⊤i X(k) + biWi(k + 1)

)
.
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Here, X(k) ∈ {0, 1}p denotes the state vector at time k, {Wi(k +
1) ∼ Ber(ρwi), i ∈ [p]} correspond to independent Bernoulli random
variables and X(0) ∼ µ, where µ is a probability measure on {0, 1}p.
The tuples (ai, bi, ρwi) ∈ Rp×R×R, i ∈ [p], to be explicitly defined
in Section II, are the BAR model parameters. The statement of the
BAR model identification problem relies on these parameter tuples.

Binary-state models of similar nature to our BAR model include the
voter model and related variants [21]–[24], and the ALARM model
[25]. Studies of such models on networks originate from [21]. The
authors in [21] propose a linear voter model to describe interacting
systems, where individuals holding one of two opinions update their
stances under the influence of their ‘friends’. It is worth noting that
such systems will reach consensus in finite time, which corresponds
to an absorbing state in the context of Markov chains. The voter
model is also applicable in situations such as competition for territory
between two distinct populations [26], spread of diseases (or viruses)
in a population [19], [27], and particle interactions in statistical
mechanics [28]. In the simplest case, the linear voter model is of
the same form as the BAR model without the noise term. However,
in many real-life cases, such as in social networks, it is uncommon
that people can eventually reach (and remain in) a consensus. Also,
people’s opinions can be influenced by unexpected factors other
than their friends. Compared to the voter model, the presence of
Bernoulli noise in the BAR model eliminates the absorbing states.
Moreover, the parameterized Bernoulli noise allows for capturing
diffusion of opinions [23], herding behaviors in financial markets
[29], and regulatory interactions in cellular systems [30], [31]. The
BAR model can be reduced to the linear voter model by simply
setting bi = 0, i ∈ [p]. In addition, the original voter model in
[21] only considers positive influence relationships, while negative
influence relationships, commonly existing in real-life networks, are
not captured. For example, in gene regulatory networks [17], [30],
[31], products of a fraction of genes may have inductive or prohibitory
influence on the expression of other gene fractions. The ALARM
model [25], some variants of the voter model [32], and the generic
BAR model [4], [8] take both relationships into account and therefore,
they have broader range of applications.

Our BAR model is also intimately related to a generalized au-
toregressive linear model framework [33], [34], which covers a class
of discrete-valued processes including Poisson and Bernoulli autore-
gressive processes. The definitions of the Bernoulli autoregressive
model in this line of literature are significantly different from ours. In
[33], the model is structurally similar to the aforementioned ALARM
model, where the Bernoulli parameter relies on the logistic function.
Although the model in [34] can stochastically capture ours and those
with higher-order time lags by appropriate choices of the link func-
tions fi, the BAR model in our setting has a more natural form of a
dynamical system driven by noise. Moreover, the proposed estimation
approaches in [25], [33], [34] are primarily focused on inferring
the unknown parameters with sparsity constraints; the techniques
developed therein for the finite-time analysis follow different well-
established ideas such as Restricted Strong Convexity.

Let A = [a1, . . . , ap]
⊤ be the BAR system matrix with entries

reflecting the underlying connectivity of the network. Define Θ =[
A, c

]
∈ Rp×(p+1), where c = [c1, c2, · · · , cp]⊤ and ci = biρwi .

Θ corresponds to a reparameterization of the BAR model, which is
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aligned with the underlying stochastic dynamics. In this note, our
focus is on deriving a finite-sample bound for the Frobenius norm of
the identification error Θ̂ − Θ of an indirect Maximum Likelihood
Estimator Θ̂ for the BAR model. The major challenge in this
derivation is two-fold. From the perspective of system identification,
standard techniques for the finite-sample analysis of linear systems
cannot be used due to the significant dependence on the linearity of
these systems and the Gaussian properties that the laws of iterates
enjoy [5]–[7], [9], [10], [35], as opposed to the discreteness of the
BAR model. From the point view of discrete-time Markov chains,
the difficulty lies in the exponential growth of the state space, and
therefore, of the size of the transition probability matrix, which is
2p×2p for a system with p nodes. Our main result shows that given

T = Ω

(
p3 log p

(1−r)2ϵ2 min{λ2
min(Π),λmin(Π)}

)
observations from a

single trajectory of the stationary BAR chain, our estimator is ϵ-
close in the Frobenius-norm induced metric to the true Θ with high
probability. Here, ϵ > 0 is the magnitude of the identification error,
r ∈ [0, 1) is the underlying Dobrushin coefficient, and λmin(Π) is
the minimum eigenvalue of an augmented version of the steady-state
correlation matrix. This sample complexity bound can be extended
to account for any initial measure of the underlying BAR chain.
Moreover, by including appropriate bounds on the model parameters
similar to those in [8] in the description of the BAR parameter space,
we show that λmin(Π) ≳ 1

p . This results in sample complexity

T = Ω
(

p5 log p
(1−r)2ϵ2

)
or T = Ω

(
p5 log p

ϵ2

)
for r̄-contractive BAR

chains.

II. PRELIMINARIES

The BAR model, first introduced in [8], corresponds to a Markov
chain defined over a directed graph G = (V, E) with |V| = p
nodes, each node associated with a binary-valued state element. More
specifically, ∀i ∈ [p] and ∀k ≥ 0,

Xi(k + 1) ∼ Ber
(
a⊤i X(k) + biWi(k + 1)

)
. (1)

Here, X(k) ∈ {0, 1}p denotes the state vector at time k and
{Wi(k+1) ∼ Ber(ρwi)}

p
i=1 are independent Bernoulli noise random

variables, independent of X(t) for any t < k+1, with ρwi ∈ (0, 1).
Suppose that X(0) ∼ µ, where µ is a probability measure on
{0, 1}p. Conditioned on X(k), the entries of X(k+1) are mutually
independent. Moreover, we assume that

∑p
j=1 aij + bi ≤ 1, aij ∈

[0, 1), bi ∈ (0, 1], ∀i ∈ [p]. Here, the bi’s are assumed to be nonzero
for persistent excitation.

Let A = [a1, a2, · · · ,ap]⊤. The entries of A intrinsically reflect
the underlying connectivity of the graph, specifically note that

(j, i) ∈ E ⇐⇒ aij > 0, ∀i, j ∈ [p], (2)

where the ordered pair (j, i) denotes a directed edge from node j
to node i. Moreover, by noting that P (Xi(k + 1) = 1|X(k)) =
a⊤i X(k)+biρwi for every i ∈ [p], we define ci = biρwi and let c =

[c1, c2, · · · , cp]⊤. With these definitions, the effective parameter set
of the BAR model is given by

Θ =

{
Θ = [A, c]

∣∣∣ p∑
j=1

aij + bi ≤ 1, aij ∈ [0, 1), ∀i, j ∈ [p],

bi ∈ (0, 1], ci = biρwi > 0, ∀i ∈ [p]

}
, (3)

which is also stochastically equivalent to

Θ =

{
Θ = [A, c]

∣∣∣ p∑
j=1

aij + ci < 1, aij ∈ [0, 1), ∀i, j ∈ [p],

ci > 0, ∀i ∈ [p]

}
(4)

for Xi(k + 1) ∼ Ber
(
a⊤i X(k) + ci

)
, ∀i ∈ [p], conditionally

independent given X(k) for any k ≥ 0 . Note that in (3) we do not
include in Θ the auxiliary parameters bi, ∀i ∈ [p], since these only
affect the transition probabilities via the products ci = biρwi , ∀i ∈
[p]. In this note, we focus on estimating Θ =

[
A, c

]
∈ Rp×(p+1),

which corresponds to identifying the stochastic dynamics and the
connectivity of the underlying network.

Clearly, {X(k)}k≥0 is an irreducible and aperiodic Markov
chain with finite state space {0, 1}p. We denote by π the as-
sociated equilibrium measure. Our goal is to estimate the pa-
rameters of the model from T + 1 observations of the BAR
sequence, i.e., {X(k)}Tk=0. Denote by ϑu,r,l = P ((·)r = l|u)
the probability of transitioning from state u ∈ {0, 1}p to a
state with r-th element equal to l ∈ {0, 1}. For any states
u,v ∈ {0, 1}p, let Nuv =

∑T−1
k=0 1 (X(k) = u,X(k + 1) = v)

and Nu,r,1 =
∑T−1

k=0 1 (X(k) = u, Xr(k + 1) = 1). Moreover, let
Nu =

∑
v Nuv =

∑T−1
k=0 1 (X(k) = u) be the amount of time

spent in state u. Define yT,r =
[
ϑX(0),r,1, . . . , ϑX(T−1),r,1

]⊤
and

ŷT,r =
[
NX(0),r,1/NX(0), . . . , NX(T−1),r,1/NX(T−1)

]⊤
, where

the latter contains plug-in estimators of the entries of the former
corresponding to solutions of a Maximum Likelihood estimation
problem [4]. Here, we use the convention that

Nu,r,1
Nu

= 0 if Nu = 0,
∀r ∈ [p]. Also, let ZT ∈ R

T×(p+1) be a matrix with k-th row[
X(k)⊤, 1

]
for k = 0, 1, . . . , T − 1. With the above definitions, for

any r ∈ [p] we can write
NX(0),r,1
NX(0)

...
NX(T−1),r,1
NX(T−1)

 =


X(0)⊤ 1

...
...

X(T − 1)⊤ 1

 ·
[
âr
ĉr

]

or ŷT,r = ZT θ̂r,

where âr and ĉr are estimators of ar and cr , respectively.
Assuming Z⊤

T ZT is invertible, we get the following estimator:

θ̂r = [̂Θ]
⊤
r,: =

(
Z⊤
T ZT

)−1
Z⊤
T ŷT,r, ∀r ∈ [p].

Therefore,

Θ̂ =


θ̂
⊤
1
...

θ̂
⊤
p

 =


ŷ⊤
T,1ZT

(
Z⊤
T ZT

)−1

...

ŷ⊤
T,pZT

(
Z⊤
T ZT

)−1

 . (5)

In the rest of the paper, we derive a finite-sample bound for the
Frobenius norm of the identification error Θ̂−Θ, i.e., we bound the
probability

P (∥Θ̂−Θ∥F < ϵ).

For convenience, we will assume that Θ lies in the interior of the
set Θ and also that ϵ is sufficiently small so that ∥Θ̂ − Θ∥F < ϵ
implies that Θ̂ ∈ Θ. The results can be extended to the case where
Θ is not an interior point of Θ by projecting the estimator onto the
closure of Θ.
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III. MAIN RESULTS

In this section, we study the finite-sample properties of the esti-
mator Θ̂. Notice that∥∥∥Θ̂−Θ

∥∥∥
F

≤ √
p
∥∥∥Θ̂−Θ

∥∥∥
2
. (6)

In the sequel, we will focus on deriving a high-probability bound on
the event {∥Θ̂−Θ∥2 < ϵ̄}, ∀ϵ̄ > 0.

Let YT =
[
yT,1, · · · ,yT,p

]⊤ and ŶT =
[
ŷT,1, · · · , ŷT,p

]⊤.
By (5) we can write

Θ̂ = ŶTZT

(
Z⊤
T ZT

)−1
and Θ = YTZT

(
Z⊤
T ZT

)−1

whenever Z⊤
T ZT is invertible. Note that a necessary condition for

this invertibility is that T ≥ p+ 1. We can bound the error as

∥Θ̂−Θ∥2 =

∥∥∥∥(ŶT −YT

)
ZT

(
Z⊤
T ZT

)−1
∥∥∥∥
2

≤
∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
·
∥∥∥∥(Z⊤

T ZT

)−1
∥∥∥∥
2

=

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2

λmin

(
Z⊤
T ZT

) , (7)

where λmin(·) denotes the smallest eigenvalue of a matrix. Then,
for any ϵ̄ > 0, ξ > 0 we have that

Pµ

(
∥Θ̂−Θ∥2 ≥ ϵ̄

)
= Pµ

(
∥Θ̂−Θ∥2 ≥ ϵ̄, λmin

(
Z⊤
T ZT

)
< ξ
)

+ Pµ

(
∥Θ̂−Θ∥2 ≥ ϵ̄, λmin

(
Z⊤
T ZT

)
≥ ξ
)

≤ Pµ

(
λmin

(
Z⊤
T ZT

)
< ξ
)

+ Pµ

(
∥Θ̂−Θ∥2 ≥ ϵ̄, λmin

(
Z⊤
T ZT

)
≥ ξ
)

≤ Pµ

(
λmin

(
Z⊤
T ZT

)
< ξ
)
+ Pµ

(∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̄ξ

)
.

(8)

The following analysis provides bounds on the two terms on the
right-hand side of (8).

Common techniques to show that λmin

(
Z⊤
T ZT

)
is not too

small with high probability include anti-concentration results [36]
and Mendelson’s small-ball method [6], [7]. Here, we employ the
following lemma from [9] together with covering arguments:

Lemma 1: (Lemma 1, [9]) Consider X ∈ Rm×n, n ≤ m and let
M ∈ Rn×n be a full rank matrix. Let also τ > 0 and assume that∥∥∥(XM)⊤ XM− In

∥∥∥
2
≤ max (τ, τ2). (9)

Then,
1− τ

s1(M)
≤ sn(X) ≤ · · · ≤ s1(X) ≤ 1 + τ

sn(M)
,

where s1(·) ≥ · · · ≥ sn(·) denote the singular values of the involved
matrices arranged in non-increasing order.

Note that for τ ∈ (0, 1), the right-hand side of (9) becomes
max (τ, τ2) = τ . By this lemma, it suffices to show that for a
sufficiently large T , the event∥∥∥(ZTM)⊤ (ZTM)− Ip+1

∥∥∥
2
≤ τ (10)

occurs with high probability for an appropriate choice of M and
τ ∈ (0, 1). Further, the term

∥∥∥(ZTM)⊤ (ZTM)− Ip+1

∥∥∥
2

can be
viewed as the supremum of the deviation of a Lipschiz function
from its expectation. Then, we can use the concentration results by
Marton [37] and Bobkov and Götze [38] which together show that
Lipschitz functions of a finite-state Markov chain with Dobrushin

coefficient less than one concentrate around their expectations with
high probability. This leads to the following result:

Proposition 1: Suppose that the BAR sequence {X(k)}Tk=0 is
initialized with the stationary measure π, i.e., X(0) ∼ π. Let
r < 1 be the Dobrushin coefficient. Then for any ε ∈ [0, 1/2) and
τ ∈ (0, 1),

Pπ

(∥∥∥(ZTM)⊤ (ZTM)− Ip+1

∥∥∥
2
≥ τ

)
≤ 2

(
1 +

2

ε

)p+1

exp

(
−Tλ2min(Π)(1− r)2(1− 2ε)2τ2

2p(p+ 1)

)
,

where M =
(
Eπ

[∑T−1
k=0 X̃(k)X̃(k)⊤

])−1/2
= (TΠ)−1/2, Π =

Eπ[X̃(k)X̃(k)⊤] and X̃(k) =
[
X(k)⊤, 1

]⊤
for k = 0, 1, . . . , T −

1.
A proof of Proposition 1 can be found in the Appendix.
By Lemma 1, the following inequality holds with high probability

as a direct consequence of the previous proposition:

λmin(Z
⊤
T ZT ) ≥

(1− τ)2

λ2max(M)
= T (1− τ)2λmin (Π) .

Let µ be any measure on {0, 1}p. Define
∥∥µ
π

∥∥2
2,π

=
∑2p

i=1
µ2
i

πi
∈

[1,∞], which is a measure of nonstationarity and satisfies
∥∥µ
π

∥∥
2,π

≤
1/

√
mini πi [39], [40]. We consider the following proposition from

[39] to extend Proposition 1 for any initial distribution.
Proposition 2: (Proposition 3.10, [39]) Let {X(k)}n−1

k=0 be a time-
homogeneous Markov chain with state space X , initial distribution µ,
and stationary distribution π. Suppose that g (X(0), . . . , X(n− 1))
is a real-valued measurable function. Then,

Pµ (g (X(0), . . . , X(n− 1)) ≥ t)

≤
∥∥∥µ
π

∥∥∥
2,π

√
Pπ (g (X(0), . . . , X(n− 1)) ≥ t). (11)

With the previous two propositions and Lemma 1, we have the
following conclusion:

Proposition 3: Suppose that the BAR sequence {X(k)}Tk=0 is
initialized with measure µ, i.e., X(0) ∼ µ. For any ε ∈ [0, 1/2),
τ ∈ (0, 1) and δ ∈ (0, 1),

Pµ

(
λmin

(
Z⊤
T ZT

)
≥ T (1− τ)2λmin (Π)

)
≥ 1− δ

when

T ≥

4p(p+ 1) log

√
2∥µ

π ∥2,π(1+ 2
ε )

p+1
2

δ


λ2min (Π) (1− r)2(1− 2ε)2τ2

.

Now let us consider Pµ

(∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̄ξ

)
in (8) for

ξ = T (1 − τ)2λmin (Π). A high probability bound on the event
E =

{∥∥∥ 1
T

(
ŶT −YT

)
ZT

∥∥∥
2
< ϵ̃
}

for any ϵ̃ > 0 is stated in the
following result:

Proposition 4: Suppose that the BAR sequence {X(k)}Tk=0 is
initialized with measure µ, i.e., X(0) ∼ µ. Then for any ϵ̃ > 0
we have that

Pµ

(
1

T

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̃

)

≤ (2p+ 1) exp

− ϵ̃2T

p(p+1)
2 +

2
√

p(p+1)ϵ̃
3

 .

The proof is provided in the Appendix and relies on the matrix
Freedman inequality [41].

The main result of this note can be stated now.
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Theorem 1: Let the Dobrushin coefficient of the BAR model
be denoted by r. Suppose that the BAR sequence {X(k)}Tk=0 is
initialized with measure µ, i.e., X(0) ∼ µ. Then

Pµ

(∥∥∥Θ̂−Θ
∥∥∥
F

< ϵ
)
≥ 1− 2δ

when

T ≥max

{4p(p+ 1) log

√
2∥µ

π ∥2,π(1+ 2
ε )

p+1
2

δ


λ2min (Π) (1− r)2(1− 2ε)2τ2

,

log

(
1 + 2p

δ

) p2(p+1)
2 + 2

3p
√

(p+ 1)(1− τ)2λmin (Π) ϵ

(1− τ)4λ2min (Π) ϵ2

}
for any ϵ > 0, τ ∈ (0, 1), ε ∈ [0, 1/2) and δ ∈ (0, 1/2).

Proof: We begin by noting that r < 1 for the BAR model since
the Markov chain can move from any state to any other state in one
step with non-zero probability. By Proposition 4,

Pµ

(
1

T

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̄(1− τ)2λmin (Π)

)

≤ (1 + 2p) exp

− (1− τ)4λ2min (Π) ϵ̄2T

p(p+1)
2 +

2
√

p(p+1)(1−τ)2λmin(Π)ϵ̄
3

 .

(12)

Then by (6) and (8),

Pµ

(∥∥∥Θ̂−Θ
∥∥∥
F

≥ ϵ
)
≤ Pµ

(
∥Θ̂−Θ∥2 ≥ ϵ

√
p

)
≤ Pµ

(
λmin

(
Z⊤
T ZT

)
< T (1− τ)2λmin (Π)

)
+ Pµ

(
1

T

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ

√
p
(1− τ)2λmin (Π)

)
.

(13)

Combining (12), (13) and Proposition 3, the conclusion follows.
We now comment on how our proof techniques relate to prior

work. We first bound ∥Θ̂−Θ∥F by
√
p∥Θ̂−Θ∥2. Then, similarly

to related works on LTI systems, we write the estimation error
∥Θ̂−Θ∥2 as a ratio of two terms, and treat the resulting numerator
and denominator separately [6], [7], [9], [36]. More specifically,
inspired by an argument in [42], we derive a concentration result
for an appropriate martingale sequence in the numerator term based
on the matrix Freedman inequality [41]. For the denominator term,
the key idea is to obtain an anti-concentration result for the minimum
eigenvalue of an appropriate matrix by showing that a sufficient
condition holds with high probability using Lemma 1 in [9], ε-net
arguments [14] and transportation-cost inequalities [37], [38].

Finally, we provide the following lower bound for λmin(Π):
Lemma 2: Suppose that ci ∈ [c, c̄] ⊂ (0, 1), ∥ai∥1 + ci ≤ ᾱ <

1, ∀i ∈ [p] and ∀p ≥ 2. Then, there exists C̄ > 0 independent of p

such that λmin(Π) ≥ C̄
p , ∀p ≥ 2.

The proof is provided in the Appendix. With this result, Theorem
1 holds when

T ≥max

{4p3(p+ 1) log

√
2∥µ

π ∥2,π(1+ 2
ε )

p+1
2

δ


C2(1− r)2(1− 2ε)2τ2

,

log

(
1 + 2p

δ

) p4(p+1)
2

(1− τ)4C2ϵ2
+

2
3p

2
√

(p+ 1)

(1− τ)2Cϵ

}.
Remark: Note that if we further constrain the parameter space to

r̄-contractive BAR chains, where r̄ < 1, then T = Ω(p5 log p) [37].

Fig. 1: Frobenius norm errors for Θ̂

IV. EXPERIMENTAL RESULTS

We performed simulations for several synthetic networks with p =
5, 10, 15, 20 nodes and the same maximum in-degree dmax = 5. Fig.
1 illustrates the corresponding Frobenius norm errors of the estimator
Θ̂ for numbers of observations ranging from 100 to 44000. We
observe that the estimator requires T = 2500, 10000, 22000, 44000
observations to achieve an error of 0.1 for systems with p =
5, 10, 15, 20 nodes, respectively. The results show that the estimator
converges to arbitrary precision with a polynomial in the system
size p number of observations (ignoring logarithmic terms). The
polynomial order tends to be between p2 log p and p3 log p, which is
approximately a λ2min(Π)-factor away from the sample complexity
obtained by our theoretical analysis.

V. CONCLUSION

In this note, we have established a sample complexity bound
for an indirect Maximum Likelihood Estimator of the BAR model.
The bound has polynomial dependence on the system dimension,
and further depends on the Dobrushin coefficient and the minimum
eigenvalue of an augmented version of the steady-state correlation
matrix.

REFERENCES
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APPENDIX

A. Proof of Proposition 1

Before specifying the matrix M, we start with the following
observation: for any full-rank matrix M ∈ R(p+1)×(p+1),∥∥∥(ZTM)⊤ (ZTM)− Ip+1

∥∥∥
2

= sup
v∈Sp

∣∣∣v⊤
[
(ZTM)⊤ (ZTM)− Ip+1

]
v
∣∣∣

= sup
v∈Sp

∣∣∣∥ZTMv∥22 − ∥v∥22
∣∣∣ , (14)

where Sp is the unit Euclidean sphere in Rp+1. The matrix M will
be chosen so that we can make use of the following corollary, which
is a combination of [37, Proposition 1] and [38, Theorem 1.3].

Corollary 1: Consider a Markov chain {X(k)}k≥0 with a finite
state space X and Dobrushin coefficient r < 1. Suppose that
Xn is equipped with the Hamming metric d1(x0:n−1, x

′
0:n−1) =∑n−1

k=0 1(x(k) ̸= x′(k)) for any two elements x0:n−1 =
(x(0), . . . , x(n− 1)) and x′0:n−1 =

(
x′(0), . . . , x′(n− 1)

)
∈ Xn.

Then for any Lipschitz function f : Xn → R with Lipschitz constant
L and ∀γ > 0,

Pµ (|f(X(0), . . . , X(n− 1))− Eµ [f(X(0), . . . , X(n− 1))]| > γ)

≤ 2 exp

(
−2(1− r)2γ2

nL2

)
,

where Pµ is the law of the Markov chain when the initial measure
is µ.

In our case, for some fixed v ∈ Sp, we let

f (X(0), . . . ,X(T − 1)) = ∥ZTMv∥22 =

T−1∑
k=0

[
v⊤M⊤X̃(k)

]2
,

where X̃(k) =
[
X(k)⊤, 1

]⊤
. It can be shown that f is Lipschitz

with respect to the Hamming metric d1. Consider two T -tuples,∣∣f(x0:T−1)− f(x′0:T−1)
∣∣

=

∣∣∣∣∣
[
v⊤M⊤

[
x(i)
1

]]2
−
[
v⊤M⊤

[
x′(i)
1

]]2∣∣∣∣∣
=

∣∣∣∣[v⊤M⊤
[(

x(i)− x′(i)
)

0

]] [
v⊤M⊤

([
x(i)
1

]
+

[
x′(i)
1

])]∣∣∣∣
≤ ∥Mv∥22

∥∥x(i)− x′(i)
∥∥
2

(∥∥∥∥[x(i)1
]∥∥∥∥

2

+

∥∥∥∥[x′(i)
1

]∥∥∥∥
2

)
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≤ ∥M∥22
∥∥x(i)− x′(i)

∥∥
2
· 2
√

p+ 1

≤ 2
√

p(p+ 1) ∥M∥22 1{x(i) ̸= x′(i)},

where the first inequality is due to the triangle and Cauchy–Schwarz
inequalities; the second inequality follows from the fact that
maxx∈{0,1}p ∥

[
x⊤, 1

]
∥2 =

√
p+ 1; and the last inequality holds

since ∥x− x′∥ ≤ √
p for x ̸= x′, x,x′ ∈ {0, 1}p.

Now notice that by choosing

M =

(
Eπ

[
T−1∑
k=0

X̃(k)X̃(k)⊤
])−1/2

=
(
Eπ

[
Z⊤
T ZT

])−1/2
= (TΠ)−1/2 ,

where Π = Eπ

[
X̃(k)X̃(k)⊤

]
, we can write∣∣∣∥ZTMv∥22 − ∥v∥22

∣∣∣ = ∣∣∣∥ZTMv∥22 − Eπ

[
∥ZTMv∥22

]∣∣∣ .
A direct application of Corollary 1 gives

Pπ

(∣∣∣∥ZTMv∥22 − ∥v∥22
∣∣∣ > γ

)
≤ 2 exp

(
−T (1− r)2γ2λ2min (Π)

2p(p+ 1)

)
, (15)

for any γ > 0. The quantity
∥∥∥(ZTM)⊤ (ZTM)− Ip+1

∥∥∥
2
, as the

supremum of
∣∣∣∥ZTMv∥22 − ∥v∥22

∣∣∣ with respect to v over Sp, will
not be large with high probability due to the following lemma.

Lemma 3: ( [9, Lemma 4]) Let ε ∈ [0, 1/2) and N (ε) be an ε-net
of Sn−1 with minimal cardinality. Then for symmetric W ∈ Rn×n

and any τ > 0, we have that

P
(
∥W∥2 > τ

)
≤
(
1 +

2

ε

)n

max
v∈N (ε)

P
(∣∣∣v⊤Wv

∣∣∣ > (1− 2ε)τ
)
.

An application of Lemma 3 with γ = (1 − 2ε)τ in (15) and
n = p+ 1 gives the desired result.

B. Proof of Proposition 4
Let {u1,u2, . . . ,u2p} be an enumeration of the states in {0, 1}p.

Recall that for the considered horizon k = 0, 1, . . . , T , Nu,r,1 is
the number of one-step transitions from state u to some state with
r-th entry equal to 1 and Nu denotes the total amount of time the
chain spends in state u. We can then rewrite

[(
ŶT −YT

)
ZT

]
r,:

as follows:[(
ŶT −YT

)
ZT

]
r,:

=
(
ŷT,r − yT,r

)⊤
ZT

=

T−1∑
k=0

(
NX(k),r,1

NX(k)
− ϑX(k),r,1

)[
X(k)
1

]⊤

=

2p∑
j=1

Nuj

(
Nuj ,r,1

Nuj

− ϑuj ,r,1

)[
uj

1

]⊤

=

2p∑
j=1

(
Nuj ,r,1 − ϑuj ,r,1Nuj

)[uj

1

]⊤
. (16)

To upper bound the probability Pµ

(
1
T

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̃
)

,
we will rely on (16) and the following theorem.

Theorem 2: (Matrix Freedman inequality, [41]) Consider a matrix
martingale {S(k)}k≥0 whose values are matrices with dimension
d1 × d2 and S(0) = 0d1×d2 . Let {D(k) = S(k)− S(k − 1)}k≥1
be the martingale difference sequence. Assume that {D(k)}k≥1 is
uniformly bounded, i.e.,

∥D(k)∥2 ≤ R almost surely (a.s.) for k = 1, 2, . . .

Define two predictable quadratic variation processes for this martin-
gale:

Wcol(k) :=

k∑
j=1

E

[
D(j)D(j)⊤

∣∣∣∣Fj−1

]
and

Wrow(k) :=

k∑
j=1

E

[
D(j)⊤D(j)

∣∣∣∣Fj−1

]
, for k = 1, 2 . . .

Here, F0 ⊂ F1 ⊂ · · · ⊂ F is a filtration of the σ-
algebra F corresponding to the underlying probability space
and {S(k)}k≥0 is adapted to this filtration. Let Σ2

k =

max
{
∥Wcol(k)∥2 , ∥Wrow(k)∥2

}
. Then for all γ ≥ 0 and σ2 > 0,

P

∃k ≥ 0 :

∥∥∥∥∥∥S(k) =
k∑

j=1

D(j)

∥∥∥∥∥∥
2

≥ γ and Σ2
k ≤ σ2


≤ (d1 + d2) exp

(
− γ2/2

σ2 +Rγ/3

)
.

We now use Theorem 2 with (d1, d2) = (p, p+ 1) and we define
an appropriate martingale difference sequence corresponding to the
p × (p + 1) martingale

(
ŶT −YT

)
ZT . For any r ∈ [p] and for

k = 1, 2, . . . , T we let

Dr(k) =

2p∑
j=1

1
(
X(k − 1) = uj

)
·
[
1 (Xr(k) = 1)− ϑuj ,r,1

]
·
[
uj

1

]⊤

and we define D̄(k) =
[
D⊤

1 (k), · · · ,D⊤
p (k)

]⊤
as the matrix

martingale difference sequence. We now observe that

T∑
k=1

Dr(k) =

2p∑
j=1

T∑
k=1

1
(
X(k − 1) = uj

)
·

(
1 (Xr(k) = 1)− ϑuj ,r,1

)[uj

1

]⊤
=

2p∑
j=1

(
Nuj ,r,1 − ϑuj ,r,1Nuj

)[uj

1

]⊤
=
[(

ŶT −YT

)
ZT

]
r,:

(17)

and therefore,

T∑
k=1

D̄(k) =
[(

ŶT −YT

)
ZT

]
. (18)

Moreover, let {Fk}∞k=0 be the sequence of the canonical nested σ-
fields Fk = σ (X(0), . . . ,X(k)), which corresponds to a filtration
and note that

[(
ŶT −YT

)
ZT

]
r,:

is FT -measurable ∀r ∈ [p]. By

the Markov property it follows that

E
[
Dr(k)

∣∣∣Fk−1

]
= E

[
Dr(k)

∣∣∣X(k − 1)
]

=
(
E
[
1 (Xr(k) = 1)

∣∣∣X(k − 1)
]
− ϑX(k−1),r,1

)
·
[
X(k − 1)

1

]⊤
= 0⊤p+1. (19)

Hence, E
[
D̄(k)

∣∣∣Fk−1

]
= 0p×(p+1). Additionally, we observe that
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∀k ≥ 1, ∥∥D̄(k)
∥∥
2
≤
∥∥D̄(k)

∥∥
F

≤

(
p ·max

uj

∥∥∥∥[uj

1

]∥∥∥∥2
2

)1/2

=
√

p(p+ 1) a.s. (20)

Before continuing further, we note that in the light of the above
discussion, {D̄(k)}k≥1 is indeed a martingale difference sequence
associated with the desired matrix martingale satisfying the integra-
bility condition stated in [41]:

E
[∥∥∥(ŶT −YT

)
ZT

∥∥∥
2

]
≤ T

√
p(p+ 1) < ∞, ∀T ≥ 1.

Furthermore, we have that ∀r,m ∈ [p], r ̸= m,

Dr(k)Dm(k)⊤ =

2p∑
j,l=1

1
(
X(k − 1) = uj

)
·

1 (X(k − 1) = ul)
(
1 (Xr(k) = 1)− ϑuj ,r,1

)
·

(
1 (Xm(k) = 1)− ϑul,m,1

) [uj

1

]⊤ [
ul

1

]

=

2p∑
j=1

1
(
X(k − 1) = uj

) (
1 (Xr(k) = 1)− ϑuj ,r,1

)
·

(
1 (Xm(k) = 1)− ϑuj ,m,1

)∥∥∥∥[uj

1

]∥∥∥∥2
2

.

Taking the conditional expectation with respect to the sub-σ-algebra
Fk−1 we obtain

E
[
Dr(k)Dm(k)⊤

∣∣∣Fk−1

]
= E

[
Dr(k)Dm(k)⊤

∣∣∣X(k − 1)
]

= E
[(
1 (Xr(k) = 1)− ϑX(k−1),r,1

)
·
∥∥∥X̃(k − 1)

∥∥∥2
2
·(

1 (Xm(k) = 1)− ϑX(k−1),m,1

) ∣∣∣X(k − 1)
]

= 0 a.s., ∀r,m ∈ [p], r ̸= m,

and when r = m

E
[
Dr(k)Dr(k)

⊤
∣∣∣Fk−1

]
= E

[
Dr(k)Dr(k)

⊤
∣∣∣X(k − 1)

]
= E

[(
1 (Xr(k) = 1)− ϑX(k−1),r,1

)2 ∣∣∣X(k − 1)

] ∥∥∥X̃(k − 1)
∥∥∥2
2

≤ ϑX(k−1),r,1(1− ϑX(k−1),r,1)(p+ 1) a.s.

Therefore,

E
[
D̄(k)D̄(k)⊤

∣∣∣Fk−1

]
= E


D1(k)

...
Dp(k)

[D1(k)
⊤ · · · Dp(k)

⊤
] ∣∣∣Fk−1


=
∥∥∥X̃(k − 1)

∥∥∥2
2
· diag (ν̄(k − 1)) , (21)

where diag (ν̄(k − 1)) denotes the diagonal matrix with diagonal
elements contained in the vector ν̄(k− 1) = [ν̄1(k− 1), . . . , ν̄p(k−
1)], ν̄r(k− 1) = ϑX(k−1),r,1(1−ϑX(k−1),r,1) for r = 1, 2, . . . , p.

Furthermore,

∥Wcol(k)∥2 =

∥∥∥∥∥∥
k∑

j=1

E
[
D̄(j)D̄(j)⊤

∣∣∣Fj−1

]∥∥∥∥∥∥
2

= max
r∈[p]

k∑
j=1

ϑX(j−1),r,1(1− ϑX(j−1),r,1)
∥∥∥X̃(j − 1)

∥∥∥2
2

≤ k(p+ 1)

4
a.s., ∀k ≥ 1.

Moreover,

Dr(k)
⊤Dr(k) =

2p∑
j,l=1

1
(
X(k − 1) = uj

)
·

1 (X(k − 1) = ul)
(
1 (Xr(k) = 1)− ϑuj ,r,1

)
·

(
1 (Xr(k) = 1)− ϑul,r,1

) [uj

1

] [
ul

1

]⊤
=

2p∑
j=1

1
(
X(k − 1) = uj

)
·

(
1 (Xr(k) = 1)− ϑuj ,r,1

)2 [uj

1

] [
uj

1

]⊤
.

Therefore,

E
[
D̄(k)⊤D̄(k)

∣∣∣Fk−1

]
= E

[
p∑

r=1

Dr(k)
⊤Dr(k)

∣∣∣Fk−1

]

=

p∑
r=1

ϑX(k−1),r,1

(
1− ϑX(k−1),r,1

)
X̃(k − 1)X̃(k − 1)⊤

and

∥Wrow(k)∥2

=

∥∥∥∥∥
k∑

j=1

p∑
r=1

ϑX(j−1),r,1

(
1− ϑX(j−1),r,1

)
·

X̃(j − 1)X̃(j − 1)⊤
∥∥∥∥∥
2

≤ kp(p+ 1)

4
a.s., ∀k ≥ 1.

Summarizing the derived bounds, we conclude that

Σ2
k = max

{
∥Wcol(k)∥2 , ∥Wrow(k)∥2

}
≤ kp(p+ 1)

4
a.s., ∀k ≥ 1.

Combining the derived bounds, we can see that ∀ϵ̃ > 0

Pµ

(
1

T

∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ ϵ̃

)
= Pµ

(∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ T ϵ̃

)
= Pµ

({∥∥∥(ŶT −YT

)
ZT

∥∥∥
2
≥ T ϵ̃

}
∩

{
Σ2
T ≤ Tp(p+ 1)

4

})

≤ (2p+ 1) exp

− ϵ̃2T

p(p+1)
2 +

2ϵ̃
√

p(p+1)
3

 ,

where the last inequality follows from applying Theorem 2 with γ =

ϵ̃T , R =
√

p(p+ 1) due to (20) and σ2 =
Tp(p+1)

4 .
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C. Proof of Lemma 2

We first note that

Π = Eπ

[
X̃(k)X̃(k)⊤

]
=

[
Eπ

[
X(k)X(k)⊤

]
Eπ [X(k)]

Eπ [X(k)]⊤ 1

]

= Eπ

[
E
[
X(k)X(k)⊤|X(k − 1)

]
E [X(k)|X(k − 1)]

E [X(k)|X(k − 1)]⊤ 1

]
︸ ︷︷ ︸

Π(k−1)

.

(22)

Moreover, it can be easily seen that

E
[
X(k)X(k)⊤|X(k − 1)

]
=

E [X(k)|X(k − 1)]E [X(k)|X(k − 1)]⊤ +Cov(X(k)|X(k − 1)),
(23)

where the conditional covariance matrix Cov(X(k)|X(k − 1)) is
given by

Cov(X(k)|X(k − 1)) = E [(X(k)− E [X(k)|X(k − 1)]) ·

(X(k)− E [X(k)|X(k − 1)])⊤ |X(k − 1)
]
.

Additionally, we note that for i ̸= j, the (i, j)-th entry of the
conditional covariance matrix is

E[(Xi(k)− E[Xi(k)|X(k − 1)])·
(Xj(k)− E[Xj(k)|X(k − 1)])|X(k − 1)] = 0,

due to the conditional independence of Xi, Xj given X(k − 1).
Furthermore, the (i, i)-th entry of the conditional covariance matrix
satisfies

E[(Xi(k)− E[Xi(k)|X(k − 1)])2|X(k − 1)] =

(a⊤i X(k − 1) + ci)(1− aTi X(k − 1)− ci)

= ϑX(k−1),i,1(1− ϑX(k−1),i,1) = ν̄i(k − 1), i ∈ [p].

Note that ν̄i(k − 1) ≤ 1
4 , ∀i ∈ [p], ∀k ≥ 1 almost surely. By

combining the above results and by following the notation of (21), it
follows that

Cov(X(k)|X(k − 1)) = diag (ν̄(k − 1)) . (24)

We now turn to bounding λmin(Π). Employing the concavity of
the minimum eigenvalue on the space of symmetric matrices [43],
we have that

λmin(Π) ≥ Eπ [λmin (Π(k − 1))] . (25)

We now focus on the matrix Π(k − 1). Let µ̄(k − 1) =
E [X(k)|X(k − 1)]. Using the Aitken block diagonalization of this
matrix, which relies on the Schur complement of Π(k − 1) with
respect to 1 (lower diagonal block) [44], we can write:

Π(k − 1) =[
Ip µ̄(k − 1)

0⊤p×1 1

]
︸ ︷︷ ︸

K(k−1)

[
F(k − 1) 0p×1

0⊤p×1 1

]
︸ ︷︷ ︸

L(k−1)

[
Ip 0p×1

µ̄(k − 1)⊤ 1

]
︸ ︷︷ ︸

K(k−1)⊤

,

where

F(k − 1) = E
[
X(k)X(k)⊤|X(k − 1)

]
− µ̄(k − 1)µ̄(k − 1)⊤

= Cov(X(k)|X(k − 1)) = diag (ν̄(k − 1))

is the aforementioned Schur complement. Here, (23) has been used.
Moreover, let w∗(k − 1) be the vector in Sp corresponding to the

minimum eigenvalue of Π(k − 1) and set q∗(k − 1) = K(k −
1)⊤w∗(k − 1). Then,

λmin(Π(k − 1)) = q∗(k − 1)⊤L(k − 1)q∗(k − 1) ≥
λmin(L(k − 1))∥q∗(k − 1)∥22 ≥ λmin(F(k − 1))s2p+1(K(k − 1)⊤)

= min
i∈[p]

ν̄i(k − 1)s2p+1(K(k − 1)).

Here, sp+1(K(k − 1)) =
√

λmin(K(k − 1)⊤K(k − 1)) is the
smallest singular value of K(k−1). We now note that the eigenvalues
ρ1(k − 1) ≥ . . . ≥ ρp+1(k − 1) > 0 of

K(k − 1)⊤K(k − 1) =

[
Ip µ̄(k − 1)

µ̄(k − 1)⊤ ∥µ̄(k − 1)∥22 + 1

]
= Ip+1 +

[
0p×p µ̄(k − 1)

µ̄(k − 1)⊤ ∥µ̄(k − 1)∥22

]
are 1 with multiplicity p− 1 (ρ2(k − 1) = · · · = ρp(k − 1)) and

1 +
∥µ̄(k − 1)∥22 ±

√
∥µ̄(k − 1)∥22(∥µ̄(k − 1)∥22 + 4)

2

=
2 + ∥µ̄(k − 1)∥22 ±

√(
2 + ∥µ̄(k − 1)∥22

)2 − 4

2
.

Based on the previous analysis we conclude that

λmin(Π) ≥ Eπ

[
min
i∈[p]

ν̄i(k − 1)ρp+1(k − 1)

]
≥ min

i∈[p]
ci(1− ∥ai∥1 − ci)·

min
x(k−1)∈{0,1}p

2 + ∥µ̄(k − 1)∥22 −
√(

2 + ∥µ̄(k − 1)∥22
)2 − 4

2
,

where in the last line we assume that X(k−1) = x(k−1). Finally, the

function f(x) =
2+x−

√
(2+x)2−4
2 is strictly decreasing for x > 0.

Using the bounds in the statement of Lemma 2 and this observation,
we have that

λmin(Π) ≥ c(1− ᾱ)
2 + pᾱ2 −

√
(2 + pᾱ2)

2 − 4

2︸ ︷︷ ︸
smin

, (26)

where

max
i∈[p],x(k−1)∈{0,1}p

µ̄i(k − 1) = max
i∈[p]

∥ai∥1 + ci ≤ ᾱ

is employed. It can be verified that for any constant c̃ such that
c̃ᾱ2 < 1 and 2c̃ᾱ2+c̃

√
c̃ᾱ2+c̃ < 2, we have that smin ≥ c̃

p , ∀p ≥ 2.
This implies that λmin(Π) ≥ C

p , ∀p ≥ 2 for any C = c(1− ᾱ)c̃ in
an appropriate interval (0, C̄), where C̄ is independent of p.
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