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Recent work has highlighted the possibility of ‘rate-induced tipping’, in
which a system undergoes an abrupt transition when a perturbation exceeds
a critical rate of change. Here, we argue that this is widely applicable to evol-
utionary systems: collapse, or extinction, may occur when external changes
occur too fast for evolutionary adaptation to keep up. To bridge existing
theoretical frameworks, we develop a minimal evolutionary–ecological
model showing that rate-induced extinction and the established notion of
‘evolutionary rescue’ are fundamentally two sides of the same coin: the fail-
ure of one implies the other, and vice versa. We compare the minimal
model’s behaviour with that of a more complex model in which the large-
scale dynamics emerge from the interactions of many individual agents; in
both cases, there is a well-defined threshold rate to induce extinction, and
a consistent scaling law for that rate as a function of timescale. Due to the
fundamental nature of the underlying mechanism, we suggest that a vast
range of evolutionary systems should in principle be susceptible to rate-
induced collapse. This would include ecosystems on all scales as well as
human societies; further research is warranted.
1. Introduction
Awide range of systems—ecological, environmental and societal—can undergo
abrupt transitions when small changes exceed a ‘tipping point’ threshold [1–4].
The classical view is to consider such tipping point thresholds as fixed (e.g.
[5,6]), but recent work has considered ‘rate-induced tipping’, in which the
transition is initiated when a forcing exceeds a critical rate of change [7].
Rate-induced tipping has been identified in models both of ecological systems
[8,9] and of climate [5,10,11].

In evolutionary systems, adaptation through natural selection can promote
the survival of populations in the face of environmental change. This has long
been recognized in the context of individual species [12]. When evolution
allows a species to adapt to conditions that otherwise would have driven it
extinct, this is referred to as evolutionary rescue; it has been studied widely
in the contexts of conservation biology and medicine [13–15]. Evolutionary
rescue has been demonstrated in laboratory experiments with microbes [16],
and also occurs in nature: antibiotic resistance is one example [13].

On a vastly larger scale, similar ideas have been discussed in the context of
mass extinctions. During each of the ‘Big Five’ mass extinctions of the Phaner-
ozoic (542Ma–present), more than 75% of species were lost, with the
end-Permian extinction eliminating as many as 94% [17]; these are paradigmatic
examples of abrupt global state transitions [18]. Each was accompanied by
dramatic environmental change, and it was suggested early on that they were
triggered when such change occurred too quickly for evolutionary adaptation
(now interpreted on a global scale) to keep up [19]. Recent work has indeed
demonstrated a connection between mass extinctions and the exceedance of a
critical rate of global carbon cycle change, supporting this hypothesis [20].
Understanding the detailed conditions under which mass extinctions (or
more generally, global biosphere state shifts) occur is especially timely in
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light of the accelerating modern-day global species losses due
to human actions [21].

In this paper, we synthesize thoughts from across these dis-
parate domains in the following way. We first present a
minimalmodel of a single evolving population, which demon-
strates the fundamental relationship between rate-induced
tipping towards extinction and the established concept of
evolutionary rescue. We identify a well-defined threshold for
rate-induced extinction to occur, and obtain a scaling law for
the critical rate to induce extinction as a function of timescale;
the latter is consistent with prior work in the study of mass
extinctions. Next, we test the robustness of these observations
in a more complex model in which the interactions of individ-
ual reproducing agents are modelled explicitly—finding near-
identical behaviour. Motivated by these results, we suggest
that rate-induced collapse may be a fundamental feature of a
vast range of evolutionary systems, including ecosystems on
all scales as well as human societies.
ce
19:20220182
2. Minimal model of evolutionary rescue and
rate-induced extinction

Our first course of action is to outline the fundamental
connection between evolutionary rescue and rate-induced
tipping towards extinction.

A number of previous studies have considered how
evolution can counteract deleterious environmental change
[22–26], yet the body of work on rate-induced tipping
points has so far developed independently. An exception is
the recent work by Vanselow et al. [27], which shows that
rate-induced collapse of a prey population occurring purely
due to the ecological dynamics (i.e. even with no evolution)
can be indirectly prevented through the evolutionary
adaptation of a predator population.

Our focus here is more general. We seek to highlight that
all instances of unsuccessful evolutionary rescue funda-
mentally constitute rate-induced tipping (no rate-induced
ecological tipping points are necessary), and to derive a
model from established assumptions of quantitative genetics
that displays this as transparently as possible.
2.1. Model specification
We consider a single population of size n with a single evol-
ving trait whose mean value is x. The population dynamics
are given by

dn
dt

¼ nrðn, x, tÞ, ð2:1Þ

where r is the population’s mean Malthusian fitness (i.e.
growth rate). Following standard theory, the mean trait
value x evolves according to hill-climbing on the fitness
landscape described by r [28]:

dx
dt

¼ k
drðn, x, tÞ

dx
HðnÞ: ð2:2Þ

Here, k is the additive genetic variance; for our purposes, it
describes the rate at which evolutionary adaptation can
occur, and thus the timescale separation between ecological
and evolutionary processes. Since an extinct species cannot
evolve, we additionally use a step function H(n) to ensure
that there can be no evolution when n is close to 0. We set
H(n) to 1 for all n > ϵ (with 0 < ϵ≪ 1), and 0 otherwise; this
avoids issues due to n = 0 only being approached in the
limit t→∞.

The detailed behaviour of the system depends on the fit-
ness function r. We assume that it has a maximum at some
value x*, which we will later vary in time to mimic the effects
of environmental change. Following, for example, Lande &
Shannon [23], it is reasonable to approximate the fitness
maximum as quadratic and to include density-dependent
effects through an additive term f (n):

rðn, x, tÞ ¼ r� � aðx� x�Þ2 þ f ðnÞ, ð2:3Þ
where r* sets the maximum growth rate and a determines how
fast fitness declines with distance from x*. This immediately
yields

dx
dt

¼ �2kaðx� x�ÞHðnÞ, ð2:4Þ

i.e. x decays exponentially towards the optimum value x*,
unless the population is extinct.

The density dependence f (n) needs to obey two real-
world constraints. First, it needs to become negative for
large enough n; otherwise, the population could grow indefi-
nitely as long as x permitted it. In other words, f (n) needs to
provide an effective carrying capacity: i.e. a stable equili-
brium at high n. Second, real populations typically exhibit
minimum viable population sizes, and indeed these are
required for there to be well-defined extinction ‘events’.
This suggests the incorporation of a strong Allee effect: an
unstable equilibrium at low n, below which the population
collapses (see [29] for a review and further discussion). The
inclusion of a minimal viable population size is also consist-
ent with previous work on evolutionary rescue [22].

For ease of analysis, we parametrize all of these effects
using the simple quadratic form

f ðnÞ ¼ �bþ cn� n2: ð2:5Þ
Here, b, c > 0, and f (n) also needs to be negative to avoid effec-
tive growth rates larger than r*. This finally yields the
population dynamics equation

dn
dt

¼ nðr� � aðx� x�Þ2 � bþ cn� n2Þ: ð2:6Þ

We use the following parameter values: r* = 1, a = 1, b = 2,
c = 3, x* = 5, k = 0.001, ϵ = 10−5. We make the standard
assumption that evolutionary processes occur on a much
slower timescale than ecological processes [30,31]. All units,
including those of our population n and trait x, are arbitrary.
As long as our parameter choices indeed lead to the above
timescale separation, our qualitative results will be largely
independent of the specific values.

2.2. Initial analysis
First, it is instructive to estimate the ecological and evolution-
ary timescales. From (2.4), we have an evolutionary timescale
τev ≃ 1/(2ka), i.e. 500 for our default parameter values. Esti-
mating the ecological timescale is more challenging, but
one simple option is to define it as the timescale on which
the population goes extinct if x = x* and n is small. From
(2.6), we have

dn
dt

¼ nðr� � bÞ, ð2:7Þ
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Figure 1. Dynamics of the model (note units of x and n are arbitrary). The black dot and black line at n = 0 denote stable fixed points (equilibria), while the white
dot denotes an unstable saddle point. The timescale separation means that the system equilibrates rapidly towards the dn/dt = 0 nullcline (shown by black arrows),
and only then adjusts slowly towards the stable fixed point (if the population is not already extinct).
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and so n collapses with a characteristic timescale of τec =
1/(b− r*), which is 1 for our default parameter values. We
see that ecological and evolutionary timescales are indeed
separated by multiple orders of magnitude.

This is an example of a slow–fast dynamical system: the
population n adjusts on the faster ecological timescale,
while the trait value x adjusts on the slower evolutionary
timescale. The dynamics of the system can therefore be well
understood by considering the nullclines (where dx/dt and
dn/dt equal zero). These are straightforward to solve for
explicitly. From (2.4), dx/dt = 0 either when x = x* or n < ϵ.
From (2.6), dn/dt = 0 when n = 0 or when

n2 � cnþ ðb� r� þ aðx� x�Þ2Þ ¼ 0, ð2:8Þ
i.e.

x ¼ x� +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
a
(� n2 þ cn� bþ r�)

r
: ð2:9Þ

These nullclines are plotted in figure 1. Equilibrium
states, or fixed points, occur when they intersect: there is
one stable fixed point at x = x* and high n, an unstable
saddle point at x = x* and low n, and a line of stable fixed
points at n = 0. Because n is driven by the much faster ecologi-
cal processes, the population rapidly adjusts towards a
dn/dt = 0 nullcline. This either means reaching the line of
fixed points at n = 0 (in which case the population goes
extinct) or the dn/dt = 0 curve at non-zero n, in which case
evolutionary adaptation slowly brings the system towards
the stable fixed point. The slow dynamics of the system
take place very close to these curves. Formally, the dn/dt
nullcline defines a ‘critical manifold’ on which all dynamics
take place in the limit k = 0, and for small enough k > 0 the
dynamics mostly take place on a very nearby ‘slow manifold’
[32]. To emphasize their real-world meaning, we refer to the
different parts of the dn/dt = 0 nullcline separately as the
extinct and extant critical manifolds, respectively.

2.3. Evolutionary rescue and rate-induced extinction
Perturbations to the system can lead to extinction; figure 2
shows how. Consider a scenario in which the population
was initially at the stable high-n equilibrium, with the trait
x at its optimum value x*, and x* is then instantaneously
increased. Driven by the ecological dynamics, the population
size n will rapidly adjust towards dn/dt = 0. However,
there are two possible outcomes. If x is not too far from x*,
the system will come close to the extant critical manifold
and survive long term—because adaptation saves the
population from extinction; this is precisely evolutionary
rescue. If x is far enough from x*, it passes below the local
minimum (fold) of the extant critical manifold and becomes
extinct. Separating these two cases is a set of trajectories
that stay close to the unstable branch of the extant critical
manifold, referred to as ‘canards’ [7,33]; they define the
(quasi-)threshold beyond which a perturbation will lead
to extinction.

It is worth noting that the high-n equilibrium does not
need to lose its stability for extinction to occur: in other
words, the collapse is not a consequence of a bifurcation.
This distinction is significant because tipping points have
long been primarily associated with bifurcations (e.g. [4]),
and because bifurcations imply that tipping occurs when for-
cings exceed fixed thresholds. Rather, this collapse is an
instance of rate-induced tipping [5,7], where a transition
occurs when the system is forced beyond a critical rate of
change. The dynamical mechanism of a threshold set of
canard trajectories (as demonstrated in figure 2) is exactly
that given by Wieczorek et al. [7]; the generality of our
model suggests that this pathway to rate-induced tipping
may be widely applicable across evolutionary systems.

The exquisite sensitivity to the rate of change of the for-
cing is further demonstrated in figure 3. Here, we ramp the
optimal trait value x* linearly (i.e. dx*/dt = const.) from
5 to 8 over two slightly different timescales: 1200 and 1000
timesteps, respectively. In the slower case, the population is
able to recover and evolutionary rescue occurs. In the faster
case, the population is driven to extinction. Following
previous work (e.g. [5,7,10]), it is instructive to consider the
trajectories in the three-dimensional space of the two vari-
ables (n, x) and the time-varying forcing parameter (x*).
Now, the extant critical manifold becomes a three-dimen-
sional surface; we reverse the x-axis to visualize the fold
more clearly. For both the slower and faster perturbations
the trajectories initially stay close to the extant critical mani-
fold. However, when perturbed more quickly the system
crosses the fold, and rapidly heads towards extinction.
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Figure 2. Perturbations to the system can lead to extinction. We assume that the system was initially at the stable high-n equilibrium, and the optimal trait x* is
instantaneously increased. The system will then rapidly adjust towards the neighbourhood of dn/dt = 0 (the critical manifold). If x is not too far from x* (green
trajectory), the system comes close to the extant critical manifold (grey), and evolutionary rescue occurs: the system recovers back to the high-n stable state. If x is
far enough from x*, the trajectory passes below the local minimum (fold) in the extant critical manifold, and extinction occurs instead. Separating these two cases is
a set of ‘canard trajectories’ that stay close to the unstable branch of the extant critical manifold, initially heading towards the low-n saddle point in figure 1; these
can go towards either extinction or recovery, as shown.

0

1

2

n 
(p

op
ul

at
io

n)

evolutionary rescue

0 1000 2000 3000 4000
time

5

6

7

8

x* (
op

tim
al

tra
it)

rate-induced extinction

0 1000 2000 3000 4000
time

(a) (b)

(c)

00.51.01.52.02.58
7

6
5

8

7

6

5

4

x *(optimal trait) n (population)

x
(tr

ai
t)
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slowly, the system is able to recover (evolutionary rescue) (a). When the system is perturbed more quickly, the system collapses (rate-induced extinction) (b). (c) We
also visualize this in the space of n, x, x*: here, the extant critical manifold becomes a surface (black line = fixed point), and the distinction between extinction and
recovery is given approximately by whether or not the system passes the fold (dashed black line) in the extant critical manifold.
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The connection between evolutionary rescue and rate-
induced tipping is now clear. Evolutionary rescue and
rate-induced tipping towards extinction essentially span the
space of possible outcomes when the optimal trait x* is per-
turbed (at least in this model). Unsuccessful evolutionary
rescue is precisely rate-induced tipping towards extinction,
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Figure 4. The scaling of the critical rate with time, in the minimal differen-
tial-equation model. It scales with τ−1 below the evolutionary timescale τev,
and is constant on longer timescales. Far enough below evolutionary time-
scales, adaptation is negligible, and so there is an effective critical amount
of change in x* for which extinction occurs.
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and vice versa. While in special cases rate-induced tipping
towards extinction can also be exhibited purely due to eco-
logical dynamics [9], here we use ‘rate-induced extinction’
to refer specifically to the scenario in which the relevant
damping force (i.e. the mechanism combating the deleterious
effects of perturbations) is evolutionary adaptation. Since
evolutionary adaptation is ubiquituous across real-world sys-
tems, it seems that rate-induced extinction should also be
common; the rest of the paper is devoted to addressing this.

Before we move on, it is finally worth assessing how the
critical rate of change to induce extinction in themodel changes
with the timescale, τ; this is shown in figure 4.We calculate this
rate numerically by repeatedly initializing the system at the
high-n equilibrium, linearly ramping the optimum trait value
x* to a new value across a time interval τ, and waiting to see
whether extinction occurs. The vertical axis (rate of change of
forcing) describes how quickly x* changes; the ecological time-
scale τec and the evolutionary timescale τev obtained above are
also shown. We find that the critical rate scales approximately
as τ−1 until τev and is constant at longer timescales. This can be
understood as follows: only evolutionary adaptation can damp
the negative outcomes of changing x*, and so on timescales too
short for it to play a role there is an effective ‘critical amount’ of
change to induce extinction. Similar logic has been considered
in the context of pastmass extinctions [20,34,35]; if indeed valid
in this context, one significance of the scaling relationship is
that it could allow a rigorous comparison of the fast anthropo-
genic Earth system perturbation to the slow perturbations of
the deep past.
3. Rate-induced extinction in a model of
individual interacting agents

The minimal model is an extremely simplified version of
reality, and thus has a number of weaknesses. First, the popu-
lation dynamics and evolutionary dynamics are described
macroscopically by single variables (n and x), making no
attempt to represent heterogeneous individual agents.
Second, evolutionary hill-climbing is written in explicitly
(equation (2.4)), assuming that evolution will always act to
increase population mean fitness. This is not necessarily true
in nature: the phenomenon of ‘evolutionary suicide’, in
which rare mutants drive an entire population to extinction,
is an extreme counterexample [36,37]. Third, the model
assumes that environmental change is entirely external, while
real-world dynamics are coevolutionary: organisms also
modify their environment as they evolve (e.g. [30]). Finally,
themodel is purely deterministic, while the realworld contains
unavoidable elements of randomness. It is not obvious that
rate-induced extinction, especially with a well-defined
threshold as shown above, would still occur when all of
these factors are considered; the purpose of this section is to
show that it still can.

3.1. Model specification
We consider a simple many-agent model of an evolving
population based on that of Ferriere & Legendre [38],
which is itself a reduction of the model of Ferriere et al.
[39]. The primary goal here is not realism but rather to
obtain a model that is as computationally simple as possible
(allowing for many repeated simulations and robust Monte
Carlo statistics) while still improving on the minimal
model’s weaknesses as noted above. Ferriere & Legendre
[38] demonstrate evolutionary rescue in their model by per-
turbing the system and alternately turning evolution on
and off; here, we extend this to rate-induced extinction by
explicitly perturbing the system at different rates, and charac-
terizing the threshold at which extinction occurs.

The model consists of N interacting agents, each of which
has a trait xi that reflects its investment in some public good
that benefits the whole population. At each discrete timestep,
each agent dies with some probability pdeath and gives birth
with some probability pbirth. The probability of death is

pdeath ¼ bxiðxi þ 1Þ þ gN, ð3:1Þ
where β and γ are constants. The first term reflects the cost to
each agent of investing in the public goods, and the second
term reflects a carrying capacity-type constraint. Here, and
similarly for pbirth, the probability is simply set equal to 0 or
1 if the expression returns a value beyond one of those limits.

At each timestep, the ith agent also has a probability of
(asexually) reproducing, determined by the expression

pbirth ¼ k
P

j x j

1þP
kðaðxi � xkÞ þ uxkÞ : ð3:2Þ

κ and θ are constants, while α is a function that introduces
asymmetric competition [38,39]: it is defined as

aðzÞ ¼ 2h 1� 1
1þ e�wðzþaÞ

� �
, ð3:3Þ

where h, w and a are also constants. The net effect of this func-
tion is that agents who invest more in the public goods are
better able to compete for those goods; this may be necessary
for the persistence of mutually beneficial interactions [39]. It
is worth noting that the public goods create an Allee effect
[38], similar to the assumption made in the minimal model.

Finally, whenever a new agent is born, there is a chance
pmut that it mutates its type. If a mutation occurs, the
new type xchild is randomly chosen from the set {xparent + 1,
xparent − 1}, with equal probability. We implement the
model using the Julia language [40]. Default parameter
values, largely following Ferriere & Legendre [38], are
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Figure 5. Demonstration of the basic features of the many-agent model. For every type x that exists at time t, a point is plotted; its colour shows how many
individuals of that type currently exist. The model is seeded with 1000 agents with x = 100 at time t = 0, and over evolutionary time intervals (tens of thousands of
time steps), evolutionary branching occurs. We eventually reach a quasi-evolutionary stable strategy (qESS).
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β = 10−5, γ = 5 × 10−5, κ = 0.01, θ = 0.01, h = 2.05, w = 0.4,
a =−9.16, pmut = 0.001.
82
3.2. Initial analysis
A simple demonstration of the model, with constant default
parameter values, is shown in figure 5. The model is seeded
with 1000 agents at time t = 0. All agents have xi = 100. Over
evolutionary time intervals (tens of thousands of time steps),
we observe evolutionary branching [41], leading to the diversi-
fication of the population into different ‘clusters’ in trait space.
While we are agnostic as to which degree these different
branches could represent different ‘species’, we argue that the
branches can be appropriately described as ‘coevolving’. We
eventually reach a point at which the degree of branching
does not increase much more, and refer to this as a ‘quasi-evol-
utionary stable strategy’ (qESS) [42,43]. Further tests indicate
that this qESS survives at least until 5 million timesteps.

It is again instructive to estimate the ecological and evol-
utionary timescales. The ecological timescale τec can be
straightforwardly estimated using the carrying capacity
term in equation (3.1). In the slowest case (with no investment
in public goods), and with no births, the number of agents
would reduce by a factor of γN each timestep. Using an
order-of-magnitude estimate of 1000 agents, and our default
parameter settings, we obtain a characteristic timescale of
τec ≃ 1/γN = 20.

The evolutionary timescale τev can be estimated by
asking: how long do we have to wait for N mutations to
occur? The expected number of mutations per timestep is
Npbirthpmut, hence the time period for Nmutations is approxi-
mately ( pbirthpmut)

−1. For population numbers to stay
approximately constant, pbirth ≃ pdeath. Then, if we use
pbirth ≃ γN as above for our default parameter settings we
have τev ≃ 20 000. We note that, although these approxi-
mations are crude, the goal is only to understand the
relationship between the ecological and evolutionary
timescales, and for that purpose they are sufficient.
3.3. Rate-induced extinction
The model indeed exhibits the possibility of rate-induced
extinction; this is shown in figure 6. We begin at the qESS,
and then linearly ramp the parameter β (mortality cost of
investing in public goods) across an identical parameter
range but at different speeds. When this is done slowly, some
branches of the community are able to persist. When it is
done more quickly, the entire community goes extinct. This is
rate-induced extinction, analogous to figure 3. When the com-
munity persists, it does so due to evolutionary adaptation to
the externally imposed changes—i.e. evolutionary rescue.

We again characterize the critical rate as a function of
timescale. However, since the model is inherently stochastic,
we do not search for discrete thresholds such as in figure 4.
Instead, we conduct many simulations where we modify
the parameter β at a range of rates across a range of time-
scales, and obtain Monte Carlo estimates of the probability
for extinction for each perturbation. The results are shown
in figure 7. A robust quasi-discrete boundary emerges.
Below τev, we recover the τ−1 scaling observed previously.
Above τev, we see a flattening slope indicating a constant criti-
cal rate, but there is also no longer such a clear boundary
between low and high probabilities of extinction.

These results are broadly consistent with those from the
minimal model: rate-induced extinction is possible, is
indeed a counterpart to evolutionary rescue, and there is a
remarkably well-defined (though partially probabilistic)
threshold beyond which it is initiated. This shows that the
key properties of real-world evolutionary systems listed at
the start of this section (heterogeneous individual agents,
emergent evolutionary dynamics, coevolution, randomness)
do not invalidate the conclusions from the minimal model,
at least in principle.
4. Discussion: rate-induced collapse in any
evolutionary system?

Our results are likely widely applicable in the context of
individual species or simple evolving communities. The
minimal model is derived from very general assumptions
(e.g. a moving quadratic fitness maximum), and is a plausible
approximation for evolutionary–ecological dynamics of
single species in a range of contexts. For such systems,
there is clearly a class of environmental perturbations
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where the only two outcomes are evolutionary rescue or rate-
induced extinction. Of course, this is not all-encompassing:
for example, a species can become extinct because its niche
disappears and no capacity for rapid evolution could have
saved it [12]. In the language of tipping points, this corre-
sponds to fixed-threshold tipping towards extinction—
which is most often due to bifurcations. Nevertheless, as
long as evolutionary rescue is possible (and there is mounting
evidence that it often is, as discussed in the Introduction),
rate-induced extinction is its counterpart.
We note that both models considered here contain Allee
effects: for populations that are small enough, per capita
growth rate increases with population size. In the minimal
model, this is written in explicitly, while in the more complex
model it emerges from the presence of public goods [38].
Allee effects are likely ubiquitous in nature, because they
are a fundamental consequence of cooperative interactions
between organisms [44]. Nevertheless, it also seems that
rate-induced extinction should still occur in the minimal
model if the Allee effect were removed, because one can
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always force a negative growth rate by moving x* far enough
from x (equation (2.6)). The role of Allee effects in rate-
induced extinction is worth investigating in future work.

How far can we extend the ideas in this paper to more
complex evolutionary systems? Throughout this work, we
have purposely referred to ‘evolutionary systems’ more gen-
erally: we consider this category as including all systems with
some element of evolution by natural selection. The funda-
mental mechanism at play in rate-induced extinction and
evolutionary rescue is the competition between an external
perturbation and the ability for evolutionary adaptation to
follow a moving fitness maximum; hence, the question is to
which extent evolution can be considered to behave in this
way for systems more complex than individual species.
This intersects with the complex debate about selection and
inheritance on a larger scale than the individual [45–51],
which we will not wade into here. One way to sidestep it
may simply be to consider emergent large-scale feedbacks
in ecosystems and the biosphere within the framework of
‘complex adaptive systems’ [52]; then, when such feedbacks
are stabilizing, they may play a role similar to evolutionary
adaptation in the models studied in this paper. In any case,
the many-agent model serves as an initial demonstration
of rate-induced extinction in more complex evolutionary
systems, but there is much more work to be done.

There are real-world examples of phenomena analogous
to rate-induced extinction and evolutionary rescue in more
complex systems. For example, in the evolutionary rescue lit-
erature, there is evidence that entire communities of microbes
can undergo ‘community rescue’ [53]. On the vastly larger
scale of the global biosphere, there is empirical evidence for
a critical rate of environmental change to induce mass extinc-
tion [20,34,35]. Note that in mass extinctions, unlike the
models considered above, a large abrupt nonlinear destruc-
tive transition occurs but does not have to lead to the
complete destruction of the system—we refer to this more
generally as a ‘collapse’.

Finally, one can make an argument for the general
existence of rate-induced collapse thresholds in complex evol-
utionary systems through the following thought experiment.
Consider the response of Earth’s biosphere to two global
warming events of the same magnitude but occurring on
very different timescales: a fast one and a slow one. Further
assume that the amount of warming is large enough to
induce mass extinction on the fast timescale (as suggested
for, for example, the end-Permian extinction by [54]), but
not enough to make the Earth permanently uninhabitable.
Now, if we consider the same degree of warming over a
slow timescale, it seems intuitive that we can make the time-
scale slow enough for no such extinction to occur. This does
not necessarily mean that there is a sharp threshold for rate-
induced collapse as in, for example, figure 7, or that every
kind of perturbation will eventually lead to rate-induced
collapse (as opposed to fixed-threshold collapse) but it does
suggest that the general phenomenon is important.

Interestingly, this kind of logic suggests that rate-induced
collapse may also be widely relevant for human societies and
human civilization as a whole. While there exists debate
about the most relevant processes of evolutionary selection
and inheritance in human systems [46,55–57], evolution cer-
tainly plays a key role. Indeed, human civilization, especially
when considered in tandem with its environment, is also a
complex adaptive system [58]. Paralleling the thought exper-
iment above, one can easily envision a perturbation (such as
a certain degree of global warming) that could lead to civiliza-
tional collapse if it occurred across 2 years but not if it occurred
gradually across 200. Further research into such collapse
thresholds may be of substantial societal importance.
5. Conclusion
In this work, we have attempted to bring together a number of
threads from different fields. Evolutionary rescue is a well-
recognized phenomenon in which a population can avoid
extinction due to evolutionary adaptation. Using a simple
model, we have demonstrated the fundamental connection
between evolutionary rescue and ‘rate-induced tipping’. The
threshold for rate-induced extinction is well defined, and
obeys a scaling lawdiscussed in previousworkon the initiation
of mass extinctions. The same is true in a more complex many-
agent model in which the large-scale dynamics arise from the
interactions of heterogeneous individual agents. We suggest
that a vast range of evolutionary systems should in principle
be susceptible to rate-induced collapse, including ecosystems
on all scales as well as human societies, and that this is a
fascinating and timely direction for future research.
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