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Abstract

1. Natural history collections (NHCs) have been indispensable to understanding

longer-term trends of the timing of seasonal events. Massive-scale digitization
of specimens promises to further enable phenological research, especially the
ability to move towards a deeper understanding of drivers of change and how

trait-environment interactions shape phenological sensitivity.

. Despite the promise of NHCs to answer fundamental phenology questions, the

use of these data resources presents unique and often overlooked challenges
requiring specialized workflow steps, such as assembling multisource data, ac-
counting for date imprecision and making decisions about trade-offs between

data density and spatial resolution.

. We provide a set of key best practice recommendations and showcase these

via a case study that utilizes NHC data to test hypotheses about spatiotemporal
trends in adult Lepidoptera (i.e. butterflies and moths) flight timing across North
America. Our case study is a worked example of these best practices, helping
practitioners recognize and overcome potential pitfalls at each step, from data
acquisition and cleaning, to delineating spatial units and proper estimation of

phenological metrics and associated uncertainty, to building appropriate models.

. We confirm and extend the critical importance of voltinism and diapause strat-

egy, but less-so daily activity patterns, for predicting Lepidoptera phenology spa-
tiotemporal trends. Our case study also showcases the unique power of NHC
data to test existing hypotheses and generate new insights about temporal phe-
nological trends. Specifically, migratory species and species that enter diapause
as adults are advancing the start of flight periods in more recent years, even after
accounting for climate context. These results highlight the physiological and adap-
tive differences between species with different overwintering strategies.

. We close by noting the value of partnerships between data scientists, museum

experts and ecological modellers to fully harness the power of digital data re-

sources to address pressing global change challenges. These partnerships can
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1 | INTRODUCTION

Natural history collections (NHCs) have been instrumental in un-
derstanding temporal trends in changes to the timing of seasonal
events. In particular, herbarium specimens have been reliably used to
characterize phenological responses to changing climate (reviewed
in Willis et al., 2017). More recently, researchers are attempting to
move beyond simply documenting changes in phenology and are
examining more complex phenological responses such as deter-
mining phenological cueing mechanisms (Davis et al., 2015; Park &
Mazer, 2018) and determining if changes in bird migration phenology
are related to changes in body size (Zimova et al., 2021). Massive-
scale digitization efforts, including specimen imaging, while still
mostly incomplete (Cobb et al., 2019), promises to further enable
macrophenological research (sensu Gallinat et al., 2021) across mul-
tiple branches of the tree of life (Soltis, 2017). However, challenges
still abound in proper use of NHCs in phenological research. A myr-
iad of sampling biases and data gaps, spanning geographic, tempo-
ral, taxonomic and trait dimensions often complicate their proper
use (Meineke & Daru, 2021). Dealing with these issues requires data
exploration and filtering, whose customization and testing differ
depending on the taxonomic group, study extent and data sources
(Zizka et al., 2019). Even after data cleaning, phenological estimators
and downstream modelling steps that fail to account for incidental
sampling biases across space and time can produce biased results
(Isaac et al., 2014; Larsen & Shirey, 2021).

Unlike species distribution modelling, which has an extensive
literature documenting best practices for use of NHC data (e.g.
Chauvier et al., 2021; Elith et al., 2006; Mateo et al., 2010; Merow
et al., 2013; Myers et al., 2015; Pearce & Boyce, 2006), similar ef-
forts for phenological practices have been lacking. Previous efforts
have been made to make phenology estimates more accurate (e.g.
Pearse et al., 2017; Pearson, 2019), but guidelines to assist research-
ers along an entire project are scant. Here, we detail a workflow
to support best practices in using digital NHC data in phenological
research. We identify and discuss areas where practitioners may
face potential pitfalls along the entire workflow, from data acqui-
sition and cleaning, to delineating spatial units and proper estima-
tion of phenological metrics and associated uncertainty, to building
appropriate models that can test hypotheses about spatiotemporal
phenological variation and underlying drivers. Our case study fo-
cuses on Lepidoptera (i.e. butterflies and moths), but throughout,
we broadly discuss cross-cutting issues, including challenges with
reconciling taxonomy, capturing collector information needed to
understand observation effort, dealing with imprecise and missing

extend approaches for integrating multiple data types to fully unlock our under-
standing of the tempo, mode, drivers and outcomes of phenological changes at

greater spatial, temporal and taxonomic scales.

best practices, climate change, ecological traits, interactive effects, museum, seasonal timing

data, and accounting for spatiotemporal sampling bias and phyloge-
netic relationships.

While our intent is to provide a set of best practice recommen-
dations, we also address key questions about temporal trends in
phenology for Lepidoptera across North America. Lepidoptera are
particularly well-suited for phenology studies, given that they are
well collected, highly diverse and have temperature-dependent
developmental rates (Buckley et al., 2017). Structured monitor-
ing networks such as the UK Butterfly monitoring scheme and the
Rothamsted Insect Survey have been critical resources for docu-
menting temporal trends in phenology (e.g. Macgregor et al., 2019;
Roy & Sparks, 2000), but these are limited in spatial scope. Incidental
citizen science efforts, such as iNaturalist, can increase the breadth
of analyses (Barve et al., 2020), but data are only available for
more recent years and have potential biases that differ from NHC
data. Therefore, the key means to examine patterns and drivers of
Lepidoptera phenology at broad spatial, temporal and taxonomic
scales will be careful use of NHCs.

Natural history collection-based multi-species phenology stud-
ies of especially butterflies (e.g. Brooks et al., 2014, 2017; Kharouba
et al., 2014) have showcased the utility of examining longer-term
phenology trends in the face of global change, and the importance
of trait-based approaches. In North America, key studies using
NHCs have found overall evidence of advancing phenology for a
subset of Lepidoptera species (e.g. Kharouba et al., 2014; Maurer
et al., 2018). Traits mediate responsiveness, and species flying ear-
lier in the season showed the strongest responses to temperature
(Kharouba et al., 2014 for Canadian butterflies) or shifted phenology
most over time (Maurer et al., 2018 for macromoths in the Pacific
Northwest). These previous studies both focused on median flight
periods, missing both onset or termination dynamics, which likely
shift independently and have different environmental cues, given
the complex shapes seasonal phenology curves may take for insects
(Duchenne et al., 2020).

Here, we examine spatiotemporal trends in Lepidoptera phenol-
ogy, focusing not only on midpoint dynamics, but also on onset, ter-
mination and adult flight duration. In particular, we explore whether
voltinism and winter diapause, two key traits known to impact phe-
nology sensitivities, drive differential onset and termination dynam-
ics over time. We account for key climate and spatial contexts, and
thus determine whether these temporal trends vary spatially and
environmentally. Finally, we examine whether diurnal (mainly but-
terflies) and nocturnal species show similar trends in their phenolog-
ical responses over time, given that night-time global temperature
is increasing faster than daytime temperature (Fu et al., 2016). At
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all points from conceptualizing the design of the study to interpre-
tation, we highlight challenges, pitfalls and best practices towards

deriving robust results and inferences.

2 | MATERIALS AND METHODS

2.1 | Downloading digital data and removing
duplicate records

Research using NHC data should strive to include records from all
key repositories because they may each contain unique data. While
the Global Biodiversity Information Facility (GBIF) is often exclu-
sively used, not all digitized data, especially in North America, are
also published globally. Therefore, we downloaded all Lepidoptera
data from GBIF (2021) as well as iDigBio and Symbiota Collections of
Arthropods Network (SCAN) which are the other main data aggre-
gators of digitized specimen data for museums based in the United
States. We only downloaded records that were identified by the
Darwin Core term ‘PreservedSpecimen’ to ensure human observa-
tions were not included in our dataset. In total, we had a dataset of
6,691,163 records (Belitz, 2022a).

After aggregating records across repositories, we next de-
termined sets of records which shared a unique collector, date of
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collection and location, removing all but one for downstream analy-
sis. Removing duplicate records is essential for proper phenometric
fitting, since phenometric estimators are sensitive to record densi-
ties. Furthermore, duplicates artificially inflate sampling intensity.
Even if only using one source (e.g. GBIF), duplicate records are not
uncommon and should be filtered. For this case study, the bulk of
our unique records that could not be downloaded from other data
sources were from GBIF, although SCAN also contributed a signifi-

cant number of unique records (Figure 1a,b).

2.2 | Further data cleaning

Digitized museum records downloaded from biodiversity discov-
ery platforms such as GBIF or iDigBio must be further vetted and
cleaned, post-deduplication, before being used in phenological re-
search. Since our analysis focused on adult Lepidopteran phenol-
ogy, we removed records that were of specimens of non-adult life
stages such as egg, larvae or pupae. Many records did not note the
life stage of the record, but in the case of Lepidoptera, the vast ma-
jority (>99%) of NHC specimens are adults, based on examination of
images available on GBIF, and thus records were kept that did not
note life stage. Next, we removed records with values missing for
the date of collection and geographical coordinates, that is, latitude
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FIGURE 1 The distribution of records over years (panels a and b) and intra-annually (panels c and d). Panel a shows the total volume of
records available from different digitized natural history collection (NHC) record platforms (i.e. GBIF, iDigBio and SCAN) and panel b shows
those distributions after cleaning duplicates. Panel c shows a clear spike of records on the first of each month, representing date imprecision
in NHC data, and panel d shows data distribution after removing specimen collected on the first day of the month (note first of month day of

year differ in leap years)
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and longitude value, since these records are unusable downstream.
Still, many records have imprecise dates that only list the month or
year that the specimen was collected. These records are often given
default ‘eventDate’ values in databases that correspond to the first
of the month or year that the specimen was collected, leading to far
more observations on the first of the month (and year) than would
be expected by chance (Figure 1c). We dealt with this bias by remov-
ing all records that were noted as collected as the first day of every
month (Figure 1d). One could determine whether a specimen was
truly collected on the first day of a month by examining the ‘ver-
batimEventDate’ of the record or, if an image is available, the origi-
nal label of the specimen. However, this would involve significant
manual vetting of records. When possible, it is best to avoid manual
vetting as it is time-consuming, error prone and difficult to repro-
duce (Zizka et al., 2019). Depending on the spatial resolution of the
analysis, it may also be necessary to filter points with imprecise geo-
graphical coordinates. However, our analysis is conducted at coarse
resolution (see below), limiting any concern about georeferencing
precision.

We generated an initial species list by first gridding our study
area into 250x250-km equal area cells using the North America
Albers Equal Area Conic projection and used a spatial join to assign
specimens to grid cells. Our choice of this coarse spatial grain re-
flects a series of compromises related to data availability and spatial
localization of phenological response. We discuss this choice in more
detail below, but critical here is that our interest is in broad-scale,
continental patterns across wide environmental gradients, rather
than local-scale phenomena.

Taxonomic harmonization is an important step in working with
NHCs, as taxonomic revisions are common, and names must be har-
monized to avoid pseudoreplicated species in our final taxonomic
list. Our initial species list included those that had at least three cell
by year combinations, with at least three distinct collectors, four dis-
tinct days and five observations. For each of these species, we used
the package taxotools (Barve, 2020) to report an accepted name and
all associated synonyms. Using this set of accepted names and syn-
onyms, we generated a species list of accepted names and aggre-

gated all records of synonyms to these accepted names.

2.3 | Fitting phenometrics

Ensuring phenometrics are estimated using a sufficient number of
records is necessary for deriving meaningful phenology insights; too
few records and phenometrics are highly biased and uncertain (Belitz
et al., 2020). However, it may not be sufficient to simply count the
total number of collected records used to estimate a phenometric.
Rather, two other metrics—the total number of independent collec-
tors and number of distinct days of observations—may be more rele-
vant. These metrics better assess intra-annual sampling density from
independent sources. Appropriate thresholds may vary depending
on the context of a study. Here, we applied different requirements
for univoltine and multivoltine species. For univoltine species, we fit

phenometrics for species-cell-year combinations that had at least
five observations, four distinct days of collecting and three distinct
collectors. Three days with observations have been demonstrated
to produce useful phenoestimates of unimodal species using sur-
vey data (Edwards & Crone, 2021). However, multimodal species
may have longer durations and more complex seasonal abundances,
making their phenometrics harder to estimate (Belitz et al., 2020).
Therefore, the data requirements were increased for species that
were not obligate univoltine species. Specifically, at least 10 total
observations, 8 distinct collecting days and 3 unique collectors were
needed to retain multivoltine phenometrics. Simulation experiments
have shown phenometrics estimated from 10 total observations can
produce useful phenometrics, although more records typically lead
to more robust phenometrics (Belitz et al., 2020).

Estimating the start and end of phenological events is challeng-
ing given that there are fewer data to parameterize these bounds
(Pearse et al.,, 2017). We choose to estimate quantiles near the
bounds of a distribution, since these have been demonstrated to
be more accurate and less biased estimates of phenology (Belitz
et al., 2020). Phenometrics and their associated 95% confidence in-
tervals for cell-by-year-by-species combinations with enough data
were estimated using 0.05, 0.5 and 0.95 continuous sample quan-
tiles using the quantile_ci() function within the phenesse R package
(Belitz et al., 2020). These quantiles were used to represent approx-
imations of onset, midpoint and termination of adult flight periods.
Flight period duration was calculated as the difference between ter-
mination and onset values.

Despite taking steps to ensure phenology estimates were being
made using sufficient data and methods, estimated phenometrics
still occur outside of the range of expected values. Outlier esti-
mates should be examined at a species-specific level. Doing so re-
quires first attempting to account for expected spatial variation in
estimates to make phenoestimates more comparable. For example, a
phenoestimate of a particular species found in a northerly cell is ex-
pected to be different than a phenoestimate in a southerly cell. We
accounted for geographical differences in our outlier detection pro-
tocol by taking a data-driven approach, where we fit a simple linear
mixed model using estimated onset values as our response variable
and mean annual temperature (see below for temperature data in-
formation) as the fixed effect predictor variable. Random intercepts
were fit for each species and cell to account for differences across
species and location, and we also fit random slopes for each species
to allow each species to have a different response to temperature.
Model residuals were calculated and phenoestimates with residuals
greater than three times the standard deviation of the overall model
residuals were deemed outliers and removed from further analyses
(Figure 2).

2.4 | Gathering trait data

We collected trait information from literature and web sources for
the 480 species that formed our initial species list to be included as
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FIGURE 2 Phenological estimates
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categorical predictor variables in statistical analyses. We focused
on gathering three traits thought to be relevant to Lepidoptera
phenology: (1) diapause stage (i.e. the life stage at which diapause
or overwintering occurs), (2) voltinism and (3) diurnality. Diapause
stage, which is known to affect the phenology of insects (Diamond
et al., 2011; Roy et al., 2015), was categorized as egg, larva, pupa,
adult, none or migratory, and species that diapause at multiple life
stages or do not diapause were removed from further analyses.
Voltinism was categorized as either obligate univoltine, facultative or
multivoltine, with species that take more than 1year to develop cate-
gorized as univoltine. Diurnality was categorized as diurnal, nocturnal
or both, depending on when the adults are active. Sources that were
particularly beneficial to gathering these traits were the Butterflies
and Moths of North America database (sources used to develop the
database include; Covell, 2005; Opler, 1999; Powell & Opler, 2009)
and The Caterpillars of North America (Wagner, 2010). Many spe-
cies that met minimum requirements for generating phenometrics
were dropped from further analyses because of lack of available trait
data. Given that species traits regulate insect phenological responses
(Belitz et al., 2021; Diamond et al., 2011), modelling frameworks ad-
dressing interspecific variation in temperature sensitivity must incor-
porate trait data (Kharouba et al., 2018). We recognize the challenges
of assembling complete trait data and therefore emphasize the im-
portance of choosing traits that are documentable and are expected
to impact phenology. Restricting the number of traits in an analysis
will limit the challenges due to incomplete trait matrices.

We also generated a categorical trait for seasonal flight timing
since early versus late flying species can show different phenolog-
ical responses to climate change (Kharouba et al., 2014; Maurer
et al., 2018). To generate this trait, we classified the seasonality of
Lepidoptera species by relativizing estimated onset values in a par-
ticular cell to the beginning date of the frost free period (averaged
from 1991-2020; Wang et al., 2016) of a given cell. The number of
days a species began flying after the start of the frost free period
was averaged across cells and years. These values were then used
to determine the 15th and 85th percentile values, which were used
to assign a species as a ‘spring’ (0-15), ‘summer’ (15-85) or ‘fall’
(85-100) species.

1975 2000

2.5 | Gathering climate data

Predictor variables must reflect appropriate spatial and temporal
scales given biological questions of interest. We generated four
climate variables to include in our modelling framework: annual
temperature, annual precipitation, temperature seasonality and
precipitation seasonality. We did so by obtaining monthly estimated
maximum temperature and cumulative precipitation values for 1901-
2016 at approximately 1-km spatial resolution from the Chelsea data
product (Karger & Zimmermann, 2018). These data were used to cal-
culate mean annual temperature, annual precipitation, temperature
seasonality and precipitation seasonality values for every grid in our
analysis from 1901 to 2016. Temperature seasonality was calculated
as the standard deviation of the monthly maximum temperatures
across a year and precipitation seasonality values were the coeffi-

cient of variation of monthly precipitation values across a year.

2.6 | Determining phenological trends in the
context of climate and traits

Careful modelling techniques that can account for biases and au-
tocorrelation are needed to ensure that robust conclusions can
be drawn from phenological studies using NHCs. Simple analyses
using incidental data sources have been found to produce biased
estimates or have low statistical power (Isaac et al., 2014). We used
linear mixed models (LMMs) to examine the effects of climate, traits
and year covariates on the onset, midpoint, termination and duration
of adult Lepidoptera across the study area. LMMs were fit using the
R package Ime4 (Bates et al., 2015). Species-specific phenoestimates
of onset, midpoint, termination and duration were the response vari-
ables of our models, while climate variables, traits and year were
fixed predictor variables. We also included the number of distinct
days and number of distinct collectors as fixed effects in our global
model as a proxy of observation effort. Two-way interactions chosen
based on previous biological knowledge were also tested to examine
(1) whether the effects of temperature change along a precipitation
gradient, (2) whether temporal effects are more prominent in warm
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or wet regions and (3) whether climate and temporal effects are
conditioned by life-history traits. Variables were scaled to a mean
of zero and a standard deviation of one to make the relative influ-
ence of predictor variables easy to interpret. We included grid cell
identity as a random intercept in our model to control for uneven
sampling in space and other unmeasured environmental variables
(Isaac et al., 2014). Species identity was also included as a random
intercept to account for unmeasured traits.

Model selection is essential in macrophenology since manipu-
lative experiments cannot be conducted at relevant temporal and
spatial scales. To select our top models, we used three modelling
approaches. First, we fit a global model with all variables and inter-
actions together in a single weighted mixed effects model, where
model inputs were weighted by the inverse of the phenometric
confidence interval size. We used the step function from the R
package ImerTest (Kuznetsova et al., 2017) to reduce model com-
plexity via backward selection. Each top model was evaluated for
potentially problematic collinearity by calculating variance inflation
factors (VIFs). If variables had VIFs greater than five, one variable
was removed based on which variable had smaller effect sizes. The
backward selection process was rerun until all VIFs were below five,
which has been suggested as a useful value for detecting multicol-
linearity potentially harmful for inference (Neter et al., 1996). The
second modelling approach mirrored the first approach, except that
we did not weigh model inputs. The third approach was also a non-
weighted mixed model but differed in that we first fit a model with
only climate variables and the two-way interaction between tem-
perature and precipitation. Then, after completing our backward
selection process and finding the top climate model, we introduced
the trait and year covariates to the global model. Backward model
selection was performed as described above to reduce model vari-
ables and select a top model. To select our overall best model, we
choose the model with the lowest Akaike information criterion (AIC)
(Anderson & Burnham, 2004) value among our three candidate top
models. Selecting models linking weather to biological responses
remains a challenging and unsettled topic (Tredennick et al., 2021).
Our decision to use these three modelling approaches was that it
generated competing top models following multiple approaches
used in the literature (Belitz et al., 2021; Li et al., 2021) and encap-
sulates best practices for ecological modelling with the goal of data
exploration (Tredennick et al., 2021).

Modelling frameworks incorporating multiple species in a single
analysis can lead to erroneous biological conclusions if the phylo-
genetic relationship among the species is ignored by inflating the
chances of type | errors (Li & lves, 2017). We converted our top
LMMs to phylogenetic linear mixed models (PLMMs) by incorpo-
rating a covariance matrix containing the phylogenetic distances
between the species as a random intercept term. To build our phy-
logenetic covariance matrix, we generated a subtree from the Open
Tree of Life for the species in our analysis (Michonneau et al., 2016).
The divergence time of each internal node was estimated by search-
ing the TimeTree of Life database (Kumar et al., 2017), and the branch
lengths were scaled from these ages using the ph_bladj function

from the R package phylocomr (OQoms & Chamberlain, 2019). The R
package phyr (Li et al., 2020) was used to fit our top LMMs as PLMMs
using this phylogeny and a Bayesian framework with default uninfor-
mative INLA priors (Rue et al., 2009). Our results differed between
the PLMM and LMM (Supporting Information 2), and therefore, we
present the results based on PLMM in the main text. We calculated
pseudo-R? values to measure the goodness of fit of our top PLMM
by calculating the variance of the difference between the observed
and predicted values of our fitted PLMM using the following equa-
tion, partial R? = 1 - var(y - y.fitted.f)/var(y - y.fitted.r), where y
is the observed data, and y.fitted.f and y.fitted.r are the predicted
values from the full and reduced models, respectively (lves, 2019;
Ives & Li, 2018). Spatial autocorrelation in model residuals can also
influence model effect sizes and increase type | error rates. We ex-
amined the degree of autocorrelation in our top PLMM residuals by
calculating Moran's | values across different spatial lags and did not
detect significant Moran's | values across any spatial lags (Figure S1).

3 | RESULTS

Data filtering to ensure sufficient data were used to generate phe-
noestimates reduced both the number of records in our dataset and
the number of species that could be used in our analysis. Taxonomic
harmonization was a critical first step, leading to nearly 20% of
reported names (95 species names total) being lumped into other
accepted names. Removing records of specimens of non-adult life
stages eliminated 0.06% of records in our dataset. Filtering records
that occur on the first day of the month removed 17.3% of remain-
ing records. Of these remaining records, 480 species had enough
data to generate phenoestimates (3 cell by year combinations with at
least 3 distinct collectors, four distinct days and five observations).
Another 148 species were removed due to lack of comprehensive
trait information, and 67 multivoltine species were dropped due
to not meeting the more stringent multivoltine data requirements.
After applying all of our data filtering steps, we had a final dataset
of 105,072 records used to calculate 2025 phenoestimates span-
ning 265 species (Figure 3), 114 years (1902-2016) and 104 grid cells
(Figure 4).

The effects of climate and trait predictors on the onset, mid-
point, termination and duration were consistent with previous
studies examining the drivers of Lepidoptera phenology (Kharouba
et al., 2014; Roy et al., 2015; Zografou et al., 2021). Onset of flight
period was earlier and flight periods terminated later when tempera-
tures were warmer (Table 1). Midpoint phenometrics are earlier in
warmer locations for spring and summer flying species, whereas
fall species do not shift their midpoint flight period across a tem-
perature gradient (Figure 5a). Diapause stage influenced the tim-
ing of all phenometrics, typically via interactions with temperature
(Figure S2), as documented previously by insect phenology studies
(Belitz et al., 2021; Stemkovski et al., 2020). Compared to species
that diapause as adults, species that diapause as pupae had shorter
flight periods (Table 2) with earlier midpoints and terminations
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(Table 1). Of particular note, especially given that flight termination
timing is much less examined using NHCs, is our finding that both
univoltine and multivoltine species delay termination under warm
conditions, although this response is much greater for multivoltine
species (Figure 5b).

Year effects were included in all top models except the dura-
tion model, and these effects were conditioned by the diapause

strategy of a species in the onset and termination model (Table 1).

Nymphalidae
Erebidae
Hesperiidae
Noctuidae
Pieridae
Lycaenidae
Geometridae
Papilionidae
Sphingidae
Saturniidae

Notodontidae

0 10 20 30 40 50
Number of Species

FIGURE 3 Number of species included in our statistical
analysis for families with >2 species represented. Eight additional
families (Depressariidae, Elachistidae, Gelechiidae, Gracillariidae,
Plutellidae, Pyralidae, Crambidae and Lasiocampidae) had 1-2
species included in our analysis

Pheno-estimates
400

50

Decades

O00O0 -

Migratory species have earlier flight period onset and termination
in more recent years, even after factoring in the effects of climate
(e.g. temperature) and trait variables (Figure 5c,d). For species that
diapause as adults, onset of flight periods is advancing and termina-
tion of flight periods is delaying even after accounting for climate
and trait effects (Figure 5c,d). Year effects were also conditioned by
climate variables, although these effects were relatively weak with
large credible intervals (Figure S3).

The number of distinct days with observations, which we in-
cluded as a measure of effort, was included in the top model for
all phenometrics except the model predicting mid-flight period
(Tables 1 and 2). More distinct days with observation records led to
earlier onset, later termination and longer duration of flight periods
(Figure 6). The number of distinct collectors was never retained in
a top model. Finally, we found no evidence that diurnality affected
Lepidoptera phenology as the 95% Bayesian credible intervals of
this variable included zero (Tables 1 and 2). Top models explained a
significant portion of the variation in our data with pseudo-R? (see
above in Section 2) values of 0.79, 0.75, 0.80 and 0.70 for the onset,

midpoint, termination and duration models, respectively.

4 | DISCUSSION

We provide a framework and methodological checklist (Box 1) to ad-
dress key questions of macrophenology with a particular focus on ex-
amining the trends in Lepidoptera across North America. Our results

confirm several findings of previous studies using structured survey

FIGURE 4 Locations at the centroids
of the 250x250km grids with enough
data to produce species-by-year
phenological estimates. Number of
decades with a phenoestimate at each
grid is represented by circle size, and the
total number of phenoestimates at each
grid is represented by circle colour
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TABLE 1 Fixed effects coefficients for top onset, midpoint and termination models

Predictors Onset

(Intercept) 166.9 (1512.0 to 181.9)
Temp -12.8 (-20.6 to -5.0)
Temp Seas

Prec 2.1(-0.3to 4.5)
Prec Seas -3.0(-5.1t0 -0.9)
Temp:Prec -5.2(-7.7 to -2.7)

voltinism [Uni]

Diapause stage (DS) [Egg] 18.1 (0.2 to 35.8)

DS [Larvae] -6.6(-22.5t0 9.0)
DS [Migratory] 10.5(-11.1 to 31.9)
DS [Pupae] -17.6 (-34.1to -1.3)

Seasonality (Seas) [Spring]

Seas [Summer]

Diurnality [Diurnal]

Diurnality [Nocturnal]

Temp:DS [Egg] -13.1(-22.1to -4.1)
-3.3(-11.0to 4.3)

-19.9 (-34.7 to -5.2)

Temp:DS [Larvae]
Temp:DS [Migratory]
[

Temp:DS [Pupae] -5.5(-13.2t0 2.2)
Temp:Seas [Spring]

Temp:Seas [Summer]

Temp:voltinism [Uni]

DS [Adult]:Year -9.4(-16.9 to -1.9)
DS [Egg]:Year -2.1(-4.3t00.1)
DS [Larvae]:Year 1.0(-0.7 to 2.7)
DS [Migratory]:Year -7.3(-159 to 1.4)
DS [Pupae]:Year -0.0(-2.7 to 2.6)
Prec:Year 1.4(0.2t0 2.7)

Prec Seas:Year
Temp:Year
Temp Seas:Year

Distinct observation days -3.0(-4.3 to -1.8)

Midpoint
235.2(213.8 to 256.4)
6.4 (-3.6t0 16.4)
-5.0(-8.5 to -1.6)

4.4(1.9 to 7.0)

-20.8 (-26.2 to -15.5)
6.8(-8.1t021.8)
-9.6(-22.7 to 3.4)
5.0 (-13.9 to 23.9)
-18.5(-31.9 to -5.0)
-52.7 (-63.2 to -42.1)
-23.4(-31.5t0 -15.3)
-9.7(-28.1t0 8.8)
0.2 (-17.5to0 17.9)
-26.1(-35.6 to -16.7)
-7.8(-15.7t0 0.1)
-10.2 (-25.0 to 4.5)
-9.0(-16.9 to -1.0)
-19.6 (-27.2 to -12.1)
-13.5(-19.9 to -7.2)

-1.4(-2.8 to -0.0)

Note: Bold values denote coefficients whose 95% Bayesian credible interval does not include zero.

data, highlighting that NHCs can be used to make biologically meaning-
ful conclusions across broad spatial, temporal and taxonomic scales. We
also showcase especially flight termination and duration findings that
extend our knowledge of how global changes may continue to impact
butterflies and moths into the future. Below we briefly discuss the bio-
logical insights our study provides before discussing more general rec-
ommendations about use of NHCs in broad-scale phenology studies.

4.1 | Key trends in lepidoptera phenology

The unique value of NHCs is their ability to capture trends over
longer periods, broader regions and more taxa than are typically

Termination

280.9 (256.8 to 305.0)
10.6 (0.4 to 20.7)
-4.6 (-7.7 to -1.6)

-2.9 (-5.0 to -0.8)

-33.1(-39.3 to -26.9)
-3.8(-20.2t0 12.7)
-16.7 (-31.2t0 -2.2)
9.7 (-12.2 to 31.5)
-29.4 (-44.3 to -14.4)
-46.5(-58.6 to -34.3)
-24.3 (-33.6 to -15.1)
-15.3(-35.4t04.7)
1.4(-18.3t0 21.1)
-27.2(-37.0 to -17.4)
-1.9 (-10.1 to 6.3)
-8.1(-23.5t0 7.3)
-3.8(-11.9 to 4.3)
-17.6 (-25.4 to -9.9)
-8.9 (-15.3 to -2.5)
-5.7 (-10.4 to -1.0)
5.1(-2.6to0 12.7)
0.1(-2.3t0 2.4)
1.2(-0.5t0 3.0)
-6.0(-15.0 to 3.0)
-0.6(-3.3to0 2.1)

-0.8(-2.0t0 0.5)

-0.5(-2.8t01.7)

-1.1(-3.0t0 0.8)
4.5 (3.4 to 5.6)

covered by surveys. Here we showcase the use of a modelling
framework leveraging this temporal depth while also capturing
spatially localized phenometric estimates, associated traits and
climatic drivers. Our framework provides the means to test ques-
tions about the tempo and mode of phenological shifts, depend-
ent on life-history strategy and regional climate contexts, critical
for determining which species may be able to adapt phenologi-
cally in the face of global change (Héllfors et al., 2021; Macgregor
et al., 2019). This framework confirms much of what has been
shown previously, but also unveiled unexpected findings that
do not conform to current hypotheses. As an example, we were
surprised to find a temporal trend of earlier arrival of migratory
species, even after accounting for climate warming. If migratory
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FIGURE 5 Two-way interactions displaying how species with different life-history traits have different phenological responses to

temperature (a, b) and year (c, d) effects

species arrive at breeding sites too early to capture peak food
sources, this may impact population viability (Visser et al., 2006).
We also document that after accounting for climate effects, mi-
gratory species are leaving summering grounds earlier in more re-
cent years, while species that diapause as adults are delaying their
terminations in later years, even after accounting for changing
climate. These results suggest that our climate variables are not
encapsulating the temporal variation of important drivers of the
onset and termination of flight period for species that overwinter
as adults. Migratory species likely respond differently than resi-
dent species because they are moving through several climatically
variable regions (Zipkin et al., 2012), whereas species diapausing
as adults may more directly influenced by photoperiod since it is a
primary cue for insects to initiate diapause (Denlinger, 2002).

We find trait and temperature effects on Lepidoptera phenol-
ogy consistent with previous studies using more structured data,
for example, earlier adult emergence in warmer temperatures (e.g.
Roy et al., 2015). This extends to the importance of key traits, for
example, our finding that diapause stage influences both the abso-
lute timing of flight periods (Diamond et al., 2011) and sensitivity
of response to temperature (Forrest, 2016; Roy et al., 2015). Our
results also corroborate that seasonal flight timing is an important
determinant of phenological sensitivity. Early season species have
been predicted to be more sensitive to climate and have the most

phylogenetically conserved phenologies since early season species

will risk increased likelihood of frost or asynchrony with hostplants
if phenology is mistimed (Pau et al., 2011). Our top midpoint model
results, mirroring those of Kharouba et al. (2014), also support this
hypothesis.

Finally, our broad taxonomic sampling, spanning multiple fami-
lies of Lepidoptera, provided a means to examine if day and night-
flying Lepidoptera differ in their phenological responses. This trait
is strongly phylogenetically stratified across Lepidoptera, and we
did not find evidence for a significant difference in phenological re-
sponse between day and night-flying Lepidoptera when controlling
for phylogenetic covariance. When phylogenetic covariance was not
included in the model, diurnal species are found to terminate their
flight periods earlier than nocturnal species, highlighting the impor-
tance of incorporating phylogenetic relationships into phenological
modelling. These results in sum confirm the critical importance of
winter diapause and voltinism traits, and less-so daily activity pat-

terns, for predicting Lepidoptera phenology spatiotemporal trends.

4.2 | Challenges and opportunities

The workflows and modelling frameworks for NHC phenology stud-
ies require special attention, some of which are needed for any inci-
dental record-based studies and some fully unique to digitized NHC

data. Here, we briefly summarize the most critical challenges and
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TABLE 2 Fixed effects coefficients for top duration models

Phylogenetic linear

Predictors mixed model
(Intercept) 103.9 (82.9 to 124.8)
Temp 19.1(11.3 to 26.8)
Prec 1.4 (-1.2to 4.0)
Prec Seas 2.2(-0.1to0 4.6)

-29.8 (-35.5 to -24.1)
-36.1(-50.0 to -21.9)
-31.5(-43.5t0 -19.2)
-11.6 (-28.6 to 5.5)
-31.8(-44.0to -19.2)
-5.9 (-23.6 to 12.0)
0.8 (-16.5 to 18.2)
5.1 (-5.6 to 16.0)
-3.3(-11.6 to 5.0)
-14.8 (-19.4 to -10.2)
2.7(-4.9t010.2)

Voltinism [Univoltine]
Diapause stage (DS) [Egg]
DS [Larvae]

DS [Migratory]

DS [Pupae]

Diurnality [Diurnal]
Diurnality [Nocturnal]
Seasonality (Seas) [Spring]
Seas [Summer]
Temp:Voltinism [Univoltine]

Temp:Seas [Spring]

Temp:Seas [Summer] 7.5(0.9 to 14.0)
Temp:Prec 4.5(2.0t0 6.9)
Distinct observation days 7.3 (5.7 to 8.8)

Note: Bold values denote coefficients whose 95% Bayesian credible
interval does not include zero.

potential solutions, drawing from this case study and the broader
literature.

Taxonomic standardization is a critical challenge, as taxonomic
names change due to revisions at multiple taxonomic levels, and
there is no guarantee that data aggregators are either up to date with
these changes or mapping synonymies. For this reason, researchers
need to understand how aggregators manage names as GBIF, SCAN
and iDigBio all differ in their name management approach. In nearly
all cases, synonyms must be harmonized to a standardized species
list to reduce potential for pseudoreplication. We found that doing
so removed 95 synonyms out of 360 species names from our raw
dataset. While our study is smaller, this parallels what has also been
found in plants, where Weiser et al. (2007) dropped nearly half of
the verbatim names in a dataset that originally contained 22,100
binomials via harmonization. In addition to reducing pseudoreplica-
tion, harmonizing taxonomic names will also add records for some
species, increasing precision of the phenoestimates. In this study,
we used the R package taxotools (Barve, 2020) to generate a stan-
dardized species list. Other options to generate standardized taxo-
nomic names include the taxonomic name resolution service (Boyle
et al,, 2013) and the R package taxize (Chamberlain & Szocs, 2013).

Choosing an appropriate spatial resolution is important to ensure
that analyses are tractable given appropriate data density but still
capture meaningful biological processes (Park et al., 2021). While
finer-grain estimates are often preferable to localize processes driv-
ing phenology, these are impractical given the sparseness of NHC
data. One approach to optimize data density versus cell coarseness
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FIGURE 6 More observation days lead to significantly early
onsets (a), later offsets (b) and longer durations (c)

trade-offs is to test alternate spatial grains and examine the num-
ber of cell-year-species combinations with enough data to esti-
mate reliable phenometrics. In this case, given the focus on broad,
continental-scale patterns using climatic predictors, coarse-grain
cells were an acceptable trade-off for upping the number of phe-
nometrics we could estimate. However, studies incorporating land-
use changes may need to sacrifice quantity to model these more
localized phenomena at finer resolutions. Similarly, temporal reso-
lution is critical. Most robust phenological research will use annual
or seasonal phenological metrics, most commonly measured in days,
although data biases, precision or sufficiency sometimes leads to
phenometrics to be reported in weeks.

Deciding on the minimum data requirements necessary for
fitting phenometrics is also a key trade-off between number of
estimates versus their reliability. While the minimum number of re-
cords needed to develop accurate species distribution models has
been discussed in the literature for years (Mateo et al., 2010; van
Proosdij et al., 2016; Wisz et al., 2008), minimum data requirements
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BOX 1 Methodological checklist for phenological
workflows using NHCs data

1. Harmonize taxonomy to generate a standardized list
of species for use in analysis. This is especially impor-
tant if the specimen records were downloaded from a
source without a backbone taxonomy or if multiple data
sources are being combined.

2. Filter data to remove records that are imprecise or incor-
rect. These may include records with coordinate preci-
sion or temporal precision too coarse to be included in
further analyses.

3. Annotate records if necessary to ensure specimen records
of only the phenophase of interest (e.g. fruiting, flower-
ing) are included in the analysis. Human annotations can
greatly be sped up using the software ImageAnt (https://
gitlab.com/stuckyb/imageant).

4. Select appropriate spatial and temporal grain where analy-
ses are tractable from a data perspective but are still
meaningful from a biological perspective. Appropriate
scales will depend on data densities, the life history of
the group of interest, and the spatial and temporal scale
at which predictor variables operate.

5. Decide on minimum data requirements for fitting phe-
nological estimates. These requirements will be spe-
cies specific and differ depending on the length of the
phenophase, the complexity of phenological distribu-
tion and phenological metric of interest. Longer phe-
nophases, multimodal phenological distributions and
phenometrics closer to the bound of a distribution (i.e.
onset and offset metrics) will require more data.

6. Flag outlier phenometrics. Even with many records, phe-
noestimates can be inaccurate and outlier estimates
should be examined at a species-specific level. In this
study, we propose a data-driven approach to flag poten-
tial outlier phenoestimates.

7. Account for biases and autocorrelative structures in the
modelling framework. We include the number of days
with an observation as a fixed effect in our models but
other Bayesian approaches that quantify uncertainty
in phenoestimates and propagate this uncertainty hi-
erarchically exist. Additionally, phylogenetic signal and
spatial autocorrelation must be accounted for to reduce

false-positive rate.

have been less explored in phenological research using NHCs, al-
though Belitz et al. (2020) demonstrated that modest increases in
the number of incidental data records used to generate phenoes-
timates lead to significant improvements in accuracy. Additionally,

that study showed that estimating phenometrics of species with

long phenophases or bimodal phenological distributions was more
difficult and may require greater sample size (Belitz et al., 2020),
corroborating studies showing that minimum data requirements in
distribution modelling must be based on species-specific biological
information (van Proosdij et al., 2016). Here, we required more re-
cords to estimate phenometrics for multivoltine species, given the
adult flight season is likely to be longer and more complex.

Simply setting minimum data requirements is not enough be-
cause incidental-based phenoestimates can still be biased if effort is
highly skewed. Therefore, estimates should be examined for outliers
before advancing to downstream analyses. We used a data-driven
model residual approach, where onset estimates were considered
outliers if associated residual values were too high. By including
temperature values as a predictor variable, along with random ef-
fects for cell and species, we can identify inaccurate phenoestimates
without needing the geographical locations of phenoestimates to be
uniformly sampled across the range of a particular species.

Phenology analyses using incidental records need to account for
observation effort, which can vary over time and space and thus lead
to spurious conclusions. Here we used number of distinct collectors
and days with distinct observations as two key effort measures.
Distinct observation days was included as a fixed effect in the top
onset, termination and duration model but dropped from midpoint
models, supporting the supposition that onset and termination metrics
are most sensitive to sampling variation (Miller-Rushing et al., 2008;
Moussus et al., 2010). While simply including effort metrics as covari-
ates in linear models is a commonly used method (Belitz et al., 2021;
Johnston et al., 2021; Linden, 2011), better still is using a fully Bayesian
approach that quantifies uncertainty in phenoestimates and hierarchi-
cally propagates this uncertainty (see Youngflesh et al., 2021).

Finally, multiple forms of autocorrelation in model residuals can
lead to spurious model results and type | errors, which is especially
problematic if the modelling goal is inference rather than explora-
tion or prediction (Tredennick et al., 2021). We used a phylogenetic
covariance matrix as a random effect in our model to account for
phylogenetic signal and found that several model coefficients sig-
nificant in the LMM no longer differed from zero in the PLMM.
For example, LMMs predicted species that diapause as eggs or are
migratory have onsets approximately a month later than species
that diapause as adults (Supporting Information 2). However, when
accounting for phylogenetic signal, the phenological delay was pre-
dicted to only be 2weeks and had credible intervals that encom-
passed zero (Supporting Information 2). It is now easier than ever
to generate phylogenetic synthesis trees utilizing resources such as
the Open Tree of Life (Hinchliff et al., 2015). These synthesis trees,
while still approximations, can also be used to directly test new
questions such as whether timing and sensitivity of response to
drivers are phylogenetically conserved. While we did not find evi-
dence for spatial autocorrelation in our analyses, a variety of meth-
ods from using a spatial covariance matrix to include as a random
effect (see Belitz et al., 2021) to simultaneous autoregressive ap-

proaches (see Du et al., 2020) can help account for that structure.
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Given the multitude of biases and pitfalls found in digitized
NHCs data, how can phenological research best move forward?
Partnerships between data scientists, NHC and taxon-specific ex-
perts, and ecological modellers may be the surest route towards
new innovations that can further harness NHCs to address press-
ing global change challenges. Frontier areas, such as multiple uses
of machine learning approaches, both for phenology annotation,
and for multiscale analysis, is one such track. Another is the in-
tegration of NHC and recent structured or unstructured citizen
science data, which will likely require new methodological ap-
proaches. Our hope is that continued sharing of these innovations,
aligned with clear descriptions of best practices, can help to fully
unlock our understanding of the tempo, mode, drivers and out-
comes of phenological changes at the broadest spatial, temporal

and taxonomic scales.
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