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Abstract
In a previous paper (Farajzadeh-Tehrani in Geom Topol 26:989–1075, 2022), for any
logarithmic symplectic pair (X , D) of a symplectic manifold X and a simple normal
crossings symplectic divisor D, we introduced the notion of log pseudo-holomorphic
curve and proved a compactness theorem for the moduli spaces of stable log curves. In
this paper, we introduce a natural Fredholm setup for studying the deformation theory
of log (and relative) curves. As a result, we obtain a logarithmic analog of the space of
Ruan–Tian perturbations for these moduli spaces. For a generic compatible pair of an
almost complex structure and a log perturbation term, we prove that the subspace of
simple maps in each stratum is cut transversely. Such perturbations enable a geometric
construction of Gromov–Witten type invariants for certain semi-positive pairs (X , D)
in arbitrary genera. In future works, we will use local perturbations and a gluing
theorem to construct log Gromov–Witten invariants of arbitrary such pair (X , D).

Keywords Gromov–Witten invariants · Ruan–Tian perturbations · Normal crossing
divisors

Mathematics Subject Classification 53D45 · 14N35

1 Introduction

Studying pairs (X , D) of a smooth complex projective variety X and a normal cross-
ings (or NC) divisor D has a long history in complex algebraic geometry. In the
symplectic category, McLean, Zinger, and the author recently introduced topologi-
cal notations of NC symplectic divisor and configuration in arbitrary dimension; see
[12, 14]. We also constructed a class of almost Kähler structures that is suitable for
defining and studying J -holomorphic curves relative to an NC symplectic divisor; see
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Definitions 2.1 and 2.5. The theory of J -holomorphic curves has been a key tool in
the study of symplectic manifolds ever since its inception by Gromov in the 1980s.
Given a closed symplectic manifold (X , ω), an ω-compatible or tame almost complex
structure J on X , g, k ∈ N, and A ∈ H2(X ,Z) in the stable range (either A �= 0 or
2g+k≥3), the objects of interest are the moduli spaces Mg,k(X , A) of equivalence
classes of genus g degree A k-marked J -holomorphic maps into X . Similarly, in
the presence of a Lagrangian L⊂ X , the objects of interests are the moduli spaces of
marked bordered J -holomorphic curves with boundary on L . In the presence of an NC
symplectic divisor D, we study moduli spaces of J -holomorphic curves that intersect
D at finitely many points with pre-determined tangency orders. The particular choice
of the symplectic structure ω is often not important and might be hidden. In particular,
we say D⊂ X is an SNC symplectic divisor whenever there is a symplectic form ω on
X with respect to which D is an SNC symplectic divisor. Construction of such moduli
spaces and the related enumerative/algebraic invariants involves: (i) compactifying
moduli spaces of such curves, (ii) putting some sort of oriented smooth structure on
the moduli space (transversality and orientation problems, and the gluing analysis),
and (iii) calculating/analyzing/using the resulting invariants or algebraic structures.

In a previous paper [7], we introduced a natural and explicit way of compactifying
moduli spaces of pseudo-holomorphic curves (called log compactification) relative to
a simple normal crossings (or SNC) symplectic divisor. Even if D is smooth, our log
compactification is somewhat different and smaller than the well-known relative com-
pactification in [21, 23, 24]. As the naming suggest, we expect it to be closely related to
the log compactification of Gross–Siebert [18] and Abramovich–Chen [1] in the alge-
braic setting. In this paper, we introduce a natural setup for studying the deformation
theory of log curves based on the logarithmic tangent bundle T X(− log D) associated
with any symplectic logarithmic pair (X , D), and address the transversality problem
to some extent.

1.1 Log Pseudo-holomorphic Curves

Let
[N ] ≡ {1, . . . , N }, ∀N ∈ N.

Let D ≡⋃
i∈[N ] Di ⊂ X be an SNC symplectic divisor and J be an ω-tame almost

complex structure on X such that

J (T Di ) = T Di , ∀i ∈ [N ].

For every J -holomorphic map u : � → X (with smooth domain) representing
the homology class A ∈ H2(X ,Z), either Im(u)⊂ D or there is a finite set of points
{z1, . . . , zk}⊂� and a corresponding set s of vectors with non-negative integer coef-
ficients

s = (
sa = (sai )i∈[N ]

)
a∈[k] ∈(NN )k, satisfying

∑

a∈[k]
sai = A · Di , ∀i ∈ [N ],

(1.1)
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such that u−1(D)⊂{z1, . . . , zk}⊂� and u has a tangency of order sai with Di at za
and nowhere else. Thus, s classifies the intersection type of k-marked J -holomorphic
maps that are not mapped into D. Let

Mg,s(X , D, A) ⊂Mg,k(X , A)

denote the subspace1 of all such J -holomorphic curves of type s. Constructing a nice
compactification2 ofMg,s(X , D, A) and the related enumerative/algebraic invariants
in the sense of (i)–(iii) above has been a challenging question that people have been
working on from various perspectives for at least two decades. Technically speaking,
the main goal is:

(�) to construct a natural geometric compactification Mg,s(X , D, A) of Mg,s

(X , D, A) so that the definition of the tangency order vector s naturally extends to
every element of Mg,s(X , D, A), andMg,s(X , D, A) is (virtually) smooth enough to
admit a natural class of cobordant Kuranishi structures of the expected real dimension

2
(
cT X
1 (A)+ (n − 3)(1− g)+ k − A · D

)
. (1.2)

We refer to [11, 27] for the technical terms in (�). For each a∈[k], let

Ia = {i ∈ [N ] s.t. sai > 0} ⊂ [N ] (1.3)

be the subset of indices where u intersects Di at the a-th marked point za . Let

DI =
⋂

i∈I
Di and ∂DI =

⋂

J�I

DJ , ∀I ⊂ [N ]. (1.4)

In (�), we furthermore expect the natural stabilization and evaluation maps

st :Mg,s(X , D, A) −→Mg,k and

ev ≡ (eva)a∈[k] :Mg,s(X , D, A) −→ Xs ≡
∏

a∈[k]
DIa

(1.5)

to be continuous (or smooth). Similar to the classical case, if Mg,s(X , D, A) has a
“nice” orbifold structure of the expected real dimension (1.2), Gromov–Witten (or

1 A marked point za with sa = 0 ∈ Z
N is a classical marked point. If D is smooth, we can arrange the

points z1, . . . , zk such that

s = (s1, . . . , sk1 , 0, . . . , 0) ∈ N
k , si �= 0, ∀i ∈ [k1].

Then, the common practice in the relative theory is to denote Mg,s(X , D, A) by

Mg,k1,�(X , D, A) ⊂Mg,k (X , A), � = k − k1.

Separating marked points into different types is notationally cumbersome and not useful.
2 I.e., a naturally defined compact space that contains Mg,s(X , D, A) as a subset.
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GW) invariants of the logarithmic pair (X , D) with primary insertions can be defined
by intersecting the image of Mg,s(X , D, A) under st×ev with appropriate cycles
and counting (with sign and Q-weights) the number of intersection points. With J
carefully chosen from an appropriate space of almost Kähler structures, the resulting
rational numbers will be independent of J , and only depend on the genus g, homology
class A, tangency data s, cohomology classes of the aforementioned cycles in Mg,k

and Xs, and the deformation equivalence class [X , D, ω] of (X , D, ω).
The case where D is smooth was treated at the turn of themillennium. The so-called

“relative” theory of [24] in algebraic geometry, and [21, 23] in the symplectic category3

address (�) when D is smooth. More recently, Gross–Siebert and Abramovich–Chen
[1, 3, 18] used sophisticated techniques from logarithmic complex algebraic geometry

to fully address (�) in the algebraic case. In the algebraic construction,Mlog
g,s(X , D, A)

is required to have a richer structure. Roughly speaking, it should be a coarse moduli
space for the functor which assigns to a log scheme B the set of all families of “good”
log curves in X with base B. Ultimately, completing all the steps needed for (�) will
allow the formulation of a symplectic analogue of logarithmic GW invariants in [1,
18] as well-defined invariants of the deformation equivalence class of logarithmic
symplectic pairs (X , D). In that regard, there has been a series of papers by B. Parker
(see [30, 31] and the references therein) and a paper by Ionel [20] that aim to address (�)
in the symplectic category; see [8] for some comments on these works. Our approach
in [7] and here is substantially different from these approaches. We avoid changing
the target (as in [20]) or putting extra sheaves on it (as in [30, 31]).

In [7], we introduced a geometric notion of log J -holomorphic curve relative to
an arbitrary SNC symplectic divisor and proved the following compactness result for

the moduli space Mlog
g,s(X , D, A) of stable log J -holomorphic curves.

Theorem 1.1 ([7, Thm. 1.4]) Let (X , ω) be a closed symplectic manifold and D⊂ X be
an SNC symplectic divisor. For “suitable” choice of J , the Gromov sequential conver-
gence topology on Mg,k(X , A) lifts to a compact metrizable sequential convergence

topology on Mlog
g,s(X , D, A) such that the forgetful map

ι : Mlog
g,s(X , D, A) −→Mg,k(X , A) (1.6)

is a continuous local embedding. If g=0, then ι is globally an embedding.

Intuitively, if g > 0, the map ι behaves like an immersion. If D is smooth, there

exists a surjective map from the relative moduli spaceMrel
g,s(X , D, A) in [21, 23, 24]

to the log moduli space Mlog
g,s(X , D, A); see [7, Prop. 4.5].

3 The construction is not complete in any of these two papers; see [16].
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For each i ∈ [N ], let NX Di denote the normal bundle of Di in X . An element of
Mlog

g,s(X , D, A) is the equivalence
4 class of a tuple

flog =
(
uv,�v, jv, 	zv, ζv = (ζv,i )i∈Iv

)
v∈V

(1.7)

such that

I. for each v∈V, Iv⊂[N ] is the maximal subset where the image of uv is contained
in DIv ;

II. for each v∈V and i ∈ Iv , ζv,i is a meromorphic section of u∗vNX Di ;
III. forgetting ζv , f =(uv,�v, jv, 	zv)v∈V defines a classical nodalmap inMg,k(X , A);
IV. and, the conditions listed below are satisfied.

First, for each x ∈�v , the pair (uv, ζv) gives rise to a well-defined tangency order
vector in Z

N with D at x , which we denote by ordx (uv, ζv); see (3.33), [7, (2-15)], or
[21, Lem. 3.4]. Then, the conditions in (IV) are:

1. every point in � with a non-trivial tangency order vector is either a marked point
or a nodal point;

2. the tangency order vector at the marked point za is the pre-determined vector
sa ∈Z

N in s;
3. the tangency order vectors at the nodes are the opposite of each other;
4. there exists a vector-valued function s :V → R

N such that

sv = s(v) ∈ R
Iv+ × {0}[N ]−Iv , ∀v ∈ V,

and sv′ −sv is a positive multiple of the tangency order vector of any nodal point
on �v connected to �v′ , for all v, v′ ∈V;

5. and, certain group element ob	( flog)∈G(	) associated to flog is equal to 1.

Conditions 1–4 are combinatorial conditions on the dual graph of flog. A tuple flog
satisfying all the conditions except the last one5 is called a pre-log curve. The last

two conditions ensure that each boundary stratum of Mlog
g,s(X , D, A) has positive

expected complex co-dimension, and every nodal log curve is virtually smoothable,

respectively. The moduli space Mlog
g,s(X , D, A) can be described without mention-

ing the meromorphic sections ζv,i . Whenever such a section exists, it is unique up
to multiplication by a non-zero constant. More specifically, the data of the meromor-
phic sections can be read from the corresponding polar divisors and we want divisors
whose associated line bundles are something specific; see Remark 4.10. Such divisors
represent a particular point in the Picard group. In the genus zero case, each connected
component of the Picard group is a point. Therefore, every divisor with correct tan-
gency order coefficients is a valid choice. By (1.6), different lifts of a stable map in

4 Two tuples flog = (
(uv,�v, jv, ζv=(ζv,i )i∈Iv )v∈V, 	z

)
and f ′log = (

(u′v,�′v, j′v, , ζ ′v =
(ζ ′
v,i )i∈Iv )v∈V, 	z ′

)
are equivalent if there exists a holomorphic reparametrization h : � → �′ such

that u′ ◦ h=u, h(	z) = 	z ′, and h∗vζ ′h(v),i =cv,i ζv,i for all v∈V and some cv,i ∈C
∗. Here v→ h(v) is the

induced map on the vertices of the dual graph.
5 Or sometimes, the last two conditions.
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Mg,k(X , A) to Mlog
g,s(X , D, A) are characterized by different choices of tangency

order vectors at the nodal points, satisfying Condition 3 and (1.1) on each smooth
component. See Sect. 3.3 for the details.

1.2 Deformation Theory

Our first goal in this paper is to introduce a natural Fredholm setup for studying the
deformation theory of log pseudo-holomorphic curves. This setup can also be used
to address the transversality issue in other applications of moduli spaces of curves
relative to a smooth or SNC divisor, such as in the construction of the relative Fukaya
category [4]. In the latter, it would also be useful for properly addressing the orientation
problem. The key to this setup is the observation that the deformation theory of log
J -holomorphic curves relies on the linearization of CR equation (1.10) as an operator
acting on the set of sections of the log tangent bundle T X(− log D) instead of T X .
In the holomorphic case, the log tangent sheaf is the sheaf of holomorphic tangent
vector fields in T X whose restriction to each Di is tangent to Di . The construction in
the symplectic case is similar but depends on some auxiliary data. The deformation
equivalence class of the complex vector bundle T X(− log D) only depends on the
deformation equivalence class of (X , D, ω). Furthermore, we have

cT X(− log D)
1 = cT X

1 −
∑

i∈[N ]
PD(Di ) ∈ H2(X ,Z);

see Sect. 2.3 or [13, 15]. Therefore, in analogy with the classical dimension formula

d = exp-dimR Mg,k(X , A) = 2
(
cT X
1 (A)+ (n − 3)(1− g)+ k

)
, (1.8)

the expected dimension in (1.2) can be re-written as

d log = exp-dimR Mlog
g,s(X , D, A) = 2

(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k

)
.

(1.9)

The analytical setup in the classical case follows the following steps.Given a smooth
domain (�, j), let MapA(�, X) denote the space of all smooth maps u :� → X that
represent the homology class A. Let

EA −→ MapA(�, X)

be the infinite dimensional bundle whose fiber over u is 	(�,
0,1
�,j ⊗C u∗T X). The

Cauchy–Riemann (or CR) equation

∂̄u ≡ 1

2
(du + Jdu ◦ j) (1.10)
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can be seen as a section of this infinite dimensional bundle. To be precise, we need
to consider a Sobolev completion of these spaces for the Implicit-Function Theorem
to apply, but, by elliptic regularity, every solution of ∂̄u = 0 will be smooth. The
linearization of the ∂̄-section at any J -holomorphic map u is an R-linear map

Du ∂̄ : 	(�, u∗T X) −→ 	(�,

0,1
�,j ⊗C u∗T X)

that is the sum of a C-linear ∂̄-operator and a compact operator. Therefore, it is a
Fredholm operator and Riemann–Roch applies; i.e., it has finite dimensional kernel
and co-kernel, and

dimR Def(u)−dimR Obs(u)=2
(
deg(u∗T X)+dimCX(1−g)

)
, (1.11)

where Def(u)= ker(Du ∂̄) and Obs(u)= coker(Du ∂̄). The first space corresponds to
infinitesimal deformations of u (over the fixed smoothmarked domain) and the second
one is the obstruction space for integrating elements of Def(u) to actual deformations.
If Obs(u)≡0, by Implicit-Function Theorem [26, Thm. A.3.3], in a small neighbor-
hood Bε(u) of u in MapA(�, X) the set of J -holomorphic maps Vu ≡ ∂̄−1(0)∩Bε(u)
is a smooth manifold of real dimension (1.11), all the elements of Def(u) are smooth,
and TuVu ∼= Def(u); see [26, Thm. 3.1.5]. The manifold Vu carries a natural orienta-
tion.

In the logarithmic case, given
(
�, j, 	z=(z1, . . . , zk)

)
, A, and s, we generalize this

construction in a natural way. In Sect. 4.1, we construct a configuration space

MapA,s((�, 	z), (X , D)) ⊂ MapA(�, X)

whose elements are smooth maps that have tangency order type s with D at 	z in a
suitable sense. Let

EA,s −→ MapA,s ((�, 	z), (X , D))

be the infinite dimensional bundle whose fiber over u is

	
(
�,


0,1
�,j ⊗C u∗T X(− log D)

)
.

The section ∂̄ of EA restricts to a section ∂̄ log of EA,s. Recall that there is a C-linear
homomorphism

ι : T X(− log D) −→ T X (1.12)

(covering idX ) that is an isomorphism away from D. This homomorphism induces
C-linear maps

ι1 : 	(�, u∗T X(− log D)) −→ 	(�, u∗T X),

ι2 : 	(�,
0,1
�,j ⊗C u∗T X(− log D)) −→ 	(�,


0,1
�,j ⊗C u∗T X).
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The linearization Dlog
u ∂̄ of ∂̄ log is a Fredholm6 linear map

Dlog
u ∂̄ : 	(�, u∗T X(− log D)) −→ 	(�,


0,1
�,j ⊗C u∗T X(− log D))

such that ι2 ◦ Dlog
u ∂̄ = Du ∂̄ ◦ ι1 (on the subset of smooth sections). Furthermore,

by Riemann–Roch and Implicit-Function Theorem, if coker(Dlog
u ∂̄) = 0, the set of

J -holomorphic maps of tangency order type s close to u form an oriented smooth
manifold of real dimension

2
(
deg(u∗T X(− log D))+dimCX(1−g)

)
.

Considering the deformations of the marked domain (�, j, 	z), we get the dimension
formula (1.9) and the deformation-obstruction long exact sequence

0 −→ aut(C)
δ−→ Deflog(u) −→ Deflog( f ) −→ Def(C)
δ−→ Obslog(u) −→ Obslog( f ) −→ 0,

where f =(
u,C=(�, j, 	z)),

aut(C) = H0
∂̄
(T�(− log 	z)), Def(C) ∼= H1

∂̄
(T�(− log 	z)),

Deflog(u) = ker(Dlog
u ∂̄), Obslog(u) = coker(Dlog

u ∂̄).

If Obslog( f )=0, then a small neighborhood B( f ) of f inMg,s(X , D, A) is a smooth
orbifold of the expected dimension (1.9). In Sects. 4.2 and 4.3, wewill extend this setup
to log maps with smooth domain and image in a stratum DI , and to general nodal log
maps, respectively.

1.3 Transversality

For the general construction of Gromov–Witten type invariants of every arbitrary pair
(X , D), we need a gluing theorem that generalizes the known gluing theorem in the
classical case. We also need to generalize the theory of Kuranishi structures to allow
toric singularities. In the classical case, by restricting to the subset of simple maps,
transversality can be achieved by global perturbations of the ∂̄-equation and J . Then,
in the case of semi-positive symplectic manifolds, as worked out byMcDuff–Salamon
[25] in genus 0 and Ruan–Tian [32] in arbitrary genera, the classical analogue of the
map st× ev in (1.5) over each stratum of non-simple maps factors through a positive
complex co-dimension space of simple maps, and thus can be ignored. Therefore,
in semi-positive situations, gluing and virtual techniques are not needed, and GW
invariants can be defined by a direct count of perturbed pseudo-holomorphic curves
in the following sense.

6 After taking Sobolev completions of these spaces.
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Definition 1.2 A closed real 2n-dimensional symplectic manifold (X , ω) is called
semi-positive if

cT X
1 (A) ≥ 3− n �⇒ cT X

1 (A) ≥ 0

for all A∈π2(X) such that ω(A)>0. It is called positive if

cT X
1 (A) ≥ 3− n �⇒ cT X

1 (A) > 0

for all A ∈ π2(X) such that ω(A) > 0. We say [X , ω] is semi-positive/positive if
(X , ω′) for some ω′ deformation equivalent to ω is semi-positive/positive.

In particular, every symplectic manifold of real dimension 6 or less is semi-positive
and every symplectic 4-manifold is positive. Let

M�
g,k(X , A) ⊂Mg,k(X , A)

denote the subspace of simple (not multiple-cover) maps. By [26, Thm. 3.1.5], for
generic J , M�

g,k(X , A) is a naturally oriented smooth manifold of the expected real
dimension (1.8). If g=0 and (X , ω) is positive, for generic J , a deliberate dimension
counting argument shows that the image inM0,k×Xk of the complement

M0,k(X , A) \M�
0,k(X , A)

under

st× ev :M0,k(X , A, ν) −→M0,k × Xk

is a set of real codimension at least 2 and can be ignored. In other words, the inclusion
M�

0,k(X , A)⊂M0,k(X , A) gives rise to a pseudocycle whose homology class

GWX
0,k,A ⊂ Hd(M0,k × Xk,Z)

is independent of the choice of J and the particular choice of ω in its deformation
equivalence class; see [26, Thm. 6.6.1] for more details.

In the higher genus case, the same argument does not work and one needs to perturb
theCauchy–Riemann equation to take care of constant andmultiple-covermaps.Given
a smooth Riemann surface � with complex structure j and a (sufficiently) smooth
map u :� → X , the space of perturbation terms for the pair (u, �) is the infinite
dimensional vector space

	(�,

0,1
�,j ⊗C u∗T X)

of smooth u∗T X -valued (0, 1)-forms with respect to j on � and J on T X . Given a
perturbation term ν, we say u is (J , ν)-holomorphic if it satisfies the perturbed CR
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equation ∂̄u=ν. If 2g+k≥3, Ruan–Tian defined a class of global perturbation terms
ν, where each ν is a section in

	
(
Ug,k × X , π∗1


0,1
g,k ⊗C π∗2 T X

)
. (1.13)

Here, Ug,k is a universal family over a “regular” coveringMg,k ofMg,k . For each ν,
the moduli space of interest is the set

Mg,k(X , A, J , ν)

of the equivalence classes of stable degree A genus g k-marked nodal (J , ν)-
holomorphic maps (φ, u,C). Here φ :C−→Ug,k is a holomorphic map7 from a genus
g k-marked nodal curveC onto a fiber of the universal familyUg,k and ∂̄u = (φ, u)∗ν;
see Sect. 3. By [32, Cor. 3.9], the space Mg,k(X , A, J , ν) is Hausdorff and compact
with respect to a similarly defined Gromov convergence topology. By [32, Thm. 3.16],
for eachω-tame J and generic perturbation term ν, themain stratumMg,k(X , A, J , ν)
consisting of maps with smooth domain8 is cut out transversely by the {∂̄−ν}-section
and thus it is a smooth manifold of the expected dimension (1.8). By [32, Thm.
3.11], it has a canonical orientation. Furthermore, if (X , ω) is semi-positive, by [32,
Prop. 3.21], for generic (J , ν), the image of the complement of Mg,k(X , A, J , ν) in
Mg,k(X , A, J , ν) under st × ev is contained in images of maps from smooth even-
dimensional manifolds of at least 2 real dimension less than the main stratum. Thus,
similar to the positive case and after dividing by the degree of the regular covering
used to define ν, the inclusion

Mg,k(X , A, J , ν) ⊂Mg,k(X , A, J , ν)

gives rise to a GW homology class

GWX
g,k,A ⊂ Hd(Mg,k × Xk,Q)

independent of the choice of the admissible almost complex structure J , the perturba-
tion ν, or the particular choice of ω in its deformation equivalence class. We conclude
that, in the semi-positive situations, the resulting GW invariants are enumerative in the
sense that they can be interpreted as a finite Q-weighted count of (J , ν)-holomorphic
maps of fixed degree and genus meeting some prescribed cycles at the marked points.

Our second goal is to introduce a logarithmic analogue of Ruan–Tian perturba-
tions of the Cauchy–Riemann section for log moduli spaces, and use them to achieve
transversality over the subspace of simple maps.

7 It inductively contracts bubble components with unstable domain.
8 Since 2g+k≥3, every such map is automatically simple according to Definition 3.4.
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The definition of the obstruction bundle EA,s above and (1.13) suggest that a loga-
rithmic perturbation term should be an element of

	
(
Ug,k × X , π∗1


0,1
g,k ⊗C π∗2 T X(− log D)

)
.

For each νlog in this space, with ι as in (1.12), ν = ι(νlog) is the associated classical
perturbation term in (1.13). The construction of log (J , ν)-holomorphic moduli spaces
works for arbitrary ν = ι(νlog). However, for simplicity, we restrict to a subclass of
such sections Hg,k(X , D), described below, whose elements have a standard form
near each stratum DI of D. With the perturbation term νlog as above and a similarly

defined log linearization map Dlog
u {∂̄− ν} in place of Du{∂̄− ν}, the proof of the main

results follows the same general steps as in [32]. However, we face some difficulties
in dealing with non-simple nodal maps.

We consider a particular set of almost Kähler auxiliary data AK(X , D, ω) defined
in [12] and compatible logarithmic perturbations in the following sense. Since [7,
Thm. 1.4] also includes integrable J , similar results for perturbations compatible
with integrable almost complex structures can be obtained. An element (R, J ) in
AK(X , D, ω) consists of

• a regularizationR, that is a compatible set of symplectic identifications of neigh-
borhoods of {DI }I⊂[N ] in their normal bundles with their neighborhoods in X in
the sense of Definition 2.3;

• and an ω-tame almost complex structure J compatible with R in the sense of
Definition 2.5.

The space AK(X , D, ω) might be empty for some choices of ω. Let9 Symp(X , D)
be the space of all symplectic structures ω on X with respect to which D is an
SNC symplectic divisor. Let AK(X , D) be the space of tuples (ω,R, J ) where
ω ∈ Symp(X , D) and (R, J )∈AK(X , D, ω). As a consequence of [12, Thm. 2.13],
the projection map

AK(X , D) −→ Symp(X , D), (ω,R, J ) �−→ ω,

is a weak homotopy equivalence. In particular, starting from any ω, we can deform it
without changing its cohomology class to another ω′ such that AK(X , D, ω′) �= ∅.
Therefore, the subspace AK(X , D)[ω] of tuples (ω′,R, J ) such that ω′ is deformation
equivalent to ω in Symp(X , D) is path connected.

For any fixed tuple (ω,R, J ) and g, k ∈N, with 2g + k ≥ 3, we define a class of
“(R, J )-compatible” perturbation terms ν in Definition 3.7. The compatibility con-
dition requires ν to be of a standard form with respect to the regularization R in the
following sense. For every I ⊂ [N ], the normal bundle NX DI of DI in X admits a
decomposition into a direct sum of complex line bundles

NX DI ∼=
⊕

i∈I
NX Di|DI . (1.14)

9 This space is denoted by Symp+(X , D) in [12, 14].
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The regularization map�I inR gives a stratified identification of a neighborhood DI

in NX DI with a neighborhood of that in X so that

• �∗I ω is of some standard form,
• on the horizontal subspace T horNX DI ∼= π∗I T DI defined via the connections in
R, �∗I J is the pull back of J|T DI via the projection map πI :NX DI→DI ,

• and in the vertical subspace T verNX DI ∼= π∗I NX DI , �∗I J is the direct sum
complex structure on the right-hand side of (1.14).

Then, similar to the definition of J , the horizontal component of ν is required to be
the pull back from DI of some νI , and the vertical component of ν is required to be
(C∗)I -equivariant with respect to component-wise action of C

∗ on the right-hand side
of (1.14). LetHg,k(X , D) be the set of such tuples (ω,R, J , ν). As a consequence of
[12, Thm. 2.13], the projection map

Hg,k(X , D) −→ Symp(X , D), (ω,R, J , ν) �−→ ω,

is again a weak homotopy equivalence. This implies that any invariant of the deforma-
tion equivalence classes in Hg,k(X , D) is an invariant of the symplectic deformation
equivalence class of (X , D, ω). The subspace Hg,k(X , D)[ω] of tuples (ω′,R, J , ν)
such that ω′ is deformation equivalent to ω in Symp(X , D) is path connected. Given
(ω,R, J , ν)∈Hg,k(X , D), in Sect. 3, we construct the moduli space

Mlog
g,s(X , D, A, ν)

of equivalence classes of stable k-marked genus g degree A log (J , ν)-holomorphic
curves of tangency order type s, similar to [7, Sect. 3.2].

The following result is the straightforward generalization of [7, Thm. 1.4] to the
(J , ν)-holomorphic case. This time, the rescaling map normal to Di in the proof of
[7, Thm. 3.8] yields a meromorphic section with respect to the ∂̄-operator DNi

u {∂̄− ν}
in (3.15) instead of u∗∂̄NX Di = DNi

u ∂̄ in [7, Lem. 2.1].

Theorem 1.3 Suppose X is closed, D =⋃
i∈[N ] Di ⊂ X is an SNC symplectic divisor,

A∈H2(X ,Z), g, k∈N, and s∈(
Z
N
)k
. For every (ω,R, J , ν)∈Hg,k(X , D), the Gro-

mov sequential convergence topology onMg,k(X , A, ν) lifts to a compact metrizable

sequential convergence topology on Mlog
g,s(X , D, A, ν) such that the forgetful map

Mlog
g,s(X , D, A, ν) −→Mg,k(X , A, ν) (1.15)

is a continuous local embedding. If g=0, then (1.15) is a global embedding.

Furthermore, the forgetful and evaluation maps st and ev in (1.5) are continuous.

Each moduli space Mlog
g,s(X , D, A, ν) is coarsely stratified by the subspaces

Mg,s(X , D, A, ν)	
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consisting of log (J , ν)-holomorphic curves with the decorated dual graph 	. The
set of vertices V corresponds to the smooth components of �, the set of edges E

corresponds to the nodes of �, and the set of roots L corresponds to the marked
points. Each v ∈V is decorated by the degree Av ∈H2(X ,Z), genus gv ∈N, and the
index set Iv⊂[N ]. With the boundary divisor ∂DI ⊂ DI defined as in (1.4), an edge
e ∈ E is decorated by the index set Ie ⊂ [N ] if u(qe) ∈ DIe \ ∂DIe . Each edge can
be oriented in two ways

	
e and

	
e such that the node qe is obtained by identifying two

nodal points q
	
e and q 	e

. Each oriented edge
	
e is decorated by the tangency order vector

s
	
e satisfying Condition 3 and (1.1) on each smooth component. The set of such 	 is

finite. Similarly to [7, Sect. 3], associated to every admissible decorated dual graph 	
we get a Z-linear map

� = �	 : D = Z
E ⊕

⊕

v∈V

Z
Iv −→ T =

⊕

e∈E

Z
Ie ;

see (3.39). Condition 4 means that either 	 is the trivial one-vertex graph (D = T =
0, corresponding to the virtually main stratum Mg,s(X , D, A, ν)) or ker(�) has an
element in the positive quadrant. The complex torus in Condition 5 has Lie algebra
coker(�)⊗ C.

Definition 1.4 A (J , ν)-holomorphic logmap is called simple if the underlying (J , ν)-
holomorphic map is simple.

For each decorated dual graph 	, let

M�
g,s(X , D, A, ν)	 ⊂Mg,s(X , D, A, ν)	

denote the open subspace consisting of simple maps.

Theorem 1.5 Suppose X is a closed symplectic manifold, D = ⋃
i∈[N ] Di is an SNC

symplectic divisor, A ∈ H2(X ,Z), g, k ∈ N, and s ∈ (ZN )k . For each admissible
decorated dual graph 	, the following statements hold.

(1) If 2g + k ≥ 3, for any given choice of universal family in (3.5), there exists
a Baire set of second category H	

g,k(X , D) ⊂ Hg,k(X , D) such that for each

(ω,R, J , ν)∈H	
g,k(X , D), the subspace of simple maps

M�
g,s(X , D, A, ν)	 ⊂Mg,s(X , D, A, ν)	

is a naturally oriented smooth manifold of the real dimension

2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k − dim ker(�)

)
; (1.16)

the restriction of st× ev in (1.5) toM�
g,s(X , D, A, ν)	 is smooth.

(2) If g=0, ν≡0, and A �=0 or k≥3, the same statement holds for J in a Baire set
of second category AK	(X , D)⊂AK(X , D).
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In a future work, by considering local perturbations, in the sense of Kuranishi
structures, and construing a gluing map (outlined in [7, Sect. 3.4]), we will use the
same techniques used in the proof of Theorem 1.5 to construct Kuranishi charts for
Mg,s(X , D, A).

In the classical case (no D), � is the trivial map Z
E −→ 0. If N = 1 (D smooth),

dim D − dim T ≥ 0 and dim ker(�) is often very large. If N > 1, there are nodal
configurations 	 with arbitrary many nodes, dim D−dim T < 0, and dimR KR(	) =
1; see [7, Example 2.13]. As a consequence, if D is not empty or smooth, we need a
sharp dimension counting argument for dealing with non-simple nodal maps.

1.4 Semi-Positive Pairs

Our final goal is to introduce a class of semi-positive pairs (X , D) for which one can
use the perturbed moduli spaces above to construct log Gromov–Witten invariants in
arbitrary genera without constructing a virtual fundamental class.

For (X , D =⋃
i∈[N ] Di , ω) as before, we say D is Nef10 if A · Di ≥ 0 for all

A ∈ π2(X) such that ω(A) > 0. Let

�I ,A = min

(

A ·
⋃

j∈[N ]−I

D j , 2

)

, ∀A ∈ H2(X ,Z), I ⊂ [N ].

Definition 1.6 Let (X , ω) be a closed 2n-dimensional symplectic manifold and D be
a Nef SNC symplectic divisor in (X , ω). We say (X , D, ω) is semi-positive if

cT X(− log D)
1 (A) ≥ 3− n + |I | − �I ,A �⇒ cT X(− log D)

1 (A) ≥ 0 (1.17)

for all A ∈ π2(DI ) such that ω(A) > 0. We say (X , D, ω) is positive if

cT X(− log D)
1 (A) ≥ 3− n + |I | − �I ,A �⇒ cT X(− log D)

1 (A) > 0 (1.18)

for all A ∈ π2(DI ) such that ω(A) > 0.

We say [X , D, ω] is semi-positive/positive if (X , D, ω′) for some ω′ deformation
equivalent to ω is semi-positive/positive. One may remove the Nef condition at the
expense of altering the left-hand side.

In Sect. 4.4, we show that under the semi-positivity condition (1.17) (resp. positivity
condition (1.18)), multiple-cover log J -holomorphic spheres happen in dimensions
less than or equal (resp. less) than somewhere injective maps. As we explain below,
unlike the classical case, this is not sufficient for finding a suitable upper bound for
the dimension of the image of non-simple maps inMg,k × Xs when D is not smooth.

For every decorated dual graph 	 = 	(V,E,L) with |V| ≥ 2, let

Mns
g,s(X , D, A, ν)	 =Mg,s(X , D, A, ν)	 −M�

g,s(X , D, A, ν)	

10 The terminology is inspired by the corresponding notion in algebraic geometry but is different.
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be the subset of non-simple (or multiply covered) maps. An arbitrary stable log
(J , ν)-map fails to be simple if either it contains a non-trivial bubble component that
is a multiple-cover, or if it contains two non-trivial bubbles with the same image.

Proposition 1.7 If D is smooth,

(1) under the semi-positivity condition of Definition 1.6, for (ω′,R, J , ν) in a
Baire set of second category H	,ns

g,k (X , D)[ω] ⊂ Hg,k(X , D)[ω], the image of
Mns

g,s(X , A, J , ν)	 under st × ev lies in the image of smooth maps from finitely
many smooth even-dimensional manifolds of at least 2 real dimension less than
the dimension of the main stratum;

(2) similarly, under the same condition, if g = 0, k ≤ 2, and ν ≡ 0, for (ω′,R, J )
in a Baire set of second category AK	,ns(X , D)[ω] ⊂AK(X , D)[ω], the image of
Mns

0,s(X , D, A)	 under st × ev lies in the image of smooth maps from finitely
many smooth even-dimensional manifolds of at least 2 real dimension less than
the expected dimension.

For D smooth, the semi-positivity/positivity conditions of Definition 1.6 are essen-
tially the same as [16, Def. 4.7]. There is some confusion in [21, 22] regarding the
proper semi-positivity requirements in the relative case; see [16, Remark 4.9]. Their
work does not include a detailed proof of the relative analogue of Proposition 1.7. The
claim is that the result follows from the classical result of Ruan–Tian by looking at
the image of the moduli space inMg,k(X , A, ν).

The first statement below follows fromTheorem1.5 (1) and Proposition 1.7 (1). The
second follows from a standard family version of these results. The third, follows by
lifting two perturbations ν1 and ν2 obtained from two regular families U(1)g,k −→M

(1)
g,k

and U
(2)
g,k −→ M

(2)
g,k to their fiber product regular family and connecting them by a

regular path, as in [35, pp. 34–35].

Corollary 1.8 Suppose (X , ω) is a closed symplectic manifold, D is a smooth sym-
plectic divisor, A ∈ H2(X ,Z), g, k ∈ N with 2g+k ≥ 3, and s ∈ N

k . If [X , D, ω] is
semi-positive, for any choice of a regular universal family as in (3.5), there exists a
Baire subset

Hreg
g,k(X , D)[ω] ∈ Hg,k(X , D)[ω]

of the second category such that for every (ω′,R, J , ν) in this set

(1) the map

st× ev :Mg,s(X , D, A, ν)−→Mg,k×Xs

defines a pseudo-cycle of real dimension

d log = 2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k

)
;
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(2) the integral homology class G̃W
X ,D
g,s,A in Mg,k × Xs determined by this pseudo-

cycle is independent of the choice of (ω′,R, J , ν);
(3) furthermore, the rational class

GWX ,D
g,s,A ≡

1

deg p
G̃W

X ,D
g,s,A ∈ H2d log(Mg,k×Xs,Q),

where deg p is the degree of the regular covering used to define ν, is an invariant
of the deformation equivalence class of ω∈Symp(X , D).

Similarly, the first statement below follows from Theorem 1.5 (2), Proposition 1.7
(2), and Lemma 4.16. The second one follows from a family version of these results.

Corollary 1.9 Suppose (X , ω) is a closed symplectic manifold, D is a smooth sym-
plectic divisor, A∈H2(X ,Z), k ≤ 2, and s∈N

k . If [X , D, ω] is positive, there exists
a Baire subset

AKreg(X , D)[ω] ∈ AK(X , D)[ω]

of the second category such that for every (ω′,R, J ) in this set

(1) the map

st× ev :M�
0,s(X , D, A)−→M0,k×Xs

defines a pseudo-cycle of real dimension

2
(
cT X(− log D)
1 (A)+ n − 3+ k

)
;

(2) and, the integral homology classGWX ,D
0,s,A inM0,k×Xs determined by this pseudo-

cycle is independent of the choice of (ω′,R, J ).

For the reason stated at the last paragraph of Sect. 1.3, Definition 1.6 is not strong
enough for proving Proposition 1.7 (and consequently Corollaries 1.8 and 1.9) for
arbitrary SNC case (N > 1). More precisely, in the proof of the classical version of
Proposition 1.7, we get a stratification

Mns
g,k(X , A, ν)	 =

⋃

γ

Mγ

g,k(X , A, ν)	

where γ = (	, 	′′) and	′′ characterizes the topological type of the underlying simple
curves. For each γ , we get a fibration

πγ : Mγ

g,k(X , A, ν)	 −→Mg,k(X , A, ν)	′′
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where the image is the space of underlying simple curves, and st × ev factors
through πγ . In the logarithmic/relative case, we first consider a pre-log space

Mplog
g,s (X , D, A, ν)	 for which similar fibrations

πγ : Mplog,γ
g,s (X , D, A, ν)	 −→Mg,s(X , D, A, ν)	′′

can be constructed. Then

Mγ
g,s(X , D, A, ν)	 = ob−1	 (1),

where

ob	 : Mplog,γ
g,s (X , D, A, ν)	 −→ G(	)

is the obstruction map in Condition 5. Intuitively, the obstruction map ob	 arises from
gluing considerations in the followingway. In order to smooth out the nodes and realize
a log curve flog ∈ Mplog,γ

g,s (X , D, A, ν)	 (see (1.7)) as a limit of curves in the main
stratum, we need to glue the connected components at nodes qe by some local gluing
equations z

	
ez 	e

= εe and, at the same time, push-out each map uv out of DIv in the

direction of the meromorphic sections ζv by some multiple factors tvζv . The condition
ob	( flog) = 1 ∈ G(	) is equivalent to the existence of a compatible set of gluing and
push-out parameters ({εe}e∈E, {tv}v∈V). It is evident from this explanation that ob	 is
very sensitive to the topology of the configuration and does not factor through πγ ; see
after (3.48) for a more detailed discussion.

If D is smooth, we can ignore ob	 because dim D − dim T ≥ 0. Otherwise, as
Example 4.24 shows, Mγ

g,s(X , D, A, ν)	 can be larger than the main stratum. For
this reason, we need a stronger semi-positivity condition that yields a bound on the
dimension of Mplog,γ

g,s (X , D, A, ν)	 .
Given [X , D, ω], for each I ⊂ [N ] and A ∈ π2(X), let δI ,A denote the minimum

number of (geometric) intersection points of a degree A J -holomorphic sphere11 in
DI with ∂DI , for all (ω′, J )∈AK(X , D)[ω].
Definition 1.10 Let (X , ω) be a closed 2n-dimensional symplectic manifold and D be
a Nef SNC symplectic divisor in (X , ω). We say (X , D, ω) is strongly-semi-positive
if

cT X(− log D)
1 (A) ≥ 3− n + |I | − �I ,A �⇒ cT X(− log D)

1 (A) ≥ max{0, 2− δI ,A}
(1.19)

for all A ∈ π2(DI ) such that ω(A) > 0 (except possibly (I , δI ,A) �= (∅, 0)). We say
(X , D, ω) is strongly-positive if it is strongly-semi-positive and positive.

In many examples, Condition (1.19) and (1.17) are equivalent.

11 It is possible to write down a weaker definition of δI ,A without mentioning J -holomorphic spheres.
Often, this number is independent of the choice of almost Kähler structure. Also, we define this number to
be zero if such a J -holomorphic sphere does not exist.
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Example 1.11 A transverse union of d hyperplanes in P
n (with Fubini–Study sym-

plectic form) is semi-positive (= strongly-semi-positive) whenever d /∈[n+2, 2n+1]
and it is positive (= strongly-positive) whenever d /∈ [n + 1, 2n + 1]. An interesting
case is when X = P

n and D is the degree n + 1 toric boundary divisor ∂P
n . In this

case T X(− log D) is the trivial complex vector bundle generated by (the pre-image
in T X(− log D) of n+1 vector fields

x0∂x0, . . . , xn∂xn, satisfying
n∑

i=0
xi∂xi = 0.

In other words, (Pn, ∂P
n) is a log Calabi–Yau pair. If furthermore n=3, then

exp-dimC Mlog
g,s(X , D, A) = k

is independent of g and A. Note that k is at least 2. Since the quintic Calabi–Yau
3-fold can be degenerated to an SNC configuration whose components are blowups of

(P3, ∂P
3), the GW numbers arising from Mlog

g,s(P
3, ∂P

3, A) should be related to the
GW invariants of the quintic CY 3-fold. An interesting example of log Calabi–Yau
four-folds is worked out in [9].

The claim is that under the stronger conditions of Definition 1.10, Proposition 1.7
(and consequently Corollaries 1.8 and 1.9) holds for all N .

Conjecture 1.12 Suppose X is closed, D = ⋃
i∈[N ] Di ⊂ X is an SNC symplec-

tic divisor, A ∈ H2(X ,Z), g, k ∈ N with 2g+k ≥ 3, and s ∈ (NN )k . If [X , D, ω]
is strongly-semi-positive (resp. strongly-positive), then Proposition 1.7, and conse-
quently Corollaries 1.8 and 1.9, hold.

We lay the foundation and explain the difficulties for proving Conjecture 1.12 in
Sect. 4.5. We provide several examples that illustrate the issues. We also explain the
consequence of (1.19). We plan to address this conjecture in a future work. There
are, however, some special but interesting cases, such as when X is toric and D
is its boundary divisor (see Remark 4.20), or when Di are (0, A)-hollow (Donaldson
divisors of sufficiently high degree) in the sense of [17, Def. 1], where Conjecture 1.12
can be confirmed with easier arguments.

2 SNC Divisors and the Associated Structures: Review

In Sect. 2.1, we recall the notions of simple normal crossings (SNC) symplectic divi-
sor and symplectic regularizations for such objects introduced in [12]. Regularizations
allow us to define a suitable space of almost Kähler structures in Sect. 2.2 and pertur-
bations in Sect. 3.2. In Sect. 2.3, we review the notion of logarithmic tangent bundle
associated to SNC symplectic divisors introduced in [13]. Readers familiar with the
definitions, notations, and results of [12, 13] may skip this section. We refer to [13]
for a relatively short review of these concepts.
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2.1 SNC Divisors and Regularizations

Let X be a (smooth) manifold. For any submanifold D⊂ X , let

NX D ≡ T X |D
T D

−→ D

denote the normal bundle of D in X .

Definition 2.1 ([12, Definition 2.1]) An SNC symplectic divisor in a symplectic man-
ifold (X , ω) is a finite transverse union D≡⋃

i∈[N ] Di of smooth symplectic divisors
{Di }i∈[N ] such that for every I ⊂ [N ] the submanifold

DI ≡
⋂

i∈I
Di ⊂ X

is symplectic and its symplectic and intersection orientations are the same.

Let Symp(X , D) (this is denoted by Symp+(X , D) in [12]) denote the space of
symplectic structures ω on X such that D is an SNC divisor in X with respect to ω.
The particular choice of ω in its deformation equivalence class is not important in the
construction of (relative) GW invariants.

By the transversality assumption, the homomorphisms

NX DI −→
⊕

i∈I
NX Di |DI , ∀I ⊂ [N ], (2.1)

induced by the inclusions T DI ⊂ T Di |DI are isomorphisms. These vector bundle
isomorphisms are not symplectic unless {Di }i∈[N ] intersect orthogonally. For I ′ ⊂ I ⊂
[N ], define

NI ;I ′ =
⊕

i∈I−I ′
NX Di|DI ;

under the decomposition (2.1),NI ;I ′ is isomorphic to the normal bundle of DI in DI ′ .
We denote by

πI ;I ′ : NI ;I ′ −→ DI , πI : NX DI −→ DI ,

the natural projection maps.
A system of regularizations for {Di }i∈[N ] in X is a collection of smooth embed-

dings

�I : N ′
X DI −→ X , ∀I ⊂ [N ],

from open neighborhoods N ′
X DI ⊂ NX DI so that �I |DI= idDI , d�I induces the

identity map on NX DI , and

�I
(
NI ;I ′ ∩Dom(�I )

) = DI ′ ∩Im(�I ), ∀I ′ ⊂ I ⊂[N ].
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This implies that d�I induces an isomorphism

D�I ;I ′ : π∗I ;I ′NI ;I−I ′|NI ;I ′∩Dom(�I )−→ NX DI ′|DI ′∩Im(�I ); (2.2)

see [12, Sect. 2.2]. In the I = I ′ case, this derivative is the identity map.

Definition 2.2 A regularization for D in X is a systemof regularizations for {Di }i∈[N ]
in X as above such that

Dom(�I ) = D�−1I ;I ′ (Dom(�I ′)) , �I = �I ′ ◦D�I ;I ′ |Dom(�I ), ∀I ′ ⊂ I ⊂[N ].

For each i ∈ [N ], an ω-compatible Hermitian structure on NX Di is a triple
(ii , ρi ,∇(i)), where ii is an ω-compatible (fiber-wise) complex structure onNX Di , ρi
is a Hermitian metric with real part

ρR(·, ·) = ω |NX Di (·, ii ·),

and∇(i) is a Hermitian connection compatible with (ii , ρi ). For each i ∈[N ], the space
of ω-compatible Hermitian structures on NX Di is non-empty and contractible. Each
triple (ii , ρi ,∇(i)) as above determines a 1-form αi on NX Di−Di whose restriction
to each fiberNX Di|x−{x}∼=C

∗ is the 1-form dθ with respect to the polar coordinates
(r , θ) on C. For each i ∈ I ⊂[N ], we denote the tuple induced by (ii , ρi ,∇(i), αi ) on
NX Di |DI by (iI ;i , ρI ;i ,∇(I ;i), αI ;i ). We also denote by ρi and ρI ;i the square-of-
the-norm functions on NX Di and NX Di |DI , respectively.

Definition 2.3 ([12, Definition 2.9]) If D ≡ ⋃
i∈[N ] Di is an SNC symplectic divisor

in (X , ω), an ω-regularization for D in X consists of a choice of Hermitian structure
(ii , ρi ,∇(i)) on NX Di for all i ∈ [N ] together with a regularization for D in X as in
Definition 2.2 so that

�∗I ω = π∗I (ω |T DI )+
1

2

∑

i∈I
d(ρI ;iαI ;i ), ∀I ⊂ [N ], (2.3)

and (2.2) is an isomorphism of split Hermitian vector bundles for all I ′ ⊂ I ⊂[N ].
If N=1, i.e., D is a smooth divisor, an ω-regularization is a single map

� : N ′
X D −→ X (2.4)

as in [26, Lem. 3.14] without any further compatibility condition. We define the space
of auxiliary data Aux(X , D) to be the space of pairs (ω,R), where ω∈Symp(X , D)
and R is an ω-regularization of D in X . Let

� : Symp(X , D) −→ H2(M;R)

be the map sending ω to its de Rham equivalence class [ω]. The following is a weaker
version of the main result of [12] for SNC symplectic divisors.
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Theorem 2.4 ([12, Theorem 2.13]) For (X , D) as above, the projection maps

π : Aux(X , D) −→ Symp(X , D),

π |�−1(α) : {� ◦ π}−1(α) −→ �−1(α), α ∈ H2
dR(M),

are weak homotopy equivalences.

Given ω-regularizationsR andR′, we sayR′ is a shrinking ofR if the Hermitian
data inR and R′ are the same and

Dom(� ′I ) ⊂ Dom(�I ) and � ′I = �I |Dom(� ′I ), ∀I ⊂ [N ].

Two ω-regularizations R and R′ are said to be equivalent if they have a common
shrinking. The latter defines an equivalence relation among ω-regularizations.

If D is an SNC symplectic divisor in (X , ω), then, for each I ⊂ [N ],

∂DI =
⋃

I�J

DJ (2.5)

is an SNC symplectic divisor in (DI , ω|T DI ) and an ω-regularization R for D in X
restricts to an ω|T DI -regularization RI for ∂DI in DI . For I =∅, the convention is
D∅= X and ∂X=D.

2.2 Almost Kähler Auxiliary Data

In order to define relative GW invariants of (X , D, ω), we need to consider an almost
complex structure J on X that is both ω-tame and D-compatible. The biggest set
of such almost complex structures that one may consider is the set of ω-tame (or
compatible) J such that J (T Di )=T Di for all i ∈[N ] and

NJ (u, v) ∈ T Di , ∀i ∈ [N ], x ∈ Di , u, v ∈ Tx X , (2.6)

where NJ is Nijenhuis tensor of J . Condition (2.6) is needed to ensure that certain
operators are complex linear (see [7, (4-6)]), or equally, certain sequence of almost
complex structures on NX Di converges to a standard one (see [7, Lem. 3.5]). In this
paper, however, similar to [23] and [6], we restrict to a special class of almost complex
structures arising from regularizations in the following sense.

Definition 2.5 Suppose D=⋃
i∈[N ] Di is an SNC symplectic divisor in (X , ω), R is

anω-regularization for D in X as in Definition 2.3, and J is anω-tame almost complex
structure on X such that J (T Di )=T Di for all i ∈[N ]. We say J isR-compatible, if

�∗I J = π∗I (JI )⊕ π∗I
⊕

i∈I
iI ;i , ∀I ⊂ [N ], (2.7)
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where JI ≡ J |T DI , iI ;i is the complex structure on NX Di |DI pre-determined in R,
and the righthand side of (2.7) is the direct sum complex structure corresponding to
the decomposition

TNX DI ∼= π∗I T DI ⊕ π∗I NX DI , (2.8)

given by the connections in R.

Given any (ω,R) ∈ Aux(X , D), we denote the space of ω-compatible almost
complex structures compatible with a shrinking of R by AK(X , D, ω)R. This space
is non-empty and contractible. We denote the space of compatible tuples (ω,R, J )
by AK(X , D). It follows from Theorem 2.4 that the projection map

AK(X , D)−→Symp(X , D) (2.9)

is a weak-homotopy equivalence. This implies that any invariant of the deformation
equivalence classes in AK(X , D) is an invariant of the symplectic deformation equiv-
alence classes in Symp(X , D).

2.3 Logarithmic Tangent Bundle

In this section, we review the notion of logarithmic tangent bundle in complex geom-
etry and the analogous notion for SNC symplectic divisors introduced in [13]. A
detailed description of this construction is provided in [15]. We will show in Sect. 4
that the linearization of Cauchy–Riemann operator for logmaps is a lift of the classical
linearization map to the logarithmic tangent bundle.

Let X be a smooth complex manifold and D ⊂ X be a normal crossings divisor;
i.e., locally around every point p∈ X there are holomorphic coordinates (x1, . . . , xn),
with n=dimC X , such that

D≡(x1 · · · xk=0) ⊂ X for some k ≤ n.

In such coordinates, the sheaf T X of holomorphic sections of the complex tangent
bundle T X is generated by

∂x1 , . . . , ∂xn

and the log tangent sheaf T X(− log D) is the sub-sheaf generated by

x1∂x1 , . . . , xk∂xk , ∂xk+1 , . . . , ∂xn .

It is dual to the sheaf 
1
X (log D) of meromorphic 1-forms with at most simple poles

along Di . Since T X(− log D) is locally free, it is the sheaf of holomorphic sections of
a holomorphic vector bundle T X(− log D). The inclusion T X(− log D)⊂T X gives
rise to a holomorphic homomorphism

ι : T X(− log D) −→ T X
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which is an isomorphism away from D.
Given an SNC symplectic divisor D=⋃

i∈[N ] Di in (X , ω), an ω-regularizationR
for D in X as in Definition 2.3 gives rise to a real rank-2n vector bundle

T X(− log D)R −→ X

satisfying

T X(− log D)R|DI = T DI (− log ∂DI )⊕ DI × C
I , ∀I ⊂ [N ],

where ∂DI ⊂DI is the SNC divisor in (2.5). As in the holomorphic case, there exists
a canonical homomorphism

ι : T X(− log D)R −→ T X (2.10)

which is an isomorphism away from D. Furthermore, any R-compatible almost
complex structure J on T X gives rise to a similarly denoted complex struc-
ture on T X(− log D)R such that the homomorphism (2.10) is complex linear.
The deformation equivalence class T X(− log D) of the complex vector bundle
(T X(− log D)R, J ), which we call the log tangent bundle of (X , D), only depends
on the deformation equivalence class of (X , D, ω). Furthermore,

c
(
T X(− log D)

) = c(T X)/
∏

i∈[N ]

(
1+ PD(Di )

);

see [13, 15]. In particular,

cT X(− log D)
1 = cT X

1 −
∑

i∈[N ]
PD(Di ).

For a smooth divisor D⊂ X , with notation as in (2.4), we have

T X(− log D)R =
(
�−1 ∗(π∗T D ⊕N ′

X D×C) � T X|X−D
)/∼,

�−1 ∗(π∗T D ⊕N ′
X D×C) |�(ζ)� ξ ⊕ c ∼ dζ�(ξ + cζ ) ∈ T�(ζ)(X−D),

where in the last equation, via the isomorphism

TζNX D ∼=
(
π∗T D ⊕ π∗NX D

)|ζ

given by the connections inR, we think of ξ + cζ as a tangent vector in TζNX D, for
all ζ ∈NX D. In the general SNC case, with notation as in Sect. 2.1, we have

T X(− log D)R =
( ⊔

I⊂[N ]
�−1 ∗I

(
π∗I T DI |N ◦

X DI ⊕N ◦
X DI × C

I )
)/
∼ (2.11)
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where

N ◦
X DI = π−1I

(
DI−∂DI

) ∩ Dom(�I )

and the identification maps that give rise to the equivalence relations∼ on the overlaps
are given by

(
π∗I T DI |N ◦

X DI ⊕N ◦
X DI × C

I
)∣
∣
∣
ζ
� (

ξ ⊕ (ci )i∈I
)

−→ (
ξ̃ ⊕ (ci )i∈I ′

) ∈
(
π∗I ′T DI ′|N ◦

X DI ′ ⊕N ◦
X DI ′ × C

I ′
)∣
∣
∣̃
ζ
, ∀I ′ ⊂ I ⊂ [N ],

with

p ∈ DI − ∂DI , ζ = (ζi )i∈I ∈N ◦
X DI |p, q = �I ,I ′(p, (ζi )i∈I−I ′)∈DI ′ ,

ζ̃ = D�I ,I ′
(
(p, (ζi )i∈I−I ′); (ζ j ) j∈I ′)

)∈NX DI ′|q ,
ξ̃ = d�I ,I ′|(ζi )i∈I−I ′

(

ξ +
∑

i∈I−I ′
ciζi

)

∈ Tq DI ′

on the overlap; see [12, Sect. 2.2] or [15, Sect. 3.3]. For eachR-compatible J , on the
local chart

π∗I T DI |N ◦
X DI ⊕N ◦

X DI × C
I −→ N ◦

X DI , (2.12)

the complex structure is given by the pull back of J|T DI on the first summand and the
trivial complex structure on the second summand. Furthermore, the C-linear homo-
morphism (2.10) is given by

(
π∗I T DI |N ◦

X DI ⊕N ◦
X DI × C

I
)∣
∣
∣
ζ
� (

ξ ⊕ (ci )i∈I
)

−→ dζ�I

(

ξ ⊕
∑

i∈I
ciζi

)

∈ T�I (ζ )X ,
(2.13)

where, again, via the identifications (2.8) and (2.1), for each

ζ ∼= (ζi )i∈I ∈NX DI ∼=
⊕

i∈I
NX Di

we think of ξ ⊕∑
ciζi as a tangent vector in TζNX DI .

Let h be aHermitianmetric on T X(− log D)R. For example, at the cost of shrinking
R, one can construct h so that on the chart (2.12) it is the direct sum of the standard
Hermitian metric onN ◦

X DI×C and the pull back of some Hermitian metric from DI

on the first summand. For every I ⊂[N ], via the inclusion

T DI (− log ∂DI ) ⊂ T X(− log D)|DI
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and the identification

T DI (− log ∂DI )|DI−∂DI= T (DI−∂DI ),

h induces a complete Hermitian metric on DI−∂DI . Let

expI : T (DI−∂DI ) −→ DI−∂DI

be the exponential map of hI . Define

explog : T X(− log D)R −→ X , (ξ ⊕ c)|p �−→ expI (p, ξ) ∈ DI−∂DI ,

∀I ⊂[N ], p∈DI − ∂DI , ξ ⊕ c ∈ TpX(− log D)R ∼= TpDI ⊕ C
I .

(2.14)

This map is smooth and it is a logarithmic version of the exponential map in the
classical sense. In fact, for any

p∈DI − ∂DI and ζ = (ζi )i∈I ∈ N ◦
X DI |p,

via the identification (2.13), the map explog is approximately (to the first order in |ζ |)
equal to

(ζ, ξ ⊕ c) −→
(
expI (ξ),Pal

(
(eci ζi )i∈I

)) ∈ N ◦
X DI , (2.15)

where Pal
(
(eci ζi )i∈I

)
is the parallel translation of the vector (eci ζi )i∈I ∈NX DI along

the path expI (tξ)|t∈[0,1] in DI . Putting ζ = 0, (2.15) becomes expI at p. This log-
arithmic exponential map will be used in constructing a Banach neighborhood of a
(J , ν)-holomorphic map in the space of all smooth maps of the same tangency order
type.

3 Moduli Spaces of Log (J, �)-Curves

In this section, following the description of [32, Sect. 2] and [35, Sect. 2.1], we define
a suitable space of perturbation terms ν over a “regular covering” of the Deligne–
Mumford space Mg,k for any symplectic logarithmic pair (X , D). Then, following
and generalizing the definition of log J -holomorphic curves in [7], we introduce the
notion of log (J , ν)-holomorphic curve.

3.1 Regular Coverings

For g, k∈N with 2g + k ≥ 3, let

π : U g,k ≡Mg,k+1 −→Mg,k (3.1)
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be the universal curve, where π is defined by forgetting the last marked point. For a
marked curve C = [�, j, z1, . . . , zk] in Mg,k , if the automorphism group Aut(C) is
non-trivial, then π−1(C) = �/Aut(C) instead of �. Therefore, unless g = 0, (3.1)
is not a universal family and we can not directly define the perturbation term ν over
U g,k . One can resolve this problem by taking appropriate finite covers of (3.1).

Denote by Tg,k the Teichmüler space of genus g Riemann surfaces with k marked
points (punctures) and by Gg,k the corresponding mapping class group. We have

Mg,k = Tg,k/Gg,k .

Assume g=g1+g2 and k=k1+k2 with 2gi+ki ≥3 for i=1, 2. For any decomposition
S1 ∪ S2 of [k] with | Si |= ki , there exists a canonical immersion

ι = ιS1,S2 : Mg1,k1+1 ×Mg2,k2+1 −→ ∂Mg,k (3.2)

which assigns to a pair of marked curves

(
Ci =[�i , ji , zi,1, . . . , zi,ki+1]

)
i=1,2,

the marked curve

C = [�, j, z1, . . . , zk], � = �1 ��2/z1,k1+1∼ z2,k2+1,
{z1, . . . , zk} = {z1,1, . . . , z1,k1} ∪ {z2,1, . . . , z2,k2},

so that the remaining marked points are renumbered by {1, . . . , k} according to the
decomposition S1∪S2. There is also another natural immersion

δ : Mg−1,k+2 −→ ∂Mg,k (3.3)

which is obtained by gluing together the last two marked points.

Definition 3.1 ([35, Def. 2.1]) Let g, k∈N with 2g + k ≥ 3, and

p : Mg,k −→Mg,k (3.4)

be a finite branched cover in the orbifold category. A universal family over Mg,k is
a tuple

(
π : Ug,k −→Mg,k, z1, . . . , zk

)
(3.5)

whereUg,k is a complex projective variety andπ is a projectivemorphismwith disjoint
sections z1, . . . , zk such that for each c∈Mg,k the tuple

C=(
(�, j)=π−1(c), 	z(c) = (z1(c), . . . , zk(c))

)

is a stable k-marked genus g curve whose equivalence class is [C]= p(c).
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Definition 3.2 Let g, k∈N with 2g+k≥3. A cover (3.4) is regular if

(1) it admits a universal family,
(2) each topological component of p−1

(
Mg,k

)
is the quotient of Tg,k by a subgroup

of Gg,k ,
(3) for each boundary divisor (3.2) we have

(
Mg1,k1+1 ×Mg2,k2+1

)×(ι,p) Mg,k ≈Mg1,k1+1 ×Mg2,k2+1,

for some regular covers Mgi ,ki+1 ofMgi ,ki+1, and
(4) for the boundary divisor (3.3) we have

Mg−1,k+2 ×(δ,p) Mg,k ≈Mg−1,k+2,

for some regular cover Mg−1,k+2 of Mg−1,k+2.

The last two conditions are inductively well-defined. This definition is a modified
version of [35, Def. 2.2]. In [35, Def. 2.2], the last condition is missing; further-
more,Mgi ,ki+1 andMg−1,k+2 are only required to be “some” cover ofMgi ,ki+1 and
Mg−1,k+2, respectively. The existence of such regular covers is a consequence of [2,
Prop. 2.2, Thm. 2.3, Thm. 3.9]; see also moduli space of curves with level n structures
in [29, p. 285]. In the genus 0 case, for each k ≥ 3, the moduli space M0,k itself is
smooth and the universal curve (3.1) is already a universal family. The regular covers
are only branched over the boundaries of the moduli space. Furthermore, the total
space of a universal family as in (3.5) over a regular cover only has singularities of
the form

{(x, y, t) ∈ C
3 : xy = tm} −→ C, (x, y, t) �−→ t

at the nodal points of the fibers of π . In the approach of [32], for dealing with such
singularities they consider embeddings of a universal family into P

N for sufficiently
large N . In this article, following [23, 35], we consider perturbations supported away
from the nodes.

3.2 Logarithmic Ruan–Tian Perturbations

Let g, k ∈N with 2g+k ≥ 3 and fix a regular covering (3.4) and a universal family
(3.5). Denote by

U
�

g,k ⊂ Ug,k

the complement of the nodes of the fibers of the projection map π in (3.5). Denote by

Tg,k = Ker d(π|
U
�

g,k
) −→ U

�

g,k
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the vertical tangent bundle. The latter is a complex line bundle; we denote the complex
structure by jU. Then



0,1
g,k := (Tg,k,−jU)∗ −→ U

�

g,k

is the complex line bundle of vertical (0, 1)-forms. It is possible to extend this construc-
tion to the nodal points by allowing simple poles and dual residues, or by embedding
Ug,k into some P

M as in [32].
Let (X , ω) be a symplectic manifold and J be an ω-tame almost complex structure

on X . The classical space of perturbations considered in [32] (following the modifi-
cation in [35]) is the infinite dimensional linear space

Hg,k(X , J ) =
{

ν ∈ 	
(
U
�

g,k × X , π∗1

0,1
g,k ⊗C π∗2 T X

)

s.t. supp(ν) ⊂
(

U
�

g,k −
⋃

a∈[k]
Im(za)

)

× X

}

,

(3.6)

where π1, π2 are projectionmaps fromU
�

g,k×X onto the first and second components,
respectively, and supp(ν) is the closure of the complement of the vanishing locus of
ν in the compact space Ug,k × X . Let Hg,k(X , ω) denote the space of tuples (J , ν)
where J is ω-tame and ν∈Hg,k(X , J ). Note that given ν and a boundary component
as in Definition 3.2 (3) (resp. Definition 3.2 (4)), the restriction of ν toMg1,k1+1 gives
a perturbation term in Hg1,k1(X , J ) (resp.Hg−1,k+2(X , J )).

Definition 3.3 Suppose g, k∈N with 2g+k≥3, Ug,k is a universal family as in (3.5),
(X , ω) is a symplectic manifold, A ∈ H2(X ,Z), and (J , ν)∈Hg,k(X , ω). A degree
A genus g k-marked (J , ν)-map is a tuple

f =
(
φ, u,

(
�, j, (za)a∈[k]

))
(3.7)

where (�, j, (za)a∈[k]) is a nodal genus g k-marked complex curve, φ : � → Ug,k is
a holomorphic map onto a fiber of Ug,k preserving the marked points, and u : �→ X
represents the homology class A and satisfies

∂̄u = (φ, u)∗ν.

Two k-marked (J , ν)-holomorphic maps

(
φ1, u1,

(
�1, j1, (z1,a)a∈[k]

))
and

(
φ2, u2,

(
�2, j2, (z2,a)a∈[k]

))

are equivalent if there exists a holomorphic identification

h : �1 −→ �2, h(z1,a) = z2,a, ∀a ∈[k],
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such that (φ1, u1)=(φ2, u2) ◦ h. A (J , ν)-holomorphic map is stable if it has a finite
automorphism group. For any fixed J , denote by

Mg,k(X , A, ν)

the space of equivalence classes of k-marked genus g degree A stable (J , ν)-
holomorphic maps. The subspace of maps with smooth domain is denoted by
Mg,k(X , A, ν). A contracted component of� in (3.7) is a smooth component whose
image under the map φ is just a point. A map (3.7) is stable if and only if the degree
of the restriction of u to every contracted component of � containing only one or
two special (nodal or marked) points is not zero. If (3.7) is stable, every connected
cluster of contracted components is a tree of spheres, with a total of at most 2 special12

points, at least one of which is a nodal point. For generic ν, the only components of
� contributing non-trivially to the automorphism group of (3.7) are the contracted
components.

Definition 3.4 Agenus 0 J -holomorphicmap f (with a nodal domain) is called simple
if the restriction uv of u to each irreducible component�v

∼=P
1 is notmultiply covered,

whenever uv is not constant, and the images of two such components in X are distinct.
A k-marked (J , ν)-holomorphic map f as in (3.7) is called simple if the restriction uv
of u to each irreducible component �v of � contracted by φ is not multiply covered
(or equally it is somewhere injective) whenever13 uv is not constant, and the images
of two such components in X are distinct.

If J is anω-tamealmost complex structure on X , let∇ be theLevi–Civita connection
of the metric 〈u, v〉 = 1

2 (ω(u, Jv)+ ω(v, Ju)) and

∇̃vζ = ∇vζ − 1

2
J (∇v J )ζ = 1

2

(∇vζ − J∇v(Jζ )
)
, ∀v ∈ T X , ζ ∈ 	(X , T X)

(3.8)

be the associated Hermitian connection. The torsion T of the modified C-linear con-
nection

∇̂vζ = ∇̃vζ − A(ζ )v, A(ζ ) = 1

4

(∇Jζ J + J∇ζ J
)
, ∀v ∈ T X , ζ ∈ 	(X , T X)

(3.9)

is related to the Nijenhuis tensor normalized as in [26, p. 18] by

T∇̂(v,w) = −
1

4
NJ (v,w), ∀v,w ∈ T X .

12 Either a marked point or a nodal point connecting the cluster to an irreducible component of � outside
the cluster.
13 This is automatically satisfied if f is stable.
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If J is ω-compatible, ∇̃ coincides with ∇̂. See [26, Chapter 3.1 and Appendix C]
for details. By [26, (3.1.6)], for a (J , ν)-holomorphic map (φ, u), the linearization of
∂̄ − ν has the form

Du{∂̄ − ν} : 	(�, u∗T X) −→ 	(�,

0,1
�,j ⊗C u∗T X),

Du{∂̄ − ν}(ζ )=(∇̂ζ )(0,1) + 1

4
NJ (ζ, du)− ∇̃ζ ν + B(ν)ζ,

(3.10)

where

B(ν) = 1

4

(
J∇ν J +∇Jν J

)

and

(∇̂ζ )(0,1) = 1

2
(∇̂ζ + J ∇̂ζ ◦ j)

is the (0, 1)-part of ∇̂ζ , see [26, Chapter 3.1]. The last term in (3.10) is zero if J is
ω-compatible.

In the relative Gromov–Witten theory (i.e., when D is smooth), the most general
almost complex structure that one may consider is an ω-tame or compatible almost
complex structures J on X that preserves T D and satisfies the Nijenhuis condition
(2.6) along D. For such an ω-tame almost complex structure J , the most general
perturbation term ν inHg,k(X , J ) that one may consider is one satisfying

ν|Ug,k×D∈ Hg,k(D, J|T D) and

1

2

(
J∇ν J + ∇Jν J

)
w − (∇̃wν + J ∇̃Jwν

) ∈ 

0,1
g,k ⊗C Tx D, ∀x ∈ D, w ∈ Tx X;

(3.11)

see [16, 17, 21]. The first parenthesis in the second line of (3.11) is zero if J is ω-
compatible. If the image of u lies in D, by the first condition in (3.11), Du{∂̄ − ν}
induces an operator

DN
u {∂̄ − ν} : 	(�, u∗NX D) −→ 	(�,


0,1
�,j ⊗C u∗NX D). (3.12)

The second condition in (3.11) together with (2.6) imply that (3.12) is C-linear (i.e.,
it is a ∂̄-operator); see [21] and [17, (2.14)]. Furthermore,

DN
u {∂̄ − ν}([ζ ])=

[

(∇̂ζ )(0,1) − 1

2

(∇̃ζ ν − J ∇̃Jζ ν
)
]N

, ∀[ζ ]N ∈ 	(�, u∗NX D),

(3.13)
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where [ζ ]N denotes the image in 	(�, u∗NX D) of a section ζ ∈ 	(�, u∗T X). If
ν≡0, DN

u ∂̄ is simply u∗∂̄NX D where

∂̄NX D : 	(D,NX D) −→ 	(D,
0,1
D,J ⊗C NX D)

is the ∂̄-operator associated to J in [7, Lem. 2.1].
Generalizing (3.11) to the SNC case, the most general pairs (J , ν) that one may

consider are those satisfying (2.6) and (3.11) along each Di . In other words, we need
ν to satisfy

ν|Ug,k×DI
∈ Hg,k(DI , JI ), ∀I ⊂ [N ] and

1

2

(
J∇ν J +∇Jν J

)
w − (∇̃wν + J ∇̃Jwν

) ∈ 

0,1
g,k ⊗C Tx DI , ∀x ∈ DI , w ∈ Tx X .

(3.14)

For (J , ν) satisfying the first condition of (3.14), if (φ, u) is a (J , ν)-holomorphic map
as in (3.7) with smooth domain, for every i ∈ [N ], either Im(u)⊂ Di or u intersects
Di at finitely many points with positive tangency orders; see [17, p. 10]. Therefore,
there exists a maximal subset I ⊂[N ] (called depth of u) such that Im(u)⊂DI and u
intersects every Di , with i /∈ I , non-negatively. If the image of u lies in DI , Du{∂̄ − ν}
induces C-linear ∂̄-operators

DNi
u {∂̄ − ν} : 	(�, u∗NX Di ) −→ 	(�,


0,1
�,j ⊗C u∗NX Di ), ∀i ∈ I . (3.15)

Meromorphic sections defined with respect to these ∂̄-operators will be used to define
log (J , ν)-holomorphic curves.

Working with the conditions in (3.14) is hard. In the following, instead of imposing
the conditions (3.14) on ν, we define a class of logarithmic perturbation terms νlog,
associated to each of which we get a classical perturbation term ν satisfying (3.14).

Let D be an SNC symplectic divisor in (X , ω), R be an ω-regularization, and
J be an ω-tame and R-compatible almost complex structure J on X . In Sect. 4.1,
we will define a class of smooth maps u : � → X containing representatives of
Mg,s(X , D, A) for which ∂̄u lifts to a log CR section

∂̄ logu ∈	(�,
0,1
�,j ⊗C u∗T X(− log D)). (3.16)

In comparison with (3.6), (3.16) indicates that the right set of perturbation terms for
the log moduli spaces is (a subspace of)

{

νlog ∈ 	
(
U
�

g,k × X , π∗1

0,1
g,k ⊗C π∗2 T X(− log D)R

)

s.t. supp(νlog) ⊂
(

U
�

g,k −
⋃

a∈[k]
Im(za)

)

× X

}

.

(3.17)
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Associated to each νlog we get a classical perturbation term

ν= ι(νlog)∈Hg,k(X , J ), (3.18)

where by abuse of notation ι denotes the C-linear homomorphism

π∗1 (

0,1
g,k)⊗C π∗2 T X(− log D)R −→ π∗1 (


0,1
g,k)⊗C π∗2 T X

induced by (2.10). Conversely, we may think of log perturbations as those ν that lift
to a section of

π∗1

0,1
g,k ⊗C π∗2 T X(− log D)R.

Lemma 3.5 For every νlog in (3.17), the associated classical perturbation term ν =
ι(νlog) satisfies (3.14).

Proof Given a logarithmic perturbation term νlog as in (3.17), for each I ⊂ [N ],
restricted to the neighborhood �I (N ′

X DI )⊂ X of DI and with respect to the decom-
position

�∗I T X(− log D)R ∼= π∗I T DI (− log ∂DI )⊕N ′
X DI × C

I

we get a decomposition

νlog,I ≡ �∗I νlog = ν̃I ,log ⊕ θ̃I (3.19)

where

θ̃I = (θ̃I ,i )i∈I ∈ 	
(
U
�

g,k ×N ′
X DI , π

∗
1


0,1
g,k ⊗C C

I )

is a tuple of (0, 1)-forms. From (3.18), (2.13), and the decomposition (2.8) we get

νI ≡ �∗I ν = ν̃I ⊕ nI , (3.20)

where

nI |vI (w) =
(
θ̃I |vI (w)

) · vI ≡ (θ̃I ;i |vI (w)vI ;i )i∈I ∈ NX DI |x ,
∀x ∈ DI , vI = (vI ;i )i∈I ∈ N ′

X DI |x , w ∈ Tg,k .
(3.21)

Note that nI |DI=0; thus, ν satisfies the first condition in (3.14). Furthermore, by (2.3),
(2.7), (3.21), and the first condition in (3.14)

J∇ν Jw,∇Jν Jw ∈ Tx DI , ∀x ∈ DI , w ∈ Tx X ,
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and, with θI = θ̃I |DI ,

[∇̃wν]N = θI |x · wI ∈ 

0,1
g,k ⊗C NX DI |x , ∀x ∈ DI ,

w = whor ⊕ wI ∈ Tx X ∼= Tx DI ⊕NX DI |x .

Therefore, ν also satisfies the second condition in (3.14) and, by (3.13), (3.15) has the
form

DNi
u {∂̄ − ν}(ζI ,i ) = (∇̂ζI ,i )(0,1) − (φ, u)∗θI ,i · ζI ,i , ∀i ∈ I ,

∀ζI = (ζI ,i )i∈I ∈ 	(�, u∗NX D) ∼=
⊕

i∈I
	(�, u∗NX Di ).

(3.22)

��
Remark 3.6 Similar to [7], log (J , ν)-holomorphic curves can be defined for arbitrary
νlog in (3.17). However, as in [7, Remark 1.5], certain steps in the proof of the com-
pactness and the rest of analytical work are complicated for arbitrary such νlog (or
arbitrary J satisfying (2.6)). To avoid these complications, almost complex structures
and perturbations considered in this paper are rather special. In the definition below,
in a neighborhood of each stratum DI , via the identification map �I , ν̃I and θ̃I are
required to be pull back via πI of similar terms along DI .

Definition 3.7 Given an SNC symplectic divisor D ≡ ⋃
i∈[N ] Di in (X , ω), an ω-

regularizationR, an ω-tame andR-compatible almost complex structure J on X (see
Definition 2.5), and a perturbation term νlog in (3.17), we say νlog isR-compatible if

ν̃I ,log = π∗I (νI ,log) and θ̃I = π∗I (θI ), ∀I ⊂ [N ], (3.23)

for some

νI ,log∈	
(
U
�

g,k × DI , π
∗
1


0,1
g,k ⊗C π∗2 T DI (− log ∂DI )RI

)

and

θI = (θI ,i )i∈I ∈ 	
(
U
�

g,k × DI , π
∗
1


0,1
g,k ⊗C C

I ). (3.24)

The condition (3.23) implies that

nI |αv(w) = αnI |v(w) ∈ NX DI |x ,
∀α ∈ (C)I , x ∈ DI , v, αv ∈ N ′

X DI |x , w ∈ Tg,k .
(3.25)

In other words, in a neighborhood of each stratum DI in X , identified with a
neighborhood of DI in NX DI via the regularization map �I in R, the horizontal
component of ν is the pull back from DI of some perturbation term νI on DI , and
the vertical component of ν is (C∗)I -equivariant with respect to the component-wise
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multiplicative action of (C∗)I on NX DI . As explained in [17, p. 11], under these
assumptions, �∗I ν extends to a (C∗)I -equivariant perturbation term over the fiber
product of P

1-bundles

∏

i∈I
P(NX Di|DI ⊕C). (3.26)

DefineHg,k(X , D, ω) (resp.Hg,k(X , D)) to be set of such tuples (R, J , ν) (resp.
(ω,R, J )) where ν is the perturbation term associated14 to νlog as in Definition 3.7.
For any fixed (ω,R, J ) (resp. (ω,R)), define Hg,k(X , D)R,J (resp. Hg,k(X , D)R)
to be the set of perturbation terms ν ∈Hg,k(X , J ) (resp. (J , ν) ∈Hg,k(X , ω)) such
that νlog is compatible with a shrinkingR′ ofR. Similar to (2.9), the natural projection
map

Hg,k(X , D) −→ Symp(X , D)

is a weak homotopy equivalence.
The first component (∇̂ζI ,i )(0,1) in (3.22) is a ∂̄-operator on u∗NX Di by itself and

is independent of ν. In what follows, we will denote it by

∂̄u∗NX Di ζI ,i .

The ∂̄-operators ∂̄u∗NX Di and DNi
u {∂̄−ν} define (usually different) holomorphic struc-

tures on the pull-back complex line bundle u∗NX Di . The latter is a deformation of
the former via the (0, 1)-form (φ, u)∗θI ,i . The one defined by ∂̄u∗NX Di will be used
as a reference. The perturbation caused by θI ,i will allow us to achieve transversality.

By (2.7), (3.23), and (3.21), the X -component u : � → X of any (J , ν)-
holomorphic map (φ, u), with image in a sufficiently small neighborhood of DI (more
precisely, in Im(�I )) is determined by its projection

uI : �−→DI (3.27)

and a set of sections

ζI ≡ (ζI ,i )i∈I ∈
⊕

i∈I
	(u∗INX Di ) (3.28)

such that

∂̄uI = νI and ∂̄ζI ≡
⊕

i∈I
∂̄u∗INX Di ζI ,i = nI (uI , ζI ) = ((φ, uI )

∗θI ) · ζI .

(3.29)

14 Since the map νlog �→ ν is one-to-one, it is safe to use ν in place of νlog to keep the notation simple.
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The second equation in (3.29) can also be written in the compact form

DNi
u I {∂̄ − ν}(ζI ,i ) = 0, ∀i ∈ I . (3.30)

By (3.29) or equally (3.30), for any cI ≡(ci )i∈I ∈C
I , if (uI , ζI ) satisfies (3.29) then

(
uI , cI · ζI = (ciζI ,i )i∈I

)

satisfies (3.29) aswell. Therefore, in a neighborhoodof each stratum DI in X , identified
with a neighborhood of DI in NX DI via the regularization map �I in R, the set
of (J , ν)-holomorphic maps is invariant under the component-wise multiplicative
action of C

I on NX DI . This explains the motivation behind the extra assumption
(3.23). In general, as a family {ut }t→0 of (J , ν)-holomorphic maps sinks into DI ,
the corresponding sections ζt,I in (3.28) converge to zero. Then the idea is that, by
rescaling ζt,I we get a (JI , νI )-holomorphic map uI with image in DI and a similarly
denoted holomorphic (or meromorphic) section

ζI = lim
t→0

ζt,I

| ζt,I | ∈ u∗INX DI

that remembers the direction at which the maps have approached DI . Conversely,
in the gluing construction, given (uI , ζI ), gluing is done by pushing uI out in the
direction of ζI . These local observations explain the motivation behind Definition 3.9
in the next section.

3.3 Construction of PerturbedModuli Spaces

Let (X , D) and (ω,R, J , ν) be as in the previous section, with ν coming from an
R-compatible logarithmic perturbation term νlog as in Definition 3.7. Suppose

uI : �−→DI (3.31)

is a (JI , νI )-holomorphic map with smooth domain not mapped into ∂DI (so its depth
is I ) and

ζI ≡ (ζI ,i )i∈I ∈ 
mero

(⊕

i∈I
u∗INX Di

)

(3.32)

is a tuple of non-zero meromorphic sections with respect to the holomorphic structure
defined by

(
DNi
u {∂̄−ν}

)
i∈I =

(
∂̄u∗NX Di − (φ, u)∗θI ,i

)
i∈I .
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In other words, u ∼= (uI , ζI ) is as in (3.27) and (3.28), but ζI ,i are allowed to have
poles. For each x ∈�, the tangency order vector

ordx (uI , ζI ) =
(
ordix (uI , ζI )

)
i∈[N ] ∈Z

N (3.33)

is defined by

ordix (uI , ζI ) = ordx (u, Di ) ≥ 0, ∀i ∈ [N ] − I

and ordix (uI , ζI ) = ordxζI ,i , ∀i ∈ I .
(3.34)

The first item in (3.34) is the order of tangency of u to Di at x ; this is zero if u(x) /∈Di

and is positive otherwise. The second item in (3.34) is the order of zero/pole of ζI ,i
at x . In particular, it only depends on the C

∗-equivalence class [ζI ,i ] of the section
ζi ; changing each ζI ;i with a non-zero constant multiple of that does not change
ordix (uI , ζI ).

Remark 3.8 For each i ∈ I , in a local holomorphic trivialization of u∗INX Di around
any point x ∈�, with respect to the holomorphic structure defined by ∂̄u∗NX Di , the
second equation in (3.29) has the form

∂̄ fi = θi fi (3.35)

where fi is a complex valued function and θi is a (0, 1)-form. Let gi be any C-valued
function such that ∂̄gi=θi . Then every solution of (3.35) is of the form

fi = egi hi

where ∂̄hi ≡ 0. Thus, ordx fi in (3.34) can also be defined to be the order of mero-
morphic function hi at x which is independent of the choice of gi and hence ν. This
shows that tangency order remains the same when we deform ν.

In order to define nodal (J , ν)-holomorphic maps, we use decorated dual graphs of
the following sort associated to every k-marked nodal domain (�, z1, . . . , zk) as in [7,
Sect. 3.1]. Let 	=	(V,E,L) be a graph with the set of vertices V, edges E, and legs
L; the latter, also called flags or roots, are half edges that have a vertex at one end and
are open at the other end. Let 	E be the set of edges with an orientation. Given

	
e∈ 	E,

let
	
e denote the same edge with the opposite orientation. For each

	
e∈ 	E, let v1(	

e) and
v2(	

e) in V denote the starting and ending points of the oriented edge, respectively.

For v, v′ ∈V, let Ev,v′ denote the subset of edges between the two vertices and 	Ev,v′

denote the subset of oriented edges from v to v′. For every v ∈V, let 	Ev denote the
subset of oriented edges starting from v. Such decorated graphs	 characterize different
topological types of nodal marked surfaces (�, 	z=(z1, . . . , zk)) in the following way.
Each vertex v∈V corresponds to a smooth component �v of � with genus gv . Each
edge e∈E corresponds to a node qe obtained by connecting �v and �v′ at the points
q
	
e ∈�v and q

	e
∈�v′ , where e∈Ev,v′ and 	

e is an orientation on e with v1(	
e)=v. The
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Fig. 1 A nodal curve in M4,2 and its dual graph

last condition uniquely specifies
	
e unless e is a loop connecting v to itself. Finally,

each leg l∈L connected to the vertex v(l) corresponds to a marked point za(l)∈ �v(l)

disjoint from the connecting nodes. Thus we have

(�, 	z)=
∐

v∈V

(�v, 	zv ∪ qv)/ ∼, q
	
e∼q

	e
, ∀e ∈ E, (3.36)

where

	zv=	z ∩�v and qv = {q
	
e : 	e∈ 	Ev}, ∀v ∈ V.

We treat qv as an un-ordered set of marked points on �v . We say 	 is the decorated
dual graph of (�, 	z). Initially, each vertex v∈V is decorated by the genus gv ∈N of the
corresponding irreducible component. Further decorations will be introduced below.
A complex structure j on� is a set of complex structures (jv)v∈V on its components. By
a (complex) marked nodal curve, we mean a marked nodal real surface together with
a complex structure (�, j, 	z). Given a map u : � → X , each vertex v ∈V receives
an additional decoration that is the homology class Av ∈ H2(X ,Z) represented by
uv = u|�v . Figure1-Left illustrates a decorated graph with 2 flags and Fig. 1-Right is
the associated marked nodal domain with (g1, . . . , g5)=(0, 0, 2, 1, 0).

Assume D = ⋃
i∈S Di ⊂ X is an SNC symplectic divisor, (ω,R, J , ν) ∈

Hg,k(X , D), and

u = (uv)v∈V : (�, j)−→(X , J )

is the X -component of a possibly nodal (J , ν)-holomorphic map (φ, u). In this situ-
ation, the dual graph of (u, �) carries additional labelings

I : V,E −→ subsets of [N ], v �−→ Iv, ∀v ∈ V, e �−→ Ie, ∀e ∈ E,

(3.37)

recording theminimal stratum DI that contains the image of uv and u(qe), respectively.

123



M. Farajzadeh-Tehrani

Definition 3.9 Suppose D = ⋃
i∈[N ] Di ⊂ X is an SNC symplectic divisor,

(ω,R, J , ν)∈Hg,k(X , D), and

C≡(�, j, 	z) =
( ∐

v∈V

Cv ≡ (�v, jv, 	zv ∪ qv)

)

/ ∼, q
	
e∼q

	e
, ∀

	
e ∈ 	E,

is a connected nodal k-marked curve with smooth components Cv and dual graph
	 = 	(V,E,L) as in (3.36). A pre-log (J , ν)-holomorphic map of tangency order
type s=(sa)a∈[k] ∈

(
Z
N
)k from C to X is a collection

f ≡
(
φ,

(
fv≡(uv, ζv,Cv)

)
v∈V

)
, (3.38)

such that

(1) the tuple
(
φ, (uv,Cv)v∈V

)
is a k-marked genus g degree A (J , ν)-holomorphic

map as in (3.7);
(2) for each v∈V, (uv, ζv ≡ (ζv,i )i∈Iv ) satisfies (3.31)–(3.32) (with I = Iv , uI =uv ,

ζI =ζv);
(3) for each v∈V, orduv,ζv is supported at the special points zv ∪qv in the sense that

ordx (uv, ζv) �= 0 �⇒ x ∈ zv ∪ qv;

(4) s
	
e≡ordq

	e
(uv, ζv)=−ordq

	e
(uv′ , ζv′)≡−s 	e

for all v, v′ ∈V and
	
e∈ 	Ev,v′ ;

(5) and ordza (uv, ζv) = sa ∈ Z
N for all v∈V and za ∈	zv .

In other words, a pre-log map is simply a nodal (J , ν)-map with a bunch of mero-
morphic sections on each smooth component (with zeros and poles only at the special
points), dual tangency orders at the nodes, and prescribed tangency orders at the
marked points. Two k-marked pre-log (J , ν)-holomorphic maps

f = (
φ, (uv,�v, jv, ζv = (ζv,i )i∈Iv

)
v∈V

, 	z)

and f ′ = (
φ′, (u′v,�′v, j′v, , ζ ′v = (ζ ′v,i )i∈Iv

)
v∈V

, 	z ′)

are equivalent if there exists a holomorphic reparametrization h :�→�′ such that

u′ ◦ h=u, φ=φ′ ◦ h, h(	z) = 	z ′, and h∗vζ ′h(v),i =cv,iζv,i

for all v∈V and some cv,i ∈C
∗. Here v→ h(v) is the induced map on the vertices of

the dual graph. In particular, rescaling any of the meromorphic sections by a non-zero
complex number does not change the equivalence class. The space

Mplog
g,s (X , D, A, ν)	

of the equivalence classes of stable pre-log maps of the fixed combinatorial type
(g, A, s, 	) is too big; see [7, Example 2.13]. Similar to [7], in the following, we
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will put some restrictions on 	 and take out a subspace that would give us a nice
compactification with the correct expected dimension.

In [7, Sect. 5], corresponding to a decorated dual graph 	=	(V,E,L) as in Defi-
nition 3.9 and an arbitrary orientation O≡{

	
e}e∈E ⊂ 	E on the edges, we constructed

a homomorphism of Z-modules

D = D(	) ≡ Z
E ⊕

⊕

v∈V

Z
Iv

�=�O−−−−−−−→ T = T(	) ≡
⊕

e∈E

Z
Ie (3.39)

whose kernelK and cokernelCK are independent of the choice of the orientation O on
E and are invariants of the decorated graph 	. For each v∈V, e∈E, and sv ∈Z

Iv ∈D,
the e-th component of �(sv) is equal to sv ∈Z

Ie , if v is the starting point of 	e and e is
not a loop; �(sv) is equal to−sv ∈Z

Ie , if v is the ending point of 	e and e is not a loop;
and, is zero otherwise. In this definition and (3.40), via the identity Ie= Iv ∪ Iv′ (see
[7, (2-21)]) for all e ∈ Ev,v′ , and the inclusion

Z
Iv ∼= Z

Iv × {0}Ie−Iv ⊂ Z
Ie ,

we can think of sv as a vector also in Z
Ie . For each e∈E, and λe ∈Ze ∈Z

E ∈D, the
e-th component of �(λe) is equal to λes

	
e, and the rest are zero. In particular,

K =
{
(
(λe)e∈E, (sv)v∈V

)∈ Z
E ⊕

⊕

v∈V

Z
Iv : sv′ −sv=λes

	
e, ∀v, v′ ∈V,

	
e ∈ 	Ev,v′

}

.

(3.40)

In [7, (2-38)], to every (equivalence class of) pre-log J -holomorphic map f we
associate a group element

ob	( f ) ∈ G(	), (3.41)

where

G(	) =
∏

e∈E

(C∗)Ie/Im(exp(�C)) (3.42)

is the complex torus with Lie algebra CKC = coker(�C), and �C is the natu-
ral extension of � over C. The reasoning leading to [7, (2-38)] also applies to the
(J , ν)-holomorphic maps and yields a group element (3.41) for every pre-log (J , ν)-
holomorphic map. More explicitly, given

1. local holomorphic coordinatesw
	
e around15 each nodal point q

	
e∈�v , for all v∈V

and
	
e∈ 	Ev ,

2. and representatives ζv in the C
∗-equivalence class [ζv], for all v∈V,

15 I.e., w
	e
(q
	e
) = 0.
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for each
	
e∈ 	Ev and i ∈ Ie− Iv , locally around q

	
e∈�v , by (3.27) and (3.28) we have

uv(w
	
e) ∼= (uv,i (w

	
e), η̃

	
e,i (w

	
e)w

s
	e,i

	
e ) ∈ NX Di , (3.43)

such that

0 �=η
	
e,i ≡ η̃

	
e,i (0) ∈ NX Di|uv(q	e). (3.44)

In other words, η
	
e,i is the s

	
e,i -th order derivative of uv with respect to w

	
e at q

	
e in the

normal direction to Di . Also, for each 	
e ∈ 	Ev and i ∈ Iv , locally around q

	
e ∈�v , we

have

ζv,i (w
	
e) = η̃

	
e,i (w

	
e)w

s
	e,i

	
e ∈ u∗vNX Di , (3.45)

where

0 �=η
	
e,i ≡ η̃

	
e,i (0) ∈ NX Di|uv(q	e). (3.46)

Then, by [7, (2-38)], the class ob	( f ) of

∏

e∈E

∏

i∈Ie

η
	
e,i

η
	e,i
∈

∏

e∈E

(C∗)Ie (3.47)

inG is independent of the choice such coordinates in 1 and representatives in 2. In other
words, ob	( f )=1 if and only if there exists such coordinates in 1 and representatives
in 2 such that

η
	
e,i = η

	e,i
, ∀e ∈ E, i ∈ Ie. (3.48)

This condition will play a major role in the construction of gluing map in [10] in the
following way. Forgetting the transversality problem, a gluing theoremwould identify

a neighborhood ofMlog
g,s(X , D, A, ν)	 inMlog

g,s(X , D, A, ν) with a neighborhood of
that in a product

Mlog
g,s(X , D, A, ν)× Gl	,

where Gl	 is an explicit space of gluing parameters. For the classical moduli space
of stable maps Mg,k(X , A), the space of gluing parameters along the stratum
Mg,k(X , A)	 is simply C

E, which corresponds to smoothings the nodes of �. For a
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log map f as in (3.38), the space of gluing parameters is

Gl	=
{(
(εe)e∈E, (tv,i )v∈V,i∈Iv

)∈C
E ×

∏

v∈V

C
Iv :

ε
s
	e,i
e tv,i = tv′,i , ∀	e ∈ Ev,v′, i ∈ Ie s.t. s

	
e,i ≥ 0

}
.

(3.49)

Here, εe is the gluing parameter at the node qe and tv,i are the parameters for pushing
the map uv out of Di along the normal vector field ζv,i . In [7, Prop. 5.7], we show that
Gl	 is an affine toric variety corresponding to some explicit toric fan defined by 	.
At each node qe connecting �v and �v′ with ordq

	e
(u, Di )= s

	
e,i >0, the data on �v′

includes a section ζv′,i of u∗v′NX Di with a pole of order s
	
e,i at the nodal point q 	e

∈�v′ .

Near q
	
e, and with respect to a local trivialization of NX Di , uv has the product form

uv(z
	
e) = (η

	
e,i z

s
	e,i

	
e , uv) ∈ C× Di .

On the other hand, ζv′,i has a local expansion ζv′,i (z 	e
) = η

	e,i
z
s
	e,i

	e
+ · · · . Con-

dition (3.48) is equivalent to the existence of a choice of coordinates z
	
e and

representatives ζv,i in their equivalence classes such that

η
	
e,i z

s
	e,i

	
e = η

	e,i
z
s
	e,i

	e
(3.50)

defines a function from the neck region z
	
ez 	e
= εe of the glued domain intoNX Di . The

so-called regularization maps�i used in the definition of J identify a neighborhood of
the zero section inNX Di and aneighborhoodof Di in X . Thus,weget a J -holomorphic
map from the neck region associated to the node qe into X . We then construct the
approximate-gluing log map f̃ in the following way. On each neck region, unlike in
the classical gluing construction where the approximate-gluing map is often defined
to be constant, we (need to) define the approximate-gluing map to be (3.50) in the i-th
direction. Away from the nodes, f̃ is defined to be the push out of uv via the section∑

i∈Iv tv,iζv,i on the v-th component. In between the two regions, f̃ interpolates
between the two maps. Then an argument similar to the classical gluing argument,
with the logarithmic linearization of the Cauchy–Riemann operator in place of the
classical operator D∂̄ in [26, Chapter 10], allows us to find a log (J , ν)-holomorphic
map close to f̃ .

Remark 3.10 To avoid the compatibility requirement (3.50) and thus avoid the com-
plications of working with the (possibly) singular gluing parameter space (3.49), in
[5, Sect. 7], Daemi–Fukaya consider “inconsistent solutions”. These are zero points
of certain Kuranishi map that do not correspond to actual maps into any space. The
same idea can be followed in the normal crossings case but the space of inconsistent
solutions is very hard to describe and control.
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Definition 3.11 Suppose D = ⋃
i∈[N ] Di ⊂ (X , ω) is an SNC symplectic divisor

and (ω,R, J , ν)∈Hg,k(X , D). A log (J , ν)-holomorphic map is a pre-log (J , ν)-
holomorphic map f with the decorated dual graph 	 such that

(1) there exist functions

s :V−→R
N , v �−→sv, and λ :E−→R+, e �−→λe,

such that

(a) sv ∈R
Iv+×{0}[N ]−Iv for all v∈V,

(b) sv2(	
e)−sv1(	

e)=λes	e for every 	
e∈ 	E;

(2) and ob	( f )=1∈G(	).
The first condition is a combinatorial condition on the decorated dual graph 	 and

is equal to the condition that the subspace

KR⊂R
E ⊕

⊕

v∈V

R
Iv

defined as in (3.40) over R has a non-empty intersection with the positive quadrant.
This implies that

σ =KR ∩
(

R
E≥0 ⊕

⊕

v∈V

R
Iv≥0

)

⊂ KR

is a maximal strictly convex rational polyhedral cone; see [7, Lem 5.3]. The affine toric
variety associated to σ is the space of gluing parameters (up to some multiplicity) that
will be used in [10]; see [7, Sect. 5].

A marked log map is stable if it has a finite automorphism group. It is easy to see
that a marked log map is stable if and only if the underlying (J , ν)-map is stable. The
equivalence class of a stable marked log map is called a stable marked log curve. We
denote the space of stable k-marked degree A genus g log (J , ν)-holomorphic curves
of tangency order type s by

Mlog
g,s(X , D, A, ν).

Similar to the J -holomorphic case, given s∈ (ZN )k , for every k-marked stable nodal
map f representing an element of Mg,k(X , A, ν) with dual graph 	 and a choice of
decorations {s

	
e}
	
e∈	E satisfying the necessary combinatorial conditions

s
	
e=−s 	e

, ∀e∈E,
∑

	
e∈	Ev

s
	
e +

∑

l∈Lv

sl = (Av · Di )i∈[N ], ∀v ∈ V, (3.51)
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and Definition 3.11 (1), there exists at most one element flog ∈Mlog
g,s(X , D, A, ν)

lifting f with this decorated dual graph. This is because every section ζv,i is uniquely
determined up to the action ofC∗ by the location and order of its zeros/poles.While flog
is stable if and only if f is stable, the automorphism groups are sometimes different;
see [7, Examples 2.17–2.18].

Remark 3.12 If g= 0, a pre-log lift exists iff there are vectors {s
	
e}
	
e∈	E satisfying the

combinatorial condition (3.51) and the lift is unique. In other words,

Mlog
0,s(X , D, A, ν) ⊂M0,k(X , A, ν)

is the subset of (J , ν)-curves
(
φ, (uv,Cv)v∈V

)
for which there exist vectors {s

	
e}
	
e∈	E

satisfying (3.51), Definition 3.11 (1), and (2). The first two conditions are combina-
torial. The latter is a condition on the derivatives of u at the nodes which depends on
u, ν, and the configuration of special points on each component. In theory, it can be
stated without mentioning the meromorphic sections.

Example 3.13 Let g = 0, k ≥ 3, A= 0 ∈ H2(X ,Z), and s= 	0≡ (0N )k ∈ (NN )k (no
perturbation). We show that

M0,	0(X , D, 0) ∼=M0,k × X .

Every element ofM0,	0(X , D, 0) is (the equivalence class of) a k-marked nodal domain
with the constant map into a point p ∈ DI , for some maximal I ⊂ X , and |I | mero-
morphic functions on each component. The claim is that all k-marked nodal domains
are allowed and (up to equivalence) there is only one possibility for the meromor-
phic functions. The dual graph is a tree. Starting from a vertex v ∈ V with only one
edge

	
e∈ 	Ev , since all the sa are trivial, s

	
e should be trivial as well. Removing v and

continuing inductively we conclude that all the vector decorations s
	
e should be the

trivial vector. Definition 3.11 (1) holds with sv≡ s for all v∈V and any fixed s∈Z
I+.

The meromorphic functions ζv,i : �v→C can be taken to be constant 1. Therefore,
ob	( f )=1 (no matter what G is). Furthermore, Iv = Ie = I for all v∈V and e∈E,
the map

� : Z
E ⊕

⊕

v∈V

Z
I −→

⊕

e∈E

Z
I

in (3.39) is surjective, and

ker(�) = Z
E ⊕�,

where� = {(a)v∈V ∈⊕
v∈V Z

I : a∈Z
I } ∼= Z

I is the diagonal (note that |V|−|E| =
1). We conclude that G is trivial. In this example, transversality holds and perturbation
is not needed. ��
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Remark 3.14 In the previous example, onemay replace s=	0with any s = (s1, . . . , sk)
satisfying

∑
a∈[k] sa = 0N . Then,

M0,	0(X , D, 0) ∼=M0,k × DI0 ,

where [N ]− I0 is the maximal subset such that sa,i =0 for all a∈[k] and i ∈[N ]− I0.
For every k-marked genus 0 nodal domain (�, 	z), there is a unique set of decorations
{s
	
e}
	
e∈	E such that� can be equippedwithmeromorphic functions that have zeros/poles

of order sa at za . The group G is still trivial, but ker(�) will be different.

Example 3.15 Extending Example 3.13 to the higher genus case, let 2g + k ≥ 3,
A=0∈H2(X ,Z), and s=	0 (and no perturbation yet). We show that still

Mg,	0(X , D, 0) ∼=Mg,k × X ,

but transversality does not hold if g> 0. The obstruction bundle is the rank ng orbi-
bundle

π∗1 E∗g ⊗ π∗2 T X(− log D) −→Mg,k × X ,

where π1, π2 are the projection maps onto the first and second components, respec-
tively, and Eg → Mg,k is the Hodge bundle. Every element of Mg,	0(X , D, 0) is
(the equivalence class of) a k-marked nodal domain with the constant map into a point
p ∈ DI , for some maximal I ⊂ X , together with |I | meromorphic functions on each
component. If the dual graph is not a tree, a priori, there are infinitely many possibil-
ities for the vector decorations {s

	
e}
	
e∈	E. The claim is that all k-marked nodal domains

are allowed, but only the trivial decoration satisfies the conditions of Definition 3.11.
By Definition 3.11 (1), there should exists vectors sv ∈Z

I+ such that

sv2(	
e)−sv1(	

e)=λes	e for some λe>0, ∀
	
e ∈ 	E.

For each i ∈ I , choose v∈ V such that sv,i ∈Z+ is maximal. By the previous identity,
s
	
e,i ≤0 for all

	
e∈ 	Ev . Since

∑

	
e∈	Ev

s
	
e,i = Av · Di = 0,

we conclude that s
	
e,i =0 for all

	
e∈ 	Ev . From this we conclude that all sv should be the

same; therefore, s
	
e= 0 for all

	
e∈ 	E. The meromorphic functions ζv,i : �v → C can

be taken to be constant 1. Therefore, ob	( f )= 1 (no matter what G is). In this case,
the map

� : Z
E ⊕

⊕

v∈V

Z
I −→

⊕

e∈E

Z
I
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in (3.39) is not necessarily surjective. In this example, transversality does not hold for
two reasons. The logarithmic linearization of Cauchy–Riemann operator in (4.7) is
not surjective and 1 is not a regular value of ob	 . Passing to a regular cover

p : Mg,k −→Mg,k

as in (3.4) and taking a generic perturbation term16 νlog in

	
(
Ug,k × X , π∗1 E∗g ⊗ π∗2 T X(− log D)

)
,

we get

Mg,	0(X , D, 0, ν) ∼= ν−1log(0).

Therefore, the Virtual Fundamental Class of Mg,	0(X , D, 0) is the Euler class of the
orbi-bundle π∗1 E∗g ⊗ π∗2 T X(− log D) in Mg,k × X (generalizing the classical and
relative examples in [17, Sect. 4.1]). ��

Each moduli space Mlog
g,s(X , D, A, ν) is coarsely stratified by the subspaces

Mg,s(X , D, A, ν)	 = ob−1	 (1) ⊂Mplog
g,s (X , D, A, ν)	

consisting of log (J , ν)-holomorphic curves with the decorated dual graph 	. Here
a decoration consists of genus and degree decorations on vertices, ordering of the
marked points and s, labelings by subsets of [N ] in (3.37), and vectors {s

	
e}
	
e∈	E sat-

isfying the combinatorial condition (3.51). The vectors {s
	
e}
	
e∈	E are also required to

satisfy Definition 3.11 (1) but the vectors {sv}v∈V are not part of the decoration. By
Theorem 1.3, for each (g, s, A), the set of such decorated dual graphs 	 is finite.

Remark 3.16 Suppose f as in (3.38) is a (J , ν)-log curve inMg,s(X , D, A, ν)	 and
	′ = (V′,E′,L′) is a connected subgraph of 	. The new set of legs L

′ consists of
those legs l ∈ L such that v(l) ∈V

′, as well as those oriented edges
	
e ∈ 	E such that

v1(	
e)∈ V

′ but v2(	e) /∈ V
′. Let f ′ be the tuple as in (3.38) obtained by restricting to

the connected sub-nodal curve

�′ =
⋃

v∈V′
�v.

Then f ′ is also a log (J , ν|�′)-curve with

s′ =
((
sl
)
l∈L : v(l)∈V′,

(
s
	
e
)

	
e∈	E : v1(	e)∈V′,v2(	

e)/∈V′
)

and A′ =
∑

v∈V′
Av.

16 This argument needs some justification, as we should explain the relation between such a perturbation
with perturbations in (3.17).
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The combinatorial conditions of Definition 3.9 and Definition 3.11 (1) are clearly sat-
isfied. By definition, ob	′( f ′)=1∈G(	′) iff there are local holomorphic coordinates
around each nodal point of�′ and representatives ζv in the C

∗-equivalence class [ζv],
for all v∈V

′, such that (3.48) holds. The restriction to f ′ of such local holomorphic
coordinates and representatives for f has the required property.

4 Deformation Theory and Transversality

4.1 Main Stratum

In this section, similar to the classical case, we realize Mg,s(X , D, A, ν) as the zero
set of a section ∂̄ log − νlog of some infinite dimensional bundle over an appropri-
ately defined configuration space. The linearization of this section is a logarithmic
lift Dlog

u {∂̄ − ν} of the classical linearization map Du{∂̄−ν}. Then, it follows from
Sard–Smale theorem thatMg,s(X , D, A, ν) is cut transversely for generic ν. If ν≡0,
the same statement holds for generic J if we restrict to the subspace of simple maps
M�

g,s(X , D, A).
We prove the following transversality statement.

Proposition 4.1 Suppose (X , ω) is a closed symplectic manifold, D = ⋃
i∈[N ] Di is

an SNC symplectic divisor, A∈H2(X ,Z), g, k∈N, and s∈(NN )k .

(1) If 2g+ k ≥ 3, for any given choice of universal family in (3.5), there exists a
Baire set of second categoryH∅g,k(X , D)R,J ⊂Hg,k(X , D)R,J such that for each

ν ∈H∅g,k(X , D)R,J , Mg,s(X , D, A, ν) is a naturally oriented smooth manifold
of the real dimension

2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k

)
.

The restriction of st× ev in (1.5) toMg,s(X , D, A, ν) is smooth.
(2) If17 g=0, ν≡0, and A �=0 or k≥3, the same statement holds for J in a Baire set

of second category AK∅(X , D)R⊂AK(X , D)R if we restrict to the subspace of
simple maps M�

0,s(X , D, A).

We start by setting up a suitable analytical frame work for studying the deformation
theory of log (J , ν)-holomorphic maps. This setup is in some sense the main step of
the proof.

Definition 4.2 Fix a smooth k-marked genus g curve (�, j, 	z), local holomorphic
coordinates18 around the marked points, A ∈ H2(X ,Z), a regularization R for D in
X , and s as in (1.1). With Ia⊂[N ] as in (1.3), for each a∈[k], we say a smooth map
u : �→ X has tangency order type s with D at 	z if
17 Restriction to g= 0 is not necessary here but this is the case that we will need later. Furthermore, the
generalization of this statement in part (2) of Proposition 4.8 requires the g = 0 assumption or allowing
deformations ofR.
18 This is not needed here, but it will be needed in constructing a Banach completion of
MapA,s

(
(�, 	z), (X , D)); see the end of Remark 4.5.
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• u−1(D) = d ⊂ {z1, . . . , zk},
• u(za) = pa ∈ DIa − ∂DIa , for all a∈[k],
• and

�−1Ia
◦ u(wa) =

(

ua(wa),
⊕

i∈Ia
wsai
a ηa,i (wa)

)

∈ NX DIa , ∀a ∈ [k], (4.1)

where Ua is a sufficiently small neighborhood of the marked point za in �, wa

is the local holomorphic coordinate on Ua with wa(za)=0, ua :Ua→ DIa is the
projection of �−1Ia

◦ u to DIa , and ηa = (ηa,i )i∈Ia is a smooth section of

u∗aNX DIa
∼=

⊕

i∈Ia
u∗aNX Di

satisfying

ηa,i (0) �= 0, ∀i ∈ Ia .

Let MapA,s
(
(�, 	z), (X , D)) denote the set of smooth degree A maps of tangency

order type swith D at 	z. This space is an infinite dimensional Fréchet manifold whose
tangent space at any u is the infinite dimensional vector space

	(�, u∗T X(− log D)R).

More explicitly, if {ut }t∈[0,ε) is a 1-parameter family ofmaps inMapA,s
(
(�, 	z), (X , D)),

restricted to � − d, by the first bullet in Definition 4.2, we get

ξ∅ = d

dt
ut|t=0∈ 	(� − d, {u0|�−d}∗T X(− log D)) ∼= 	(� − d, {u0|�−d}∗T X).

On the other hand, for each a ∈ [k] with za ∈ d, restricted to the chart Ua in the third
bullet above, by (4.1), we have

�−1Ia
◦ ut =

(

ut,a,
⊕

i∈Ia
wsai
a ηt,a,i

)

.

Therefore,

d

dt

(
�−1Ia

◦ ut
)|t=0= π∗Ia ξIa ⊕

⊕

i∈Ia
wsai
a η0,a,i ca,i , (4.2)

where π∗ξIa is the horizontal lift of

ξIa =
d

dt
ut,a|t=0∈ 	(Ua, u

∗
0,aT DIa )
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to the horizontal subspace T horNX DIa
∼= π∗Ia T DIa , and

ca,i =
d
dt ηt,a,i (wa)|t=0
η0,a,i (wa)

: Ua −→ C, ∀i ∈ Ia .

By (2.11)–(2.13) and (4.2), ξ∅ and {ξIa ⊕ (ca,i )i∈Ia }za∈d define a global section ξlog
of u∗T X(− log D) that maps to

ξ = d

dt
ut|t=0∈ 	(�, u∗0T X)

under the homomorphism ι in (2.10). Conversely, given a section ξlog ∈	(�, u∗0T X
· (− log D)), logarithmic exponentiation (see (2.14)) of ξlog, corresponding to a
Hermitian metric on T X(− log D), produces a 1-parameter family of maps in
MapA,s

(
(�, 	z), (X , D)) with tangent vector ξ= ι(ξlog) at t=0.

Lemma 4.3 For every u∈MapA,s
(
(�, 	z), (X , D)), there exists a logarithmicCauchy–

Riemann section

∂̄ logu ∈ 	(�,

0,1
�,j ⊗C u∗T X(− log D)) (4.3)

such that the following diagram commutes:

u∗T X(− log D)

ι

T 0,1�

∂̄ logu

∂̄u
u∗T X .

(4.4)

Proof Away from d, by the first bullet in Definition 4.2 and the identification

T X(− log D)|X−D∼= T X|X−D,

we define ∂̄ logu = ∂̄u. For each a ∈ [k] with za ∈ d, restricted to the chart Ua in
Definition 4.2, by (4.1), we have

�−1Ia
◦ ∂̄u = π∗∂̄ua ⊕

⊕

i∈Ia
∂̄u∗NX Di (w

sai
a ηa,i ) = π∗Ia ∂̄ua ⊕

⊕

i∈Ia
wsai
a ∂̄u∗NX Di (ηa,i ).

Restricted to Ua , we define ∂̄ logu to be

�−1Ia
◦ ∂̄ logu = π∗Ia ∂̄ua ⊕

⊕

i∈Ia

∂̄u∗NX Di ηa,i

ηa,i
.

By (2.11)–(2.13), these local sections define a global section (4.3) that maps to ∂̄u
under the homomorphism ι in (2.10). ��
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Let MapA(�, X) denote the space of all smooth degree A maps from � into X ,

EA
(
�, X

) −→ MapA(�, X) (4.5)

denote the infinite dimensional vector space whose fiber over every map u is

	(�,

0,1
�,j ⊗C u∗T X),

and

EA(�, X) −→ MapA(�, X) (4.6)

denote the infinite dimensional vector space whose fiber over every map u is

	(�,

0,1
�,j ⊗C u∗T X(− log D)).

The classical CR operator (1.10) can be seen as a section of (4.5). By Lemma 4.3, the
restriction of this section to MapA,s

(
(�, 	z), (X , D)) defines a section of (4.6). Simi-

larly, for every ν∈Hg,k(X , D)R,J associated to νlog as in (3.18) and an identification
φ of (�, j, 	z) with a fiber of the universal family π : Ug,k →Mg,k (used to define ν),
the restriction of ∂̄ − ν to MapA,s

(
(�, 	z), (X , D)) lifts to the section ∂̄ log − νlog of

(4.6) so that the following diagram commutes:

EA,s
(
(�, 	z), (X , D)) EA

(
�, X

)

MapA,s
(
(�, 	z), (X , D))

∂̄ log−νlog

MapA
(
�, X

)
.

∂̄−ν

The linearization of ∂̄ log − νlog along the zero set is then the restriction/lift

Dlog
u {∂̄−ν} ≡ Du{∂̄ log−νlog}

of the classical linearization map Du{∂̄ − ν} to 	(�, u∗T X(− log D)) so that the
following diagram commutes:

	(�, u∗T X(− log D))
Dlog
u {∂̄−ν}

ι1

	(�,

0,1
�,j ⊗C u∗T X(− log D))

ι2

	(�, u∗T X)
Du{∂̄−ν}

	(�,

0,1
�,j ⊗C u∗T X).

(4.7)

Fix a j-Hermitian metric on T� and a J -Hermitian metric on T X(− log D), an
integer �≥ 1, and a real number p> 2. Via the logarithmic exponentiation map, we
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can then construct a completion W �,p
A,s

(
(�, 	z), (X , D)) of MapA,s

(
(�, 	z), (X , D))

which is a smooth separable Banach manifold with tangent space

TuW
�,p
A,s

(
(�, 	z), (X , D)) = Wk,p(�, u∗T X(− log D)

)
. (4.8)

The completion E�−1,pA,s

(
(�, 	z), (X , D)) of EA,s

(
(�, 	z), (X , D)) is a Banach complex

vector bundle over W �,p
A,s

(
(�, 	z), (X , D)). For every ν ∈ Hg,k(X , D)R,J and any

identification φ of (�, j, 	z) with a smooth fiber of the universal family Ug,k used to
define ν, ∂̄ log−νlog defines a smooth section of Banach bundle

E�−1,pA,s

(
(�, 	z), (X , D)) −→ W �,p

A,s

(
(�, 	z), (X , D)). (4.9)

As in the classical case (3.10), Dlog
u {∂̄ − ν} can be written as the sum of a complex

linear map (a CR operator on u∗T X(− log D)) and a compact operator (It is the
restriction of the corresponding operators). Thus, by Riemann–Roch, it is a Fredholm
operator with index

dimR Deflog(u)− dimR Obslog(u) = 2
(
deg(u∗T X(− log D))+dimCX(1−g)

)
,

where

Deflog(u) ≡ ker
(
Dlog
u {∂̄ − ν}) and Obslog(u) ≡ coker

(
Dlog
u {∂̄ − ν}).

From Implicit-Function Theorem [26, Thm.A.3.3], we deduce the following corollary.

Corollary 4.4 If u ∈MapA,s
(
(�, 	z), (X , D)) is (J , ν)-holomorphic and Obslog(u)≡

0, in a small neighborhood B(u) of u in W �,p
A,s

(
(�, 	z), (X , D)) the set of (J , ν)-

holomorphic maps

Vu≡{∂̄ log − νlog}−1(0) ∩ B(u)

is a smooth manifold of real dimension (1.11).

Furthermore, by elliptic regularity, all the elements of Vu and Deflog(u) ∼= TuVu are
smooth (see [26, Thm. 3.1.5]). The manifold Vu carries a natural orientation. Starting
with the complex linear part of Dlog

u {∂̄ − ν}, both the kernel and cokernel of that are
complex linear and thus naturally oriented. By deforming Dlog

u {∂̄−ν} into its complex
linear part via a 1-parameter family of compact operators, [26, Prop. A.2.4] gives us
a natural orientation on Deflog(u).

Next, we consider deformations of the marked domain C = (�, j, 	z). Given a
regular covering p : Mg,k → Mg,k and a universal family π : Ug,k → Mg,k as in
(3.4)–(3.5), let

Mg,k= p−1(Mg,k), Ug,k=π−1(Mg,k), π : Ug,k−→Mg,k,
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be the restrictions to the subspace of smooth curves. Choose a projective embedding
Ug,k → P

M , for some sufficiently large M , and define

W �,p
A,s

(
(Ug,k, 	z), (X , D)

) ≡
{
(c, u) : c∈Mg,k, u∈W �,p

A,s

(
(π−1(c), 	z(c)), (X , D))

}

(4.10)

where the metric considered on

(
(�, jc), 	z

)≡(
π−1(c), 	z(c)),

for each c∈Mg,k , is the restriction of Fubini–Study metric on P
M to the image of �.

Remark 4.5 By definition, each fiber of the projection map

W �,p
A,s

(
(Ug,k, 	z), (X , D)

) −→Mg,k (4.11)

has a Banach manifold structure but the total space does not a priori come with a
natural smooth structure. In order to define a Banach manifold structure on (4.10),
we need to fix a smooth trivialization of Ug,k → Mg,k . Such a trivialization gives
us a trivialization of (4.10) and thus a product Banach manifold structure on that; see
[11, Sect. 6.1]. The genus-g surface-bundle Ug,k →Mg,k does not necessarily admit
a global smooth trivialization. However, for B⊂Mg,k sufficiently small around any
b∈Mg,k ,

C=π−1(B) −→ B (4.12)

is smoothly trivial. In other words, locally around every
(
(�, jb), 	z

)≡(
π−1(b), 	z(b))

there exists an Aut
(
(�, jb), 	z

)
-equivariant diffeomorphism

ϕ : C −→ � × B (4.13)

such thatπ ◦ϕ−1 is the projection onto the second factor, each sectionϕ◦za is constant,
andϕ|π−1(b)= id� . The smooth trivializationϕ gives rise to aBanachmanifold structure
on the restriction

W �,p
A,s

(
(C, 	z|B), (X , D)

) ≡
{
(c, u) : c∈B, u∈W �,p

A,s

(
(π−1(c), 	z(c)), (X , D))

}

(4.14)

which we denote by W �,p
A,s

(
(C, 	z |B), (X , D)

)
ϕ
. If ϕ1 and ϕ2 are two such smooth

trivialization maps, the map

W �,p
A,s

(
(C, 	z|B), (X , D)

)
ϕ1
−→ W �,p

A,s

(
(C, 	z|B), (X , D)

)
ϕ2

induced by the change of trivialization map ϕ2 ◦ ϕ−11 is not smooth (unless ϕ2◦ϕ−11
is constant in c); see [28, Sect. 3.1]. Therefore, there is no natural way of putting
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a Banach manifold structure on (4.11). On the other hand, restricted to the moduli
space which is the zero set of ∂̄ log − νlog, (by elliptic regularity) the transition maps
are smooth. Therefore, in the proof of Proposition 4.1 below, we cover Mg,k with
countably many such charts, find a Baire set of regular perturbation terms for each
one, and then take intersection which yields a Baire set again. It is for the same reason
that we fix local coordinates around the marked points in Definition 4.2. If wa and
w′a are two local coordinates around the marked point za , they are related by a C

∗-
valued reparametrization map ϕ; i.e. w′a = ϕ(wa)wa . The Banach smooth structure

W �,p
A,s

(
(�, 	z), (X , D)) with respect to wa and w′a will not be the same unless ϕ is

constant. In the family version (4.12), we will fix local defining equationswa : C → C

for Cartier divisors za(B)⊂C. The restriction ofwa to each fiber is the local coordinate
needed in Definition 4.2; see [11, (5.20)–(5.21)] for details.

Let

E�−1,pA,s

(
(Ug,k, 	z), (X , D)

) −→ W �,p
A,s

(
(Ug,k, 	z), (X , D)

)
(4.15)

denote the natural extension of (4.9) over Mg,k . Similar to the previous paragraph,
locally over any sufficiently small neighborhoodB of b∈Mg,k , a smooth trivialization
ϕ as in (4.13) gives rise to a Banach vector bundle structure on the restriction

E�−1,pA,s

(
(C, 	z|B), (X , D)

) −→ W �,p
A,s

(
(C, 	z|B), (X , D)

)
(4.16)

such that ∂̄ log−νlog is a smooth section of that.

Remark 4.6 Let f = (u,C) ∈ Mg,s(X , D, A) (no perturbation here). Similar to the
classical case (see [19, Sect. 24.1] and [11, Remark 6.2.1]), deformation theory of f ,
i.e., if we allow deformations of both u andC , is described by the long exact sequence

0 −→ aut(C)
δ−→ Deflog(u) −→ Deflog( f ) −→ Def(C)
δ−→ Obslog(u) −→ Obslog( f ) −→ 0,

(4.17)

where

aut(C) = H0
∂̄
(T�(− log 	z)) and Def(C) ∼= TbB ∼= H1

∂̄
(T�(− log 	z)).

If Obslog( f ) = 0, then a small neighborhood B( f ) of f in Mg,s(X , D, A) is a
smooth orbifold of the expected real dimension (1.9). The long exact sequence (4.17)
is the hyper-cohomology of a short exact sequence of complexes of fine sheaves
constructed in the following way. In order to simplify the notation, for a complex
vector bundle E → (�, j) let 
0(E) and 
0,1(E) denote the associated fine sheaves
of smooth sections of E and of smooth E-valued (0, 1)-forms, respectively. The map
du : T�→ T X gives rise to a logarithmic derivative map

dlogu : T�(− log 	z) −→ u∗T X(− log D)
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such that the following diagram commutes:

T�(− log 	z) dlogu

ι�,	z

u∗T X(− log D)

ιX ,D

T�
du

u∗T X .

(4.18)

Away from the D-intersection points d, by the first bullet in Definition 4.2 and the
identification

T X(− log D)|X−D

ιX ,D∼= T X|X−D,

we have dlogu = ι−1X ,D ◦ du ◦ ι�,	z . For each intersection point za ∈	z, restricted to the

chart Ua in Definition 4.2, by (4.1), dlogu is given by

�−1Ia
◦ dlogu = π∗Iadua ⊕

⊕

i∈Ia

(

sai
dwa

wa
+ ∇

(Ia;i)ηa,i
ηa,i

)

,

which maps the local generating section wa∂wa to

π∗Ia∂ua(wa∂wa)⊕
⊕

i∈Ia

(

sai + wa
∇(Ia;i)
∂wa

ηa,i

ηa,i

)

. (4.19)

The following commutative diagram has exact rows:

0 
0(T�(−	z))

dlogu⊕∂̄


0(T�(−	z))

∂̄


0(u∗T X(− log D))

D
log
u ∂̄


0(u∗T X(− log D))⊕
0,1(T�(−	z))

D
log
u ∂̄−dlogu


0,1(T�(−	z))


0,1(u∗T X(− log D)) 
0,1(u∗T X(− log D)) 0;

i.e., it is an exact sequence of chain complexes given by the columns. Then, the
deformation/obstruction long exact sequence (4.17) is the hyper-cohomology of this
diagram. By (4.19) and similar to the classical case [33, pp. 284–285], if u is an
immersion away from 	z and

u−1(D) = d = {z1, . . . , zk}

(i.e., sa �= 0 for all a∈[k]), then dlogu is an embedding, the quotient

NX�(− log D) ≡ u∗T X(− log D)/(dlogu T�(−	z))
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is a complex vector bundle, and Dlog
u ∂̄ descends to a Fredholm operator Dlog

N ∂̄ on
smooth sections of NX�(− log D) such that

Deflog( f ) = ker(Dlog
N ∂̄) and Obslog( f ) = coker(Dlog

N ∂̄). (4.20)

If dlogu is not an embedding, we still obtain a short exact sequence of sheaves of
O�-modules

0 −→ O(T�(− log 	z)) dlogu−→ O(u∗T X(− log D)) −→ N −→ 0

such that

N = O(NX�(− log D))⊕N tor

is the direct sum of sheaf of holomorphic sections of an (n−1)-dimensional holomor-
phic vector bundle NX�(− log D) and a skyscraper sheaf N tor. Furthermore, Dlog

u ∂̄

descends to a Fredholm operator Dlog
N ∂̄ on smooth sections of NX�(− log D) such

that

Deflog( f ) = ker(Dlog
N ∂̄)⊕ H0(N tor) and Obslog( f ) = coker(Dlog

N ∂̄). (4.21)

In particular, Obslog( f )=0 whenever dimCX=1.

Proof of Proposition 4.1 Since every map u in W �,p
A,s

(
(Ug,k, 	z), (X , D)

)
meets D only

at finitely many points, by substituting Du{∂̄ − ν} with Dlog
u {∂̄ − ν}, Proposition 4.1

essentially follows from restricting the arguments of the proof of [32, Thm. 3.1] and
[26, Thm. 3.1.5] to maps in W �,p

A,s

(
(Ug,k, 	z), (X , D)

)
.

More precisely, for m>�, let Hm
g,k(X , D)R,J denote the completion of the vector

space Hg,k(X , D) in Cm-topology. The universal moduli space

Mg,s(X , D, A) =
{
(
(c, u), ν

) ∈ W �,p
A,s

(
(Ug,k, 	z), (X , D)

)×Hm
g,k(X , D)R,J :

∂̄ logu(x) = νlog(x, u(x)), ∀x ∈ π−1(c)
} (4.22)

is the zero set of the section19

∂̄ log − νlog : W �,p
A,s

(
(Ug,k, 	z), (X , D)

)×Hm
g,k(X , D)R,J → E�,p

A,s

(
(Ug,k, 	z), (X , D)

)

(4.23)

19 To be precise, the right-hand side should be π∗1 E
�,p
A,s

(
(Ug,k , 	z), (X , D)

)
, where π1 is projection map to

the first component

W �,p
A,s

(
(Ug,k , 	z), (X , D)

)×Hm
g,k (X , D)R,J −→ W �,p

A,s

(
(Ug,k , 	z), (X , D)

)
.

We avoid these details to keep the notation short.
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and is independent of (�, p) by the elliptic regularity. Restricting to each sufficiently
small sub-universal family C → B and fixing a smooth trivialization ϕ as above, the
restricted section

∂̄ log − νlog : W �,p
A,s

(
(C, 	z|B), (X , D)

)×Hm
g,k(X , D)R,J → E�,p

A,s

(
(C, 	z|B), (X , D)

)

(4.24)

isCm−�-smooth.With the same reasoning as in the argument leading to the surjectivity
of [32, (3.12)], for c ∈ B and ((c, u), ν) in the universal moduli space (4.22), the
linearization map

Dlog
((c,u),ν){∂̄ − ν} : T(c,u)W �,p

A,s

(
(C, 	z|B), (X , D)

)⊕ TνHm
g,k(X , D)R,J

−→ 	(�,

0,1
π−1(c) ⊗C u∗T X(− log D)) (4.25)

of the section (4.23) is surjective. This is due to the fact that coker(Dlog
u {∂̄−ν}) can be

represented by sections supported away from the intersection points where everything
has a classical form. Therefore, the universal moduli space

Mg,s(X , D, A)|B
is a separable Cm−�-smooth Banach manifold. Here the restriction to B means we are
only considering (J , ν)-maps with domain in B corresponding to (4.23). Then by the

Sard–Smale Theorem, the set of regular values Hreg(B)
g,k (X , D)R,J of the projection

map

π2 : Mg,s(X , D, A)|B−→ Hm
g,k(X , D)R,J

is Baire set of second category. For every ν∈Hreg(B)
g,k (X , D)R,J ,

Mg,s(X , D, A, ν)|B= π−12 (ν)

is a smooth manifold of the expected dimension. Cover Mg,k with countably many
charts {Bi }∞i=1 and let

Hreg
g,k(X , D)R,J =

∞⋂

i=1
Hreg(Bi )

g,k (X , D)R,J .

This is still a Baire set of second category so that for each ν∈Hreg
g,k(X , D)R,J ,

Mg,s(X , D, A, ν)

is a smooth manifold of the expected dimension. With an argument similar to the
Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude that the subset of
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smooth perturbations

H∅g,k(X , D)R,J = Hreg
g,k(X , D)R,J ∩Hg,k(X , D)R,J

satisfies the first statement in Proposition 4.1.
With the modifications above, proof of the second statement is similar to the proof

of [26, Thm. 3.1.5]. More precisely, for g = 0 and no perturbation, if k ≥ 3, let

U0,k =M0,k+1 −→M0,k =M0,k

denote the universal curve, and if k < 3, let U0,k = P
1, M0,k be a point, and autk =

Aut(P1, 	z). Let

M̃0,s(X , D, A)

=
{(
(c, u), J

)∈W �,p
A,s

(
(U0,k, 	z), (X , D)

)×AKm(X , D)R : ∂̄ logu(x) = 0
}

(4.26)

be the zero set of the section

∂̄ log : W �,p
A,s

(
(U0,k, 	z), (X , D)

)×AKm(X , D)R −→ E�,p
A,s

(
(U0,k, 	z), (X , D)

)
.

(4.27)

The universal moduli space M0,s(X , D, A) is the quotient of M̃0,s(X , D, A) with
respect to autk . Since coker

(
Du ∂̄

log
)
can be represented by sections supported away

from the intersection points, the same reasoning as in the proof of [26, Thm. 3.15]
shows that the linearization map

D((c,u),J )∂̄
log : T(c,u)W �,p

A,s

(
(C, 	z|B), (X , D)

)⊕ TJAK
m(X , D)R

−→ 	(�,

0,1
π−1(c) ⊗C u∗T X(− log D)) (4.28)

is surjective,wheneveru is simple.Therefore, the subset of simplemapsM�
0,s(X , D, A)

in the universal moduli space is a separable Cm−�-smooth Banach manifold. Then by
the Sard–Smale Theorem, the set of regular values AKreg(X , D)R of the projection
map

π2 : M�
0,s(X , D, A) −→ AKreg(X , D)R

is Baire set of second category. With an argument similar to the Taubes’ trick in the
proof of [26, Thm. 3.1.6 (ii)], we conclude that the subset of smooth perturbations

AK∅(X , D)R = AKreg(X , D)R ∩ AK(X , D)R

satisfies the second statement in Proposition 4.1. ��
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Moving to the simple nodal case in Sect. 4.3, we will need to show that certain
evaluation maps on the universal moduli spaces are transverse. In the analytical setup
of [26], the proof of transversality of evaluation maps in [26, Prop. 6.2.8] uses [26,
Prop. 3.4.2] and induction on the number of edges. Proposition 3.4.2 in [26], itself, is a
consequence of [26, Lem. 3.4.3]. We will need the following natural generalization of
[26, Lem. 3.4.3] to show that the evaluation maps at the nodes and ob	 are transverse.
With ∂̄ log and Dlog

u ∂̄ in place of ∂̄ and Du ∂̄ , respectively, its proof is similar to the
(long and explicit) proof of [26, Lem. 3.4.3].

Lemma 4.7 Let A �= 0 and (�, 	z) be a smooth k-marked curve.20 With notation as
above, let

(u, J ) ∈ M̃�
g,s(X , D, A) ⊂ W �,p

A,s

(
(�, 	z), (X , D))×AKm(X , D)R.

For each a ∈ [k], let ξa be a log tangent vector in Tu(za)X(− log D)R. For each open
set U⊂� − 	z, there exists

ξ ∈W �,p(�, u∗T X(− log D)R
)

and Y ∈TJAKm(X , D)R

such that

ξ(za) = ξa, ∀a ∈ [k], Supp(Y |u(�)) ⊂ U , and Du ∂̄
logξ + 1

2
Y ◦ du ◦ j = 0.

4.2 Depth-IMaps

For each ν∈Hg,k(X , D)R,J , consider a log map

f =[
u, (ζi )i∈I , (�, j, z1, . . . , zk)

]∈Mlog
g,s(X , D, A, ν)

where � is smooth, i.e., u(�) ⊂ DI for a non-trivial maximal subset I ⊂ S,
ordza (u, Di ) = sai ≥ 0 for all i ∈ [N ] − I , and ordza (ζi ) = sai for all i ∈ I . We
allow sai to be negative for i ∈ I . Let

Mg,s(X , D, A, ν)I ⊂Mg,s(X , D, A, ν)

be the stratum of such maps. The stratum Mg,s(X , D, A, ν)I is a generalization of
the main stratum

Mg,s(X , D, A, ν)∅ =Mg,s(X , D, A, ν)

where the domain is still smooth, but the image could lie in a non-trivial stratum of
the divisor.

20 We just need the sphere case.
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Forgetting themeromorphic sections ζi , for the same reason21 as in [7, Remark 2.3],
we get a topological embedding

Mg,s(X , D, A, ν)I ↪−→Mg,s(DI , ∂DI , A, νI ),

[φ, u, (ζi )i∈I , �, 	z ] �−→ [φ, u, �, 	z ], (4.29)

where ∂DI ⊂DI is the boundary divisor as in (2.5) and

s=(
sa=(sai )i∈[N ]−I

)
a∈[k] ∈(N[N ]−I )k .

In this section we prove the following transversality argument.

Proposition 4.8 Suppose (X , ω) is a closed symplectic manifold, D = ⋃
i∈[N ] Di is

an SNC symplectic divisor, A∈H2(X ,Z), g, k∈N, and s∈(ZN )k , with s ∈ (N[N ]−I )k .

(1) If 2g+ k ≥ 3, for any given choice of universal family in (3.5), there exists a
Baire set of second categoryHI

g,k(X , D)R,J ⊂Hg,k(X , D)R,J such that for each

ν∈HI
g,k(X , D)R,J , Mg,s(X , D, A, ν)I is a naturally oriented smooth manifold

of the real dimension

2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k − |I |).

(2) If g=0, ν≡0, and A �=0 or k≥3, the same statement holds for J in a Baire set
of second category AKI (X , D)R⊂AK(X , D)R, if we restrict to the subspace of
simple maps M�

0,s(X , D, A)I .

Proposition 4.1 is a special case of Proposition 4.8, where I = ∅. By (3.20) and
(3.23), in a neighborhood of DI , every ν ∈ Hg,k(X , D)R,J can be decomposed as
π∗I νI ⊕ nI , where

νI ∈Hg,k(DI , ∂DI )RI ,JI ,

and nI is determined by a family of C
I -valued (0, 1)-forms

θI ∈ �g,k(DI ) ≡
{

(θI ,i )i∈I ∈ 	
(
U
�

g,k × DI , π
∗
1


0,1
g,k ⊗C C

I ) :

supp(θI ,i ) ⊂
(

U
�

g,k −
⋃

a∈[k]
Im(za)

)

× DI

}

.

The map

Res : Hg,k(X , D)R,J −→ Hg,k(DI , ∂DI )RI ,JI ×�g,k(DI ), ν �−→ (νI , θI ),

(4.30)

21 Fixing a set of marked points, up to multiplication by a constant, there is at most one meromorphic
section of any holomorphic line bundle with prescribed zeros/poles at the marked points and nowhere else.
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is surjective and continuous. Therefore, in order to prove the first statement of Propo-
sition 4.8, it is enough to find a Baire set of second category

H�
reg
g,k(DI , ∂DI )RI ,JI ⊂Hg,k(DI , ∂DI )RI ,JI ×�g,k(DI ) (4.31)

such that for each ν with Res(ν) :=(νI , θI ) in this set, the statement of Proposition 4.8
holds. Similarly, in case (2), the map

AK(X , D)R −→ AK(DI , ∂DI )RI

is surjective and continuous. Below, we show that we can take AKI (X , D)R to be the
preimage of AK∅(DI , ∂DI )RI given by the second part of Proposition 4.1. Therefore,
the main goal of this section is to describe the normal bundle of the embedding (4.29)
and H�

reg
g,k(DI , ∂DI )RI ,JI . Proposition 4.8 can also be obtained from (proof of)

Proposition 4.1 by a looking (u, (ζi )i∈I ) as a log map into the fiber product (3.26) of
the projectivizations of NX Di . We will explain this argument in Remark 4.14.

For each complex curve (�, j), let Pic0(�, j) be the group of degree 0 holomorphic
line bundles on (�, j), O = O�,j ∈ Pic0(�, j) be the trivial line bundle, and O I ≡⊕

i∈I O. Let

Pic0(Ug,k) −→Mg,k

be the fiber bundle whose fiber over every c ∈Mg,k is Pic0(π−1(c)). In the following,
by O we mean the section

O : Mg,k −→ Pic0(Ug,k)

that takes c to the trivial line bundle Oπ−1(c). Image of O has complex codimension
g. By abuse of notation, we also let Pic0(Ug,k) to denote the pull back of Pic0(Ug,k)

toMg,s(DI , ∂DI , A, νI ) (or any other configuration space).
The next Lemma describes the (virtual) normal bundle of the embedding (4.29).

Lemma 4.9 For each (νI , θI ) = Res(ν) as in (4.30), there exists a natural map

PθI = (PθI ,i )i∈I : Mg,sI (DI , ∂DI , A, νI )−→Pic0(Ug,k)
I (4.32)

such that

Mg,s(X , D, A, ν)I = P−1θI

(
O I ).

In particular,

M0,s(X , D, A, ν)I =M0,sI (DI , ∂DI , A, νI ). (4.33)
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Proof For each i ∈ I and (
φ, u, (�, j, 	z))∈Mg,sI (DI , ∂DI , A, νI ), define

PθI ,i
(
φ, u, (�, j, 	z)) = u∗NX Di ⊗O�

(

−
∑

a∈[k]
sai za

)

∈ Pic0(�, j),

where the holomorphic structure on the line bundle u∗NX Di is given by the ∂̄-operator

DNi
u {∂̄−ν} = ∂̄u∗NX Di − (φ, u)∗θI ,i

and the second term is the line bundle corresponding to the divisor
∑k

a=1 sai za . By
definition, PθI ,i (φ, u, �, 	z)=O if and only if there exists a non-trivial meromorphic
section ζi of u∗NX Di with zeros/poles of order sai and za , for all a= 1, . . . , k (and
nowhere else). ��

Remark 4.10 In light of Lemma 4.9, the moduli space Mlog
g,s(X , D, A, ν) can be

described without mentioning the meromorphic sections ζv,i in the following way.
This explains the absence of these sections in the proof of Proposition 4.8 part (1)

and other proofs. An element ofMlog
g,s(X , D, A, ν) is the equivalence class of a stable

(J , ν)-holomorphic map

(
uv,�v, jv, 	zv ∪ qv

)
v∈V

,

together with a choice of decorations {s
	
e}
	
e∈	E on the nodal points such that such that

(1) s
	
e=−s 	e

, ∀e ∈ E,
∑

	
e∈	Ev

s
	
e +

∑

l∈Lv

sl = (Av · Di )i∈[N ], ∀v ∈ V;

(2) for each v∈V,
	
e∈ 	Ev , and i /∈ Iv , uv has a tangency of order s

	
e,i with Di at q

	
e;

(3) for each v∈V, l∈Lv , and i /∈ Iv , uv has a tangency of order sal ,i with Di at zal ;
(4) there exists a vector-valued function s : V → R

N such that sv = s(v) ∈ R
Iv+ ×

{0}[N ]−Iv for all v∈V, and

sv2(	
e)−sv1(	

e)=λes	e for some λe>0, ∀
	
e ∈ 	E;

(5) u∗vNX Di ∼= Lv,i ≡ O�v

(∑
l∈Lv

sal ,i zal +
∑

	
e∈	Ev

s
	
e,i q

	
e
)
, for all v∈V and i ∈ Iv;

(6) and, ob	( f )=1.

The last condition can (in theory) be expressed in terms of uv , the canonical sections
of Lv,i , and the isomorphisms of the holomorphic line bundles in (5).

The following statements are immediate corollaries of the first and second state-
ments of Lemma 4.9, respectively.
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Corollary 4.11 Replacing (X , D) with (DI , ∂DI ) in Proposition 4.1, let H∅g,k(DI , ∂

DI )RI ,JI and AK∅(DI , ∂DI )RI be the resulting sets of regular perturbations and
almost complex structures on DI , respectively.
(1) If νI ∈ H∅g,k(DI , ∂DI )RI ,JI and the image of PθI is transverse to O I then
Mg,s(X , D, A, ν)I is a naturally oriented manifold of the expected real dimension

2
(
cT DI (− log D)
1 (A)+ (n − |I | − 3)(1− g)+ k − |I | dimC Pic0(�)

)

= 2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k − |I |).

(4.34)

(2) Similarly, if JI = J |T DI ∈ AK∅(DI , ∂DI )RI is a naturally oriented manifold of
the expected real dimension

2
(
cT DI (− log D)
1 (A)+ (n − |I | − 3)+ k

) = 2
(
cT X(− log D)
1 (A)+ (n − 3)+ k − |I |).

The second statement establishes Proposition 4.8 (2). It also shows that in the genus
0 case, Condition (5) in Remark 4.10 is automatically satisfied. By the first statement,
in order to prove Proposition 4.8 (1), we need to show that for generic θI and νI , the
image of PθI is transverse to O I .

Proof of Proposition 4.8 (1) Let �m
g,k(DI ) be the completion of �m

g,k(DI ) in the Cm-
norm. Fix a sub-universal family C → B of Ug,k around C= (�, j, z1, . . . , zk) and a
smooth trivialization ϕ of C as in (4.12) and (4.13), respectively. Consider the config-
uration space

WI = W �,p
s,A

(
(C, 	z|B), (DI , ∂DI )

)
ϕ
×Hm

g,k(DI , ∂DI )RI ,JI ×�m
g,k(DI ). (4.35)

The map P in Lemma 4.9, extends to a map

P : WI −→ Pic0(Ug,k)
I , ((c, u), νI , θI ) �−→ PθI

(
idπ−1(c), u, (π

−1(c), 	z(c))).
(4.36)

The universal moduli space

Mg,s(X , D, A)I =
{
(
(c, u), νI , θI

)∈WI : ∂̄ logu(x) = νlog,I (x, u(x)),

∀x ∈ π−1(c), P
(
(c, u), νI , θI

) = O I
} (4.37)

is the (0⊕O I )-level set of

(∂̄ log − νlog,I )×P : WI −→ E�,p
s,A

(
(C, 	z|B), (DI , ∂DI )

)×(Pic0(Ug,k))
I . (4.38)

We show that 0×O I is a regular value.
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Since �m
g,k(DI ) is a linear space we have

TθI�
m
g,k(DI ) ∼= �m

g,k(DI ), ∀θI ∈ �m
g,k(DI ).

For every ((c, u), νI , θI ) ∈Mg,s(X , D, A)I , the normal component of the lineariza-
tion of (4.38) at ((c, u), νI , θI ) has the form

D((c,u),νI ,θI )(∂̄
log−νlog,I )× P :

T(c,u)W
�,p
s,A

(
(C, 	z|B), (DI , ∂DI )

)⊕ TνIHm
g,k(DI , ∂DI )R,J ⊕ TθI�

m
g,k(DI )

−→ W �−1,p(�,
0,1
π−1(c) ⊗C u∗T DI (− log ∂DI )

)⊕ H0,1(�, j)I .

(4.39)

It is given by (4.25) on the first two components and sends 0⊕0⊕θ̃I to the cohomology
class

0⊕ [(idπ−1(c), u)∗θ̃I ]∈H0,1(�, j)I .

For the same reason as in the proof of Proposition 4.1, every element of

W �−1,p(�,
0,1
π−1(c) ⊗C u∗T DI (− log ∂DI ))

is in the image of the restriction of (4.39) to the first two summands of the domain,
followed by the projection to the first component of the target. Since a representative
of every cohomology class in H0,1(�, j)I can be extended to a global (0, 1)-form
on Ug,k , the restriction of (4.39) to the third summand of the domain is a map onto
the second summand of the target. Therefore, (4.39) is surjective. Consequently, by
Implicit-FunctionTheorem, the universalmoduli spaceMg,s(X , D, A)I is a separable
Cm−�-smooth Banach manifold. Then by the Sard–Smale Theorem, the set of regular
values H�

reg,m
g,k (DI , ∂DI )RI ,JI of the projection map

proj : Mg,s(X , D, A)I −→ Hm
g,k(DI , ∂DI )RI ,JI ×�m

g,k(DI )

is Baire set of second category. By construction, for every ν with

Res(ν) = (νI , θI ) ∈ H�
reg,m
g,k (DI , ∂DI )RI ,JI

the stratum

Mg,s(X , D, A, ν)I = proj−1(νI , θI )

is a naturally oriented smooth manifold of the expected dimension (4.34). With an
argument similar to the Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude
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that the subset of smooth perturbations

H�
reg
g,k(DI , ∂DI )RI ,JI

= H�
reg,m
g,k (DI , ∂DI )RI ,JI ∩

(
Hg,k(DI , ∂DI )RI ,JI ×�g,k(DI )

)

satisfies the requirement of (4.31). The set

HI
g,k(X , D)R,J = Res−1(H�

reg
g,k(DI , ∂DI )RI ,JI )

satisfies Proposition 4.8 (1). ��
Remark 4.12 Suppose

f = [φ, u, ζ = (ζi )i∈I , �, 	z]∈Mg,s(X , D, A, ν)I .

Restricted to DI , by (2.11), we have

T X(− log D)|DI= T DI (− log ∂DI )⊕ DI × C
I . (4.40)

Replacing (X , D, ν) in (4.7) with (DI , ∂DI , νI ), we get the linearized CR operator

Dlog
u {∂̄ − νI } : W �,p(�, u∗T DI (− log ∂DI ))

−→ W �−1,p(�,
0,1
� ⊗C u∗T DI (− log ∂DI )).

(4.41)

Let

∂̄std : W �,p(�,CI ) −→ W �−1,p(�,
0,1
�,j ⊗C C

I ) (4.42)

denote the standard ∂̄-operator on the trivial bundle � × C
I . In order to extend (4.7)

to the case of maps with smooth domain but image in a stratum DI , using the decom-
position (4.40), define

Dlog
u {∂̄ − ν} : W �,p(�, u∗T X(− log D))→ W �−1,p(�,
0,1

� ⊗C u∗T X(− log D)),

Dlog
u {∂̄ − ν}(ξ ⊕ η=(ηi )i∈I ) = Dlog

u {∂̄ − νI }(ξ)⊕
(
∂̄std(ηi )− DξD

Ni
u {∂̄ − ν}

)

i∈I ,

(4.43)

where

DξD
Ni
u {∂̄ − ν} ∈ 	

(
�,


0,1
�,j

)

is the derivative of the ∂̄-operator DNi
u {∂̄ − ν} in (3.15) in the direction of ξ . Note that

the derivative of a 1-parameter family of ∂̄-operators on a complex line bundle is a
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(0, 1)-form. In other words, with respect to the decomposition (4.40), Dlog
(u,ζ ){∂̄ − ν}

is the lower diagonal operator

[
Dlog
u {∂̄ − νI } 0

∗ ∂̄std

]

with diagonal entries (4.41) and (4.42). Cohomology class of

(
DξD

Ni
u {∂̄ − ν})i∈I ∈ 	

(
�,


0,1
�,j

)I

is

Du P(ξ) ∈ H0,1(�, j)I .

In light of the proof of Proposition 4.8, Corollary 4.11 can be rephrased in the following
way.

Corollary 4.13 IfDlog
u {∂̄−ν} is surjective thenMg,s(X , D, A, ν)I is cut transversely

in a neighborhood of f . Furthermore, if s ∈ (N[N ])k , then the whole moduli space
Mg,s(X , D, A, ν) is cut transversely in a neighborhood of f .

The elements of the form 0 ⊕ (ci )i∈I in the kernel of Dlog
u {∂̄ − ν}, where ci is a

constant section of the trivial line bundle �×C, correspond to those deformations of
u that push the image of u out of Di in the direction of ζi by ciζi .

Proposition 4.8 can essentially be obtained from Proposition 4.1 by looking at
(u, (ζi )i∈I ) as a logmap into the fiber product (3.26) of the projectivizations ofNX Di ,
in the following way.

Remark 4.14 Given (X , D, ω,R), let

X̃ ≡
∏

i∈I
P(NX Di|DI ⊕C) −→ DI (4.44)

be the associated (P1)I -fiber bundle over DI . For i ∈[N ]− I , let D̃i = π−1Di∪I . For
i ∈ I , let

D̃i = (Di,0 ∪ Di,∞)×
∏

j∈I−i
P(NX D j|DI ⊕C),

where Di,0 and Di,∞ are the zero and infinity divisors of P(NX Di |DI ⊕C), respec-
tively. The inclusion

D̃ =
⋃

i∈[N ]
D̃i ⊂ X̃
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is an SNC symplectic divisor with respect to the symplectic structure obtained from
the standard symplectic structure onNX DI . As explained in [17, p. 11], from anyR-
compatible almost complex structure J on (X , D) and any ν∈Hg,k(X , D) we obtain
a compatible (C∗)I -equivariant almost complex structure J̃ on (X̃ , D̃) and a (C∗)I -
equivariant perturbation term ν̃ ∈Hg,k(X̃ , D̃). The latter only depends on νI and θI .
Every tuple

(
φ, u, ζ = (ζi )i∈I , �, 	z

)
representing an element of Mg,s(X , D, A, ν)I

can be seen as a log ( J̃ , ν̃)-map ũ : �→ X̃ representing an element of

Mg,s(X̃ , D̃, Ã, ν̃)

where, for each i ∈ I , sai > 0 denotes a tangency of order sai with Di,0 and sai < 0
denotes a tangency of order |sai | with Di,∞. We have

Mg,s(X , D, A, ν)I ∼=Mg,s(X̃ , D̃, Ã, ν̃)/(C
∗)I . (4.45)

Following the proof of Proposition 4.1, we can show that for generic ( J̃ , ν̃),
Mg,s(X̃ , D̃, Ã, ν̃) is a smooth oriented (C∗)I -equivariant manifold of real dimen-
sion

2
(
cT X̃(− log D̃)
1 ( Ã)+ (n − 3)(1− g)+ k

) = 2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k

)
.

Then Proposition 4.1 follows from (4.45), and Dlog
u {∂̄ − ν} in (4.43) is equivalent to

Dlog
ũ {∂̄ − ν̃} defined in (4.7).

4.3 Simple Nodal Maps

Moving to the nodal case, let

Mg,s(X , D, A, ν)	 ⊂Mg,s(X , D, A, ν)

be the stratum of stable nodal log (J , ν)-holomorphic curves with the decorated
dual graph 	 (and |V| ≥ 2). With a setup similar to [11, Sect. 6.3], the deforma-
tion/obstruction theory ofMg,s(X , D, A)	 around any f =(u, [ζ ], �, z1, . . . , zk) is
given by (1) the sum of Dlog

uv {∂̄ − ν} over the irreducible components �v , and (2) the
obstruction map in (3.41), i.e.,

ob	 : ×v∈V Mgv,sv (X , D, Av, ν)Iv −→ G(	), (4.46)

where ×v∈V denotes the fiber product over the evaluation maps at the nodes.
WewriteV = Vp∪Vb, whereVp corresponds to set of non-contracted or principal

components and Vb corresponds to set of contracted or bubble components. For each
v∈V, letM�

gv,sv (X , D, Av, ν)Iv be the space of simplemaps corresponding to the v-th
component�v of� in (3.38). An element ofM�

gv,sv (X , D, Av, ν)Iv is the equivalence
class of a tuple

fv =
(
φv = φ|�v , uv, ζv = (ζv,i )i∈Iv ,Cv = (�v, jv, 	zv ∪ qv)

)
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where 	zv are the marked points on �v , qv={q
	
e}
	
e∈	Ev

is the set of nodal points on �v ,

sv is the set of tangency orders at 	zv ∪ qv , uv is a map into DIv satisfying

∂̄uv(x) = ν(φv(x), uv(x)), ∀x ∈ �v,

and ζv = (ζv,i )i∈Iv is a meromorphic section of NX DIv with zeros/poles of orders
determined by sv at 	zv ∪ qv . Locally around any f , we will fix a random ordering 	qv
of qv that we will forget at the end. If �v is not a bubble component, then

M�
gv,sv (X , D, Av, ν)Iv =Mgv,sv (X , D, Av, ν)Iv ;

otherwise, �v is a sphere, φv is a constant map (that we will drop from the notation),
∂̄uv = 0, and by (4.33)

M�
gv,sv (X , D, Av, ν)Iv =M�

0,sv (DIv , ∂DIv , Av).

For each
	
e ∈ 	Ev , let

ev
	
e : Mgv,sv (X , D, Av, ν)Iv −→ DIe , [uv, ζv,Cv] �−→ uv(q

	
e)

denote the evaluation map at the nodal point q
	
e. Recall that for I =∅ the convention

is DI = X . Let

evE ≡
∏

e∈E

(ev
	
e × ev

	e
) :

∏

v∈V

Mgv,sv (X , D, Av, ν)Iv −→
∏

e∈E

(DIe )
2

denote the overall evaluation maps at the nodal points. Then the fiber product space
in (4.46) is

Mplog
g,s (X , D, A, ν)	 = ×v∈VMgv,sv (X , D, Av, ν)Iv = ev−1E

(
∏

e∈E

�e

)

(4.47)

where

�e ⊂ DIe × DIe , ∀e ∈ E,

is the diagonal subspace. The obstruction map in (3.41) is the map (4.46) from this
fiber product into the obstruction group G and

Mg,s(X , D, A, ν)	 = ob−1	 (1).

Let

�∏

v∈V

M�
gv,sv (X , D, Av, ν)Iv ⊂

∏

v∈V

M�
gv,sv (X , D, Av, ν)Iv (4.48)
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be the subset of tuples where the images of every two non-constant bubble components
in X are distinct. Also, let

Mplog,�
g,s (X , D, A, ν)	 =Mplog

g,s (X , D, A, ν)	 ∩
�∏

v∈V

M�
gv,sv (X , D, Av, ν)Iv .

(4.49)

By (3.6) and Definition 3.1, the map φ has image in a product of universal families

(
πv : Ugv,kv+�v −→Mgv,kv+�v , zv ∪ qv

)
v∈Vp

. (4.50)

The restriction of a perturbation term ν (or νlog) in Hg,k(X , D) to Ugv,|zv |+|qv |
defines an element of Hgv,|zv |+|qv |(X , D). Furthermore, recall from (4.30) that if
ν ∈ Hg,k(X , D)R,J , then the restriction of that to Ugv,|zv |+|qv | and DIv is made of
components

νv ∈ Hgv,|zv |+|qv |(DIv , ∂DIv )RIv ,JIv (4.51)

and

θv = (θv,i )i∈Iv ∈ �gv,|zv |+|qv |(DIv ) (4.52)

such that

∂̄uv = (φv, uv)
∗νv and ∂̄u∗vNX Di ζIv,i = θv,iζIv,i , ∀i ∈ Iv. (4.53)

Lemma 4.15 With notation as above, if

(1) J ∈AKIv (X , D)R in the sense of Proposition 4.8 (2) for all v ∈ Vb,
(2) ν∈HIv

gv,|zv |+|qv |(X , D)R,J in the sense of Proposition 4.8 (1) for all v ∈ Vp,

(3) the map evE restricted to
∏�

v∈V M�
gv,sv (X , D, Av, ν)Iv is transverse, and

(4) the map ob	 restricted toMplog,�
g,s (X , D, A, ν)	 is transverse,

thenM�
g,s(X , D, A, ν)	 is a naturally oriented smoothmanifold of the real dimension

(1.16).

Proof By Proposition 4.8, under the first two conditions, eachM�
gv,sv (X , D, Av, ν)Iv

is a naturally oriented smooth manifold of the real dimension

2
(
cT X(− log D)
1 (Av)+ (n − 3)(1− gv)+ kv + �v − |Iv|

)
, where kv = |	zv|, �v = |qv|.
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By (3), since each DI is oriented, the fiber product space Mplog,�
g,s (X , D,

A, ν)	 is a naturally oriented smooth manifold of the real dimension

2

(∑

v∈V

(
cT X(− log D)
1 (Av)+ (n − 3)(1− gv)+ kv + �v − |Iv|

)−
∑

e∈E

(n − |Ie|)
)

= 2

(

cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k − |E| −

∑

v∈V

|Iv| +
∑

e∈E

|Ie|
)

.

By (3.39),

dimR KR(	)− dimC(G) = |E| +
∑

v∈V

|Iv| −
∑

e∈E

| Ie | .

Therefore, by (4), and sinceG is a complexmanifold,M�
g,s(X , D, A, ν)	 is a naturally

oriented smooth orbifold of the real dimension

2

(

cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k− |E | −

∑

v∈V

| Iv | +
∑

e∈E

| Ie | −dimC(G)
)

= 2
(
cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k − dimR KR(	)

)
. ��

Recall that, by the first condition in Definition 3.11,

dimR KR(	) > 0

unless	 is the trivial one-vertex graph (V={v},E=∅with Iv=∅) which corresponds
to the main stratum. In the classical case (no D), the map � in (3.39) is the trivial
map Z

E → 0. Therefore, dimR KR(	) = |E| is the number of the nodes. In the
logarithmic case, there are configurations with arbitrary large number of nodes and
dimR KR(	) = 1; see [7, Example 2.13].

Proof of Theorem 1.5 With modifications as in Sects. 4.1 and 4.2, proof of this propo-
sition is similar to the proof of [32, Prop. 3.16], [26, Thm. 6.2.6], and [35, Prop. 4.3].
The main difference is the extra evaluation-type map ob	 that needs to be transversed
as in Lemma 4.15 (4).

For each v ∈ Vp, let Ugv,kv+�v , νv , and θv be as in (4.50), (4.51), and (4.52),
respectively. For each v ∈Vb, since �v =P

1, if Cv is stable, let U0,kv+�v denote the
universal curve, and if Cv is not stable, i.e., if it is a P

1 with less than 3 points, then
let U0,kv+�v =Cv andM0,kv+�v be just a point. For v∈Vb, νv=φ∗ν|�v is zero and we
are dealing with log J -holomorphic curves.

For each v ∈V, fix a local family πv|Cv : Cv → Bv around Cv as in (4.12) and a
smooth trivialization ϕv of that as in (4.13).
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For v∈Vp, let

Wv ≡ W �,p
sv,Av

(
(Cv, {zv ∪ qv}|Bv

), (DIv , ∂DIv )
)
ϕv

×Hm
gv,kv+�v (DIv , ∂DIv )[ω] ×J �

m
gv,kv+�v (DIv ),

where

sv=
(
sv;a=(sv;ai )i∈[N ]−Iv

)
a∈[kv+�v] ∈(N[N ]−Iv )kv+�v

is as in (4.29), be the corresponding configuration space as in (4.35). This time, (R, J )
is not fixed and can change as well. Thus, the notation ×J means fiber product over
AK(X , D)[ω]. For each v∈Vb, the configuration space is

Wv ≡ W �,p
sv,Av

(
(Cv, {zv ∪ qv}|Bv

), (DIv , ∂DIv )
)
ϕv
×AKm(X , D)[ω]

as in (4.26) with (DIv , ∂DIv ) in place of (X , D). The evaluation map evE at the nodal
points extends to the product

∏
v∈V Wv . For v∈V, let

Ev ≡ E�,psv,Av

(
(Cv, {zv ∪ qv}|Bv

), (DIv , ∂DIv )
) −→ Wv

be the Banach bundles in (4.16). Let

W	≡×v∈VWv = ev−1E

( ∏

e∈E

�e

)

,

πv : W	 → Wv denote the projection map into the v-th component, and

E	 ≡
⊕

v∈V

π∗v Ev −→ W	

denote the obstruction Banach bundle. The tangent space of W	 has the form

T f W	
∼= T ver

f W	 ⊕
⊕

v∈V

TCvBv ⊕ T(R,J )AK
m(X , D)[ω]

⊕
⊕

v∈Vp

(
TνvHm

gv,kv+�v (DIv , ∂DIv )RIv ,JIv ⊕ Tθv�
m
gv,kv+�v

)
,

where T ver
f W	 has the following description. By (4.8),

TuvW
�,p
sv,Av

(
(�v, 	zv ∪ qv), (DIv , ∂DIv )

) = W �,p(�v, u
∗
vT DIv (− log DIv )

)
.
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For every ξ ∈ Wk,p
(
�v, u∗vT DIv (− log DIv )

)
, the section ι(ξ) ∈ C0(�v, u∗vT DIv )

defined via (2.10) satisfies

ι(ξ)(q
	
e) ∈ T DIe , ∀

	
e ∈ 	Ev.

Then

T ver
f W	 =

{

(ξv)v∈V ∈
⊕

TuvW
�,p
sv,Av

(
(�v, 	zv ∪ qv), (DIv , ∂DIv )

) :

ι(ξv)(q
	
e) = ι(ξv′)(q 	e

), ∀v, v′ ∈V,
	
e ∈ Ev,v′

}

.

(4.54)

Summing the maps (4.36) over all principal components we get

P =
∏

v∈Vp

Pv : W	 −→ Pic0	 ≡
∏

v∈Vp

Pic0(Ugv,kv+�v )Iv . (4.55)

Let M̃plog
g,s (X , D, A)	 denote the (0×O	)-level set of

(∂̄ log − νlog)× P : W	 −→ E	 × Pic0	, (4.56)

where O	≡∏
v∈Vp

O Iv . The universal pre-log moduli spaceMplog
g,s (X , D, A)	 is the

quotient of M̃plog
g,s (X , D, A)	 by the automorphism group. The latter is the product of

automorphism groups of the bubble components �v
∼= P

1 with kv + �v < 3.

Claim 1 Restricted to the subset of simplemaps M̃plog,�
g,s (X , D, A)	 , 0×O	 is a regular

value of (4.56).

Proof For every ( f , J , ν)∈M̃plog
g,s (X , D, A)	 , the linearization Dlog

f ,J ,ν({∂̄ − ν}×P)
of (4.56) is the direct sum linearization map

Dlog
f ,J ,ν

({∂̄ − ν}×P
)≡

⊕

v∈Vb

Dlog
uv,J

∂̄ ⊕
⊕

v∈Vp

Dlog
uv,J ,νv

({∂̄ − νv}×Pv
)

(4.57)

with summands as in (4.28) and (4.39). By the proof of Proposition 4.8 (1), fixing J ,
for each v∈Vp, D

log
uv,νv

({∂̄ − νv} × Pv
)
is surjective onto

Ev ⊕ TO Iv Pic0(Ugv,kv+�v )Iv .

Furthermore, transversality can be achieved by sections supported away from the
nodes. Therefore, for any fixed J , the direct sum

⊕

v∈Vp

Dlog
uv,νv

({∂̄ − νv} × Pv
)
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is surjective onto

⊕

v∈Vp

Ev ⊕ TO	
Pic0	.

By the proof of Proposition 4.8 (2), for each v ∈ Vb, D
log
uv,J

∂̄ is surjective onto Ev .
Furthermore, if the bubble components are all simple with mutually different images,
as in the proof of [26, Prop. 6.2.7], by Proposition 4.8 (2) andLemma4.7, transversality
can be achieved simultaneously by deformations of J that are supported along different
images of these components. We conclude that (4.57) is surjective along the subset of
simple maps.

Claim 2 The map ob	 : M̃plog,�
g,s (X , D, A)	 → G(	) is transverse.

Proof Fix a tuple

f =
((
c, uv, ζv = (ζv,i )i∈Iv ,Cv = (�v, jv, 	zv ∪ qv)

)
, J , ν

)
∈ ob−1	 (1).

By definition, we can choose local holomorphic coordinates w
	
e around each nodal

point q
	
e∈�v and representatives ζv such that

η
	
e,i/η 	e,i

= 1, ∀e∈E, i ∈ Ie; (4.58)

see (3.48). Let q
	
e be a nodal point on �v connecting that to �v′ . By Lemma A.1, we

may assume that either v∈Vp or v∈Vb and Av �=0. Equally, one may use the method
of proof of [26, Thm. 6.3.1] in [26, p. 155] to address the nodes connecting two ghost
bubbles. Choose any i ∈ Ie.
(i) If v∈Vp and i ∈ Iv , we have a meromorphic section ζv,i included in f satisfying

∂̄u∗vNX Di ζv,i = θv,iζv,i ;

see (4.53) above. Recall from (3.45) that

ζv,i (w
	
e) = η̃

	
e,i (w

	
e)w

s
	e,i

	
e ∈ u∗vNX Di ,

such that

0 �=η
	
e,i ≡ η̃

	
e,i (0)∈NX Di|uv(q	e) .

Let

β : �v −→ C
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be a smooth function that is supported in a neighborhood of q
	
e, is constant in a smaller

neighborhood of q
	
e, and satisfies

d

dt
(e

tβ(q
	e
)
η
	
e,i/η 	e,i

)|t=0= 1. (4.59)

Let

( ft )t∈[0,1] ∈ M̃
plog,�
g,s (X , D, A, ν)	

be the path obtained by deforming ζv,i to etβζv,i and θv,i to θv,i+t ∂̄β. Then, by (4.59),

d

dt
ob	( ft ) = [1e,i ] ∈ T1G	 = coker(�C), (4.60)

where [1e,i ] denotes the image of 1e,i ∈⊕
e∈E C

Ie in coker(�C).
(ii) If v∈Vp and i ∈ Ie − Iv , near q

	
e, uv has the local form

uv(w
	
e) ∼= (uv,i (w

	
e), η̃

	
e,i (w

	
e)w

s
	e,i

	
e ) ∈ NX Di ,

such that

0 �=η
	
e,i ≡ η̃

	
e,i (0)∈NX Di|uv(q	e);

see (3.43). Therefore, instead, we can deform uv by deforming η̃
	
e,i (w

	
e) to etβ η̃

	
e,i (w

	
e)

as above and get the same conclusion as in (4.60).
(iii) If v∈Vb and i ∈ Ie − Iv , we need to consider a deformation of J . By Lemma 4.7,
for any open set U⊂� − {	zv ∪ qv}, there exist

ξ ∈W �,p(�v, u
∗
vT DIv (− log ∂DIv )

)
and Y ∈TJIvAKm(DIv , ∂DIv )RIv

such that

ξ(q
	
e) = 0⊕ 1e,i ∈ Tuv(q	e

)DIv (− log ∂DIv )
∼= Tuv(q	e

)DIe (− log ∂DIe)⊕ C
Ie−Iv ,

ξ(za)=0, ∀za ∈ 	zv, ξ(q
	
e′)=0, ∀

	
e′ ∈ 	Ev − 	

e,

Supp(Y|�v )⊂U , Duv ∂̄
logξ+ 1

2
Y ◦ duv ◦ j = 0.

By trivial extension of ξ to other components and horizontal extension of Y to a
deformation of J on the entire X , such a pair (ξ,Y ) defines a tangent vector in

T f M̃
plog,�
g,s (X , D, A, ν)	
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such that

D f ob	(ξ,Y ) = [1e,i ] ∈ T1G	.

(iv) If v ∈ Vb and i ∈ Iv , we need to consider a deformation of J in the normal
direction to Di . That is, we need a deformation of R by deforming the connection
∇(i) in Definition 2.3. This is the only step where we need to deformR. Deformation
of ∇(i) by a 1-form results in a deformation of the corresponding ∂̄-operator ∂̄NX Di

on NX Di in [7, Lem. 2.1]. Deformation of ∂̄NX Di , then, yields a deformation of the
associated almost complex structure on the total space of NX Di ; see [34, Lem. 2.2]
or [7, Sect. 2.1]. In other words, the isomorphism

TNX Di ∼= π∗i T Di ⊕ π∗NX Di ,

and thus the construction of J on TNX Di via J |T Di and ii on NX Di , depends on
∇(i). Deforming the latter results in a deformation of the former. A deformation

u∗∂̄NX Di −→ u∗∂̄NX Di + tβ

(supported on an open set of �v whose image in X is disjoint from the image of the
rest of non-trivial bubble components) as in (i) such that (4.59) holds yields a path
( ft )t∈[0,1] as in (i) such that (4.60) holds. ��

Finally, by Claims 1 and 2, and Implicit-Function Theorem, the universal moduli
space

M�
g,s(X , D, A)	

is a separable Cm−�-smooth Banach manifold. Then by the Sard–Smale Theorem, the
set of regular values H�

reg,m
g,k (X , D)[ω] of the projection map

proj : M�
g,s(X , D, A)I −→

∏

v∈Vp

Hm
gv,kv+�v (DIv , ∂DIv )[ω] ×J �

m
gv,kv+�v (DIv )

isBaire set of second category.Bydefinition andLemma4.15, for every (ω′,R, J , ν)∈
Hg,k(X , D)[ω] such that

Res(ω′,R, J , ν) =
(
ω′,R, J ,

(
(νv, θv) = ν|�v

)
v∈Vp

)
∈ H�

reg,m
g,k (X , D)[ω],

the stratum

Mg,s(X , D, A, ν)I = proj−1
(
ω′,R, J ,

(
(νv, θv) = ν|�v

)
v∈Vp

)

is a naturally oriented smooth manifold of the expected dimension (1.16). With an
argument similar to the Taubes’ trick in the proof of [26, Thm. 3.1.6 (ii)], we conclude
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that the subset of smooth perturbations

H	
g,k(X , D)[ω] = Res−1

(
H�

reg,m
g,k (X , D)[ω]

) ∩H	
g,k(X , D)[ω]

satisfies Theorem 1.5 (1). If we restrict this proof to genus 0 J -holomorphic log curves
and the resulting set of regular values in AK(X , D)[ω], we get Theorem 1.5 (2). ��

4.4 Genus ZeroMultiple-Cover Maps

Amain step in proving Proposition 1.7 (for arbitrary D) is to address the transversality
issue at multiple-cover log J -holomorphic spheres. In this section we show that under
the positivity/semi-positivity conditions in Definition 1.6, multiple-cover log spheres
do not happen in families of larger than the expected dimension.

Suppose

[u,P1, z1, . . . , z�]∈M�
0,t(X , D, B)

with t= (t1, . . . , t�) and ta �= 0 for all a ∈ [�]. All the marked points have non-trivial
tangency orders; therefore, none of them can be ignored (as in the classical case)
to decrease the expected dimension. The other cases can be reduced to this case by
ignoring those marked points that have trivial tangency order with D. Every such point
has a finite number of pre-images in any multiple-cover of u. Let d and k1, . . . , k�≤d
be positive integers and set k = k1 + · · · + k�. For each a∈[�] let

α1,a + · · · + αa,ka = d

be an ordered partition of d into a sum of ka positive numbers. We are interested in
those tuples

α ≡ (
αa,b

)
a∈[�],b∈[ka ] (4.61)

such that there exists a degree d covering map

h : P
1 −→ P

1 (4.62)

satisfying

h−1(za) = {zab}b∈[ka ], ordzabh = αa,b.

If h is such a covering map, the k-marked degree d map

fh =
(
h,P1, (zab)a∈[�],b∈[ka ]

)
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(with the lexicographic order on the marked points zab) defines a point of the log
moduli space

M0,α(P
1, Dz, [d])

where Dz = {z1, . . . , z�} and we are treating α ∈N
k as the tangency order data with

Dz at those k points. By (4.21), if M0,α(P
1, Dz, [d]) is non-empty, it is a smooth

manifold of the expected dimension

dfiber ≡ dimC M0,α(P
1, Dz, [d]) = (d − 1)(2− �)+ k − �. (4.63)

Also, the k-marked degree A = dB composition map

(
u ◦ h,P1, (zab)a∈[�],b∈[ka ]

)
(4.64)

defines a point of the log moduli space M0,s(X , D, A), with

s = (sab)a∈[�],b∈[ka ], N
N � sab = αa,bsa .

Let

Mα
0,s(X , D, A)⊂M0,s(X , D, A)

denote the subspace of multiple-cover maps of type α. There is a projection map

Mα
0,s(X , D, A) −→M�

0,t(X , D, B) (4.65)

whose fiber over [u,P1, z1, . . . , z�] isM0,α(P
1, Dz, [d]). We have

ddown ≡ exp-dimC M�
0,t(X , D, B) = cT X(− log D)

1 (B)+ n − 3+ �,

dup ≡ exp-dimC M�
0,s(X , D, A) = cT X(− log D)

1 (A)+ n − 3+ k.

In order for the image of Mα
0,s(X , D, A) under ev to have a smaller (resp. smaller

or equal) dimension than the image of the main stratum M�
0,s(X , D, A), whenever

dfiber, ddown ≥ 0, we need ddown ≤ dup, i.e.,

cT X(− log D)
1 (B)+ n − 3+ � ≥ 0

�⇒ (d − 1) cT X(− log D)
1 (B)+ k − �>0 (resp. ≥0). (4.66)

In other words, we want to avoid a situation where dfiber ≥ 0, B ∈ π2(X) with
ω(B) > 0, and

3− n − � ≤ cT X(− log D)
1 (B) ≤ �− k

d − 1

(

resp. <
�− k

d − 1

)

.
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For � = 0, 1, 2, the condition dfiber ≥ 0 automatically holds. For � > 2, the condition
dfiber ≥ 0 implies

�− k

d − 1
≤ 2− �.

Therefore, (4.66) can be replaced with the stronger requirement
{
cT X(− log D)
1 (B) /∈ [3− n − �, 0] (

resp. [3− n − �, 0)
)

if � = 0, 1, 2,

cT X(− log D)
1 (B) /∈ [3− n − �, 2− �] (

resp. [3− n − �, 2− �)
)

if � > 2.

(4.67)

More generally, we will consider maps with image in DI . Then n should be replaced
with n−|I |. For N >1 and (I , �) �= (∅, 0), we will further need dfiber + ddown ≤ dup.

The latter is equivalent to cT X(− log D)
1 (B) ≥ 2− �. This explains Definition 1.10. The

following lemma summarizes the outcome of these calculations.

Lemma 4.16 With DI and ∂DI in place of (X , D) in (4.65), if [X , D, ω] is semi-
positive (resp. positive) in the sense of Definition 1.6 and � ≤ 2, then

exp-dim M�
0,t(DI , ∂DI , B) ≥ 0 (4.68)

implies

exp-dimMα
0,s(DI , ∂DI , dB) ≥ exp-dimM�

0,t(DI , ∂DI , B) (resp. >),

for all d≥1 and (α, s, t) as above. Furthermore, if [X , D, ω] is strongly-semi-positive
in the sense of Definition 1.10, then (4.68) implies

exp-dimMα
0,s(DI , ∂DI , A)

≥ exp-dimM�
0,t(DI , ∂DI , B)+ exp-dimM0,α(P

1, Dz, [d]).

Regarding (4.66), the example below illustrates a non-positive situation where
(4.66) does not hold,M�

0,s(X , D, A) is empty, andMα
0,s(X , D, A) is always positive

dimensional.

Example 4.17 Let X=P
2, D be a smooth quartic hypersurface, B=[1]∈H2(P

2,Z)∼=
Z, �=2, k=3, t=(2, 2), and s = (2a, 2b, 2d)with a, b>0 and a+b=d. For generic
J ,

M�
0,t(X , D, B) =Mlog

0,t(X , D, B)

is the (zero-dimensional) moduli space of lines with 2 intersections of order 2 with D
and has 160 points. Also, dfiber = 1; if (z1, z2) = (0,∞), the map h in (4.62) is of the
form

h
(
z
) = λ

(z − z11)a(z − z12)b

(z − z21)d
for some λ ∈ C

∗.
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On the other hand, dup = 2 − d; therefore, if d > 2, M�
0,s(X , D, A) is empty for

generic J while Mα
0,s(X , D, A) will always be positive dimensional. ��

For (J , ν)-holomorphic curves, every connected cluster �′ of contracted compo-
nents is a tree of spheres, with a total of at most 2 special points at least one of which
is a nodal point. Here, by a special point we mean either a marked point or a nodal
point connecting the cluster to an irreducible component of � outside the cluster.22

Because of this restriction on the number of special points, it is natural to expect that
the condition �≤2 in Lemma 4.16 to be always satisfied. The following lemma shows
that this is indeed the case under the Nef condition of Sect. 1.4.

For each bubble component P
1∼=�v⊂�′, the restriction of f ′ to �v is a tuple

fv =
(
uv, ζv,Cv = (�v, jv, zv ∪ qv)

)
,

where zv is empty or is the only 1 marked point allowed on �′, qv ={q
	
e}
	
e∈	Ev

is the

set of nodal points on �v , sv is the tuple of tangency orders at zv ∪ qv , uv is a J -
holomorphic map into DIv , and ζv=(ζv,i )i∈Iv is a meromorphic section of u∗vNX DIv
with zeros/poles of orders determined by sv at zv ∪ qv . Note that while f ′ has at most
2 special points, qv can be arbitrary large. The case we are interested in is when uv
is a multiple-cover map of the form uv = uv ◦ h as in (4.64), where uv represents
the homology class Bv and has tangency order type tv . We say a point p ∈ �v is an
actual intersection point with D, if Iv �= [N ] and

p ∈ u−1v
( ⋃

i∈[N ]−Iv

Di

)

.

Let δv (resp. δv) denote the number of actual intersection points of uv (resp. uv) with
D. We say p ∈ �v is a positive point if there exists i ∈[N ] such that

ordiuv,ζv (p) > 0.

Let δ+v denote the number of positive points on �v . Each positive point is either a
nodal point or a marked point, and δ+v ≥ δv , as every actual intersection point is a
positive point.

Lemma 4.18 If D is Nef, then δ+v ≤2 for all v∈Vb.

Proof Assume more than two points in zv ∪ qv are positive. Since �′ has at most 2
special points, removing �v from �′ we get some sub-clusters, at least one of which,
say �′′ has the following properties:

• it is not connected to the non-contracted (principal) part of �,
• it does not carry any of the marked points,

22 By Remark 3.16, such a cluster defines a log J -holomorphic curve f ′ ∈M0,s′ (X , D, A′)	′ where s′
records the tangency order data at those (one or two) special points (which now act as marked points for
f ′), 	′ is the decorated sub-graph of the cluster, and A′ is the total homology class of the cluster.
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• it is connected to �v at a node q
	
e∈�v which is a positive point.

Let �v1 be the component of �′′ connected to �v at �v1 � q 	e
∼ q

	
e ∈�v . Since, by

assumption, ordiuv,ζv (q	e
) > 0, for some i ∈ [N ], the image of uv1 most lie in Di and

the meromorphic section ζv1,i on �v1 corresponding to that should have a non-trivial
pole (of the same order as s

	
e,i ) at q 	e

. By the Nef assumption, the line bundle

u∗v1NX Di −→ �v1
∼= P

1

has a non-negative degree. Therefore, ζv1,i should have a non-trivial zero at another
nodal point q

	
e1 ∈ �v1 and there is another component �v2 of �′′ connected to �v1

at �v2 � q
	e1
∼ q

	
e1 ∈ �v1 . Continuing inductively we will see an infinite chain of

irreducible components in �′′, which is a contradiction. ��
As a conclusion of this lemma, for every bubble component fv in f , since those

points in zv ∪ qv which are not actual intersection points (with ∂DIv ) are not relevant
to the argument leading to (4.66), by ignoring these points, replacing n with n − |Iv|,
and assuming � = δv ≤ k = δv ≤ 2 in (4.67), the semi-positivity condition (1.17) in
Definition 1.6 guaranties that

cT X(− log D)
1 (Bv)+ (n − |Iv|)− 3+ � ≥ 0 �⇒ cT X(− log D)

1 (Bv) ≥ 0. (4.69)

The following statement summarizes the main result of this section.

Corollary 4.19 Suppose (X , D, ω) is semi-positive in the sense of Definition 1.6,
and f is a log (J , ν)-curve in Mg,s(X , D, A, ν). If J belongs to the Baire sets
AKIv (X , D)R associated with M�

0,tv
(X , D, Bv)Iv in Proposition 4.8, for all v∈Vb,

then cT X(− log D)
1 (Bv) ≥ 0 for all v∈Vb.

Proof By the assumption on J , each moduli spaceM�
0,tv

(X , D, Bv)Iv is a non-empty
smooth manifold of the expected complex dimension

cT X(− log D)
1 (Bv)+ (n − |Iv|)− 3+ δv ≥ 0.

The conclusion follows from (4.69). ��
Lemma 4.18 puts a major restriction on a contracted cluster �′. In general, each

cluster will be of one of the following types.

(i) A cluster with one node q
	
e0 ∈ �v0 that connects �′ to the principal part and no

marked points. In this case�′ is a rooted tree with the root v0. Distance from v0 defines
a partial order ≺ on the vertices of �′ with v0 being the minimal vertex. By the same
inductive reasoning as in the proof of Lemma 4.18, if v ≺ v′ and q

	
e ∈ 	Ev,v′ then q

	
e

can not be a positive point. Therefore each �v′ in the cluster has at most one positive
point, that will be the unique nodal point q

	e
connecting �v′ to the unique component
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Fig. 2 (Left): A cluster of type (i). (Right): A cluster of type (ii)

�v with v ≺ v′. Furthermore, Iv ⊇ Iv′ whenever v ≺ v′, and Iv � Iv′ only if q
	e
is

an actual intersection point. Figure2 (Left) illustrates the situation with the “+” sign
indicating a positive point. At a positive nodal point q

	
e, we have 0 �= s

	
e ∈ N

N . At

nodal points without a “+” sign on any side, s
	
e must be zero. We put a 0 to indicate

those points. If each Di is positive, in the sense that A · Di >0 for all A∈π2(X) such
that ω(A)>0, then each bubble component will have exactly one positive point.

(ii) A cluster with one node q
	
e0 ∈ �v01 that connects �′ to the principal part and

one marked point z on �v0k (possibly v01= v0k). In this case, �′ includes a chain of
components �v01, . . . , �v0k . For each �v0i , �

′ might include a cluster �i (or more)
of type (i) that is attached to�v0i at a unique nodal point q	ei0

∈ �i ; see Fig. 2 (Right).

(iii) A cluster with two nodes q
	
e0 ∈�v01 and q	

ek ∈�v0k that connect�
′ to the principal

part. With q
	
ek in place of z, this case is like case (ii) above.

Remark 4.20 If δv≥2 for some geometric reason, then the only possibility for �′ is a
chain of bubble components as in (ii) or (iii) between the two special points. This is
for example the case if X is a toric variety and D is the boundary divisor.

4.5 Non-simple Maps

In [32], in order to prove the classical analogue of Proposition 1.7 (i.e., [32,
Thm. 3.11]), in a process which we will call it RT-process here, they replace a non-
simple map f with an underlying simple map f ′ with multi-nodes. A multi-node m
is a point at which more than two components of the domain are connected to each
other. In a nodal domain, a node qe is obtained by attaching two irreducible compo-
nents�v1 and�v2 at nodal points q	e1

∈�v1 and q	e2
∈�v1 . Amulti-node qm is obtained

by attaching more than two components �v1, . . . , �v� at nodal points q	ei
∈�vi , with

i=1, . . . , �. To keep the notation inlinewith the rest of the paper, we letE to denote the
set of nodes and multi-nodes, and 	E to denote the set of nodal points on different com-
ponents. When there is no multi-node we have | 	E| = 2|E|; otherwise, | 	E|> 2|E|. In the
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presence of an SNC divisor D =⋃
i∈[N ] Di , the sets E and 	E admit decompositions

E =
⋃

I⊂[N ]
EI and 	E =

⋃

I⊂[N ] 	
EI

by the type of these points. Similar to Sect. 4.3, we write V = Vp ∪ Vb, where Vp
corresponds to set of non-contracted or principal components and Vb corresponds to
set of contracted or bubble components. Furthermore, we write Vb = Vb,• ∪ Vb,◦,
where Av �=0 for v∈Vb,• and Vb,◦ is the set of ghost bubbles.

Ruan–Tian proved that the dimension of the space of such f ′ is at least 2 real
dimension less than the dimension of the main stratum. The same argument does not
directly work for log maps. If we apply the same process to the underlying (J , ν)-map
f of a log map f , the resulting simple map f

′
may not lift to a log map f ′ for at least

two reasons: (1) sincewe replace amultiple-covermapwith its underlying simplemap,
the matching condition in Definition 3.9 (4) may no longer hold, (2) since we identify
different components with the same image, the vectors sv satisfying Definition 3.11
(1) may no longer exist.

Suppose

f =
(
φ,

(
uv, ζv = (ζv,i )i∈Iv ,Cv = (�v, jv, 	zv ∪ 	qv)

)
v∈V

, J , ν
)

∈Mns
g,s(X , D, A, ν)	.

The RT-process, described after [32, Def. 3.10], changes the underlying (J , ν)-map

f =
(
φ,

(
uv,Cv = (�v, jv, 	zv ∪ 	qv)

)
v∈V

, J , ν
)
∈Mns

g,k(X , A, ν)	

to another (J , ν)-map f
′′
given as

(
φ,

(
uv,Cv = (�v, jv, 	zv ∪ 	qv)

)
v∈Vp

,
(
uv′′ ,Cv′′ = (�v′′, jv′′ , 	zv′′ ∪ 	qv′′)

)
v′′∈V′′b

, J , ν
)

with multi-nodes in the following way.

(i) It collapses the ghost bubbles (and any marked point on it will be thrown away).
As a result we get some multi-nodes.

(ii) It replaces each multiple-cover bubble component by its image. Since some of
the special (marked or nodal) points may have the same image, this step may
produce further multi-nodes.

(iii) It collapses each sub-tree of the bubbles whose components have the same image.

None of these three steps changes the genus though. Let 	′ be the resulting com-
binatorial type of the domain with components indexed by V

′, nodes and multi-nodes
indexed byE

′, and nodal points indexed by 	E
′. With notation as in Sect. 4.3,V′ decom-

poses as V
′
p∪V

′
b. The first component is identical to Vp. There is a collapsing map

red : Vb,• −→ V
′
b (4.70)
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and a multiplicity map

d : V
′
b −→ Z+ (4.71)

such that

∑

v∈red−1(v′)
Av = dv′ Av′ , ∀v′ ∈ V

′
b.

Here Av′ is the homology class of the resulting simple curve. After these three steps,
there might still be bubble components (not adjacent to each other) which have the
same image or their nodal points have the same image.
(iv) We identify components with the same image and nodal points with the same
image.

After step (iv), we a get a domain with possibly further multi-nodes and higher
genus. Let 	′′ be the resulting combinatorial type of this domain with components
indexed by V

′′, nodes and multi-nodes indexed by E
′′, and nodal points indexed by

	E
′′. The maps (4.70) and (4.71) descend to

Vb,•
red−→ V

′
b

red−→ V
′′
b, d : V

′′
b −→ Z+,

with the same properties as above. For the same reason as in [32, Cor. 3.17], we have

| 	E
′′
I | − |E′′I |= |	E

′
I | − |E′I | . (4.72)

Each nodal point of f ′′ is still decorated by a well-defined subset I ⊂ [N ] such that
all of its pre-image nodal points in f have the same decoration I . Also, if a bubble
component�v′′ of f ′′ has image in DIv′′ , then all of its pre-image bubble components
have image in the same stratum, i.e.,

Iv = Iv′′ , ∀v ∈ red−1(v′′).

The combinatorial type γ of this process is encoded in the triple (	, 	′, 	′′), and
the associated maps red and d. By Theorem 1.3, the set of such γ is finite. Let
Mg,k(X , A, ν)	′′ denote the classical moduli space of such (J , ν) curves f

′′
. By

[32, Prop. 3.21], if (X , ω) is semi-positive, for generic (J , ν), Mg,k(X , A, ν)	′′ is a
smooth moduli space of the C-dimension at most

cT X
1 (A)+ (n − 3)(1− g)+ k − (| 	E

′′| − |E′′|). (4.73)

Comparing (4.73) with [32, Prop. 3.21], note that

| 	E
′′| − |E′′| = |	E

′| − |E′| = nφ+ |V′b|,

where nφ is the number of nodes of the stable domain φ(�)∈Ug,k .

123



M. Farajzadeh-Tehrani

Away from the principal components, the map f
′′
does not lift to a log curve.

However, some of the information still passes to f
′′
. First, let us consider the pre-log

space

Mplog
g,s (X , D, A, ν)	,

that is we forget about Condition (2) in Definition 3.11. Instead ofMg,k(X , A, ν)	′′ ,

we consider the setMplog
g,s (X , D, A, ν)	′′ of tuples

f ′′ =
(
φ,

(
uv, ζv,Cv = (�v, jv, 	zv ∪ 	qv)

)
v∈Vp

,

(
uv′′ ,Cv′′ = (�v′′, jv′′ , 	zv′′ ∪ 	qv′′)

)
v′′∈V′′b

, J , ν
)

obtained from the elements of Mplog
g,s (X , D, A, ν)	 , where the principal components

still carry the information of the meromorphic sections ζv . LetMplog,γ
g,s (X , D, A, ν)	

denote its pre-image in Mplog
g,s (X , D, A, ν)	 , i.e., those pre-log maps for which the

RT-process is of type γ . The projection

πγ : Mplog,γ
g,s (X , D, A, ν)	 −→Mplog

g,s (X , D, A, ν)	′′ (4.74)

is a surjective fiber bundle. The key point is that by (4.33), if �v is genus 0, as long
as the second combinatorial condition in (3.51) is satisfied, for each i ∈ Iv , there are
meromorphic sections ζv,i of u∗vNX Di with zeros/poles of orders s

	
e,i and sa at q

	
e and

za , respectively, for all 	
e∈ 	Ev and za ∈ zv . The fiber M f ′′ of (4.74) over any f ′′ is a

product of the manifolds of the form described below and

st× ev : Mplog,γ
g,s (X , D, A, ν)	 −→Mg,k×Xs

factors through πγ .
(1) For each v∈Vb,◦, we have the configuration spaceM0,kv+�v of the special points
on the ghost bubble �v in π−1( f ′′).
(2) For all v′′ ∈ V

′′ and v ∈ red−1(v′′), we have uv = uv′′ ◦ hv for some degree dv
covering map hv : �v → �v′′ as in (4.62). Note that

dv′′ =
∑

v∈red−1(v′′)
dv.

The combinatorial type αv of hv is determined by the image zv′′ ∪ qv′′ of zv ∪ qv in
�v′′ and the branching order of hv at zv ∪ qv (i.e., the partition of dv as in (4.61) at the
actual intersection points

u−1
v′′ (∂DI ′′v ) ⊂ zv′′ ∪ qv′′
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and the branching orders at the rest of the points). Therefore, as in (4.65), in the fiber
over f ′′ we get the relative moduli space

M0,αv (�v′′ = P
1, zv′′ ∪ qv′′ , [dv]) (4.75)

of tuples

(
hv : �v = P

1 −→ �v′′ = P
1, 	zv ∪ 	qv

)

relative to the divisor zv′′ ∪ qv′′ ⊂ �v′′ , with the ramification/tangency order data αv .
The diffeomorphism type of (4.75) is independent of the location of zv′′ ∪ qv′′ (and
thus f ′′).

We conclude that

M f ′′ =
∏

v∈Vb,◦
M0,kv+�v ×

∏

v′′∈V′′

∏

v∈red−1(v′′)
M0,αv (P

1, zv′′ ∪ qv′′ , [dv]). (4.76)

Similar to [32, Thm. 3.16], and with a similar proof as in Sect. 4.3, for (ω′,R, J , ν)
in a subset of second categoryHγ

g,k(X , D)[ω] ⊂ Hg,k(X , D)[ω],Mplog
g,s (X , D, A, ν)	′′

is a smooth manifold of C-dimension

k′′+ | 	E
′′ | +

∑

v∈Vp

(
cT X(− log D)
1 (Av)+ (n − 3)(1− gv)− |Iv|

)

+
∑

v∈V′′b

(
cT X(− log D)
1 (Av′′)+ (n − 3)− |Iv′′|

)

−
∑

I⊂[N ]
(n− | I |)(| 	E

′′
I | − |E′′I |).

Note the number hD in [32, pp. 485–486] is | 	E′′ | in our notation and the number tD
there is |E′′ |. Also k′′ denotes the number of surviving23 marked points. For generic
(ω′,R, J ),

cT X(− log D)
1 (Av′′)+ (n − 3)− |Iv′′ | + δv′′ ≥ 0, (4.77)

where δv′′ is the number of intersection points of uv′′ with ∂DIv′′ as in the proof of
Corollary 4.19. If some bubble in 	′′ happens to be the image of two or more bubbles

23 Which will be k or k − 1 since the contracted part carries at most one of the marked points.
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in 	′, by adding (4.77) to the dimension, and by (4.72), we get

dimC Mplog
g,s (X , D, A, ν)	′′

≤ k′+ | 	E
′ | +

∑

v∈Vp

(
cT X(− log D)
1 (Av)+ (n − 3)(1− gv)− | Iv |

)

+
∑

v∈V′b

(
cT X(− log D)
1 (Av′)+ (n − 3)− | Iv′ |

)

− (n − 1)(| 	E
′ | − |E′ |)+

∑

I⊂[N ]
(| I | −1)(| 	E

′′
I | − |E′′I |).

Since

1− g =
∑

v∈V′
(1− gv)− (| 	E

′ | − |E′ |),

we get

dimC Mplog
g,s (X , D, A, ν)	′′

≤ k′ + (n − 3)(1− g)+
∑

v′∈V′

(
cT X(− log D)
1 (Av′)− | Iv′ |

)

+ (2 |E′ | − | 	E
′ |)+

∑

I⊂[N ]
(| I | −1)(| 	E

′
I | − |E′I |).

(4.78)

By the semi-positivity condition, we have cT X(− log D)
1 (Av′) ≥ 0 for all v′ ∈ V

′
b, see

Corollary 4.19. Also | 	E′ |≥ 2 |E′ |. Therefore, the last equation is less than or equal
to

cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k

−
∑

v′∈V′
| Iv′ | +

∑

I⊂[N ]
(| I | −1)(| 	E

′
I | − |E′I |). (4.79)

Also, note that if the equality happens, then

∑

v′′∈V′′
|Iv′′|=

∑

v′∈V′
|Iv′| and | 	E

′ |= 2 |E′ | .

The first equality implies that step (iv) in RT-process is trivial. The second one implies
that step (i) is trivial and no multi-node is created in steps (ii) and (iii) of the process.
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Then it is easy to see that

∑

v′′∈V′′
| Iv′′ | +

∑

I⊂[N ]
(| I | −1)(| 	E

′′
I | − |E′′I |)

= − |E | −
∑

v∈V

| Iv | +
∑

e∈E

| Ie |= dimC(G)− dimR KR(	).

Proof of Proposition 1.7 If D is smooth, i.e. N = 1, then the second line (4.79) is
negative. We conclude that

dimC Mplog
g,s (X , D, A, ν)	′′ < dimC Mg,s(X , D, A, ν).

In this sense, for D smooth, Proposition 1.7 essentially follows from the classical
result of Ruan–Tian by looking at the image of non-simple maps inMg,k(X , A, ν). ��

For an arbitrary SNC divisor D, in order to take care of the extra term

(2 |E′ | − | 	E
′ |)−

∑

v′∈V′
| Iv′ | +

∑

I⊂[N ]
(| I | −1)(| 	E

′
I | − |E′I |) (4.80)

in (4.78), we need to use Condition (2) in Definition 3.11 to reduce the dimension. We
encounter the following two problems.

1. The map ob	 into G(	) is defined on Mplog,γ
g,s (X , D, A, ν)	 . As the examples

below show, unlike st×ev, ob	 does not necessarily factor through πγ . Therefore,

we need to work with the larger space Mplog,γ
g,s (X , D, A, ν)	 .

2. Since the elements ofMplog,γ
g,s (X , D, A, ν) are not simple, transversality of ob	 in

the sense of Claim 2 of proof of Theorem 1.5 might not be achievable. We need to
replace G(	) with a smaller group G(γ ) that admits a surjective homomorphism
h : G(	) −→ G(γ ), and such that

obγ = h ◦ ob	 : Mplog,γ
g,s (X , D, A, ν) −→ G(γ )

can be transversed (i.e. 1∈G(γ ) is a regular value of that).
The two problems above are not specific to the particular compactification con-

sidered in this work and should appear, either explicitly or implicitly, in any other
analytical approach.

The first example below illustrates a simple situation where ob	 depends on the
location of special points on a ghost bubble. In Appendix A, we study this dependence
in details. The second example below illustrates a situation where ob	 depends on the
choice of the covering map hv for some multiple-cover bubble�v . The third example
below illustrates a situation where different bubbles have the same image, and ob	
can not be transversed. Finally, the fourth example below illustrates the necessity of
the extra condition (1.19), whenever N > 1.
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Fig. 3 A nodal configuration in
the boundary of

Mlog
0,((2,1)(1,2))(P

2, D, [3])

Example 4.21 Let X = P
2, D = D1∪D2 be the transverse union of two coordinate

lines,

g=0, k=2, A=[3], and s=(s1, s2)=((2, 1), (1, 2)).

Let 	 be the configuration in Fig. 3; it is the nodal configuration obtained by three
lines (not contained in D) passing through the point D12, together with a ghost bubble
mapped to D12 that connects the domains of these three lines and carries the marked
points z1, z2.

LetV = {v0, v1, v2, v3}where v1, v2, v3 correspond to the lines 1, 2, and 3, respec-
tively, andv0 corresponds to the ghost bubble. LetE={e1, e2, e3}where ei corresponds
to the node connecting the domain of the i-th line to the ghost bubble. We can choose
the orientation

	
ei to be the one ending at v0. We have

Iv0 = {1, 2}, Ivi = ∅, Iei = {1, 2}, s
	
ei = (1, 1), ∀ i = 1, 2, 3.

The map

� : Z
E ⊕ Z

Iv0 −→
3⊕

i=1
Z
Iei

has a 1-dimensional kernel and a 2-dimensional cokernel. The kernel is generated by

(λe1, λe2 , λe3, sv0) = (1, 1, 1, (1, 1)).

Therefore, Condition (1) of Definition 3.11 is satisfied. The obstruction group G(	)
is 2-dimensional. The homomorphism

(C∗)Ie1 × (C∗)Ie2 × (C∗)Ie3 −→ (C∗)2,

((x1, y1), (x2, y2), (x3, y3)) �−→
(
x1
y1

y2
x2
,
x2
y2

y3
x3

)

descends to an isomorphism G(	)→ (C∗)2. We take the marked point z1 to be 0, z2
to be∞, and the nodal points q

	e1
, q

	e2
, and q

	e3
to be 1, α2, and α3, respectively. Thus,

α2 and α3 are parametrizing the two-dimensional configuration spaceM0,5 of the five
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special points on �v0 . The meromorphic sections (functions) ζv0,1 and ζv0,2 are given
by

ζv0,i (z) =
βi zs1,i

(z − 1)
s
	e1,i (z − α2)

s
	e2,i (z − α3)

s
	e3,i

=
{

β1 z2

(z−1) (z−α2) (z−α3) i = 1,
β2 z

(z−1) (z−α2) (z−α3) i = 2,

where βi ∈C
∗. We conclude that

ob	( f ) =
(

m1

m2α2
,
m2α2

m3α3

)

∈ (C∗)2,

where mi is the slope of the i-th line. The RT-process removes the ghost bubble �v0

and creates a map f ′ with one multi-node. In general, as we will show in AppendixA,
the element ob	( f ) can be expressed as a product of two terms

ob	( f ) = ob	( f
′) · ov0(P1, z1, z2, q 	e1

, q
	e2
, q

	e3
).

Here, the decomposition is

(
m1

m2α2
,
m2α2

m3α3

)

=
(
m1

m2
,
m2

m3

)

·
(

α−12 ,
α2

α3

)

. (4.81)

However, as (4.81) shows, the second term on the right-hand side can be a non-trivial
function from M0,kv0+�v0 into G(	). ��

Next, we consider a similar configuration in one dimension higher with a multiple-
cover map in place of the ghost bubble above.

Example 4.22 Let X=P
3, D=D1∪D2 be the transverse union of two hyperplanes,

g=0, k=2, A=[5], and s=(s1)=((5, 0), (0, 5)).

Let	 be the configuration in Fig. 4; it is the nodal configuration obtained by three lines
(not contained in D) passing through D12 ∼= P

1, together with a degree 2 multiple-
cover map

hv0 : �v0 = P
1 −→ D12

that connects the domains of these three lines and carries the marked points z1, z2.
The dual graph 	 and the isomorphism G → (C∗)2 is the same as in Example 4.21.

After a reparametrization,wemay assume that the double points are ata, b∈ D12 = P
1

and 0,∞∈�v0 = P
1. Therefore,

hv0(z) =
a − bz2

1− z2
.

123



M. Farajzadeh-Tehrani

Fig. 4 A nodal configuration in the boundary ofMlog
0,((5,0),(0,5))(P

3, D, [5])

The location of each special point on �v0 is determined up to a sign by its image in
D12, i.e.

hv0(q 	ei
) = αi ↔ q

	ei
∈ ±

√
a − αi

b − αi
, hv0(zi ) = βi ↔ zi ∈ ±

√
a − βi

b − βi
.

The RT-process replaces uv0 with the identification uv′0 : �v′0 = P
1 −→ D12 together

with the marked points {α1, α2, α3, β1, β2} ∈ �v′0 = D12 (if two of these are the
same, they will be identified). In the fibers M f ′ of (4.74) over f ′, the parameters
α1, α2, α3, β1, β2 will be fixed, but a, b are allowed to change and they parametrize
the moduli space of multiple covers that yield the same underlying simple marked
curve f ′. The type of 	′ depends on the location of {α1, α2, α3, β1, β2}. For example,
we may assume that

α1 = α2 = α and β1 = β2 = β

as in Fig. 4. Then 	′ has a multi-node at α, just one marked point at β, and a regular
node at α3.

In any case, the meromorphic sections ζv0,1 and ζv0,2 of u∗v0NX Di = O(2) are
given by

ζv0,i (z) =
ci (z − z1)s1,i (z − z2)s2,i

z
s
	e1,i (z − 1)

s
	e2,i (z − α)

s
	e3,i

=
⎧
⎨

⎩

c1(z − z1)5
(
(z − q

	e1
) (z − q

	e2
) (z − q

	e3
)
)−1 if i = 1,

c2(z − z2)5
(
(z − q

	e1
) (z − q

	e2
) (z − q

	e3
)
)−1 if i = 2,

where ci ∈C
∗. We conclude that

ob	( f ) =
⎛

⎝m1

m2

(
(q

	e1
− z1)(q 	e2

− z2)

(q
	e1
− z2)(q 	e2

− z1)

)5

,
m2

m3

(
(q

	e2
− z1)(q 	e3

− z2)

(q
	e2
− z2)(q 	e3

− z1)

)5
⎞

⎠ ∈ (C∗)2,
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Fig. 5 A nodal configuration in
the boundary of

Mlog
0,((3,3))(P

2, D, [3])

where mi is the slope of the i-th line with respect to D1 and D2. The fractions

(q
	e1
− z1)(q 	e2

− z2)

(q
	e1
− z2)(q 	e2

− z1)
and

(q
	e2
− z1)(q 	e3

− z2)

(q
	e2
− z2)(q 	e3

− z1)

are the cross-ratios of (q
	e1
, q

	e2
, z1, z2) and (q 	e2

, q
	e3
, z1, z2), respectively. Their depen-

dence on a and b, and thus on hv0 , is non-trivial. ��
Example 4.23 Let X = P

2, D = D1∪D2 be the transverse union of two coordinate
lines,

g=0, k=1, A=[3], and s=(s1)=((3, 3)).

Let 	 be the configuration in Fig. 5; it is the nodal configuration obtained by three
lines (not contained in D) passing through the point D12, together with a ghost bubble
mapped to D12 that connects the domains of these three lines and carries the marked
point z1.

The dual graph 	 is as in Example 4.21 and thus the isomorphism G → (C∗)2 is
induced by

(C∗)Ie1 × (C∗)Ie2 × (C∗)Ie3 −→ (C∗)2,

((x1, y1), (x2, y2), (x3, y3)) �−→
(
x1
y1

y2
x2
,
x2
y2

y3
x3

)

.

We take the marked point z1 to be∞ and the nodal points q
	e1
, q

	e2
, and q

	e3
to be 0,

1, and α, respectively. Thus, α is parametrizing the configuration space M0,4 of the
four special points on �v0 . The meromorphic sections (functions) ζv0,1 and ζv0,2 are
given by

ζv0,i (z) =
βi

z
s
	e1,i (z − 1)

s
	e2,i (z − α)

s
	e3,i

= βi

z (z − 1) (z − α)
, i = 1, 2,

where βi ∈C
∗. We conclude that

ob	( f ) =
(
m1

m2
,
m2

m3

)

∈ (C∗)2,
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Fig. 6 A nodal configuration in the boundary ofMlog
0,((3(d+a),d+a))(P4, D, [d + a])

where mi is the slope of the i-th line. In particular, it does not depend on α (which is
good). However, if we assume m1 = m2 = m3, i.e., the 3-lines have the same image,
we obtain a configuration for which the step (iii) of the RT-process will be non-trivial.
Step (i) will collapse the ghost bubble and ob	 does not depend on the location of 4
special points on that. Step (ii) is trivial, and step (iii) yields just one line with the slop
m = m1 = m2 = m3∈C

∗. Then

ob	 : Mplog,γ
g,s (X , D, A)	 ∼= C

∗ ×M0,4 −→ (C∗)2

is the constant map 1 and 1 is not a regular value of ob	 . ��

Example 4.24 Let X=P
4, and D=D1∪D2 where D1 is a degree 3 hypersurface and

D2 is a hyperplane. The intersection is a cubic surface with 27 lines in it. Let

g=0, k=1, A=[d + a], and s=(s1)=((3(d + a), d + a)).

Let 	 be the configuration in Fig. 6; it is the nodal configuration obtained by a lines
(not contained in D) each of which intersects D1 and D2 at a single point along D12
with tangency order (3, 1), together with a degree d rational curve in D12 that connects
these a lines and carries the marked point z1. If we assume that the latter is a d-fold
multiple-cover of a line in D12, we obtain a non-simple configuration γ .

The associated map

� : D = Z
a ⊕ Z

2 −→ Z
2a

has a 1-dimensional kernel generated by
(
(1, . . . , 1), (4, 1)

)
. Therefore, G(	) is

(a − 1)-dimensional. A simple calculation shows that the expected dimension of
Mγ

0,s(X , D, A)	 is 2d + a. On the other hand, the expected dimension of the main
stratum is d + a + 2. For d ≥ 2, the former is not smaller than the latter. In the
classical case, D12 is a positive manifold and multiple-covers cause no issue. Here,
though, the map ob	 depends on the covering map and can not be ignored. Note that
Condition (1.19) is not satisfied for the line class in D12. ��
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Regarding Problem 1, the stronger condition of Definition 1.10 allows us to get the
upper24 bound

dimC Mplog,γ
g,s (X , D, A, ν)	 ≤ Q(	)

= cT X(− log D)
1 (A)+ (n − 3)(1− g)+ k + dimC(G)− dimR KR(	).

(4.82)

We get (4.82), by following steps (i)–(iv) of the RT-process and tracking the change
of the quantity

Q(	) =
∑

v∈V

cT X(− log D)
1 (Av)+ k + (2 |E | − | 	E |)

−
∑

v∈V

| Iv | +
∑

I⊂[N ]
(| I | −1)(| 	EI | − |EI |).

• Collapsing a ghost bubble Cv = (�v = P
1, zv ∪ qv), with kv =| zv |, �v =| qv |,

creates a dual graph 	 with

Q(	)− Q(	) = kv + �v − 3 = dimC M0,kv+�v . (4.83)

Let 	(i) be the result of collapsing all the ghost bubbles in the step (i) of the
RT-process. Applying (4.83) inductively, we conclude that

Q(	) = Q(	(i))+ dim
∏

v∈Vb,◦
M0,kv+�v .

• Replacing a multiple-cover bubble (uv,Cv = (�v = P
1, zv ∪ qv)), with the

underlying simple map (uv,Cv = (�v = P
1, zv ∪ qv)), with Av=dvAv , creates

a dual graph 	 with the same set of vertices and

Q(	)− Q(	) = (dv − 1)cT X(− log D)
1 (Av)+ (kv + �v)− (kv − �v).

(4.84)

By (1.19) and (4.63), the righthand side is smaller than or equal to

dimCM0,αv (P
1, zv ∪ qv, [dv]) = (dv − 1)(2− δv)+ δv − δv,

where δv (resp. δv) is the number of intersection points of uv (resp. uv) with D. Let
	(ii) be the result of reducing all the multiple-cover bubbles of 	(i) in the step (ii)
of the RT-process. Starting with 	(i) and applying (4.84) inductively, we conclude
that

Q(	) ≥ Q(	(ii))+ dimC M f ′′ ,

24 Better upper bounds can be achieved.
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where M f ′′ is the fiber of (4.74) in (4.76).

Step (iii) will further decrease this quantity; therefore,

Q(	) ≥ Q(	(iii))+ dimC M f ′′ .

The inequality (4.82) follows.
Regarding Problem 2, we need to replaceG(	)with a smaller groupG(γ ) for which

the obstruction map obγ : Mplog,γ
g,s (X , D, A, ν)	 → G(γ ) can be transversed and

dimC Mplog,γ
g,s (X , D, A, ν)	 − dimC G(γ ) < cT X(− log D)

1 (A)+ (n − 3)(1− g)+ k.

This should be done by selecting a subset E
� of E where the Eq. (3.48) can be trans-

versed at the nodes corresponding to E
�. We plan to address these in a future work.
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comments.
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Appendix A: Dependence of ob0 on Ghost Bubbles

In this section, we study the dependence of the obstruction map ob	 on the configu-
ration of special points on a ghost bubble.

First, we discuss the effect of collapsing a tree of ghost bubbles into one ghost
bubble, and further into a multi-node. Consider a decorated dual graph 	̃ = (Ṽ, Ẽ)

associated to a nodal pre-log map

f̃ = (
φv = φ|�v , uv, ζv = (ζv,i )i∈Iv ,Cv = (�v, jv, 	zv ∪ 	qv)

)
v∈Ṽ

as in Definition 3.9. Let 	′ = (V′,E′) be a sub-tree of contracted components in
Ṽb with Av = 0 for all v ∈ V

′. We can replace 	′ with a single vertex v0 (keeping
the decorations unchanged at the rest of the edges) to obtain a new decorated dual
graph 	= (V,E) satisfying the combinatorial conditions (3.51) (but not necessarily
Definition 3.11 (1)). Conversely, starting from 	 we obtain various 	̃ by replacing a
ghost bubble v0 with a tree of ghost bubbles 	′. Note that

Ṽ = (V− {v0}) ∪ V
′ and Ẽ = E ∪ E

′. (A.1)

Also,

Ie = Iv = Iv′ , ∀v, v′ ∈ V
′, e ∈ E

′.

This common value is what Iv0 is in 	. For each v ∈V
′, uv is the constant map into

some p∈DIv0
−∂DIv0

. The map uv0 is defined to be the constant map into p as well.
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Since v0∈Vb and the combinatorial condition (3.51) is satisfied, for any arrangement
of special point zv0 ∪ qv0 on �v0 , there exists a set of meromorphic functions

ζv0 = (ζv0,i )i∈Iv0

such that

f = (
φv, uv, ζv,Cv)v∈V−{v0} ∪

(
uv0 , ζv0 ,Cv0 = (�v0 , jv0 , 	zv0 ∪ 	qv0))

∈Mplog
g,s (X , D, A, ν)	.

The reduced graph 	 may not satisfy Condition (1) of Definition 3.11, however,
since G(	′) is trivial (see Example 3.13 and remark 3.14), Lemma A.1 below shows
that the natural homomorphism from the obstruction group G(	) associated with 	
to G(	̃) is onto. Expanding v0 will increase the kernel of � in (3.39) and reduces its
cokernel.

Let

ιD : D = Z
E ⊕

⊕

v∈V

Z
Iv −→ D̃ = Z

Ẽ ⊕
⊕

v∈Ṽ

Z
Iv

be the embedding which mapsZ
Iv0 diagonally into

⊕
v∈V′ Z

Iv , and is the identity map
on the rest of the terms with respect to the identifications (A.1). Let

ιT : T =
⊕

e∈E

Z
Ie −→ T̃ =

⊕

e∈Ẽ

Z
Ie

denote the natural inclusion map corresponding to the second identification in (A.1).

Lemma A.1 With notation as above, for compatible choices of orientations on E and
E, the commutative diagram

D

�

ιD
D̃

�̃

T
ιT

T̃

induces a surjective homomorphism ϕ	,	̃ : G(	)−→G(	̃).

Proof Since Iv= Iv0 for all v ∈ V
′, themap�′ : D

′ → T
′ corresponding to	′ descends

to the similarly denoted map

�′ : D
′ = Z

E′ ⊕
⊕

v∈V′ Z
Iv

Z
Iv0

−→ T
′ =

⊕

e∈E′
Z
Ie ,
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where Z
Iv0 ↪→⊕

v∈V′ Z
Iv is the diagonal embedding. Let

πD : D̃ −→ D
′

and πT : T̃ −→ T
′

denote the natural projection maps. For each e∈ Ẽ, let
	
e denote the chosen orientation

on e for defining �. By restriction, this gives us the choice of orientations on E and E
′

used to define � and �′. The commutative diagram

D
ιD

�

D̃
πD

�̃

D
′

�′

T
ιT

T̃
πT

T
′

has exact rows. Therefore, since coker(�′)=0, we get the long exact sequence,

0 −→ ker(�) −→ ker(̃�) −→ ker(�′) −→ coker(�) −→ coker(̃�) −→ 0.

The last map gives us the surjective homomorphism ϕ	,	̃ : G(	)→G(	̃). ��
Suppose { ft }∞t=1 is a sequence of pre-log maps ft are obtained by the deformations

(�v0 , 	zv0,t ∪ 	qv0,t )∞t=1 ∈M0,kv0+�v0 (A.2)

of (�v0 , 	zv0 ∪ 	qv0) and keeping the other components fixed. Suppose that, as t →∞,

ft converges to f̃ ∈Mplog
g,s (X , D, A, ν)	̃ that has the nodal configuration C ′ in place

of Cv0 . For each i ∈ Iv0 , let ζv0,t,i be a meromorphic function on �v0 with zeros/poles
of the given order at 	zv0,t ∪ 	qv0,t . By [7, Cor. 3.12], for each v ∈ V

′, as t → ∞,
restricted to �v and up to scaling, ζv0,t,i converges to ζv,i . We conclude that

lim
t→∞ϕ	,	̃ ◦ ob	( ft ) = ob	̃( f̃ ) ∈ G(	̃). (A.3)

Next, we study the dependence of ob	 on the location of the special points 	zv0 ∪qv0
on a single ghost bubble �v0 . For any pre-log map

f = (
φv, uv, ζv,Cv)v∈V−{v0} ∪

(
uv0 , ζv0 ,Cv0 = (�v0 , jv0 , 	zv0 ∪ 	qv0))

∈Mplog
g,s (X , D, A, ν)	

with domain � =⋃
v∈V �v , let

f = (
φv, uv, ζv,Cv)v∈V=V−{v0} ∈Mplog

g,s (X , D, A, ν)	 (A.4)

denote the tuple obtained by forgetting the v0-th component, defined on the domain�
obtained by removing �v0 from �. This is no longer a nodal domain; � is a domain
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with a multi-node m in place of v0. Let 	 = (V,E) denote the combinatorial type of
�. We have

V = V− {v0}, E = (
E− {e1, . . . , e�0}

) ∪ {m}, 	E = E− {
	
e
1
, . . . ,

	
e
�0
}.

Note that Iv0 = Ie1 = · · · = Ie�0 . We let Im to also denote this common value.

Associated to 	 (or in general, any domain with such multi-nodes) we consider the
linear map

� : D = Z
E ⊕

⊕

v∈V

Z
Iv −→ T =

⊕

e∈E−{e1,...,e�0 }
Z
Ie ⊕

⊕
e∈{e1,...,e�0 } Z

Ie

ZIm
, (A.5)

where

Z
Im −→

⊕

e∈{e1,...,e�0 }
Z
Ie

is the diagonal embedding, and� is the composition of the natural inclusion25 inclusion
D−→D, �, and the natural projection πT : T−→T. Similar to (3.42), the obstruction
group G(	) associated to 	 is the quotient

G(	) =
( ∏

e∈E−{e1,...,e�0 }
(C∗)Ie ×

∏
e∈{e1,...,e�0 }(C

∗)Ie

(C∗)Im

)

/ Image(exp(�C)).

Similar to (3.47), after fixing a choice of local holomorphic coordinates w
	
e around

each nodal point q
	
e∈�v , for all v∈V and

	
e∈ 	Ev , we define

ob	( f ) ∈ G(	)

to be class of

η =
∏

e∈E−{e1,...,e�0 }

∏

i∈Ie

η
	
e,i

η
	e,i
×

∏

i∈Im
[η
	
e1,i , . . . , η	

e�0 ,i
]

∈
∏

e∈E−{e1,...,e�0 }
(C∗)Ie × (

(C∗)�0/C∗
)Im

in G(	). Here, we use the fact that, for each i ∈ Im , the class

[η
	
e1,i , . . . , η	

e�0 ,i
] ∈ (C∗)�0/C∗

25 Since D is just missing a summand in D, we get both natural inclusion and projection maps D ↪→D and
πD : D → D, respectively.
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is independent of the identification NX Di |p= C. For the same reason as in [7, pp.
1013–1015], the class ob	( f )=[η] of η in G(	) is independent of the choice of local
holomorphic coordinates w

	
e and {ζv}v∈V up to rescaling.

Lemma A.2 The obstruction groups G(	) and G(	) are naturally isomorphic. There
exists a holomorphic map ov0 : M0,kv0+�v0 → G(	) such that, under the natural

isomorphism G(	)∼=G(	), we have

ob	( f ) ov0(Cv0)
−1 = ob	( f ).

In other words, ob	( f ) = 1 if and only if

ob	( f ) = ov0(Cv0).

Proof The commutative diagram

Z
Iv0

ιD

∼=

D
πD

�

D

�

Z
Im

ιT
T

πT
T

has exact rows. We get the long exact sequence,

0 −→ ker(�) −→ ker(�) −→ 0 −→ coker(�) −→ coker(�) −→ 0.

The last map gives us the isomorphism ϕ	,	 : G(	)→G(	).
By definition, ϕ	,	 ◦ ob	( f ) is the class [η] of

η =
∏

e∈E−{e1,...,e�0 }

∏

i∈Ie

η
	
e,i

η
	e,i
×

∏

i∈Im

[η
	
e1,i

η
	e1,i
, . . . ,

η
	
e�0 ,i

η
	e�0
,i

]

∈
∏

e∈E−{e1,...,e�0 }
(C∗)Ie × (

(C∗)�0/C∗
)Im

in G(	). We have

η = η · g−1,

where

g =
∏

e∈E−{e1,...,e�0 }

∏

i∈Ie
1×

∏

i∈Im

[
η
	e1,i
, . . . , η

	e�0
,i

]

∈
∏

e∈E−{e1,...,e�0 }
(C∗)Ie × (

(C∗)�0/C∗
)Im .
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Up to rescaling, the section ζv0 only depends on the location of the special points
zv0 ∪ qv0 (and the pre-determined multiplicities at those points). The map

ζv0 −→
∏

i∈Im

[
η
	e1,i
, . . . , η

	e�0
,i
] ∈ (

(C∗)�0/C∗
)Im

only depends on the (C∗)Im -equivalence class of ζv0 and, via the inclusion

(
(C∗)�0/C∗

)Im ↪−→
∏

e∈E−{e1,...,e�0 }
(C∗)Ie × (

(C∗)�0/C∗
)Im

descends to a well-defined map

ov0 : M0,kv0+�v0 −→ G(	).

��
The projection map

π	,	 :Mplog
g,s (X , D, A, ν)	 −→Mplog

g,s (X , D, A, ν)	, f �−→ f , (A.6)

is a fiber bundle with fibersM0,gv0+�v0 . By Lemma A.2, there exists a map

ob	 : Mplog
g,s (X , D, A, ν)	 −→ G	

such that

π	,	
(
Mg,s(X , D, A, ν)	

) = ob−1
	

(
Im(ov0)

)
.

In general, the map ov0 can be non-trivial; see Example 4.21 or A.4 below. There are,
however, situations where the map is constant and ob	 factors through the fibration
(A.6); see Example 4.23. There are also examples, such as Example A.3 below, where
the map ov0 is constant but the constant value is not 1.

Example A.3 Let X=P
3, D=D1∪D2∪D3 be the transverse union of three coordinate

hyperplanes,

g=0, k=3, A=[3], s=(s1, s2, s3)=((3, 0, 0), (0, 3, 0), (0, 0, 3)).

Let 	 be the dual graph in Fig. 7 with the set of vertices V= {v1, v2, v3, v0} and the
set of edges E={e1, e2, e3} such that ei connects v0 and vi , for all i=1, 2, 3. Choose
the orientations

	
ei to end at v0, for all i=1, 2, 3. We have

Iv0=[N ]={1, 2, 3}, s
	
e1 = (−2, 1, 1)∈Z

3, s
	
e2 = (1,−2, 1)∈Z

3,

s
	
e3 = (1, 1,−2)∈Z

3, Ivi = {i}, Avi = [1]∈H2(Xi ,Z), ∀i=1, 2, 3.
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Fig. 7 Dual graph 	 and the image of a map belonging toM0,3(P
3, D, [3])	 in P

3

A pre-log curve with this dual graph is made of a line �i = Im(uvi ) in Di ∼= P
2 passing

though the point D123, for each i ∈[3], and a log tuple

(
uv0 , [ζv0,i ]i∈[3], (�v0 , jv0)

∼= P
1, qv0 = {q 	ei

}i∈[3]
)
,

where uv0 is the constant map onto D123, and ζv0,i , for each i ∈[3], is a meromorphic
function with poles/zeros of the prescribed order at qv0 . Each �i also carries a mero-
morphic section ζvi of O(1)|�i with a pole of order 2 at q

	
ei , and a zero of order 3 at

the marked point zi . Both kernel and cokernel of

� : D = Z
E ⊕

3⊕

i=0
Z
Ivi −→ T =

3⊕

i=1
Z
Iei

are 1-dimensional. The homomorphism

(C∗)3 × (C∗)3 × (C∗)3 −→ C
∗,

3∏

i=1
(xi1, xi2, xi3) �−→ x12x23x31

x13x32x21
(A.7)

descends to an isomorphism G → C
∗.

In the pre-log spaceMplog
0,s (P

3, D, [3])	 , the three lines �1, �2, �3 are allowed to be
any line passing through the point D123 with non-trivial slopes in C

∗. For each i ∈[3],
the line �i is the completion of the image of a map of the form

C −→ C
3, w �−→ (wi j ) j=1,2,3 ⊂ C

3,

wi i = 0, wi j = ai jwi , ai j ∈ C
∗, ∀ j ∈ [3] − i .

Here Di corresponds to the subspace (xi = 0) ⊂ C
3. For i = 1, 2, 3, we have

ζvi (wi ) = αi iw
−2
i . Putting (q

	e1
, q

	e2
, q

	e3
) = (0, 1,∞), we get

ζv0,1 = α1
z2

z − 1
, ζv0,2 = α2

(z − 1)2

z
, ζv0,3 = α3

1

z(z − 1)
.
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We conclude that

ob	( f ) = −a12a23a31
a13a32a21

;

i.e., f is a log map if and only if the product of the slopes of three lines (in the cyclic
order) is −1. On the other hand,

ob	( f ) =
a12a23a31
a13a32a21

.

We conclude that the image of ov0 in G(	)∼=C
∗ is −1. ��

For each expansion 	̃ of 	 obtained by expending v0 into a tree of ghost bubbles
	′ (or in other words, expanding �v0 to C

′), the pre-log space

Mplog
g,s (X , D, A, ν)	̃

is obtained by taking the closure of fibers of (A.6) and letting Cv0 to converge to a
nodal domain

C ′ =
⋃

v∈V′
Cv ∈ ∂M0,gv0+�v0 . (A.8)

Let

M	′ ⊂∂M0,gv0+�v0

denote the stratum of nodal configurations (A.8). Taking union over all such 	̃, we get
the fiber bundle

⋃

	̃

Mplog
g,s (X , D, A, ν)	̃ −→Mplog

g,s (X , D, A, ν)	

with compact fibers M0,gv0+�v0 . Similar to Lemma A.2, for each 	̃, we get a map

o	′ : M	′ −→ G(	̃)

such that

ob	̃( f̃ ) = ϕ	,	̃ ◦ ob	( f ) · o	′(C ′)−1, ϕ	,	̃ = ϕ	,	̃ ◦ ϕ−1	,	
: G(	) −→ G(	̃).

In other words, for the fiber bundle

π	̃,	 :Mplog
g,s (X , D, A, ν)	̃ −→Mplog

g,s (X , D, A, ν)	, f̃ �−→ f ,
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Fig. 8 A nodal configuration in the boundary ofMlog
0,((3,3))(P

2, D, [3])

we have

π	̃,	
(
Mg,s(X , D, A, ν)	̃

) = (ϕ	,	̃ ◦ ob	)−1
(
Im(o	′)

)
.

Note that as 	′ gets bigger, both M	′ and G(	̃) get smaller. The Deligne–Mumford
convergence in (A.2) is compatible with the projection G(	) → G(	̃) in the sense
that

M0,kv0+�v0
DM-convergence

ov0 G(	) ∼= G(	)

ϕ	,	̃
∼=ϕ	,	̃

M	′
o	′ G(	̃);

i.e., if a family of smooth marked curves {Ct }∞t=1 converges to C ′ ∈ M	′ , then
π	,	̃(ov0(Ct )) converges to o	′(C ′). In Example A.4, as α converges to 0, 1,∞, we
get an expansion 	̃ of 	 that replaces�v0 by a nodal sphere with 2 components. Then
M	′ is just a point and G(	̃) is the trivial group.

Example A.4 Let X=P
2, D=D1∪D2 be the transverse union of two coordinate lines,

g=0, k=2, A=[4], and s=(s1, s2)=((5, 4), (0, 1)).

Let 	 be the configuration in Fig. 8. It is the nodal configuration obtained by 2 lines
passing through the point D12, a double cover uv1 : �v1 → D2 of the line D2 ramified
at D12 containing the second marked point z2. The three of them are connected by a
ghost bubble �v0 mapped to D12 carrying the marked point z1.

Let V = {v0, v1, v2, v3} where v1 corresponds to the double cover of D2, v2, v3
correspond to the lines 2 and 3, respectively, and v0 corresponds to the ghost bubble.
Let E= {e1, e2, e3} where ei corresponds to the node connecting the domain of the
i-th component to the ghost bubble. We can choose the orientation

	
ei to be the one

ending at v0. We have

Iv0 = {1, 2}, Iv1 = {2}, Ivi = ∅, ∀i = 2, 3, Iei = {1, 2}, ∀i = 1, 2, 3,

s
	
e1 = (2, 1), s

	
e2 = (1, 1), s

	
e3 = (1, 1).
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The map

� : Z
E ⊕ Z

Iv0 ⊕ Z
Iv1 −→

3⊕

i=1
Z
Iei

has 1-dimensional kernel cokernel. The group homomorphism

(C∗)Ie1 × (C∗)Ie2 × (C∗)Ie2 −→ C
∗, ((x1, y1), (x2, y2), (x3, y3)) �−→ x2

y2

y3
x3

descends to an isomorphism G ∼= C
∗. We take the marked point z1 to be∞ and the

nodal points q
	e1
, q

	e2
, and q

	e3
to be α, 0, and 1, respectively. Thus, α parametrizes the

configuration spaceM0,4 of the four special points on�v0 . Themeromorphic sections
(functions) ζv0,1 and ζv0,2 are given by

ζv0,i (z) =
βi

z
s
	e1,i (z − 1)

s
	e2,i (z − α)

s
	e3,i

=
{
β1

(
z (z − 1) (z − α)2

)−1 if i = 1,

β2
(
z (z − 1) (z − α)

)−1 if i = 2,

where βi ∈ C
∗. Then

ob	( f ) = m2

m3

α − 1

α
∈ C

∗,

where m2 and m3 are slopes of the lines 2 and 3, respectively. Therefore, we get

ov0 :M0,4 −→ C
∗, α �−→ α

α − 1
, and ob	( f ) =

m2

m3
.

For any f with m2/m3 �= 1, there exists a unique α such that f ∈M0,s(X , D, A)	 .
The three special valuesm2/m3 = 0, 1,∞ correspond to the limiting situations where
α converges to 0,∞, 1, respectively, and we get a tree 	′ of two ghost bubbles instead
of �v0 . ��
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