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Abstract
Given a semistable degeneration with a simple normal crossings central fiber, Abramovich et
al. (Compositio Mathematica 156(10):2020–2075, 2020) proved a degeneration (or decom-
position) formula that relates the moduli spaces of stable maps in smooth fibers to certain
moduli spaces of log-smooth maps in the central fiber. In this paper, we study the same prob-
lem from an analytic point of view. We prove that the limiting stable maps in the central fiber
satisfy specific combinatorial and analytical conditions. Furthermore, we derive a (conjec-
tural) degeneration formula similar to ACGS’s formula, and work out an explicit example.
The results are expected to hold in the symplectic category as outlined in an earlier version
(Farajzadeh-Tehrani in Towards a degeneration formula for the Gromov–Witten invariants
of symplectic manifolds. arXiv:1710.00599v1 [math]) of this paper.
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1 Introduction

In this paper, by a semistable degeneration we mean a one-parameter family

π : Z−→�, (1.1)

where � is a disk around the origin in C, Z is a smooth Kähler manifold, π is a proper map,
the central fiber

Z0
..=π−1(0) = X∅ ..=

⋃

i∈I
Xi

is simple normal crossings (or SNC), and the fibers over �∗ ..=�−{0} are smooth. An SNC
variety with 3 irreducible components is illustrated in Fig. 1.

For each i∈I, let

Ni ≡ NZXi
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Fig. 1 A threefold SC variety

denote the normal line bundle of Xi in Z. The line bundle

OZ (Z0) = ⊗i∈IOZ(Xi)

is trivial. Let

XI ≡
⋂

i∈I
Xi ∀ ∅ 	= I ⊂ I.

Any trivialization OZ (Z0) ∼= OZ restricts to a set of compatible trivializations

OZ (Z0) |XI=
⊗

i∈I
OZ (Xi) |XI=

⊗

i∈I
Ni |XI ⊗

⊗

i∈I−I

OXI (XI+i) ∼= OXI , (1.2)

where OXI (XI+i) is the line bundle corresponding to the hypersurface

XI+i
..= XI∪{i} ⊂XI, ∀ i∈I − I.

For every λ∈�∗, given g, k∈N and A∈H2(Zλ,Z), a k-marked genus g degree A per-stable
map into Zλ is a tuple

(
u :�−→Zλ,�z = (z1, . . . , zk)

)

where C≡ (�,�z) is a connected genus g nodal curve with k distinct ordered marked points
(away from the nodes) and u is a holomorphic map representing the homology class A. Two
marked pre-stable maps

(
u :�−→Zλ,�z

)
and

(
ũ : �̃−→Zλ,�̃z

)

are equivalent if there exists a bi-holomorphic isomorphism h : �−→�̃ such that h(za)= z̃a,
for all a = 1, . . . , k, and u = ũ ◦ h. A marked pre-stable map is stable iff the group of
self-automorphisms is finite. For λ ∈ �∗, let Mg,k(Zλ, A) denote the moduli space (set) of
equivalence classes of k-marked genus g degree A stable maps into Zλ.
If dimCZλ = n, the expected C-dimension of Mg,k(Zλ, A) is

cTZλ

1 (A) + (n − 3)(1 − g) + k. (1.3)

Gromov–Witten (or GW) invariants are obtained by the integration of certain cohomology
classes against the virtual fundamental class (or VFC) of Mg,k(Zλ, A). Since there might
be different homology classes in Zλ that are the same as homology classes in Z, for each
A ∈ H2(Z,Z), we let Mg,k(Zλ, A) to be the union over all the representatives of A in
H2(Zλ,Z); see [15] for a careful discussion of this issue.
For any choice of (g, k, A), the fibration (1.1) gives rise to a 1-parameter family

Mg,k(Z∗, A) ..=
⋃

λ∈�∗
Mg,k(Zλ, A) −→ �∗ (1.4)
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with fibers of equal virtual dimension (and cobordant VFC). For λ = 0, let Mg,k(Z0, A)

denote the space of all stable maps in Z whose image lies inside Z0; Mg,k(Z0, A) is not a
moduli space of the correct expected dimension that extends the virtual cobordism (1.4) over
0 ∈ �. Therefore, from an analytical perspective, the important questions are:

1. which stable maps inMg,k(Z0, A) can arise as the Gromov-limit of a sequence of stable
maps in (1.4)?

2. how to complete (1.4) with a moduli space Mgood
g,k (Z0, A), ideally still a subset of

Mg,k(Z0, A), admitting a VFC that is cobordant to VFC of smooth fibers?

3. can Mgood
g,k (Z0, A) and its VFC be expressed in terms of certain moduli spaces in Xi

relative to the SNC divisor ∂Xi ≡ ⋃
j∈I−i Xi j ⊂ Xi and their VFCs?

In the algebraic category and for a semistable degeneration into two pieces Z0 =X1∪X12 X2

along a smooth divisor, these questionswerefirst answeredbyLi [24, 25]. For a smooth divisor
D⊂X, he introduced the notion of a stable relative map whose image lives in a natural SNC
“expanded degeneration” associated to (X,D). Similarly, for a semistable degeneration into

two piecesZ0=X1∪X12X2, he constructed a compactificationMrel
g,k(Z0, A)whose (virtually)

main components are fiber products of the relative moduli spaces1 Mχ1,s(X1/X12, A1) and
Mχ2,s(X2/X12, A2). In [25], he proved a decomposition formula which expresses the GW
invariants of the smooth fibers in terms of the products of relative GW invariants of (X1, X12)

and (X2, X12). For a symplectic version of these results see [14, 21, 26]. More recently,
Gross-Siebert [19] and Abramovich-Chen [1, 5] introducedmoduli spaces of (fine, saturated)
stable log maps and proved a degeneration/decomposition formula [3] to answer the first two
questions above for an arbitrary semistable degeneration. Also, in [33], Brett Parker uses
moduli spaces of curves in exploded manifolds [30–32] to address the first two questions.
These constructions work for even a larger class of “log smooth” and “exploded” varieties
(see [29]), respectively. The degeneration formula2 in [3] can be read as: virtually, a stable
map f in Mg,k(Z0, A) can arise as a limit of a sequence of stable maps in smooth fibers
if and only if f can be enhanced to a log smooth map in the (algebraic) log moduli space

Mal,log
g,k (Z0, A). A log smooth map is a stable map plus a lift of that to a map between

certain sheaves of monoids satisfying some conditions. Parker’s definition in the category
of exploded manifolds involves sheaf theory in a similar manner. For a geometric approach
using expanded degenerations we refer to [35]. For the comparison of Jun Li’s formula and
ACGS’s formula, in the case of a basic semistable degeneration, we refer to [23].
Theorem 5.3.3 in [3], gives a criterion for lift-ability and a formula for the number of lifts
for transverse maps. However, in practice, given a stable map f , its is rather hard to check

whether f lifts to an element ofMlog
g,k(Z0, A). In other words, the image of the forgetful map

Mlog
g,k(Z0, A) −→ Mg,k(Z0, A),

where Mlog
g,k(Z0, A) is the log moduli space in [3], is hard to describe. For example, in [3,

Sec 5], the authors lift to a blowup of the SNC central fiber to find those “star-shaped” maps
that can be lifted to a log map.
In this paper, first, we prove that the Gromov-limits of stable maps in the central fiber
satisfy two specific combinatorial (called C1) and analytical (called C2) conditions. The
combinatorial condition (C1) is equivalent to the basicness condition in [19, Dfn 1.20] but it

1 Over possibly disconnected domains with Euler characteristic χ1 and χ2.
2 Also called an “invariance property” or a“decomposition formula”.
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is stated differently. The analytical condition (C2) more or less corresponds to the existence
of a morphism to a log point; see Remark 2.12. The two conditions are linked by a linear
map associated to the dual graph of the stable map in the question. The positive cone in
the kernel of this map gives a toric description of the space of gluing parameters. Second,
we provide evidence that the moduli space of log maps satisfying conditions (C1) and (C2)
should similarly address the first two questions above. In particular, we formulate an explicit
degeneration formula that, in the case of basic degenerations, coincideswith Jun Li’s formula.
The degeneration formula [3, Thm 1.2] and the one that we propose here are both a sum
over the same set of combinatorial data, but with different coefficients; see Remark 5.5.
In conclusion, this paper partially answers the questions (1)–(3) above (analytically) by
providing a natural compactification and some evidence (in the sense of calculating the
expected dimension and suggesting a GW degeneration formula) that these moduli spaces
have the expected properties.
While the algebraic log GW theory and tropical geometry can be used to simplify the presen-
tation at several places, the proposed approach has been packaged in away so that it extends to
the symplectic category without using sheaf theory. For example, in the symplectic category,
the complex line bundles OXi(Xi j) are defined but they don’t admit a holomorphic structure
or even a canonical ∂̄-operator that can be used to simplify certain definitions. The only
obstacle in the way of generalizing these result to the symplectic category is to find a suitable
class of almost complex structures compatible with a symplectic semistable degeneration (in
the sense of [12]); see [9].

Remark 1.1 Since Z0 ⊂Z is an SNC divisor, Theorem 1.3 in [7] with trivial tangency data

at the marked points gives us a relatively3 compact log moduli space Mlog
g,k(Z,Z0, A) that

contains Mg,k(Z∗, A) as an open subset. However, if g > 0, even the expected dimension

of the subset of log curves in Mlog
g,k(Z,Z0, A) that live in Z0 is different from (1.3). The

conditions (C1) and (C2) are a refinement of the similar conditions in [7, Dfn 2.8]. Therefore,
the compactness result [7, Thm 1.3] does not directly apply; it needs some enhancements.

For a finite set I and a ring R, let

RI• = {
r = (r j) j∈I ∈ RI :

∑

j∈I
r j = 0

} ⊂ RI .

For each i ∈ I, let ξi denote a non-zero holomorphic section of OZ (Xi) vanishing (to the
order 1) along Xi. Since Z0 is compact, the restriction of each section ξi to Z0 is unique up
to multiplication by a constant. We will choose these sections so that the composition

Z −→ OZ (Z0) ∼= Z × C −→ C, (1.5)

where the first map is x → ∏
i∈I ξi(x) and the last map is projection to the second factor,

is equal to (1.1). For the trivial holomorphic line bundle O (on any base), let λO denote the
constant section corresponding to λ∈C.
Fix a trivialization ofOZ (Z0). With notation as above, we define an analytical marked nodal
log map into Z0 with the marked nodal domain (�,�z)=⋃

v∈V(�v,�zv) to be a collection of
tuples

f ≡ (
uv : �v−→XIv ,�zv, (ζv,i)i∈Iv

)
v∈V (1.6)

over the irreducible components �v of � such that

3 i.e. the projection map π is proper.
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1.
(
u≡(uv)v∈V :�−→Z0,�z

)
is a k-marked nodal map in the classical sense,

2. for each v∈V, ∅ 	= Iv⊂I is the maximal subset such that Im(uv)⊂XIv ⊂Z0,
3. for each v∈V and every i∈ Iv, ζv,i is a non-trivialmeromorphic section of the holomorphic

line bundle u∗
vNi,

4. for each v ∈ V, with respect to the isomorphism (1.2), we have
⊗

i∈Iv
ζv,i ⊗

⊗

j∈I−Iv

u∗
vξ j = u∗

v(λOZ (Z0))

for some fixed λ=λ( f )∈C
∗ (independent of v ∈ V),

5. the “contact order vectors” in Z
I• , defined in (2.7) and (2.8), are the opposite of each

other at the nodal points of �,
6. every point in � with a non-trivial contact vector is a nodal point,
7. (C1:) there exists a vector-valued function s :V−→R

I such that sv= s(v)∈R
Iv+×{0}I−Iv

for all v∈V, and sv− sv′ is a positive multiple of the contact order vector of any nodal
point on �v connected to �v′ , for all v, v′ ∈V,

8. (C2:) certain Lie group (a complex torus) element ob( f ) associated to f , defined in (2.21),
is equal to 1, or equivalently, there is a choice of local holomorphic coordinates at the
nodes such that certain first order terms calculated with respected to these coordinates
match (see Remark 2.9);

see Definitions 2.2, 2.4, and 2.10 for the details. In simple words, a log map is a stable map
together with a set of meromorphic sections that satisfies certain combinatorial (i.e. (5), (6),
and (C1)) and analytical (i.e. (4) and (C2)) conditions.
Two marked log maps

f ≡ (
uv : �v−→XIv ,�zv, (ζv,i)i∈Iv

)
v∈V and

f̃ ≡ (
ũv : �̃v−→XIv ,

�̃zv, (̃ζv,i)i∈Iv
)
v∈V

are equivalent if there exists a bi-holomorphic isomorphism

(h : � −→ �̃) ≡ (
hv : �v −→ �̃h(v)

)
v∈V

such that

h(za) = z̃a ∀ a = 1, . . . , k, ũ ◦ h = u, h∗
v ζ̃h(v),i = cv,iζv,i ∀ v∈V, i∈ Iv.

In particular, given a marked log map f as in (1.6), replacing each meromorphic section ζv,i
with a non-zero multiple cv,iζv,i of that, satisfying

∏
i∈Iv cv,i = c′ for all v ∈ V, produces

another marked log map which is equivalent to f . A marked log map is stable if it has a finite
automorphism group. For g, k ∈N and A∈ H2(Z0,Z), we denote the space of equivalence
classes of stable k-marked degree A genus g log maps by

Mlog
g,k(Z0, A).

This moduli space is independent of the choice of the sections ξi used in the construction
because rescalings of ξi can be compensated by rescalings of ζv,i. The equivalence class of an
analytic log map is called an analytic log curve. We will often drop the adjective “analytic”
and simply say log map or log curve.
There is a natural forgetful map

Mlog
g,k(Z0, A) −→ Mg,k(Z0, A),

(
uv :�v→XIv ,�zv, (ζv,i)i∈Iv

)
v∈V −→ (

uv :�v→Z0,�zv
)
v∈V.

123



66 Page 6 of 42 Geometriae Dedicata (2022) 216 :66

It turns out that for every k-marked stable nodal curve f in Mg,k(Z0, A), there exists at

most finitely many log curves flog ∈ Mlog
g,k(Z0, A) (with distinct decorations on the dual

graph) lifting f ; see Remark 2.3. Furthermore, flog is stable if and only if f is stable, and the
automorphism groups are often the same.

Remark 1.2 In Sect. 2, we will construct the analytical log moduli spaces for any arbitrary
d-semistable (see [17]) SNC varietyZ0 without using the smoothingZ that contains it. Here,
we used Z to slightly simplify the notation. Furthermore, it is possible to define the log map
without mentioning the meromorphic sections ζv,i; see Remark 2.3.

By Smirnov’s theorem, every paracompact, Hausdorff, and locallymetrizable space ismetriz-
able. Therefore, if f : M−→N is a local embedding from a compact Hausdorff space M to
a compact metrizable space N then M is metrizable.

Theorem 1.3 For every A ∈ H2(Z0,Z) and g, k ∈ N, the Gromov sequential convergence
topology on Mg,k(Z, A) lifts to a Hausdorff sequential convergence topology on

Mlog
g,k(Z, A) ..= Mg,k(Z∗, A) ∪ Mlog

g,k(Z0, A)

such that

π : Mlog
g,k(Z, A) −→ �

is proper (i.e., Mlog
g,k(Z0, A) is compact) and the natural forgetful maps

ι : Mlog
g,k(Z, A) −→ Mg,k(Z, A) and ι : Mlog

g,k(Z0, A) −→ Mg,k(Z0, A) (1.7)

are local (topological) embeddings. In particular,Mlog
g,k(Z, A) andMlog

g,k(Z0, A) are metriz-
able. If g=0, then the forgetful maps in (1.7) are global embeddings.

If X∅ is just an abstract d-semistable SNC variety, we just get the restriction of the theorem

above toMlog
g,k(X∅, A). IfZ0 is basic (Z0=X1 ∪X12 X2), it follows from [7, Prp 4.5] that there

is a surjective projection map

Mrel
g,k(Z0, A)−→Mlog

g,k(Z0, A),

where the former is Jun Li’s relative moduli space. The degeneration formula that we will
derive will be the same as Jun Li’s formula in this case.
Theorem 1.3 provides necessary conditions for a stable map in Mg,k(Z0, A) to be the
Gromov(-type) limit of a sequence of stable maps in (1.4). We expect these conditions to be
sufficient, virtually. We describe the deformation-obstruction long exact sequence in Sect. 4

and show that the moduli spaceMlog
g,k(Z0, A) is of the expected dimension equal to (1.3). The

expectation is that Mlog
g,k(Z0, A) admits a VFC that is cobordant to VFC of smooth fibers in

(1.4). Assuming that, we formulate an explicit formula for the contributions of the virtually

main components ofMlog
g,k(Z0, A) to its VFC; see Formula (5.3). In Sect. 6, we work out the

details for the same non-trivial example considered in [3, Sec 5] to highlight the similarities
and differences. ConstructingVFC and proving the degeneration formula (5.3) needs a gluing
theorem (with the space of gluing parameters described in (5.4)) that will appear in a future
work. This also also needs introducing a generalized version of Kuranishi structures/spaces
that allow “toroidal singularities” or working with a generalization of inconsistent solution
spaces as in [6].
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2 Analytical logmoduli spaces

In this section, associated to any d-semistable SNC Kähler variety X∅ = ⋃
i∈I Xi, g, k ∈N,

and A∈H2(X∅,Z), we construct the (analytic) moduli spaceMlog
g,k(X∅, A) of k-marked genus

g degree A log holomorphic curves (as a set).
Given an SNC variety X∅ =⋃

i∈I Xi, for i 	= j ∈ I, let Xi j denote the intersection of Xi and
Xj (which is a complex hypersurface in both of them), and

X∂ =
⋃

i, j∈I
i	= j

Xi j

denote the singular locus ofX∅. In [17], associated to anySNCvarietyX∅, Friedmanconstructs
a holomorphic line bundle

OX∂
(X∅) −→ X∂

such that

OX∂
(X∅) |XI=

⊗

i∈I
NXI−i XI ⊗

⊗

i∈I−I

OXI (XI+i) ∀ I⊂I, | I |≥2, (2.1)

where OXI (XI+i) is the line bundle associated to the smooth divisor XI+i
..=XI∪{i} ⊂XI .

If X∅ =Z0 is the central fiber of a smoothing Z as in (1.1), OX∂
(X∅) is the restriction to X∂

of OZ (Z0) and (1.2) coincides with (2.1). An SNC variety is smoothable4 only if OX∂
(X∅)

is trivial, but the converse is not true; see [34, Sec 3] for examples. An SNC variety X∅ is
called d-semistable if OX∂

(X∅) is isomorphic to the trivial line bundle; see [17, Dfn 1.13].
Regarding the connection between the d-semistability condition and log geometry, the result
is that (see [2, Thm 5.9]):
if X∅ is a normal crossings variety over the spectrum of an algebraically closed field, then
X∅ can be equipped with a log structure over the standard log point, such that the structure
morphism is log smooth if and only if X is d-semistable.
We will use a reinterpretation of this statement in Sect. 4.
For I = {i}, we define

NX∅Xi ≡
( ⊗

j∈I−{i}
OXi(Xi j)

)−1

. (2.2)

With this convention, the line bundle OX∂
(X∅) extends to X∅ and the trivialization of (2.1)

provided by the d-semistability assumption compatibly extends to the case where | I |= 1.
If a smoothing Z of X∅ as in (1.1) is given, then NX∅Xi coincides with Ni in (1.2) and
Ni |XI= NXI−i XI for all i ∈ I and | I |>1. Therefore, for simplicity, in the following we will
write Ni instead of NX∅Xi.
In the following construction, for each ∅ 	= I ⊂ I and every i ∈ I − I, we need to fix a
holomorphic section ξI,i of OXI (XI+i) vanishing (to order 1) along XI+i; the section ξI,i is
unique up to multiplication by a constant. Because of the natural isomorphism

OXI (XI+i) |XJ= OXJ (XJ+i) ∀ ∅ 	= I ⊂ J, i ∈ I − J,

we can choose the set {ξI,i} so that

ξI,i |XJ= ξJ,i ∀ ∅ 	= I ⊂ J, i ∈ I − J. (2.3)

4 Here, we require the total space of the degeneration, and not just the general fiber, to be smooth.

123



66 Page 8 of 42 Geometriae Dedicata (2022) 216 :66

Fig. 2 On left, a labeled graph �

representing elements of Mg,2.
On right, a labeled graph �

representing elements of
Mg,2(X, A)

Remark 2.1 In [11] and [13], with McLean and Zinger, we introduced topological notions of
normal crossings symplectic divisor and variety and established that they are equivalent, in a
suitable sense, to the desired geometric notions. In [12], we showed that the direct analogue of
d-semistability condition is the only obstruction to smoothability in the symplectic topology
category. The process of constructing a 1-parameter family of smoothings Z in [12] is a
multifold analogue of the now classical (twofold) symplectic sum construction. Conversely,
we introduced amultifold symplectic cut construction in [16] that, given certain configuration
of Hamiltonian torus actions, degenerates a smooth target into an SNC symplectic variety.
Subject to the existence of an appropriate5 class of almost complex structures on Z, the
results of this paper and the rest of the claims will extend to the symplectic category; see [9]
for an outline.

Let �=�(V,E,L) be a graph with the set of vertices V, edges E, and legs L; the latter, also
called flags or roots, are half edges that have a vertex at one end and are open at the other
end. Let

�
E be the set of edges with an orientation. Given an oriented edge

�
e∈
�
E, let

�
e denote

the same edge e with the opposite orientation. For each
�
e∈
�
E, let v1(

�
e) and v2(

�
e) in V denote

the starting and ending points of the arrow, respectively. For v, v′ ∈ V, let Ev,v′ denote the
subset of edges between the two vertices and

�
Ev,v′ denote the subset of oriented edges from

v to v′. For every v∈V, let
�
Ev denote the subset of oriented edges starting from v.

A genus labeling of � is a function g :V−→N. An ordering of the legs of � is a bijection
a :L−→{1, . . . , |L |}. If a decorated graph � is connected, the arithmetic genus of � is

g = g� =
∑

v∈V
gv+rank H1(�,Z),

whereH1(�,Z) is the first homology group of the underlying topological space of�. Figure 2-
left illustrates a labeled graph with 2 legs.
Such decorated graphs � characterize different topological types of nodal marked curves

(
�,�z=(z1, . . . , zk)

)

in the following way. Each vertex v∈V corresponds to a smooth6 component �v of � with
genus gv. Each edge e∈E corresponds to a node qe obtained by connecting �v and �v′ at
the points q

�
e ∈ �v and q

�
e ∈ �v′ , where e∈Ev,v′ and

�
e is an orientation on e with v1(

�
e) = v.

The last condition uniquely specifies
�
e unless e is a loop connecting v to itself. Finally, each

leg l∈L connected to the vertex vl corresponds to a marked point zal ∈ �vl disjoint from the
connecting nodes. If � is connected, then g� is the arithmetic genus of �. Thus we have

(�,�z)=
∐

v∈V
(�v,�zv, qv)/ ∼, q

�
e∼q

�
e ∀ e∈E, (2.4)

5 We need an almost complex structure J on Z such that the projection map π in (1.1) is (i, J)-holomorphic
and the Nijenhueis tensor of J vanishes to the first order (at least) along Z0⊂ Z; see [7, (1.3)].
6 We mean a smooth closed oriented surface.
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Fig. 3 A nodal curve in M4,2

where

�zv=�z ∩ �v and qv = {q
�
e :
�
e∈
�
Ev} ∀ v∈V

are the set of marked and nodal points on �v, respectively. In this situation, we say � is the
dual graph of (�,�z). We treat qv as an un-ordered set of marked points on �v. If we fix an
ordering on the set qv, we denote the ordered set by �qv. Figure 3 illustrates a nodal curve with
(g1, g2, g3, g4, g5) = (0, 2, 0, 1, 0) corresponding to Fig. 2-left.
Similarly, for nodal marked curves mapping into a topological space X, we consider similar
decorated graphs where the vertices carry an additional degree labeling

A : V −→ H2(X,Z), v −→ Av,

recording the homology class of the image of the corresponding component. Figure 2-right
illustrates a dual graph associated to a marked nodal map over the graph on the left.
Assume X∅ =⋃

i∈I Xi is an SNC variety and � is an irreducible smooth curve. Then every
holomorphic map u : � −→ X∅ has a well-defined depth ∅ 	= I ⊂ I, which is the maximal
subset of I such that Image(u)⊂XI . Similarly, we say a point x∈� has depth I, if XI is the
minimal stratum containing u(x). Let P∗(I) be the set of non-empty subsets of I. The dual
graph of (u, �) carries additional labelings

I : V,E −→ P∗(I), v −→ Iv ∀v∈V, e −→ Ie ∀e∈E,

recording the depths of smooth components and nodes of �.
Given a finite set I and a ring R, let

RI• =
{
r = (r j) j∈I ∈ RI :

∑

j∈I
r j = 0

}
⊂ RI . (2.5)

For every i∈I, the projection

πi : RI• −→ RI−{i}, (r j) j∈I −→ (r j) j∈I−{i} (2.6)

is an isomorphism. For every subset I ′ ⊂I, the natural injective homomorphism RI′
↪→RI

restricts to a homomorphism RI′
• ↪→RI• . Therefore, via this inclusion, RI′

• can be thought of
as a subspace of RI• . We will use the projection maps in (2.6) to identify each component of
a pre-log moduli space in X∅ with a fiber product of relative spaces in {Xi}i∈I .
Assume X∅ = ⋃

i∈I Xi is a d-semistable SNC Kähler variety and fix a trivialization of
OX∂

(X∅). Let u : � −→ X∅ be a holomorphic map of depth I ⊂ I with smooth domain.
Then, for every i∈I−I, the function

ordiu : � −→ N, ordiu(x) = ordx(u, Xi), (2.7)

recording the contact order of u with the smooth divisor XI+i ⊂ XI at x is well-defined.
It coincides with the vanishing order ordx(u∗ξI,i) ∈ Z≥0 of ξI,i at x where ξI,i are the
holomorphic sections in (2.3).
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For every ∅ 	= I⊂I, each i∈ I, and a given meromorphic section ζ of u∗Ni, we will also need
the function

ordζ : � −→ Z, ordζ (x) = ordx(ζ ), (2.8)

recording the vanishing order of ζ at x (which, by definition, is negative if ζ has a pole at x).
Given a holomorphic line bundle L−→ �, let �mero(�,L) denote the space of non-trivial
meromorphic sections of L.

Definition 2.2 For each ∅ 	= I⊂I, a log holomorphic tuple (u, ζ,�, q) of depth I consists of
a smooth irreducible curve �, a finite set of distinct points q={q1, . . . , q
} on �, a depth I
holomorphic map u :�−→XI , and a set of meromorphic sections

ζ ≡ (
ζi

)
i∈I ∈

∏

i∈I
�mero(�, u∗NXI−i XI)

such that:

(a) via the identification (2.1) and the given trivialization of OX∂
(X∅), we have

⊗

i∈I
ζi ⊗

⊗

j∈I−I

u∗ξI, j = u∗(λOXI
)

for some λ∈C
∗, where λOXI

is the constant section corresponding to λ;
(b) for all x∈�

if ordu,ζ (x) 	=0 ⇒ x∈q, (2.9)

where the vector-valued order function

ordu,ζ (x)=
(
(ord j

u(x)) j∈I−I, (ordζi(x))i∈I
)

= (
(ordu∗ξI, j(x)) j∈I−I, (ordζi(x))i∈I

)∈Z
I• ⊂ Z

I

is defined via (2.7) and (2.8).

Remark 2.3 Let us elaborate on Definition 2.2.

• In (b) above, it follows from Condition (a) that ordu,ζ (x) ∈ Z
I• .

• If X∅ = Z0 is the central fiber of a semistable degeneration and u is of degree A ∈
H2(Z0,Z), then (2.9) implies that

(A · Xi)i∈I =
∑

qa∈q
ordu,ζ (qa) ∈ Z

I• .

Note that 0 = A · Zλ = A · Z0=∑
i∈I A · Xi.

• Changing any of the meromorphic sections ζi with a non-zero constant multiple of that
has no effect on (a) and (b).

• If I = {i}, by Condition (a) and (2.2), the section ζi is uniquely determined by u and λ.
For I with | I |> 1, specifying | I | −1 of sections (ζi)i∈I and λ will uniquely determine
the remaining one, because their multiplication is the constant section. So there is a
redundancy in Definition 2.2. The reason for this redundancy is to avoid a non-symmetric
definition that depends on the choice of i∈ I.
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• The set of vectors

s={
si = (si j) j∈I

}
1≤i≤


⊂(ZI• )


describe the “contact type” of the log holomorphic tuple (u, ζ,�, q) with the singular
locus X∂ and will play an important role in defining log moduli spaces. They also appear
in the relative compactification of [7] at the marked points. Here, they only appear at the
nodal points. Nevertheless, a point with si = �0 is simply a marked point in the classical
sense, because u(zi) will be disjoint from any of the boundary divisors.

Definition 2.4 Let X∅ =⋃
i∈I Xi be a d-semistable SNC Kähler variety. Suppose

C≡(�,�z) =
( ∐

v∈V
Cv ≡ (�v,�zv, qv)

)
/ ∼, q

�
e∼q

�
e ∀
�
e∈
�
E,

is a k-marked connected nodal curve with smooth components Cv and dual graph � =
�(V,E,L) as in (2.4). A pre-log map from C to X∅ is a collection

f ≡ (
fv≡(uv, ζv,Cv)

)
v∈V (2.10)

such that

1. for each v ∈ V, (uv, ζv = (ζv,i)i∈Iv , �v, qv) is a depth Iv log holomorphic tuple as in
Definition 2.2 for some fixed7 λ = λ( f ),

2. uv(q
�
e)=uv′(q

�
e) for all

�
e∈
�
Ev,v′ ;

3. s
�
e≡orduv,ζv(q

�
e)=−orduv′ ,ζv′ (q

�
e)≡−s

�
e for all v, v′ ∈V and

�
e∈
�
Ev,v′ ;

In other words, a pre-log map is a (pre-stable) nodal holomorphic map into X∅ with a bunch
of meromorphic sections (satisfying Definition 2.2.(a) on each smooth component), opposite
contact orders at the nodes, and trivial contact orders at every other point (including the
marked points).

Lemma 2.5 With notation as above, we have Ie= Iv∪Iv′ for all e∈Ev,v′ and s
�
e ∈ Z

Ie• ⊂ Z
I• .

Proof For every v∈V and
�
e∈
�
Ev, let

s
�
e = (s

�
e,i)i∈I = (

(ordiuv(q
�
e))i∈I−Iv , (ordζv,i(q

�
e))i∈Iv

)∈Z
I• (2.11)

be the contact order vector at the nodal point q
�
e ∈ �v. For

�
e ∈
�
Ev,v′ , since uv and uv′ have

image in XIv and XIv′ , respectively, by Condition 2 in Definition 2.4, we have

u(qe)=uv(q
�
e)=uv′(q

�
e) ∈ XIv ∩ XIv′ = XIv∪Iv′ ;

i.e. Ie⊃ Iv∪Iv′ . If i /∈ Iv∪Iv′ , by (2.7), we have

s
�
e,i, s

�
e,i ≥ 0.

Therefore, by Condition 3, they are both zero, i.e.

Ie= Iv∪Iv′ and s
�
e ∈ Z

Ie• ⊂ Z
I• ∀

�
e∈
�
Ev,v′ .

��
7 i.e., independent of the choice of v ∈ V.
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Definition 2.6 Two pre-log maps (u, ζ,C)≡ (
uv, ζv,Cv

)
v∈V and (̃u, ζ̃ , C̃)≡ (

ũv, ζ̃v, C̃v
)
v∈V

with isomorphic decorated dual graphs � are equivalent if there exists a biholomorphic
identification

(
h : C̃ −→ C

) ≡ (
hv : �̃v−→�h(v)

)
v∈V (2.12)

such that

h(̃za)=za ∀a=1, . . . , k, u ◦ h= ũ,

h∗
vζh(v),i = cv,ĩζv,i ∀ v∈V, i∈ Iv, some cv,i ∈ C

∗.

A pre-log map f is stable if the group of self-equivalences Aut( f ) is finite.

Lemma 2.7 A pre-log map is stable if and only if the underlying marked nodal map is stable.
Furthermore, the automorphism group of a pre-log map can be a proper subgroup of the
automorphism group of the underlying marked nodal map.

Proof A per-log map differs from the underlying marked nodal map by the extra collection
of meromorphic sections on each irreducible component �v of the domain. Given a set of
mutually distinct points q = {q1, . . . , q
}⊂�v, a holomorphic line bundle L −→ �v, and a
set of integers s1, . . . , s
 ∈ Z, up to multiplication by a non-zero scalar, there is at most one
meromorphic section ζ of L such that

ordζ (qa) = sa ∀ a = 1, . . . , 
 and ordζ (x) = 0 ∀x ∈ � − q

Therefore, the meromorphic sections of a per-log map are uniquely identified (up to C
∗-

action) by the intersection data at the nodal points. This fact and [7, Lmm 2.15] imply the
first statement of the Lemma. Furthermore, [7, Exa 2.18] describes an example where the
automorphism group of a pre-log map is a proper subgroup of the automorphism group of
the underlying marked nodal map. ��
Definition 2.8 The equivalence class of a pre-log map is called a pre-log curve. For every
choice of a decorated dual graph �, we denote the space of stable k-marked degree A pre-log
holomorphic curves of type � by

Mplog
g,k (X∅, A)�.

A basic dimension counting reveals that the expected dimension ofMplog
g,k (X∅, A)� could be

much larger than (1.3). In Definition 2.10 below, we take out a subspace that would give us
a nice compactification with the correct expected dimension.
Let

(⊕

v∈V
Z
Iv
)∗ =

{
(sv)v∈V ∈

⊕

v∈V
Z
Iv :

∑

i∈Iv
sv,i =

∑

i∈Iv′
sv′,i ∀v, v′ ∈ V

}
,

and

π :
(⊕

v∈V
Z
Iv
)∗ −→ Z, (sv)v∈V −→

∑

i∈Iv
sv,i . (2.13)

Associated to the decorated dual graph � = �(V,E,L) of a pre-log map and an arbitrary
orientation O≡{

�
e}e∈E ⊂

�
E on the edges, we define a Z-linear map

� : D ..= Z
E ⊕

( ⊕

v∈V
Z
Iv
)∗ −→ T ..=

⊕

e∈E
Z
Ie• (2.14)

in the following way:
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• � maps the generator 1e of the e-th component in the summand Z
E ⊂D to the contact

vector s
�
e ∈ Z

Ie• ⊂T, where
�
e is the chosen orientation on e in O;

• if
�
e is the chosen orientation on e in O, the e-th component of �(⊕v∈Vsv) is

sv1(
�
e) − sv2(

�
e) ∈ Z

Ie• .

In other words,

�
(
(λe)e∈E, (sv)v∈V

) =
⊕

�
e∈O

(
λes
�
e + sv1(

�
e) − sv2(

�
e)

)

Let

�= image(�), K= Ker(�) and CK=T/� = Coker(�).

The Z-modules �, K, and CK are independent of the choice of the orientation O on E and
are invariants of the decorated graph �. In particular,

K =
{(

(λe)e∈E, (sv)v∈V
)∈ Z

E ⊕
(⊕

v∈V
Z
Iv
)∗ :

sv′ −sv=λes
�
e ∀ v, v′ ∈V,

�
e∈
�
Ev,v′

}
.

(2.15)

Replacing Z with another ring R in the equations above, we denote the corresponding terms
in (2.14) by �R : DR −→ TR and image/kernel/cokernel by �R, KR, and CKR, respectively.
Via the exponentiation map, let

exp(�C) ⊂
∏

e∈E
(C∗)Ie• , with (C∗)I• =

{
(ti)i∈I ∈ (C∗)I :

∏

i∈I
ti = 1

}
,

be the subgroup corresponding to the sub-Lie algebra �C ⊂ TC, and denote the quotient
group by

G =G(�)=exp(CKC).

In other words,

G =
∏

e∈E(C∗)Ie•
exp(�)

(
(C∗)E × ( ∏

v∈V(C∗)Iv
)∗) ,

where
( ∏

v∈V
(C∗)Iv

)∗
..=

{
(tv)v∈V ∈

∏

v∈V
(C∗)Iv :

∏

i∈Iv
tv,i =

∏

i∈Iv′
tv′,i ∀v, v′ ∈ V

}
.

Below, similarly to [7], to every pre-log f as in Definition 2.4 we associate a group element

ob�( f ) ∈ G(�)

that only depends on the equivalence class of f .
Given a pre-log map f ≡ (

fv ≡ (uv, ζv,Cv)
)
v∈V as in (2.10), for each v∈V and

�
e∈
�
Ev, let

z
�
e be an arbitrary holomorphic coordinate in a sufficiently small disk �

�
e around the nodal

point (z
�
e=0)=q

�
e∈�v.
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1. For every v∈V,
�
e∈
�
Ev, and i∈ Iv, consider a local holomorphic trivialization

u∗
vNXIv−{i}XIv |�

�
e≈ NXIv−i XIv |u(qe) ×�

�
e,

such that the identification between the fibers NXIv−i XIv |u(qe) on the left and
NXIv−i XIv|u(qe) ×{0} on the right is the identity map. By (2.8), we have

ζv,i(z
�
e) = z

s
�
e,i

�
e ζ̃v,i(z

�
e) (2.16)

such that

0 	=η
�
e,i

..= ζ̃v,i(0) ∈NXIv−i XIv |u(qe)= Ni |u(qe) .

The vector ζ̃v,i(0) is independent of the choice of the trivialization because a different
choice of trivialization as above correspond tomultiplication by a function h : �

�
e −→ C

∗
satisfying h(0) = 1. Therefore, it does not change ζ̃v,i(0).

2. Similarly, for every v ∈V,
�
e ∈
�
Ev, and i ∈ Ie− Iv, with ξIv,i as in Definition 2.2.(a), we

have

u∗
vξIv,i(z

�
e) = z

s
�
e,i

�
e ξ̃v,i(z

�
e) (2.17)

such that

0 	=η
�
e,i

..= ξ̃v,i(0)∈NXIv
XIv+{i} |u(qe)= Ni |u(qe) .

Note that the map uv has a well-defined s
�
e,i-th derivative

η′
�
e,i∈NXIv

XIv+i |u(qe) (2.18)

(with respect to the coordinate z
�
e) in the normal direction to XIv+i ⊂ XIv at the nodal

marked point q
�
e. The vector η′

�
e,i is a multiple of η

�
e,i by a factor that only depends on the

choice of ξIv,i.
3. Finally, for every v∈V,

�
e∈
�
Ev, and i∈I−Ie, let

η
�
e,i∈NXIv

XIv+{i} |u(qe)= Ni |u(qe)
be the non-zero vector (u∗

vξIv,i)(q
�
e).

For each e∈E, if
�
e is the choice of orientation on e in O, let

ηe
..= (

η
�
e,i/η

�
e,i

)
i∈Ie ∈(C∗)Ie . (2.19)

By Definition 2.4.(1) and because s
�
e ∈ Z

Ie• ⊂ Z
I• we have

⊗i∈I η
�
e,i = λOX∂

(X∅) |u(qe) .

By (2.3), we have

η
�
e,i = η

�
e,i ∀i∈I − Ie

Therefore,

ηe ∈ (C∗)Ie• ∀ e∈E.

The tuples ηe give rise to an element

η ..=(ηe)e∈E∈
∏

e∈E
(C∗)Ie• . (2.20)
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The action of the subgroup exp(�)
(
(C∗)E×( ∏

v∈V(C∗)Iv
)∗) on η corresponds to admissible

rescalings of the sections ζv,i and change of coordinates in z
�
e; i.e the class

ob�( f )=[η] (2.21)

of η in G is independent of the choices involved. If f and f ′ are equivalent with respect
to a reparametrization h : �′ −→ � as in (2.12), the associated group elements η and η′,
respectively, would be the same with respect to any h-symmetric choice of holomorphic
coordinates {z

�
e}
�
e∈
�
E. Therefore, (2.21) only depends on the equivalence class [ f ] of f and

thus yields a well-defined function

ob� : Mplog
g,k (X∅, A) −→ G(�). (2.22)

Lemma 2.9 With notation as above, we have ob�([ f ]) = 1 if and only if there exist a
representative f ≡ (

fv ≡ (uv, ζv,Cv)
)
v∈V of the equivalence class [ f ] as in (2.10) and

choices of local coordinates z
�
e around the nodal point (z

�
e=0)=q

�
e∈�v such that

η
�
e,i = η

�
e,i ∀ e∈E, i∈ Ie.

Proof By definition, ob�([ f ]) = 1 ∈ G if and only if

η ∈ exp(�)
(
(C∗)E × ( ∏

v∈V
(C∗)Iv

)∗)
,

with η defined as (2.20) using any representative f of [ f ]. By the statement preceding (2.21),
multiplying by a tuple of numbers in (C∗)E × ( ∏

v∈V(C∗)Iv
)∗ corresponds to resscaling the

coordinates z
�
e and the sections ζv,i used in the definition of ηe in (2.19). Therefore, [η] = 1

if and only if there exist choices of ζv,i (i.e. a representative f ≡ (
fv≡(uv, ζv,Cv)

)
v∈V of the

equivalence class [ f ] as in (2.10)) and choices of local coordinates z
�
e around the nodal point

(z
�
e=0)=q

�
e∈�v such that

(ηe)e∈E ≡ 1 ..= (1)e∈E ⇔ η
�
e,i = η

�
e,i ∀ e∈E, i∈ Ie.

Note the choice of z
�
e is independent of the choice of i ∈ Ie; otherwise, the condition is

vacuous. ��
Definition 2.10 Let X∅ = ⋃

i∈I Xi be a d-semistable SNC variety. A log map is a stable
pre-log map f with the decorated dual graph � such that

• (C1) there exist functions

s :V−→R
I , v−→ sv, and λ :E−→R+, e−→λe,

such that

1. sv∈R
Iv+×{0}I−Iv for all v∈V,

2. sv2(
�
e)−sv1(

�
e) =λes

�
e for every

�
e∈
�
E;

• (C2) and ob�( f )=1∈G(�); see Remark 2.9.

Remark 2.11 The description of Condition (C2) in Remark 2.9 is more intuitive and that’s the
description of the choice for constructing a gluing of f . We need the condition ob�( f ) = 1 to
be able to consistently glue the components of f at the nodes; see [7, (5.16)]. The description
in terms of a map into G(�) is used in the dimension count of Lemma 4.2 and will be needed
for proving transversality statements as in [8].
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Since � is connected, Condition (C1)2 and s
�
e∈Z

I• , for all
�
e∈
�
E, imply that

∑

i∈I
sv,i=r (2.23)

is a fixed positive constant r ∈ Z+ independent of v ∈ V (at the expense of replacing Z

with R, which has no effect on the problem, we may uniformly rescale sv,i so that r = 1).
The combinatorial condition (C1) is essentially equivalent to the basicness condition in [19,
Dfn 1.20] (More precisely, it is equivalent to GS(M,u) 	= ∅). The analytical condition (C2)
more or less corresponds to the existence of amorphism to a log point; seeRemark 2.12 below.
The set of vectors

(
(sv)v∈V, (λe)e∈E

)
satisfying (C1) is the intersection of the kernel KR of

�R with the positive quadrant in DR. Since this intersection is non-empty by assumption,
its closure is a convex maximal rational polyhedral cone σ(�) in KR. The space of gluing
parameters is a multiple of the affine toric variety Yσ with the toric fan σ(�) ⊂ KR; see
Sect. 5. The projection map π in (2.13) restricts to σ(�) → R≥0; it gives a projection map
between toric varieties Yσ −→ C (C is the toric variety associated to the toric fan R≥0 ⊂ R)
that, via gluing, corresponds to the fibration (1.1).

Remark 2.12 The following details, by an anonymous referee, explain the relation between
the condition (C2) and log geometry (which is probably well-known among the experts but
it is not clearly written down anywhere in the log GW literature).

A log structure on a (smooth or SNC) variety X is given by: a constructible sheaf of
monoids MX (the ghost or characteristic sheaf), and an assignment of a holomorphic line
bundle/section pair (OX(α), sα) to every section α ∈ MX . The latter must be compatible
with the restriction maps of open sets and the monoid structure. A log enhancement of a
morphism f : � −→ X is given by: a pullback map f b : f−1MX −→ M� , and a compatible
choice of isomorphisms

f ∗(OX(α), sα) ∼= (O�( f b(α)), s f b(α)) ∀ α ∈ MX . (2.24)

When X is an SNC variety
⋃

i∈I Xi, there are | I | independent sections of the canonically
assigned characteristic sheafMX . The line bundle/section pair associated to the i-th section is
given by (OXj(Xi j), ζ j,i)when restricted to Xj with j 	= i, and by (NZXi, 0)when restricted to
Xi. The condition (C1) asserts that the pullbackmap f b exists (i.e. there is a log structure on�

such that the pull-back map is well-defined). Then, in order to obtain a log map, it remains to
construct the isomorphism (2.24). As explained in [36, Prp 2.4.1], for each smooth component
�v, the bundleO�( f b(α)) |�v is given by an explicit weighted sum of the marked points and
nodes recording the contact order at special points. Therefore, the identification

O�( f b(α)) |�v
∼= f ∗OX(α) |�v

is equivalent to the data of a meromorphic section of f ∗OX(α) |�v with specified orders at the
special points. When α is the section of MX corresponding to Xi, this is precisely the section
ζv,i in our notation. When�v is mapped to Xi, the sections are zero, hence there is aC∗ worth
of choices, corresponding to the choice of meromorphic sections ξv,i in our notation. This
explains the identification (2.24) on each component. The condition (C2) is then needed to
extend these local identifications globally.
We will study the sufficiency of this condition to compare the moduli spaces in another work.

We will denote the subset of log curve in Mplog
g,k (X∅, A)� by Mlog

g,k(X∅, A)� . In other words,
we require � to satisfy the combinatorial condition (C1) and

Mlog
g,k(X∅, A)� = ob−1

� (1) ⊂ Mplog
g,k (X∅, A)�.
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In Sect. 4, we show that the expected C-dimension of Mlog
g,k(X∅, A)� is equal to

cT
logX∅

1 (A) + (dimC X∅ − 3)(1 − g) + k − (dimR KR − 1),

where T logX∅ is the log tangent bundle of X∅. Therefore, Mlog
g,k(X∅, A)� is virtually a

main stratum, i.e. a stratum whose expected dimension is the maximum value cT
logX∅

1 (A) +
(dimC X∅ − 3)(1 − g) + k, if and only if K∼=Z.

If Z is a semistable smoothing of Z0=X∅ as in (1.1), cT
logX∅

1 (A) coincides with cTZλ

1 (A), for
all λ∈�∗. Therefore, the expected dimension of the analytical log moduli space

Mlog
g,k(X∅, A) =

⋃

�

Mlog
g,k(X∅, A)�

coincides with the expected dimension ofMg,k(Zλ, A). Different components in this union,
however, will contribute with different weights to theVFC ofMg,k(Zλ, A). The degeneration
formula (5.3) describes these weights.

Remark 2.13 There is a slightly different map associated to � that will be useful in Sect. 5.
Let

�• : D• = Z
E ⊕

⊕

v∈V
Z
Iv• −→ T ≡

⊕

e∈E
Z
Ie• . (2.25)

denote the restriction of � to D• ⊂ D. Recall from (2.5) that the subscript • denotes the
subspace where the sum of the coefficients is zero. Then, the following diagram commutes

D•
�•

T

∼=

D
�

0⊕π

T

Z .

(2.26)

Let σ(�) be the intersection of positive quadrant inD and the kernel K of � as in the paragraph
after (2.23). Fixing a vector in the interior of σ(�) gives us a decomposition

KR(�) ∼= KR(�•) ⊕ R

such that σ(�) is a cone containing the ray 0⊕R≥0. Therefore,Mlog
g,k(X∅, A)� is virtually a

main stratum if and only if K• =0, where K• = Ker(�•) is the kernel of �•. Intuitively, as we
will show in Sect. 4, (the toric variety Yσ corresponding to the cone σ inside) K corresponds
to partial smoothings of the nodal map that might end up in a different fiber of the total space
Z of the semi-stable degeneration, and K• is the subset corresponding to smoothings inside
Z0. Therefore, if K• = 0, it means there are no further smoothings of the nodal map inside
Z0; thus, we are in the top stratum.

3 Proof of themain theorem

In this section, by following and adjusting the steps of the proof [7, Thm. 1.3], we prove
Theorem 1.3.
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Throughout this section, for the cases that invlove the smoothing of X∅, let π : Z −→ � be
a Kähler semistable degeneration as in (1.1) with compact fibers and the SNC central fiber

Z0
..=π−1(0) = X∅ ..=

⋃

i∈I
Xi.

Assume X is an (n+1)-dimensional smooth complex variety andD ⊂ X is a smooth complex
divisor. For any p ∈ D, let U be an open set around p with local coordinates (x0, . . . , xn)
given by a chart map

ϕ : U −→ C
n+1

such that D∩U ≡ ϕ−1(x0 = 0). We call such a pair (U, ϕ) a D-compatible chart around p.
A D-compatible chart (U, ϕ) induces a holomorphic trivialization

dNXDϕ : NXD |U∩D−→ ϕ(U ∩ D) × C ⊂ C
n+1. (3.1)

Before we state the next proposition, we need to elaborate on the topological aspects of the
Gromov convergence [18] and setup the notation. For more details, we refer to [7, Sec. 3.1].
Suppose

(
fa ∈ Mg,k(Zλa , A)

)

a∈N , fa = (
ua,v′ ,Ca,v′ = (�v′ ,�zv′)

)
v′∈V′ , (3.2)

is a sequence of stablemapswith a fixed decorated dual graph�′ =�(V′,E′,L′) that Gromov
converges to the stable map

f = (
uv,Cv

)
v∈V ∈ Mg,k(Z0, A) (3.3)

with the decorated dual graph �=�(V,E,L). Then, (for a sufficiently large) all the marked
domains

(�a = ∪v′∈V′�a,v′ ,�za = ∪v′∈V′�zv′)

are smoothly isomorphic to a fixed marked domain (�′,�z ′) and the domain � = ⋃
v∈V �v

of f is obtained by collapsing a set of embedded curves away from the marked and nodal
points in �′. In other words, there is a continuous degeneration map

γ : �′ −→ �

that sends the marked points and nodal points of�′ to the (corresponding) marked and nodal
points of �, and collapses some embedded circles {γe}e∈Ecut in �′ to the new nodal points
{qe}e∈Ecut in �. The map γ gives us a similarly denoted map

γ ∗ : � −→ �′. (3.4)

We have

E ∼= E
′ ∪ E

cut, L = L
′,

such that γ ∗ |E′⊂E and γ ∗ |L are isomorphisms and

γ ∗ : Ecut ∪ V −→ V
′.

For every v ∈ V, there exists a unique v′ ∈V
′ and a connected componentUv of�v′−{γe}e∈Ecut

such that �v is obtained by collapsing the boundary circles of the closure of Uv.
The goal is to, after possibly passing to a subsequence, find a set of meromorphic sections
{ζv,i}v∈V that enhances (3.3) to a log map flog ∈ Mlog

g,k(Z0, A)� .
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Definition 3.1 With notation as in (3.2) and (3.3), let

ζv,i ∈ �mero(�v, u
∗
vNi) ∀ v∈V, i∈ Iv,

be a set of meromorphic sections. We say (3.2) log-Gromov converges to

flog ..= (
uv, ζv = (ζv,i)i∈Iv ,Cv

)
v∈V (3.5)

if for each v ∈ V and i ∈ Iv, with v′ = γ ∗(v) ∈ V
′, the sequence (ua,v′)a∈N is asymptotic

to ζv,i in the normal direction to Xi in the following sense. For every p ∈ Uv, there exists
an Xi-compatible holomorphic chart (U, ϕ) around uv(p) ∈ Z and a sequence of non-zero
complex numbers (ta,v,i)a∈N (converging to zero) such that

(uniformly) lim
a−→∞ t−1

a,v,i x0 ◦ ϕ ◦ ua,v′ |K= x0 ◦ (dNiϕ(ζv,i |K)) (3.6)

on any compact subset K⊂Uv.

Note that, since fa Gromov converges to the stable map f , we have

lim
a−→∞ xi ◦ ϕ ◦ ua,v′ |K= xi ◦ ϕ ◦ uv |K ∀i = 0, . . . , n. (3.7)

uniformly on compact sets.

Remark 3.2 For two sequences of non-zero complex numbers (ta)a∈N and (t′a)a∈N, we write

(ta)a∈N ∼ (t′a)a∈N if lim
a−→∞ ta/t

′
a=1. (3.8)

The right-hand side of (3.8) defines an equivalence relation on the set of such sequences and
we denote the equivalence class of a sequence (ta)a∈N by [(ta)a∈N]. For an equivalence class
[(ta)a∈N] and t∈C

∗, the equation

t[(ta)a∈N] := [(tta)a∈N]
is well-defined and defines an action of C∗ on the set of equivalence classes. Moreover, the
operation of point-wise multiplication/divison between such sequences

(ta)a∈N · (t′a)a∈N = (tat
′
a)a∈N

descends to awell-definedmultiplication/division operation between the equivalence classes.
Condition (3.6) and the equivalence class of the rescaling sequence [(ta,v,i)a∈N], over each
irreducible component of the domain, are independent of the choice of the Xi-compatible
local chart (ϕ,U); if the limit (3.6) holds in one chart, it will hold in every other chart for the
same ζv,i because the involving functions are holomorphic. It is also clear from (3.6) that if
(ta,v,i)a∈N is a sequence of rescaling parameters associated to ζv,i and (t′a,v,i)a∈N is a rescaling
sequence associated to cζv,i, for any c∈C

∗, then

c[(t′a,v,i)a∈N] = [(ta,v,i)a∈N].
The relation between the sets of rescaling parameters {ta,v,i} in Definition 3.1 and {λa} in
(3.2) plays an important role in the rest of this chapter.

Lemma 3.3 After passing to a subsequence, every sequence (3.2) log Gromov converges
and the limit is unique up to equivalence. More specifically, given (3.2), after passing to a
subsequence, the limiting holomorphic map f admits meromorphic sections {ζv,i}v∈V,i∈Iv as
in Definition 3.1; furthermore,

1. these meromorphic sections are unique up to multiplication by a constant in C∗;
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2. ζv,i has no pole/zero in �v−qv,
3. ζv,i has a zero/pole of order s

�
e,i at q

�
e, for all

�
e ∈
�
Ev, i∈ Iv;

4. for each
�
e ∈
�
E, the vector s

�
e = (s

�
e,i)i∈Ie defined as in (2.11) belongs to Z

Ie• ;
5. for each v ∈ V, the product

⊗

i∈Iv
ζv,i ⊗

⊗

i∈I−Iv

u∗
vξIv,i

is a constant section.

Proof Except items (4) and (5), the rest directly follow from applying [7, Prp 3.10 and
Lmm3.13] to theSNCdivisorZ0 ⊂ Z. Also,with respect to the decompositionE ∼= E

′∪Ecut,
by [7, Lmm 3.13], s

�
e = 0 for all e∈E

′ ⊂E. Therefore, in order to prove (4), we can restrict to
edges in Ecut. We prove (4) and (5) by following and adjusting the details of [7, Lmm 3.13].
First, let us recall the setup used in [7, Sec 3.4] that we will also use in the rest of this section.
For a sufficiently large, the domain �′

a
∼= �′ of fa is obtained from the nodal domain � of

f in the following way. There exist

• a sequence of complex structures ja = (ja,v)v∈V on the nodal domain �=(�v)v∈V of f ,
• a sequence of local ja,v-holomorphic coordinates za,

�
e : �

�
e −→C around q

�
e ∈�v, for all

v∈V and
�
e∈
�
E
cut
v , and

• a sequence of non-zero complex numbers (εa,e)e∈Ecut converging to zero,

such that

1. (�a, �za) is isomorphic to the smoothing of (�,�z, ja = (ja,v)v∈V) defined by

za,
�
eza,

�
e = εa,e ∀ e∈E

cut, (3.9)

2. the sequence (ja,v)a∈N C∞-converges to jv for all v∈V,
3. the sequence (za,

�
e)a∈N C∞-converges to z

�
e, where z

�
e : �

�
e −→ C is some fixed local

jv-holomorphic coordinate around q
�
e∈�v, for all v∈V and

�
e∈
�
E
cut
v .

With notation as above, for each e ∈ E
cut, the union

Ae
..=�

�
e ∪ �

�
e={(z

�
e, z

�
e) ∈ �

�
e × �

�
e : z
�
ez
�

e = 0}
is a neighborhood of qe in �. We orient each circle ∂�

�
e in the direction of the counter-clock

wise rotation in �
�
e⊂C. By (3.9), the neck region

Aa,e = {(za,
�
e, za,

�
e) ∈ �

�
e × �

�
e : za,

�
eza,

�
e = εa,e}

in �a is a cylinder with two (oppositely oriented) boundary circles

∂Aa,
�
e ∼= ∂�

�
e and ∂Aa,

�
e
∼= ∂�

�
e. (3.10)

For sufficiently large a, s
�
e,i is equal to the the winding number of ua |∂Aa,

�
e around the divisor

Xi; see the proof of [7, Lmm 3.13].
If Ie={i1, . . . , ik}, there exists a sufficiently small neighborhoodU around u(qe)∈Z with

coordinates (x1, . . . , xn+1) such that

U ∩ Xi j = (x j ≡ 0) ∀ j ∈ {1, . . . , k}
and the projection map π:Z−→C has the form

(x1, . . . , xn+1) −→
k∏

j=1

x j. (3.11)
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By (3.6) and (3.7), for sufficiently large a,

s
�
e,i j = winding number around Xi j of x j ◦ ua |∂Aa,

�
e .

Therefore, by (3.11) and since ua has image in Zλa , we have
∑k

j=1 s
�
e,i j = 0 ; i.e. s

�
e ∈ Z

Ie• .
Proof of (5) is similar. Since the sections are holomorphic, it is enough to prove (5) on a
sufficiently small open set around any point in �v. Fix p∈Uv and a local coordinate z on a
sufficiently small compact disk K around it. If Iv = {i1, . . . , ik}, there exists a sufficiently
small neighborhood U around u(p) ∈ (XIv−∂XIv)⊂Z with coordinates (x1, . . . , xn+1) such
that

U ∩ Xi j = (x j ≡ 0) ∀ j ∈ {1, . . . , k}.
and the projection map π:Z−→C has the form

(x1, . . . , xn+1) −→
k∏

j=1

xi j . (3.12)

On Z, the product ⊗i∈Iξi is a section of the trivial line bundle

OZ(Z0) ∼= Z × C. (3.13)

Here ∼= means that the line bundle OZ (Z0) is trivial and a choice of trivialization is fixed.
Recall from (1.5) that, when a smoothing Z is given, we choose ξi such that the projection of
⊗i∈Iξi to the C-factor in (3.13) is equal to π . Therefore, by (3.12), we can choose the local
coordinates so that ξi j |U= x j for all j∈ {1, . . . , k}. By (3.6) and the assumption above, for
large a,

λa =
⊗

i∈I
ua,v′ |∗K ξi =

⊗

i j∈Iv
x j ◦ ϕ ◦ ua,v′ |K ⊗

⊗

i∈I−Iv

ua,v′ |∗K ξi

≈
⊗

i j∈Iv
ta,v,i jζv,i j ⊗

⊗

i∈I−Iv

ua,v′ |∗K ξi.

Since

lim
a−→∞ ua,v′ |∗K ξi = uv |∗K ξi ∀ i∈I − Iv,

we conclude that

lim
a−→∞

λa∏
i∈Iv ta,v,i

= cv

for some non-zero constant (section) cv ∈ C
∗ and thus

⊗

i∈Iv
ζv,i ⊗

⊗

j∈I−Iv

u∗
vξIv, j = cv.

��

Corollary 3.4 After passing to a subsequence, every sequence (3.2) has a unique limit (3.5)
which belongs to Mplog

g,k (Z0, A)� .
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Proof On each �v, we rescale one of ζv,i (and thus the corresponding sequence {ta,v,i}) such
that

⊗

i∈Iv
ζv,i ⊗

⊗

j∈I−Iv

u∗
vξIv, j = 1 ∀v ∈ V.

Then, by Lemma 3.3, flog satisfies all the properties of Definition 2.2. Note that we will then
have

lim
a−→∞

λa∏
i∈Iv ta,v,i

= 1 . (3.14)

We will use (3.14) in the proof of the main result below. ��

Remark 3.5 Since Z0 ⊂ Z is an SNC divisor, and A ·Z0 = 0, letMlog
g,k(Z,Z0, A) denote the

relative (log) moduli space defined in [7] with trivial contact data (with Z0) at the marked
points. By [7, Prp 3.14], we already know that the unique limit flog in (3.5) belongs to

Mlog
g,k(Z,Z0, A). The linear map � in (2.14) is the same as the linear map � in [7, (2.28)]

but it has a different domain and target. In the following diagram, the first row is (2.14), the
second row is [7, (2.28)], and the vertical maps are the natural inclusion maps.

Z
E ⊕ ( ⊕

v∈V Z
Iv
)∗ � ⊕

e∈E Z
Ie•

Z
E ⊕ ⊕

v∈V Z
Iv

� ⊕
e∈E Z

Ie .

The following proposition shows that (3.5) actually belongs toMlog
g,k(Z0, A)� . Since s

�
e ∈ Z

Ie• ,
by (2.23), the kernel of the second row is the same as the kernel of the first row; thus, Condition
(C1) of Definition 2.10 is the same as Condition (1) of [7, Dfn 2.8]. However, the cokernels
in each row and thus the groups G are different. In order to distinguish the notation, let us
denote the group associated to � in [7, Dfn 2.8.(2)] by Grel. The commutative diagram above
induces a homomorphism G −→ Grel, but this homomorphism does not need to be injective
or surjective.

Proposition 3.6 Suppose (3.2) is a sequence of stable maps inMg,k(Z∗, A) that log-Gromov
converges to (3.5) in the sense of Definition 3.1. Then (3.5) represents an element of

Mlog
g,k(Z0, A).

Proof By Corollary 3.4, we already know that flog in (3.5) is a pre-log map. By Remark 3.5
above (over R), we also know that flog satisfies Condition (C1) of Definition 2.10. More
precisely, by the definition of � after (2.14), every element in the kernel of � over R is a
vector

⊕

e∈E
λe ⊕

⊕

v∈V
sv ∈ R

E ⊕
(⊕

v∈V
R
Iv
)∗

satisfying

sv2(
�
e)−sv1(

�
e) =λes

�
e
�
e∈
�
E,

which is exactly the part (b) of Condition (C1). Note that the equality above is independent
of the choice of orientation on e. Both sides will flip sign if we flip the orientation on e. The
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positivity condition on sv and se is the same as the positivity condition in [7, Dfn 2.8], and
is achieved in the following way. The desired vector

⊕
e∈E λe ⊕ ⊕

v∈V sv satisfying (C1) is
explicitly derived from the data appearing in the convergence argument above (also listed in
the bullets below for the rest of the proof) in the following way. In [7, Sec 3.4], as a −→ ∞,
the vectors sv are obtained from the rescaling parameters by

sa,v = (− log ta,v,i)i∈Iv ∈ R
Iv ∀ a ∈ N, v ∈ V,

and the real numbers λe are obtained from

λa,e = − log(εa,e),

where εa,e is the gluing parameters of the domain�a at the node qe. The details of this process
also appear in the second half of the proof below. Since ta,v,i, εa,e −→ 0 as a −→ ∞, the
resulting vector

⊕
e∈E λe ⊕ ⊕

v∈V sv will have positive coefficients. Furthermore, in the
current context, by (3.14), we additionally have

∑

i∈Iv
log ta,v,i −

∑

j∈Iv′
log ta,v, j ≈ log(λa) − log(λa) = 0.

In the limit, this implies that

⊕v∈Vsv ∈
( ⊕

v∈V
R
Iv
)∗ ⊂

⊕

v∈V
R
Iv

It just remain to show that flog also satisfies Condition (C2) of Definition 2.10.
The proof uses the relation between the following parameters:

• the parameters {λa}a∈N in (3.2);
• the local holomorphic coordinates za,

�
e : �

�
e −→C and z

�
e : �

�
e −→C around the nodal

points (see the proof of Lemma 3.3);
• the local coordinates gluing parameters {εa,e}a∈N,e∈Ecut in (3.9),
• the rescaling parameters {ta,v,i}a∈N,v∈V,i∈Iv in (3.6);
• and, the leading order terms

0 	=η
�
e,i∈Ni |u(qe)

of flog on �
�
e defined before (2.19) with respect to z

�
e.

By [7, Prp 3.15], for every oriented edge
�
e ∈
�
E
cut that goes from v1 to v2, and i ∈ Ie,

1. if i ∈ Iv1 and i /∈ Iv2 , we have

lim
a−→∞ ta,v1,i ε

s
�
e,i
a,e = η

�
e,i

η
�

e,i
; (3.15)

2. if i∈ Iv1 ∩ Iv2 , we have

lim
a−→∞

ta,v1,i ε
s
�
e,i
a,e

ta,v2,i
= η

�
e,i

η
�

e,i
. (3.16)

Additionally, by (3.14), we have

lim
a−→∞

λa∏
i∈Iv ta,v,i

= 1.
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Lemma 3.7 We can choose the coordinates {z
�
e}
�
e∈
�
Ecut and {za,

�
e}
�
e∈
�
Ecut,a∈N satisfying (3.9) and

item 3 after that, and rescalings of {ζv,i}v∈V,i∈Iv and (ta,v,i)a∈N,v∈V,i∈Iv such that

ta,v1,i ε
s
�
e,i
a,e = ta,v2,i ∀ i∈ Iv1 ∩Iv2 , a>>1, (3.17)

ta,v1,i ε
s
�
e,i
a,e = 1 ∀ i∈ Iv1 −Iv2 , a>>1, (3.18)

∏

i∈Iv1
ta,v1,i =

∏

i∈Iv2
ta,v2,i ∀ v1, v2 ∈ V, a>>1. (3.19)

Proof Throughout the proof we assume that the domains �a are smooth; i.e. �′ is a one
vertex graph, V′ = {v′}, and thus E = E

cut. The argument in general reduces to this case by
focusing on each component of �a; see the adjustments at end of the proof of [7, Prp 3.14].
We modify a given choice of

{z
�
e}
�
e∈
�
Ecut , {za,

�
e}
�
e∈
�
Ecut,a∈N, {ζv,i}v∈V,i∈Iv , (ta,v,i)a∈N,v∈V,i∈Iv ,

to another set satisfying (3.17)–(3.19).

First, it follows from (3.15), (3.16), and (3.14), that
∏

i∈Ie

η
�
e,i

η
�

e,i
= 1 ∀ e∈E;

i.e.
(η
�
e,i

η
�

e,i

)

i∈Ie
∈ (C∗)Ie• .

Fix an orientation O on E, and choose some branch

η =
⊕

�
e∈O

ηe∈
⊕

e∈E
C
Ie• , ηe = ( − log(η

�
e,i/η

�
e,i)

)
i∈Ie ∈C

Ie• ∀
�
e∈O,

of the multi-valued function log. By (3.14), for each v ∈ V and any i ∈ Iv, we can replace
{ta,v,i}a∈N with another equivalent (in the sense of (3.8)) sequence such that

λa =
∏

i∈Iv
ta,v,i ∀ a >> 1.

Then we will have

(ta,v,i)v∈V,i∈Iv ∈
( ∏

v∈V
C
Iv
)∗ ∀ a >> 1.

By (3.15), (3.16), and definition of � in (2.14) (via the chosen orientation O), we can choose
the branches

ξa = (
(− log(εa,e))e∈E, (− log(ta,v,i))v∈V,i∈Iv

) ∈ C
E ⊕

(⊕

v∈V
C
Iv
)∗ ∀ a∈N

so that

lim
a−→∞ �C(ξa) = η.

123



Geometriae Dedicata (2022) 216 :66 Page 25 of 42 66

By [7, Lmm 3.21] applied to �C, there exists a sequence

(ξ ′
a)a∈N⊂C

E ⊕
(⊕

v∈V
C
Iv
)∗

such that �C(ξa − ξ ′
a) = 0 for all a ∈ N and the limit lima−→∞ ξ ′

a = ξ ′ exists. Taking the
exponential of ξ ′ and ξ ′

a, we find elements

(
(αe)e∈E, (αv,i)v∈V,i∈Iv

)
,
(
(αa,e)e∈E, (αa,v,i)v∈V,i∈Iv

)
a∈N ∈ (C∗)E ×

( ∏

v∈V
(C∗)Iv

)∗

such that

lim
a−→∞

(
(αa,e)e∈E, (αa,v,i)v∈V,i∈Iv

) = (
(αe)e∈E, (αv,i)v∈V,i∈Iv

)

and
(
α−1
a,v1,i

ta,v1,i
) (

α−1
a,eεa,e

)s
�
e,i

(
α−1
a,v2,i

ta,v2,i
) = 1 ∀ i∈ Iv1 ∩Iv2 , a∈N, (3.20)

(
α−1
a,v1,i

ta,v1,i
) (

α−1
a,eεa,e

)s
�
e,i = 1 ∀ i∈ Iv1 −Iv2 , a∈N, (3.21)

α−1
a λa

..=
∏

i∈Iv1
α−1
a,v1,i

ta,v1,i =
∏

i∈Iv2
α−1
a,v2,i

ta,v2,i ∀ v1, v2 ∈ V, a∈N. (3.22)

By (3.20)–(3.22), for a sufficiently large, replacing

• {z
�
e}
�
e∈O with {α−1

e z
�
e}
�
e∈O,

• {za,
�
e}
�
e∈O with {α−1

a,eza,
�
e}
�
e∈O,

• {εa,e}e∈E with {α−1
a,eεa,e}e∈E,

• (ta,v,i)v∈V,i∈Iv with (α−1
a,v,ita,v,i)v∈V,i∈Iv , and

• (ζv,i)v∈V,i∈Iv with (αv,iζv,i)v∈V,i∈Iv ,

we get a new set of representatives satisfying (3.17), (3.18), and Definition 2.4.(1) with

λ( flog) ..=
∏

i∈Iv
αv,i = lim

a−→∞ αa for any v∈V.

��
In order to finish the proof of Proposition 3.6, by the lemma above, the modified set gives us
a pre-log map equivalent to flog that satisfies

η
�
e,i

η
�

e,i
= 1 ∀ e ∈ E

cut, i∈ Ie.

By (2.9), we conclude that ob�( flog) = 1∈G. ��
Proposition 3.6 applies to a sequence of stable maps in Z∗. For the proof of Theorem 1.3,

we also need to consider sequences inMlog
g,k(X∅, A) itself. In this case, the ambient smoothing

Z is not needed and X∅ can be any d-semistable SNC variety. Suppose

fa,log ..= (
ua,v′ , ζa,v′ = (ζa,v′,i)i∈Iv′ ,Cv′

)
v′∈V′ a ∈ N (3.23)
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is a sequence of log maps in Mlog
g,k(X∅, A). Since the set of possible decorated graphs for

each fixed (g, k, A) is finite, after passing to a subsequence, we may assume that (1) all fa,log
have the same decorated dual graph �′ =�(V′,E′,L′), and (2) the underlying stable maps
fa ∈ Mg,k(X∅, A) Gromov-converge to a stable map

f = (
uv,Cv

)
v∈V ∈ Mg,k(X∅, A)

with dual graph � = �(V,E,L). As in Lemma 3.3, we can find meromorphic sections
{ζv,i}v∈V,i∈Iv such that

flog ..= (
uv, ζv = (ζv,i)i∈Iv ,Cv

)
v∈V ∈ Mplog

g,k (X∅, A)�. (3.24)

Repeating the proof of Proposition 3.6, with {λ( fa,log)}a∈N as in Definition 2.4.(1) in place
of {λa}a∈N in (3.2) yields the following.

Proposition 3.8 Suppose (3.23) is a sequence of stable log maps in Mlog
g,k(X∅, A) that log-

Gromov converges to (3.24). The limit (3.24) is unique up to equivalence and represents an

element of Mlog
g,k(X∅, A).

Proof of Theorem 1.3 Similarly to the classical case, consider the sequential convergence

topologies onMlog
g,k(Z, A) or justMlog

g,k(X∅, A) given by Propositions 3.6 and 3.8: a subsetW
of the moduli space is closed if every sequence in W has a subsequence with a log-Gromov
limit in W. Note that as in [27, Sec 5.1], we must show that convergence with respect to the
topology defined above is equivalent to log-Gromov convergence. Since the forgetful map

ι : Mlog
g,k(X∅, A)−→Mg,k(X∅, A) is finite-to-one and log-Gromov convergence is a lift of the

classical Gromov convergence, this property follows from the the corresponding statement
for the Gromov convergence topology on Mg,k(X∅, A). In other words, the five axioms8 in

[27, Lmm 5.6.4] lift to sequences in Mlog
g,k(X∅, A).

Suppose W ⊂ Mg,k(X∅, A) or Mg,k(Z, A) is closed and let W ′ = ι−1(W). Let ( fa,log)a∈N
be any sequence in W ′. Its image ( fa = ι( fa,log))a∈N in W has a subsequence, still
denoted by ( fa)a∈N, that Gromov converges to some f ∈ W. On the other hand, by
Proposition 3.6 or 3.8, ( fa,log)a∈N has a subsequence that log-Gromov converges to some

flog∈Mlog
g,k(X∅, A) or Mlog

g,k(Z, A). By definition, we have ι( flog) = f , i.e. flog∈W ′. There-
fore, W ′ is closed. We conclude that ι is continuous.
Let flog be an arbitrary logmap inMlog

g,k(X∅, A)with the decorated dual graph� and f = ι( flog)

be the underlying stable map in Mg,k(X∅, A). Let (Ua)a∈N be a shrinking basis for the
(metrizable) topology of Mg,k(X∅, A) or Mg,k(Z, A) around f . By [7, Lmm 2.15], every
stable map f admits at most finitely many log lifts flog, each of which is uniquely specified
by the vector decorations on the nodes of its dual graph (i.e. the contact data s

�
e at the nodes

q
�
e). Recall from the proof of Lemma 3.3 that, for a sufficiently large, by the classical gluing

theorem, the domain of every map f ′ in Ua is obtained from the nodal domain � of f by
gluing the nodes in a standard way. Furthermore, the image of f ′ is C0-close to the image of
f . The dual graph�′ of f ′ is a contraction of� in the sense of (3.4).With these identifications,
if f ′log is a log lift of f ′ in Ua, by its decoration type, we mean

• the vector decorations s
�
e at its nodes q

�
e, together with

• the winding9 number of f ′ around Xi along the circles ∂A
�
e (see 3.10) on every neck Ae

obtained from gluing the node qe of the domain of f ; see the proof of Lemma 3.3.

8 Even though [27, Sec 5.1] is about the genus 0 moduli spaces, the statements used here are valid in all genus.
9 Contact points with X∂ are among the nodal points and are away from the neck region.
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Thus, we say f ′log has the same decoration type as flog if

1. at every node of the domain of f ′log the vector decoration s
�
e is the same as the vector

decoration at the corresponding node of flog,
2. on every neck Ae the winding number of f ′ around Xi along the circle ∂A

�
e is the same

as the tangency order s
�
e,i for f .

For a sufficiently large, define U ′
a be the set of elements f ′log inMlog

g,k(X∅, A) orMlog
g,k(Z, A)

whose image f ′ under ι lies in Ua and f ′log has the same decoration type as flog. By (1) and
(2) above, the restriction of ι to U ′

a is one-to-one. We show that U ′
a is open. Let ( fb,log)b∈N

be a sequence in the complement of U ′
a that log-Gromov converges to f ′log. After possibly

passing to a subsequence, we can assume that the underlying sequence of stablemaps ( fb)b∈N
lies either in Ua or its complement Uc

a. In the latter case, by definition, f ′log belongs to the
complement of U ′

a. In the former case, the decoration type of f ′log (with respect to flog)
will be the same as the decoration type of fb,log which is, by definition, different from the
decoration type of flog. Therefore, f ′log belongs to the complement of U ′

a. We conclude that
U ′
a is open. Furthermore, it is easy to see that (U ′

a)a∈N is a shrinking basis for the topology

of Mlog
g,k(X∅, A) or Mlog

g,k(Z, A) at f . Therefore, the log-Gromov topology on Mlog
g,k(X∅) or

Mlog
g,k(Z, A) is first-countable.

Hausdorffness is the consequence of the uniqueness of the limit. If Y is a first-countable
topological space and has the property that every convergent sequence has a unique limit then

Y is Hausdorff. Finally, compactness of Mlog
g,k(X∅, A) is the consequence of the existence of

the limit. ��

4 Comments on deformation theory

In this section, we first calculate the expected dimension of each stratum

Mlog
g,k(X∅, A)� ⊂Mlog

g,k(X∅, A)

and thus identify the virtually main components of Mlog
g,k(X∅, A). We then describe the

deformation-obstruction exact sequence at any log curve.
First, let us review the notion of logarithmic tangent bundle and set up the notation.
Let X be a smooth holomorphic manifold and D⊂X be a normal crossings divisor. Around
every point p ∈ X there exists a chart ϕ : U −→ C

n with coordinates (x1, . . . , xn), with
n=dimC X, such that

ϕ(D ∩ U)≡(x1 · · · xk=0) ⊂ C
n for some 0 ≤ k ≤ n.

In such coordinates, the sheaf T X of holomorphic sections of the complex tangent bundle
TX is generated by

∂x1 , . . . , ∂xn

and the log tangent sheaf T X(− logD) is the sub-sheaf generated by

∂
log
x1

..= x1∂x1 , . . . , ∂
log
xk

..= xk∂xk , ∂xk+1 , . . . , ∂xn .

It is dual to the sheaf�1
X(logD) of meromorphic 1-forms with at most simple poles alongDi.

Since T X(− logD) is locally free, it is the sheaf of holomorphic sections of a holomorphic
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vector bundle TX(− logD). The inclusion T X(− logD) ⊂ T X gives rise to a holomorphic
homomorphism

ι : TX(− logD) −→ TX

which is an isomorphism away from D.
Now, suppose X∅ = ⋃

i∈I Xi is an SNC Kähler variety. For each i ∈ I, let TXi(− log ∂Xi)

denote the logarithmic tangent bundle of the pair (Xi, ∂Xi = X∂ ) defined above. If X∅ is d-
semistable, then (it follows from [2, Thm 5.9] that) X∅ admits a natural holomorphic vector
bundle T logX∅ such that

T logX∅ |Xi= TXi(− log ∂Xi).

In other words, the collection of logarithmic tangent bundles

{TXi(− log ∂Xi)}i∈I
naturally glue along the singular locus X∅ to define a vector bundle over X∅ that plays the
role of tangent bundle for the central fiber. If Z is a semistable smoothing of Z0 = X∅ as in
(1.1), then there is a short exact sequence

0 −→ T logX∅ −→ TZ(− log X∅) |X∅−→ OX∅ −→ 0

meaning that the logarithmic normal bundle of X∅ in Z is the trivial line bundle OX∅ ; see
[22, Prp 5.3, Exa 3.6]. Furthermore, via the holomorphic homomorphisms

TZ(− log X∅) −→ TZ and TC(− log 0) −→ TC

the derivative map

dπ : TZ −→ TC

lifts to a surjective log derivative map

dlogπ : TZ(− log X∅) −→ TC(− log 0)

whose kernel over λ 	= 0 is TZλ and over λ = 0 is T logZ0. In this sense, T logX∅ can
be considered as the smooth limit of TZλ when λ converges to 0. In local coordinates
x=(x0, . . . , xn) such that π : Z −→ � is given by x −→ z = x0 · · · xk, we have

dlogπ |Z0

(
h1∂

log
x0 + · · · + hk∂

log
xk + hk+1∂xk+1 + · · · + hn∂xn

) =
( k∑

i=0

hi
)
∂
log
z |z=0 .

(4.1)

Given Mlog
g,k(X∅, A)� , with notation as Remark 2.13, recall that both K and K• are free

Z-modules and

dim KR = rank K = dim K•,R + 1 = rank K• + 1. (4.2)

Lemma 4.1 For any admissible decorated dual graph �, the expected complex dimension of
Mlog

g,k(X∅, A)� is

cT
logX∅

1 (A) + (n − 3)(1 − g) + k − rank K•. (4.3)

123



Geometriae Dedicata (2022) 216 :66 Page 29 of 42 66

Proof For each i∈I,

∂Xi
..=

⋃

j∈I−i

Xi j

is an SNC divisor in Xi. For the given �, fix an arbitrary choice of indices {iv ∈ Iv}v∈V. For
each v ∈ V, let �v be the one-vertex graph {v} with the labeling Iv − {iv} ⊂ I − {iv}. Also,
using the identification map Z

I• ∼= Z
I−{iv} in (2.6), let sv be the set of contact vectors in

Z
I−{iv} at the nodal points

�
Ev together with the trivial contact vectors at the marked points

�zv. For every f = (
uv, ζv,Cv

)
v∈V ∈ Mplog

g,k (X∅, A)� , by forgetting the iv-th meromorphic
section ζv,iv in the v-th component (uv, ζv,Cv), we obtain element of the relative log space

Mlog
gv,sv(Xiv , ∂Xiv , Av)�v = Mplog

gv,sv(Xiv , ∂Xiv , Av)�v

constructed in [7]. Therefore, f belongs to the fiber product space

×v∈V Mlog
gv,sv(Xiv , ∂Xiv , Av)�v (4.4)

where the fiber product is over the evaluation maps into XIe × XIe at the pairs of nodal points
(q
�
e, q

�
e) for all e∈E. Then, ob� in (2.22) is a map

ob� : Mplog
g,k (X∅, A)� ∼= ×v∈V Mlog

gv,sv(Xiv , ∂Xiv , Av)�v −→ G(�)

such that

Mlog
g,k(X∅, A)� = ob−1

� (1).

By [8, Prp 4.8], the complex expected dimension of each Mlog
gv,sv(Xiv , ∂Xiv , Av)�v is

c
TXiv (− log ∂Xiv )
1 (Av) + (n − 3)(1 − gv) + kv+ |

�
Ev | − | Iv − {iv} |, where kv =|�zv | .

Since

c
TXiv (− log ∂Xiv )
1 (Av) = cT

logX∅
1 (Av) ∀ v∈V,

the expected dimension of the fiber product (4.4) is equal to
∑

v∈V

(
cT

logX∅
1 (Av) + (n − 3)(1 − gv) + kv+|

�
Ev | − | Iv | +1

) −
∑

e∈E
(n− | Ie | +1)

= cT
logX∅

1 (A) + (n − 3)(1 − g) + k−|E | −
∑

v∈V
(| Iv | −1) +

∑

e∈E
(| Ie | −1).

(4.5)

By (2.14),

rank K − dimC(G) =|E | +1 +
∑

v∈V
(| Iv | −1) −

∑

e∈E
(| Ie | −1).

The identity (4.3) follows from the second equation in (4.5), the last equation, and (4.2). ��
Definition 4.2 We say an admissible decorated dual graph � is a main graph if

K• = Ker(�•) = 0 ⊂ D•, (4.6)

Which is equivalent to K = Ker(�) ∼= Z ⊂ D.

The set of such � is the same as rigid configurations (rigid tropical map) considered in [3].

123



66 Page 30 of 42 Geometriae Dedicata (2022) 216 :66

Corollary 4.3 The moduli space Mlog
g,k(X∅, A) has the correct expected dimension and the

virtually main strata of Mlog
g,k(X∅, A) correspond to main graphs.

Unlike when the target space is smooth, often, Mlog
g,k(X∅, A) has many virtually main strata,

and they contribute differently to the VFC of Mg,k(Zλ, A). The degeneration formula (5.3)
describes the weights.
Over a smooth target X, the deformation-obstruction long exact sequence at a stable marked
curve f =[u,C=(�,�z)] ∈Mg,k(X, A) (with smooth domain) is the sequence

0 −→ aut(C)
δ−→ Def(u) −→ Def( f ) −→ Def(C)

δ−→ Obs(u) −→ Obs( f ) −→ 0,
(4.7)

where

Aut(C)=H0
∂̄
(�,T�(− log z)), Def(C)=H1

∂̄
(�,T�(− log z)),

Def(u)=H0
∂̄
(�, u∗TX), Obs(u)=H1

∂̄
(�, u∗TX),

(4.8)

and T�(− log z) is the logarithmic tangent bundle associated to the marked-points divisor
z ⊂ �. Alternatively, we may replace T�(− log z) and TX with the corresponding sheaves
of holomorphic sections T �(− log z) and T X, respectively, and use c̆ech cohomology. A
similar description is feasible when � is nodal; see below. Furthermore, if u is an immersion
with normal bundle

Nu=u∗TX/du(T�)

and there are no marked points, then

Def( f )=H0
∂̄
(�,Nu) Obs( f )=H1

∂̄
(�,Nu).

If Obs( f )= 0, then a small neighborhood B( f ) of f in Mg,k(X, A) is a smooth orbifold of
the expected dimension (1.3); see [20, Sec 24.1] and [10, Rmk 6.2.1]. In the following, we
outline the generalization of this setup to the case of analytical log maps.

Remark 4.4 In (4.7), if u is not an immersion or there are marked points, then the cokernel
sheaf

Nu = u∗T X

du(T �(− log z))
(4.9)

admits a decomposition

Nu = N free
u ⊕ N tor

u

into a direct sum of a torsion free sheaf with the associated holomorphic vector bundle Nu

and a skyscraper sheaf such that

Def( f ) = H0
∂̄
(�,Nu) ⊕ H0(�,N tor

u ) and Obs( f ) = H1
∂̄
(�,Nu);

see [37, pp 284-285].

Remark 4.5 In the algebraic language, the cohomology groups in (4.8) are described as

Aut(C)=Hom(�1
�(log z),O�), Def(C)=Ext1(�1

�(log z),O�),

Def(u)=Hom(u∗�1
X,O�), Obs(u)=Ext1(u∗�1

X,O�).
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Lemma 4.6 Associated with any pre-log map f ≡ (
fv≡(uv, ζv,Cv)

)
v∈V (with notation as in

2.10), there exists a natural holomorphic10 homomorphism derivative map

T log�(− log z)
d(u,ζ )

−−−−−→ u∗T logX∅
that generalizes the derivative map in (4.9).

Proof The map d(u, ζ ) is defined in the following way. Suppose p∈�v is not a marked or
nodal point. Then uv(p) ∈ XIv − ∂XIv and ζv,i(p) 	= 0,∞ for all i ∈ Iv. If Iv = {i1, . . . , ik},
a neighborhood V of uv(p) in X∅ can be identified with a neighborhood U of 0 in the affine
variety

(x1 . . . xk = 0) ⊂ C
n+1

so that

(U ∩ {xa = 0})∼=(V ∩ Xia) ∀ a = 1, . . . , k .

The coordinates xa also give local trivializations

NXIv−ia
XIv |(XIv∩V)

∼= (XIv ∩ V) × C, ∀ a = 1, . . . , k ; (4.10)

see (3.1). The sections ξIv,i in (2.3) (which are unique up to scaling) give (unique up to
scaling) trivializations

OXIv
(XIv+i) |XIv∩V∼= (XIv ∩ V) × C ∀ i∈I − Iv. (4.11)

Using (4.11), the given trivialization in (2.1) thus gives us a trivialization
⊗

i∈Iv
NXIv−i XIv |(XIv∩V)

∼= (XIv ∩ V) × C. (4.12)

We can choose the coordinates x1, . . . , xk so that the product of the trivializations in (4.10)
is equal to the trivialization in (4.12). In such coordinates,

T logX∅ |(V∩XIv )
=

{
k∑

a=1

ha∂
log
xa +

n+1∑

a=k+1

ha∂xa | h1 + · · · + hk = 0

}
; (4.13)

see (4.1). For a local coordinate w on an open set � around p, with p = (w = 0), define

d(u, ζ )(∂w) =
k∑

a=1

∂ζv,ia
∂w

ζia
∂
log
xa +

n+1∑

a=k+1

∂(xa ◦ uv)

∂w
∂xa . (4.14)

Here ∂ζv,i/∂w is defined using the local trivialization (4.10). It is clear from the definition that
(4.14) is invariant under constant rescalings of ζv,i. Also, it follows from Definition 2.2(a)
and (4.12) that (4.14) satisfies (4.13). If p is one of the marked points, then the local generator
of T log�(− log z) is ∂

log
w = w∂w. Therefore, we define

d(u, ζ )(∂
log
w ) = wd(u, ζ )(∂w).

It is easy to check that

dp(u, ζ ) : T log
p �(− log z) −→ T log

uv(p)
X∅

10 i.e. the restriction of d(u, ζ ) to each irreducible component of � is a holomorphic homomorphism.
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is independent of the choice of local coordinates w and x1, . . . , xn+1 used in driving (4.14)
and dp(u, ζ ) is the zero homomorphism at the marked points.
Now suppose qe∈� is a nodal point obtained from attaching �v at q

�
e to �v′ at q

�
e. Then

u(qe) = uv(q
�
e) = uv′(q

�
e) ∈ XIe − ∂XIe , with Ie = Iv ∪ Iv′ .

Fix local coordinates w
�
e on �

�
e around q

�
e and w

�
e on �

�
e around q

�
e. Then, as in (4.13),

T log�(− log z) is generated by ∂
log
w
�
e around q

�
e and ∂

log
w
�

e around q
�

e satisfying

∂
log
w
�
e |qe= −∂

log
w
�

e |qe . (4.15)

As before, if Ie = {i1, . . . , ik}, a neighborhood V of u(qe) in X∅ can be identified with a
neighborhood U of 0 in the affine variety

(x1 . . . xk = 0) ⊂ C
n+1

such that

(U ∩ {xa = 0}) = (V ∩ Xia), ∀ a = 1, . . . , k.

As before, the coordinates xa also give local trivializations (4.10) on XIv ∩V and XIv′ ∩V and
the sections {ξIv,i}i∈I−Ie and {ξIv′ ,i}i∈I−Ie give compatible (over XIe ) local trivializations

OXIv
(XIv+i) |XIv∩V∼= (XIv ∩ V) × C and

OXIv′ (XIv′+i) |XIv′ ∩V
∼= (XIv′ ∩ V)×C ∀ i∈I − Ie.

(4.16)

Using (4.16), the given trivialization in (2.1) thus gives us compatible trivializations
(⊗

i∈IV
NXIv−i XIv ⊗

⊗

i∈Ie−IV

OXIv
(XIv+i)

)
|(XIv∩V)

∼= (XIv ∩ V) × C. (4.17)

We can choose the coordinates x1, . . . , xk and local trivializations

OXIv
(XIv+i) |XIv∩V∼= (XIv ∩ V) × C ∀ i∈ Ie − Iv,

OXIv′ (XIv′+i) |XIv′ ∩V
∼= (XIv′ ∩ V) × C ∀ i∈ Ie − Iv′

(4.18)

so that

ζIv,ia = xa ∀ ia ∈ Ie − Iv and ζIv,ia = xa ∀ ia ∈ Ie − Iv′ ,

with respect to (4.18), and the trivializations
⊗

i∈Iv
NXIv−i XIv |(XIv∩V)

∼= (XIv ∩ V) × C,

⊗

i∈Iv′
NXIv′ −i XIv′ |(XIv′ ∩V)

∼= (XIv′ ∩ V) × C,
(4.19)

obtained from (4.17) and (4.18) coincide with the product trivializations given by (4.10).
Then, define

d(u, ζ )(∂
log
w
�
e ) =

∑

ia∈Iv
w
�
e

∂ζv,ia
∂w
�
e

ζia
∂
log
xa +

∑

ia∈Ie−Iv

w
�
e

∂(xa◦uv)
∂w
�
e

xa ◦ uv
∂
log
xa +

n+1∑

a=k+1

w
�
e

∂(xa ◦ uv)

∂w
�
e

∂xa

(4.20)
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and

d(u, ζ )(∂
log
w
�

e ) =
∑

ia∈Iv′
w
�
e

∂ζv,ia
∂w
�
e

ζia
∂
log
xa +

∑

ia∈Ie−Iv′
w
�

e

∂(xa◦uv)
∂w
�

e

xa ◦ uv
∂
log
xa +

n+1∑

a=k+1

w
�

e
∂(xa ◦ uv)

∂w
�

e
∂xa .

(4.21)

Putting w
�
e and w

�
e equal to zero in (4.20) and (4.21), respectively, we get

dq
�
e(u, ζ )(∂

log
w
�
e ) =

k∑

a=1

s
�
e,ia∂

log
xa and dq

�
e(u, ζ )(∂

log
w
�

e ) =
k∑

a=1

s
�

e,ia∂
log
xa .

By Definition 2.4.3 and (4.15), the map

dqe(u, ζ ) : T log
q
�
e �(− log z) −→ T log

u(q
�
e)
X∅

is well-defined. ��
Similarly to (4.7), for every stable log marked curve f ≡ [

fv ≡ (uv, ζv,Cv)
)
v∈V

] ∈
Mlog

g,k(X∅, A), one can use the short exact sequence of sheaves

T log�(− log z)
d(u,ζ )

−−−−−→ u∗T logX∅ −→ Nu,ζ = u∗T logX∅
d(u, ζ )

(
T log�(− log z)

) (4.22)

to study the deformations-obstructions of f . It can also be deduced from (4.22) that the
expected C-dimension of Mg,k(X∅, A) is

cT
logX∅

1 (A) + (n − 3)(1 − g) + k.

Remark 4.7 An element ξ ∈Def(u, ζ ) is a continuous section of u∗T logX∅ such that ξv=ξ|�v

is a holomorphic section of the vector bundle u∗
vTXi(− log ∂Xi) for all v∈V and any i∈ Iv.

While the map d(u, ζ ) is defined for arbitrary pre-logmap, by the continuity of ξ at the nodes,
the deformation space Def(u, ζ ) only consists of those infinitesimal deformations of (u, ζ )

that preserve Conditions (C1) and (C2) in Definition 2.10.

5 The degeneration formula

In this section, we describe an explicit (degeneration) formula for the contributions of the

virtually main components of Mlog
g,k(Z0, A) in Corollary 4.3 to its (hypothetical) VFC.

Assume X∅ = ⋃
i∈I Xi is a d-semistable SNC Kähler variety. For each g, k ∈ N and

A∈H2(X∅,Z), the moduli space Mlog
g,k(X∅, A) decomposes into a union of (virtually) main

components

Mlog
g,k(X∅, A) =

⋃

main �

Mlog
g,k(X∅, A)�. (5.1)

By Definition 4.2 and (4.2), if � is a main graph, up to scaling, there is a unique pair of
functions (s :V → R

I , λ : E → R+) satisfying Definition 2.10.(C1). The condition (4.6)
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implies that the image of the dual Z-linear map

T
∨ �∨•−−−−−−−−→ D

∨• (5.2)

is a sub-lattice of finite index. Let

m(�) ..=|D∨• /Im(�∨• ) |∈ Z+.

The degeneration formula (5.3) below proposes that the decomposition (5.1) gives rise to a
similar but weighted decomposition formula for VFCs in a semistable degeneration.

Expectation 5.1 (Prospect Degeneration Formula) Let π : Z −→ � be a semistable degen-
eration as in (1.1). Then, for every A∈H2(Z0,Z) and g, k∈N, we have

[Mg,k(Zλ, A)]VFC =
∑

main �

m(�)

|Aut(�) | [Mlog
g,k(X∅, A)�]VFC , (5.3)

where |Aut(�) | is the order of the automorphism group of the decorated dual graph �.

The equality (5.3) should be thought of as an equality of Čech cohomology classes in

Mlog
g,k(Z, A) in the sense of [28, Rmk 8.2.4]. The formula (5.3) and the decomposition for-

mula [3, Thm 1.2] are both a sum over the same set of combinatorial data, but with different
coefficients; see Remark 5.5 below. The difference in the coefficients shows that an algebraic
log map is finer 11 than what is defined in this paper.

Lemma 5.2 In the case of a basic degeneration, i.e. I = {1, 2}, this formula coincides with
the Jun Li’s formula [25, Theorem 3.15].

Proof It is easy to see that the only decorated graphs with K•(�)=0 are bipartite graphs with
one set of vertices V1 ⊂V indexed by {1} and the opposite set V2 ⊂V indexed by {2}. Let
us orient the edges to go from V1 to V2. Write s

�
e = (−me,me) 	=0 ∈ Z

2• for all e∈
�
EV1,V2 .

For each v ∈ V, since | Iv |= 1, we have ZIv• = 0. For each e ∈ E, we have Ie = {1, 2}. By
picking the second coordinate, we can identify Z

Ie• with Z. Therefore, we have

�• : D• ∼= Z
E −→ T ∼= Z

E, (λe)e∈E −→ (λeme)e∈E.

We conclude that m(�) = ∏
e∈E me as in Jun Li’s formula. ��

Remark 5.3 In the case of a basic degeneration, Mlog
g,k(X∅, A)� more or less coincides with

the relative compactification (see [7, Sec 4.1]), and the degeneration formula is the same as
the one stated in [14, Thm 1.1]. The analytic tools needed for the proof are contained in [14]
and [6].

Unlike the basic case above, a main decorated dual graph for an SNC variety with non-trivial
threefold (and higher) strata may have components mapped into a stratum XI with | I |≥ 2;
see Sect. 6.
A main step in establishing (5.3) is to prove a gluing theorem for smoothing the nodes of a
log map f as in Definition 2.10 to get maps inZλ with λ 	= 0. The space of gluing parameters

11 We mean there should be a (surjective) map from (the topological space underlying) AGCS’s moduli space
to the moduli space (set) defined in this paper.
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for a fixed log map f with the decorated dual graph � is a sufficiently small neighborhood
of the origin in

N� =
{(

(εe)e∈E, (tv,i)v∈V,i∈Iv
)∈C

E ×
∏

v∈V
C
Iv :

∏

i∈Iv
tv,i =

∏

i∈Iv′
tv′,i

and ε
s
�
e,i
e tv,i = tv′,i∀ v, v′ ∈V, e∈Ev,v′ , i∈ Ie,

�
e s.t s

�
e,i ≥ 0

}

⊂ C
E ×

∏

v∈V
C
Iv .

(5.4)

In (5.4), if i∈ Ie−Iv, by tv,i we mean 1. The complex numbers εe are the gluing parameters
for the nodes of � and tv,i are the parameters for pushing uv out in the direction of ζv,i. The
common value λ=∏

i∈Iv tv,i describes the fiber Zλ that will contain the glued map. In other
words, the projection map π:N� −→C induced by π:Z−→C is the map

(
(εe)e∈E, (tv,i)v∈V,i∈Iv

) −→ λ =
∏

i∈Iv
tv,i.

Let

�∨ : T∨ −→ D
∨

denote the dual of (2.14). The image of �∨ is a finite index sub-lattice of

K⊥ = {η ∈ D
∨ : η(x) = 0 ∀ x ∈ K} ⊂ D

∨.

Define

mred(�) =|K⊥/Im(�∨) |∈ Z+.

By Definition 4.2, if � is a main graph, then K = Ker(�) ∼= Z. Thus, the projection map

0 ⊕ π : K ∼= Z −→ Z

in (2.26) has the form r → mσ r for some positive integer mσ .

Lemma 5.4 The space of gluing parameters N� is a possibly non-irreducible and non-
reduced affine toric sub-variety of CE × ∏

v∈V C
Iv that is isomorphic to mred(�) copies

of the irreducible reduced affine toric variety Yσ(�) (c.f. the paragraph after 2.23), counting
with multiplicities. In particular, if � is a main graph, then Yσ

∼= C and π:N� −→C is a
map of degree

m(�) = mred(�) · mσ ,

where mσ is the degree of π : Yσ −→ C.

Proof Proof of the first claim is identical to the proof of [7, Prp 5.7]. We skip it here. For the
second part, if � is a main graph, from the dual of the commutative diagram (2.26), we get
the exact sequence

0 −→ ker(�∨) −→ Ker(�∨• )
δ−→ Z

∨ ∼= Z −→ D
∨

Im(�∨)
−→ D

∨•
Im(�∨• )

∼= Z

m(�)Z
.

123



66 Page 36 of 42 Geometriae Dedicata (2022) 216 :66

The image of δ can not be the entire Z. Therefore, it should be zero, and we get the exact
sequence

Z −→ D
∨

Im(�∨)
−→ Z

m(�)Z
.

On one hand, the degree of π:N� −→C is the index of the first inclusion map above which,
by the exactness of the sequence, is equal to m(�). On the other hand, the decomposition

D
∨

Im(�∨)
= D

∨

K⊥ × K⊥

Im(�∨)

shows that m(�) is the product of mσ and mred(�). ��
Remark 5.5 Except for the coefficients m(�), the degeneration formula (5.3) coincides with
[3, Thm 1.2]. For instance, in the example of a basic degeneration (Lemma 5.2), with notation
as above, since � is connected, we have

(ZV)∗ = {((t, 0)v
)
v∈V1

⊕ (
(0, t)v

)
v∈V2

: t ∈ Z} ∼= Z

and

� : D = Z
E ⊕ (

Z
V
)∗ ∼= Z

E ⊕ Z −→ T =
⊕

e∈E
Z · (−1, 1) ∼= Z

E,

�
(
(λe)e∈E, t

) = ⊕e∈E(λeme − t).

Let


 = LCM
(
me : e ∈ E

) ∀ e ∈ E.

We get

Z ∼= Ker(�) = {((λe)e∈E, t
) : t = λeme} = Z · (

(
e)e∈E, 

)
.

Since 0 ⊕ π : D → Z maps
(
(
e)e∈E, 


)
to 
 ∈ Z, we conclude that

mσ = LCM
(
me : e ∈ E

)
and mred(�) =

∏
e∈E me

LCM
(
me : e ∈ E

) .

The multiplicity mτ in [3, Thm 1.2] is the integer mσ in Lemma 5.4; the relation between [3,
Thm 1.2] and Jun Li’s formula is explained in [23].

6 Rational curves in a pencil of cubic surfaces

In this section, we re-study the example of the degeneration of degree 3 rational curves in a
pencil of cubic surfaces, originally studied in [3, Sec 5]. As our calculations show, we can
easily identify the space of such log maps without blowing up the triple intersection.
Let P be a homogenous cubic polynomial in x0, . . . , x3 and

Z ′ ={(
λ, [x0, x1, x2, x3]

)∈C×P
3 : x1x2x3 = λP(x0, x1, x2, x3)

} ⊂ C×P
3 .

Let π ′ : Z ′ −→C be the projection map to the first factor. For a generic P and λ 	=0, π ′−1(λ)

is a smooth cubic hypersurface (divisor) in P3. For λ=0, π ′−1(0) is the SNC variety

X′
∅ = {0}×(

X′
1∪X′

2∪X′
3

) ⊂ {0}×P
3 with
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Fig. 4 On left, the central fiber of Z ′ with its 9 singular points. On right, the central fiber of Z with its 9
exceptional curves

X′
i ≡(xi = 0) ≈ P

2 ∀ i∈{1, 2, 3}, X′
i j≡X′

i∩X′
j ≈ P

1 ∀ i, j∈{1, 2, 3}, i 	= j.

However, the total space Z ′ of π ′ is not smooth at the 9 points of

Z ′
sing ≡ {0}×(

X′
∂ ∩(P=0)

) ⊂ X∅, where X′
∂ = X′

12∪X′
13∪X′

23 ⊂ P
3 .

A small Käher resolutionZ ofZ ′ can be obtained by blowing up each singular point on X′
i j in

either12 X′
i or X

′
j. The map π ′ then induces a projection π : Z−→� and defines a semistable

degeneration. Every fiber of π over C∗ is a smooth cubic surface. The central fiber π−1(0)
is the SNC variety X∅ ≡X1∪X2∪X3 with 3 smooth components (i.e. N=3), each a blowup
of P2 at some number of points. If each singular point on X′

i j is blown up in X′
i with i < j,

then Z is obtained from Z ′ through two global blowups of C×P
3 and is thus projective; see

Fig. 4.
For the count of degree 1 and degree 2 rational curves in Zλ, it can be shown that all the
limiting curves are of the classical type (i.e. they do not pass through the triple intersection).
For example, the broken curve α in Fig. 4 is one of the 27 degree 1 rational curves in the limit.
For each λ 	=0, the moduli spaceM0,2(Zλ, [3]) of 2-marked genus 0 degree 3 maps in Zλ is
of the (expected) complex dimension 4. In degree 3, for generic λ, there are 84 such curves
passing through 2 generic points of Zλ at the marked points. In the limiting SNC variety
X∅, assuming that the two point constraints move to X1 and X2, 81 of these 84 maps can be
identified among the maps that do not intersect X123. There is, however, a new type of main
graph � contributing to the degeneration formula (5.3) that has no analogue in the Jun Li’s
formula. We are going to describe this �, identify the space of log mapsMlog

0,2(X∅, [3])� , and
calculate the coefficient m(�).
Let � be the graph with the set of vertices V = {v0, v1, v2, v3} and the set of edges E =
{e1, e2, e3} such that ei connects v0 and vi, for all i= 1, 2, 3. Choose the orientations

�
ei to

end at v0, for all i=1, 2, 3, and assume

Iv0 =I={1, 2, 3}, s
�
e1 = (−2, 1, 1)∈Z

3•, s
�
e2 = (1,−2, 1)∈Z

3•,
s
�
e3 = (1, 1,−2)∈Z

3•, Ivi = {i}, Avi = [1]∈H2(Xi,Z), ∀ i=1, 2, 3,

where, for each i = 1, 2, 3, [1] ∈ H2(Xi,Z) is the pre-image in Xi of the class of a line in
X′
i away from the blow-up points. The two legs corresponding to the two marked points are

attached to v1 and v2; see Fig. 5. A log curve with this dual graph is made of

• a line 
i= Im(uvi) in X′
i
∼= P

2 passing though the point13 X′
123 for each i∈{1, 2, 3}, and

12 Not all choices result in a Kähler configuration.
13 The choice of resolution and the exceptional curves are irrelevant in the following calculations.
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Fig. 5 Dual graph � and the image of a map belonging toM0,2(X∅, [3])� in X∅

• a log tuple
(
uv0 , {ζ j} j∈{1,2,3}, �v0

∼= P
1, qv0 = {q

�
e j} j∈{1,2,3}

)

such that

1. uv0 is the constant map onto X123, and
2. each ζ j is a meromorphic section of the trivial bundle

u∗
v0N j ∼= �v0 ×C

with a zero of order 2 at q
�

e j and poles of order 1 at {q
�

ek }k∈{1,2,3}−{ j}.

The function s :V−→R
3 given by

sv1 = (3, 0, 0), sv2 = (0, 3, 0), sv3 = (0, 0, 3), and sv0 = (1, 1, 1)

satisfies (C1) of Definition 2.10 and is the unique such function up to rescaling. Therefore,
� is a main dual graph (i.e. K• = 0 or K ∼= Z). Since the domain and the target of the
injective map (2.14) are 6-dimensional and its kernel is 1-dimensional, we conclude that the
obstruction group G is 1-dimensional. In fact, it is isomorphic to C

∗.
For each set I, let ZI/Z denote the quotient by the diagonal subgroup. We have

Z
I/Z ∼= (ZI•)∨.

The dual map

T
∨ =

⊕

i∈I

(
Z
Iei

Z

)
∼=

(
Z
3

Z

)3 �∨•−−−−−→ D
∨• ∼= (

Z
E
)∨ ⊕

(
Z
Iv0

Z

)
∼= Z

3 ⊕
(
Z
3

Z

)

in (5.2) is given by

�∨([η1], [η2], [η3]
)

=
(
(−2η11+η12+η13), (η21−2η22+η23), (η31+η32−2η33),−

([η1] + [η2]+[η3]
))

,

where ηi=[ηi1, ηi2, ηi3]∈ Z
3

Z
, for any i∈{1, 2, 3}. It is straightforward to check that

Im(�∨) =
{
(a, b, c, [x, y, z])∈Z

3⊕Z
3

Z
: a + b + c ≡ x + y + z mod 3

}
.

Therefore, the quotient group D∨• /Im(�∨• ) is isomorphic to Z3 and is generated by the class
of (1, 0, 0, [0, 0, 0]); i.e. m(�)=3.
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Remark 6.1 In this example

m(�) = 3, mσ = 3, mred(�) = 1.

In the light of Remark 5.5, this explains why our coefficientm(�)=3 coincides with the one
calculated in [3, Section 5].

In the pre-log space Mplog
0,2 (X∅, [3])� , the three lines 
1, 
2, 
3 are allowed to be any line

passing through the point X123 with some slope in C∗. However, the condition ob�( f )∈G ∼=
C

∗ in Definition 2.10.(C2) puts a restriction on the set of lines 
1, 
2, 
3 that give rise to a
log curve.
For each i∈{1, 2, 3}, the line 
i is the completion of the image of a map of the form

C −→ C
3, z −→ (xi j(z)) j=1,2,3 ⊂ C

3, xii = 0,

and xi j(z) = ai jz, ai j∈C
∗, ∀ j 	= i.

It follows from definition of ob�( f ) in (2.21) that ob�( f ) = 1 if and only if for any set of
3 distinct points q

�
e1 , q

�
e2 , q

�
e3 ∈ �v0 = P

1 and local coordinates z
�

e1 , z
�

e2 , z
�

e3 around them,
respectively, there exists a set of meromorphic sections (ζi)i∈{1,2,3} of P1×C (holomorphic
away from q

�
e1 , q

�
e2 , q

�
e3 ) such that the product ζ1ζ2ζ3 is a constant section and

ζi(z
�

e j) = a jiz
−1

�
e j

∀i∈{1, 2, 3}, j 	= i.

A straightforward calculation shows that this is possible if and only if

a12
a13

a31
a32

a23
a21

=−1,

i.e. the product of the slopes of 
1, 
2, 
3 (in a certain order) is −1. In other words,

ob�( f ) = −a12
a13

a31
a32

a23
a21

∈ C
∗.

In the degeneration formula (5.3), imposing two generic point constraints in X1 and X2 on
the image of the two marked points fixes 
1 and 
2. Then the slope condition above fixes 
3.
Therefore, since m(�) = 3 and Aut(�) = 1, the contribution of such a star-shaped log map
to the GW count of degree 3 rational curves in a smooth cubic surface passing through two
generic points is 3. Together with the other 81 classical-type curves, we recover the 2-point
degree 3 genus 0 GW invariant of cubic surface which is 84.
We finish with some comments on Question (3) in Page 3. After removing the trivial com-
ponent uv0 : �v0 −→ X123, the moduli space Mlog

0,2(X∅, [3])� decomposes into the relative
spaces

M0,((0,0),(1,1))(X1, X1;∂ , [1]), M0,((0,0),(1,1))(X2, X2;∂ , [1]),
and M0,(1,1)(X3, X3;∂ , [1]).

Thus, one might still hope to be able to get a decomposition formula in a situation like this.
However, in higher dimensions and higher degrees, there seems to be no obvious way to get
such a decomposition. The following two examples highlight the issue even further.

Example 6.2 Consider the family Y=Z ×P
1−→C, where Z is as above and π is the lift of

the projection map π :Z−→C. Let YI =XI×P
1, for all ∅ 	= I⊂{1, 2, 3}. Consider the same

dual graph but with k=3 (i.e. with a third marked point on �v3 ),

Av0 = [0, 1]∈H2(Y123,Z) ∼= H2({point}×P
1,Z) ∼= {0}×Z,
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Fig. 6 The image of a map
belonging to M0,3(Y∅, [3, 1])�
in Y∅

and

Avi = [1, 0]∈H2(Yi,Z) ∼= H2(Xi × P
1,Z) ∼= H2(Xi,Z)×Z ∀ i∈{1, 2, 3};

see Fig. 6.
The moduli spaceM0,3(Y∅, [3, 1])� is complex 8 dimensional with the same contributing

factor m(�)=3 to (5.3). A smooth fiber Yλ of Y is the product of the smooth cubic surface
Zλ and P1. Let

GWYλ

0,3(pt, pt, α×pt) (6.1)

be the number of bi-degree [3, 1] rational curves in Yλ with two point constraints and

α×pt∈H2(Yλ,Z) = H2(Zλ×P
1,Z),

where α is the homology class of the smoothing of the limiting line shown in Fig. 4-Right.
Since m(�)=3 as before, and there is a unique �-type log map in Y∅ with those constraints,
we conclude that the contribution of �-type curves to (6.1) is again 3. In examples like this,
where there is a non-constant map uv in a stratum XIv with | Iv |	= 1, for any decomposition
of Mg,k(X∅, A)� into a fiber product of relative spaces, either (1) uv has to be considered in
one of the relative moduli spaces (which normally results in relative spaces with s /∈N

N), or
(2) (�v, uv) should be removed while its non-trivial GW contribution affects the matching
conditions of the remaining parts. The first idea is a motivation behind studying punctured
log GW invariants [4].
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