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Quantifying environment-morphology relationships isimportant not only
for understanding the fundamental processes driving phenotypic diversity

within and among species but also for predicting how species will respond
toongoing global change. Despite a clear set of expectations motivated
by ecological theory, broad evidence in support of generalizable effects

of abiotic conditions on spatial and temporal intraspecific morphological
variation has been limited. Using standardized data from >250,000 captures
of 105 landbird species, we assessed intraspecific shifts in the morphology
of adult male birds since 1989 while simultaneously measuring spatial
morphological gradients across the North American continent. We found
strong spatial and temporal trends in average body size, with warmer
temperatures associated with smaller body sizes both at more equatorial
latitudes and in more recent years. The magnitude of these thermal effects
varied both across and within species, with results suggesting it is the
warmest, rather than the coldest, temperatures that drive both spatial and
temporal trends. Stronger responses to spatial—rather than temporal—
variation in temperature suggest that morphological change may not be
keeping up with the pace of climate change. Additionally, as elevation
increases, we found that body size declines as relative wing length increases,
probably due to the benefits that longer wings confer for flight in thin air
environments. Our results provide support for both existing and new
large-scale ecomorphological ‘rules’and highlight how the response of
functional trade-offs to abiotic variation drives morphological change.

Morphology is both a cause' and a consequence’ of how organisms
interact with their environment. Assessing patternsin morphological
variation both across and within® species provides a means to better
understand these interactions and, consequently, predict ecological
responses to environmental change. Ecological theory suggests that
boththesizes and shapes of organisms should vary across latitude (for
example, Bergmann’s* and Allen’s® rules) and also possibly elevation,

particularly for flying organisms (due to lower temperatures and lower
air density at high elevations®). These ecogeographic expectations are
commonly used to motivate hypotheses for how species will respond
to climate change’, such as the suggestion that declining body size may
be a generalized response of endotherms to warming temperatures®.
However, an holistic understanding of generalizable spatiotemporal
effects of abiotic conditions onintraspecific morphological variation
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Fig.1| The MAPS dataset provides a large spatial-, temporal- and taxonomic-
scale resource for studying avian morphological variation over time and
space. a, Data on individual birds come from 1,124 MAPS banding stations (black
points) spanning the latitudinal and elevational extent of North America.

b, Measurements were taken for both wing length (chord of the unflattened
wing) and mass for each captured bird. On the basis of allometric scaling
principals and empirical measurements across species, wing length is expected
to be proportional to mass to the one-third power (the scaling exponentin the

log(mass)

tgj Size index (SI) et/\ﬂj

power law equation); logging both variables linearizes this relationship. Points
representindividuals from asingle hypothetical species. ¢, The scaling exponent
was used to create a rotation matrix which was applied to logged wing length and
logged mass for each species, to derive two independent morphological indices:
size index (SI) and wing index (WI), denoting the overall size of each individual
bird and the degree to which wing length deviates fromits expected value given
the body mass of the individual, respectively. For additional details on this
mathematical transformation, see Extended Data Fig. 2.

has been limited by a lack of taxonomic and spatial replication, with
studiesyielding conflicting results®* . Understanding the role that abi-
otic factors play in shaping morphological traits, as well as how and why
this varies over space and time, is of particular importance for North
Americanbirds, which have precipitously declined in abundance over
aperiod coincident with modern anthropogenic warming™.

We evaluated spatiotemporal morphological variation in 105
North American bird species over 30 years (1989-2018), across more
than 43° of latitude and nearly 3,000 m of elevation, using data from
morethan250,000 live birds, primarily passerines or near-passerines,
captured during the breeding season using standardized methods"
(Fig. 1a, Extended Data Fig.1and Supplementary Table 1). Using field
measures of body mass and wing length (Iength of the unflattened,
closed wing) in conjunction with allometric scaling theory™, we derived
two morphological indices, a size index (SI) and a wing index (WI)
(Fig.1b,c).Sland Wlreflect overall bird body size and ‘wingyness’ (wing
length relative to body mass), respectively (Extended Data Fig. 2)
and were used to account for the fact that mass and wing length are
intrinsically linked (that changes in mass may be due to changes in
wing length and vice versa). Using a hierarchical Bayesian approach
to estimate species-specific responses, we modelled these indices as
afunction of'year, latitude and elevation and estimated and compared
the impact of spatial and temporal variation in temperature on adult
male bird body size.

Results and discussion

Morphological variation over time

On average, across the wide spatial and taxonomic breadth of
sampling, avianbody size decreased over time (SI y,, . (equation (10)) =
-0.03 Sl per 10 years, 89% confidence interval (CI) (-0.04, -0.01),
Py, < 0) = 1;Fig. 2a and Supplementary Table 2). Some variation
inthis trend existed across species, with decreases observed for 80 of
the 105 focal species (Supplementary Table 2 and Extended Data
Fig. 3a). Absolute body mass showed range-wide declines of up to
2.78% between 1989 and 2018 (for example, tree swallow Tachycineta
bicolor, wy,,, (equation (25))=-2.78, 89% CI (-4.98, -0.63),
P(@pyy,e < 0) = 0.98), withamean decline in mass of 0.56% across all
species (waT ; (equation (26)) =-0.56, 89% CI (-0.78, —-0.34),
P(”"’Mnm < 0) = L Extended DataFig.7a, Supplementary Table 3). This
temporal trend toward smaller bodies for most species and over most
ofacontinentislikely the result of warming temperatures. Specifically,
smaller body sizes were associated with elevated temperatures in the
year of capture (y,.,,lag 0 (equation (15)) =-0.019 Sl per 1°C, 89% CI

(-0.022,-0.016), P(uy,,.lag O < 0) = J,aswellas1year before capture
(., 1ag1=-0.007, 89% CI (-0.010, -0.004), P(u,,,, lagl < 0) =1);
posterior mean estimates for the species-specific effect of temperature
on body size (yrvy (equation (15))) were negative for 100% of species
for temperature in the year of capture and for 92% of species for tem-
perature in the year before capture (Supplementary Table 4 and
Extended DataFig.5a). Temperatures 2 years before capture were not
strongly related to bodyssize (u,,,,lag 2 =0.001,89% C1(-0.002,0.004),
P(u,..lag2 < 0) = 0.26; Fig. 2b, Extended Data Fig. 5and Supplemen-
tary Table 4). Temperatures 1 and 2 years before capture correspond
to environmental conditions likely experienced during ontogenesis,
although postnatal dispersal limits the strength of thisinference from
banding data. Nevertheless, our findings align with expectations, given
that smaller-bodied individuals—having larger surface-area-to-volume
ratios—tend to have lower cooling costs compared to larger-bodied
individuals. This also agrees with previous work that observed changes
in both bird mass'" and surface area in response to rising tempera-
tures'® and provides strong support for the hypothesis that shrinking
body size is a generalized response to climate change’.
Temperature-mediated size-dependent mortality (which may
resultin directional selection, conditional on the heritability of body
size; for example ref. ) and/or developmental plasticity during early
life stages' may be the most likely proximate drivers of our finding of
an association between warmer temperatures and smaller bodies.
Although widespread evidence for adaptive evolutionary responses
to climate change is somewhat limited'*?, the rate of morphological
change reported here is within the range that might be expected via
evolutionary change (Extended Data Fig. 9). The lack of a strong rela-
tionship with temperatures 2 years before capture could suggest that
alarge portion of measured individuals were in their second year of life
and never experienced the conditions 24 months before. Greater
effects of temperature onbody sizein the warmer portions of species’
ranges (g, lag O (equation (15)) =-0.012 unit change in effect of
temperature per 10 °C change in mean site temperature, 89% CI
(-0.023, -0.001), P(ug,,,lag 0 < 0) = 0.96; Fig. 2¢) suggests that it is
the hottest experienced temperatures—rather than the coldest—that
are driving this body size-temperature association®. This effect
was less pronounced for temperatures in the year before and 2 years
before capture (uq,,, lag1=-0.010, (89% CI -0.021, 0.001),
P(ug,, lagl < 0) = 0.93; uy,, lag 2=-0.004, 89% CI (-0.014, 0.006),
P(us,lag2 < 0) = 0.75; Fig. 2c). Although poleward range shifts of
species could alsoresultin directional change in morphology atagiven
location, declinesinbody size in even the warmest portions of species’
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Fig.2|North American birds show an average decline in body size (SI) over
time and in response to temporal fluctuations in temperature. a, Change in
Slover time for 105 species, controlling for changes over latitude and elevation.
Eachthingrey line represents the trend for one species and the thick black line
represents the mean trend across all species. b, Change in Sl across species in
response to interannual fluctuations in May-July maximum temperature in the
year of capture (lag 0) as well as 1 year (lag 1) and 2 years (lag 2) before capture.
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Ribbons represent 89% Cls. ¢, Effect of 1 °C change in temperature on Sl at
capture locations for a representative species, the red-eyed vireo Vireo olivaceus,
showing stronger effects of temperature on Slin warmer areas. Darker, orange
hues represent a stronger negative effect of temperature on SI. The black polygon
represents the range of the species and white lines (and associated white text)
representisoclines for May-July maximum temperature in asingle year, 2018.

ranges (whereindividuals are generally smallest) suggests that disper-
salis not the primary mechanism driving these observed changes.

In contrast to shrinking body size in North American birds,
we found that the wingyness (wing length relative to body mass) of
birds has increased over time (WI g, . (equation (10)) =0.02 Wl per
10 years, 89% C1(0.00,0.03), P(u,,, > 0)=0.95; Extended DataFig.4a
and Supplementary Table 2). Although this pattern could be due to
changing migratory patterns in response to ongoing range shifts?,
constraints on the rate at which wing length can change over time
compared to body size**** might also play a role. Specifically,
we observed no change in absolute wing length over time—temporal
changes in wingyness were the result of declining mass (waT]ME
(equation (26)) =-0.56% change over study period, 89% CI
(-0.78,-0.34), P(}INMTI . < 0) = 1) with relatively stable wing length
(”wa e (equation (26% =-0.01% change over study period, 89% CI
(—O.lé, 0.12), P (ﬂwa e < 0) = 0.54; Extended DataFigs.7aand 8aand
Supplementary Table 3).Thatis, while birds have, on average, become
smaller, their wings have stayed relatively the same size, in agreement
withresearch from the Middle East'®. Other North and South American
studies, however, have observed increases in wing length over time'".
Inthe case of ref."—the closest comparison to this study—the discrep-
ancy in findings may be due to the limitations of sampling at a single
location during the breeding season, which might result in sampling
different populations over time. However, these differences might also
reflect the complexities of morphological variation and how these
patterns might vary over time and space. For example, the rate at which
morphology changes might vary over space (i.e., exhibit spatial
non-stationarity®), leading similar studies to come to different conclu-
sions on the basis of their study area of interest.

Morphological variation over latitude
Why isit so critical to control for geography when assessing temporal
trends in phenotypes? Bird morphology shows strong and

generalizable trends in morphology over space. As illustrated by our
dataset across 105 bird species and most of a continent, body size
strongly increases with latitude (SI p,,;, (equation (11)) = 0.37 Sl per
10° of latitude, 89% C1(0.29, 0.45), P(u,,,, > 0) = 1; Fig. 3a, Extended
DataFig.3band Supplementary Table 2), supporting the intraspecific
interpretation of Bergmann’s rule*, despite decades of debate on its
relevance”. On average, body mass increases 5.72% (uwa (equation
(26)) =5.72%, 89% CI (5.39, 6.04), P(u,,, L >0=1 Extended Data
Fig.7band Supplementary Table 3) over the sampled latitudinal range
of agiven species. Larger body sizes are associated with regions with
cooler average temperatures (Sl ug . (equation (20)) =-0.37 Sl per
10 °C of change in mean site temperature, 89% Cl (-0.46, —0.29),
P(ug,,, < 0)=1;Fig.3band Extended Data Fig. 6) that are generally
found at higher latitudes, supporting the notion that thermal factors
play a substantial role in governing body size not only over time but
also over space”. Additionally, we found that this relationship between
temperature and spatial variation in body size is stronger for species
that experience warmer conditions (6, (equation (22)) =-0.29 unit
changeineffect of temperature per 10 °C of change in mean range-wide
temperature, 89% CI (-0.49, -0.09), P(6sg < 0) = 0.99; Fig. 3b), illus-
trating—as with findings of temporal associations between body size
and temperature—that the warmest, rather than the coldest, temper-
atures probably drive intraspecific adherence to Bergmann’s rule.
Factorsother thantemperature may alsobeimportantindriving
morphological variation. For example, some evidence exists for an
increase in wingyness with latitude (WI g, . (equation (11)) = 0.04 WI
per10°of latitude, 89% C1(0.00, 0.07), P (uy,,, > 0) = 0.92; Extended
DataFig.4band Supplementary Table 2). While thermal factors might
suggest that appendages should be smaller towards the poles to limit
heat loss—known as Allen’s rule>”’—the length of the closed bird wing
is primarily a function of flight feather length. This may obscure the
relationship between appendage size and temperature in this case, a
relationship that is well supported for bird bill size (an anatomical

Nature Ecology & Evolution



Article

https://doi.org/10.1038/s41559-022-01893-x

a b
3,
— 1 ’
43 t
2 S o
= o
g
@ %‘g
¢>1<.) 14 a‘)a
kel
c g—"
‘© 3 S
N 0 hall ]
%) S]
‘53
o2
-1 t 3
w ®
.
21— T T T T

30 40 50

Nl
<P

Fig.3|Onaverage, avian body size (SI) increases over latitude and with
colder temperatures. a, Change in Sl over latitude for 105 species, controlling
for changes over time and elevation. Each thin grey line represents the trend

for one species and the thick black line represents the mean trend across all
species. b, The effect of temperature on variation in Sl across space within each
species as a function of the mean (range-wide) temperature experienced by that
species. Each point represents asingle species. Grey vertical bars represent one
posterior standard deviation of the effect of spatial variation in temperature
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on S, the thick black line represents the linear model fit and the grey ribbon
represents the 89% Cl. The body size-temperature relationship is stronger for
species that experience warmer temperatures. ¢, Predicted body size (SI) over
the range of a representative species, the red-eyed vireo V. olivaceus, based on
the estimated effect of latitude and elevation. Yellow hues represent average, red
hues represent larger than average and blue hues represent smaller than average
predicted SI.

structure which readily dissipates heat)”. Relatively longer wings at
higher latitudes may reflect the longer distances that breeding birds
from more northerly populations tend to travel to complete their
migration. Longer and more pointed wings are thought to increase the
efficiency of long flights and are generally found in populations that
migrate longer distances®>°. For some species, populations breeding
at higher latitudes migrate farther than southern populations, yielding
‘leapfrog’ migration patterns; for other species, equatorward popula-
tions of an otherwise migratory species remain non-migratory>..
Indeed, species known to exhibit leapfrog migrations (for example,
Wilson’s warbler Cardellina pusilla® and fox sparrow Passerella ili-
aca®), as well as migratory species with resident populations in the
southern portions of their ranges (for example, Eastern towhee Pipilo
erythrophthalmus® and white-eyed vireo Vireo griseus®*), here show
pronounced increases in wingyness with latitude (Extended Data
Fig. 4b and Supplementary Table 2). Smaller or even negative effects
of latitude for other species might be indicative of alternative migration
strategies—in which northerly populations do not migrate longer
distances than southerly populations®—as well as the importance of
other factors, such as variation in habitat structure® and/or preda-
tion®, that might also drive variation in wing length.

Morphological variation over elevation

Less well understood is how morphology varies over elevation. Given
decreasing temperatures at high elevations, body size might be
expectedtoincrease (Bergmann’srule applied toelevation). However,
wefind thatbody size generally decreases with elevation (SI ug, , (equa-
tion (11)) =-0.06 SI per 1,000 m, 89% CI (-0.12, 0.00),
P(ug,, <0)=0.96; Extended Data Fig. 3c and Supplementary
Table 2), indicating that, contrary to the general associations found
between body size and temperature over space, pressures unrelated to
thermoregulation dominate over this gradient (potentially reflecting

lower resource availability at higher elevations®). Species with wide
elevational gradients may therefore rely on a variety of behavioural
adaptations, such as facultative altitudinal migration®** and even nightly
torpor*’, to cope with lower temperatures at higher elevations.

In contrast to body size, wingyness strongly increases with eleva-
tion (WI gy, (equation (11)) = 0.32 Wiper 1,000 m, 89% C1(0.28, 0.37),
P (g, > 0) =1; Fig. 4, Extended Data Fig. 4c and Supplementary
Table 2). Elevational trends in both indices are due to countervailing
changesin absolute morphology: body mass decreases (,uwM (equa-
tion (26)) = -1.15% change over species’ elevational range, 89%Cl (-142,
-0.89), Pgile y O) = 1; Extended Data Fig. 7c and Supplementary
Table 3) while wing length increases with elevation (g, ey (equation
(26)) =2.15% change, 89% C1(2.00,2.30), P(y,,,w o> 0) = I;Extended
Data Fig. 8c and Supplementary Table 3). These elevational ecogeo-
graphic relationships for birds are likely due to the key role that air
pressure playsin flight performance. Air density, akey determinantin
the amount of lift that a wing produces, is lower at higher elevations,
necessitating some compensatory measures to maintain flight (i.e.,
morerelative power output vialarger wings and/or lower mass, larger
wing stroke amplitude or increased wingbeat frequency®*).

While large-scale increases in wing size with elevation have been
documented previously, this pattern was (incorrectly) taken to be
indicative of an increase in the size of individuals*’. Our results illus-
trateaclearincreasein winglength withelevationindependent of any
changes in body size (Fig. 4), providing large-scale, cross-taxonomic
evidence for this heretofore unrecognized ecomorphological gradient.
Thisintraspecific pattern ofincreased wing length with elevation har-
monizes observations in some insects*’, among specific groups of bird
species, including hummingbirds (family Trochilidae**) and white-eyes
(Zosterops spp.*') and fromalimited number of single-species studies
(for example, song sparrow Melospiza melodia* and Eurasian tree
sparrow Passer montanus*®).
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Fig. 4| Avian wing index (WI) increases with elevation, showing strong
continental spatial patterns. a, Change in Wl over elevation for 105 species,
controlling for changes over time and latitude. Each thin grey line represents the
trend for one species and the thick black line represents the mean trend across all
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species. b, Predicted wingyness (WI) over the range of a representative species,
the northern parula Setophaga americana, based on the estimated effect of
latitude and elevation. Yellow hues represent average, red hues represent larger
than average and blue hues represent smaller than average predicted WI.

Implications for understanding the impacts of global change
While intraspecific morphological differences are often disregarded
inmacroecological and functional studies, thisimportant element of
biodiversity has major implications for understanding how organisms
are shaped by their environments, how they are likely to respond to
future global change and for the conservation of natural systems*’. For
example, the degree towhich species canrespond to the thermoregu-
latory pressures caused by warming temperatures may impact their
ability to persist in their current ranges®. More frequent extreme
weather events that may resultin large-scale thermoregulatory-related
mortality events*® and chronic sublethal effects of increased temper-
ature may have pronounced effects on populations*. While body size
inNorth American birds has responded to warming temperatures over
time, larger responses to temperature variation over space compared
to temperature variation over time suggest that the rate of morpho-
logical change over time may be evolutionarily and/or plastically con-
strained. Specifically, the average Sl response to spatial variation in
temperature was almost twice as large as the average Sl response to
temporal variation in temperature inthe year of capture (spatial: ug, .
(equation (20)) =-0.37; temporal: y, . (equation (15)) =-0.19;
Fig.5a)—this effect would be even more pronounced for temperature
in the year before capture. Overall, 69% of species responded more
strongly to temperature variation over space compared to variation
over time (Fig. 5b). This raises concern that species may not be respond-
ing rapidly enough over time to keep pace with ongoing climatic
change® The potential for mismatch between species and their envi-
ronments is especially concerning for some bird species—including
thoselivinginhot, arid environments, such as lesser goldfinch (Spinus
psaltria) and chipping sparrow (Spizella passerina)—that may lack
suitable microrefugia in portions of their ranges to buffer them from
especially warm temperatures®.

Conclusions

Morphological responses to thermoregulatory pressures, as well as
the importance of flight efficiency, illustrate how interacting func-
tional trade-offs contribute to observed morphological variation
(Extended Data Fig. 10). Other factors not directly considered in this
study, including additional thermoregulatory factors (for example,
minimum rather than maximum temperatures), habitat characteris-
tics and conditions experienced on overwintering grounds, likely act
in concert with these processes to shape variation within and among
species. Characterizing the interplay between these various factors,
operating over space and time, is key to understanding how morphol-
ogyislikely to changeinto the future, in response to continued abiotic
environmental change. Although the ecological consequences of mor-
phological change and how morphology interacts with other climate
changeresponses—including shiftsinspecies’ ranges*>and the timing
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Fig.5|Avian body size (SI) shows a stronger response to spatial, compared to
temporal, variationin temperature, indicating a failure of species to track
temperature increases as much as expected. a, Change in Sl per 10 °C change
over time (atlag O; y;y; (equation (15))) plotted against change in Sl per 10 °C
change over space (8¢ (equation (19))). Dots represent posterior means for
each species and error bars represent one posterior standard deviation. The red
star represents the cross-species mean. b, The difference between the response
to spatial variation in temperature and the response to temporal variation in
temperature. Negative values represent larger (more negative) responses of
Slto spatial variation in temperature, while positive values represent larger
responses of Sl to temporal variation temperature. Open circles represent the
posterior mean for each species, while the red star represents the cross-species
mean difference.

of seasonal events®—are currently unknown®, the importance of body
size for life history traits**, physiology® and both cross-trophic*® and
intra-trophic” interactions, suggests that the implications of these
changes could be far reaching. Given projected changes in climatic
conditions, continued morphological change and its associated con-
sequences can be expected.

Methods

Morphological data

Bird morphology data were collected as part of the Monitoring Avian
Productivity and Survivorship (MAPS) programme, a collaborative
long-term bird-banding project operating across North America”. Data
were obtained from 1,124 banding stations (Fig. 1), each consisting of
6-20 mist nets, over the period 1989-2018 (although most stations
operated during only a subset of this period). Banding stations were
operated 6-12 times per year, from 1 May to 28 August”, encompass-
ing the breeding season for mostbirdsin North America. Only records
obtained within species’ breeding ranges were used (as determined
annually by banding station operators). While our dataset does not span

Nature Ecology & Evolution



Article

https://doi.org/10.1038/s41559-022-01893-x

the entire breeding range of every species, this lack of complete cover-
ageisunlikely to biasresults given the flexible analytical framework we
use, which allows us to account for spatiotemporal heterogeneity in
these data. Limited sampling at very high latitudes, however, prevents
us from making inference in these areas. For each captured bird, wing
length (distance between the carpal joint and the wing tip, commonly
referred to as unflattened wing chord) was measured to the nearest
millimetre following ref. *® and body mass was recorded to the nearest
0.5 g (ref.™). Birds were aged following criteria summarized by ref. *5,

We restricted our analyses to male birds classified as 'after hatch
year' (captured at least one breeding season after the hatch year of the
bird) to avoid any confounding morphological variation among age
classes and between sexes and changes in female bird mass through-
out the season that may be due to egg production and laying. Other
factors, such as variation in food availability across the season, the
energetic demands of nesting or moult status, might contribute to
noise in these data, although should not bias measures in any way.
All records with body mass or wing length measurements that were
more than five median absolute deviations (MAD*?) away from the
median were excluded, as these probably represented measurement
or data entry errors. If an individual was captured more than once in
a season, only measurements taken during the initial capture were
considered. Only species for which data were available for at least 375
captures (after data filtering) were analysed. In total, morphological
data from 253,488 captures of 105 species, representing two orders
and 18 taxonomic families were used from banding stations spanning
more than43° of latitude (26.1° N to 69.4° N) and 2,996 m of elevation
(Supplementary Table1).

Elevationdata

Elevation datafor eachbanding station were obtained from the 30 arc-
sec resolution (-1 km at the equator) global multi-resolution terrain
elevation data 2010 data product®.

Temperature data

Daily maximum temperature data for each banding station were
obtained over the study period from the 1 km gridded Daymet sur-
face weather data product®. For each year at each site, we calculated
the average maximum temperature from ordinal day (day of year)
121 to ordinal day 212 (1 May to 31July in a non-leap year). We refer to
this annual metric as ‘May-July maximum temperature’. We use this
time window as it generally encompasses the incubation and nest-
ling stages for these species®, where birds are generally constrained
to be at or near their nests. During this period, there may be fewer
opportunities to take advantage of microrefugia that might buffer
individuals from the effects of temperature. We calculated the mean
May-July maximum temperature across years at each station as well
asyear-specific values for temperature at each station to evaluate the
effect of temperature on morphological variation across space and
time, respectively. Species-wide mean temperature values were cal-
culated by taking the mean May-July maximum temperature across
all stations for each species.

Derivation of morphological indices

Two morphologicalindices were derived from data collected on body
mass and winglength foreach bird. The size index (SI) corresponds to
the overallsize of anindividual, while the wing index (WI) corresponds
totherelative (tobody mass) wing length, or ‘wingyness’, of each indi-
vidual. These indices were derived using the expected power law®>**
relationship between these two traits,

W = bMF, (o)

where Wiswinglength, Misbody mass, bis ascalarand cis the scaling
exponent (Fig. 1b,c and Extended Data Fig. 2), denoting how rapidly

wing length increases as a function of mass. This relationship is lin-
earized when taking the log of both sides of the equation,

log (W) = log (b) + ¢ x log(M). (2)

Using species-level mean values for both log(W) and log(M), we
estimated the scaling exponent by applying a phylogenetic regression
(to control for the effect of phylogenetic relatedness on parameter
estimates®) using the ‘caper’ package® in R (ref. ®°) to the linearized
form of the power law relationship (equation (2)). Species-level mean
values were used because we were interested in understanding the
generalrelationship between wing length and body mass and in validat-
ing theoretical expectations of the relationship between these traits.
This scaling exponent represents the null expectation for how wing
length covaries with mass, whether that be within or across species.
We use this null expectation to derive wing and size indices to then
explore how the relationship between these traits varies within species
across time and space. We estimated the scaling exponent for each of
100 phylogenetic trees for the species of interest obtained from Bird-
Tree® (www.birdtree.org) to account for uncertainty in the phyloge-
netic relatedness of these species. The mean of the 100 estimates
(mean =0.333,s.d.=0.002) of the empirical relationship between wing
length and body mass (the scaling exponent) was nearly identical to
thetheoretical expectation, givenisometric scaling principles (where
c= i; mass is expected to be proportional to volume, which scales as
the cube of a linear dimension, such as wing length) and similar to
estimates from other studies®®*’ (Extended Data Fig. 2).

For each species, measurements of body mass and wing length of
individual bird captures were then reprojected onto new axes using
arotation matrix derived from the estimated scaling exponent (the
rate at which wing length is expected to change with body mass). The
rotation matrix was specified as,

©)

cos(6) —sin(6)
[sin(e) cos(8) ]

where @isthe amount (inradians) the dataare to be rotated. We speci-
fied 8 as the negative arc-tangent of ¢ (as applying the arc-tangent
function to the tangent of a triangle (the tangent being equivalent to
theslope ofaline) produces the angle inradians). For each species, we
applied the rotation matrix to logged body mass (LM) and logged wing
length (LW), to reproject the data onto new axes (Extended DataFig. 2),

X' LM
o]

y LW
Thesereprojected data (x’andy’) were standardized withinspecies
(centred and divided by the standard deviation) to create two relative
indices (Sland WI) that represent the overall size of theindividual and

the degree towhichwing length deviates fromits expected value given
the body mass of the individual, respectively,

Xy = =Sl
oxrk !
_ (&)
YuY

where x’'and y’represent the meanand o,,and g, represent the standard
deviationof x’ and y’, respectively, for each species, k, and irepresents
eachbird capture. Thisapproach allowed us toaccount for the expected
nonlinear relationship among these traits when assessing spatiotem-
poral change and provides ameans by which to assess morphological
deviations from an expectation that is rooted in scaling theory and
validated with empirical estimates™. Because of this, we were able to
make inference on changes in the overall size and wingyness of these
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species directly, without the use of additional metrics. This approach
alsoaccounts for variationin morphological change among species of
different sizes (modelling proportional rather than absolute change),
as these indices are standardized within each species. Sl values were
closely correlated with logged mass (mean correlation coefficient
across species = 0.99, range 0.98-1). Wivalues showed astrong correla-
tion to logged wing length (mean correlation coefficient across spe-
cies=0.75, range 0.49-0.88), although not as strong as the relationship
between Sland logged mass.

Morphology as afunction of time, latitude and elevation

We used a hierarchical Bayesian approach to determine how Sland W1
varied within species as a function of time, latitude and elevation. We
fit separate models for each index, that were identical in structure. In
each case, theindex (y,x) for capture i, at banding stationj, for species
kwas modelled as ¢-distributed, as a linear function of time,

Yioxy, ~ tVipx: Hiok,, > Oipx, )»
(6)

Hipx,, = A, + Bipx, X year + Eipx,,

where apy is the species-level intercept term, S« is the effect of year
on the response variable, § is the species-station intercept term,
Oppx is the species-specific process error, v\, represents the degrees
of freedom, controlling the normality of the distribution (resulting
in a Cauchy distribution when v,y =1and approaching a normal dis-
tribution as v, approaches infinity) and the IDX subscript denotes
the association of that parameter with this model (to help distinguish
these parameters from those in other models). The degrees of free-
dom parameter of the ¢-distribution allows for additional flexibility
(compared with the normal distribution) in modelling the structure
ofthe residuals (forinstance when there are ‘extreme observations™°).
Parameter a;,x was modelled as normally distributed,

aipx, ~ N> Oappy)s (7)

where p,,  and o,  represent the meanand standard deviation of a;px
across all species, respectively. Parameter S,,x was modelled as nor-
mally distributed,

Biox, ~ N(ipx,s Oy s (8)

where ok represents the mean effect of year onthe response for each
speciesand gp, represents the process error. Parameter g, was mod-
elled as half-normal (normal but with support only over positive
values),

opx, ~ HN(T4, . Ko )s )

where 7, and k,, represent the mean and standard deviation of gy,
respectively. Process error was modelled hierarchically, as the degree
towhichthese explanatory variables explain that variationinthe data
may vary by species. Parameter 1,,x was modelled as normally
distributed,

’ZIDXk ~ N(ﬂﬂmx ’ g’Ile )’ (10)

where u, and o,  representthe mean and standard deviation of rpx
acrossall species, respectively. The species-stationintercept term, &,
was modelled as alinear function of latitude and elevation,

leXjk ~ N(”fmx/k ? ofmxk )

Hepy, = ViDx, X laty, + Opx, x elevi

VDX, Hypx
~ MVN ,2iox | »
elDXk ”emx

an

where y,px is the species-specific effect of latitude (Iat) on &y, Opxis the
species-specific effect of elevation (elev) on &,y and o, is the
species-specific process error. Parameters y,px and 6, were modelled
as multivariate normal, with means g,  and pq , respectively, and
covariance Y (a2 x 2 covariance matrix). Parameter o, was modelled
as half-normal

o'f‘DXk ~ HN(TOQDX ’ Kolex )’ (12)

wherer, andk, representthe meanandstandarddeviationofog,,
respectively. Wefit all Bayesian modelsin this study using the R package
‘rstan”'tointerface with Stan”?in R (ref. °®). R package ‘MCMCvis”> was
used to summarize, visualize and manipulate all Bayesian model out-
put. General data manipulation and processing was done using the
‘tidyverse’ family of R packages”™. For each model, we ran four chains
for 8,000 iterations each with a warmup of 4,000 iterations. For all
models, Rhat <1.01and the number of effective samples was >400 for
all parameters. Nomodels had divergent transitions’”. Weakly informa-
tive priors were given for all parameters. Stan files with full model
specifications can be found in the archived Github repository associ-
ated with this manuscript. For each parameter that required a prior,
the overlap between the prior and posterior distribution was visualized
and calculated to ensure that the priors were not having an outsized
effect on the posterior distribution. Graphical posterior predictive
checks were used to check that data generated by the model were
similar to the data used to fit the model”. Data simulated from the
posterior predictive distribution were similar to the observed data
(Supplementary Fig.1).

For all model results in the main text, we present posterior mean
estimates for parameters as well as the 89% Cl, following ref. . The
choice of 89%is arbitrary but serves to quantify parameter uncertainty
while avoiding any suggestion that Bayesian credible intervals are
analogous to tests of statistical significance (as might be assumed if
using 95% cutoffs). For each parameter, we also present the probability
thata given parameter is positive (calculated as the proportion of the
posterior thatis >0) as P(PARAMETER > 0), or negative (the proportion
of the posterior that is <0) as P(PARAMETER < 0). Scenarios in which
P(PARAMETER > 0) or P(PARAMETER < 0) are near 0.5 indicate that a
positive relationship is equally likely as a negative relationship.

To create species maps for Figs. 2¢, 3c and 4b, we used range maps
obtained fromref.””. Estimated effects of latitude and elevation were
used to predict values for Sland Wlacross the range of these species.
ForFig.3c, we excluded all areas >2,000 m when making predictions
for the Sl for red-eyed vireo (V. olivaceus). This was done to avoid
making predictions outside the elevational range of this species
in the Rocky Mountains—the range maps used did not incorporate
elevationinformation and 2,000 m s the elevational range limit for
this species™.

Body size as a function of temporal variation in temperature
To quantify how intraspecific variationin size across timeis influenced
by temperature, we modelled Slas afunction MT (May-July maximum
temperature at each station). The response variable (y;y1) for capture
i, banding stationj and species k was modelled as ¢-distributed, as a
function of MT,

Yivry ~ Vvr, Hivey,, Otvr,)
13)
Hrvry, = ATvry +ﬁTVT/k x MT,

where a1 is the species-station-specific intercept term, By is the
species-station-specific effect of temperature on the response vari-
able, oy, is the species-specific process error, vy, represents the
degrees of freedom and the TVT subscript denotes the association
of that parameter with this model. Parameter a;,; was modelled
normally distributed, as a function of MST (deviations of May-July
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maximumtemperature fromspecies-specific range-wide temperatureat
each station),

arvr, ~ N(Ilamj . Ouryr)
Ilamjk = prvr, + rvr, X MSTj
PrvT, H
k ] ~ MVN ([ Pvt ] ,zuwr>
Grvr, Her
where p;y7 is the species-specific intercept term, {;y is the
species-specific effects of MST on ayrand o, represents the process
error. Parameters pr,; and {3, were modelled as multivariate normal,

withmeans y, and g, ,respectively,and covariance %, (a2 x 2 covari-
ance matrix). Parameter S;,; was similarly modelled asafunction of MST.

14)

ﬂ TVTj ~ N(ﬂﬁrwjk 2 oﬂTVT)
ﬂﬁmjk =Vt t+ GTVTk x MSTj
Vvt U
[ k ] ~ MV ([ N :| ’ZBTW>
BTVTk Horyr
Both the intercept (a1y;) and slope (B;y1) at each species-station
were modelled as afunction of mean station temperature because both
the overall size and the effect of temporal variation in temperature

might be expected to vary across this gradient. Parameter o1, was
modelled as half-normal,

s

orvr, ~ HN(T5 1 Koy ), (16)

where 1, and k,, represent the mean and standard deviation of oy,
respectively.

We fit three identical versions of this model, using temperature
datain the year that the morphological datawere collected (lag 0), as
wellastemperaturelyear (lagl) and 2 years (lag 2) before data collec-
tion, to explore the effect of temperature on morphology (thatis, the
effect of temperature inyear ¢, t —1and ¢t - 2 on morphology in year t)
during the potential hatching summer and subsequent summers and
toaccount fortheuncertainty and variability in the ages of these birds
(all of which were known to be adults). For each model, we ran four
chainsfor 6,000 iterations each with awarmup of 3,000 iterations.

Body size as a function of spatial variation in temperature

Toquantify howintraspecific variationin size across spaceisinfluenced by
temperature, we modelled Slasafunction of MT (mean May-July maximum
temperature at each station across all years). The response variable (ys,1)
for capturei,bandingstationjand species kwas modelled as t-distributed,

Yovty ~ tVsvT: Byt Osvr,)
17)
Hsvty, = Qsyr, + €SVTjks

where ag,; is the species-specific intercept term, & is the
species-station-specific intercept, gy is the species-specific pro-
cesses error, Vg, represents the degrees of freedom and SVT denotes
the association of each parameter with this model. Parameter a,; was
modelled as normally distributed,

Asvt, ~ Nlag; > Oagyr)s 18)

where p, and o, represent the mean and standard deviation of agy,
respectively. Parameter &, was modelled as normally distributed, as
afunction of MT,

é‘SVTJI( ~ N(”fsw/k »Oggr)

By, = Bsvr, X MT,

where By, is the species-specific effect of MT and o, is the process
error. Parameter S5, was modelled as normally distributed,

ﬂSVTk ~ N(I'lﬂsw » OBsyr ) (20)

where g, and gg, represent the mean and standard deviation of By,
respectively. We ran four chains for this model for 8,000 iterations
each with awarmup of 4,000 iterations.

To assess how responses to temperature varied across species, we
modelled the species-specific effect of spatial variation of temperature
on S (Bsyr; the posterior mean of g, (equation (19)), derived from the
above model) and associated uncertainty as a function of ST (mean
cross-station temperature within each species’ range). Parameter fqyy
was modelled as normally distributed, with mean rg; and standard
deviation O (the posterior standard deviation of B¢, (equation (19)),
derived from the above model),

Bsvr, ~ N(”sm’ O;g;;k') , (21)
where SR denotes the association of each parameter with thismodel. In
thisway, the uncertainty in the species-specific estimates of the spatial
temperature effect is propagated through these analyses. Parameter
T,y Was modelled as multivariate normal, as a linear function of ST,
in a manner that accounts for the phylogenetic non-independence
between species (following refs. %),

Msg, ~ MVN (HnSRk,ZSR X UnSR)

Hrg, =VsR + Osg x ST (22)

ZSR = ASR X zdis + (1 - ASR) x 1,

whereygzistheinterceptterm, O isthe effect of ST onthe response vari-
ableand o, isthe process error. Parameter } 4 is a phylogenetic covari-
ance matrix, standardized such that the diagonal elements have a value
of 1. The off-diagonal elements of } ;;, describe the pair-wise phylogenetic
distances between the 105 species included in this study. The phyloge-
netic covariance matrix was calculated from a consensus phylogenetic
tree (using the ‘phytools’ package® in R) on the basis 0f 100 trees for the
species of interest obtained from BirdTree®. Parameter A is Pagel’s
lambda®, whichrepresents the degree to which phylogenetic relatedness
contributes to variation in gz, where values near O (the lower bound of
the parameter) indicate low phylogenetic signal and values near 1 (the
upper bound of the parameter) correspond to variation following a
Brownian motion model of evolution®® and/is an identity matrix. We ran
this model for 1,000 iterations with awarmup of 500 iterations.

Back-transformation of effect sizes to trait space

Steps outlined by equations (1)-(5) were implemented in reverse, to
calculate the response of absolute morphological measurements (body
mass and wing length) to variation over time, latitude and elevation,
using posterior estimates for the effects of these predictors on Sland
WI. That is, for each species the effect sizes (posterior estimates) of
these covariates on Sland Wiwere multiplied by the standard deviation
ofx’andy’ (o,,and g,, respectively),

‘px,’( = ¢Slk X oxL
(23)
by, = Pw, X0y,

where ¢p5 and ¢, are the effect of agiven covariate on Sland WI, respec-
tively, for eachspecies (k) and ¢,,and ¢,,represent the unstandardized
effects of the covariate for each species. Parameters ¢,,and ¢,, were
thenrotated using the transpose of R (equation (3)),

[ ¢LMk ] [ ¢X/k ]
=R , (24)
brw, by,
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where ¢, and ¢,,, represent the effect of a given covariate on the
logged absolute morphological metrics, LM (logged mass) and LW
(logged wing length), for each species. This transformation has the
effect of rotating data in the opposite direction of the rotation per-
formedinequation (4).Since ¢, yand ¢,,, represent an effect sizeinlog
space, when exponentiated, these metrics represent the multiplicative
change in (unlogged) mass and wing length for each one-unit change
in a given covariate. Subtracting one from this value and multiplying
by 100 gives the percentage change in that metric. To determine the
percentage change in mass (w,) and winglength (w,,) over the tempo-
ral, latitudinal and elevational range at which data were collected for
each species, we exponentiated the product of ¢, and L (for mass)
and the product of ¢,,, and L (for wing length), subtracted one and
multiplied by 100,

= ((e?™>) —1) x 100

chovk

@5
Bwegy, = (") —1) x 100,

where L represents the total number of covariate units (thatis, 30 years,
the latitudinal range in degrees for a given species or the elevational
rangeinmetres for agivenspecies) and COV represents time (wy,,, O
Ww,,,), 1atitude (wy,,, or wy,,,) or elevation (oy,,,, or wy, ). This was
doneateachiteration of the posterior for the estimated effect of year
(Biox equation (6)), latitude (y;px; equation (11)) and elevation (6py;
equation (11)), providing a posterior distribution for wy_, and ow,,.
To calculate the cross-species mean percentage change in mass and
winglength, we calculated the mean of wy, . and y, acrossall species
at each posterior iteration, represented by Hoyey, and Howeyy
respectively,

N
Lzt WMcoy,
H Oncoy N
26
, 26)
Dkt OWeov,
Ho, =—Qn
Weov N

where Nis the number of species.

Rate of morphological change

To compare the observed rates of phenotypic change in this study to
observed rates of evolutionary change in other taxa, we calculated
changeinlogged massinterms of haldanes (h),

g

h= , @7

where x, and x; are the mean values for a morphological trait of inter-
estattwo time points, s, is the standard deviation of the traits (pooled
across time) and gis the number of generations that are likely to have
occurred between the two time points®. This measure, first proposed
by ref.®*, represents the magnitude of phenotypic change in standard
deviations per generation.

For each species, we predicted logged mass at the beginning (x;)
and end (x,) of the 30-yr study period by subtracting and adding
Pimy, X 15(where ¢y, is fromequation (24), representing change in
logged mass per year), respectively, from mean logged mass. We cal-
culated the within-population standard deviation across all years at
each station and took the mean value of this standard deviation across
stations (s,) for each species. We used information on generationlength
from ref. ® to calculate the number of generations (generation
length/30) for a particular species over this time period (g).

Previous work has suggested that rates of evolutionary change of
|h] = 0.1-0.3 standard deviations per generation are rapid® and that the
maximal rate of phenotypic change that can be sustained indefinitely

is -0.1 phenotypic standard deviations per generation®. For all spe-
ciesinthisstudy, |a| < 0.1. Rates of phenotypic change were similar to
those observed in other taxa undergoing anthropogenic disturbance
(Extended Data Fig. 9)%¢.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Datafromthe MAPS programme are curated and managed by The Insti-
tute for Bird Populations and were queried from the MAPS database on
16 October 2019. MAPS data used here are available on Dryad (https://
doi.org/10.5068/D1DT2T).

Code availability

All code used to produce analyses are freely available on Github (https://
github.com/caseyyoungflesh/MAPS_morph_changes) and archived on
Zenodo (https://doi.org/10.5281/zenodo.6977666).
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Extended Data Fig. 1| Morphological data availability over time. Each horizontal line represents one of 1124 MAPS stations. Stations are ordered by latitude, from
north (top) to south (bottom).
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Extended Data Fig. 2| Derivation of morphological indices. (A) Logged

wing length as a function of logged mass for the 105 bird species considered in
this study. Points represent mean values for each species. (B) The relationship
between wing length (W) and mass (M) can be described by a power law, where
crepresents the scaling exponent. Logging both sides of the equation linearizes
this model. Using a phylogenetic regression, c was estimated to be approximately
1/3 across species, as predicted by scaling theory. The negative arc tangent of this

<2 Size Index tﬁj

estimate (to convert the slope to radians) was used to create a rotation matrix.
(C) For each species, the rotation matrix was used to reproject logged wing
length and logged mass onto a new coordinate plane (top panel). Values for both
the xand y axes were standardized to have a standard deviation of 1, to create a
sizeindex and wing index, representing the overall size of each individual bird
and the degree to which wing length deviates from its expected value given the
body mass of the individual, respectively (bottom panel).
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Data collection All data were collected according the MAPS program protocols, as part of the MAPS program.
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supplementary materials, as are the samples sizes and spatial sampling ranges for each species.

Data exclusions For each species, morphological records more than five median absolute deviations away from the median (considered extreme
outliers) were excluded, as these records likely represented measurement or data entry errors.
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Laboratory animals No laboratory animals were used in this study.

Wild animals Birds were captured in accordance with protocols set forth by the United States Geological Survey Bird Banding Laboratory and data
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Field-collected samples  No field-collected samples were used.

Ethics oversight All birds were captured and banded by MAPS participants under bird banding permits issued by the United States Geological Survey
Bird Banding Laboratory.
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