Peking Mathematical Journal
https://doi.org/10.1007/s42543-023-00069-1

ORIGINAL ARTICLE

®

Check for
updates

Deformation Theory of Log Pseudo-holomorphic Curves
and Logarithmic Ruan-Tian Perturbations

Mohammad Farajzadeh-Tehrani'

Received: 10 April 2021 / Revised: 16 February 2023 / Accepted: 9 March 2023
© Peking University 2023

Abstract

In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989-1075, 2022), for any
logarithmic symplectic pair (X, D) of a symplectic manifold X and a simple normal
crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic
curve and proved a compactness theorem for the moduli spaces of stable log curves. In
this paper, we introduce a natural Fredholm setup for studying the deformation theory
of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of
Ruan-Tian perturbations for these moduli spaces. For a generic compatible pair of an
almost complex structure and a log perturbation term, we prove that the subspace of
simple maps in each stratum is cut transversely. Such perturbations enable a geometric
construction of Gromov—Witten type invariants for certain semi-positive pairs (X, D)
in arbitrary genera. In future works, we will use local perturbations and a gluing
theorem to construct log Gromov—Witten invariants of arbitrary such pair (X, D).

Keywords Gromov—Witten invariants - Ruan—Tian perturbations - Normal crossing
divisors

Mathematics Subject Classification 53D45 - 14N35

1 Introduction

Studying pairs (X, D) of a smooth complex projective variety X and a normal cross-
ings (or NC) divisor D has a long history in complex algebraic geometry. In the
symplectic category, McLean, Zinger, and the author recently introduced topologi-
cal notations of NC symplectic divisor and configuration in arbitrary dimension; see
[12, 14]. We also constructed a class of almost Kéhler structures that is suitable for
defining and studying J-holomorphic curves relative to an NC symplectic divisor; see
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Definitions 2.1 and 2.5. The theory of J-holomorphic curves has been a key tool in
the study of symplectic manifolds ever since its inception by Gromov in the 1980s.
Given a closed symplectic manifold (X, w), an w-compatible or tame almost complex
structure J on X, g,k € N, and A € Hy(X, Z) in the stable range (either A # 0 or
2g+k > 3), the objects of interest are the moduli spaces M, (X, A) of equivalence
classes of genus g degree A k-marked J-holomorphic maps into X. Similarly, in
the presence of a Lagrangian L C X, the objects of interests are the moduli spaces of
marked bordered J-holomorphic curves with boundary on L. In the presence of an NC
symplectic divisor D, we study moduli spaces of J-holomorphic curves that intersect
D at finitely many points with pre-determined tangency orders. The particular choice
of the symplectic structure w is often not important and might be hidden. In particular,
we say D C X is an SNC symplectic divisor whenever there is a symplectic form w on
X with respect to which D is an SNC symplectic divisor. Construction of such moduli
spaces and the related enumerative/algebraic invariants involves: (i) compactifying
moduli spaces of such curves, (ii) putting some sort of oriented smooth structure on
the moduli space (transversality and orientation problems, and the gluing analysis),
and (iii) calculating/analyzing/using the resulting invariants or algebraic structures.

In a previous paper [7], we introduced a natural and explicit way of compactifying
moduli spaces of pseudo-holomorphic curves (called log compactification) relative to
a simple normal crossings (or SNC) symplectic divisor. Even if D is smooth, our log
compactification is somewhat different and smaller than the well-known relative com-
pactification in [21, 23, 24]. As the naming suggest, we expect it to be closely related to
the log compactification of Gross—Siebert [18] and Abramovich—Chen [1] in the alge-
braic setting. In this paper, we introduce a natural setup for studying the deformation
theory of log curves based on the logarithmic tangent bundle 7 X (— log D) associated
with any symplectic logarithmic pair (X, D), and address the transversality problem
to some extent.

1.1 Log Pseudo-holomorphic Curves

Let
[N]={l,...,N}, VNeN.

Let D=/, vy Pi € X be an SNC symplectic divisor and J be an w-tame almost
complex structure on X such that

J(ITD;)=TD;, VYiel[N]

For every J-holomorphic map u : ¥ — X (with smooth domain) representing
the homology class A € H>(X, Z), either Im(u) C D or there is a finite set of points

{z1,..., 2k} C X and a corresponding set s of vectors with non-negative integer coef-
ficients
5= (50 = (Sai)ietN) gegey € VY)Y, satisfying Y~ s = A~ D;, Vi € [N],
aclk]
(1.
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such that ! (D) C{z1, ..., zx} C X and u has a tangency of order s,; with D; at z,
and nowhere else. Thus, s classifies the intersection type of k-marked J-holomorphic
maps that are not mapped into D. Let

Mg,S(Xv D’ A) C Mg,k(Xa A)

denote the subspace! of all such J-holomorphic curves of type s. Constructing a nice
compactiﬁcation2 of M, +(X, D, A) and the related enumerative/algebraic invariants
in the sense of (i)—(iii) above has been a challenging question that people have been
working on from various perspectives for at least two decades. Technically speaking,
the main goal is:

(x) to construct a natural geometric compactification A_4g75(X ,D,A) of Mg
(X, D, A) so that the definition of the tangency order vector s naturally extends to
every element of ./Vgﬁ (X, D, A),and ./Vg,s (X, D, A) is (virtually) smooth enough to
admit a natural class of cobordant Kuranishi structures of the expected real dimension

2<clTX(A)+(n—3)(l—g)+k—A-D). (1.2)
We refer to [11, 27] for the technical terms in (). For each a € [k], let
I, ={i € [N] s.t.sg; >0} C[N] (1.3)
be the subset of indices where u intersects D; at the a-th marked point z,. Let

D; = ﬂD,» and dD; = ﬂ Dy, VI C[N]. (1.4)
iel J2I
In (%), we furthermore expect the natural stabilization and evaluation maps
st : ﬂg,ﬁ(x, D,A) — Hg,k and

ev = (eVa)aelk] :Mg,s(x, D, A) — X° = 1—[ Dy, (1.5)
aelk]

to be continuous (or smooth). Similar to the classical case, if Mg, s(X,D,A) has a
“nice” orbifold structure of the expected real dimension (1.2), Gromov—Witten (or

I A marked point z4 with s, =0 € ZN is a classical marked point. If D is smooth, we can arrange the
points zp, ..., z such that

S= (51, 5.0, 0) e NE sy £0, Vi € [kl
Then, the common practice in the relative theory is to denote M g.5(X, D, A) by
Mgk .0(X, D, A) C Mg (X, A), L=k—kp.
Separating marked points into different types is notationally cumbersome and not useful.

2 e, a naturally defined compact space that contains Mg (X, D, A) as a subset.
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GW) invariants of the logarithmic pair (X, D) with primary insertions can be defined
by intersecting the image of ﬂg’s (X, D, A) under st x ev with appropriate cycles
and counting (with sign and Q-weights) the number of intersection points. With J
carefully chosen from an appropriate space of almost Kihler structures, the resulting
rational numbers will be independent of /, and only depend on the genus g, homology
class A, tangency data s, cohomology classes of the aforementioned cycles in mg, k
and X°, and the deformation equivalence class [X, D, w] of (X, D, w).

The case where D is smooth was treated at the turn of the millennium. The so-called
“relative” theory of [24] in algebraic geometry, and [21, 23] in the symplectic category?
address (x) when D is smooth. More recently, Gross—Siebert and Abramovich—Chen
[1, 3, 18] used sophisticated techniques from logarithmic complex algebraic geometry

to fully address (x) in the algebraic case. In the algebraic construction, Mlgo,gs (X, D, A)
is required to have a richer structure. Roughly speaking, it should be a coarse moduli
space for the functor which assigns to a log scheme B the set of all families of “good”
log curves in X with base B. Ultimately, completing all the steps needed for (x) will
allow the formulation of a symplectic analogue of logarithmic GW invariants in [1,
18] as well-defined invariants of the deformation equivalence class of logarithmic
symplectic pairs (X, D). In that regard, there has been a series of papers by B. Parker
(see [30, 31] and the references therein) and a paper by Ionel [20] that aim to address (x)
in the symplectic category; see [8] for some comments on these works. Our approach
in [7] and here is substantially different from these approaches. We avoid changing
the target (as in [20]) or putting extra sheaves on it (as in [30, 31]).

In [7], we introduced a geometric notion of log J-holomorphic curve relative to
an arbitrary SNC symplectic divisor and proved the following compactness result for

the moduli space ./Vl,oi (X, D, A) of stable log J-holomorphic curves.
Theorem 1.1 ([7, Thm. 1.4]) Let (X, w) be a closed symplectic manifold and D C X be

an SNC symplectic divisor. For “suitable” choice of J, the Gromov sequential conver-
gence topology on Mg (X, A) lifts to a compact metrizable sequential convergence

—1
topology on M ;‘i (X, D, A) such that the forgetful map

i ME(X, D, A) — My i(X, A) (1.6)

is a continuous local embedding. If g =0, then v is globally an embedding.

Intuitively, if g > 0, the map ¢ behaves like an immersion. If D is smooth, there
exists a surjective map from the relative moduli space M;‘ﬂs (X, D, A)in[21, 23, 24]
to the log moduli space Mfg‘fi(x, D, A); see [7, Prop. 4.5].

3 The construction is not complete in any of these two papers; see [16].
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For each i € [N], let Nx D; denote the normal bundle of D; in X. An element of

ﬂ‘g‘fi (X, D, A) is the equivalence* class of a tuple
flog = (’/‘vs DINIE I sz Ly = ({v,i)iel,,)vev 1.7)
such that

I. foreachveV, I, C[N] is the maximal subset where the image of u,, is contained
in Dy,;
II. foreachveVandie€l,, ¢, is a meromorphic section of u Ny D;;
III. forgetting ¢y, f = Uy, Xy, jv, Zv)vey defines a classical nodal map inﬂg,k(X, A);
IV. and, the conditions listed below are satisfied.

First, for each x € X, the pair (u,, &) gives rise to a well-defined tangency order
vector in ZN with D at x, which we denote by ord, (uy, {y); see (3.33), [7, (2-15)], or
[21, Lem. 3.4]. Then, the conditions in (IV) are:

1. every point in ¥ with a non-trivial tangency order vector is either a marked point
or a nodal point;

2. the tangency order vector at the marked point z, is the pre-determined vector

sa €ZN in s;

the tangency order vectors at the nodes are the opposite of each other;

4. there exists a vector-valued function s : V — R" such that

(O8]

so=s5) € RY x (0}M=1 vy eV,

and s,7 — sy 18 a positive multiple of the tangency order vector of any nodal point
on ¥, connected to X/, for all v, v’ €V;
5. and, certain group element obr( fiog) € G(I') associated to fiog is equal to 1.

Conditions 1-4 are combinatorial conditions on the dual graph of fios. A tuple fiog
satisfying all the conditions except the last one” is called a pre-log curve. The last

.. — ..
two conditions ensure that each boundary stratum of M goi(X , D, A) has positive
expected complex co-dimension, and every nodal log curve is virtually smoothable,

respectively. The moduli space H;"i (X, D, A) can be described without mention-
ing the meromorphic sections ¢, ;. Whenever such a section exists, it is unique up
to multiplication by a non-zero constant. More specifically, the data of the meromor-
phic sections can be read from the corresponding polar divisors and we want divisors
whose associated line bundles are something specific; see Remark 4.10. Such divisors
represent a particular point in the Picard group. In the genus zero case, each connected
component of the Picard group is a point. Therefore, every divisor with correct tan-
gency order coefficients is a valid choice. By (1.6), different lifts of a stable map in

4 Two tuples flog = ((ny v, jvs fv:(fv,i)ielv)uer Z) and fl/og = ((u;), Zé’j/v’ s (15 =
(C,/,_,')i ely)veV, Z’) are equivalent if there exists a holomorphic reparametrization # : ¥ — X’ such
thatu’ o h=u, h(7) =7/, and ht{/;(v),i =¢y,i¢y,i forall veV and some ¢, ; € C*. Here v — h(v) is the
induced map on the vertices of the dual graph.

5 Or sometimes, the last two conditions.
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ﬂg,k(X ,A) to M}:i (X, D, A) are characterized by different choices of tangency
order vectors at the nodal points, satisfying Condition 3 and (1.1) on each smooth
component. See Sect. 3.3 for the details.

1.2 Deformation Theory

Our first goal in this paper is to introduce a natural Fredholm setup for studying the
deformation theory of log pseudo-holomorphic curves. This setup can also be used
to address the transversality issue in other applications of moduli spaces of curves
relative to a smooth or SNC divisor, such as in the construction of the relative Fukaya
category [4]. In the latter, it would also be useful for properly addressing the orientation
problem. The key to this setup is the observation that the deformation theory of log
J-holomorphic curves relies on the linearization of CR equation (1.10) as an operator
acting on the set of sections of the log tangent bundle 7 X (— log D) instead of T X.
In the holomorphic case, the log tangent sheaf is the sheaf of holomorphic tangent
vector fields in 7 X whose restriction to each D; is tangent to D;. The construction in
the symplectic case is similar but depends on some auxiliary data. The deformation
equivalence class of the complex vector bundle 7 X (—log D) only depends on the
deformation equivalence class of (X, D, w). Furthermore, we have

ClTX(—logD) S Z PD(D;) € H*(X, 7Z);
i€[N]

see Sect.2.3 or [13, 15]. Therefore, in analogy with the classical dimension formula
d = exp-dimp M, (X, A) =2 (c;”‘(A) +(m—-3)(1—-g) + k) . (1.8)
the expected dimension in (1.2) can be re-written as

(1.9)

The analytical setup in the classical case follows the following steps. Given a smooth
domain (X, j), let Map, (2, X) denote the space of all smooth maps u : ¥ — X that
represent the homology class A. Let

SA -— Ma’pA(Ea X)

be the infinite dimensional bundle whose fiber over u is I' (X, SZ% lj Qc u*T X). The
Cauchy-Riemann (or CR) equation

- 1
Buzz(du—i—Jduoj) (1.10)
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can be seen as a section of this infinite dimensional bundle. To be precise, we need
to consider a Sobolev completion of these spaces for the Implicit-Function Theorem
to apply, but, by elliptic regularity, every solution of du = 0 will be smooth. The
linearization of the d-section at any J-holomorphic map u is an R-linear map

D,d: I(S, u*TX) — (S, Q% ®c ' TX)

that is the sum of a C-linear d-operator and a compact operator. Therefore, it is a
Fredholm operator and Riemann—Roch applies; i.e., it has finite dimensional kernel
and co-kernel, and

dimp Def(u) —dimp Obs(u) =2 (deg(u*TX)—i—dim(cX(l —g)) , (1.11)

where Def(u) = ker(Dué) and Obs(u) = coker(Dué). The first space corresponds to
infinitesimal deformations of u (over the fixed smooth marked domain) and the second
one is the obstruction space for integrating elements of Def(u) to actual deformations.
If Obs(u) =0, by Implicit-Function Theorem [26, Thm. A.3.3], in a small neighbor-
hood B¢ («) of u in Map 4 (X, X) the set of J-holomorphic maps V,, = a~1(0)N B ()
is a smooth manifold of real dimension (1.11), all the elements of Def(u) are smooth,
and T,,V, = Def(u); see [26, Thm. 3.1.5]. The manifold V,, carries a natural orienta-
tion.

In the logarithmic case, given (E, i, z2=(z1,..., zk)), A, and s, we generalize this
construction in a natural way. In Sect. 4.1, we construct a configuration space

Map, ,((Z,2), (X, D)) C Map, (%, X)

whose elements are smooth maps that have tangency order type s with D at 7 in a
suitable sense. Let

Eas — Map, ; ((£,2), (X, D))
be the infinite dimensional bundle whose fiber over u is
r (2, Q%! @c u*TX(~log D)) .

The section d of 4 restricts to a section 9'°¢ of & A.s. Recall that there is a C-linear
homomorphism

1:TX(=logD) — TX (1.12)

(covering idy) that is an isomorphism away from D. This homomorphism induces
C-linear maps

0 T(Z, u*TX(—log D)) — I'(X, u*TX),
0 T(Z, Q%lj ®c u*TX(—log D)) —> I'(Z, Q%}j ®c u*TX).
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The linearization Dg) £9 of 9'°¢ is a Fredholm® linear map
D5 I'(Z, u* T X (- log D)) —> I'(Z, Q%! @c u*TX(~log D))

such that 15 0 DI°%5 = D,d o (; (on the subset of smooth sections). Furthermore,
by Riemann—Roch and Implicit-Function Theorem, if coker(DLOgé) = 0, the set of
J-holomorphic maps of tangency order type s close to # form an oriented smooth
manifold of real dimension

2 (deg(u*TX(— log D))+dimc X (1 —g)) )

Considering the deformations of the marked domain (X, j, 7), we get the dimension
formula (1.9) and the deformation-obstruction long exact sequence

0 —> aut(C) —>> Defipg (1) —> Defiog(f) —> Def(C)

—8> ObS]Og(M) — Obslog(f) — 0,
where f=(u, C=(%,j,2)),

aut(C) = Hy (TX(—log2)), Def(C) = HJ(TE(—log?)),
Defiog (1) = ker(D)29), Obsjog (i) = coker(D£3).

If Obsjog (/) =0, then a small neighborhood B(f) of fin Mg s(X, D, A) is asmooth
orbifold of the expected dimension (1.9). In Sects. 4.2 and 4.3, we will extend this setup
to log maps with smooth domain and image in a stratum Dy, and to general nodal log
maps, respectively.

1.3 Transversality

For the general construction of Gromov—Witten type invariants of every arbitrary pair
(X, D), we need a gluing theorem that generalizes the known gluing theorem in the
classical case. We also need to generalize the theory of Kuranishi structures to allow
toric singularities. In the classical case, by restricting to the subset of simple maps,
transversality can be achieved by global perturbations of the d-equation and J. Then,
in the case of semi-positive symplectic manifolds, as worked out by McDuff—Salamon
[25] in genus O and Ruan-Tian [32] in arbitrary genera, the classical analogue of the
map st x ev in (1.5) over each stratum of non-simple maps factors through a positive
complex co-dimension space of simple maps, and thus can be ignored. Therefore,
in semi-positive situations, gluing and virtual techniques are not needed, and GW
invariants can be defined by a direct count of perturbed pseudo-holomorphic curves
in the following sense.

6 After taking Sobolev completions of these spaces.
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Definition 1.2 A closed real 2n-dimensional symplectic manifold (X, w) is called
semi-positive if

XA >3-n = ¥ >0
for all A emy(X) such that w(A) > 0. Itis called positive if
¥y =3-n = ¥ >0

for all A € m(X) such that w(A) > 0. We say [X, o] is semi-positive/positive if
(X, o) for some ' deformation equivalent to w is semi-positive/positive.

In particular, every symplectic manifold of real dimension 6 or less is semi-positive
and every symplectic 4-manifold is positive. Let

M (X, A) C Mg r(X, A)

denote the subspace of simple (not multiple-cover) maps. By [26, Thm. 3.1.5], for
generic J, M*’ «(X, A) is a naturally oriented smooth manifold of the expected real
dimension (1.8). If g=0 and (X, w) is positive, for generic J, a deliberate dimension
counting argument shows that the image in M 4 x X* of the complement

Mo (X, A)\ M (X, A)
under
st x ev : Mog(X, A, v) — Moy x X*

is a set of real Co_dimension at least 2 and can be ignored. In other words, the inclusion
(*), (X, A) C Mo (X, A) gives rise to a pseudocycle whose homology class

GW{i 4 C Ha(Mox x X*,7)

is independent of the choice of J and the particular choice of w in its deformation
equivalence class; see [26, Thm. 6.6.1] for more details.

In the higher genus case, the same argument does not work and one needs to perturb
the Cauchy—Riemann equation to take care of constant and multiple-cover maps. Given
a smooth Riemann surface ¥ with complex structure j and a (sufficiently) smooth
map u : ¥ — X, the space of perturbation terms for the pair (u, X) is the infinite
dimensional vector space

Iz, Q%lj ®c u*TX)

of smooth u*T X-valued (0, 1)-forms with respect to j on X and J on 7 X. Given a
perturbation term v, we say u is (J, v)-holomorphic if it satisfies the perturbed CR
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equation du =v. If 2g4+k > 3, Ruan-Tian defined a class of global perturbation terms
v, where each v is a section in

r (ﬂg,k x X, 7110} @c n;Tx) . (1.13)

Here, i_,lg,k is a universal family over a “regular” covering ﬁg,k of Hg,k. For each v,
the moduli space of interest is the set

Mo k(X, A, J,v)

of the equivalence classes of stable degree A genus g k-marked nodal (J,v)-
holomorphic maps (¢, u, C). Here ¢: C — i_lg, « is a holomorphic map’ from a genus
g k-marked nodal curve C onto a fiber of the universal family i_lg, cand du = (¢, u)*v;
see Sect. 3. By [32, Cor. 3.9], the space ﬂg,k(X, A, J,v) is Hausdorff and compact
with respect to a similarly defined Gromov convergence topology. By [32, Thm. 3.16],
for each w-tame J and generic perturbation term v, the main stratum M, (X, A, J, v)
consisting of maps with smooth domain® is cut out transversely by the {3 — v}-section
and thus it is a smooth manifold of the expected dimension (1.8). By [32, Thm.
3.11], it has a canonical orientation. Furthermore, if (X, w) is semi-positive, by [32,
Prop. 3.21], for generic (J, v), the image of the complement of M, (X, A, J, v) in
Mg,k(x , A, J,v) under st x ev is contained in images of maps from smooth even-
dimensional manifolds of at least 2 real dimension less than the main stratum. Thus,
similar to the positive case and after dividing by the degree of the regular covering
used to define v, the inclusion

Mg k(X, A, T, v) C Mg (X, A, J,v)
gives rise to a GW homology class
GWy ;4 C Hi(Mgx x X5, Q)

independent of the choice of the admissible almost complex structure J, the perturba-
tion v, or the particular choice of w in its deformation equivalence class. We conclude
that, in the semi-positive situations, the resulting GW invariants are enumerative in the
sense that they can be interpreted as a finite Q-weighted count of (J, v)-holomorphic
maps of fixed degree and genus meeting some prescribed cycles at the marked points.

Our second goal is to introduce a logarithmic analogue of Ruan—Tian perturba-
tions of the Cauchy—Riemann section for log moduli spaces, and use them to achieve
transversality over the subspace of simple maps.

71t inductively contracts bubble components with unstable domain.

8 Since 2g+k >3, every such map is automatically simple according to Definition 3.4.
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The definition of the obstruction bundle £4 s above and (1.13) suggest that a loga-
rithmic perturbation term should be an element of

r <ﬁg,k x X, ﬁrﬂgii ®c 75T X(—log D)) )

For each vjg in this space, with ¢ as in (1.12), v = ((vog) 18 the associated classical
perturbation term in (1.13). The construction of log (J, v)-holomorphic moduli spaces
works for arbitrary v = t(viog). However, for simplicity, we restrict to a subclass of
such sections Hg x (X, D), described below, whose elements have a standard form
near each stratum D; of D. With the perturbation term vjoe as above and a similarly

defined log linearization map DLO 810 —v}in place of D, {3 — v}, the proof of the main
results follows the same general steps as in [32]. However, we face some difficulties
in dealing with non-simple nodal maps.

We consider a particular set of almost Kéhler auxiliary data AK(X, D, w) defined
in [12] and compatible logarithmic perturbations in the following sense. Since [7,
Thm. 1.4] also includes integrable J, similar results for perturbations compatible
with integrable almost complex structures can be obtained. An element (R, J) in
AK(X, D, w) consists of

e aregularization R, that is a compatible set of symplectic identifications of neigh-
borhoods of {D;};c[n] in their normal bundles with their neighborhoods in X in
the sense of Definition 2.3;

e and an w-tame almost complex structure J compatible with R in the sense of
Definition 2.5.

The space AK(X, D, ) might be empty for some choices of w. Let” Symp(X, D)
be the space of all symplectic structures w on X with respect to which D is an
SNC symplectic divisor. Let AK(X, D) be the space of tuples (w, R, J) where
w € Symp(X, D) and (R, J) e AK(X, D, w). As a consequence of [12, Thm. 2.13],
the projection map

AK(X, D) — Symp(X, D), (w,R,J) —> o,

is a weak homotopy equivalence. In particular, starting from any w, we can deform it
without changing its cohomology class to another o’ such that AK(X, D, ') # @.
Therefore, the subspace AK(X, D)[4) of tuples («’, R, J) such that o’ is deformation
equivalent to w in Symp(X, D) is path connected.

For any fixed tuple (w, R, J) and g, k € N, with 2g + k > 3, we define a class of
“(R, J)-compatible” perturbation terms v in Definition 3.7. The compatibility con-
dition requires v to be of a standard form with respect to the regularization R in the
following sense. For every I C [N], the normal bundle ANy D; of D; in X admits a
decomposition into a direct sum of complex line bundles

NxD; = @ NxDilp, - (1.14)

iel

9 This space is denoted by Symp ™ (X, D) in [12, 14].
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The regularization map Wy in R gives a stratified identification of a neighborhood D;
in Ny D; with a neighborhood of that in X so that

° \IJ}*w is of some standard form,

e on the horizontal subspace Thor Ny Dy = n}kTD 7 defined via the connections in
R, W7 is the pull back of J|7p, via the projection map 7; :NxD;— Dy,

e and in the vertical subspace TNyD; = nyNxDj, W;J is the direct sum
complex structure on the right-hand side of (1.14).

Then, similar to the definition of J, the horizontal component of v is required to be
the pull back from D; of some vy, and the vertical component of v is required to be
(C*)! -equivariant with respect to component-wise action of C* on the right-hand side
of (1.14). Let H, 1 (X, D) be the set of such tuples (@, R, J, v). As a consequence of
[12, Thm. 2.13], the projection map

Hg,k(Xv D)—)Symp(x’ D)’ (CU,R, Ja V)f—)a),

is again a weak homotopy equivalence. This implies that any invariant of the deforma-
tion equivalence classes in H, ¢ (X, D) is an invariant of the symplectic deformation
equivalence class of (X, D, w). The subspace Hg (X, D)(o) of tuples (', R, J, V)
such that o’ is deformation equivalent to w in Symp(X, D) is path connected. Given
(0, R, J,v)eHy (X, D), in Sect. 3, we construct the moduli space

—— 1
M, (X, D, A, v)

of equivalence classes of stable k-marked genus g degree A log (J, v)-holomorphic
curves of tangency order type s, similar to [7, Sect. 3.2].

The following result is the straightforward generalization of [7, Thm. 1.4] to the
(J, v)-holomorphic case. This time, the rescaling map normal to D; in the proof of

[7, Thm. 3.8] yields a meromorphic section with respect to the -operator Dﬁ\[" {0 —v)
in (3.15) instead of u*d, p, = D}/ 3 in [7, Lem. 2.1].

Theorem 1.3 Suppose X is closed, D = UiE[N] D; C X is an SNC symplectic divisor,
AeH)(X,Z),g,keN,ands e (ZN)k. Forevery (w, R, J,v) € Hg 1 (X, D), the Gro-
mov sequential convergence topology on ﬂg, (X, A, v) lifts to a compact metrizable

sequential convergence topology on ./\_/ll,og5 (X, D, A, v) such that the forgetful map

——log

M, o(X. D, A, v) — Mg (X, A, v) (1.15)

is a continuous local embedding. If g =0, then (1.15) is a global embedding.

Furthermore, the forgetful and evaluation maps st and ev in (1.5) are continuous.
. — . .
Each moduli space M go’gﬁ(X , D, A, v) is coarsely stratified by the subspaces

Mg,S(X7 Da Aa V)F
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consisting of log (J, v)-holomorphic curves with the decorated dual graph I". The
set of vertices V corresponds to the smooth components of X, the set of edges £
corresponds to the nodes of X, and the set of roots I corresponds to the marked
points. Each v € V is decorated by the degree A, € H (X, Z), genus g, € N, and the
index set I, C [N]. With the boundary divisor d Dy C Dy defined as in (1.4), an edge
e € E is decorated by the index set I, C [N] if u(g.) € Dy, \ 9Dy,. Each edge can
be oriented in two ways e and e such that the node g, is obtained by identifying two
nodal points g, and q,. Each oriented edge ¢ is decorated by the tangency order vector
se satisfying Condition 3 and (1.1) on each smooth component. The set of such I' is
finite. Similarly to [7, Sect. 3], associated to every admissible decorated dual graph T’
we get a Z-linear map

e=or:D=2"o Pz — T=Pz":
veV ecE

see (3.39). Condition 4 means that either I' is the trivial one-vertex graph (D =T =
0, corresponding to the virtually main stratum M, (X, D, A, v)) or ker(g) has an
element in the positive quadrant. The complex torus in Condition 5 has Lie algebra
coker(p) ® C.

Definition 1.4 A (J, v)-holomorphic log map is called simple if the underlying (J, v)-
holomorphic map is simple.

For each decorated dual graph I, let
My (X, D, A, v)r C Mg (X, D, A, v)r

denote the open subspace consisting of simple maps.

Theorem 1.5 Suppose X is a closed symplectic manifold, D = | J; erny Di is an SNC

symplectic divisor, A € Hy(X,Z), g,k € N, and s € (ZN)]‘. For each admissible
decorated dual graph T, the following statements hold.

(1) If 2g + k > 3, for any given choice of universal family in (3.5), there exists
a Baire set of second category 'H;k(X, D) C Hg (X, D) such that for each
(w,R,J,v)e H}; (X, D), the subspace of simple maps

M;)g(x’ Dv A7 V)F C Mg,S(X’ Dv A7 V)F
is a naturally oriented smooth manifold of the real dimension
2 (c}”“‘l"g DY A) 4+ (n = 3)(1 — g) + k — dim ker(@)) : (1.16)
the restriction of st x ev in (1.5) to /\/12,’5 (X, D, A, v)r is smooth.

) If g=0,v=0, and A #0 or k >3, the same statement holds for J in a Baire set
of second category AKY (X, D) C AK(X, D).
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In a future work, by considering local perturbations, in the sense of Kuranishi
structures, and construing a gluing map (outlined in [7, Sect. 3.4]), we will use the
same techniques used in the proof of Theorem 1.5 to construct Kuranishi charts for
M, s(X, D, A).

In the classical case (no D), o is the trivial map ZE —s 0.If N =1 (D smooth),
dim D — dim T > 0 and dim ker(p) is often very large. If N > 1, there are nodal
configurations I' with arbitrary many nodes, dim D —dim T < 0, and dimg Kr(I") =
1; see [7, Example 2.13]. As a consequence, if D is not empty or smooth, we need a
sharp dimension counting argument for dealing with non-simple nodal maps.

1.4 Semi-Positive Pairs

Our final goal is to introduce a class of semi-positive pairs (X, D) for which one can
use the perturbed moduli spaces above to construct log Gromov—Witten invariants in
arbitrary genera without constructing a virtual fundamental class.

For (X, D = UiE[N] D;, w) as before, we say D is Nef!0 if A - D; > 0 for all
A € m(X) such that w(A) > 0. Let

Cra = min(A- U Dj,z), VA € Hy(X,Z), I C [N].
JjeIN]-1I

Definition 1.6 Let (X, w) be a closed 2n-dimensional symplectic manifold and D be
a Nef SNC symplectic divisor in (X, w). We say (X, D, w) is semi-positive if

TX(—log D)

CITX(—IOgD)(A) >3—n+|ll—L a2 = ¢

(A)>0  (L17)
for all A € mr(Dy) such that w(A) > 0. We say (X, D, w) is positive if
TXCIED Ay >3 g1 =ty 4 = TPy >0 (118

for all A € mp(Dy) such that w(A) > 0.

We say [X, D, w] is semi-positive/positive if (X, D, o) for some ' deformation
equivalent to w is semi-positive/positive. One may remove the Nef condition at the
expense of altering the left-hand side.

In Sect. 4.4, we show that under the semi-positivity condition (1.17) (resp. positivity
condition (1.18)), multiple-cover log J-holomorphic spheres happen in dimensions
less than or equal (resp. less) than somewhere injective maps. As we explain below,
unlike the classical case, this is not sufficient for finding a suitable upper bound for
the dimension of the image of non-simple maps in ﬂg, & X X® when D is not smooth.

For every decorated dual graph I' = I'(V, E, L) with [V| > 2, let

MG (X, D, A, v)r = Mg (X, D, A, v)r — My (X, D, A, v)r

10 The terminology is inspired by the corresponding notion in algebraic geometry but is different.
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be the subset of non-simple (or multiply covered) maps. An arbitrary stable log
(J, v)-map fails to be simple if either it contains a non-trivial bubble component that
is a multiple-cover, or if it contains two non-trivial bubbles with the same image.

Proposition 1.7 If D is smooth,

(1) under the semi-positivity condition of Definition 1.6, for (o', R,J,v) in a
Baire set of second category Hg:ES(X, D)w) C Hgx(X, D)), the image of
MG (X, A, J,v)r under st x ev lies in the image of smooth maps from finitely
many smooth even-dimensional manifolds of at least 2 real dimension less than
the dimension of the main stratum;

(2) similarly, under the same condition, if g =0, k < 2, and v =0, for (o', R, J)
in a Baire set of second category AK'"™ (X, D)[w) CAK(X, D)|w), the image of
M‘O‘fs (X, D, A)r under st x ev lies in the image of smooth maps from finitely
many smooth even-dimensional manifolds of at least 2 real dimension less than
the expected dimension.

For D smooth, the semi-positivity/positivity conditions of Definition 1.6 are essen-
tially the same as [16, Def. 4.7]. There is some confusion in [21, 22] regarding the
proper semi-positivity requirements in the relative case; see [16, Remark 4.9]. Their
work does not include a detailed proof of the relative analogue of Proposition 1.7. The
claim is that the result follows from the classical result of Ruan—Tian by looking at
the image of the moduli space in ﬂg,k (X,A,v).

The first statement below follows from Theorem 1.5 (1) and Proposition 1.7 (1). The
second follows from a standard family version of these results. The third, follows by
lifting two perturbations v; and v, obtained from two regular families ilg}{ — im;l;{

and 112,23( — smf}( to their fiber product regular family and connecting them by a
regular path, as in [35, pp. 34-35].

Corollary 1.8 Suppose (X, w) is a closed symplectic manifold, D is a smooth sym-
plectic divisor, A € Hy(X,Z), g, k e N with2g+k >3, and s € N, If [X,D,w] is

semi-positive, for any choice of a regular universal family as in (3.5), there exists a
Baire subset

Hg,ei (X, D)w) € Hg (X, D)[w]

of the second category such that for every (', R, J, v) in this set

(1) the map
stx ev: M, o (X, D, A, v) —> Mg xX®

defines a pseudo-cycle of real dimension

a8 =2 (XD + (0 = 3)(1 - ) + k) 5
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—~—X.D | —
(2) the integral homology class GW,, ; 4 in Mgk x X*® determined by this pseudo-

cycle is independent of the choice of (', R, J, v);
(3) furthermore, the rational class

aw¥? = L GWP b (M, o x X5, Q)
g.5,A = deg p g.5,A 2d0g g.k , s

where deg p is the degree of the regular covering used to define v, is an invariant
of the deformation equivalence class of w € Symp(X, D).

Similarly, the first statement below follows from Theorem 1.5 (2), Proposition 1.7
(2), and Lemma 4.16. The second one follows from a family version of these results.

Corollary 1.9 Suppose (X, w) is a closed symplectic manifold, D is a smooth sym-

plectic divisor, Ac Hy(X,Z), k <2,and s € N, If[X, D, w] is positive, there exists
a Baire subset

AK™8(X, D)[w] € AK(X, D)[w]

of the second category such that for every (o', R, J) in this set

(1) the map
st x evi MG (X, D, A)— Mo xX*

defines a pseudo-cycle of real dimension
2 (e XAy 40 =34 k)

(2) and, the integral homology class GW()){ fA in MO, kxX?® determined by this pseudo-
cycle is independent of the choice of (o', R, J).

For the reason stated at the last paragraph of Sect. 1.3, Definition 1.6 is not strong
enough for proving Proposition 1.7 (and consequently Corollaries 1.8 and 1.9) for

arbitrary SNC case (N > 1). More precisely, in the proof of the classical version of
Proposition 1.7, we get a stratification

M (X, Aoy = MY (X, A v)r
14

where y = (I, ') and T'” characterizes the topological type of the underlying simple
curves. For each y, we get a fibration

Ty M;k(x, A, V)r —> Mg (X, A, V)
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where the image is the space of underlying simple curves, and st x ev factors
through 7. In the logarithmic/relative case, we first consider a pre-log space

plOg(X D, A, v)r for which similar fibrations

MYBY (X, D, A, v)r — My o(X, D, A, V)

can be constructed. Then
MY (X, D, A, v)r = obg' (1),
where
obr: MYEY (X, D, A, v)r — G(T)

is the obstruction map in Condition 5. Intuitively, the obstruction map obr arises from
gluing considerations in the following way. In order to smooth out the nodes and realize
a log curve fiog € ./\/lplog Y(X, D, A, v)r (see (1.7)) as a limit of curves in the main
stratum, we need to glue the connected components at nodes g, by some local gluing
equations z,ze = &, and, at the same time, push-out each map u, out of Dy, in the

direction of the meromorphic sections ¢, by some multiple factors #,¢,. The condition
obr(fiog) = 1 € G(I') is equivalent to the existence of a compatible set of gluing and
push-out parameters ({€.}.cE, {fy}vev). It is evident from this explanation that obr is
very sensitive to the topology of the configuration and does not factor through 7, ; see
after (3.48) for a more detailed discussion.

If D is smooth, we can ignore obr because dim I — dim T > 0. Otherwise, as
Example 4.24 shows, MJg/ (X, D, A, v)r can be larger than the main stratum. For
this reason, we need a stronger semi-positivity condition that yields a bound on the
dimension of Mplog Y(X,D, A, v)r.

Given [X, D, a)], for each I C [N] and A € m2(X), let ;4 denote the minimum
number of (geometric) intersection points of a degree A J-holomorphic sphere!! in
Dy with d Dy, for all (', J) € AK(X, D)(q)

Definition 1.10 Let (X, w) be a closed 2n-dimensional symplectic manifold and D be

a Nef SNC symplectic divisor in (X, w). We say (X, D, w) is strongly-semi-positive

if

11D (4) > max(0,2 - 87 4)
(1.19)

ClTX(—lOgD)(A) > 3 —n+ |I| _EI,A = C

for all A € m2(Dy) such that w(A) > 0 (except possibly (I, é7,4) # (4, 0)). We say
(X, D, w) is strongly-positive if it is strongly-semi-positive and positive.

In many examples, Condition (1.19) and (1.17) are equivalent.

Wy is possible to write down a weaker definition of §; 4 without mentioning J-holomorphic spheres.
Often, this number is independent of the choice of almost Kéhler structure. Also, we define this number to
be zero if such a J-holomorphic sphere does not exist.
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Example 1.11 A transverse union of d hyperplanes in P" (with Fubini-Study sym-
plectic form) is semi-positive (= strongly-semi-positive) whenever d ¢ [n 42, 2n + 1]
and it is positive (= strongly-positive) whenever d ¢ [n + 1, 2n + 1]. An interesting
case is when X =P" and D is the degree n + 1 toric boundary divisor dPP". In this
case T X (—log D) is the trivial complex vector bundle generated by (the pre-image
in T X(—log D) of n+1 vector fields

n
X00x0, .., Xp0xp, satisfying inax,- =0.
i=0

In other words, (P, dPP") is a log Calabi—Yau pair. If furthermore n =3, then
. —log
exp-dimg /\/lg’s(X, D,A) =k

is independent of g and A. Note that k is at least 2. Since the quintic Calabi—Yau
3-fold can be degenerated to an SNC configuration whose components are blowups of

(P3, 9P3), the GW numbers arising from Mi,‘fgs (P3, 3P3, A) should be related to the
GW invariants of the quintic CY 3-fold. An interesting example of log Calabi—Yau
four-folds is worked out in [9].

The claim is that under the stronger conditions of Definition 1.10, Proposition 1.7
(and consequently Corollaries 1.8 and 1.9) holds for all N.

Conjecture 1.12 Suppose X is closed, D = Uie[N] D; C X is an SNC symplec-
tic divisor, A € Hy(X,7), g,k € N with 2g+k > 3, and s € (NV)*. If [X, D, w]
is strongly-semi-positive (resp. strongly-positive), then Proposition 1.7, and conse-
quently Corollaries 1.8 and 1.9, hold.

We lay the foundation and explain the difficulties for proving Conjecture 1.12 in
Sect.4.5. We provide several examples that illustrate the issues. We also explain the
consequence of (1.19). We plan to address this conjecture in a future work. There
are, however, some special but interesting cases, such as when X is toric and D
is its boundary divisor (see Remark 4.20), or when D; are (0, A)-hollow (Donaldson
divisors of sufficiently high degree) in the sense of [17, Def. 1], where Conjecture 1.12
can be confirmed with easier arguments.

2 SNC Divisors and the Associated Structures: Review

In Sect.2.1, we recall the notions of simple normal crossings (SNC) symplectic divi-
sor and symplectic regularizations for such objects introduced in [12]. Regularizations
allow us to define a suitable space of almost Kéhler structures in Sect.2.2 and pertur-
bations in Sect.3.2. In Sect. 2.3, we review the notion of logarithmic tangent bundle
associated to SNC symplectic divisors introduced in [13]. Readers familiar with the
definitions, notations, and results of [12, 13] may skip this section. We refer to [13]
for a relatively short review of these concepts.

@ Springer



Deformation Theory of Log Pseudo-holomorphic Curves

2.1 SNC Divisors and Regularizations

Let X be a (smooth) manifold. For any submanifold D C X, let

TX
|D—>D

NxD =

denote the normal bundle of D in X.

Definition 2.1 ([12, Definition 2.1]) An SNC symplectic divisor in a symplectic man-
ifold (X, w) is a finite transverse union D=|_J; (v Di of smooth symplectic divisors
{D;}ien] such that for every I C [N] the submanifold

DIEﬂD,- cX
iel

is symplectic and its symplectic and intersection orientations are the same.

Let Symp(X, D) (this is denoted by Symp™ (X, D) in [12]) denote the space of
symplectic structures @ on X such that D is an SNC divisor in X with respect to w.
The particular choice of w in its deformation equivalence class is not important in the
construction of (relative) GW invariants.

By the transversality assumption, the homomorphisms

NxD; — @ NxDilp,. VICINI. @.1)
iel
induced by the inclusions TD; C T D; |p, are isomorphisms. These vector bundle

isomorphisms are not symplectic unless { D; };¢[n] intersect orthogonally. For I’ C I C
[NV], define

Npp = @ NxDilp,;

iel-I'

under the decomposition (2.1), 1.1’ 1s isomorphic to the normal bundle of D; in Dy.
We denote by

nr.r N,y — Dy, 7w : NxDp — Dy,
the natural projection maps.
A system of regularizations for {D;};c|y) in X is a collection of smooth embed-
dings
v, : NyD; — X, VI C[N],

from open neighborhoods Ny, D; C Nx Dy so that W |p,= idp,, d¥; induces the
identity map on Ny Dy, and

Wy (N, pNDom(¥)) = DpNIm(¥;),  VI'CICIN].
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This implies that d¥; induces an isomorphism
DYy 777;[/NI;171’|./\/’1;1/0D0m(\111)—> NxDplp,nimw;); (2.2)

see [12, Sect. 2.2]. In the I =1 case, this derivative is the identity map.

Definition 2.2 A regularization for D in X is a system of regularizations for { D; };en]
in X as above such that

Dom(V¥;) = DW; !

1.y Dom(Wp)), Wy =Wy oDV pom(w,), vI' C I C[N].

For each i € [N], an w-compatible Hermitian structure on NxD; is a triple
(i, pi, V(’)), where i; is an w-compatible (fiber-wise) complex structure on Ny D;, p;
is a Hermitian metric with real part

pR('a ) = wleDi (‘7 ii')a

and V% is a Hermitian connection compatible with (i;, p;). For each i € [N], the space
of w-compatible Hermitian structures on Ny D; is non-empty and contractible. Each
triple (i;, pi, V(i)) as above determines a 1-form «; on Ay D; — D; whose restriction
to each fiber Ny D;|,—{x} = C* is the 1-form d# with respect to the polar coordinates
(r,0) on C. For each i € I C[N], we denote the tuple induced by (i;, p;, v®D ;) on
NxD; |p, by Gr.i, pr:i, \AUDR ay.;). We also denote by p; and py.; the square-of-
the-norm functions on Nx D; and Nx D; |p,, respectively.

Definition 2.3 ([12, Definition 2.9)) If D = UiE[N] D; is an SNC symplectic divisor
in (X, w), an w-regularization for D in X consists of a choice of Hermitian structure
(i, pi, VD) on Ny D; for all i € [N] together with a regularization for D in X as in
Definition 2.2 so that

1
Vio =i @lrp,)+ 5 Y dpriar). ¥ICIN], 2.3)

iel
and (2.2) is an isomorphism of split Hermitian vector bundles for all I’ C I C[N].
If N=1,1i.e., D is a smooth divisor, an w-regularization is a single map
V:NyD — X (2.4)

asin [26, Lem. 3.14] without any further compatibility condition. We define the space
of auxiliary data Aux(X, D) to be the space of pairs (w, R), where w € Symp(X, D)
and R is an w-regularization of D in X. Let

I: Symp(X, D) — H>*(M;R)

be the map sending w to its de Rham equivalence class [w]. The following is a weaker
version of the main result of [12] for SNC symplectic divisors.
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Theorem 2.4 ([12, Theorem 2.13]) For (X, D) as above, the projection maps

7w Aux(X, D) — Symp(X, D),
Tl Mo} (@) — M7 N(@), o€ Hi(M),

are weak homotopy equivalences.

Given w-regularizations R and R’, we say R’ is a shrinking of R if the Hermitian
data in R and R’ are the same and

Dom(¥;) C Dom(¥;) and V; =/ Ipom(w;). Y C[N].

Two w-regularizations R and R’ are said to be equivalent if they have a common
shrinking. The latter defines an equivalence relation among w-regularizations.
If D is an SNC symplectic divisor in (X, w), then, for each I C [N],

aD; = U D, 2.5)
1CJ

is an SNC symplectic divisor in (D, w|rp,) and an w-regularization R for D in X
restricts to an w|7 p,-regularization R; for 9D in D;. For I = (J, the convention is
Dy=X and 0X =D.

2.2 Almost Kahler Auxiliary Data

In order to define relative GW invariants of (X, D, w), we need to consider an almost
complex structure J on X that is both w-tame and D-compatible. The biggest set
of such almost complex structures that one may consider is the set of w-tame (or
compatible) J such that J(7' D;)=T D; for all i e[ N] and

Ny(u,v) e TD;, Yie€[N], x € D;, u,veTX, (2.6)

where Nj is Nijenhuis tensor of J. Condition (2.6) is needed to ensure that certain
operators are complex linear (see [7, (4-6)]), or equally, certain sequence of almost
complex structures on Ny D; converges to a standard one (see [7, Lem. 3.5]). In this
paper, however, similar to [23] and [6], we restrict to a special class of almost complex
structures arising from regularizations in the following sense.

Definition 2.5 Suppose D = UiE[N] D; is an SNC symplectic divisor in (X, w), R is

an w-regularization for D in X as in Definition 2.3, and J is an w-tame almost complex
structure on X such that J(T D;)=T D; for all i e[ N]. We say J is R-compatible, if

il =i ®n; @Pini. VI CINI 2.7

iel
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where J; = J|rp,, ir;; is the complex structure on NxD;ilp , pre-determined in R,
and the righthand side of (2.7) is the direct sum complex structure corresponding to
the decomposition

TNxDy §N7TD1 GBT[?N)(D[, 2.8)

given by the connections in R.

Given any (w, R) € Aux(X, D), we denote the space of w-compatible almost
complex structures compatible with a shrinking of R by AK(X, D, w)r. This space
is non-empty and contractible. We denote the space of compatible tuples (w, R, J)
by AK(X, D). It follows from Theorem 2.4 that the projection map

AK(X, D) —> Symp(X, D) (2.9)

is a weak-homotopy equivalence. This implies that any invariant of the deformation
equivalence classes in AK(X, D) is an invariant of the symplectic deformation equiv-
alence classes in Symp(X, D).

2.3 Logarithmic Tangent Bundle

In this section, we review the notion of logarithmic tangent bundle in complex geom-
etry and the analogous notion for SNC symplectic divisors introduced in [13]. A
detailed description of this construction is provided in [15]. We will show in Sect. 4
that the linearization of Cauchy—Riemann operator for log maps is a lift of the classical
linearization map to the logarithmic tangent bundle.

Let X be a smooth complex manifold and D C X be a normal crossings divisor;
i.e., locally around every point p € X there are holomorphic coordinates (xi, ..., xj),
with n =dim¢ X, such that

D=(x;---xx=0) C X forsomek < n.

In such coordinates, the sheaf 7 X of holomorphic sections of the complex tangent
bundle 7 X is generated by

Oxysv-v, Oy,
and the log tangent sheaf 7 X (— log D) is the sub-sheaf generated by
X10xys « v s XkOxs  Oxggs v - Oy
It is dual to the sheaf Q;(log D) of meromorphic 1-forms with at most simple poles
along D;. Since 7 X (— log D) is locally free, it is the sheaf of holomorphic sections of
a holomorphic vector bundle 7 X (— log D). The inclusion 7 X (— log D) C7 X gives

rise to a holomorphic homomorphism

t:TX(=logD) — TX
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which is an isomorphism away from D.
Given an SNC symplectic divisor D=|_J; c(v) Di in (X, o), an w-regularization R
for D in X as in Definition 2.3 gives rise to a real rank-2n vector bundle

TX(—logD)r — X
satisfying
TX(—log D)rlp, = TD;(—logdD;) & D; x C!, VI C [N],

where d D; C Dy is the SNC divisor in (2.5). As in the holomorphic case, there exists
a canonical homomorphism

1: TX(—logD)r — TX (2.10)
which is an isomorphism away from D. Furthermore, any R-compatible almost
complex structure J on 7°X gives rise to a similarly denoted complex struc-
ture on TX(—log D) such that the homomorphism (2.10) is complex linear.
The deformation equivalence class 7 X(—log D) of the complex vector bundle

(T X(—log D), J), which we call the log tangent bundle of (X, D), only depends
on the deformation equivalence class of (X, D, w). Furthermore,

o(TX(—log D)) = c(TX)/ [] (14 PD(D))):
i€[N]

see [13, 15]. In particular,

TX(—log D
o XTRED) = o TX N pD(Dy).
i€[N]

For a smooth divisor D C X, with notation as in (2.4), we have

TX(~logD)g = (V" "*(x*TD @ NyDxC)uTX|x_p )/~
VA TD @ Ny DXC) ly)2 € ®c~de W(E + ) € Ty (X—D),

where in the last equation, via the isomorphism
T, NxD = (n*TD & n*NxD)|;

given by the connections in R, we think of £ + ¢¢ as a tangent vector in T; N'x D, for
all £ e Nx D. In the general SNC case, with notation as in Sect. 2.1, we have

TX(—logD)g = < |_| \Dl_l*(n;‘TDAN;DI ®Ny D) x C’)>/~ (2.11)
IC[N]
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where
NyD; ==, (D;—3D;) N Dom(¥))

and the identification maps that give rise to the equivalence relations ~ on the overlaps
are given by

(n;‘TD1|N§D, ®NRD; x C’)L > (£ ® (cidier)

— E@(cier) € (n;*,TD,/W;D,, ®NIDy x (C”) o VI'CICIN

with
pEeD;—03D;, ¢ =(&)iecreNyDilp, q=Y1 1 (p,&)ier—1) €Dy,
=0V 1((p, €Dier—1); &j)jer)) ENxDrlg.
£= AV 1l@yies (5 + Z CiCi) eT,Dyp

iel-I

on the overlap; see [12, Sect. 2.2] or [15, Sect. 3.3]. For each R-compatible J, on the
local chart

7T Dilnep, ®NR Dy x C' — N3 Dy, (2.12)

the complex structure is given by the pull back of J|7p, on the first summand and the
trivial complex structure on the second summand. Furthermore, the C-linear homo-
morphism (2.10) is given by

(e T Dilny o, ®N3 DI % C’))g 5 (£ @ (ci)icr)

(2.13)
— dy ¥y (E ® Zci§i> € Ty, X,

iel
where, again, via the identifications (2.8) and (2.1), for each
¢ = (G)iereNxyDp = @NXDi
iel

we think of § @ > ¢;¢; as a tangent vector in T;J\f xDj.

Let 4 be a Hermitian metric on 7 X (— log D)1 . For example, at the cost of shrinking
‘R, one can construct 4 so that on the chart (2.12) it is the direct sum of the standard
Hermitian metric on V' xDrx C and the pull back of some Hermitian metric from D;
on the first summand. For every I C [N], via the inclusion

TD;(—logdD;) C TX(—log D)|p,
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and the identification
TDi(—=logdDp)lp,—sp,= T(D;—03Dy),
h induces a complete Hermitian metric on Dy —0dDy. Let
exp;: T(D;—dD;) —> D;—dDy
be the exponential map of i;. Define

exp10g :TX(—logD)r — X, (§ ®c)lp—> exp;(p.&) € D;—9dDy,

(2.14)
VI C[N], peD; —dD;, E®c e T,X(—logD)r = T,D; & C.

This map is smooth and it is a logarithmic version of the exponential map in the
classical sense. In fact, for any

peD; —93D; and ¢ = (g)ier € NyDylp,

via the identification (2.13), the map exp'°2 is approximately (to the first order in |¢ )
equal to

(6.6 @) — (oxp; €, Pal((5)ier) ) € MR D @.15)

where Pal((e“ ¢;);e/) is the parallel translation of the vector (€ ¢;)je; € Nx Dy along
the path exp; (&) |c[0,1] in Dy. Putting { =0, (2.15) becomes exp; at p. This log-
arithmic exponential map will be used in constructing a Banach neighborhood of a
(J, v)-holomorphic map in the space of all smooth maps of the same tangency order

type.

3 Moduli Spaces of Log (J, v)-Curves

In this section, following the description of [32, Sect. 2] and [35, Sect. 2.1], we define
a suitable space of perturbation terms v over a “regular covering” of the Deligne-
Mumford space My x for any symplectic logarithmic pair (X, D). Then, following

and generalizing the definition of log J-holomorphic curves in [7], we introduce the
notion of log (J, v)-holomorphic curve.

3.1 Regular Coverings
For g, ke N with2g + k > 3, let
T Hg,k = Mg,kJr] — ﬂg,k 3.1
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be the universal curve, where 7 is defined by forgetting the last marked point. For a
marked curve C =[%,), z1, ..., 2k] in ﬂg,k, if the automorphism group Aut(C) is
non-trivial, then 7 =1(C) = T /Aut(C) instead of X. Therefore, unless g =0, (3.1)
is not a universal family and we can not directly define the perturbation term v over
Ug,k. One can resolve this problem by taking appropriate finite covers of (3.1).
Denote by 7, x the Teichmiiler space of genus g Riemann surfaces with k marked
points (punctures) and by G, i the corresponding mapping class group. We have

Mok =Tgk/Ggk-

Assume g =g1+g> and k =k|+k with 2g;+k; >3 fori =1, 2. For any decomposition
S1 U S, of [k] with | S; |= k;, there exists a canonical immersion

L=15.,8" Mgl,kl-H X Mgz,k2+1 —> 8Mg’k (3.2)
which assigns to a pair of marked curves
(Ci=[Zisdis ity - os Ziki+1)) iy o

the marked curve

C=I[Z,j,z1,..., 2], X =2X1UX2/21 k141~ 22k +15
{zi, o wy=H{z -z Uiz, o 220
so that the remaining marked points are renumbered by {1, ..., k} according to the

decomposition S1US,. There is also another natural immersion
S Mg_l,k.;_z —> 3mg,k 3.3)

which is obtained by gluing together the last two marked points.

Definition 3.1 ([35, Def. 2.1]) Let g, k € N with 2g + k > 3, and
p: ﬁg,k — ﬂg,k (3.4)

be a finite branched cover in the orbifold category. A universal family over ﬁg, k1S
a tuple

(71 Uk —> ﬁg,k,gl, ...,3k) 3.5

where ﬁg, k 1s acomplex projective variety Eld 7 is a projective morphism with disjoint
sections 31, ..., 3 such that for each c €M, ; the tuple

C=(Z,)=n""),3) = Gi(©), ..., 3())

is a stable k-marked genus g curve whose equivalence class is [C]= p(c).
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Definition 3.2 Let g, ke N with 2g+k >3. A cover (3.4) is regular if

(1) it admits a universal family,
(2) each topological component of p~! (/\/l g,k) is the quotient of 7, ; by a subgroup

of gg,k,
(3) for each boundary divisor (3.2) we have

(Mgl,kl-H X Mgz,kz-i-l) X(,p) Mg ke = Mgy 1+1 X Mgy k41,

for some regular covers My, 4,1 of M, 4,+1, and
(4) for the boundary divisor (3.3) we have

Meg—1k+2 X5,p) Mgk = Me—1,142,

for some regular cover ﬁg_l,k+2 of A_Ag_1,k+2.

The last two conditions are inductively well-defined. This definition is a modified
version of [35, Def. 2.2]. In [35, Def. 2.2], the last condition is missing; further-
more, ﬁgi,k,——i-l and ﬁg_l,kﬁ are only required to be “some” cover of ﬂgi,kiﬂ and
mg_1,k+2, respectively. The existence of such regular covers is a consequence of [2,
Prop. 2.2, Thm. 2.3, Thm. 3.9]; see also moduli space of curves with level n structures
in [29, p. 285]. In the genus O case, for each k > 3, the moduli space Mo,k itself is
smooth and the universal curve (3.1) is already a universal family. The regular covers
are only branched over the boundaries of the moduli space. Furthermore, the total
space of a universal family as in (3.5) over a regular cover only has singularities of
the form

{(x,y,1) € 3 xy=t"} —C, ((x,y,t)—1t

at the nodal points of the fibers of . In the approach of [32], for dealing with such
singularities they consider embeddings of a universal family into PV for sufficiently
large N. In this article, following [23, 35], we consider perturbations supported away
from the nodes.

3.2 Logarithmic Ruan-Tian Perturbations

Let g, k € N with 2g+k > 3 and fix a regular covering (3.4) and a universal family
(3.5). Denote by

ﬁ;,k C L_lg’k
the complement of the nodes of the fibers of the projection map = in (3.5). Denote by
Ty = Ker d(n|§;,k) — Uy i

@ Springer



M. Farajzadeh-Tehrani

the vertical tangent bundle. The latter is a complex line bundle; we denote the complex
structure by jg;. Then

0,1 . T
Qg,k = Tk, —jy)* —> ug,k

is the complex line bundle of vertical (0, 1)-forms. Itis possible to extend this construc-
tion to the nodal points by allowing simple poles and dual residues, or by embedding
i_lg’k into some PM as in [32].

Let (X, w) be a symplectic manifold and J be an w-tame almost complex structure
on X. The classical space of perturbations considered in [32] (following the modifi-
cation in [35]) is the infinite dimensional linear space

Hox (X, J) = {v c r(zi;k x X, 711} @c nng)

. (3.6)
s.t. supp(v) C (ﬂgyk - U Im(;,a)) X X},

aelk]

where 11, 7 are projection maps from i_l; « X X onto the first and second components,
respectively, and supp(v) is the closure of the complement of the vanishing locus of
v in the compact space i_lg,k x X. Let Hg (X, ) denote the space of tuples (J/, v)
where J is w-tame and v € Hg x (X, J). Note that given v and a boundary component
as in Definition 3.2 (3) (resp. Definition 3.2 (4)), the restriction of v to ﬁgl ki1 gives
a perturbation term in Hy, «, (X, J) (resp. Ho—1 x+2(X, J)).

Definition 3.3 Suppose g, k €N with 2g+k >3, i_lg,k is a universal family as in (3.5),

(X, w) is a symplectic manifold, A € H>(X, Z), and (J, v) € H, ¢ (X, ). A degree
A genus g k-marked (J, v)-map is a tuple

f= <¢, u, (2,5, (Za)ae[k])) 3.7)

where (2, j, (za)ae[k]) 1S @ nodal genus g k-marked complex curve, ¢ : ¥ — ﬁg,k is
a holomorphic map onto a fiber of i, ; preserving the marked points, and u : ¥ — X
represents the homology class A and satisfies

du = (¢, u)*v.
Two k-marked (J, v)-holomorphic maps
(¢>1, ur, (21, i1, (Zl,a)ae[k])) and <¢2, uz, (22, j2. (ZZ,a)ae[k])>
are equivalent if there exists a holomorphic identification
h:21 — ¥, h(z1.4) =224, Ya €lk],
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such that (¢1, u1) = (¢2, uz) o h. A (J, v)-holomorphic map is stable if it has a finite
automorphism group. For any fixed J, denote by

ng,k(Xv A’ U)

the space of equivalence classes of k-marked genus g degree A stable (J,v)-
holomorphic maps. The subspace of maps with smooth domain is denoted by
Mg (X, A, v). A contracted component of X in (3.7) is a smooth component whose
image under the map ¢ is just a point. A map (3.7) is stable if and only if the degree
of the restriction of u to every contracted component of ¥ containing only one or
two special (nodal or marked) points is not zero. If (3.7) is stable, every connected
cluster of contracted components is a tree of spheres, with a total of at most 2 special'?
points, at least one of which is a nodal point. For generic v, the only components of
X contributing non-trivially to the automorphism group of (3.7) are the contracted
components.

Definition 3.4 A genus 0 J-holomorphic map f (with a nodal domain) is called simple
if the restriction u,, of u to each irreducible component X, =P is not multiply covered,
whenever 1, is not constant, and the images of two such components in X are distinct.
A k-marked (J, v)-holomorphic map f asin (3.7) is called simple if the restriction u,,
of u to each irreducible component X, of ¥ contracted by ¢ is not multiply covered
(or equally it is somewhere injective) whenever!3 u, is not constant, and the images
of two such components in X are distinct.

If J is an w-tame almost complex structure on X, let V be the Levi—Civita connection
of the metric (u, v) = %(a)(u, Jv) +w(v, Ju)) and

Vol = Vol — %J(ij)g = %(vv; —JVy(JY)), YveTX, tel(X, TX)
(3.8)

be the associated Hermitian connection. The torsion 7' of the modified C-linear con-
nection

Vol = Vol — A@Q)v, AQQ) = i(v,ﬂ +JVeJ), YveTX, ¢el(X,TX)
(3.9)

is related to the Nijenhuis tensor normalized as in [26, p. 18] by

1
To(v, w) = —ZNJ(U, w), Vv,weTX.

12 Ejther a marked point or a nodal point connecting the cluster to an irreducible component of X outside
the cluster.

13 This is automatically satisfied if f is stable.
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If J is w-compatible, ¥V coincides with V. See [26, Chapter 3.1 and Appendix C]
f_or details. By [26, (3.1.6)], for a (J, v)-holomorphic map (¢, u), the linearization of
d — v has the form

D, {d — v}: T(Z, u* TX) — T'(Z, Q% @c u*TX),
K (3.10)
_ —~ 1 ~ .
D, {8 — v} =(V) OV + 2N (€ du) = Vev + B,

where
1
B(v) = Z(JVUJ + VuJ)
and
So0n_ Lo ST
(Vo)™ = E(Vg +JV¢oj)

is the (0, 1)-part of /V\;', see [26, Chapter 3.1]. The last term in (3.10) is zero if J is
w-compatible.

In the relative Gromov—Witten theory (i.e., when D is smooth), the most general
almost complex structure that one may consider is an w-tame or compatible almost
complex structures J on X that preserves T D and satisfies the Nijenhuis condition
(2.6) along D. For such an w-tame almost complex structure J, the most general
perturbation term v in H, (X, J) that one may consider is one satisfying

”|ﬁg_kxD€ He (D, JITp) and

1 . -
SV + Vi )w = (Vv + IV ) € Qy, ®c TuD, VxeD, weTX;

(3.11)
see [16, 17, 21]. The first parenthesis in the second line of (3.11) is zero if J is w-

compatible. If the image of u lies in D, by the first condition in (3.11), D, {3 — v}
induces an operator

DN{5 —v}: T(Z, u*Ny D) — T'(Z, sz%}j ®c u*Nx D). (3.12)

The se_cond condition in (3.11) together with (2.6) imply that (3.12) is C-linear (i.e.,
it is a d-operator); see [21] and [17, (2.14)]. Furthermore,

N
D) {3 — v}([;])=[(?;)(°’“ — %(N;v — ﬁ];v)} . VIV € D(S,u*Ny D),

(3.13)
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where [{]/Y denotes the image in I'(Z, u*Nx D) of a section ¢ € I'(X, u*TX). If
v=0, Dﬁ\/a is simply u*9nr, p Where

Inyp: T(D.NxD) — I'(D. Q3! ®c Ny D)

is the é-operator associated to J in [7, Lem. 2.1].

Generalizing (3.11) to the SNC case, the most general pairs (J, v) that one may
consider are those satisfying (2.6) and (3.11) along each D;. In other words, we need
v to satisfy

”|ﬁg,kxD,€ Hex(Dyr, Jp), VI C[N] and

1 . -
SV + V) = (Vv + IV ) € QY ®c TeDy. Vx €Dy, we TiX.
(3.14)

For (J, v) satisfying the first condition of (3.14), if (¢, u) isa (J, v)-holomorphic map
as in (3.7) with smooth domain, for every i € [N], either Im(u) C D; or u intersects
D; at finitely many points with positive tangency orders; see [17, p. 10]. Therefore,
there exists a maximal subset / C [N] (called depth of «) such that Im(z) C D; and u
intersects every D;, with i ¢ I, non-negatively. If the image of u lies in D;, D, {d — v}
induces C-linear d-operators

DNi(d — v} : I(Z, u*Nx D;) — I'(Z, Q%L ®c Ny D), Viel. (3.15)

Meromorphic sections defined with respect to these d-operators will be used to define
log (J, v)-holomorphic curves.

Working with the conditions in (3.14) is hard. In the following, instead of imposing
the conditions (3.14) on v, we define a class of logarithmic perturbation terms viog,
associated to each of which we get a classical perturbation term v satisfying (3.14).

Let D be an SNC symplectic divisor in (X, ), R be an w-regularization, and
J be an w-tame and R-compatible almost complex structure J on X. In Sect.4.1,
we will define a class of smooth maps # : ¥ — X containing representatives of
My s(X, D, A) for which du lifts to a log CR section

8% eI (3, Q% ®c u* T X (—log D)). (3.16)

In comparison with (3.6), (3.16) indicates that the right set of perturbation terms for
the log moduli spaces is (a subspace of)

{vlog eI (M, , x X, ”1*9211( Qc 5T X (—log D)R)

. (3.17)
s.t. supp(viog) C (ﬂg’k — U Im(ga)> X X}

aelk]

@ Springer



M. Farajzadeh-Tehrani

Associated to each vjo; we get a classical perturbation term
v=1t(viog) € Hg x (X, J), (3.18)
where by abuse of notation ¢ denotes the C-linear homomorphism
71 () ®c 73T X (—log D)p —> 7 (@) ®c 13 TX

induced by (2.10). Conversely, we may think of log perturbations as those v that lift
to a section of

nl*lelc ®c 13 TX(—log D)R.

Lemma 3.5 For every viog in (3.17), the associated classical perturbation term v =
t(viog) satisfies (3.14).

Proof Given a logarithmic perturbation term vio as in (3.17), for each I C [N],
restricted to the neighborhood W, (N )’( D) C X of D; and with respect to the decom-
position
WITX(—log D)p = njTD;(—logdDy) ® Ny Dy x C!

we get a decomposition

Viog,1 = W viog = V110g ® 07 (3.19)
where

01 = O1.)ier € T (W, x Ny Dy, JTTQg”,lc ®c C')
is a tuple of (0, 1)-forms. From (3.18), (2.13), and the decomposition (2.8) we get
vi =¥y =" ®ny, (3.20)

where

il () = (Brly, (W) - v1 = @il W)vr:)icr € NxDily,

(3.21)
Vx € Dy, v = (vpii)ier € NyDilx, w € Tgk.

Note that n;|p,=0; thus, v satisfies the first condition in (3.14). Furthermore, by (2.3),
(2.7), (3.21), and the first condition in (3.14)

JViJw,V;,JJw e TyD;, VYxe D, welX,
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and, with 8; = 51|D,,

VvV =611 - wy € Q) ®c NxDyly, Vx €Dy,
w=w"" ®w; € xX = T, D; ® NxDjls.
Therefore, v also satisfies the second condition in (3.14) and, by (3.13), (3.15) has the
form
DN — v} (er.) = @) @D = @ow)6ri - ¢ Viel,
Vi = (§r,)ier € T(Z, u"NxD) = @F(E, u*Nx D).

iel

(3.22)

]

Remark 3.6 Similar to [7], log (J, v)-holomorphic curves can be defined for arbitrary
Vlog in (3.17). However, as in [7, Remark 1.5], certain steps in the proof of the com-
pactness and the rest of analytical work are complicated for arbitrary such vj,g (or
arbitrary J satisfying (2.6)). To avoid these complications, almost complex structures
and perturbations considered in this paper are rather special. In the definition below,
in a neighborhood of each stratum Dy, via the identification map ¥;, V; and 9~1 are
required to be pull back via 7y of similar terms along Dj.

Definition 3.7 Given an SNC symplectic divisor D = UiE[N] D; in (X, w), an w-
regularization R, an w-tame and R-compatible almost complex structure J on X (see
Definition 2.5), and a perturbation term vjog in (3.17), we say viog is R-compatible if
Vg =7 (V1 1og) and 67 =7 (6r), VI CI[N], (3.23)
for some
Tl * 0,1 *
v log €T (U X D, 77, ®c 3 T Dy (—logdD1)R,)
and
01 = (O1.)ier € DT, x Dy, nl*Qg’Jl{ ®c Ch). (3.24)

The condition (3.23) implies that

nilev(w) = angly(w) € NxDyly,

/ , (3.25)
Va € (C)', x € Dy, v,av € NyDjly, w € Tgi.

In other words, in a neighborhood of each stratum Dj; in X, identified with a
neighborhood of D; in Ny Dy via the regularization map W; in R, the horizontal
component of v is the pull back from D; of some perturbation term v; on D;, and
the vertical component of v is (C*)!-equivariant with respect to the component-wise
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multiplicative action of (C*)! on N'xD;. As explained in [17, p. 11], under these
assumptions, Wjv extends to a (C*)!-equivariant perturbation term over the fiber
product of P!-bundles

[ [PWxDilp, &C). (3.26)

iel

Define H, (X, D, w) (resp. Hg 1 (X, D)) to be set of such tuples (R, J, v) (resp.
(w, R, J)) where v is the perturbation term associated'* to Vlog as in Definition 3.7.
For any fixed (w, R, J) (resp. (w, R)), define Hg (X, D) ; (resp. Hg i (X, D)R)
to be the set of perturbation terms v € Hg (X, J) (resp. (J, v) € Hy x (X, )) such
that vy, is compatible with a shrinking R’ of R. Similar to (2.9), the natural projection
map

Hg,k(X’ D) - Symp(X9 D)

is a weak homotopy equivalence. B
The first component (V{I,l-)(o’ D in (3.22) is a d-operator on u* N D; by itself and
is independent of v. In what follows, we will denote it by

Ny D; S, -

The 5-operators 0y Ny p; and Dﬁv" {0—v} define (usually different) holomorphic struc-
tures on the pull-back complex line bundle u*Nx D;. The latter is a deformation of
the former via the (0, 1)-form (¢, u)*6; ;. The one defined by éu*NXDi will be used
as a reference. The perturbation caused by 6; ; will allow us to achieve transversality.

By (2.7), (3.23), and (3.21), the X-component u : ¥ — X of any (J, v)-
holomorphic map (¢, u), with image in a sufficiently small neighborhood of D; (more
precisely, in Im(W;)) is determined by its projection

ur: X —> Dy (3.27)
and a set of sections
¢ = Criier € PTWiNx D) (3.28)
iel

such that

dup =v; and 8¢ = @D duinsep, Cri = nrur, &) = (@, ur)*0r) - ¢
iel

(3.29)

14 Since the map vjog > V is one-to-one, it is safe to use v in place of vjog to keep the notation simple.
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The second equation in (3.29) can also be written in the compact form
DN —v)(¢1) =0, Viel. (3.30)
By (3.29) or equally (3.30), for any c; =(c¢;)ier eCl,if (uy, 1) satisfies (3.29) then
(ur,cr-¢r = (citriier)

satisfies (3.29) as well. Therefore, in a neighborhood of each stratum Dj in X, identified
with a neighborhood of D; in Ny Dy via the regularization map W¥; in R, the set
of (J, v)-holomorphic maps is invariant under the component-wise multiplicative
action of C! on Ny D;. This explains the motivation behind the extra assumption
(3.23). In general, as a family {u;};—.0 of (J, v)-holomorphic maps sinks into Dy,
the corresponding sections ¢; 7 in (3.28) converge to zero. Then the idea is that, by
rescaling ¢; ;1 we geta (Jr, vr)-holomorphic map u; with image in Dy and a similarly
denoted holomorphic (or meromorphic) section

¢y = lim =2— .1 € ujNx Dy

t—>O| |
that remembers the direction at which the maps have approached D;. Conversely,
in the gluing construction, given (u;, {7), gluing is done by pushing u; out in the

direction of ¢;. These local observations explain the motivation behind Definition 3.9
in the next section.

3.3 Construction of Perturbed Moduli Spaces

Let (X, D) and (w, R, J, v) be as in the previous section, with v coming from an
‘R-compatible logarithmic perturbation term viog as in Definition 3.7. Suppose

ur: X— Dy (3.31)

is a (Jy, vy)-holomorphic map with smooth domain not mapped into d Dy (so its depth
is 1) and

¢1 = (1,i)iel € Cmero (@ M7NXDi) (3.32)

iel

is a tuple of non-zero meromorphic sections with respect to the holomorphic structure
defined by

(Dﬁ\[i {é—\)})iel = (éu*/\ffo — (9, u)*elsi)iel'
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In other words, u = (uy, {r) is as in (3.27) and (3.28), but ¢;; are allowed to have
poles. For each x € X, the tangency order vector

ord, (uz, ¢r) = (ord: (uy, D) ez (3.33)
is defined by

ord. (uy, ¢y) = ordy (u, D;) >0, Vi e[N]—1

. (3.34)
and ord, (uy, ¢;) =ordegri, Viel.

The first item in (3.34) is the order of tangency of u to D; at x; this is zero if u(x) ¢ D;
and is positive otherwise. The second item in (3.34) is the order of zero/pole of ¢; ;
at x. In particular, it only depends on the C*-equivalence class [¢ ;] of the section
¢i; changing each ¢;.; with a non-zero constant multiple of that does not change
ord;(ul, Zr).

Remark 3.8 For each i € I, in a local holomorphic trivialization of u’;/\/ x D; around
any point x € X, with respect to the holomorphic structure defined by 9, NyD;» the
second equation in (3.29) has the form

dfi =0, fi (3.35)

where f; is a complex valued function and 6; is a (0, 1)-form. Let g; be any C-valued
function such that dg; =0;. Then every solution of (3.35) is of the form

Ji = e8h;

where dh; = 0. Thus, ord, fi in (3.34) can also be defined to be the order of mero-
morphic function 4; at x which is independent of the choice of g; and hence v. This
shows that tangency order remains the same when we deform v.

In order to define nodal (J, v)-holomorphic maps, we use decorated dual graphs of
the following sort associated to every k-marked nodal domain (X, z1, ..., zx) asin [7,
Sect. 3.1]. Let ' =T"(V, E, L) be a graph with the set of vertices V, edges E, and legs
L; the latter, also called flags or roots, are half edges that have a vertex at one end and
are open at the other end. Let E be the set of edges with an orientation. Given ¢ € E,
let e denote the same edge with the opposite orientation. For each e € E, let vy (¢) and
v2(e) in V denote the starting and ending points of the oriented edge, respectively.
For v, v' €V, let E, ,; denote the subset of edges between the two vertices and E,
denote the subset of oriented edges from v to v'. For every v € V, let E, denote the
subset of oriented edges starting from v. Such decorated graphs I" characterize different
topological types of nodal marked surfaces (¥, Z=(zy, . .., zx)) in the following way.
Each vertex v € V corresponds to a smooth component X, of ¥ with genus g,. Each
edge e € E corresponds to a node ¢, obtained by connecting ¥, and X,/ at the points
ge €%y and g, € Ty, where e € E,, v and ¢ is an orientation on e with vy (e) =v. The
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(93, A3)

(91, A1) (g2, A2)1

(94, As) (g5, As)

Fig. 1 A nodal curve in My » and its dual graph

last condition uniquely specifies e unless e is a loop connecting v to itself. Finally,
each leg [ € I connected to the vertex v(/) corresponds to a marked point z,4() € Zy()
disjoint from the connecting nodes. Thus we have

. d=][CEn7Va)/ ~ g~q, Ve€k, (3.36)
veV

where
Zp=zNZXy, and gy ={q.: €k}, Yv e V.

We treat g, as an un-ordered set of marked points on X,. We say I" is the decorated
dual graph of (¥, 7). Initially, each vertex v € V is decorated by the genus g, € N of the
corresponding irreducible component. Further decorations will be introduced below.
A complex structure j on X is a set of complex structures (j, ) ey On its components. By
a (complex) marked nodal curve, we mean a marked nodal real surface together with
a complex structure (X, j,7). Given amap u : ¥ — X, each vertex v € V receives
an additional decoration that is the homology class A, € Hy(X, Z) represented by
u, = uly,. Figure 1-Left illustrates a decorated graph with 2 flags and Fig. 1-Right is
the associated marked nodal domain with (g1, ..., g5)=(0,0, 2, 1, 0).

Assume D = UieS D; C X is an SNC symplectic divisor, (v, R, J,v) €
Hg 1k (X, D), and

U= (uy)yev : (%,j) — (X, J)

is the X-component of a possibly nodal (J, v)-holomorphic map (¢, «). In this situ-
ation, the dual graph of (u, ) carries additional labelings

I:V,E—> subsetsof [N], v+——1I,, YveV, e+r—— [, Veeck,
(3.37)

recording the minimal stratum D; that contains the image of u, and u (g, ), respectively.
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Definition 3.9 Suppose D = UiE[N] D; C X is an SNC symplectic divisor,
(0, R, J,v)eHyx(X, D), and

CE(EstZ)Z (]_[CUE(ElMJUvZUqu))/ ~, C]g’\’q(g VgeEs
veV

is a connected nodal k-marked curve with smooth components C, and dual graph
I'=T(V,E,L) as in (3.36). A pre-log (J, v)-holomorphic map of tangency order
type § = (Sq)ac[k] € (ZN)k from C to X is a collection

f= (qb, (fo=(uv, G, Cv))vew), (3.38)

such that

(1) the tuple (¢, (iy, Cy)vev) is a k-marked genus g degree A (J, v)-holomorphic
map as in (3.7);

(2) foreach veV, (uy, &
r=2=4w);

(3) foreachveV,ordy, ¢, is supported at the special points z,, U g, in the sense that

(Cv.i)iel,) satisfies (3.31)~(3.32) (with I =1, u; =u,,

ordy (uy, §y) #0 = x € 7, Uqy;
(4) se=ordg, (uy, &y) =—ordg, (uy, &) =—s, for all v, veVande€eR, ;
(5) and ord,, (uy, &) = s, € ZN forallveV and z, €7,.

In other words, a pre-log map is simply a nodal (J, v)-map with a bunch of mero-
morphic sections on each smooth component (with zeros and poles only at the special
points), dual tangency orders at the nodes, and prescribed tangency orders at the
marked points. Two k-marked pre-log (J, v)-holomorphic maps

f = (¢9 (MU’ Ev,jv, &y = (fv,i)ie[v)veva Z)
and [ = (¢', (), T3y &) = (& Diet,) ey 2)

are equivalent if there exists a holomorphic reparametrization 4 : ¥ — X’ such that
woh=u, ¢=¢ oh, h(@ =2z', and hj{é(v” =cy.ilpi
for all veV and some ¢, ; € C*. Here v — h(v) is the induced map on the vertices of

the dual graph. In particular, rescaling any of the meromorphic sections by a non-zero
complex number does not change the equivalence class. The space

MEE(X, D, A, v)r

of the equivalence classes of stable pre-log maps of the fixed combinatorial type
(g, A,s, ') is too big; see [7, Example 2.13]. Similar to [7], in the following, we
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will put some restrictions on I' and take out a subspace that would give us a nice
compactification with the correct expected dimension.

In [7, Sect. 5], corresponding to a decorated dual graph I' =T"(V, E, L) as in Defi-
nition 3.9 and an arbitrary orientation O ={e}.cg C E on the edges, we constructed
a homomorphism of Z-modules

o=0o0
D=DM) =2 @PHz" —— T=T") =Hz" (3.39)
veV eclE

whose kernel K and cokernel CK are independent of the choice of the orientation O on
[E and are invariants of the decorated graph I'. For each veV, e€E, and s, € Z» €,
the e-th component of o(s,) is equal to s, € Z1e if v is the starting point of € and e is
not a loop; o(s,) is equal to —s, € Z/¢, if v is the ending point of ¢ and e is not a loop;
and, is zero otherwise. In this definition and (3.40), via the identity I, =1, U I,y (see
[7, (2-21)]) for all e € E,, ./, and the inclusion

Zh =7l x oyl ¢ 7,

we can think of s, as a vector also in Z’e. For each e € E, and 1, € Z, € ZF € D, the
e-th component of g(2.) is equal to A.s., and the rest are zero. In particular,

K = {(()\e)eeE, (sv)vev) € ZE @ @Z’v; Sy —Sy=heSe, Vv,V €V, e€ IE}
veV
(3.40)

In [7, (2-38)], to every (equivalence class of) pre-log J-holomorphic map f we
associate a group element

obr(f) € G(I), (3.41)
where
G(r) = [ J(€* /im(exp(ec)) (3.42)
eckE

is the complex torus with Lie algebra CK¢ = coker(oc), and oc is the natu-
ral extension of o over C. The reasoning leading to [7, (2-38)] also applies to the
(J, v)-holomorphic maps and yields a group element (3.41) for every pre-log (J, v)-
holomorphic map. More explicitly, given

L. local holomorphic coordinates w, around'” each nodal point ge € Xy, forallveV
and g € EU’
2. and representatives ¢, in the C*-equivalence class [¢,], for all ve 'V,

15 Le., we(ge) = 0.
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for each e€E, and i € I, — I, locally around ¢, € ¥,, by (3.27) and (3.28) we have

Se,i
uy(we) = (uy,i(we), ﬁg,i(wg)wg ) € Nx D, (3.43)
such that
0#1e,i = Te,i (0) € NxDilu,(g,)- (3.44)

In other words, 7, ; is the s, ;-th order derivative of u, with respect to w, at g, in the
normal direction to D;. Also, for each e € £, and i € I, locally around ¢, € ¥, we

have
Sg.i
Co.i(We) = Te,i(we)w, € uyNyD;, (3.45)
where
0#1e,i = Tle,i (0) € NxDilu,(g,)- (3.46)

Then, by [7, (2-38)], the class obr (f) of

Ne,i

I[TI]—¢]]cH" (3.47)

. 1
ecEiel, & eckE

in G is independent of the choice such coordinates in 1 and representatives in 2. In other
words, obr ( f) =1 if and only if there exists such coordinates in 1 and representatives
in 2 such that

ng,i = Ne,is Ve € E, i € Ig. (348)

This condition will play a major role in the construction of gluing map in [10] in the
following way. Forgetting the transversality problem, a gluing theorem would identify
a neighborhood of ﬂl,oi (X, D, A, v)rin ﬂzgs(X , D, A, v) with a neighborhood of
that in a product

M2 (X, D, A,v) x Glr,

where GIr is an explicit space of gluing parameters. For the classical moduli space

of stable maps M, (X, A), the space of gluing parameters along the stratum
Mg,k(x , A)r is simply CE, which corresponds to smoothings the nodes of X. For a
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log map f as in (3.38), the space of gluing parameters is

Glr ={((ee)ect: (tv.dvev.ier,) €C x [T C:
) vev (3.49)
€p ti=tyi, Ve €E, v, i €lost 50> 0}.

Here, ¢, is the gluing parameter at the node g, and f,, ; are the parameters for pushing
the map u,, out of D; along the normal vector field ¢, ;. In [7, Prop. 5.7], we show that
Glr is an affine toric variety corresponding to some explicit toric fan defined by I'.
At each node g, connecting ¥, and X,/ with ordg, (u, D;) =s,,; > 0, the data on X/

includes a section ¢, ; of uj,/\/ x D; with a pole of order s, ; at the nodal point g, € .

Near ¢,, and with respect to a local trivialization of Nx D;, u, has the product form

Se.i

uy(ze) = (ng,iz_eﬂ uy) € Cx D;.

Se,i

On the other hand, ¢, ; has a local expansion ¢y ;(z,) = n,b,-zg_; + .-.. Con-
dition (3.48) is equivalent to the existence of a choice of coordinates z, and

representatives ¢, ; in their equivalence classes such that

Se.i Se.i

NeiZe =TeiZe (3.50)

defines a function from the neck region z,z, = &, of the glued domain into NxD;. The

so-called regularization maps W; used in the definition of J identify a neighborhood of
the zero section in A’y D; and a neighborhood of D; in X. Thus, we geta J-holomorphic
map from the neck region associated to the node g, into X. We then construct the
approximate-gluing log map f in the following way. On each neck region, unlike in
the classical gluing construction where the approximate-gluing map is often defined
to be constant, we (need to) define the approximate-gluing map to be (3.50) in the i-th
direction. Away from the nodes, f is defined to be the push out of u, via the section
Yie 1, tv,i¢v,i on the v-th component. In between the two regions, f interpolates
between the two maps. Then an argument similar to the classical gluing argument,
with the logarithmic linearization of the Cauchy—Riemann operator in place of the
classical operator D@ in [26, Chapter 10], allows us to find a log (J, v)-holomorphic
map close to f

Remark 3.10 To avoid the compatibility requirement (3.50) and thus avoid the com-
plications of working with the (possibly) singular gluing parameter space (3.49), in
[5, Sect. 7], Daemi—Fukaya consider “inconsistent solutions”. These are zero points
of certain Kuranishi map that do not correspond to actual maps into any space. The
same idea can be followed in the normal crossings case but the space of inconsistent
solutions is very hard to describe and control.
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Definition 3.11 Suppose D = UiE[N] D; C (X,w) is an SNC symplectic divisor
and (w, R, J,v) € Hg (X, D). A'log (J, v)-holomorphic map is a pre-log (/, v)-
holomorphic map f with the decorated dual graph I" such that

(1) there exist functions
S:V—>RN, V—> Sy, and ME—Ry, er— 2.,

such that

(@) s, eRY x {0)N1=N forall veV,
(b) Suy(e) —Svi(¢) =AeSe Tor every e € E;

(2) and obr(f)=1€G ().

The first condition is a combinatorial condition on the decorated dual graph I" and
is equal to the condition that the subspace

Kr CR" ® DR"
veV

defined as in (3.40) over R has a non-empty intersection with the positive quadrant.
This implies that

o=Kg N (REO ® @R’;O) c Kg
veV

is amaximal strictly convex rational polyhedral cone; see [7, Lem 5.3]. The affine toric
variety associated to o is the space of gluing parameters (up to some multiplicity) that
will be used in [10]; see [7, Sect. 5].

A marked log map is stable if it has a finite automorphism group. It is easy to see
that a marked log map is stable if and only if the underlying (J, v)-map is stable. The
equivalence class of a stable marked log map is called a stable marked log curve. We
denote the space of stable k-marked degree A genus g log (J, v)-holomorphic curves
of tangency order type s by

—log
M, 5(X. D, A v).

Similar to the J-holomorphic case,iiven s€ (ZN )k, for every k-marked stable nodal
map f representing an element of M, (X, A, v) with dual graph I" and a choice of
decorations {s,}.cg satisfying the necessary combinatorial conditions

Sse=—S¢. Ye€E, Y so+ Y si=(Ay:Diievy. Yo eV, (35D
ecE, lelL,
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and Definition 3.11 (1), there exists at most one element fio; € M;‘)i (X,D,A,v)
lifting f* with this decorated dual graph. This is because every section ¢, ; is uniquely
determined up to the action of C* by the location and order of its zeros/poles. While fioe
is stable if and only if f is stable, the automorphism groups are sometimes different;
see [7, Examples 2.17-2.18].

Remark 3.12 1f g =0, a pre-log lift exists iff there are vectors {s.}.cp satisfying the
combinatorial condition (3.51) and the lift is unique. In other words,

—1 J—
Mo o(X, D, A,v) € Mox(X, A, v)

is the subset of (J, v)-curves (d), (uy, Cu)veV) for which there exist vectors {s.}ccE
satisfying (3.51), Definition 3.11 (1), and (2). The first two conditions are combina-
torial. The latter is a condition on the derivatives of u at the nodes which depends on
u, v, and the configuration of special points on each component. In theory, it can be
stated without mentioning the meromorphic sections.

Example3.13 Let g =0,k >3, A=0¢€ Hy(X,Z), and s = 0= (0V)* € (NV)* (no
perturbation). We show that

M, (X, D, 0) = Moy x X.

Every element of ﬂoy 5(X, D, 0)is (the equivalence class of) a k-marked nodal domain
with the constant map into a point p € Dy, for some maximal / C X, and |/| mero-
morphic functions on each component. The claim is that all k-marked nodal domains
are allowed and (up to equivalence) there is only one possibility for the meromor-
phic functions. The dual graph is a tree. Starting from a vertex v € V with only one
edge e € E,, since all the s, are trivial, s, should be trivial as well. Removing v and

continuing inductively we conclude that all the vector decorations s, should be the

trivial vector. Definition 3.11 (1) holds with s, =s for all v €V and any fixed s € Zfr.
The meromorphic functions ¢, ; : X, — C can be taken to be constant 1. Therefore,
obr(f) =1 (no matter what G is). Furthermore, I, = I, = I for all veV and e € E,
the map

"o Pz — Pz’

veV eck
in (3.39) is surjective, and
ker(o) = Z" @ A,
where A = {(a)yev € D,y Z! : a€Z'} = Z! is the diagonal (note that |[V|— |E| =

1). We conclude that G is trivial. In this example, transversality holds and perturbation
is not needed. O
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Remark 3.14 In the previous example, one may replace s =0 with anys = (s1,..., 5k)
satisfying Y, cizy S = O". Then,

M,y 5(X, D,0) = Mo x Dy,

where [N]— Iy is the maximal subset such that s, ; =0 for all a € [k] and i € [N]— 1.
For every k-marked genus 0 nodal domain (X, Z), there is a unique set of decorations
{s¢}ec such that X can be equipped with meromorphic functions that have zeros/poles

of order s, at z,. The group G is still trivial, but ker(o) will be different.

Example 3.15 Extending Example 3.13 to the higher genus case, let 2g + k > 3,
A=0€ H>(X, Z), and s =0 (and no perturbation yet). We show that still

M, 5(X, D, 0) = My x X,

but transversality does not hold if g > 0. The obstruction bundle is the rank ng orbi-
bundle

ni“é’; Qw5 TX(—log D) —> Mg,k x X,

where 771, mp are the projection maps onto the first and second components, respec-

tively, and £, — Mg is the Hodge bundle. Every element of ﬂg’()(X ,D,0) is
(the equivalence class of) a k-marked nodal domain with the constant map into a point
p € Dy, for some maximal I C X, together with |/| meromorphic functions on each
component. If the dual graph is not a tree, a priori, there are infinitely many possibil-
ities for the vector decorations {Se}ecr- The claim is that all k-marked nodal domains

are allowed, but only the trivial decoration satisfies the conditions of Definition 3.11.
By Definition 3.11 (1), there should exists vectors s, € Zi such that

Sva(e) —Svy(¢) =AeSe for some A, >0, Ve € E.

For each i € I, choose v € V such that s, ; € Z, is maximal. By the previous identity,
se,i <0 for all e€E,. Since

> sei=AyDi =0,

ecE,

we conclude that s, ; =0 for all ¢ € E,,. From this we conclude that all s, should be the
same; therefore, s, =0 for all ¢ € E. The meromorphic functions ¢y ; : £y — C can

be taken to be constant 1. Therefore, obr(f) =1 (no matter what G is). In this case,
the map

o: ZEGB@ZI — @Zl

veV ecE
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in (3.39) is not necessarily surjective. In this example, transversality does not hold for
two reasons. The logarithmic linearization of Cauchy—Riemann operator in (4.7) is
not surjective and 1 is not a regular value of obr. Passing to a regular cover

p: ﬁg’k e Mg’k

6

as in (3.4) and taking a generic perturbation term' Vlog 1N

l"(i_lg,k x X, 711*5; ® 3T X(—log D)),
we get

M, 5(X, D, 0,v) = v(0).

Therefore, the Virtual Fundamental Class of M p 5(X, D, 0) is the Euler class of the

orbi-bundle 7{&; ® w3 T X (—log D) in mg,k x X (generalizing the classical and
relative examples in [17, Sect. 4.1]). O

Each moduli space ﬂlg‘)i (X, D, A, v) is coarsely stratified by the subspaces

M o(X, D, A, v)r = obr' (1) € ME%E(X, D, A, v)r

consisting of log (J, v)-holomorphic curves with the decorated dual graph I". Here
a decoration consists of genus and degree decorations on vertices, ordering of the
marked points and s, labelings by subsets of [N] in (3.37), and vectors {s.}.cE sat-

isfying the combinatorial condition (3.51). The vectors {s.}.cg are also required to

satisfy Definition 3.11 (1) but the vectors {s,},cv are not part of the decoration. By
Theorem 1.3, for each (g, s, A), the set of such decorated dual graphs I is finite.

Remark 3.16 Suppose f asin (3.38)is a (/, v)-log curve in M, (X, D, A, v)r and
I = (V,E/,I/) is a connected subgraph of I". The new set of legs I” consists of
those legs [ € I such that v(l) € V', as well as those oriented edges ¢ € E such that

vi(e) € V' but va(e) ¢ V. Let f' be the tuple as in (3.38) obtained by restricting to
the connected sub-nodal curve

Y = UEU.

veV’

Then [’ is also a log (J, v|x/)-curve with

s'= ((SI)ZE]L: v(D)ev" (Se)_eeLE: ul(g)ew/,uz(g)¢w’> and A" = Z Ay

veV’

16 This argument needs some justification, as we should explain the relation between such a perturbation
with perturbations in (3.17).
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The combinatorial conditions of Definition 3.9 and Definition 3.11 (1) are clearly sat-
isfied. By definition, obr (f/) =1€ G(I"") iff there are local holomorphic coordinates
around each nodal point of X’ and representatives ¢, in the C*-equivalence class [, ],
for all v € V’, such that (3.48) holds. The restriction to f’ of such local holomorphic
coordinates and representatives for f has the required property.

4 Deformation Theory and Transversality
4.1 Main Stratum

In this section, similar to the classical case, we realize M ¢.5(X, D, A, v) as the zero
set of a section 9'°¢ — Vlog Of some infinite dimensional bundle over an appropri-
ately defined configuration space. The linearization of this section is a logarithmic
lift Dll,0 €{8 — v} of the classical linearization map D, {3 —v}. Then, it follows from
Sard—Smale theorem that M, (X, D, A, v) is cut transversely for generic v. If v=0,
the same statement holds for generic J if we restrict to the subspace of simple maps
M3 (X, D, A).
We prove the following transversality statement.

Proposition 4.1 Suppose (X, w) is a closed symplectic manifold, D = Uie[N] D; is
an SNC symplectic divisor, A€ Hy(X,Z), g, k€N, and s e (NMYK,

(1) If 2g+k > 3, for any given choice of universal family in (3.5), there exists a
Baire set of second category Hg’k (X, D)Rr, ;s CHg (X, D)R, j such that for each

Ve Hg,k(X7 D)R j, Mg (X, D, A,v) is a naturally oriented smooth manifold
of the real dimension

2ef TP + (1 =31 - ) +K).

The restriction of st x ev in (1.5) to Mg (X, D, A, v) is smooth.

) I\7 =0, v=0, and A#0 or k >3, the same statement holds for J in a Baire set
of second category AK?(X, D)r C AK(X, D) if we restrict to the subspace of
simple maps /\/las(X, D, A).

We start by setting up a suitable analytical frame work for studying the deformation
theory of log (J, v)-holomorphic maps. This setup is in some sense the main step of
the proof.

Definition 4.2 Fix a smooth k-marked genus g curve (Z,j, 7), local holomorphic
coordinates'® around the marked points, A € Hy(X, Z), a regularization R for D in
X, and s as in (1.1). With I, C[N] as in (1.3), for each a € [k], we say a smooth map
u : ¥ — X has tangency order type s with D at 7 if

17 Restriction to g =0 is not necessary here but this is the case that we will need later. Furthermore, the
generalization of this statement in part (2) of Proposition 4.8 requires the g = 0 assumption or allowing
deformations of R.

18 This is not needed here, but it will be needed in constructing a Banach completion of
Mapy 4 ((E, 2), (X, D)); see the end of Remark 4.5.
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eu ' (D)y=0C{z1,..., %}
e u(zy) = pq € D, — 3Dy, forall a €[k],
e and

\Ill_al ou(wy) = (ua(wa), @ wie na,i(wa)> € NXDIQ, Va € [k], (4.1)

iel,

where U, is a sufficiently small neighborhood of the marked point z, in X, w,
is the local holomorphic coordinate on U, with w,(z4) =0, u,: U, — Dy, is the
projection of \IJ,_al outo Dy, and ny = (n4,i)ier, 1s a smooth section of

uzNx D1, = @ uiNx D;
iel,
satisfying
14,i(0) #0, Vi€ l,.

Let Map, 4 ((Z, 2), (X, D)) denote the set of smooth degree A maps of tangency
order type s with D at Z. This space is an infinite dimensional Fréchet manifold whose
tangent space at any u is the infinite dimensional vector space

(2, u*TX(—log D)R).

More explicitly, if {u;}s¢[0,¢) is a I-parameter family of mapsinMap . ((E ,2), (X, D)) ,
restricted to ¥ — 0, by the first bullet in Definition 4.2, we get

d
§y = 3 wili=0€ T'(Z =2, {uolz—o}"TX (= log D)) = T'(X =2, {uolz—o}"TX).

On the other hand, for each a € [k] with z, €0, restricted to the chart U, in the third
bullet above, by (4.1), we have

—1 Sni
v, our = (ut’a, @ w, n,,a,,-).
iel,
Therefore,

d

3 (Vi owlizo= 81, & D wi moai cais (4.2)

iel,

where 7*&;, is the horizontal lift of

d
éla = Eut,ah‘:oe ['(Uyq, MEk)’aTDIa)
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to the horizontal subspace T"" Ny D I, = 711”; TDy,, and

d
@ M. (Wa)li=0
cu,,:M:Ua—wc, Vi e l,.
10,a,i (Wa)

By (2.11)—(2.13) and (4.2), &y and {&;, @ (cq,i)ic1, }z,c0 define a global section &g
of u*T X (— log D) that maps to

d
§= authzoe I, uéTX)

under the homomorphism ¢ in (2.10). Conversely, given a section &jop € I'(X, u’(;TX
- (—log D)), logarithmic exponentiation (see (2.14)) of &jog, corresponding to a
Hermitian metric on 7 X(—log D), produces a l-parameter family of maps in
Map, ((Z, 2, (X, D)) with tangent vector & =1(&1o¢) at £ =0.

Lemma4.3 Foreveryue MapA)5 ((Z, 2), (X, D)), there exists a logarithmic Cauchy—
Riemann section

8% e I'(2, Q%) ®c u*T X (— log D)) 4.3)

such that the following diagram commutes:

u*T X (—log D) “4.4)
o
L
701y ou WTX.

Proof Away from 0, by the first bullet in Definition 4.2 and the identification
TX(—log D) x-p=TXl|x-p,

we define 8°%u = Ju. For each a € [k] with z, € 0, restricted to the chart U, in
Definition 4.2, by (4.1), we have

Wi o u = m*ug ® @ dur iy b, W Nai) = 7}, 0ua & ED Wi B, (Maci)-

iel, i€l,

Restricted to U,, we define 8'°84 to be

_ _ B Ny Dy Ma.i
\Ill_al 0992y = nj‘aaua EBEBM.

icl, Nai

By (2.11)—(2.13), these local sections define a global section (4.3) that maps to du
under the homomorphism ¢ in (2.10). O
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Let Map,4 (X, X) denote the space of all smooth degree A maps from ¥ into X,

EA(E,X) —> Map, (2, X) 4.5)

denote the infinite dimensional vector space whose fiber over every map u is
Nz, Q% ®c u*TX),

and

Ea(X, X) — Mapy (2, X) (4.6)
denote the infinite dimensional vector space whose fiber over every map u is

Iz, Q()):’lj ®c u*TX(—log D)).

The classical CR operator (1.10) can be seen as a section of (4.5). By Lemma 4.3, the
restriction of this section to Map, ¢ ((E, 2), (X, D)) defines a section of (4.6). Simi-
larly, for every v € H 1 (X, D)R, j associated to vjoe as in (3.18) and an identification
¢of (£,),2) with a fiber of the universal family 7 : i_lg,k — ﬁg’k (used to define v),

the restriction of d — v to Map4_ 5((E, 2), (X, D)) lifts to the section 9'°¢ — Vjog Of
(4.6) so that the following diagram commutes:

Eas((2,2), (X, D)) ——————=&a(2. X)

510gfvlog T a—v T

Map, (2, 3), (X, D)) ————— Map,(Z, X).
The linearization of 8!8 — Vlog along the zero set is then the restriction/lift

DLog{é —v}= Du{élog_vlog}

of the classical linearization map Du{é — v} to (X, u*T X (—log D)) so that the
following diagram commutes:

D% {3 —v)

I'(, u*TX(—log D)) Iz, sz(;“j ®c u*TX(—log D))
I3 \LlZ
D, {0—
I'(S.u*TX) v r(s, 0% ®c w'Tx).

“4.7)

Fix a j-Hermitian metric on TX and a J-Hermitian metric on 7 X (— log D), an
integer £ > 1, and a real number p > 2. Via the logarithmic exponentiation map, we
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can then construct a completion Wﬁ”;((z, 7). (X, D)) of Map, .((Z,2), (X, D))
which is a smooth separable Banach manifold with tangent space

T,Wi? ((2.39). (X, D)) = WoP (S, u* T X (~ log D)). (4.8)
The completion Sﬁ;l’p((E, 2), (X, D)) ofSAys((E, 2), (X, D)) is a Banach complex
vector bundle over Wﬁ’ﬁ((z, 2). (X, D)). For every v € Hyx(X, D), ; and any

identification ¢ of (X, j, 7) with a smooth fiber of the universal family ﬁg, x used to
define v, 08 — Vjog defines a smooth section of Banach bundle

ELIP((2.9), (X, D)) — WLP((2.9), (X, D)). (4.9)

As in the classical case (3.10), D}fg{é — v} can be written as the sum of a complex
linear map (a CR operator on u*T X (—log D)) and a compact operator (It is the
restriction of the corresponding operators). Thus, by Riemann—Roch, it is a Fredholm
operator with index

dimp Deflog(u) — dimg Obsjog (1) = Z(deg(u*TX(— log D))+dimc X (1 —g)),

where

Defjog (1) = ker(DL"g{é —v}) and Obsjeg(u) = coker(DL"g{é —v}).

From Implicit-Function Theorem [26, Thm. A.3.3], we deduce the following corollary.

Corollary4.4 Ifu e MapAss((E, ), (X, D)) is (J, v)-holomorphic and Obsjog(u) =

0, in a small neighborhood B(u) of u in Wf;’,Z ((E, 2), (X, D)) the set of (J,v)-
holomorphic maps

Vi =1{91°¢ — v1og} 71 (0) N B(u)

is a smooth manifold of real dimension (1.11).

Furthermore, by elliptic regularity, all the elements of V;, and Defig (1) = T, V,, are
smooth (see [26, Thm. 3.1.5]). The manifold V,, carries a natural orientation. Starting
with the complex linear part of DLOg{E_) — v}, both the kernel and cokernel of that are
complex linear and thus naturally oriented. By deforming D},Og {9 — v} into its complex
linear part via a 1-parameter family of compact operators, [26, Prop. A.2.4] gives us
a natural orientation on Defjog (11).

Next, we consider deformations of the marked domain C = (X, j, 7). Given a
regular covering p : M, x — M,k and a universal family 7 : 8y x — 9,  as in
(3.4)—(3.9), let

Mer=p ' Mgr), Ugr=n""Mgr), 7: Ut —> Mg,
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be the restrictions to the subspace of smooth curves. Choose a projective embedding
gk — PM | for some sufficiently large M, and define

W (W 1, 5), (X, D)) = {(c, Wi ceM . ue WP ('), 30, (X, D))}
(4.10)

where the metric considered on
((.j0).2)=(7"10).3(0),

for each c € M, «, is the restriction of Fubini—-Study metric on PM to the image of X.

Remark 4.5 By definition, each fiber of the projection map
l,p -.
W, P (Mg k. 3). (X, D)) —> Mg A.11)

has a Banach manifold structure but the total space does not a priori come with a
natural smooth structure. In order to define a Banach manifold structure on (4.10),
we need to fix a smooth trivialization of Uy x — M, x. Such a trivialization gives
us a trivialization of (4.10) and thus a product Banach manifold structure on that; see
[11, Sect. 6.1]. The genus-g surface-bundle i,  — M, does not necessarily admit
a global smooth trivialization. However, for B C 9, « sufficiently small around any
beM g.k>

C=n"'B)— B (4.12)

is smoothly trivial. In other words, locally around every ((Z, j5), Z) = (7~ (b), 3(b))
there exists an Aut((E, b)), Z) -equivariant diffeomorphism

p:C— X xB (4.13)

such that 77 o~ is the projection onto the second factor, each section g 03, is constant,

and ¢ -1(=1dx. The smooth trivialization ¢ givesrise to a Banach manifold structure
on the restriction

Wy P((C.3B). (X, D)) = {(c, w:ceB, ue Wil (™). 30, (X, D))}
(4.14)

which we denote by Wﬁ’g((c, 3lB), (X, D))(p. If ¢; and ¢, are two such smooth
trivialization maps, the map

Wil (€. 3m), (X, D)), —> WyP((C.3lm). (X, D),

induced by the change of trivialization map ¢, o gpfl is not smooth (unless ¢ o(p;]
is constant in c); see [28, Sect. 3.1]. Therefore, there is no natural way of putting
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a Banach manifold structure on (4.11). On the other hand, restricted to the moduli
space which is the zero set of §'°¢ — Viog» (by elliptic regularity) the transition maps
are smooth. Therefore, in the proof of Proposition 4.1 below, we cover I, ; with
countably many such charts, find a Baire set of regular perturbation terms for each
one, and then take intersection which yields a Baire set again. It is for the same reason
that we fix local coordinates around the marked points in Definition 4.2. If w, and
w,, are two local coordinates around the marked point z,, they are related by a C*-
valued reparametrization map ¢; i.e. w), = ¢(w,)w,. The Banach smooth structure

Wf;”g ((E, 7), (X, D)) with respect to w, and w/, will not be the same unless ¢ is
constant. In the family version (4.12), we will fix local defining equations w, : C — C
for Cartier divisors 3, (8) C C. The restriction of w, to each fiber is the local coordinate
needed in Definition 4.2; see [11, (5.20)—(5.21)] for details.

Let
£ o (Mg 3, (X, D)) — Wil (Mek. 3). (X, D)) (4.15)

denote the natural extension of (4.9) over M, ;. Similar to the previous paragraph,
locally over any sufficiently small neighborhood B of b € 91, i, a smooth trivialization
@ as in (4.13) gives rise to a Banach vector bundle structure on the restriction

E0T(C3B). (X, D)) — WiP((C.3p). (X, D)) (4.16)

such that §'°¢ — Vlog is a smooth section of that.

Remark 4.6 Let f = (u,C) € Mg (X, D, A) (no perturbation here). Similar to the
classical case (see [19, Sect. 24.1] and [11, Remark 6.2.1]), deformation theory of f,
i.e., if we allow deformations of both u and C, is described by the long exact sequence

0 —> aut(C) —>> Defiog () —> Defiog(f) —> Def(C) wi)

2 Obsiog(11) —> Obsjog(f) —> 0,
where
aut(C) = HY(T'£(—1logZ)) and Def(C) = T,B = H, (T T(—logZ)).

If Obsjog(f) = 0, then a small neighborhood B(f) of f in M, (X, D, A) is a
smooth orbifold of the expected real dimension (1.9). The long exact sequence (4.17)
is the hyper-cohomology of a short exact sequence of complexes of fine sheaves
constructed in the following way. In order to simplify the notation, for a complex
vector bundle £ — (X, ) let QY(E) and Q%1 (E) denote the associated fine sheaves
of smooth sections of E and of smooth E-valued (0, 1)-forms, respectively. The map
du : TY — T X gives rise to a logarithmic derivative map

d%y: TS (—logZ) —> u*TX(—log D)
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such that the following diagram commutes:

lo,
TS(—log?) — "~ *TX(—log D) 4.18)
l l”
> du WTX.

Away from the D-intersection points 9, by the first bullet in Definition 4.2 and the
identification

LX,D

TX(=logD)|x—p = TX|x-p,

we have d!°¢y = L)_(l p © du oty 7. For each intersection point z, € 7, restricted to the
chart U, in Definition 4.2, by (4.1), d'°2u is given by

dw vUaiy
Ul od%y = 7¥ du, @ Sqi — 4 ——— L)
la 1a a @ at w

icl, a Na,i
which maps the local generating section w,dw, to

(q:3i)
\% Na.i
nzaua(waawa) @ @ (sai + wa%> ) (4.19)
a,i

iel,

The following commutative diagram has exact rows:

0 QrE(-z) —————— 2ATx(-7)

i \Ldlegu@@ \LB

Qu*T X (—log D)) —> QV*T X (—log D)) & Q¥ (TS (-2)) — QO (Tx(-2)

lD}ng_} \LDLOgE_)—dlUgu \L

QL @*TX(~log D)) ———= QO l@W*TX (- log D)) ———————0;
i.e., it is an exact sequence of chain complexes given by the columns. Then, the
deformation/obstruction long exact sequence (4.17) is the hyper-cohomology of this
diagram. By (4.19) and similar to the classical case [33, pp. 284-285], if u is an
immersion away from Z and
w (D) =0={z1,..., )
(i.e., s, # 0 for all a € [k]), then d°gy is an embedding, the quotient

NyZ(—log D) = u*T X (- log D)/(d\ 8 TE(~3))
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is a complex vector bundle, and DLO £ descends to a Fredholm operator Db‘\)[gé on
smooth sections of Ny ¥ (— log D) such that

Defiog (f) = ker(D£3) and Obsieg(f) = coker(D)\£d). (4.20)

If d'°2y is not an embedding, we still obtain a short exact sequence of sheaves of
Osx-modules

0 — O(T=(—1log?)) de Ow*TX(—logD)) — N — 0
such that
N = ONxZ(—log D)) & N'**

is the direct sum of sheaf of holomorphic sections of an (n — 1)-dimensional holomor-
phic vector bundle Ny ¥ (—log D) and a skyscraper sheaf A/*°". Furthermore, DLOg B

descends to a Fredholm operator Df/gé on smooth sections of Ny Z(—log D) such
that

Deflog(f) = ker(Df/gé) ® HON'™) and Obsjog(f) = coker(D‘j\’;b‘é). 4.21)
In particular, Obsjog( f) =0 whenever dimc X =1.

Proof of Proposition 4.1 Since every map u in Wf;’g((ilg,k, 3). (X, D)) meets D only

at finitely many points, by substituting D, {9 — v} with D,lfg{é — v}, Proposition 4.1
essentially follows from restricting the arguments of the proof of [32, Thm. 3.1] and
[26, Thm. 3.1.5] to maps in Wy? ((Ug.x. 3). (X, D)).

More precisely, for m > ¢, let Hg’, (X, D) denote the completion of the vector
space Hg 1 (X, D) in C™-topology. The universal moduli space

M, (X, D, A) = {((c, u),v) € Wf;',;’((ug,k, 3), (X, D)) x Hy (X, D)R. s :
(4.22)
31°%u (x) = viog(x, u(x)), Vx € n—l(c)}

is the zero set of the section!®

= e, = e, >

3" — wiog: Wyt ((8hg k. 3), (X, D)) xHy (X, D). = E;% (Mg x,3), (X, D))
(4.23)

19 To be precise, the right-hand side should be nikEf"I; ((L[g.k, 3, (X, D)), where 777 is projection map to
the first component

WP (Mg kD). (X. DY) xHI (X, D)y —> Wi (W k. 5). (X. D).

We avoid these details to keep the notation short.
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and is independent of (¢, p) by the elliptic regularity. Restricting to each sufficiently
small sub-universal family C — B and fixing a smooth trivialization ¢ as above, the
restricted section

88 — viog: WP ((C.318). (X, D)) x HI (X, D)r.y — E4((C.3B). (X. D))
(4.24)

is C"~¢-smooth. With the same reasoning as in the argument leading to the surjectivity
of [32, (3.12)], for ¢ € B and ((c, u), v) in the universal moduli space (4.22), the
linearization map

D, 10 — v} TieayWy 2 ((C.318). (X, D)) & T, H!" (X, D).
— (=, Q% ®cu*TX(—logD)) (4.25)

" (c)
of the section (4.23) is surjective. This is due to the fact that coker(DLog{é —v}) canbe
represented by sections supported away from the intersection points where everything
has a classical form. Therefore, the universal moduli space

mg,ﬁ(X7 D5 A)|B

is a separable C"~‘-smooth Banach manifold. Here the restriction to 3 means we are
only considering (J, v)-maps with domain in B corresponding to (4.23). Then by the

Sard—-Smale Theorem, the set of regular values Hreg(B) (X, D). of the projection
map

73t Mg o(X. D, A)lg—> HI (X, D).y
is Baire set of second category. For every v € Hreg B X,D)r.J,

M, s(X, D, A, v)|g= 7y ' (v)

is a smooth manifold of the expected dimension. Cover 9, ; with countably many
charts {B;}72, and let

HES(X. D).y = ﬂHreg(B "X, D)R,y.
i=1
This is still a Baire set of second category so that for each v € H;ei(X . D)r.J,
Mg,S(Xa Dv Av U)

is a smooth manifold of the expected dimension. With an argument similar to the
Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude that the subset of
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smooth perturbations

reg

H) (X, D)R, s = Hy 3 (X, D)R.s N He (X, D)R

satisfies the first statement in Proposition 4.1.
With the modifications above, proof of the second statement is similar to the proof
of [26, Thm. 3.1.5]. More precisely, for g = 0 and no perturbation, if k > 3, let

Hox = Mogs+1 —> Mok = Mo

denote the universal curve, and if k < 3, let Llp x = P!, M.« be a point, and auty =
Aut(P!, 7). Let
Mos (X, D, A)
. . _
= {((c.w. 1) e W2 (S0, 3). (X, D)) x AK" (X, D) : 8%u(x) = 0)
(4.26)

be the zero set of the section

8% Wit (o, 3), (X, D)) xAK™ (X, D)p —> E” (o 3). (X, D)).
(4.27)

The universal moduli space My (X, D, A) is the quotient of 255?0, s(X, D, A) with
respect to auty. Since coker(Duélog) can be represented by sections supported away
from the intersection points, the same reasoning as in the proof of [26, Thm. 3.15]
shows that the linearization map

B} PP
D)% Teay W52 ((C.31B). (X, D)) ® T/AK™ (X, D)
— T'(%, 92‘_11(0) ®c u*T X (—log D)) (4.28)

is surjective, whenever u is simple. Therefore, the subset of simple maps 93?6, (X, D, A)
in the universal moduli space is a separable C"~*-smooth Banach manifold. Then by

the Sard—Smale Theorem, the set of regular values AK™8(X, D) of the projection
map

2 MG (X, D, A) —> AK™%(X, D)

is Baire set of second category. With an argument similar to the Taubes’ trick in the
proof of [26, Thm. 3.1.6 (ii)], we conclude that the subset of smooth perturbations

AKY (X, D)r = AK™2(X, D) N AK(X, D)
satisfies the second statement in Proposition 4.1. O
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Moving to the simple nodal case in Sect.4.3, we will need to show that certain
evaluation maps on the universal moduli spaces are transverse. In the analytical setup
of [26], the proof of transversality of evaluation maps in [26, Prop. 6.2.8] uses [26,
Prop. 3.4.2] and induction on the number of edges. Proposition 3.4.2 in [26], itself, is a
consequence of [26, Lem. 3.4.3]. We will need the following natural generalization of
[26, Lem. 3.4.3] to show that the evaluation maps at the nodes and obr are transverse.

With 9'°¢ and DLOgZ_) in place of d and D, d, respectively, its proof is similar to the
(long and explicit) proof of [26, Lem. 3.4.3].

Lemma4.7 Let A #0 and (Z,7) be a smooth k-marked curve.20 With notation as
above, let

(u, J) € M, (X, D, A) € WiP((2,9), (X, D)) x AK" (X, D).

For each a € [k], let &, be a log tangent vector in T, ) X (— log D). For each open
set U CX — 7, there exists

Ee WLP(E’ M*TX(— log D)'R) and Y e TJAKm(X» D)r

such that

. 1
£(zq) = &4, Ya € [k], Supp(Y|u(x)) C U, and Du31°g$+§Yoduoj=0.

4.2 Depth-I Maps

For each v e H, x (X, D), consider a log map

. —1
f=[u. @ier. (25,210 ... 2] € Mg 5(X, D, A, v)
where ¥ is smooth, i.e., u(X) C D; for a non-trivial maximal subset /I C S,

ord;, (u, D;) = s4; > 0 for alli € [N] — I, and ord,, (&) = s4; foralli € I. We
allow s4; to be negative fori € /. Let

Mg s(X, D, A, v); C Mg (X, D, A, v)

be the stratum of such maps. The stratum M, (X, D, A, v); is a generalization of
the main stratum

Mg,ﬁ(Xv D, A’ l))(/j = Mg,ﬁ(Xv Ds Aa l))

where the domain is still smooth, but the image could lie in a non-trivial stratum of
the divisor.

20 we just need the sphere case.
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Forgetting the meromorphic sections ¢;, for the same reason?! asin [7, Remark 2.3],
we get a topological embedding

Mg,S(X? Da Aa U)[ — Mg,E(DI, 8D19 Aa V[),

R . (4.29)
[(b’ u, (;i)iela 27 Z] — [¢1 u, 27 Z]v

where 0 D; C Dy is the boundary divisor as in (2.5) and
5= (Sa = (Sai)ie[N]_I)ae[k] € (N[N]—I)k.

In this section we prove the following transversality argument.

Proposition 4.8 Suppose (X, w) is a closed symplectic manifold, D = Uie[N] D; is
an SNC symplectic divisor, A€ Hy(X,Z), g, keN, ands € (ZNYK, withs e (NIVI=1Hk,

(D) If 2g+k = 3, for any given choice of universal family in (3.5), there exists a
Baire set of second category 'Hél,’k(X, D)Rr,j CHgx(X, D)R,; suchthat for each

v eH;k(X, D)r.j, Mg (X, D, A, v); is a naturally oriented smooth manifold
of the real dimension

2(c; TP W) + (- 3) (A — g) + k — [1)).

2) If g=0,v=0, and A #0 or k >3, the same statement holds for J in a Baire set
of second category AK! (X, D)r CAK(X, D)R, if we restrict to the subspace of
simple maps Mg (X, D, A);.

Proposition 4.1 is a special case of Proposition 4.8, where I = ¢J. By (3.20) and
(3.23), in a neighborhood of Dy, every v € Hg 1 (X, D), ; can be decomposed as
v @ ny, where

vy EHg,k(Dla ODDR, ;s

and n; is determined by a family of C/-valued (0, 1)-forms
01 € ©gi (D)) = {(91,»1-61 € Ty x D1, 7{ Qg ®c C') :

supp(6,i) C <LT;,,( - U Im(z,a)> x D,}.

aclk]
The map

Res : Hg,k(X, D)R,] - Hg,k(Dlr aDI)RI,]I X ®g,k(D1)» Vi (‘)1’ 01)5
(4.30)

21 Fixing a set of marked points, up to multiplication by a constant, there is at most one meromorphic
section of any holomorphic line bundle with prescribed zeros/poles at the marked points and nowhere else.
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is surjective and continuous. Therefore, in order to prove the first statement of Propo-
sition 4.8, it is enough to find a Baire set of second category

HO (D1, dDDR, 1y CHek (D1, dDDR, 1, X Ogk(Dr) (4.31)

such that for each v with Res(v) := (vy, 67) in this set, the statement of Proposition 4.8
holds. Similarly, in case (2), the map

AK(X, D)r —> AK(D;,9D))R,

is surjective and continuous. Below, we show that we can take AK/ (X, D)x, to be the
preimage of AK?(D;, D)) , given by the second part of Proposition 4.1. Therefore,
the main goal of this section is to describe the normal bundle of the embedding (4.29)

and H@Zi(D;, 0Dj)R, - Proposition 4.8 can also be obtained from (proof of)

Proposition 4.1 by a looking (u, (¢;)ics) as a log map into the fiber product (3.26) of
the projectivizations of Ay D;. We will explain this argument in Remark 4.14.

For each complex curve (2, j), let Pic’(Z, j) be the group of degree 0 holomorphic
line bundles on (%,j), O = Oy ; € PicO(E, j) be the trivial line bundle, and ol =
D,c; O. Let

Pic’ (g ) —> Mg s

be the fiber bundle whose fiber over every ¢ € 9, i is Pic’(r ~1(¢)). In the following,
by O we mean the section

O: My — Pic (L 1)
that takes c to the trivial line bundle O, -1 .. Image of O has complex codimension
g. By abuse of notation, we also let Pic? (Ug 1) to denote the pull back of Pic? (Ug 1)

to Mg s(Dy, dDy, A, vy) (or any other configuration space).
The next Lemma describes the (virtual) normal bundle of the embedding (4.29).

Lemma 4.9 For each (v, 0;) = Res(v) as in (4.30), there exists a natural map
Py, = (P, )ier: Mg.s, (D1, 3Dy, A, vi) —> Pic” (8, )’ (4.32)
such that
Mg (X, D, A, v); = P; ' (O).
In particular,

Mo (X, D, A, v); = Mo, (Dr,0Dy, A, vp). (4.33)
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Proof Foreachiel and (¢, u, (X,),2)) € Mgs,(Dr, dD;, A, vy), define

Po, (¢.u,(2,§,2) =u*NxD; ® Oz(— Z SaiZa) e Pic’(Z, j),

aelk]
where the holomorphic structure on the line bundle u* Ny D; is given by the d-operator
DY {3 =) = B, — (@, 1) 01

and the second term is the line bundle corresponding to the divisor ZZ:] SqiZa- BY
definition, Py (@, u, 2, Z) = O if and only if there exists a non-trivial meromorphic
section ¢; of u* Ny D; with zeros/poles of order s,; and z,, foralla=1, ..., k (and
nowhere else). O

Remark 4.10 In light of Lemma 4.9, the moduli space Miﬁ’i (X, D, A,v) can be
described without mentioning the meromorphic sections ¢, ; in the following way.
This explains the absence of these sections in the proof of Proposition 4.8 part (1)

and other proofs. An element of M'g‘fi (X, D, A, v) is the equivalence class of a stable
(J, v)-holomorphic map

(uvv EU» jv» ZU U qv)UEV1
together with a choice of decorations {s,}.cE on the nodal points such that such that

D se=—s. YeeE, > s+ Y si=(Av Dieing. Y eV
eck, lell,

(2) foreachveV, e€ly, and i ¢ I, u, has a tangency of order s, ; with D; at g,;
(3) foreachveV,lel,, and i ¢I,, u, has a tangency of order s, ; with D; at z,,;

(4) there exists a vector-valued function s : V — RY such that s, = s(v) € }Rﬁ: X
{0}N1=1v for all v eV, and

Suy(e) = Sv(e) =hreSe for some A, >0, Ve € E;

(5) utNxD; = L,; = Ox,( YteL, Sani Za + Xooer, Seii qe), forallveVandi€ly;
(6) and, obr(f)=1.

The last condition can (in theory) be expressed in terms of u,, the canonical sections
of £, ;, and the isomorphisms of the holomorphic line bundles in (5).

The following statements are immediate corollaries of the first and second state-
ments of Lemma 4.9, respectively.
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Corollary 4.11 Replacing (X, D) with (Dy, dDy) in Proposition 4.1, let Hg’k(DI, d

Dp)Rr,.;; and AKY(Dy, 0D)R, be the resulting sets of regular perturbations and
almost complex structures on Dy, respectively.

(D If vy € H k(DI, 0D[)R,. 1, and the image of Py, is transverse to O! then
Mg (X, D, A V); is a naturally oriented manifold of the expected real dimension

2c} PP (A) + (1~ 111 = 3)(1 ~ ) +k — |1] dime Pic’(E))

4. TX(=logD) (4.34)
= 2(c] (A)+ (=31 —g) +k — |I]).

(2) Similarly, if J1 = J|rp, € AK“(DI, 0Dj)R, is a naturally oriented manifold of
the expected real dimension

2(c) PR Ay p (n = 11 = 3) + k) = 2(c] YT A) + (0 = 3) + & — 1)),
The second statement establishes Proposition 4.8 (2). It also shows that in the genus
0 case, Condition (5) in Remark 4.10 is automatically satisfied. By the first statement,

in order to prove Proposition 4.8 (1), we need to show that for generic 6; and vy, the
image of Py, is transverse to O'.

Proof of Proposition 4.8 (1) Let O’" '+ (D) be the completion of ®’" ' (Dy) in the cm-
norm. Fix a sub-universal family C — Bof U, x around C = (X, ) Z1,...,2k) and a
smooth trivialization ¢ of C as in (4.12) and (4.13), respectively. Consider the config-
uration space
¢, -
Wi = Wek((C,31B), (D1, 0DD), < H2 (D1, 0DDR, 1y X O (D). (435)

The map P in Lemma 4.9, extends to a map

P: W, — Pic’Wg )", ((c,u), 1, 0p) —> Py, (idy-1(0y, 1. (71 (0), 3(0))).
(4.36)

The universal moduli space

My (X, D, A) = {((C, u), vy, GI)GWI calgy(x) = Viog, 1 (X, u(x)),
(4.37)
Vx € 771(c), P((c,u), vy, 0p) = (’)I}

is the (0 O!)-level set of
(@'°% = viog. ) x P W —> EZH((C.31B). (D1, D)) x (Pic’ (8, 1)) . (4.38)
We show that 0 x O is a regular value.
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Since @2 «(Dr) is a linear space we have
Tg,@?’k(DI) = ®gl,k(D1)’ V91 € ®gl,k(D1)

For every ((c, u), vy, 07) € M 5(X, D, A)y, the normal component of the lineariza-
tion of (4.38) at ((c, u), vy, 0;) has the form

D((c.upvp.00) (38 —Viog,1) X P
TicanWe b ((C.318). (D1, D)) & T, HY (D1, 3D )R,y ® Ty, O (D)
— wilr(s, Qg*ll(c) ®c u*TD;(—logdDp)) & H*'(Z, ).
(4.39)

Itis given by (4.25) on the first two components and sends 0®0®0; tothe cohomology
class

0@ [(idy-1(y. w1 e H*' (. ).
For the same reason as in the proof of Proposition 4.1, every element of

witr(x, Q% ®cu*TD;(—logdD)))

7= 1(c)

is in the image of the restriction of (4.39) to the first two summands of the domain,
followed by the projection to the first component of the target. Since a representative
of every cohomology class in H%!(X,j)! can be extended to a global (0, 1)-form
on Uy i, the restriction of (4.39) to the third summand of the domain is a map onto
the second summand of the target. Therefore, (4.39) is surjective. Consequently, by
Implicit-Function Theorem, the universal moduli space M (X, D, A); isaseparable
C™~*-smooth Banach manifold. Then by the Sard—Smale Theorem, the set of regular
values H@Zi’m(Dl, 0Dj)R,,j, of the projection map

proj: M, (X, D, A); — H?k(Dl, ODDR, .5, X @;’fk(Dl)
is Baire set of second category. By construction, for every v with
Res(v) = (v, 60;) € H@j%;m(l),, dDDR, .1,
the stratum
Mo (X, D, A, v); = proj~' (vr, 6r)

is a naturally oriented smooth manifold of the expected dimension (4.34). With an
argument similar to the Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude
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that the subset of smooth perturbations

HGE%C(DI, ODR,.J;
= HO, " (D1, dDDR,,5; N (He (D1, DR, 1, X Og k(D))
satisfies the requirement of (4.31). The set

My (X, D)R.; =Res™ (HOLL(Dr, IDDR,.4,)

satisfies Proposition 4.8 (1). O

Remark 4.12 Suppose
f=Il¢.u,¢=()ier, T, 7)€ Mg (X, D, A, v);.
Restricted to Dy, by (2.11), we have
TX(—log D)|p,= TD;(—logdD;) ® D; x C. (4.40)
Replacing (X, D, v) in (4.7) with (D, Dy, vr), we get the linearized CR operator

DI85 — v} : WEP(S, u*TDy(—logdDy)) wan
— Wi (s, Q% ®@c u*TDi(—logdDy)).
Let
dya: WHP(2,C) — wilr (3, ! ®c ) (4.42)
denote the standard 5-0perator on the trivial bundle ¥ x C’. In order to extend (4.7)
to the case of maps with smooth domain but image in a stratum Dy, using the decom-

position (4.40), define

DD — v}: WEP (S, u*T X (—log D)) — Wl (3, Q%' @c u*T X (— log D)),

Di*(3 = v}(§ @ n=(nien) = Di*( = v}(©) @ (dsaln) = DeDY (3 = v)) .
(4.43)

where
D: D) {3 — v} e I(2. Q%))

is the derivative of the d-operator Di,v" (9 —v}in (3.15) in the direction of &. Note that
the derivative of a 1-parameter family of d-operators on a complex line bundle is a
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(0, 1)-form. In other words, with respect to the decomposition (4.40), Dl(zgg){é — v}
is the lower diagonal operator

* Ostd

[DL"g{é —v) 0 ]

with diagonal entries (4.41) and (4.42). Cohomology class of

(DeDYNi{d —v})._, eT(Z, Q‘;}j)’

iel
is
D,P() e H*(2,)).

In light of the proof of Proposition 4.8, Corollary 4.11 can be rephrased in the following
way.

Corollary 4.13 IfDLOg{é — v} is surjective then M, (X, D, A, v)[ is cut transversely
in a neighborhood of f. Furthermore, if s € (N INIYk then the whole moduli space
Mg (X, D, A, v) is cut transversely in a neighborhood of f.

The elements of the form 0 @ (c;);e; in the kernel of D}fg {0 — v}, where ¢; is a
constant section of the trivial line bundle ¥ x C, correspond to those deformations of
u that push the image of u out of D; in the direction of ¢; by ¢; ;.

Proposition 4.8 can essentially be obtained from Proposition 4.1 by looking at
(u, (&)ier) as alog map into the fiber product (3.26) of the projectivizations of Nx D;,
in the following way.

Remark 4.14 Given (X, D, w, R), let

X = [ [PWxDilp, ®C) — Dy (4.44)

iel

be the associated (P')! -fiber bundle over D;. Fori €[N]—1, let D; = = ' D;y;. For
iel,let

D; = (DioVU Dj ) X 1_[ PNxDjlp, ®C),
jel—i

where D; o and D; « are the zero and infinity divisors of P(Ny D;| p; ®C), respec-
tively. The inclusion

ie[N]
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is an SNC symplectic divisor with respect to the symplectic structure obtained from
the standard symplectic structure on N’y D;. As explained in [17, p. 11], from any R-
compatible almost complex structure J on (X, D) and any v € H, (X, D) we obtain
a compatible (CHI- equlvarlant almost complex structure J on (X, D) and a (C*)’-
equivariant perturbation term v e Hg, k(X , D). The latter only depends on v; and 6.
Every tuple (¢, u, ¢ = ({i)ier, T, 2) representing an element of M (X, D, A, v);
can be seen as a log J, V)-mapu: X — X representing an element of

Mg,s(i’ 57 Zv ’D‘)

where, for each i € I, 5,; > 0 denotes a tangency of order s,; with D; o and s,; < 0
denotes a tangency of order |s,; | with D; . We have

M, s(X, D, A, v)] = M, (X, D, A,%)/(CH". (4.45)

Following the proof of Proposition 4.1, we can show that for generic (J V),
Mg (X, D A V) is a smooth oriented ((C*)I -equivariant manifold of real dimen-
sion

2D F) 4 (= 3)(1 = g) + k) = 2(TFTED (4) + (0 - 3)(1 — g) + k).

Then Proposition 4.1 follows from (4.45), and D],fg{é — v} in (4.43) is equivalent to
D%(d — U} defined in (4.7).

4.3 Simple Nodal Maps
Moving to the nodal case, let
Mg,ﬁ(X7 D5 Aa V)F C -/Vg,ﬁ(X7 D5 Aa V)

be the stratum of stable nodal log (J, v)-holomorphic curves with the decorated
dual graph I" (and |V| > 2). With a setup similar to [11, Sect. 6.3], the deforma-
tion/obstruction theory of M, (X, D, A)r around any f=(u, [¢], Z, 21, ..., 2k) 1S

given by (1) the sum of DLOUg{é — v} over the irreducible components ¥, and (2) the
obstruction map in (3.41), i.e.,

Ob]": XveV ng,ﬁv (X7 D5 AU’ U)lv — g(F)5 (4'46)

where x,cy denotes the fiber product over the evaluation maps at the nodes.

We write V =V, UV}, where V, corresponds to set of non-contracted or principal
components and Vy, corresponds to set of contracted or bubble components. For each
veV,let My o (X, D, Ay, v)j, be the space of simple maps corresponding to the v-th
component Z of ¥ in(3.38). Anelementof M?% . (X, D, A,, v)j, isthe equivalence
class of a tuple

8v,5y

fv = ((bv = ¢|Eya Uy, &y = (é-v,i)ielva Cy, = (Evijy zv qu))
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where 7, are the marked points on ¥, g, = {ge}ecE, is the set of nodal points on %,

5, is the set of tangency orders at 7, U gy, u, is a map into D 1, satisfying

duy(x) = V(o (), up(x)), Vx € By,
and ¢, = (¢y.i)ies, is @ meromorphic section of Ny Dy, with zeros/poles of orders
determined by s, at 7, U g,,. Locally around any f, we will fix a random ordering ¢,
of g, that we will forget at the end. If ¥, is not a bubble component, then

M;v,ﬁu(x’ Dv Av: U)IU = M&nsu (Xv Da Av’ V)IU;

(_)therwise, 3, is a sphere, ¢, is a constant map (that we will drop from the notation),
du, = 0, and by (4.33)

M;u,gv(X5 Da AU? v)lv = M(*)’EU(DIUa 8D1U’ AU)
For each e € E,, let
CVe ! Mgv,sv(x’ D, Ay, V)IU — Dlg, [ty, ¢y, Cyl —> uv(‘]g)

denote the evaluation map at the nodal point g,. Recall that for / = the convention
is Dj = X. Let

evE = l_[(evg X ev,): 1_[ Mg, .5, (X, D, Ay, V), —> l_[(DIe)2
ecE veV ecE

denote the overall evaluation maps at the nodal points. Then the fiber product space
in (4.46) is

1 —
MEE(X, D, A,V = xuev My, o, (X, D, Ay, v), = evg' (1'[ Ae> (4.47)
ecE

where
A, C Dy, x Dy,, Vec€E,

is the diagonal subspace. The obstruction map in (3.41) is the map (4.46) from this
fiber product into the obstruction group G and

M, (X, D, A, v)r = obp ! (1).

Let

[[M;,.0,(X.D. Ay vy, € [ MG, 0, (X. D, Ay v)y, (4.48)
veV veV
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be the subset of tuples where the images of every two non-constant bubble components
in X are distinct. Also, let

MEE* (X, D, A, v)r = MEE(X., D, A, v)r 0 [[ M3, o, (X. D, Ay vy,
veV
(4.49)

By (3.6) and Definition 3.1, the map ¢ has image in a product of universal families

(70 : Yoy ks —> Mgy ky 40,030 U q”)vevp' (4.50)

The restriction of a perturbation term v (or vieg) in Hy x (X, D) to ﬁgv,\zvlﬂqvl
defines an element of Hg, |7,|+|¢,|(X, D). Furthermore, recall from (4.30) that if
v € Hy 1k (X, D)y, then the restriction of that to g, |2,1+4,] and Dy, is made of
components

vy € He, 2ol +lqo| (P1,» 0D Ry, uy, (4.51)
and
Oy = (Bv.)icl, € O, 1201 +1g5(P1,) (4.52)
such that
Juy = (v, up) vy and sy p; Eri = Ovilr,ir Vi € 1. (4.53)

Lemma 4.15 With notation as above, if

(1) JeAK" (X, D) R in the sense of Proposition 4.8 (2) for all v € Vy,

2)v EHg,Izquqvl(X’ D) R j in the sense of Proposition 4.8 (1) for all v € V,,,
(3) the map evg restricted to H:ev M;v’gv (X, D, Ay, v)y, is transverse, and

. 1 .
(4) the map obr restricted to ./\/lggg’*(X , D, A, v)r is transverse,

then M; (X, D, A, v)r is anaturally oriented smooth manifold of the real dimension
(1.16).

Proof By Proposition 4.8, under the first two conditions, each M;v, s, (X, D, Ay, V),
is a naturally oriented smooth manifold of the real dimension

2t TP A 4 (1= 3)(1 = g0) + ko + £, — L), where ky = 2], £y = Igol-
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By (3), since each D; is oriented, the fiber product space Mglfég’*(X , D,
A, v)r is a naturally oriented smooth manifold of the real dimension

z(Z (e XN A + (= 31— g) +hy+ £y — [ L]) = Y (1 — |1e|>)

veV eckE
TX(—logD
=2<c1 (e ><A)+<n—3)<1—g>+k—|E|—Z|Iu|+2|le|).
veV ecE
By (3.39),

dimg Kg(I) — dimg(G) = [El + >[Il = > | L] .
veV ecE

Therefore, by (4), and since G is a complex manifold, ./\/t; (X, D, A, v)risanaturally
oriented smooth orbifold of the real dimension

2<c{’“‘l°gD)<A) + (=31 —g) +k—[E[ =Y L[+ L] —dimcc(g)>

veV eckE
=2(c] ¥ Ay 4 (0 = 3)(1 — @) + k — dimp K (T)). o

Recall that, by the first condition in Definition 3.11,
dimp Kr(I") > 0

unless I is the trivial one-vertex graph (V= {v}, E=¢ with I,, =) which corresponds
to the main stratum. In the classical case (no D), the map o in (3.39) is the trivial
map ZE — 0. Therefore, dimg Kr(I') = |E| is the number of the nodes. In the
logarithmic case, there are configurations with arbitrary large number of nodes and
dimp Kr(I") = 1; see [7, Example 2.13].

Proof of Theorem 1.5 With modifications as in Sects. 4.1 and 4.2, proof of this propo-
sition is similar to the proof of [32, Prop. 3.16], [26, Thm. 6.2.6], and [35, Prop. 4.3].
The main difference is the extra evaluation-type map obr that needs to be transversed
as in Lemma 4.15 (4).

For each v € V), let i_,lgv,kﬁgv, vy, and 6, be as in (4.50), (4.51), and (4.52),
respectively. For each v € Vy, since X, = P!, if C, is stable, let go’kargv denote the
universal curve, and if C, is not stable, i.e., if it is a P! with less than 3 points, then
let ﬁO,ku—s-lv =Cy, and ﬁo’kﬁ_gv be just a point. For v e Vy, v, =¢*v|y, is zero and we
are dealing with log J-holomorphic curves.

For each v e V, fix a local family ¢, : Cy, — B, around C, as in (4.12) and a
smooth trivialization ¢, of that as in (4.13).
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For v e V), let

¢,
Wv = ng{]Av ((Cva {51) U qv}|Bv)7 (Dlvv aDlv))‘ﬂv
x Hg' g0, (D1, D) [w) X7 OF ¢ 1y (D),

where

5y = (Sv;a = (SUQai)iE[N]_Iv)ae[kv+£u] IS (N[N]—Iv)ku+lv

is asin (4.29), be the corresponding configuration space as in (4.35). This time, (R, J)
is not fixed and can change as well. Thus, the notation x ; means fiber product over
AK(X, D). For each v € Vy, the configuration space is

W, = Wgﬁf’Au (Cor 130 Y B, (D1, 9D1,)),, X AK™ (X, D)o

as in (4.26) with (Dy,, 0 Dy,) in place of (X, D). The evaluation map evp, at the nodal
points extends to the product [ ],y Wy. ForveV, let

Ev=E2", ((Co. {30 UaullB,). (D1, 3D,)) — W,

be the Banach bundles in (4.16). Let

Wr = Xyey Wy, = ev]EI(H Ae),

ecE

m,: Wr — W, denote the projection map into the v-th component, and

Er = @njé’v — Wr
veV

denote the obstruction Banach bundle. The tangent space of Wr has the form

TyWr = T} Wr & EB Te, By ® T ;) AK™ (X, D){w]
veV
® D (10, 1y, 4,10, (P1,s 3D1)R,, 01, © To, O 4 10,

veVp

where vaer Wr has the following description. By (4.8),

L, >
T, Ws'"y (20,20 Uqu), (D1, 8Dy,)) = WEP (2, uiT Dy, (—log Dy,)).
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For every & € WEP (2, utT Dy, (—log Dy,)), the section (&) € C%(Zy, uiT Dy,)
defined via (2.10) satisfies

t()(ge) €TDy,, Veel,.

Then

v

l, -
Ty Wr = {(sv)vev e@P T, Wy, ((Z0.70Uqy). (Dy,. 3D1,)):

(4.54)
(&) (qe) = t(§v)(q,), Vv, VeV, ee IEv,v’}-
Summing the maps (4.36) over all principal components we get
P = ]‘[ Py: Wr —> Pic = ]_[ Pic® 8y, 5, 1e,)". (4.55)
veVp veVp
Let ﬁtg{gg (X, D, A)r denote the (0 x Or)-level set of
(9°% — viog) X P: Wr —> Er x Pic?, (4.56)

where Or = ]_[UeVp O, The universal pre-log moduli space Emglf;g (X, D, A)r is the

quotient of Dﬁggg()( , D, A)r by the automorphism group. The latter is the product of
automorphism groups of the bubble components ¥, = P! with k, + ¢, < 3.

Claim 1 Restricted to the subset of simple maps ﬁtg{(;g’*(X, D, A)r, OxOr is a regular
value of (4.56).

Proof For every (f.J,v) € ML (X, D, A)r, the linearization D%, ({3 — v} x P)
of (4.56) is the direct sum linearization map

D‘}’%’M({é ~v}xP)=P DL"U’%,S o P DL‘L%,’VU (18 —vixP,) (457

veVy veVp

with summands as in (4.28) and (4.39). By the proof of Proposition 4.8 (1), fixing J,

for each v eV, DLOL% " ({5 — vy} x Py) is surjective onto

Ev ® Ton, Pic® (Ug, 1y10,)™.

Furthermore, transversality can be achieved by sections supported away from the
nodes. Therefore, for any fixed J, the direct sum

@ D};)Ug,v,, ({5 — Dy} X Pv)

veVp
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is surjective onto

P & @ To,Pich.

veVp

By the proof of Proposition 4.8 (2), for each v € Vy, D o8 8 is surjective onto &,.
Furthermore, if the bubble components are all simple w1th mutually different images,
asin the proof of [26, Prop. 6.2.7], by Proposition 4.8 (2) and Lemma 4.7, transversality
can be achieved simultaneously by deformations of J that are supported along different
images of these components. We conclude that (4.57) is surjective along the subset of
simple maps.

Claim 2 The map obr : ﬁg%zg’*(X, D, A)r — G(T') is transverse.
Proof Fix a tuple

f = (w060 = Guidier,s Co = (Busiu 2 Uaw). /. v) € obr ! (1),

By definition, we can choose local holomorphic coordinates w, around each nodal
point g, € ¥, and representatives ¢, such that

Nei/Nei =1, Ve€k, i €l; (4.58)

see (3.48). Let g, be a nodal point on X, connecting that to X,/. By Lemma A.1, we

may assume that either v € V}, or v e Vy, and A, #0. Equally, one may use the method
of proof of [26, Thm. 6.3.1] in [26, p. 155] to address the nodes connecting two ghost
bubbles. Choose any i € ,.

(i) If veV, and i € I, we have a meromorphic section ¢, ; included in f satisfying

Ous Ny D Sv.i = Ov.iCu.is

see (4.53) above. Recall from (3.45) that

Se,i

Coi(We) = T, (wew, € wNx Dy,
such that
0#n,i = 7e,i (0) €NX Dilu, (g,) -
Let
B:x,—C
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be a smooth function that is supported in a neighborhood of g, is constant in a smaller
neighborhood of Ge> and satisfies

d 8@
E(E " Ne,i/Me,i)li=0=1. (4.59)

Let
oplog,x
(frefo,1) € M " (X, D, A, v)r

be the path obtained by deforming ¢, ; to e'P Cviand 6y ; to 6y ; +t5ﬂ. Then, by (4.59),

d
EObF(ft) = [1.,;] € T1Gr = coker(oc), (4.60)

where [1, ;] denotes the image of 1, ; € @eeE Cle in coker(oc).
(i) IfveVpandiel, — I, near g, uy has the local form

Se,i
uv(wg) = (Mv,i(wg)s ﬁg,i(wg)wg ) € Nx D,
such that

0#1e,i = 7e,i (0) ENX Dilu, (g}

see (3.43). Therefore, instead, we can deform u,, by deforming ﬁg,i (we) to e'P ﬁg, i(we)
as above and get the same conclusion as in (4.60).

(iii) fveVyandi € I, — I,,, we need to consider a deformation of J. By Lemma 4.7,
for any open set U C ¥ — {Z, U gy}, there exist
EeWhP (2, ulT Dy, (—logdDy,)) and Y eT;, AK™(Dy,,dD1)R,,

such that

§(ge) =0® o € Tuy(g D1, (= 10g9Dy,) = Ty g D1, (—logdDy,) & Cle™1,

£(za)=0, Vz4 € 2y, E(‘Zg/)zoa Ve' € By —e,

- 1
Supp(Y|s,) CU, Duval"gsjtE Y oduyoj=0.

By trivial extension of £ to other components and horizontal extension of Y to a
deformation of J on the entire X, such a pair (£, Y) defines a tangent vector in

TMYE* (X, D, A, v)r
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such that
Dyobr(§,Y) =[1.,] € T1Gr.

@(iv) If v e Vy and i € I,,, we need to consider a deformation of J in the normal
direction to D;. That is, we need a deformation of R by deforming the connection
V@ in Definition 2.3. This is the only step where we need to deform R. Deformation
of V) by a 1-form results in a deformation of the corresponding d-operator 9 Ny D
on NxD; in [7, Lem. 2.1]. Deformation of 3 Ny D;» then, yields a deformation of the
associated almost complex structure on the total space of Ny D;; see [34, Lem. 2.2]
or [7, Sect. 2.1]. In other words, the isomorphism

TNxD; = ﬂi*TDi @ n*NxD;,

and thus the construction of J on TNy D; via J|r p; and i; on Nx D;, depends on
V® _ Deforming the latter results in a deformation of the former. A deformation

u*InNy D, —> U Ny D, + 1B

(supported on an open set of X, whose image in X is disjoint from the image of the
rest of non-trivial bubble components) as in (i) such that (4.59) holds yields a path
(fi)tef0,1] as in (i) such that (4.60) holds. O

Finally, by Claims 1 and 2, and Implicit-Function Theorem, the universal moduli
space

M (X, D, A)r

is a separable C”~‘-smooth Banach manifold. Then by the Sard—Smale Theorem, the
set of regular values H@:i’m(x , D)[w) of the projection map

proj: My (X, D, A)p — [ Mo kyse, (D1, 9D1)1w) X7 O 4 1o, (D1,)

veVp

is Baire set of second category. By definition and Lemma4.15, forevery (o', R, J, v) €
Hg,k(X, D)[w] such that

Res(w', R, J, v) = (w’,R, 7. (v, 6) = vlz,) ) € HO™™(X, D)y,

veV, g.k

the stratum
M, (X, D, A, v)) = proj_l(a)’, R, J, (v, 0,) = V|2v)U6Vp)

is a naturally oriented smooth manifold of the expected dimension (1.16). With an
argument similar to the Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude
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that the subset of smooth perturbations
Hy (X, D)) = Res™ (HOTE™ (X, D)jo1) N Hy 1 (X, D)o

satisfies Theorem 1.5 (1). If we restrict this proof to genus 0 J-holomorphic log curves
and the resulting set of regular values in AK(X, D)[4], we get Theorem 1.5 (2). O

4.4 Genus Zero Multiple-Cover Maps

A main step in proving Proposition 1.7 (for arbitrary D) is to address the transversality
issue at multiple-cover log J-holomorphic spheres. In this section we show that under
the positivity/semi-positivity conditions in Definition 1.6, multiple-cover log spheres
do not happen in families of larger than the expected dimension.

Suppose

[u,P' 21, ..., 2] e M§ (X, D, B)

with t=(#1, ..., 1) and 7, #0 for all a € [£]. All the marked points have non-trivial
tangency orders; therefore, none of them can be ignored (as in the classical case)
to decrease the expected dimension. The other cases can be reduced to this case by
ignoring those marked points that have trivial tangency order with D. Every such point
has a finite number of pre-images in any multiple-cover of u. Letd and k1, ..., kg <d
be positive integers and set k = kj + - - - + k¢. For each a € [¢] let

Alg+ -+ agr, =d

be an ordered partition of d into a sum of k, positive numbers. We are interested in
those tuples

o= (a”’b)ae[é],be[ka] 4.61)
such that there exists a degree d covering map
h: P! — P! (4.62)

satisfying
N (za) = {zabbetty),  Ordzyh = g p.

If A is such a covering map, the k-marked degree d map

fo = (P, (Zab)acier beika)
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(with the lexicographic order on the marked points z,5) defines a point of the log
moduli space

Moo (P!, D, [d])

where D, ={z1, ..., z¢} and we are treating « € N¥ as the tangency order data with
D, at those k points. By (4.21), if Mo,a(Pl, D., [d]) is non-empty, it is a smooth
manifold of the expected dimension

dfiber = dimg ./\/lo,a(]P’l, D, dh)=d-1)2—-4)+k—¢. (4.63)

Also, the k-marked degree A = d B composition map

(o P, Gapdacterveira)) (4.64)
defines a point of the log moduli space My s(X, D, A), with

N
5 = (Sab)aeltlbelky]s N 3 Sap = g pSa-

Let
S’S(X, D,A)CMps(X,D,A)

denote the subspace of multiple-cover maps of type «. There is a projection map

& (X,D,A) — My (X, D, B) (4.65)

whose fiber over [u, P!, z1, ..., z¢]is Mo,a(IPl, D., [d]). We have

daown = exp-dimg Mj (X, D, B) = ¢] * TP (B) 40 —3 4 ¢,

dup = exp-dim¢ MBQE(X, D, A = clTX(_10g D)(A) +n—3+k.

In order for the image of /\/lg‘ +(X, D, A) under ev to have a smaller (resp. smaller
or equal) dimension than the image of the main stratum ./\/t(*)y (X, D, A), whenever
dfiber, ddown > 0, we need dgown < dup, ie.,

XCIED gy Ly 344> 0

= d—1)c] “TE(B) 4+ k— >0 (resp. =0). (4.66)
In other words, we want to avoid a situation where dfper > 0, B € mp(X) with
w(B) > 0, and

_ L—k {L—k
3—n—€§clTX( lOgD)(B)g— resp. < —— |.
d—1 d—1
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For £ = 0, 1, 2, the condition dgper > 0 automatically holds. For £ > 2, the condition
dber > 0 implies

L—k

— <24

d—1
Therefore, (4.66) can be replaced with the stronger requirement

e XD B) ¢ [3—n — £,0] (resp. [3—n —£,0)) if £=0,1,2,

e XClED By ¢ 3 —n—£,2— 0] (resp.[3—n—£€,2—0) if €>2.
(4.67)

More generally, we will consider maps with image in D;. Then n should be replaced
with n—|I|. For N > 1 and (1, £) # (9, 0), we will further need dfiber + ddown < dup.

The latter is equivalent to ¢; *~'®”)(B) > 2 — ¢. This explains Definition 1.10. The
following lemma summarizes the outcome of these calculations.

Lemma4.16 With D; and d Dy in place of (X, D) in (4.65), if [X, D, w] is semi-
positive (resp. positive) in the sense of Definition 1.6 and £ < 2, then
exp-dim Mg (Dy, 3Dy, B) = 0 (4.68)
implies
exp—dimMg’g(Dl, 0D;,dB) > exp—dim/\/lat(Dl, 0Dy, B) (resp. >),

foralld>1and («, s, t) as above. Furthermore, if [ X, D, w] is strongly-semi-positive
in the sense of Definition 1.10, then (4.68) implies

exp—dimM‘(’)‘,s(Dl, oDy, A)
> exp-dim M (D;, 3Dy, B) + exp-dim Moo (P', D, [d]).

Regarding (4.66), the example below illustrates a non-positive situation where
(4.66) does not hold, M6,5 (X, D, A) is empty, and Mg’s (X, D, A) is always positive
dimensional.

Example 4.17 Let X = P2, D be a smooth quartic hypersurface, B=[1]€ H; (IP’Z, )=
Z,=2,k=3,t=(2,2),and s = (2a, 2b, 2d) with a, b> 0 and a+b=d. For generic
J7

—1
M} (X, D, B) = My (X, D, B)

is the (zero-dimensional) moduli space of lines with 2 intersections of order 2 with D
and has 160 points. Also, diper = 1; if (21, 22) = (0, 00), the map 4 in (4.62) is of the
form

_ a(, _ b
h(z) = - EH) (e )d212) for some A € C*.
7221
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On the other hand, dyp = 2 — d; therefore, if d > 2, M{)’ﬁ(X, D, A) is empty for
generic J while ./\/18" . (X, D, A) will always be positive dimensional. O

For (J, v)-holomorphic curves, every connected cluster ¥’ of contracted compo-
nents is a tree of spheres, with a total of at most 2 special points at least one of which
is a nodal point. Here, by a special point we mean either a marked point or a nodal
point connecting the cluster to an irreducible component of ¥ outside the cluster.>?
Because of this restriction on the number of special points, it is natural to expect that
the condition £ <2 in Lemma 4.16 to be always satisfied. The following lemma shows
that this is indeed the case under the Nef condition of Sect. 1.4.

For each bubble component P! = ¥, C &/, the restriction of f’ to X, is a tuple

Jo= (Mv7 S, Cv = (2, Jv, 20 qu))s

where z, is empty or is the only 1 marked point allowed on X', gy = {¢e}ecE, is the

set of nodal points on X,, s, is the tuple of tangency orders at z, U gy, u, is a J-
holomorphic map into Dy, and {, =(&y,i)ie1, is a meromorphic section of uj]\/’ xDj,
with zeros/poles of orders determined by s, at z,, U g,,. Note that while f’ has at most
2 special points, g, can be arbitrary large. The case we are interested in is when u,
is a multiple-cover map of the form u, = u, o h as in (4.64), where u, represents
the homology class B, and has tangency order type t,. We say a point p € X, is an
actual intersection point with D, if I, # [N] and

p eu;1< U D,»).

ie[N]-1I,

Let 8, (resp. 8,) denote the number of actual intersection points of u,, (resp. i, ) with
D. We say p € X, is a positive point if there exists i € [N] such that

ord;, . (p) > 0.

Let §; denote the number of positive points on X,. Each positive point is either a
nodal point or a marked point, and §; > §,, as every actual intersection point is a
positive point.

Lemma 4.18 If D is Nef, then §;" <2 for all v €V},

Proof Assume more than two points in z, U g, are positive. Since ¥’ has at most 2
special points, removing ¥, from X’ we get some sub-clusters, at least one of which,
say 2 has the following properties:

e it is not connected to the non-contracted (principal) part of X,
e it does not carry any of the marked points,

22 By Remark 3.16, such a cluster defines a log J-holomorphic curve f’ € My o (X, D, A" where &/
records the tangency order data at those (one or two) special points (which now act as marked points for
f7), T/ is the decorated sub-graph of the cluster, and A’ is the total homology class of the cluster.
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e it is connected to X, at a node g, € %, which is a positive point.

Let X, be the component of X" connected to X, at Xy, 3¢, ~ ¢, € X. Since, by

assumption, ordfmgv (ge) > 0, for some i € [N], the image of u,, most lie in D; and

the meromorphic section ¢, ,; on X, corresponding to that should have a non-trivial
pole (of the same order as s ;) at .. By the Nef assumption, the line bundle

Wi NxDi —> %y = P!

has a non-negative degree. Therefore, ¢,, ; should have a non-trivial zero at another
nodal point g¢, € X, and there is another component X,, of X" connected to X,

at Xy, 3¢, ™~ e € Xy,. Continuing inductively we will see an infinite chain of
3 ¢

irreducible components in X, which is a contradiction. O

As a conclusion of this lemma, for every bubble component f, in f, since those
points in z,, U g, which are not actual intersection points (with d Dy, ) are not relevant
to the argument leading to (4.66), by ignoring these points, replacing n with n — ||,
and assuming £ = §, < k = 8, < 2 in (4.67), the semi-positivity condition (1.17) in
Definition 1.6 guaranties that

TX (- log D)

A XElED By L (=1, =34£>0 = ] (B,) > 0. (4.69)

The following statement summarizes the main result of this section.

Corollary 4.19 Suppose (X, D, ) is semi-positive in the sense of Definition 1.6,
and f is a log (J,v)-curve in Mg (X, D, A, v). If J belongs to the Baire sets
AK" (X, D) associated with Ma,tv (X, D, By)y, in Proposition 4.8, for all v e Vy,

then ¢l X ¢ P (B Y > 0 for all ve Vy,

Proof By the assumption on J, each moduli space MB, ¢, (X, D, By), is anon-empty
smooth manifold of the expected complex dimension

TXClED By L (0 —|1,)) =348, > 0.

The conclusion follows from (4.69). O

Lemma 4.18 puts a major restriction on a contracted cluster £'. In general, each
cluster will be of one of the following types.

(i) A cluster with one node g, € X, that connects X’ to the principal part and no

marked points. In this case ¥’ is a rooted tree with the root vg. Distance from vg defines
a partial order < on the vertices of X" with vg being the minimal vertex. By the same
inductive reasoning as in the proof of Lemma 4.18, if v < v’ and g, € E, ./ then ¢,
can not be a positive point. Therefore each X,/ in the cluster has at most one positive
point, that will be the unique nodal point g, connecting X,/ to the unique component
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E/
’ o<
e N
@" ’ k

/ \
I cluster £5 |
\ of type (i) /
\ /

N 7
~_ -

Fig.2 (Left): A cluster of type (i). (Right): A cluster of type (ii)

¥, with v < v’. Furthermore, I, 2 I, whenever v < v/, and I, 77_3 I,y only if g, is
an actual intersection point. Figure 2 (Left) illustrates the situation with the “+” sign
indicating a positive point. At a positive nodal point g., we have 0 # s, € NV, At
nodal points without a “+” sign on any side, s, must be zero. We put a 0 to indicate
those points. If each D; is positive, in the sense that A - D; >0 for all A €m,(X) such
that w (A) >0, then each bubble component will have exactly one positive point.

(i) A cluster with one node g, € Xy, that connects X’ to the principal part and
one marked point z on X, (possibly vo; = vox). In this case, £’ includes a chain of

components Xy, ..., Xy, . For each X, ¥’ might include a cluster ; (or more)
of type (i) that is attached to X, at a unique nodal point ¢.,, € X;; see Fig.2 (Right).

(iii) A cluster with two nodes g, € Xy, and g, € Xy, that connect %’ to the principal
part. With g, in place of z, this case is like case (ii) above.

Remark 4.20 1f §, > 2 for some geometric reason, then the only possibility for X’ is a
chain of bubble components as in (ii) or (iii) between the two special points. This is
for example the case if X is a toric variety and D is the boundary divisor.

4.5 Non-simple Maps

In [32], in order to prove the classical analogue of Proposition 1.7 (i.e., [32,
Thm. 3.11]), in a process which we will call it RT-process here, they replace a non-
simple map f with an underlying simple map f’ with multi-nodes. A multi-node m
is a point at which more than two components of the domain are connected to each
other. In a nodal domain, a node ¢, is obtained by attaching two irreducible compo-
nents %, and %, atnodal points g,, € %, and g,, € %, . A multi-node gy, is obtained

by attaching more than two components ¥y, ..., X, at nodal points g, € X,,, with

i=1,..., L. Tokeep the notation inline with the rest of the paper, we let E to denote the
set of nodes and multi-nodes, and E to denote the set of nodal points on different com-
ponents. When there is no multi-node we have |E| = 2|E|; otherwise, |E| > 2|E|. In the
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presence of an SNC divisor D = ;) Di, the sets E and IE admit decompositions

E = U E; and E = U E;
IC[N] IC[N]

by the type of these points. Similar to Sect.4.3, we write V = V, U V}, where V,,
corresponds to set of non-contracted or principal components and V}, corresponds to
set of contracted or bubble components. Furthermore, we write Vi, = Vy, o U Vy, ,
where A, #0 for veVy, o and Vy, , is the set of ghost bubbles.

Ruan-Tian proved that the dimension of the space of such f’ is at least 2 real
dimension less than the dimension of the main stratum. The same argument does not
directly work for log maps. If we apply the same process to the underlying (J, v)-map
f of alog map f, the resulting simple map 7/ may not lift to a log map f” for at least
tworeasons: (1) since we replace a multiple-cover map with its underlying simple map,
the matching condition in Definition 3.9 (4) may no longer hold, (2) since we identify
different components with the same image, the vectors s, satisfying Definition 3.11
(1) may no longer exist.

Suppose

o= (8 (00 & = @uidiets Co = (Busin 20 U @) s I v)
€ M® (X, D, A, v)r.

The RT-process, described after [32, Def. 3.10], changes the underlying (J, v)-map
7= (0 (40 Co = (S0 30: 20 UG oy I v) € MER(X A, w)r
to another (J, v)-map 7” given as

(¢, (uu, CU = (EU, jv, ZU U qv))vevp, (L{v//, CU” = (EU”’ jv//, ZU” U év//))v,,evg, J, U)

with multi-nodes in the following way.

(1) It collapses the ghost bubbles (and any marked point on it will be thrown away).
As a result we get some multi-nodes.

(i1) It replaces each multiple-cover bubble component by its image. Since some of
the special (marked or nodal) points may have the same image, this step may
produce further multi-nodes.

(iii) Itcollapses each sub-tree of the bubbles whose components have the same image.

None of these three steps changes the genus though. Let I'” be the resulting com-
binatorial type of the domain with components indexed by V’, nodes and multi-nodes
indexed by [E’, and nodal points indexed by E’. With notation as in Sect. 4.3, V' decom-

poses as V;)UVI/). The first component is identical to V. There is a collapsing map
ted: Vo —> Vi (4.70)
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and a multiplicity map
d: Vi, — Zy (4.71)
such that

Y Av=dyAy, W eV

vered ! (v)

Here A,/ is the homology class of the resulting simple curve. After these three steps,
there might still be bubble components (not adjacent to each other) which have the
same image or their nodal points have the same image.

(iv) We identify components with the same image and nodal points with the same
image.

After step (iv), we a get a domain with possibly further multi-nodes and higher
genus. Let I’ be the resulting combinatorial type of this domain with components
indexed by V”, nodes and multi-nodes indexed by E”, and nodal points indexed by
E”. The maps (4.70) and (4.71) descend to

ted ted
Vbe — Vi — Vi, d:Vy — Zy,

with the same properties as above. For the same reason as in [32, Cor. 3.17], we have

E)| — [E)|= [E)| — [E)| . (4.72)
Each nodal point of f” is still decorated by a well-defined subset I C [N] such that
all of its pre-image nodal points in f have the same decoration /. Also, if a bubble
component X, of f” has image in Dy ,, then all of its pre-image bubble components
have image in the same stratum, i.e.,

I, =1,, Yve tea_l(v//).

The combinatorial type y of this process is encoded in the triple (I, IV, T'”’), and
the associated maps ved and d. By Theorem 1.3, the set of such y is finite. Let

Mg (X, A, v)p» denote the classical moduli space of such (J, v) curves ?N. By
[32, Prop. 3.21], if (X, w) is semi-positive, for generic (J, v), Mg (X, A, v)rrisa
smooth moduli space of the C-dimension at most
i XA+ (n—3)1 —g) +k— (E"] — [E"). (4.73)
Comparing (4.73) with [32, Prop. 3.21], note that
E'| — [B"| = |B| — [E'| = ng+ [Vy,

where ny is the number of nodes of the stable domain ¢ (X) eﬂg,k.
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Away from the principal components, the map 7” does not lift to a log curve.
However, some of the information still passes to ?H. First, let us consider the pre-log
space

MYE(X, D, A, v)r,

that is we forget about Condition (2) in Definition 3.11. Instead of Mg (X, A, v)rv,
we consider the set Mplog(X D, A, v)p» of tuples

f// = (¢’ (Mv’ Cvs Cy = (2, jos Zv Uév))vevp’

(uv”a Cyr = (T, jurs T U C_jv”))v//evga J, V)

obtained from the elements of Mplog (X, D, A, v)r, where the principal components
still carry the information of the meromorphic sections ¢,. Let Mplog (X, D, A, v)r

denote its pre-image in MP (X, D, A, v)r, ie., those pre-log maps for which the
RT-process is of type y. The projection

MEEY (X, D, A, v)r — MEE(X, D, A, )+ (4.74)

is a surjective fiber bundle. The key point is that by (4.33), if %, is genus 0, as long
as the second combinatorial condition in (3.51) is satisfied, for each i € I, there are
meromorphic sections &, ; of uﬁ/\/ x D; with zeros/poles of orders s, ; and s, at g, and
Za, Tespectively, for all e € E, and z, € z,. The fiber M ¢~ of (4.74) over any f"isa
product of the manifolds of the form described below and

stx ev: MYBY (X, D, A, v)p —> My x X®

factors through m,, .

(1) For each v € Vy, , we have the configuration space My ,+¢, of the special points
on the ghost bubble X, in 7' (f”).

(2) For all v € V” and v € ved~ ' (v”), we have u, = u, o h, for some degree d,
covering map h,: X, — X,» as in (4.62). Note that

dy= Y d.

vered L (v”)
The combinatorial type «, of A, is determined by the image z,» U g,» of z, U g, in

%~ and the branching order of &, at z, U g, (i.e., the partition of d, as in (4.61) at the
actual intersection points

u;”l (aDIL/,’) C Zy U qv"
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and the branching orders at the rest of the points). Therefore, as in (4.65), in the fiber
over f” we get the relative moduli space

Mo, (Syr =P 200 Ugqyr, [dy]) (4.75)
of tuples
(hvl Yy = Pl — Xy = Pl’zv Uc_iv)

relative to the divisor z,» U g,» C %,, with the ramification/tangency order data .
The diffeomorphism type of (4.75) is independent of the location of z,» U q,» (and
thus f”).

We conclude that

Mpr=T] Mowse x [T [] Mow® 20 Ugy, lduD. 476)

vEVh o v"eV” yered~! (v")

Similar to [32, Thm. 3.16], and with a similar proof as in Sect. 4.3, for (o', R, J, v)
in a subset of second category H;.k (X, D)jw) C Hg ik (X, D)o, Mg{(;g(X, D, A, v)r»
is a smooth manifold of C-dimension

K4 1B+ (e Y740 + 0= 31— g)— IL])

veV,
TX(—log D
+ 0 (e TP A + (= 3= 1)
veVy
= > (= [IDUE]| — [E7).
IC[N]

Note the number /1 in [32, pp. 485-486] is | E” | in our notation and the number 175

there is |IE” |. Also k” denotes the number of surviving?? marked points. For generic
(@, R, ),

el XTI Ay + (1= 3) — [+ 8y 2 0, “.77)

where 8,7 is the number of intersection points of u,» with aDy, as in the proof of
Corollary 4.19. If some bubble in I'” happens to be the image of two or more bubbles

23 Which will be k or k — 1 since the contracted part carries at most one of the marked points.
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in I/, by adding (4.77) to the dimension, and by (4.72), we get

dime MYE(X, D, A, v

SKHIE T+ Y (e TP A + (=3 = g)— 1))
veVp
+ Y (e TP A + =3 (1))
veVy
— (= DAE [ = [E'D+ Y (11 -DAE}| - [E}).
IC[N]
Since
l—g=) (I1—g)—(E|-EY,
veV’

we get

dime ME%E(X, D, A, v
<K+m=30-g+ > (¢ ¥ P An-|1y1)
et (4.78)

+QIE | —E'D+ Y (11 =D(E;| — B} ).
IC[N]

By the semi-positivity condition, we have clTX(flOg D)(AU/) > (O forall v € V, see
Corollary 4.19. Also | E' |> 2 | E' |. Therefore, the last equation is less than or equal
to

lTX(flogD)(A) +m-=3)1A-9g +k
= > el Y (A =DAE | - B, o
VeV IC[N]

Also, note that if the equality happens, then

Y lyl= )" Iyl and |E[=2|E.

v//ev// v/EV/

The first equality implies that step (iv) in RT-process is trivial. The second one implies
that step (i) is trivial and no multi-node is created in steps (ii) and (iii) of the process.

@ Springer



Deformation Theory of Log Pseudo-holomorphic Curves

Then it is easy to see that

STl + D AT =DAET| - |Ef )

v"'eV” IC[N]
=—|E[ =) L]+ |l |=dimc(G) — dimg Kg(I").
veV ecE

Proof of Proposition 1.7 If D is smooth, i.e. N = 1, then the second line (4.79) is
negative. We conclude that

dime MYE(X, D, A, v)rv < dime My o(X, D, A, v).

In this sense, for D smooth, Proposition 1.7 essentially follows @m the classical
result of Ruan—Tian by looking at the image of non-simple maps in M (X, A, v). O

For an arbitrary SNC divisor D, in order to take care of the extra term

QIE|—IED= > Iyl + Y (Il -DAE;| = |[E;) (480

VeV IC[N]

in (4.78), we need to use Condition (2) in Definition 3.11 to reduce the dimension. We
encounter the following two problems.

1. The map obr into G(I") is defined on Mglgg’y(X, D, A, v)r. As the examples
below show, unlike st x ev, obr does not necessarily factor through 7, . Therefore,

we need to work with the larger space Mgl)(;g’y (X,D,A,v)r.

2. Since the elements of Mglgg v (X, D, A, v) are not simple, transversality of obr in
the sense of Claim 2 of proof of Theorem 1.5 might not be achievable. We need to
replace G(I') with a smaller group G(y) that admits a surjective homomorphism
h: G(T') — G(y), and such that

oby = h o obr: M5 (X, D, A, v) — G(y)

can be transversed (i.e. 1 € G(y) is a regular value of that).

The two problems above are not specific to the particular compactification con-
sidered in this work and should appear, either explicitly or implicitly, in any other
analytical approach.

The first example below illustrates a simple situation where obr depends on the
location of special points on a ghost bubble. In Appendix A, we study this dependence
in details. The second example below illustrates a situation where obr depends on the
choice of the covering map 4, for some multiple-cover bubble X,,. The third example
below illustrates a situation where different bubbles have the same image, and obr
can not be transversed. Finally, the fourth example below illustrates the necessity of
the extra condition (1.19), whenever N > 1.
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Fig.3 A nodal configuration in Do line 3 X
the boundary of
——log 2 :
Mo.2na,2)E D-BD line 2

line 1

A —
ghost bubble
Z1 a<k2
D, o °

Example 4.21 Let X = P2, D = DU D; be the transverse union of two coordinate
lines,

g=0, k=2, A=[3], and s=(s1,5)=((2,1),(,2)).

Let I" be the configuration in Fig.3; it is the nodal configuration obtained by three
lines (not contained in D) passing through the point D17, together with a ghost bubble
mapped to Di, that connects the domains of these three lines and carries the marked
points 21, z2.

LetV = {vg, v, va, v3} where vy, va, v3 correspond to the lines 1, 2, and 3, respec-
tively, and v corresponds to the ghostbubble. Let E ={e, e>, e3} where ¢; corresponds
to the node connecting the domain of the i-th line to the ghost bubble. We can choose
the orientation ¢; to be the one ending at vy. We have

Ly={12}, I,=0. L, ={12), s,=(L1, Vi=123.

The map
3
0: - o2 — Pz
i=1
has a 1-dimensional kernel and a 2-dimensional cokernel. The kernel is generated by
()\‘el ’ )\'227 )\'637 Sv()) = (lv 11 19 (ls l))

Therefore, Condition (1) of Definition 3.11 is satisfied. The obstruction group G(I")
is 2-dimensional. The homomorphism

(CHer x (CHe2 x (C*)ls — (C*)?,
X1 Y2 X2V¥3

(1, Y1), (82, ¥2)s (03, 3)) —> <__ __)

y1 X2 Y24X3

descends to an isomorphism G(I') — (C*)2. We take the marked point z; to be 0, z»
to be 0o, and the nodal points ¢, , g, , and g, to be 1, a2, and o3, respectively. Thus,
B 3

o and a3 are parametrizing the two-dimensional configuration space M 5 of the five
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special points on X,. The meromorphic sections (functions) &y, 1 and &,,,2 are given
by

L S1 B 2> s
$v0.i (2) = 5 biz 5 — = {(2—1)(1502)@—0!3) i=1,
’ eq.i e i e3,i 2 Z .
=D @-a)™ @-az)” @D G0 Ga3)

where B; € C*. We conclude that

obr(f) = ( - ’”2“2) € (C*)2,

mocty’ mM3o3

where m; is the slope of the i-th line. The RT-process removes the ghost bubble X,
and creates a map f” with one multi-node. In general, as we will show in Appendix A,
the element obr (f) can be expressed as a product of two terms

obr (f) = obr(f') - 0y (P!, 21, 22, 9e > de - 9e)-

Here, the decomposition is

mp  moa mp; m o
( L= 2):(—1,—2>-<a2_1,—2). (4.81)
maay m3a3 mp ms3 a3
However, as (4.81) shows, the second term on the right-hand side can be a non-trivial
function from Moquo +y, into G(I"). O

Next, we consider a similar configuration in one dimension higher with a multiple-
cover map in place of the ghost bubble above.

Example 4.22 Let X =P, D= DU D, be the transverse union of two hyperplanes,
g=0, k=2, A=[5], and s=(s1)=((5,0),(0,9)).

Let I" be the configuration in Fig. 4; it is the nodal configuration obtained by three lines
(not contained in D) passing through Dy = P!, together with a degree 2 multiple-
cover map

Ryt Xy = P! — D>

that connects the domains of these three lines and carries the marked points z, z2.

The dual graph I and the isomorphism G — (C*)? is the same as in Example 4.21.
After areparametrization, we may assume that the double points are ata, b€ Dy = P!
and 0, c0€ Xy, = P!. Therefore,

a—bz?
1—z2"

hyy(2) =
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line 3
D2 line 2
line 1
D
Q. o D1 double cover
.21 <2

Fig.4 A nodal configuration in the boundary of ﬂ})"%ﬁ 0),(0 5))(IP3, D, [5])

The location of each special point on X, is determined up to a sign by its image in
Diy, i.e.

a—aj a—pi
hvo(qgl_) =0 <> 6Ie,l_ €=+ b——ozi’ hy(zi) =Bi <>z € £ b——ﬂ;

The RT-process replaces u,,, with the identification Uy - EU(/) =P' — Dy, together
with the marked points {«g, a2, a3, B1, B2} € 2”6 = Dy, (if two of these are the
same, they will be identified). In the fibers M ¢ of (4.74) over f’, the parameters
a1, o2, a3, B1, B2 will be fixed, but a, b are allowed to change and they parametrize
the moduli space of multiple covers that yield the same underlying simple marked
curve f’. The type of I’ depends on the location of {a1, a2, a3, B1, B2}. For example,
we may assume that

ar=ay=ao and B =pH =8
as in Fig.4. Then I'" has a multi-node at &, just one marked point at 3, and a regular
node at a3.
In any case, the meromorphic sections &y,,1 and &y,,2 of ujo./\/ xD; = OQ2) are

given by

ci (z—z1)"Mi(z — 22)™

é‘vo,i(z) =

Sed Se.i Se3.i
2z -7 (-

=)’ (G =) =g ) G —gc)) ifi=1,
o2z —22)%((z — qe_,l) (z— qe_,z) (z — qe_3))_1 if i =2,

where ¢; € C*. We conclude that

(G —z)(q —22)\° G — 20 —22)\°
obr(f) = m1< - - ) m2< 2 2 ) € (CH2,

m_2 (‘Zgl - ZZ)(‘]e;z —21) ' m_3 (CIgz - ZZ)(QC;3 —21)
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Fig.5 A nodal configuration in Do line 3 X
the boundary of
7] )
M 3.3 B2 D. 13D line 2
line 1
—
D,

where m; is the slope of the i-th line with respect to D1 and D,. The fractions

(QQI - Zl)(%z —22) (CIgz - Zl)(CIq3 —22)

and
(q:;l - ZZ)(‘]gz —21) (q€2 - Z2)(q€3 —21)

are the cross-ratios of (qe ,qe , 21, 22) and (qg ,qe , 21, 22), respectively. Their depen-

dence on a and b, and thus on hy,, is NON- trivial. o

Example 4.23 Let X = P2, D = D;U D5 be the transverse union of two coordinate
lines,

¢=0, k=1, A=[3], and s=(s))=((3,3)).

Let I' be the configuration in Fig.5; it is the nodal configuration obtained by three
lines (not contained in D) passing through the point D13, together with a ghost bubble
mapped to D, that connects the domains of these three lines and carries the marked
point z1.

The dual graph I is as in Example 4.21 and thus the isomorphism G — (C*)? is
induced by

(CH'1 x (CH2 x (CHs — (C)?,
i) 122)

((x1,y1), (x2, ¥2), (x3, y3)) > ( ,
Y1 X2 Y2X3

We take the marked point z; to be oo and the nodal points qe s qe , and qL to be 0,

1, and «, respectively. Thus, « is parametrizing the conﬁguratlon space Mo 4 of the
four special points on X,. The meromorphic sections (functions) &y, 1 and &y, 2 are
given by

Bi Bi .
v, = 5. S0 5o — , =1,2,
o ™ G- DG-@

where B; € C*. We conclude that

obr (f) = (m; Zj) € (C*)?,
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line a

Dy
line 1

Dy

Fig.6 A nodal configuration in the boundary of m})°%(3(d+u).d+a))(lp4’ D, [d +al)

where m; is the slope of the i-th line. In particular, it does not depend on « (which is
good). However, if we assume m| = my = ma3, i.e., the 3-lines have the same image,
we obtain a configuration for which the step (iii) of the RT-process will be non-trivial.
Step (i) will collapse the ghost bubble and obr does not depend on the location of 4
special points on that. Step (ii) is trivial, and step (iii) yields just one line with the slop
m =m| = my = m3€C*. Then

obr: MYV (X, D, A)r = C* x Mos — (C9?
is the constant map 1 and 1 is not a regular value of obr. O

Example 4.24 Let X =P*, and D= D;UD, where D is a degree 3 hypersurface and
Dy is a hyperplane. The intersection is a cubic surface with 27 lines in it. Let

¢=0, k=1, A=[d+al, and s=(s))=((3(d +a),d +a)).

Let I be the configuration in Fig. 6; it is the nodal configuration obtained by a lines
(not contained in D) each of which intersects D; and D; at a single point along D13
with tangency order (3, 1), together with a degree d rational curve in D1, that connects
these a lines and carries the marked point z1. If we assume that the latter is a d-fold
multiple-cover of a line in D>, we obtain a non-simple configuration y .

The associated map

0:D=72"®7> — 7*

has a 1-dimensional kernel generated by ((1, 1), (4, 1)). Therefore, G(I") is
(a — 1)-dimensional. A simple calculation shows that the expected dimension of
Mg, (X, D, A)r is 2d + a. On the other hand, the expected dimension of the main
stratum is d + a + 2. For d > 2, the former is not smaller than the latter. In the
classical case, D> is a positive manifold and multiple-covers cause no issue. Here,
though, the map obr depends on the covering map and can not be ignored. Note that
Condition (1.19) is not satisfied for the line class in Dq». O
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Regarding Problem 1, the stronger condition of Definition 1.10 allows us to get the
upper?* bound

dime MY (X, D, A, v)r < Q(I)

= TXCRED) 4y 4 (0 = 3)(1 — g) + k + dime(G) — dimp Kg ().
(4.82)

We get (4.82), by following steps (i)—(iv) of the RT-process and tracking the change
of the quantity

o) =Y c/ XA +k+ QIE| - |E)

veV
=Y L+ Y (I =D(E;| — B/ ).
veVv IC[N]

e Collapsing a ghost bubble C, = (£, = P!, z, U q), with k, =[z, |, £, =[qu |,
creates a dual graph I" with

Q) — Q) = ky + £, — 3 = dimc Mo g, +e, - (4.83)

Let I'(;y be the result of collapsing all the ghost bubbles in the step (i) of the
RT-process. Applying (4.83) inductively, we conclude that

o) = 0(T') + dim 1_[ Mo.ky+e, -

veVp,o
e Replacing a multiple-cover bubble (u,,C, = (¥, = P!z, U qv)), with the

underlying siglple map (uy, Cy = (Xy = P!, zz U qv)), with A, =d, Ay, creates
a dual graph I with the same set of vertices and

Q) — Q) = (dy — Dey TP (Ag) + (hy + £0) — (hy — ).
(4.84)

By (1.19) and (4.63), the righthand side is smaller than or equal to

dimg Mo o, (P, 25 U gz, [dy]) = (dy — D2 — 87) + 8, — &,
where §, (resp. dy) is the number of intersection points of u,, (resp. uy) with D. Let
"Gy be the result of reducing all the multiple-cover bubbles of I'j) in the step (ii)

of the RT-process. Starting with I'j) and applying (4.84) inductively, we conclude
that

o) = O(Ty) + dime M gr,

24 Better upper bounds can be achieved.
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where M ¢ is the fiber of (4.74) in (4.76).

Step (iii) will further decrease this quantity; therefore,
o) > O(TGiiy) + dimg M g

The inequality (4.82) follows.
Regarding Problem 2, we need to replace G(I") with a smaller group G(y) for which

the obstruction map ob,, : Mglgg’y (X, D, A,v)r — G(y) can be transversed and

TX( log D)

dimc Mg‘;”(x D, A, v)r —dimc G(y) < ¢ (A)+ n—3)1 —g) +k.

This should be done by selecting a subset E* of E where the Eq. (3.48) can be trans-
versed at the nodes corresponding to E*. We plan to address these in a future work.

Acknowledgements I would like to thank A. Zinger, D. Pomerleano, and the referee of [7] for their helpful
comments.
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Appendix A: Dependence of obf on Ghost Bubbles

In this section, we study the dependence of the obstruction map obr on the configu-
ration of special points on a ghost bubble.

First, we discuss the effect of collapsing a tree of ghost bubbles into one ghost
bubble, and further into a multi-node. Consider a decorated dual graph I'=(V,E
associated to a nodal pre-log map

f~= (¢v = ¢|2U’ Uy, &y = (Cv,i)iel,ﬂ Cy = (Zy,jus Zv ) (_iv))ve\~’

as in Definition 3.9. Let I'" = (V’,[E') be a sub-tree of contracted components in
Vy with A, =0 for all v € V'. We can replace I'" with a single vertex vg (keeping
the decorations unchanged at the rest of the edges) to obtain a new decorated dual
graph I' = (V, [£) satisfying the combinatorial conditions (3.51) (but not necessarily
Definition 3.11 (1)). Conversely, starting from I" we obtain various I' by replacing a
ghost bubble vy with a tree of ghost bubbles I'". Note that

=(V—{ryhUV and E=EUE. (A.1)
Also,

L=I=1,, Yv,v eV, ecFE.

This common value is what I, is in I". For each v € V’, u, is the constant map into
some p € Dy, —3Dlvo- The map u,, is defined to be the constant map into p as well.
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Since v € V}, and the combinatorial condition (3.51) is satisfied, for any arrangement
of special point z,, U gy, on Xy, there exists a set of meromorphic functions

§U0 = (;v(),i)ielvo
such that

f= (d’v, Uy, v, Cv)veV—{vo} U (Mvo» g Cvo = (Evo, jvgy Zvo U Ejvg))
e MYSE(X, D, A vr.

The reduced graph I' may not satisfy Condition (1) of Definition 3.11, however,
since G(I") is trivial (see Example 3.13 and remark 3.14), Lemma A.1 below shows
that the natural homomorphism from the obstruction group G(I") associated with I"
to Q(F) is onto. Expanding vg will increase the kernel of o in (3.39) and reduces its
cokernel.

Let

w:D=2F o Pzt —)ﬁzzi@@zlu
veV veV

be the embedding which maps Z'o diagonally into ), .y 7', and is the identity map
on the rest of the terms with respect to the identifications (A.1). Let

i T=Pz — T=PHz"

ecE eck
denote the natural inclusion map corresponding to the second identification in (A.1).

Lemma A.1 With notation as above, for compatible choices of orientations on £ and

E, the commutative diagram

induces a surjective homomorphism ¢r : G(I') — G (F).

Proof Since I, =1, forallv € V', themap ¢’: D' — T’ corresponding to I’ descends
to the similarly denoted map

— ’ /Zlv
¢:D =1zF @% — T =Pz
Yo
eck/
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where Z < @, Z' is the diagonal embedding. Let
~ — ~
ap:D— D and np: T — T
denote the natural projection maps. For each e € IE, let e denote the chosen orientation

on e for defining o. By restriction, this gives us the choice of orientations on E and &/
used to define ¢ and ¢’. The commutative diagram

D D ]ﬁ) b —
l@ lE l@’
’]T T ,1":[‘, T T/

has exact rows. Therefore, since coker(o’) =0, we get the long exact sequence,

0 —> ker(o) — ker(g) —> ker(o’) —> coker(o) —> coker(g) —> 0.
The last map gives us the surjective homomorphism ¢ : G(I') > G (). O
Suppose { f;}72, is a sequence of pre-log maps f; are obtained by the deformations
(B> Zug.t U g2 € Mok 4y (A2)

of (Zyy, Zuy U ¢u) and keeping the other components fixed. Suppose that, as t — oo,
f: converges to fe Mg{(;g(X , D, A, v)§ that has the nodal configuration C” in place

of Cy,. For each i € I, let &y, ;,; be a meromorphic function on ¥,,, with zeros/poles
of the given order at Zy, ; U Gy,.;- By [7, Cor. 3.12], for each v € V', as t — o0,
restricted to X, and up to scaling, &y, ;,; converges to ¢, ;. We conclude that

lim gp 0 obr(f,) = ob(f) € G(D). (A.3)

Next, we study the dependence of obr on the location of the special points Z,, Ugy,
on a single ghost bubble X,,. For any pre-log map

f= (d’v, Uy, v, Cv)veV—{vo} U (uvo» g Cvo = (Evo, jvgy Zvo U Ejvg))
e MYSE(X, D, A, )r

with domain £ = |,y Xy, let
T = (bo 1102 80, Co)y ) € MESE(X. D, A, v)5 (A4)

denote the tuple obtained by forgetting the vo-th component, defined on the domain bl
obtained by removing %,,, from X. This is no longer a nodal domain; X is a domain
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with a multi-node m in place of vo. Let T = (V, E) denote the combinatorial type of
. We have

V=V—{w}, E=(E-/{e....eq})U{m} E:E—{gl,... ).

e
5,20

Note that I, = I,; = -+ = I%. We let I, to also denote this common value.

Associated to T (or in general, any domain with such multi-nodes) we consider the
linear map

_ _ 7
EID:ZEGB@Z[”—)T: @ Z’E@Z—IM, (A.5)
veV ecE—{er,....eqy}

where

is the diagonal embedding, and ¢ is the composition of the natural inclusion® inclusion
D—D, 0, and the natural projection 7w : T — T. Similar to (3.42), the obstruction
group G(I") associated to I" is the quotient

gT) = ( 1_[ (Ce x (C)n >/ Image(exp(o¢))-

ecE—{ey,..., ego}
Similar to (3.47), after fixing a choice of local holomorphic coordinates w, around
each nodal point Ge € Xy, forall veV and ee Ev, we define
obr(f) € G(T')

to be class of

e
= ] ﬂ%x]‘[[ngl,i,...,n%,i]
e,l

eeE—{el,...,egO} iel, "= iel,

= l_[ (C*)Ie x ((C*)lo/c*)lm

ecE—{er,....eqy}
in Q(F). Here, we use the fact that, for each i € I,,,, the class

[77531,1‘, LI ) Uggo,i] S ((C>k)£()/([:>‘<

25 Since D is just missing a summand in D, we get both natural inclusion and projection maps DesDand
np : D — D, respectively.
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is independent of the identification Ny D;|,= C. For the same reason as in [7, pp.

1013-1015], the class obf(f) =[7] of 7 in G(T") is independent of the choice of local
holomorphic coordinates w, and {¢,}, 5 up to rescaling.

LemmaA.2 The obstruction groups G(I') and G(T') _are naturally isomorphic. There
exists a holomorphic map o, : /\/lo,k,,,OJrng — G(I') such that, under the natural
isomorphism G(I') = G(T"), we have

0b(f) 04y (Coy) ™" = 0br ().
In other words, obr(f) = 1 if and only if

Obr(f) = 04y (Cyy).

Proof The commutative diagram

Z1vo ® D ™ D
I A
y/ p— T——= T

has exact rows. We get the long exact sequence,
0 — ker(p) — ker(p) — 0 —> coker(0) —> coker(p) — 0.

The last map gives us the isomorphism ¢ r: G(I') > G (T).
By definition, ¢rro obr (f) is the class [n] of

Ug,i ey,i ng(,i
= T T

ecE—{e1,....eq,} i€le Te.i

c 1_[ ((C*)Ig « (((C*)éo/(c*)/m

ecE—{ey,..., (3[0}

in G(T'). We have

where

g = 1_[ 1_[ 1 x l_[ [ne_l,i,...,ngko)i]

ecE—{ey,..., ezo} iel, iel,

c l_[ (C*)Ie X (((C*)ZO/(C*)IW.

ecE—{er,....eqy}
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Up to rescaling, the section &,, only depends on the location of the special points
Zyy U ¢, (and the pre-determined multiplicities at those points). The map

Ty —> 1_[ [ngl’,‘, ey 7]@/Z ,,'] e (((C*)KO/(C*)Im
iely 0

only depends on the (C*)’»-equivalence class of ¢, and, via the inclusion

((C*)ZO/C*)IWI PN l—[ (C*)Ie % ((C*)EO/C*)IW,

descends to a well-defined map

0ug: Mok +£,, —> G(D).

The projection map

Tt MOR(X, D, A v — MEE(X, D, A v)F, fr— . (A6)

is a fiber bundle with fibers Mo g, +¢, - By Lemma A.2, there exists a map
1
obg: MY E(X, D, A, v)F — Gp
such that
(Mg s (X, D, A, v)r) = ob! (Im(oy)).

In general, the map o,,, can be non-trivial; see Example 4.21 or A.4 below. There are,
however, situations where the map is constant and obr factors through the fibration

(A.6); see Example 4.23. There are also examples, such as Example A.3 below, where
the map oy, is constant but the constant value is not 1.

Example A.3 Let X =P3, D= D1UD»UDs be the transverse union of three coordinate
hyperplanes,

g=0, k=3, A=[3], s=(s1,52,53)=((3,0,0),(0,3,0), (0,0, 3)).
Let I' be the dual graph in Fig.7 with the set of vertices V= {vy, v, v3, v9} and the

set of edges E={eq, e2, e3} such that e; connects vy and v;, for all i =1, 2, 3. Choose
the orientations ¢; to end at vy, for all i =1, 2, 3. We have

Ly=[N1={1,2,3}, s¢ = (-2, 1,1)eZ? s, =(1,-2,1)eZ’
s§3:(l,l,—2)€Z3, I, = (i}, A, =[11eHy(X;,Z), Vi=1,2,3.
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D,
Do

D3

Fig.7 Dual graph I" and the image of a map belonging to M 3 3, D, [3)r inP3

A pre-log curve with this dual graph is made of a line £; =Im(u,,) in D; = PP? passing
though the point Dj73, for each i €[3], and a log tuple

(tvy. [ug.ilier3)s (Bugs jug) = P!, gy, = {ge Yier31)s

where u,, is the constant map onto D123, and &,,;, for each i €[3], is a meromorphic
function with poles/zeros of the prescribed order at g,,. Each ¢; also carries a mero-
morphic section ¢, of O(1)|, with a pole of order 2 at ¢,,;, and a zero of order 3 at

the marked point z;. Both kernel and cokernel of
3 3
0:D=2F e Pz — T=Pz"
i=0 i=1

are 1-dimensional. The homomorphism

X12X23X31
X13X32X21

3
(€ x (€ x (€ — €, [, xiz, xi3) — (A7)
i=1

descends to an isomorphism G — C*.
In the pre-log space Mgﬁg (}P’3 , D, [3]r, the three lines £1, £», {3 are allowed to be
any line passing through the point D23 with non-trivial slopes in C*. For each i € [3],

the line ¢; is the completion of the image of a map of the form

C— C, wr— (wij)j=123C C,
w;; =0, wij = ajjw;, ajj € C*, Vje[3]—i.
Here D; corresponds to the subspace (x; = 0) C C3. Fori = 1,2,3, we have

CU,‘ (wl) = aiiwfz' Puttlng (Qe;] ’ qqzy (qu) = (0’ 19 00)7 we get

2 . Nl r 3 m gL
Z—l’ vg,2 — Z—Z ) vo,3 = 3—Z(Z—1).

Lup,1 = O]
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We conclude that

a2a3as) |
a|zazaazi

obr(f) = —

i.e., f is a log map if and only if the product of the slopes of three lines (in the cyclic
order) is —1. On the other hand,

—, 012023031
obr(f) = ————.
a13aznazy
We conclude that the image of 0, in G (T)=C*is —1. O

For each expansion T of I' obtained by expending vy into a tree of ghost bubbles
I/ (or in other words, expanding X, to C’), the pre-log space

MYE(X, D, A, v)i

is obtained by taking the closure of fibers of (A.6) and letting C,, to converge to a
nodal domain

= Cv € IMo g, 10, - (A.8)
veV’

Let
M C 3Mo,gv0 ey,

denote the stratum of nodal configurations (A.8). Taking union over all such T, we get
the fiber bundle

! 1
JMEE X, D, A v — MEE(X, D, A v)p

with compact fibers ﬂo, gup+lug - Similar to Lemma A.2, for each T, we get a map

orr: My —> Q(F)

such that

obi(f) = g 0 ob=(F) - 0r(C) ™', g = g f o g i GT) — G(D),
In other words, for the fiber bundle

mr g MEE(X, D, A v — MEE(X, D, A v, [ 7,
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Dy line2 X

image of Evl fine 3 @ @
-—
Dy e

Fig.8 A nodal configuration in the boundary of ﬂg)%G 3) (IP’Z, D, [3])

by

we have
77 (M5 (X, D. A, v)) = (¢r 0 obp) ™! (Im(or)).

Note that as T'" gets bigger, both M and G(T) get smaller. The Deligne-Mumford
convergence in (A.2) is compatible with the projection G(I') — G(I') in the sense
that

oy, —
Mo kg0, ——— G(I) = G(T)
l DM-convergence ¢r T =¢r §
o ~
M g,

ie., if a family of smooth marked curves {C;}{°, converges to C' € My, then

TL’Ff(OUO (C})) converges to or/(C’). In Example A.4, as o converges to 0, 1, 0o, we
get an expansion I of I that replaces X,,, by a nodal sphere with 2 components. Then
My is just a point and G(I') is the trivial group.

Example A.4 Let X = P2, D= D|UD; be the transverse union of two coordinate lines,
g=0, k=2, A=[4], and s=(s1,52)=((5,4), (0, 1)).

Let I be the configuration in Fig. 8. It is the nodal configuration obtained by 2 lines
passing through the point D15, a double cover u,, : X,, — D; of the line D, ramified
at D15 containing the second marked point z;. The three of them are connected by a
ghost bubble X,,, mapped to D, carrying the marked point z;.

Let V = {vg, v1, v2, v3} where v corresponds to the double cover of Dy, va, v3
correspond to the lines 2 and 3, respectively, and vy corresponds to the ghost bubble.
Let E = {e1, 2, e3} where ¢; corresponds to the node connecting the domain of the
i-th component to the ghost bubble. We can choose the orientation ¢; to be the one
ending at vy. We have

IU() = {1’ 2}’ IU] = {2}1 IU,‘ = @’ Vi = 27 3’ ]ei = {172}7 Vl = 1’ 27 3’
S_@l = (27 1)7 sgz = (11 1)7 S_€3 = (1» 1)
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The map

3
o: "oz oz — Pz

i=1
has 1-dimensional kernel cokernel. The group homomorphism

X
(C1 % (€12 x (Ce — T ((x1, 3. (2. 72). (63, 33)) > 222

Y2 X3

descends to an isomorphism G = C*. We take the marked point z; to be oo and the

nodal points ¢, , g, , and g, to be «, 0, and 1, respectively. Thus, « parametrizes the
- - 3

configuration space M 4 of the four special points on X,,. The meromorphic sections

(functions) ¢&y,,1 and &y, > are given by

Bi Bi(zz—DE-w?) ™ ifi=1,
é‘vo,i(z) = Seq.i Sen.i Sea i = —1 . .
-0 ) Br(z(z—1) (z — ) if i =2,

where 8; € C*. Then

myoa —1

obr(f) = s e C,

where m> and m3 are slopes of the lines 2 and 3, respectively. Therefore, we get

-~ m
oy, : Moas — C*, ar— and obf(f):m—j.

a—1’

For any f with m/m3 # 1, there exists a unique o such that f € Mo (X, D, A)r.
The three special values my/m3 = 0, 1, oo correspond to the limiting situations where
a converges to 0, 0o, 1, respectively, and we get a tree I'” of two ghost bubbles instead
of Xy,. O
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