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Abstract

Given a semistable degeneration with a simple normal crossings central fiber, Abramovich et
al. (Compositio Mathematica 156(10):2020-2075, 2020) proved a degeneration (or decom-
position) formula that relates the moduli spaces of stable maps in smooth fibers to certain
moduli spaces of log-smooth maps in the central fiber. In this paper, we study the same prob-
lem from an analytic point of view. We prove that the limiting stable maps in the central fiber
satisfy specific combinatorial and analytical conditions. Furthermore, we derive a (conjec-
tural) degeneration formula similar to ACGS’s formula, and work out an explicit example.
The results are expected to hold in the symplectic category as outlined in an earlier version
(Farajzadeh-Tehrani in Towards a degeneration formula for the Gromov—Witten invariants
of symplectic manifolds. arXiv:1710.00599v1 [math]) of this paper.
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1 Introduction

In this paper, by a semistable degeneration we mean a one-parameter family
T Z— A, (1.1)

where A is a disk around the origin in C, Z is a smooth Kihler manifold, 7 is a proper map,
the central fiber

Zo=n""0) =Xy = X;
i€l
is simple normal crossings (or SNC), and the fibers over A*:= A —{0} are smooth. An SNC

variety with 3 irreducible components is illustrated in Fig. 1.
ForeachieZ, let

N = Nz=X;
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Fig.1 A threefold SC variety

denote the normal line bundle of X; in Z. The line bundle
0z(20) = Qiez Oz (X))
is trivial. Let
Xi=(\Xi VO#ICT.
iel
Any trivialization Oz (Zy) = Oz restricts to a set of compatible trivializations
0z(20) lx,= Q) 0z (X)) Ix,= Q) Nilx, ® ) Ox,(X14i) = O, (12)
ieZ iel i€eZ—1
where Oy, (X;4;) is the line bundle corresponding to the hypersurface
Xi+i =X CXr,  VieI -1
For every A € A*, given g, keN and A € Hy(Z,, Z), a k-marked genus g degree A per-stable
map into Z) is a tuple
(u:2—23,2=(1,....2))

where C = (X, ?) is a connected genus g nodal curve with k distinct ordered marked points
(away from the nodes) and u is a holomorphic map representing the homology class A. Two
marked pre-stable maps

(u:— 23,2 and (ii:f)—>2,\,?)

are equivalent if there exists a bi-holomorphic isomorphism /#: ¥ —> $ such that Wza) =Zas
foralla=1,...,k and u = % o h. A marked pre-stable map is stable iff the group of
self-automorphisms is finite. For A € A*, let ﬂg,k(ZA, A) denote the moduli space (set) of
equivalence classes of k-marked genus g degree A stable maps into 2.

If dimc 2, = n, the expected C-dimension of Mg’k(z,\, A)is

AP A+ (n=3)(1 —g) + k. (1.3)

Gromov—Witten (or GW) invariants are obtained by the integration of certain cohomology
classes against the virtual fundamental class (or VFC) of ﬂg,k(zk, A). Since there might
be different homology classes in Z, that are the same as homology classes in Z, for each
A € Hy(Z,7), we let Mg,k(zx, A) to be the union over all the representatives of A in
H>(Z,, Z); see [15] for a careful discussion of this issue.

For any choice of (g, k, A), the fibration (1.1) gives rise to a 1-parameter family

Mei(25,A) = | Mgr(25, 4) — A* (14)
rEA*
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with fibers of equal virtual dimension (and cobordant VFC). For A = 0, let ﬂg,k(zo, A)
denote the space of all stable maps in Z whose image lies inside Zo; Mg (2o, A) is not a
moduli space of the correct expected dimension that extends the virtual cobordism (1.4) over
0 € A. Therefore, from an analytical perspective, the important questions are:

1. which stable maps in ﬂg, x (20, A) can arise as the Gromov-limit of a sequence of stable
maps in (1.4)?

2. how to complete (1.4) with a moduli space Mﬁf}? ¢ (20, A), ideally still a subset of
Mgk (20, A), admitting a VFC that is cobordant to VFC of smooth fibers?

3. can ﬂif),? d(Zo, A) and its VFC be expressed in terms of certain moduli spaces in X;
relative to the SNC divisor 0X; = UjeIfi X;j C X; and their VFCs?

In the algebraic category and for a semistable degeneration into two pieces Zyp=X; Ux,, X»
along a smooth divisor, these questions were firstanswered by Li [24, 25]. For a smooth divisor
D C X, he introduced the notion of a stable relative map whose image lives in a natural SNC
“expanded degeneration” associated to (X, D). Similarly, for a semistable degeneration into

two pieces Zyp=X|Uy,,X2, he constructed a compactification ﬂ?lk (29, A) whose (virtually)

main components are fiber products of the relative moduli spaces1 ﬂm s(X1/X12,A1) and
ﬂm, s(X2/X12,A3). In [25], he proved a decomposition formula which expresses the GW
invariants of the smooth fibers in terms of the products of relative GW invariants of (X1, X12)
and (X», X1»). For a symplectic version of these results see [14, 21, 26]. More recently,
Gross-Siebert [19] and Abramovich-Chen [1, 5] introduced moduli spaces of (fine, saturated)
stable log maps and proved a degeneration/decomposition formula [3] to answer the first two
questions above for an arbitrary semistable degeneration. Also, in [33], Brett Parker uses
moduli spaces of curves in exploded manifolds [30-32] to address the first two questions.
These constructions work for even a larger class of “log smooth” and “exploded” varieties
(see [29]), respectively. The degeneration formula? in [3] can be read as: virtually, a stable
map f in Mg (20, A) can arise as a limit of a sequence of stable maps in smooth fibers
if and only if f can be enhanced to a log smooth map in the (algebraic) log moduli space
ﬂj’,ﬂ"g(zo, A). A log smooth map is a stable map plus a lift of that to a map between
certain sheaves of monoids satisfying some conditions. Parker’s definition in the category
of exploded manifolds involves sheaf theory in a similar manner. For a geometric approach
using expanded degenerations we refer to [35]. For the comparison of Jun Li’s formula and
ACGS’s formula, in the case of a basic semistable degeneration, we refer to [23].

Theorem 5.3.3 in [3], gives a criterion for lift-ability and a formula for the number of lifts
for transverse maps. However, in practice, given a stable map f, its is rather hard to check

whether f lifts to an element of ﬂ?i (20, A). In other words, the image of the forgetful map

—log
M,k

(20, A) — Mg (20, A),

where ﬂ};‘fi(zo, A) is the log moduli space in [3], is hard to describe. For example, in [3,
Sec 5], the authors lift to a blowup of the SNC central fiber to find those “star-shaped” maps
that can be lifted to a log map.

In this paper, first, we prove that the Gromov-limits of stable maps in the central fiber
satisfy two specific combinatorial (called C1) and analytical (called C2) conditions. The
combinatorial condition (C1) is equivalent to the basicness condition in [19, Dfn 1.20] but it

I Over possibly disconnected domains with Euler characteristic x1 and x3.

2 Also called an “invariance property” or a“decomposition formula”.
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is stated differently. The analytical condition (C2) more or less corresponds to the existence
of a morphism to a log point; see Remark 2.12. The two conditions are linked by a linear
map associated to the dual graph of the stable map in the question. The positive cone in
the kernel of this map gives a toric description of the space of gluing parameters. Second,
we provide evidence that the moduli space of log maps satisfying conditions (C1) and (C2)
should similarly address the first two questions above. In particular, we formulate an explicit
degeneration formula that, in the case of basic degenerations, coincides with Jun Li’s formula.
The degeneration formula [3, Thm 1.2] and the one that we propose here are both a sum
over the same set of combinatorial data, but with different coefficients; see Remark 5.5.
In conclusion, this paper partially answers the questions (1)-(3) above (analytically) by
providing a natural compactification and some evidence (in the sense of calculating the
expected dimension and suggesting a GW degeneration formula) that these moduli spaces
have the expected properties.

While the algebraic log GW theory and tropical geometry can be used to simplify the presen-
tation at several places, the proposed approach has been packaged in a way so that it extends to
the symplectic category without using sheaf theory. For example, in the symplectic category,
the complex line bundles Oy, (X;;) are defined but they don’t admit a holomorphic structure
or even a canonical d-operator that can be used to simplify certain definitions. The only
obstacle in the way of generalizing these result to the symplectic category is to find a suitable
class of almost complex structures compatible with a symplectic semistable degeneration (in
the sense of [12]); see [9].

Remark 1.1 Since Zy C Z is an SNC divisor, Theorem 1.3 in [7] with trivial tangency data
at the marked points gives us a relatively® compact log moduli space ﬂ;i (Z, 2o, A) that
contains ﬂg,k(z*, A) as an open subset. However, if g > 0, even the expected dimension
of the subset of log curves in M{;%(Z , 20, A) that live in Zy is different from (1.3). The

conditions (C1) and (C2) are a refinement of the similar conditions in [7, Dfn 2.8]. Therefore,
the compactness result [7, Thm 1.3] does not directly apply; it needs some enhancements.

For a finite set Z and a ring R, let

z z z
R. = {r=(rj)jezeR : er=0} CR".
Jjez
For each i € Z, let & denote a non-zero holomorphic section of Oz (X;) vanishing (to the
order 1) along X;. Since 2 is compact, the restriction of each section &; to 2 is unique up
to multiplication by a constant. We will choose these sections so that the composition

Z— 0z(Z2))=2ZxC— C, (1.5)

where the first map is x — [],.7 &(x) and the last map is projection to the second factor,
is equal to (1.1). For the trivial holomorphic line bundle O (on any base), let A denote the
constant section corresponding to A € C.

Fix a trivialization of Oz (Zp). With notation as above, we define an analytical marked nodal
log map into Zo with the marked nodal domain (2, 2) =J,c(Zy, Z,) to be a collection of
tuples

f= (uv: 2, — X, Zs (;v,i)ielv)vev (1.6)

over the irreducible components ¥, of ¥ such that

3 je. the projection map 7 is proper.

@ Springer



Geometriae Dedicata (2022) 216:66 Page50f42 66

—

(u =(uy)yev: X — 2y, 2) is a k-marked nodal map in the classical sense,

2. foreachveV, ) #1, C T is the maximal subset such that Im(u,) C X;, C 2o,

3. foreachveVandeveryiel,, ¢, ;is anon-trivial meromorphic section of the holomorphic
line bundle u}\j,

4. for each v € V, with respect to the isomorphism (1.2), we have

QR ei® Q) uigj=ui(oz(zy))

iel, jez—1,

for some fixed A =A(f) € C* (independent of v € V),

5. the “contact order vectors” in Z? , defined in (2.7) and (2.8), are the opposite of each
other at the nodal points of X,

6. every point in ¥ with a non-trivial contact vector is a nodal point,

7. (C1:) there exists a vector-valued function s: V — RZ such that s, = s(v) € Ri x {0} F b
for all veV, and s, — s,/ is a positive multiple of the contact order vector of any nodal
point on X, connected to X, for all v, v/ €V,

8. (C2:)certain Lie group (a complex torus) element ob( f) associated to f, defined in (2.21),
is equal to 1, or equivalently, there is a choice of local holomorphic coordinates at the
nodes such that certain first order terms calculated with respected to these coordinates
match (see Remark 2.9);

see Definitions 2.2, 2.4, and 2.10 for the details. In simple words, a log map is a stable map
together with a set of meromorphic sections that satisfies certain combinatorial (i.e. (5), (6),
and (C1)) and analytical (i.e. (4) and (C2)) conditions.

Two marked log maps

f=w:2 — X1, 2, (Gidicr,), oy and
~ o~ s o~
f = (uv: Xy —> XIV’ 2y, ({v,i)ielv)vev

are equivalent if there exists a bi-holomorphic isomorphism

(h: T — i) = (hvi X, — ih("))veV

such that
hza) =% Ya=1,....k, Hoh=u, IZnyi=critvi YveV, icl,.

In particular, given a marked log map f as in (1.6), replacing each meromorphic section &y, ;
with a non-zero multiple ¢, ;¢ ; of that, satisfying ]_[l-E 1, Cvi = ¢ for all v € V, produces
another marked log map which is equivalent to f. A marked log map is stable if it has a finite
automorphism group. For g, k € N and A € Hy(Z2y, 7Z), we denote the space of equivalence
classes of stable k-marked degree A genus g log maps by

—log

M5 (20, A).

This moduli space is independent of the choice of the sections &; used in the construction
because rescalings of &; can be compensated by rescalings of ¢, ;. The equivalence class of an
analytic log map is called an analytic log curve. We will often drop the adjective “analytic”
and simply say log map or log curve.
There is a natural forgetful map

M% (20, A) — Myi(Z0, A),

(Mv HINESSD ¢ 2, (;v,i)iEIV)vEV - (uV: 2y — 20, Z_)V)VEV'
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It turns out that for every k-marked stable nodal curve f in Mg,k(zo, A), there exists at

most finitely many log curves flog € ﬂlffi(zo, A) (with distinct decorations on the dual
graph) lifting f; see Remark 2.3. Furthermore, fiog is stable if and only if f is stable, and the
automorphism groups are often the same.

Remark 1.2 In Sect. 2, we will construct the analytical log moduli spaces for any arbitrary
d-semistable (see [17]) SNC variety Z without using the smoothing Z that contains it. Here,
we used Z to slightly simplify the notation. Furthermore, it is possible to define the log map
without mentioning the meromorphic sections ¢, ;; see Remark 2.3.

By Smirnov’s theorem, every paracompact, Hausdorff, and locally metrizable space is metriz-
able. Therefore, if f: M — N is a local embedding from a compact Hausdorff space M to
a compact metrizable space N then M is metrizable.

Theorem 1.3  For every A € Hy(2y,Z) and g, k € N, the Gromov sequential convergence
topology on Mg (2, A) lifts to a Hausdorff sequential convergence topology on

log —“log

W(Z,4) —/\/lgk(Z* A) UM, (20, A)

such that

log

T /\/l (2,4 — A

. . —1 .
is proper (i.e., M ;%(Zo, A) is compact) and the natural forgetful maps

log log

(2, A) — Mg i(Z,A) and ¢: M, (20, A) — Mg (20, A) 1.7
are local (topological) embeddings. In particular, M;i(z ,A) and M;‘fi(zo, A) are metriz-
able. If g=0, then the forgetful maps in (1.7) are global embeddings.

If Xy is just an abstract d-semistable SNC variety, we just get the restriction of the theorem
above to ﬂ:i (Xyg, A). If 2y is basic (2o =X Ux,, X2), it follows from [7, Prp 4.5] that there
is a surjective projection map

rel log

M, (20, A) — M, 3 (20, A),

where the former is Jun Li’s relative moduli space. The degeneration formula that we will
derive will be the same as Jun Li’s formula in this case.

Theorem 1.3 provides necessary conditions for a stable map in M, (2o, A) to be the
Gromov(-type) limit of a sequence of stable maps in (1.4). We expect these conditions to be
sufficient, virtually. We describe the deformation-obstruction long exact sequence in Sect. 4

and show that the moduli space ﬂiﬁ% (20, A) is of the expected dimension equal to (1.3). The

expectation is that ﬂg)i (Zy, A) admits a VFC that is cobordant to VFC of smooth fibers in
(1.4). Assuming that, we formulate an explicit formula for the contributions of the virtually
main components of ﬂ;i (Zy, A) to its VFC; see Formula (5.3). In Sect. 6, we work out the
details for the same non-trivial example considered in [3, Sec 5] to highlight the similarities
and differences. Constructing VFC and proving the degeneration formula (5.3) needs a gluing
theorem (with the space of gluing parameters described in (5.4)) that will appear in a future
work. This also also needs introducing a generalized version of Kuranishi structures/spaces
that allow “toroidal singularities” or working with a generalization of inconsistent solution
spaces as in [6].
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2 Analytical log moduli spaces

In this section, associated to any d-semistable SNC Kéhler variety Xy = UieI Xi, g, keN,

and A € H»(Xy, Z), we construct the (analytic) moduli space ﬂloi (Xg, A) of k-marked genus
g degree A log holomorphic curves (as a set).

Given an SNC variety Xy =J;c7 X;, for i # j € T, let X;; denote the intersection of X; and
X (which is a complex hypersurface in both of them), and

X, = J x5
i, jeT
i#]
denote the singular locus of Xy5. In [17], associated to any SNC variety Xy, Friedman constructs
a holomorphic line bundle

Ox,(Xg) — X
such that

Ox, Xp) 1x,= Q Ny, X1 ® Q) Ox,(Xisi) VICT, |1]=2, @.1)
iel i€el—1

where Oy, (Xj4;) is the line bundle associated to the smooth divisor X4, :=Xju;) CXJ.
If Xy = Z is the central fiber of a smoothing Z as in (1.1), Ox, (Xp) is the restriction to Xj
of Oz (2p) and (1.2) coincides with (2.1). An SNC variety is smoothable* only if Oy, (Xp)
is trivial, but the converse is not true; see [34, Sec 3] for examples. An SNC variety Xy is
called d-semistable if Oy, (Xy) is isomorphic to the trivial line bundle; see [17, Din 1.13].
Regarding the connection between the d-semistability condition and log geometry, the result
is that (see [2, Thm 5.9]):
if Xy is a normal crossings variety over the spectrum of an algebraically closed field, then
Xy can be equipped with a log structure over the standard log point, such that the structure
morphism is log smooth if and only if X is d-semistable.
We will use a reinterpretation of this statement in Sect. 4.
For I = {i}, we define

-1
Ny, X; = ( X ox, (X,»,-)) : 2.2)
JjeT—{i}

With this convention, the line bundle Oy, (Xy) extends to Xy and the trivialization of (2.1)
provided by the d-semistability assumption compatibly extends to the case where | I |= 1.
If a smoothing Z of Xy as in (1.1) is given, then N, X; coincides with A in (1.2) and
Nilx,= Nx,_;X; foralli € I and | I|> 1. Therefore, for simplicity, in the following we will
write N; instead of Ny, X;.

In the following construction, for each ¥} I C Z and every i € Z — I, we need to fix a
holomorphic section &;; of Oy, (X;+;) vanishing (to order 1) along X;;; the section &;; is
unique up to multiplication by a constant. Because of the natural isomorphism

Ox, X1+ Ix,=Ox,(Xy15) VO#EICJ, iel—J,
we can choose the set {&/;} so that

gl‘i|X./=S‘]’l‘ VQJ;EICJ, ieZ—J. 2.3)

4 Here, we require the total space of the degeneration, and not just the general fiber, to be smooth.
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Fig.2 On left, a labeled graph I' 1 2
representing elements of M ». g1 ) (91, A1) (g2, A2)
On right, a labeled graph I 3 A
representing elements of g (93’ 3)
Mg 2 (X, A)

94 g5 (94, A4) (95, As)

Remark 2.1 In [11] and [13], with McLean and Zinger, we introduced topological notions of
normal crossings symplectic divisor and variety and established that they are equivalent, in a
suitable sense, to the desired geometric notions. In [12], we showed that the direct analogue of
d-semistability condition is the only obstruction to smoothability in the symplectic topology
category. The process of constructing a 1-parameter family of smoothings Z in [12] is a
multifold analogue of the now classical (twofold) symplectic sum construction. Conversely,
we introduced a multifold symplectic cut construction in [ 16] that, given certain configuration
of Hamiltonian torus actions, degenerates a smooth target into an SNC symplectic variety.
Subject to the existence of an appropriate® class of almost complex structures on Z, the
results of this paper and the rest of the claims will extend to the symplectic category; see [9]
for an outline.

LetI'=T(V, E, L) be a graph with the set of vertices V, edges [, and legs LL; the latter, also
called flags or roots, are half edges that have a vertex at one end and are open at the other
end. Let E be the set of edges with an orientation. Given an oriented edge ee E, let ¢ denote
the same edge e with the opposite orientation. For each ee E let v1 (@) and 1) (e) in V denote
the starting and ending points of the arrow, respectlvely For v,V eV, let IEV,V/ denote the
subset of edges between the two vertices and [, ,» denote the subset of oriented edges from
vto V. Forevery veV, let E, denote the subset of oriented edges starting from v.

A genus labeling of T is a function g: V — N. An ordering of the legs of I is a bijection

a:L—{1,...,|L]}. If a decorated graph I" is connected, the arithmetic genus of I" is
g=gr =) g-+rank H(T,Z),
veV

where Hi (", Z) is the firsthomology group of the underlying topological space of I'. Figure 2-
left illustrates a labeled graph with 2 legs.
Such decorated graphs I" characterize different topological types of nodal marked curves

(Z.2=G1, ... )

in the following way. Each vertex v €V corresponds to a smooth® component ¥, of ¥ with
genus g,. Each edge e € E corresponds to a node g, obtained by connecting ¥, and X,/ at
the points e € ¥, and ge € %y, where e E, ,» and e is an orientation on e with vy (e=v.
The last condition umquely specifies ¢ unless e is a loop connecting v to itself. Finally, each
leg /€L connected to the vertex v; corresponds to a marked point z,, € X,, disjoint from the
connecting nodes. If ¥ is connected, then gr is the arithmetic genus of X. Thus we have

. 9=[[=.2.9)/ ~ ge~q, VecE, (2.4)
veV

5 We need an almost complex structure J on Z such that the projection map = in (1.1) is (i, J)-holomorphic
and the Nijenhueis tensor of J vanishes to the first order (at least) along Zo C Z; see [7, (1.3)].

6 We mean a smooth closed oriented surface.
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Fig.3 A nodal curve in ﬂ“

where
Z,=7ZN X, and qv =1{qe: e€Ey}  VveV

are the set of marked and nodal points on X,, respectively. In this situation, we say I' is the
dual graph of (X, 7). We treat ¢, as an un-ordered set of marked points on Z,. If we fix an
ordering on the set g,,, we denote the ordered set by §,. Figure 3 illustrates a nodal curve with
(g1, 82,83, 84, 85) = (0,2,0, 1, 0) corresponding to Fig. 2-left.

Similarly, for nodal marked curves mapping into a topological space X, we consider similar
decorated graphs where the vertices carry an additional degree labeling

AV — H,(X,Z), v—> A,

recording the homology class of the image of the corresponding component. Figure 2-right
illustrates a dual graph associated to a marked nodal map over the graph on the left.
Assume Xg = ;o7 X; is an SNC variety and X is an irreducible smooth curve. Then every
holomorphic map u: ¥ —> Xy has a well-defined depth J # I C Z, which is the maximal
subset of 7 such that Image(«) C X;. Similarly, we say a point x € ¥ has depth 7, if X; is the
minimal stratum containing u(x). Let P*(Z) be the set of non-empty subsets of Z. The dual
graph of (u, ¥) carries additional labelings

I:V,E — P*(D), v— I, WveV, e — I, YecE,

recording the depths of smooth components and nodes of X.
Given a finite set Z and a ring R, let

RE = {r:(r_/)jezeRI: Zq:O} c R 2.5)
jeT
For every i € Z, the projection

mi: RE — RE-U (rj) jez — (r)) jez—13) (2.6)

is an isomorphism. For every subset Z’ C Z, the natural injective homomorphism RZ <> RT
restricts to a homomorphism R? <> RZ. Therefore, via this inclusion, R? can be thought of
as a subspace of R% . We will use the projection maps in (2.6) to identify each component of
a pre-log moduli space in Xp with a fiber product of relative spaces in {X;};cz.

Assume Xg = |J;c7 Xi is a d-semistable SNC Kihler variety and fix a trivialization of
Ox,(Xyp). Let u: ¥ —> Xy be a holomorphic map of depth I C 7 with smooth domain.
Then, for every i € Z—1, the function

ord : ¥ — N, ord,(x) = ord,(u, X;), 2.7

recording the contact order of u with the smooth divisor X;,; C X at x is well-defined.
It coincides with the vanishing order ord,(u*&;;) € Zso of &; at x where &;; are the
holomorphic sections in (2.3).
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For every # #1CZ, each i€, and a given meromorphic section ¢ of u*\;, we will also need
the function

ord; : ¥ —> Z, ordg (x) = ordy(¢), 2.8)

recording the vanishing order of ¢ at x (which, by definition, is negative if ¢ has a pole at x).
Given a holomorphic line bundle £ — X, let I'yero (X, £) denote the space of non-trivial
meromorphic sections of L.

Definition 2.2 For each § # I C Z, a log holomorphic tuple (&, {, X, ¢) of depth I consists of
a smooth irreducible curve X, a finite set of distinct points g={qi, ..., q¢} on X, a depth [
holomorphic map u: ¥ — X, and a set of meromorphic sections

é‘ = (Ci)iEI € 1_[ rmero(z’ u*NXI,,'XI)
iel
such that:

(a) via the identification (2.1) and the given trivialization of Oy, (Xyp), we have
QR ® Q) uerj=u"(hoy)
iel jeI—-1
for some A € C*, where A0y, is the constant section corresponding to A;
(b) forall xe X
if ord,;(x)#0 = xegq, (2.9)

where the vector-valued order function

ordy, ¢ (x) = ((ord} (x)) jez—1, (ordg, (x))ier)
= ((ordyeg; ;(x)) jez—1. (ordg; (x))ies) €22 C Z*

is defined via (2.7) and (2.8).

Remark 2.3 Let us elaborate on Definition 2.2.

e In (b) above, it follows from Condition (a) that ord, ; (x) € Z? .
o If Xy = Z is the central fiber of a semistable degeneration and u is of degree A €
H>(2y, Z), then (2.9) implies that

(A-Xdiez = Y _ ordy ¢ (qa) € Z7.
qa€q

Notethat 0 =A- 2, =A- Z0=) ;.7 A Xi.

e Changing any of the meromorphic sections ¢; with a non-zero constant multiple of that
has no effect on (a) and (b).

e If /= {i}, by Condition (a) and (2.2), the section ¢; is uniquely determined by u and A.
For I with | I |> 1, specifying | I | —1 of sections ({;);e; and A will uniquely determine
the remaining one, because their multiplication is the constant section. So there is a
redundancy in Definition 2.2. The reason for this redundancy is to avoid a non-symmetric
definition that depends on the choice of i€ 1.
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e The set of vectors
s={si = (sij)jer}| =, C (ZD)*

describe the “contact type” of the log holomorphic tuple (u, ¢, ¥, g) with the singular
locus X3 and will play an important role in defining log moduli spaces. They also appear
in the relative compactification of [7] at the marked points. Here, they only appear at the
nodal points. Nevertheless, a point with s; = 0 is simply a marked point in the classical
sense, because u(z;) will be disjoint from any of the boundary divisors.

Definition 2.4 Let X4 =|J,.7 X; be a d-semistable SNC Kihler variety. Suppose

CE(z,Z)=(]_[cvz(zv,zv,qv)>/~, 9¢~q, Ve€k,

veV

is a k-marked connected nodal curve with smooth components C, and dual graph I' =
I'(V,E, L) as in (2.4). A pre-log map from C to Xy is a collection

f= (fvE (y, &y, CV))VEV (2.10)
such that

1. foreach v eV, (u,, &, = (&v.i)iel,» Zv, gv) is a depth I, log holomorphic tuple as in
Definition 2.2 for some fixed” A = A(f),

2. uv(qe) =uy (qL) for all e EIEV v

3. sezordm o (qe) = —ord,, e (qe) =—s, forall v,v' €V and eeIEV v

In other words, a pre-log map is a (pre-stable) nodal holomorphic map into Xy with a bunch
of meromorphic sections (satisfying Definition 2.2.(a) on each smooth component), opposite
contact orders at the nodes, and trivial contact orders at every other point (including the
marked points).

Lemma 2.5 With notation as above, we have I, =1,Ul, for all e, ,y and s, € Zi" C Z?.

Proof For every veV and ¢€E,, let

se = (se.ier = ((ord], (ge))iez—1,, (0rds, (ge))ier,) €ZL .11)

be the contact order vector at the nodal point qe € Z,. Fore e E, ,, since u, and u, have
image in Xj, and Xj ,, respectively, by Condition 2 in Definition 2. 4, we have

u(ge) =uy(ge) =uy(qe) € X1, N X1, = Xpur,;
ie. I, DI, UL, . Ifi¢ I,Ul,, by (2.7), we have
Se.ir Se.i = 0.
Therefore, by Condition 3, they are both zero, i.e.

I,=ILUIl, and s, eZlczt v

e
m
L=
=
<\

7 i.e., independent of the choice of v € V.
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Definition 2.6 Two pre-log maps (u, ¢, C) = (uy, &, Cy), _y, and (&, 7, C)= (tiy, z,,C )VEV
with isomorphic decorated dual graphs I' are equivalent if there exists a biholomorphic
identification

(h: C — C) = (hy: £, —> i) (2.12)

veV
such that
hGy)=z4 Ya=1,....k, uoh=0,
hyShy.i = cv,ffv,,- VveV, iel,, somec,; € C".
A pre-log map f is stable if the group of self-equivalences 2Aut(f) is finite.

Lemma 2.7 A pre-log map is stable if and only if the underlying marked nodal map is stable.
Furthermore, the automorphism group of a pre-log map can be a proper subgroup of the
automorphism group of the underlying marked nodal map.

Proof A per-log map differs from the underlying marked nodal map by the extra collection
of meromorphic sections on each irreducible component ¥, of the domain. Given a set of
mutually distinct points ¢ = {qi, ..., q¢} C Xy, a holomorphic line bundle £ — %, and a
set of integers sy, ..., s¢ € Z, up to multiplication by a non-zero scalar, there is at most one
meromorphic section ¢ of £ such that

orde(qa) =54 Ya=1,...,£ and ord;(x) =0 Vxe X —gq

Therefore, the meromorphic sections of a per-log map are uniquely identified (up to C*-
action) by the intersection data at the nodal points. This fact and [7, Lmm 2.15] imply the
first statement of the Lemma. Furthermore, [7, Exa 2.18] describes an example where the
automorphism group of a pre-log map is a proper subgroup of the automorphism group of
the underlying marked nodal map. O

Definition 2.8 The equivalence class of a pre-log map is called a pre-log curve. For every
choice of a decorated dual graph I', we denote the space of stable k-marked degree A pre-log
holomorphic curves of type I" by

1
M F(Xg, A)r.

A basic dimension counting reveals that the expected dimension of ./\/lp %% (Xy, A)r could be
much larger than (1.3). In Definition 2.10 below, we take out a subspace that would give us
a nice compactification with the correct expected dimension.

Let

K

(@Zl") = {(sv)vew € @Zl": st,,- = Z sy Vv, Ve V},
veV veV iel, i€l
and
*
7w (@Z’v) L (s)vev —> Y S 2.13)
veV iel,

Associated to the decorated dual graph I' =T'(V, E, L) of a pre-log map and an arbitrary
orientation O = {g}eeﬂz C E on the edges, we define a Z-linear map

Q:ID)::ZE@(@ZIV)*—)T::@Z? 2.14)

veV ecE

in the following way:
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e 0 maps the generator 1, of the e-th component in the summand Z® c I to the contact
vector s, € Zl C T, where e is the chosen orientation on e in O;
o if e is the chosen orlentatlon on e in O, the e-th component of o(B,cvysy) is

Svi(@ T Swale) € Zt.
In other words,

Q(O\e)ee]E» (sv)vEV) = @ ()\esg + Sw(g) - sz(g))
ecO

Let
A =image(o), K= Ker(p) and CK=T/A = Coker(o).

The Z-modules A, K, and CK are independent of the choice of the orientation O on [E and
are invariants of the decorated graph I". In particular,

K= [(()‘e)ee]E» (s )vev) € ZF & (EBZ“) :
ey (2.15)

Sy —Sy=heSe Vv,V eV, ge[@v,v/].

Replacing Z with another ring R in the equations above, we denote the corresponding terms
in (2.14) by og: Dg —> Tg and image/kernel/cokernel by Ag, Kg, and CKg, respectively.
Via the exponentiation map, let

exp(ac) € [Tk, with €] ={@iere €)' [Tu=1}.
ecE iel

be the subgroup corresponding to the sub-Lie algebra Ac C T, and denote the quotient
group by

G =G(I')=exp(CKc).
In other words,

I—[eeIE (C* £(
eXP(Q)((C*)]E x (HVEV((C*)I")*)

where

(]_[(C*)’V)* = {(fv)veV e[[@H": []ai=]]w. e V}.

veV veV i€l iel,

Below, similarly to [7], to every pre-log f as in Definition 2.4 we associate a group element

obr(f) € G(I')

that only depends on the equivalence class of f.

Given a pre-log map f = (f, = (uy. &, v)) as in (2.10), for each ve V and ¢ € E,, le

Ze be an arbitrary holomorphic coordinate in a sufﬁmently small disk A, around the nodal
pomt (ze =0)= qe € 2.
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1. Forevery veV, ec I@v, and i € I,,, consider a local holomorphic trivialization
* ~
MVNXIV,{,';XIV |A§'\’ NXIV—iXIv |“(Qe) X AE’

such that the identification between the fibers Ny, X1, lug,) on the left and
NX,M.XI‘,I,,(%) x{0} on the right is the identity map. By (2.8), we have

Se, i
gv,i(zg) = Z_e: gv,i(zg) (2.16)
such that
07577_{,1‘ = Ev,i(o) GNXILH'XI" lu(ger= Niluige) -

The vector Ev i(0) is independent of the choice of the trivialization because a different
choice of trivialization as above correspond to multlphcatlon by afunction 4 : Ae — C*
satisfying #(0) = 1. Therefore, it does not change ;‘v i(0).

2. Similarly, for every ve V, €€ IE)ZV, and i € I, —I,, with &; ; as in Definition 2.2.(a), we
have

e i(ze) = 20" Eilze) 2.17)
such that
0#1¢,i = ,1(0) €Nx;, X443 lutgr= Ni lutqe) -
Note that the map u, has a well-defined Se, ;-th derivative
né,i eNx, Xi+ilutg) (2.18)

(with respect to the coordinate ze) in the normal direction to X;,4+; C Xj, at the nodal
marked point 9e- The vector 7’ X isa multiple of Ne.i by a factor that only depends on the
choice of &, ;.

3. Finally, for every veV, ge@v, andieZ—1,,let

Ne,i €ENXp, Xty lutgr = Ni lu(ge)
be the non-zero vector (i &y,, i)(!]§)~
For each ecE, if e is the choice of orientation on ¢ in O, let
Ne = (Me,i/Me,i) ey, €(CH. (2.19)
By Definition 2.4.(1) and because S¢ € Z{" C Z? we have
®ieT Nei = 2Ox, (Xp) lutge) -
By (2.3), we have
Nei = Nei Viel -1,
Therefore,
ne € (CH  veek.

The tuples 7, give rise to an element

ni=Me)eex €[ [(CHE. (2.20)
ecE
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The action of the subgroup exp(o) ((C*)IE X ( [Lev ((C*)I")*) on 1 corresponds to admissible
rescalings of the sections ¢, ; and change of coordinates in z,; i.e the class

obr(f)=[n] (2.21)

of n in G is independent of the choices involved. If f and f” are equivalent with respect
to a reparametrization h: ¥’ —> ¥ as in (2.12), the associated group elements 7 and 7/,
respectively, would be the same with respect to any h-symmetric choice of holomorphic
coordinates {z.}.ck. Therefore, (2.21) only depends on the equivalence class [f] of f and
thus yields a well-defined function

obr: MEE(Xy, A) —> G(I). (2.22)

Lemma 2.9 With notation as above, we have obr([f]) = 1 if and only if there exist a
representative [ = (fv = (uy, &, CV))veV of the equivalence class [f] as in (2.10) and
choices of local coordinates z, around the nodal point (z, =0) =g, € X, such that

Nei = Te,i Veek, iel,.
Proof By definition, obr ([f]) = 1 € G if and only if
n e exp(@)(€® x (JT@H™)).
veV

with 7 defined as (2.20) using any representative f of [ f]. By the statement preceding (2.21),
multiplying by a tuple of numbers in (C*)F x ( ]_[vev((C*)’ ")* corresponds to resscaling the
coordinates z, and the sections ¢, ; used in the definition of 7, in (2.19). Therefore, [n] = 1
if and only if there exist choices of ¢y,i (i.e. arepresentative f = ( V= (uy, ¢y, C‘,))VEV of the
equivalence class [ f] as in (2.10)) and choices of local coordinates z, around the nodal point
(zg =0)= qe € %, such that ’

Me)eck =1 :=(Dece & ng,i = Ne,i VeckE, iel,.

Note the choice of z, is independent of the choice of i € I,; otherwise, the condition is
vacuous. O

Definition 2.10 Let Xy = ( ;.7 X; be a d-semistable SNC variety. A log map is a stable
pre-log map f with the decorated dual graph I" such that

e (C1) there exist functions
s:V—RZ, V—> 5, and ME—R;, e—> A,
such that

1. s, €RY x {0}~ forall veV,
2. Svy(e) = Svi(e) =AeSe fOr every ee IE)Z;

e (C2)and obr(f)=1€G(I"); see Remark 2.9.

Remark 2.11 The description of Condition (C2) in Remark 2.9 is more intuitive and that’s the
description of the choice for constructing a gluing of f. We need the condition obr(f) = 1 to
be able to consistently glue the components of f at the nodes; see [7, (5.16)]. The description
in terms of a map into G(I") is used in the dimension count of Lemma 4.2 and will be needed
for proving transversality statements as in [8].
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Since I' is connected, Condition (C1)2 and s, GZ? , for all e e]]_@, imply that

> svi=r (2.23)

i€l
is a fixed positive constant r € Z, independent of v € V (at the expense of replacing Z
with R, which has no effect on the problem, we may uniformly rescale s, ; so that r = 1).
The combinatorial condition (C1) is essentially equivalent to the basicness condition in [19,
Dfn 1.20] (More precisely, it is equivalent to GS(M, u) # @). The analytical condition (C2)
more or less corresponds to the existence of a morphism to a log point; see Remark 2.12 below.
The set of vectors ((sy)yev, (Ae)eck) satisfying (C1) is the intersection of the kernel K of
or with the positive quadrant in Dr. Since this intersection is non-empty by assumption,
its closure is a convex maximal rational polyhedral cone o (I") in Kg. The space of gluing
parameters is a multiple of the affine toric variety Y, with the toric fan o (I') C Kpg; see
Sect. 5. The projection map 7 in (2.13) restricts to o (I') — Rx; it gives a projection map
between toric varieties Y, —> C (C is the toric variety associated to the toric fan R>g C R)
that, via gluing, corresponds to the fibration (1.1).

Remark 2.12 The following details, by an anonymous referee, explain the relation between
the condition (C2) and log geometry (which is probably well-known among the experts but
it is not clearly written down anywhere in the log GW literature).

A log structure on a (smooth or SNC) variety X is given by: a constructible sheaf of
monoids My (the ghost or characteristic sheaf), and an assignment of a holomorphic line
bundle/section pair (Ox(«), s¢) to every section & € Myx. The latter must be compatible
with the restriction maps of open sets and the monoid structure. A log enhancement of a
morphism f: ¥ — X is given by: a pullback map f?: f~'My — My, and a compatible
choice of isomorphisms

FH(Ox(@), 50) Z Os (@), sppy) Y € My. (2.24)

When X is an SNC variety ;.7 Xi, there are | Z | independent sections of the canonically
assigned characteristic sheaf M. The line bundle/section pair associated to the i-th section is
given by (Oxj (Xij). ¢j,i) whenrestricted to X; with j#i, and by (MzX;, 0) when restricted to
X;. The condition (C1) asserts that the pullback map f? exists (i.e. there is a log structure on %
such that the pull-back map is well-defined). Then, in order to obtain a log map, it remains to
construct the isomorphism (2.24). As explained in [36, Prp 2.4.1], for each smooth component
¥, the bundle Oy (f” () |, is given by an explicit weighted sum of the marked points and
nodes recording the contact order at special points. Therefore, the identification

Os (fP (@) I5,= fFOx(@) |5,

is equivalent to the data of a meromorphic section of f*Oyx(«) |5, with specified orders at the
special points. When « is the section of Mx corresponding to X;, this is precisely the section
¢y.i in our notation. When X, is mapped to X;, the sections are zero, hence there is a C* worth
of choices, corresponding to the choice of meromorphic sections &, ; in our notation. This
explains the identification (2.24) on each component. The condition (C2) is then needed to
extend these local identifications globally.

We will study the sufficiency of this condition to compare the moduli spaces in another work.

We will denote the subset of log curve in Mg{zg (Xg, A)r by M;O% (Xg, A)r. In other words,
we require I" to satisfy the combinatorial condition (C1) and
1 — 1
M 5(Xp, Ar = obr! (1) € MG (X, Ar.
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In Sect. 4, we show that the expected C-dimension of ML‘?%(XQ), A)r is equal to

lo;
%0 (4) 4 (dime Xy — 3)(1 — g) + k — (dimp Kg — 1),
where T1°2Xy is the log tangent bundle of Xy. Therefore, M;O’%(X@,A)r is virtually a

lo;
main stratum, i.e. a stratum whose expected dimension is the maximum value clT £Xy (A) +
(dimc Xy — 3)(1 — g) + k, if and only if K= Z.
If Z is a semistable smoothing of Zyp =Xy as in (1.1), cl Xo (A) coincides with cl 2 (A), for
all A € A*. Therefore, the expected dimension of the analytical log moduli space

Me%(Xp, A) = UM“’g(Xw Ayr

coincides with the expected dimension of ﬂg,k(Zx, A). Diffient components in this union,
however, will contribute with different weights to the VFC of M, 1 (Z;., A). The degeneration
formula (5.3) describes these weights.

Remark 2.13 There is a slightly different map associated to I" that will be useful in Sect. 5.
Let

0: Dy =Z" 0 Pzl — T=PZ". (2.25)
veV ecE

denote the restriction of o to D, C D. Recall from (2.5) that the subscript e denotes the
subspace where the sum of the coefficients is zero. Then, the following diagram commutes

Dy —2> T (2.26)

Lk

D—% o7

\LO&BH

Z.

Let o (I') be the intersection of positive quadrant in I and the kernel K of ¢ as in the paragraph
after (2.23). Fixing a vector in the interior of o (I") gives us a decomposition

Kr(0) = Kr(0s) ® R

such that o (I") is a cone containing the ray 0 @ Rx. Therefore, M e k(X(/j A)r is virtually a
main stratum if and only if K, =0, where K, = Ker(p,) is the kernel of g,. Intuitively, as we
will show in Sect. 4, (the toric variety Y, corresponding to the cone o inside) K corresponds
to partial smoothings of the nodal map that might end up in a different fiber of the total space
Z of the semi-stable degeneration, and K, is the subset corresponding to smoothings inside
Zy. Therefore, if K, =0, it means there are no further smoothings of the nodal map inside
Z; thus, we are in the top stratum.

3 Proof of the main theorem

In this section, by following and adjusting the steps of the proof [7, Thm. 1.3], we prove
Theorem 1.3.
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Throughout this section, for the cases that invlove the smoothing of Xy, let 7: Z — A be
a Kihler semistable degeneration as in (1.1) with compact fibers and the SNC central fiber

Zy=n"'0) = Xp = Xi.
i€
Assume X is an (n+ 1)-dimensional smooth complex variety and D C X is a smooth complex

divisor. For any p € D, let U be an open set around p with local coordinates (xo, ..., X;)
given by a chart map

¢: U — C!

such that DN U = ¢~ (xyp = 0). We call such a pair (U, ¢) a D-compatible chart around p.
A D-compatible chart (U, ¢) induces a holomorphic trivialization

daype: NxD|ynp—> ¢(UN D) x C c C', (3.1)

Before we state the next proposition, we need to elaborate on the topological aspects of the
Gromov convergence [18] and setup the notation. For more details, we refer to [7, Sec. 3.1].
Suppose

(fu € Mg,k(z)»avA)) N’ fa = (ua,v’7 Ca,v’ = (Ev’7 ZV/))V/EV” (32)

is a sequence of stable maps with a fixed decorated dual graph I'' =T'(V’, E/, I”) that Gromov
converges to the stable map

F= (. C), oy € Ma(20,A) (3.3)

with the decorated dual graph ' =T"(V, [E, ). Then, (for a sufficiently large) all the marked
domains

(Za - UV’EV’ 2:a,v/v Za = UV’GV’Z\/)

are smoothly isomorphic to a fixed marked domain (X', Z’) and the domain ¥ = |,y Z»
of f is obtained by collapsing a set of embedded curves away from the marked and nodal
points in ¥’. In other words, there is a continuous degeneration map

y: ¥ — %

that sends the marked points and nodal points of X’ to the (corresponding) marked and nodal
points of X, and collapses some embedded circles {y,},cgen in X’ to the new nodal points
{ge}ecpent in X. The map y gives us a similarly denoted map

y*: I — I'. (3.4)
We have
E=E UE™, L=L,
such that y* |gg and y* |1, are isomorphisms and
y* I EMUYV — V.

Forevery v € V, there exists aunique v’ € V' and a connected component U, of X,y —{¥e } pcpeut
such that ¥, is obtained by collapsing the boundary circles of the closure of U,,.
The goal is to, after possibly passing to a subsequence find a set of meromorphic sections

{¢v.i}vev that enhances (3.3) to a log map fioe € ./\/l k(Zo, A)r.
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Definition 3.1 With notation as in (3.2) and (3.3), let
8vi € Cmero(Zy, i) VvevV, iel,,
be a set of meromorphic sections. We say (3.2) log-Gromov converges to
fiog = (wy, &0 = (Gv.idier,» Cv) oy (3.5)

if for each v € V and i € I,,, with v/ = y*(v) € V', the sequence (u,,,/)qeN i asymptotic
to ¢, in the normal direction to X; in the following sense. For every p € U,, there exists
an X;-compatible holomorphic chart (U, ¢) around u,(p) € Z and a sequence of non-zero
complex numbers (#,,,,;)4eN (converging to zero) such that

(uniformly) m 7.} ;%0 0 ¢ © g [k= %0 © (Ar;9(8r,i %)) (3.6)
a—>»00 b
on any compact subset K C U,.

Note that, since f;; Gromov converges to the stable map f, we have

lim xjopou,y|gk=xiopoulg Vi=0,...,n. 3.7
a—> 00 )

uniformly on compact sets.
Remark 3.2 For two sequences of non-zero complex numbers (,)qen and (£,)4eN, We write
(ta)aen ~ ()aen  if lim 7,/7,=1. (3.8)
a—>» 00

The right-hand side of (3.8) defines an equivalence relation on the set of such sequences and
we denote the equivalence class of a sequence (#,)4eN by [(4)4en]. For an equivalence class
[(t2)aen] and 7 € C*, the equation

H{(t)aen] := [(tt4)qeN]

is well-defined and defines an action of C* on the set of equivalence classes. Moreover, the
operation of point-wise multiplication/divison between such sequences

(ta)aeN . (t,/l)aeN = (tat;)aeN

descends to a well-defined multiplication/division operation between the equivalence classes.
Condition (3.6) and the equivalence class of the rescaling sequence [(74,y./)qen], OVer each
irreducible component of the domain, are independent of the choice of the X;-compatible
local chart (¢, U); if the limit (3.6) holds in one chart, it will hold in every other chart for the
same ¢, ; because the involving functions are holomorphic. It is also clear from (3.6) that if
(ta.v.i)aeN 1s a sequence of rescaling parameters associated to ¢, ; and (t;’vq JaeN is arescaling
sequence associated to c¢, ;, for any c € C*, then

C[(t;yv,i)aeN] = [(ta,v,i)aeN].

The relation between the sets of rescaling parameters {f,, ;} in Definition 3.1 and {A,} in
(3.2) plays an important role in the rest of this chapter.

Lemma 3.3 After passing to a subsequence, every sequence (3.2) log Gromov converges
and the limit is unique up to equivalence. More specifically, given (3.2), after passing to a
subsequence, the limiting holomorphic map f admits meromorphic sections {{y i}vev ic1, as
in Definition 3.1; furthermore,

1. these meromorphic sections are unique up to multiplication by a constant in C*;
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2. &y, has no pole/zero in ¥, —q,,
3. ¢&y,i has a zero/pole of order Se.i @ qe, for all e€ Ev, iel,;

4. foreach ec E the vector Se = (se iDiel, deﬁned as in (2.11) belongs to Z

5. for each v € V the product
R e.i® Q) wiés,.
iely i€eZ—1I,

is a constant section.

Proof Except items (4) and (5), the rest directly follow from applying [7, Prp 3.10 and
Lmm 3.13] to the SNC divisor Zy C Z. Also, withrespect to the decomposition E = E'UE,
by [7, Lmm 3.13], s, = 0 for all e € E' C [E. Therefore, in order to prove (4), we can restrict to
edges in E°Ut. We pfove (4) and (5) by following and adjusting the details of [7, Lmm 3.13].
First, let us recall the setup used in [7, Sec 3.4] that we will also use in the rest of this section.
For a sufficiently large, the domain X/ = X/ of f; is obtained from the nodal domain ¥ of
f in the following way. There exist

e a sequence of complex structures j, = (ja,v)vev on the nodal domain X =(Z,),ecv of f,

e a sequence of local j,,,-holomorphic coordinates z,, e Ae —— C around qe € %, for all
veVand eeEM, and

e a sequence of non-zero complex numbers (&4,¢) cpeut cONverging to zero,

such that
1. (24, Zz) is isomorphic to the smoothing of (X, Z, jz = (Ja.v)vev) defined by

Za,ela,e = €a,e Ve EECUt» 3.9)

2. the sequence (jg.)qaen C*°-converges to j, forall ve'V,
3. the sequence (zq, e)aeN C™-converges to Zes where Zet Ag — C is some fixed local
jy-holomorphic coordinate around qe € %, forall ve V and ec EC‘“

With notation as above, for each e € E*, the union
Ay =A, U A£={(ze,z£) € A, X Ag: ZeZe = 0}

is a neighborhood of g, in . We orient each circle d A, in the direction of the counter-clock
wise rotation in A, C C. By (3.9), the neck region

Aa,e = {(Za,gs Za,g) € AE X Ag: Zd,gza,g = Ea,e}
in ¥, is a cylinder with two (oppositely oriented) boundary circles
0Aae =0A, and 0Ag, = 0A,. (3.10)

For sufficiently large a, Se,i is equal to the the winding number of u, |34, . around the divisor
Xi; see the proof of [7, Lmm 3. 13].
If 1, ={i1, ..., ix}, there exists a sufficiently small neighborhood U around u(g,) € Z with

coordinates (xp, ..., X,41) such that
UNX;, =x;=00 Vjell,....k}

and the projection map 7: Z — C has the form

1o Xnp) — [ [ 27 (3.11)
j=1
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By (3.6) and (3.7), for sufficiently large a,

Sei; = winding number around Xi; of xjouyls Aae -

Therefore, by (3.11) and since u, has image in Z; ,, we have Z, | Se,ij = =0;i.e. Se € Z <.
Proof of (5) is similar. Since the sections are holomorphic, it is enough to prove (5)on a
sufficiently small open set around any point in X,. Fix p € U, and a local coordinate z on a

sufficiently small compact disk K around it. If I, = {iy, ..., i}, there exists a sufficiently
small neighborhood U around u(p) € (X;,—0X;,) C Z with coordinates (x1, ..., X,4+1) such
that

UNX;, =x;=0) Vjell,... k.

and the projection map 7: Z — C has the form

(x],...,xn+1)—>1_[xij. 3.12)
j=1

On Z, the product ®;c7&; is a section of the trivial line bundle
0z(Zy) = Z xC. (3.13)

Here = means that the line bundle Oz (Z)) is trivial and a choice of trivialization is fixed.
Recall from (1.5) that, when a smoothing Z is given, we choose &; such that the projection of
®iczéi to the C-factor in (3.13) is equal to 7. Therefore, by (3.12), we can choose the local
coordinates so that §;, |y= x; for all je {1, ..., k}. By (3.6) and the assumption above, for
large a,

Aa =®ua,v’ |7{ & = ®xj CQYou,y Kk ® ® Ug,y' |*K &

i€ ijel, i€Z—1I,
~ *
~ ® [a,v,i_,'{v,ij ® ® Uqg,y' |K ‘i:i-

ijel, i€Z-1I,

Since
im wu, g & =ulx & VieI-—1I,
a—>» 00

we conclude that
Aa

Iim —— =¢,
a—00 [ iy, tav.i

for some non-zero constant (section) ¢, € C* and thus

® 5 ® ® W€ = cy.

iel, jeI-1,

[m}

Corollary 3.4 After passing to a subsequence, every sequence (3.2) has a unique limit (3.5)
which belongs to Mgl(,:g (20, A)r.
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Proof On each %,, we rescale one of £, ; (and thus the corresponding sequence {z, , ;}) such

that
®§v,i &® ® ”tsh,j =1 Vv e V.

iel, jez -1,

Then, by Lemma 3.3, flog satisfies all the properties of Definition 2.2. Note that we will then
have

li Aa 1 (3.14)
im ——=1. .
a—00 [Tigy, ta.i

We will use (3.14) in the proof of the main result below. ]

Remark 3.5 Since Zy C Z is an SNC divisor, and A - Zy = 0, let Ml()g (Z, Zp, A) denote the

relative (log) moduli space defined in [7] with trivial contact data (w1th Zp) at the marked

points. By [7, Prp 3.14], we already know that the unique limit fjog in (3.5) belongs to
lOg «(Z, Zp, A). The linear map o in (2.14) is the same as the linear map ¢ in [7, (2.28)]
but it has a different domain and target. In the following diagram, the first row is (2.14), the

second row is [7, (2.28)], and the vertical maps are the natural inclusion maps.

ZE & ( @vev ZIV)>)< @ee]E Zie

| |

ZE D @VEV z @EEE z".

o

The following proposition shows that (3.5) actually belongs to M k(Zo, A)r. Since S¢ € zk,
by (2.23), the kernel of the second row is the same as the kernel of the first row; thus, Condition
(C1) of Definition 2.10 is the same as Condition (1) of [7, Dfn 2.8]. However, the cokernels
in each row and thus the groups G are different. In order to distinguish the notation, let us
denote the group associated to I in [7, Dfn 2.8.(2)] by G™!. The commutative diagram above
induces a homomorphism G —> G, but this homomorphism does not need to be injective
or surjective.

Proposition 3.6 Suppose (3.2) is a sequence of stable maps in ﬂgﬁk(z*, A) that log-Gromov
converges to (3.5) in the sense of Definition 3.1. Then (3.5) represents an element of
—1

M, 5(20. A).

Proof By Corollary 3.4, we already know that fi,g in (3.5) is a pre-log map. By Remark 3.5
above (over R), we also know that fio, satisfies Condition (C1) of Definition 2.10. More
precisely, by the definition of g after (2.14), every element in the kernel of ¢ over R is a

vector
PDro@scre(Pr)

ecE veV veV

satisfying
SVZ(E)_SVI(E) =)»es§ gGE,

>

which is exactly the part (b) of Condition (C1). Note that the equality above is independent
of the choice of orientation on e. Both sides will flip sign if we flip the orientation on e. The

@ Springer



Geometriae Dedicata (2022) 216:66 Page230of42 66

positivity condition on s, and s, is the same as the positivity condition in [7, Dfn 2.8], and
is achieved in the following way. The desired vector @, g Ae ® D,y sv satisfying (C1) is
explicitly derived from the data appearing in the convergence argument above (also listed in
the bullets below for the rest of the proof) in the following way. In [7, Sec 3.4], as a —> o0,
the vectors s, are obtained from the rescaling parameters by

Saw = (—10g1ay ier, €ERY  VaeN, veV,
and the real numbers A, are obtained from

Aae = — IOg(Sa,e),

where g, . is the gluing parameters of the domain X, at the node g.. The details of this process
also appear in the second half of the proof below. Since ?, i, €4, —> 0 as a —> oo, the
resulting vector ,.g Ae ® P,y sv Will have positive coefficients. Furthermore, in the
current context, by (3.14), we additionally have

ZIOg ta,v,i - Z IOg ta,v,j ~ IOg()‘a) - IOg()La) =0.
iel, JEly
In the limit, this implies that
*
®vevs, € (PRY) < PR
veV veV

It just remain to show that fjo, also satisfies Condition (C2) of Definition 2.10.
The proof uses the relation between the following parameters:

e the parameters {1,}4en in (3.2);

e the local holomorphic coordinates z,, e : A, —> Cand Ze: Ae — C around the nodal
points (see the proof of Lemma 3.3); :

e the local coordinates gluing parameters {€4,¢}4eN ecent in (3.9),

o the rescaling parameters {#,, ;}aeN,vev,icl, in (3.6);

e and, the leading order terms

0 # ng,i 6/\/1' |u(qe)
of fiog on A, defined before (2.19) with respect to z.
By [7, Prp 3.15], for every oriented edge ¢ € I_Ef“t that goes from vy to v, and i € I,

1. ifiel, andi ¢ I,,, we have

. Sei Ne,i
WM fay, i 805 = — (3.15)
a—s 00 Ne.i

2. ifiel, N1,,, we have

Se.i :
. tayv,i€ale Ne,i
Iim ———

= —. (3.16)

a—>00 gy, i Ne,i

Additionally, by (3.14), we have
Aa

lim ——=1.
a2 [Tiey, tav,i
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Lemma 3.7 We can choose the coordinates {ze} ecEu and {z,, e}eE]ELm aeN satisfying (3.9) and
item 3 after that, and rescalings of {{.i}vev icl, " and (ta,v, ,)aeN veV,icl, such that

tav,i 8;,_5 =tlav,i VYViel,Nl,, a>1, 3.17)
Se,i .
taviiéae =1 Vi€l —I,, a>1, (3.18)
[1tni=[]tami VYvivaeV. asl. (3.19)
ielv1 iEI‘,2

Proof Throughout the proof we assume that the domains X, are smooth; i.e. I'" is a one
vertex graph, V' = {V/}, and thus E = E". The argument in general reduces to this case by
focusing on each component of ¥,; see the adjustments at end of the proof of [7, Prp 3.14].
We modify a given choice of

{Zg}ge]gcuh {Za,g}gslgjcul,aeNa {fv,i}vei\/,ielw (ta,v,i)aeN,VEV,ielw

to another set satisfying (3.17)—(3.19).
First, it follows from (3.15), (3.16), and (3.14), that

Ne,i

—_—

Ne,i
¢

=1 Veek;

iel,

(&) e ((C*){e.
”e,i iEIe

Fix an orientation O on [E, and choose some branch

n=EPne@Ck  ne=(—loggi/ned);; €Cr VeeoO,
ecO ecE

of the multi-valued function log. By (3.14), for each v € V and any i € I,, we can replace
{t4.v.i}acN With another equivalent (in the sense of (3.8)) sequence such that
ra=[]tavi Va1
i€l,
Then we will have
*
(ta,v,i)vev.iel, € <1_[ CI”) Ya> 1.
veV
By (3.15), (3.16), and definition of o in (2.14) (via the chosen orientation O), we can choose
the branches
*
&4 = ((—1og(eae)eck, (~10g(tarvevier) € C2 @ (D CH) VaeN
veV
so that

lim oc(&) =n.
a—s00
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By [7, Lmm 3.21] applied to oc, there exists a sequence
*
EaencC® o (@HCH)
veV
such that oc(§, — &) =0 for all ¢ € N and the limit lim,_, &, = &’ exists. Taking the

exponential of £” and &/, we find elements

(@@eck, @ vevien), (@adecs, @amideticn) e € (€E x ([]€*)

veV
such that
lim ((aa,e)ee]Ev (aa,v,i)vev,ielv) = ((ae)eeIEv (av,i)veV,ieI\,)
a—> 00
and
—1 -1 Se,i
(%4 ilavi,i) Qg e€ae) ° .
(. _'1’) (ta.ceac) =1 Viel,nl,, acN, (3.20)
(aa,vz,itasvz’i)
—1 — Se,i .
(s, itavii) (A etae)’™ =1 Vi€l —I,, acN, (3.21)

—1 -1 —1
ay hg = 1_[ oy ilavi,i = 1_[ Ay, ilavai Vvi,v eV, aeN. (3.22)

vi,i
ieIV1 ie[V2

By (3.20)—(3.22), for a sufficiently large, replacing

{ZE}EEO with {a;lZg}g€09

{Za,g}360 with {aa_,;za,g}geo,

{Sa,e}eeE with {a;elvga,e}eeE,

(ta,v,i)vev,ier, With (Ol;i,,-la,v,i)vev,iel‘,, and
v.i)veV,iel, Wi v,ilv,i)veV,iel,

(&v,0) with (ay,i¢y,;)

we get a new set of representatives satisfying (3.17), (3.18), and Definition 2.4.(1) with

)»(flog)::Hozv,,- = lim «, foranyveV.

i€l,

[m}

In order to finish the proof of Proposition 3.6, by the lemma above, the modified set gives us
a pre-log map equivalent to fjo, that satisfies

Tel 1 VeeE™, jel,.
Ne,i
By (2.9), we conclude that obr (fiog) = 1€G. ]

Proposition 3.6 applies to a sequence of stable maps in Z*. For the proof of Theorem 1.3,

we also need to consider sequences in Mgi (Xg, A) itself. In this case, the ambient smoothing
Z is not needed and Xy can be any d-semistable SNC variety. Suppose

fa,log = (ua,v’a Cav = (;a,v’,i)ielvm CV/)V/EV/ aeN (3.23)
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is a sequence of log maps in M};%(XV), A). Since the set of possible decorated graphs for
each fixed (g, k, A) is finite, after passing to a subsequence, we may assume that (1) all f7,10¢
have the same decorated dual graph ' =T(V’, E/, /), and (2) the underlying stable maps
fa € ﬂg, «(Xg, A) Gromov-converge to a stable map

f= (”v» CV)VEV € Mg,k(X(A»A)

with dual graph ' = I'(V, E, L). As in Lemma 3.3, we can find meromorphic sections
{¢v,i}vev,icr, such that

fiog = (ttv: & = Gidiets Cv) oy € MELE (X, A)r. (3.24)

Repeating the proof of Proposition 3.6, with {A(f4,10¢)}aeN as in Definition 2.4.(1) in place
of {A4}aen in (3.2) yields the following.

Proposition 3.8 Suppose (3.23) is a sequence of stable log maps in ML‘?%(X@, A) that log-
Gromov converges to (3.24). The limit (3.24) is unique up to equivalence and represents an

element of ﬂlgfi Xy, A).

Proof of Theorem 1.3 Similarly to the classical case, consider the sequential convergence
topologies on M};% (Z,A) orjust M};% (Xg, A) given by Propositions 3.6 and 3.8: a subset W
of the moduli space is closed if every sequence in W has a subsequence with a log-Gromov
limit in W. Note that as in [27, Sec 5.1], we must show that convergence with respect to the
topology defined above is equivalent to log-Gromov convergence. Since the forgetful map
L ﬂ:i Xg, A) — ﬂg, «(Xgp, A) is finite-to-one and log-Gromov convergence is a lift of the
classical Gromov convergence, this property follows from the the corresponding statement

for the Gromov convergence topology on M, x(Xy, A). In other words, the five axioms® in

[27, Lmm 5.6.4] lift to sequences in ﬂi,oi Xy, A).
Suppose W C ﬂg,k(X@, A) or ﬂg,k(z, A) is closed and let W = ! (W). Let (fa,1og)aeN
be any sequence in W’. Its image (f; = ( Jaog))aeN in W has a subsequence, still
denoted by (fy)sen, that Gromov converges to some f € W. On the other hand, by
Proposition 3.6 or 3.8, (fa,10g)aen has a subsequence that log-Gromov converges to some
fiog eﬂlg‘fi(xw, A) or M‘g‘fi(z, A). By definition, we have ((fiog) = f, i.€. fiog € W'. There-
fore, W’ is closed. We conclude that ¢ is continuous.
Let fiog be an arbitrary log map in ﬂ?% (Xp, A) with the decorated dual graph I" and f =t (fiog)
be the underlying stable map in ﬂg,k(X@,A). Let (Uy)qen be a shrinking basis for the
(metrizable) topology of M, (Xy, A) or Mg (2, A) around f. By [7, Lmm 2.15], every
stable map f admits at most finitely many log lifts fiog, each of which is uniquely specified
by the vector decorations on the nodes of its dual graph (i.e. the contact data s, at the nodes
q.)- Recall from the proof of Lemma 3.3 that, for a sufficiently large, by the classical gluing
theorem, the domain of every map f in U, is obtained from the nodal domain ¥ of f by
gluing the nodes in a standard way. Furthermore, the image of f” is C%-close to the image of
f- The dual graph T of f” is a contraction of T in the sense of (3.4). With these identifications,
if fl’Og is a log lift of f” in U,, by its decoration type, we mean

e the vector decorations Se at its nodes 9e> together with

e the winding” number of f’ around X; along the circles 0A, (see 3.10) on every neck A,

obtained from gluing the node ¢, of the domain of f; see the proof of Lemma 3.3.

8 Even though [27, Sec 5.1] is about the genus 0 moduli spaces, the statements used here are valid in all genus.

9 Contact points with X3 are among the nodal points and are away from the neck region.
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Thus, we say fl/Og has the same decoration type as fiog if

1. at every node of the domain of fl’og the vector decoration s, is the same as the vector
decoration at the corresponding node of fiog,

2. on every neck A, the winding number of /" around X; along the circle dA, is the same
as the tangency order Se.i for f. ;

For a sufficiently large, define U}, be the set of elements ﬂ in M e k(XV), A) or ./\/l10g (Z,A)

whose image f’ under ¢ lies in U, and fl/og has the same decoratlon type as fiog. By (1) and
(2) above, the restriction of ¢ to U/, is one-to-one. We show that U/, is open. Let ( Jb,10g)beN
be a sequence in the complement of U/, that log-Gromov converges to ]’Og. After possibly
passing to a subsequence, we can assume that the underlying sequence of stable maps (f)peN
lies either in U, or its complement U§. In the latter case, by definition, f{og belongs to the
complement of U),. In the former case, the decoration type of fl’og (with respect to flog)
will be the same as the decoration type of fj 1o Which is, by definition, different from the
decoration type of fiog. Therefore, fl/og belongs to the complement of U),. We conclude that
U/, is open. Furthermore it is easy to see that (U,)4en is a shrinking basis for the topology

of M};%(X@, A) or /Vl k(Z A) at f. Therefore, the log-Gromov topology on Mg k(X@) or

lOg (Z, A) is first-countable.
Hausdorffness is the consequence of the uniqueness of the limit. If Y is a first-countable
topological space and has the property that every convergent sequence has a unique limit then

Y is Hausdorff. Finally, compactness of ﬂ?i (Xg, A) is the consequence of the existence of
the limit. O

4 Comments on deformation theory

In this section, we first calculate the expected dimension of each stratum
M%(Xp, A ME(Xy, A
( 7B )F C g, k( /B )

and thus identify the virtually main components of ﬂ;i(X@,A). We then describe the
deformation-obstruction exact sequence at any log curve.

First, let us review the notion of logarithmic tangent bundle and set up the notation.

Let X be a smooth holomorphic manifold and D C X be a normal crossings divisor. Around
every point p € X there exists a chart ¢: U —> C" with coordinates (xi, ..., x,), with
n=dimc X, such that

eDNU)=(x;---x,=0) CcC" forsome 0<k<n.

In such coordinates, the sheaf 7X of holomorphic sections of the complex tangent bundle
TX is generated by

U

and the log tangent sheaf 7 X(— log D) is the sub-sheaf generated by

log

log
3xl 1:xlaxl,...,axk ::xkaxk, axk+l,...,axn.

It is dual to the sheaf Q}( (log D) of meromorphic 1-forms with at most simple poles along D;.
Since 7 X(— log D) is locally free, it is the sheaf of holomorphic sections of a holomorphic
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vector bundle 7X(— log D). The inclusion 7X(—1log D) C TX gives rise to a holomorphic
homomorphism

t: TX(=logD) — TX

which is an isomorphism away from D.

Now, suppose Xy = Uiez X; is an SNC Kihler variety. For each i € 7, let TX;(— log 0X;)
denote the logarithmic tangent bundle of the pair (X;, X; = X3) defined above. If Xy is d-
semistable, then (it follows from [2, Thm 5.9] that) Xy admits a natural holomorphic vector
bundle 7'°2 Xy such that

T8 Xy |y = TX;(—log X;).
In other words, the collection of logarithmic tangent bundles
{TXi(—log dXi)}iez

naturally glue along the singular locus Xy to define a vector bundle over Xy that plays the
role of tangent bundle for the central fiber. If Z is a semistable smoothing of Zy = Xy as in
(1.1), then there is a short exact sequence

0 —> 78Xy —> TZ(—log Xp) |x,—> Ox, —> 0

meaning that the logarithmic normal bundle of Xy in Z is the trivial line bundle Oyy,; see
[22, Prp 5.3, Exa 3.6]. Furthermore, via the holomorphic homomorphisms

TZ(—logXy) — TZ and TC(—log0) — TC
the derivative map
dr: TZ — TC
lifts to a surjective log derivative map
d°¢x : TZ(—log Xy) —> TC(—1log0)

whose kernel over A # 0 is T2 and over A = 0 is T'°¢Z. In this sense, 712X can
be considered as the smooth limit of 72, when A converges to 0. In local coordinates

x=(xg, ..., x,)suchthatm: Z — Ais given by x — 7z = xp - - - xx, we have
| k
1 1
QB 2 (03 4+ D+ ity - o) = (D)ol oo
i=0

4.1)

Given MLO%(XV), A)r, with notation as Remark 2.13, recall that both K and K, are free
Z-modules and

dim Kr =rank K =dim K, r + 1 =rank K, + 1. 4.2)

Lemma 4.1 For any admissible decorated dual graph T, the expected complex dimension of
log .
ngk(XVJ, A)r is

T X0A) 4 (= 3)(1 = g) + k — rank K. (4.3)
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Proof ForeachieZ,
U X
JjeT—i

is an SNC divisor in X;. For the given I', fix an arbitrary choice of indices {i, € I, },cy. For
each v € V, let I'), be the one-vertex graph {v} with the labeling I, — {i,} C Z — {i,}. Also,
using the identification map ZI ~ 7Z-} in (2.6), let s, be the set of contact vectors in
72~ at the nodal points E, together with the trivial contact vectors at the marked points

Zy. For every f = (uv, Ly, CV)V ey € Mplog (Xg, A)T, by forgetting the i,-th meromorphic
section ¢y, ;, in the v-th component (u,, ;“v, C,), we obtain element of the relative log space

M log
g(igsL (th aXl\ v)FV MIg)\O (th 8XlL v)FV
constructed in [7]. Therefore, f belongs to the fiber product space
1
xvev Mgts, (X, i, AV, (4.4)

where the fiber product is over the evaluation maps into X;, x X, at the pairs of nodal points
(ge> qe) for all e E. Then, obr in (2.22) is a map

1 ~ 1
obr s My (X, Ar = xyev Mgrs, (Xi,, 8Xi,, Ar, — G(I")
such that
M%(Xp, A)r = obp ' (1).

By [8, Prp 4.8], the complex expected dimension of each M:,%sv(Xiv, 0Xi,,A))r, is

TX;,(—log0X;, . >
oy T Ay 4 (0= 3)(1 — g) + kot |Ey| — | L — ()], where k, =[] .

Since
iy (—1 iy o
PXu et gy ( TXaq ) v e,

the expected dimension of the fiber product (4.4) is equal to

Sl A + (0= 31— )+l By — 1] +1) = 3 = [ L] +1)

veV " ecE (4-5)
=c] A+ =31 - +hk—|E[ =Y (L] —D+ Y (L] —D).
veV ecE
By (2.14),

rank K — dimc(G) =[E[ +1+ Y (L] =) = Y (L] —1).

veV ecE

The identity (4.3) follows from the second equation in (4.5), the last equation, and (4.2). O

Definition 4.2 We say an admissible decorated dual graph I" is a main graph if
Ko = Ker(o,) =0 C D,, (4.6)
Which is equivalent to K = Ker(p) = Z C D.

The set of such T" is the same as rigid configurations (rigid tropical map) considered in [3].
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Corollary 4.3 The moduli space MZ%(X@, A) has the correct expected dimension and the

, . —— 1 ,
virtually main strata of M goi (Xg, A) correspond to main graphs.

. . —1 . .
Unlike when the target space is smooth, often, M g(ji(X@, A) has many virtually main strata,

and they contribute differently to the VFC of ﬂg, % (2, A). The degeneration formula (5.3)
describes the weights.

Over a smooth target X, the deformation-obstruction long exact sequence at a stable marked
curve f=[u, C=(%, )] € Mg (X, A) (with smooth domain) is the sequence

0 — aut(C) LN Def(u) — Def(f) — Def(C) @7

%, Obs(u) —> Obs(f) —> 0,
where
Aut(C)=HJ(Z, TZ(—logz)),  Def(C)=H}(Z, TZ(—logz)),
Def(u)=HY (S, u*TX),  Obs(u)=H]} (T, u*TX), “9

and TX(—logz) is the logarithmic tangent bundle associated to the marked-points divisor
7z C X. Alternatively, we may replace 72X (— log z) and TX with the corresponding sheaves
of holomorphic sections 7 X (—logz) and 7 X, respectively, and use ¢ech cohomology. A
similar description is feasible when ¥ is nodal; see below. Furthermore, if # is an immersion
with normal bundle

Ny=u*TX/du(TX)
and there are no marked points, then
Def(f)=H(,No)  Obs(f)=Hj(E. Nu).

If Obs(f) =0, then a small neighborhood B(f) of f in M, (X, A) is a smooth orbifold of
the expected dimension (1.3); see [20, Sec 24.1] and [10, Rmk 6.2.1]. In the following, we
outline the generalization of this setup to the case of analytical log maps.

Remark 4.4 In (4.7), if u is not an immersion or there are marked points, then the cokernel
sheaf

uwTX

T du(TE(—logz)) “-9)

u

admits a decomposition
Nu — Nufree e /\/";or

into a direct sum of a torsion free sheaf with the associated holomorphic vector bundle N,
and a skyscraper sheaf such that

Def(f) = HY(Z, N,) ® H'(Z, ;) and Obs(f) = Hy(Z, N,);
see [37, pp 284-285].
Remark 4.5 In the algebraic language, the cohomology groups in (4.8) are described as
Aut(C) =Hom(QL (log z), Ox), Def(C)=Ext! (2L (logz), Ox),
Def(u) =Hom(u*QY, Ox), Obs(u) =Ext' u*Qk, Ox).
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Lemma 4.6 Associated with any pre-log map f = (fv = (uy, &y, CV))veV (with notation as in
2.10), there exists a natural holomorphic'® homomorphism derivative map

) du,g) 1
T*%(—logz) —> u*T Xy

that generalizes the derivative map in (4.9).

Proof The map d(u, ¢) is defined in the following way. Suppose p € X, is not a marked or
nodal point. Then u,(p) € X;, — 0Xy, and ¢, ;(p) # 0,00 foralli e 1,. If I, = {iy, ..., ik},
a neighborhood V of u,(p) in Xy can be identified with a neighborhood U of 0 in the affine
variety

(x1...x,=0) cCt!
so that
UnN{x,=0H=(VnNnX;,) Va=1,... k.
The coordinates x, also give local trivializations
Ny o X1 1o, = X, NV) xC, Ya=1,... k; (4.10)

see (3.1). The sections &, ; in (2.3) (which are unique up to scaling) give (unique up to
scaling) trivializations

Ox;, X+ Ix,,nv= X[, NV) x C VieZ —1,. (4.11)
Using (4.11), the given trivialization in (2.1) thus gives us a trivialization
Q) Ny, X, lx, ) = (Xp, N V) x C. (4.12)
iel,
We can choose the coordinates xi, ..., xx so that the product of the trivializations in (4.10)

is equal to the trivialization in (4.12). In such coordinates,

k n+1
T Xy |(vrx,,)= {Zhaa}:;g D hady, | b4t = 0}; (4.13)
a=1 a=k+1
see (4.1). For a local coordinate w on an open set A around p, with p = (w = 0), define
a agv‘;:“ log aa 9(xq 0o uy)
A, 0)(@B) =Y o ; . (4.14)
a=1 @ a=k+

Here 8¢, ;/9w is defined using the local trivialization (4.10). It is clear from the definition that
(4.14) is invariant under constant rescalings of ¢, ;. Also, it follows from Definition 2.2(a)
and (4.12) that (4.14) satisfies (4.13). If p is one of the marked points, then the local generator
of T1¢ % (— log 7) is %8 = wdw. Therefore, we define

1
d(u, £)(B®) = wd(u, £)(By).
It is easy to check that

dp(u, 0): TYES (—logz) —> T\%

uv(p)X@

10'j e. the restriction of d(u, ¢) to each irreducible component of X is a holomorphic homomorphism.
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is independent of the choice of local coordinates w and xi, ..., x,+1 used in driving (4.14)
and d,(u, ¢) is the zero homomorphism at the marked points.
Now suppose g, € X is a nodal point obtained from attaching %, at g, to Xy at g,. Then

u(qe) = uv(Qe) = ”v’(Qe) e Xy, — BXI(,s with [, =1, Uly.
Fix local coordinates W, on A around 9e and We on A around Ge- Then, as in (4.13),
T'°¢5 (- log z) is generated by 3wc around ¢, and amg around g, satisfying
0 lge= =0t Iy, - 4.15)

As before, if I, = {ij, ..., ix}, a neighborhood V of u(g,) in Xy can be identified with a
neighborhood U of 0 in the affine variety

(x1...x,=0) cC't!
such that
UNn{x,=0}H =VnX,), Ya=1,..., k.

As before, the coordinates x, also give local trivializations (4.10) on X;, NV and X, 1, NV and
the sections {&, i}iez—1, and {&;, ;}icz—1, give compatible (over Xj,) local trivializations

Ox;, X1+ 1x;,nv= (X, NV) x C and

N . (4.16)
Ox,, X1, +1) x;,0v= (X, NV)XC Viel — L.

Using (4.16), the given trivialization in (2.1) thus gives us compatible trivializations

(RN, X @ @ Ox, (X1 lov,n X5, N V) x C. @.17)
iGIV ie[g—IV
We can choose the coordinates xi, ..., x; and local trivializations
Ox;, X1+ Ix,,rv= X, NV) xC Viel — 1, @18
OX]V, (XIV/+i) |X1V,ﬁV: (XIV/ N V) x C v ie]e - IV/ .
so that
Clyvia = Xa Vigel, — 1, and Clyvia = Xa Vigel, — 1,
with respect to (4.18), and the trivializations
®NX,‘,,,-X1‘, lx,nn= (X, NV) x C,
iel,
4.19)
®NX1V,_,~XI\,/ l&x,, = (Xr, NV) xC,
iEIv/

obtained from (4.17) and (4.18) coincide with the product trivializations given by (4.10).
Then, define

v,y 3(xgou.,) ntl

log 3Wg log Iwe log 8(xa o “v)
ICI S NN yI N S
iqgel, l” igel,—1, a Oty a=k+1 g

(4.20)
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and
dgt Jig d(xaoul) n+1 a( )
We d XqgoU
d(u, C)(alog) = Z - log + Z We S e log + Z g =0y,
ia€ly " i ig€l,— Wy a=k+1 We
4.21)
Putting w, and w, equal to zero in (4.20) and (4.21), respectively, we get
1 l 1 1
dg, (u, ) (@) = Z Seiodr, and dg, (u, O)(Byy) = Z Se.iaOy -
By Definition 2.4.3 and (4.15), the map
dg, (u,2): TOgE(—logz) 7P lae )x@
is well-defined. O

Similarly to (4.7), for every stable log marked curve f = [ f = (uy, &y, CV))V ev] €

1
Og «(Xp, A), one can use the short exact sequence of sheaves

d(w,o) *7logy
TS5 (—logz) — > T8 Xy —> N = " y
* o d@, ¢) (T (—logz))

4.22)

to study the deformations-obstructions of f. It can also be deduced from (4.22) that the
expected C-dimension of M, x(Xy, A) is

A 4 (n—3)(1 - g) + k.

Remark 4.7 An element £ € Def(u, ¢) is a continuous section of u*T'°¢ Xy such that &, =&z,
is a holomorphic section of the vector bundle u;TX;(—log 0X;) for all ve V and any i € [,,.
While the map d(u, ¢) is defined for arbitrary pre-log map, by the continuity of £ at the nodes,
the deformation space Def(u, ¢) only consists of those infinitesimal deformations of (u, ¢)
that preserve Conditions (C1) and (C2) in Definition 2.10.

5 The degeneration formula

In this section, we describe an explicit (degeneration) formula for the contributions of the

virtually main components of M};% (20, A) in Corollary 4.3 to its (hypothetical) VFC.
Assume Xy = (J;c7 Xi is a d-semistable SNC Kihler variety. For each g,k € N and

A € Hy(Xy, 7)), the moduli space ﬂ;i (Xy, A) decomposes into a union of (virtually) main
components

1 1

M X, A) = | Mi(Xp, Ar. (5.1)

main I’

By Definition 4.2 and (4.2), if " is a main graph, up to scaling, there is a unique pair of
functions (s: V — RZ, A:E — R) satisfying Definition 2.10.(C1). The condition (4.6)

@ Springer



66 Page 34 0f42 Geometriae Dedicata (2022) 216:66

implies that the image of the dual Z-linear map

o)
™ — DY (5.2)

is a sub-lattice of finite index. Let
m(T) :=|D, /Im(g,) |€ Z.

The degeneration formula (5.3) below proposes that the decomposition (5.1) gives rise to a
similar but weighted decomposition formula for VFCs in a semistable degeneration.

Expectation 5.1 (Prospect Degeneration Formula) Let 7 : Z — A be a semistable degen-
eration as in (1.1). Then, for every A € H>(Zy, Z) and g, ke N, we have

m(I") —log

[Mex(Z0, AIVFC= )| (M ¢ (Xg, Ar1¥FC (5.3)

main "

where |2lut(I") | is the order of the automorphism group of the decorated dual graph I".

The equality (5.3) should be thought of as an equality of Cech cohomology classes in
ﬂ?%(Z ,A) in the sense of [28, Rmk 8.2.4]. The formula (5.3) and the decomposition for-
mula [3, Thm 1.2] are both a sum over the same set of combinatorial data, but with different
coefficients; see Remark 5.5 below. The difference in the coefficients shows that an algebraic
log map is finer '! than what is defined in this paper.

Lemma 5.2 In the case of a basic degeneration, i.e. T ={1, 2}, this formula coincides with
the Jun Li’s formula [25, Theorem 3.15].

Proof Tt is easy to see that the only decorated graphs with K, (I") =0 are bipartite graphs with
one set of vertices Vi C V indexed by {1} and the opposite set Vo, C V indexed by {2}. Let
us orient the edges to go from V; to V,. Write Se = (—me, me) #0 € Z% for all e e I@Vl,Vz«
For each v € V, since |, |= 1, we have Z{" = 0. For each e € E, we have I, = {1, 2}. By
picking the second coordinate, we can identify Zk with Z. Therefore, we have

00 De =78 — T=7Z5  (h)eck — (hele)eck-

We conclude that m(I") = [],cg me as in Jun Li’s formula. ]

Remark 5.3 In the case of a basic degeneration, ﬂ;i(X@, A)r more or less coincides with
the relative compactification (see [7, Sec 4.1]), and the degeneration formula is the same as
the one stated in [14, Thm 1.1]. The analytic tools needed for the proof are contained in [14]
and [6].

Unlike the basic case above, a main decorated dual graph for an SNC variety with non-trivial
threefold (and higher) strata may have components mapped into a stratum X; with |/ |> 2;
see Sect. 6.

A main step in establishing (5.3) is to prove a gluing theorem for smoothing the nodes of a
log map f as in Definition 2.10 to get maps in Z, with A # 0. The space of gluing parameters

T We mean there should be a (surjective) map from (the topological space underlying) AGCS’s moduli space
to the moduli space (set) defined in this paper.
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for a fixed log map f with the decorated dual graph I is a sufficiently small neighborhood
of the origin in

Nr = {((Se)ee]Ev (tv,i)veV,ier) GC]E X ]_[ ch: Htv,i = ]_[ tyi

veV i€l, iel,
Se.i .
and &,'t,; =ty Vv,V €V, e€k, i€, e st sei> 0} 5.4
cC:x[[ch.
veV

In (5.4),ifiel,—1,, by t,; we mean 1. The complex numbers ¢, are the gluing parameters
for the nodes of X and ¢, ; are the parameters for pushing u, out in the direction of ¢, ;. The
common value A = ]_[ie 1, i describes the fiber Z, that will contain the glued map. In other
words, the projection map 7: N —> C induced by 7: Z — C is the map

((SE)EEIEa (tv,i)veV,ieIV) — A= ntv,i~

iel,
Let

oV: TV — DV
denote the dual of (2.14). The image of ¢" is a finite index sub-lattice of

Kt={neD':n(x)=0VxeK}cD".
Define
mieg(I) =|K=/Im(0") € Z+.
By Definition 4.2, if I is a main graph, then K = Ker(o) = Z. Thus, the projection map
0prn:K=EZ—Z

in (2.26) has the form » — m,r for some positive integer m .

Lemma 5.4 The space of gluing parameters Nt is a possibly non-irreducible and non-
reduced affine toric sub-variety of CF x [Ty Cl that is isomorphic to myeq(I') copies
of the irreducible reduced affine toric variety Y, () (c.f. the paragraph after 2.23), counting
with multiplicities. In particular, if T is a main graph, then Y, = C and m: Nt —> C is a
map of degree

m(I") = mypeq(T") - mg

where my is the degree of w: Y, — C.

Proof Proof of the first claim is identical to the proof of [7, Prp 5.7]. We skip it here. For the
second part, if I is a main graph, from the dual of the commutative diagram (2.26), we get
the exact sequence

DY DY Z

~

— = .
Im(e") Im(o,))  m(I)Z

0 — ker(0") —> Ker(o.) LN/ R Y AN
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The image of § can not be the entire Z. Therefore, it should be zero, and we get the exact
sequence
DY Z
— — .
Im(oV) m(D)Z

On one hand, the degree of 77: N —> C is the index of the first inclusion map above which,
by the exactness of the sequence, is equal to m(I"). On the other hand, the decomposition

DY DV Kt
e S
Im(e¥) K+~ Im(eY)
shows that m(I") is the product of m, and mgeq(T). ]
Remark 5.5 Except for the coefficients m(I"), the degeneration formula (5.3) coincides with

[3, Thm 1.2]. For instance, in the example of a basic degeneration (Lemma 5.2), with notation
as above, since I" is connected, we have

@) = (1, 00) ey, @ (0,0), 0y, 1 €LY =T

and
0:D=72"0(Z")' =202 —-T=PzZ -1,1) = 7",
ecE
Q(()\e)eeIEv t) = Deck(Aeme — 1).
Let
K=LCM(me:e€E) VeekE.
We get

Z = Ker(o) = {(()‘-e)eelE» t): t=Aeme}=17- ((KE)CG]Ev Z)

Since 0 @ 7 : D — Z maps ((Ze)ee]g, 6) to £ € Z, we conclude that

I—[eeIE e

- = LCM(m, : E N=—--——.
m CM(me:e€E) and  meea(T) LCM(m, ¢ < )

The multiplicity m, in [3, Thm 1.2] is the integer m, in Lemma 5.4; the relation between [3,
Thm 1.2] and Jun Li’s formula is explained in [23].

6 Rational curves in a pencil of cubic surfaces

In this section, we re-study the example of the degeneration of degree 3 rational curves in a
pencil of cubic surfaces, originally studied in [3, Sec 5]. As our calculations show, we can
easily identify the space of such log maps without blowing up the triple intersection.

Let P be a homogenous cubic polynomial in xp, ..., x3 and

2" ={ (% [x0. x1, %2, 31) €Cx P2 x13ax3 = AP(x0, x1, X2, x3)} C Cx P

Let ' 2’ —> C be the projection map to the first factor. For a generic P and A #0, 7/~ (1)
is a smooth cubic hypersurface (divisor) in P3. For A=0, 7/~ 1(0) is the SNC variety

X, = {0} x (X;UX,UX}3) C {0} xP?  with
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Xy X2

X , Xz\

123 /
X3 Xa1

X} X3
Xéa Xo3

Fig. 4 On left, the central fiber of Z’ with its 9 singular points. On right, the central fiber of Z with its 9
exceptional curves

Xi=(xi=0)~P* Vie{l,2,3}, X;=XnX;~P' Vi je{l,2,3}, i#]
However, the total space Z’ of 7’ is not smooth at the 9 points of

Zlo = {0} (X)N(P=0)) C Xy,  where X} = X},UX|3UX)3 C P*.

sing
A small Kiher resolution Z of Z’ can be obtained by blowing up each singular point on X ;in
either'? X/ or X;.‘ The map 7 then induces a projection 77 : Z—> A and defines a semistable
degeneration. Every fiber of v over C* is a smooth cubic surface. The central fiber 7! (0)
is the SNC variety Xy = X; UX,UX3 with 3 smooth components (i.e. N =3), each a blowup
of P? at some number of points. If each singular point on X] ; is blown up in X! with i < j,
then Z is obtained from Z’ through two global blowups of CxP? and is thus projective; see
Fig. 4.
For the count of degree 1 and degree 2 rational curves in Z;, it can be shown that all the
limiting curves are of the classical type (i.e. they do not pass through the triple intersection).
For example, the broken curve « in Fig. 4 is one of the 27 degree 1 rational curves in the limit.
For each X #0, the moduli space mo,z(ZA, [3]) of 2-marked genus O degree 3 maps in 2, is
of the (expected) complex dimension 4. In degree 3, for generic A, there are 84 such curves
passing through 2 generic points of Z; at the marked points. In the limiting SNC variety
Xy, assuming that the two point constraints move to X; and X3, 81 of these 84 maps can be
identified among the maps that do not intersect X;»3. There is, however, a new type of main
graph I" contributing to the degeneration formula (5.3) that has no analogue in the Jun Li’s
formula. We are going to describe this I', identify the space of log maps Mg?% (Xg, [3Dr, and
calculate the coefficient m(I").
Let I" be the graph with the set of vertices V = {vg, vi, v2, v3} and the set of edges E =
{e1, e2, e3} such that e¢; connects vg and v;, for all i =1, 2, 3. Choose the orientations ¢ to
end at vg, forall i=1, 2, 3, and assume

Ly=T={1,2,3}, s =(=2,1,1)€Z}, 50, =(1,-2,1)€eZ],
sop = (1,1, =2)€Z), I, =i}, A, =[eH(X;,Z), Yi=1,2,3,

where, for each i =1, 2,3, [1] € H2(X;, Z) is the pre-image in X; of the class of a line in
X away from the blow-up points. The two legs corresponding to the two marked points are
attached to v| and vy; see Fig. 5. A log curve with this dual graph is made of

e aline £;=Im(u,,) in X| = PP? passing though the point'3 X/, foreach i€ {1, 2, 3}, and

12 Not all choices result in a Kihler configuration.

13 The choice of resolution and the exceptional curves are irrelevant in the following calculations.
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X1

Xo
Sea = (1,-2,1)
V2

X3 Sez = (1,1,-2)

U3

Fig.5 Dual graph I" and the image of a map belonging to ﬂoyz(Xg, [3Dr in Xy

e alog tuple

(Mvo, {Citje1,2,3), Ty = P!, gy = {qg,}je{1,2,3}>
such that

1. u,, is the constant map onto Xi»3, and
2. each ¢; is a meromorphic section of the trivial bundle

uy Nj = 2y xC
with a zero of order 2 at 9e; and poles of order 1 at {QEk}ke{l,Z,S}—{j}-
The function s: V— R3 given by
sy, =3,0,0), s, =1(0,3,0), s,,=2(0,0,3), and s, =(1,1,1)

satisfies (C1) of Definition 2.10 and is the unique such function up to rescaling. Therefore,
I' is a main dual graph (i.e. K, = 0 or K = Z). Since the domain and the target of the
injective map (2.14) are 6-dimensional and its kernel is 1-dimensional, we conclude that the
obstruction group G is 1-dimensional. In fact, it is isomorphic to C*.

For each set I, let Z! /7 denote the quotient by the diagonal subgroup. We have

7'z = @z,

The dual map
Zlgi Z3 3 g‘v ZI"O Z3
Tv — ~ - ]D)V o~ Z]E Vv >~ ZB -
6?( Z ) (Z) -2 e “\z

in (5.2) is given by
0" (Im], [n21, [n31)
= ((—27711 +n124+113)., (121 =202 +1023), (M314+132—2n33), (M1 ] + [nz]+[n3])>,

where n; =[n;1, ni2, i3] € sz’ for any i € {1, 2, 3}. It is straightforward to check that
Z3
Im(e") = {(a, b, c, [X,y,Z])GZSGBiZ a+b+c=x+y+z mod 3} )

Therefore, the quotient group D} /Im(o}) is isomorphic to Z3 and is generated by the class
of (1,0,0, [0, 0,0]); i.e. m(I") =3.
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Remark 6.1 In this example
m(I") =3, my =3, mped(I') = 1.

In the light of Remark 5.5, this explains why our coefficient m(I") =3 coincides with the one
calculated in [3, Section 5].

In the pre-log space Mp o8 (Xy, [3Dr, the three lines ¢1, £, £3 are allowed to be any line
passing through the point X 123 with some slope in C*. However, the condition obr (f) €G =
C* in Definition 2.10.(C2) puts a restriction on the set of lines £1, €2, £3 that give rise to a
log curve.

For each i€ {1, 2, 3}, the line ¢; is the completion of the image of a map of the form

C—C, z— (j@)j=123C C, x;=0,
and x;j(z) = ajjz, a;jeC*, Vj#i.

It follows from definition of obr(f) in (2 21) that obr (f) =1 if and only if for any set of
3 distinct points ey ey des € Xy = P! and local coordinates Zeys 2oy Zes around them,
respectively, there exists a set of meromorphic sections (&;)ie{1,2,3) of P! xC (holomorphic
away from ey de,» qg3) such that the product £1¢>¢3 is a constant section and

Gilze) = ajiz, Vie{l,2.3), j#i.

A straightforward calculation shows that this is possible if and only if

aay as _
a3 azx ax '
i.e. the product of the slopes of £1, €2, £3 (in a certain order) is —1. In other words,

obp(f) = — 2 BLIB ¢ o,
aiz asz azg

In the degeneration formula (5.3), imposing two generic point constraints in X; and X, on
the image of the two marked points fixes £1 and £;. Then the slope condition above fixes ¢3.
Therefore, since m(I") =3 and Aut(I") = 1, the contribution of such a star-shaped log map
to the GW count of degree 3 rational curves in a smooth cubic surface passing through two
generic points is 3. Together with the other 81 classical-type curves, we recover the 2-point
degree 3 genus 0 GW invariant of cubic surface which is 84.
We finish with some comments on Question (3) in Page 3. After removing the trivial com-
ponent u,, : X,, —> X123, the moduli space ./\/lg?% (Xg, [3])r decomposes into the relative
spaces

Mo, 0,0),1,1) X1, X129, [1D, Mo, 0,0),(1,1)) (X2, X225, [1D),
and Mo 1,1)(X3, X3, [1D.

Thus, one might still hope to be able to get a decomposition formula in a situation like this.
However, in higher dimensions and higher degrees, there seems to be no obvious way to get
such a decomposition. The following two examples highlight the issue even further.

Example 6.2 Consider the family Y =Z x P! — C, where Z is as above and 7 is the lift of
the projection map 7 : Z —> C. Let Y;=X; x P!, forall #£1C {1, 2, 3}. Consider the same
dual graph but with k=3 (i.e. with a third marked point on X,,),

Ay = [0, 11€ Hy (Y123, Z) = Ha({point} x P!, Z) = {0} x Z,
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Fig.6 The image of a map Im(uw, )
belonging to My 3(Yy, [3, 1Dr
in Yy

and
Ay, =[1,01e Ho(Y;, Z) = Hy(X; x IP’I, 7)== H)(X;, Z)x7Z Nie{l,2,3};

see Fig. 6.

The moduli space ﬂoj (Yy, [3, 1]r is complex 8 dimensional with the same contributing
factor m(I') =3 to (5.3). A smooth fiber ), of ) is the product of the smooth cubic surface
Z, and PL. Let

GWJ4 (pt, pt. & x pt) (6.1)
be the number of bi-degree [3, 1] rational curves in ), with two point constraints and
axpte Hy(Vy., Z) = Hy (2, xP', 7),

where « is the homology class of the smoothing of the limiting line shown in Fig. 4-Right.
Since m(I") =3 as before, and there is a unique I'-type log map in Yy with those constraints,
we conclude that the contribution of I'-type curves to (6.1) is again 3. In examples like this,
where there is a non-constant map u, in a stratum X, with |/, |# 1, for any decomposition
of mg, Xy, A)r into a fiber product of relative spaces, either (1) u, has to be considered in
one of the relative moduli spaces (which normally results in relative spaces with s ¢ NV), or
(2) (2, uy) should be removed while its non-trivial GW contribution affects the matching
conditions of the remaining parts. The first idea is a motivation behind studying punctured
log GW invariants [4].
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