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Abstract

Mountains hold much of the world’s taxonomic diversity, but global climate change threatens
this diversity by altering the distributions of montane species. While numerous studies have
documented upslope shifts in elevational ranges, these patterns are highly variable across
geographic regions and taxa. This variation in how species’ range shifts are manifesting
along elevational gradients likely reflects the diversity of mechanisms that determines eleva-
tional ranges and modulates movements, and stands in contrast to latitudinal gradients,
where range shifts show less variability and appear more predictable. Here, we review
observed elevational range shifts in a single taxonomic group—birds—a group that has
received substantial research attention and thus provides a useful context for exploring vari-
ability in range shifts while controlling for the mechanisms that drive range shifts across
broader taxonomic groups. We then explore the abiotic and biotic factors that are known to
define elevational ranges, as well as the constraints that may prevent birds from shifting.
Across the literature, temperature is generally invoked as the prime driver of range shifts
while the role of precipitation is more neglected. However, temperature is less likely to act
directly on elevational ranges, instead mediating biotic factors such as habitat and food
availability, predator activity, and parasite prevalence, which could in turn modulate range
shifts. Dispersal ability places an intrinsic constraint on elevational range shifts, exacerbated
by habitat fragmentation. While current research provides strong evidence for the impor-
tance of various drivers of elevational ranges and shifts, testing the relative importance of
these factors and achieving a more holistic view of elevational gradients will require integra-
tion of expanding datasets, novel technologies, and innovative techniques.

1 Introduction

Mountains are foci of global biodiversity [1]. Steep environmental gradients [2] coupled with
complex geological and climatic histories [3] combine to produce elevational gradients rich in
species [4], endemism [5], and ecosystem function [6]. Despite only covering 25% of all land
area, mountainous regions harbour more than 85% of the world’s bird, mammal, and amphib-
ian richness [1].

Global climate change poses one of the greatest threats to biodiversity [7], particularly in
montane regions [8]. Increasing temperatures are generally predicted to push species to higher
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elevations [9], causing high rates of extinction [10], especially when combined with limited
dispersal ability [11]. An ever-increasing number of empirical studies have documented
upslope shifts [12-15], even resulting in localised mountaintop extinctions [16]. However, the
distributional responses of populations to climate change are diverse, with shift rates lagging
behind predictions [17], and many species even shifting downslope [18,19]. This variation
makes understanding elevational range shifts difficult.

Birds are an exemplary group within which to study elevational ranges and shifts. Birds
have been the inspiration and test subjects of numerous foundational ecological principles
[20-22] and a century or more of avian research along elevational gradients has produced a
wealth of data on the spatial distributions of birds. Furthermore, the ease with which birds can
be monitored makes them an ideal group to test hypotheses about elevational range limits, and
the ever-growing repositories of spatiotemporal [23], trait [24], physiological [25], and move-
ment data [26] provide numerous burgeoning avenues for future research. As consumers,
birds occupy a variety of trophic levels [27] and perform numerous ecosystem functions [28].
This connectivity within food webs makes birds a critical group to study. Moreover, as homeo-
therms, the ways in which climate change may alter bird distributions are more complex than
for ectotherms [29].

Here, we review what is known about elevational range shifts in birds. We begin with an
overview of evidence for elevational shifts. We then discuss the abiotic and biotic factors that
determine elevational ranges and that could therefore mediate range shifts. These factors
include climate, bottom-up effects, top-down control, competition, and dispersal and land-
scape constraints. We finish by outlining research gaps and highlighting future directions.

2 Evidence of elevational shifts

In this section we provide a brief overview of studies that have documented shifts in the eleva-
tional distributions of birds. Research tends to determine elevational shifts based on changes
in range margins (e.g., minimum, maximum, or 95% range limits) or changes in central ten-
dency (mean or median elevation). Studies make use of a wide range of methods to determine
these metrics, including point counts, mist nets, audio recordings, and citizen science surveys,
with measurements occurring continuously or at discrete time points. We choose to divide
this section geographically into studies in temperate regions versus studies in tropical regions
because the literature falls mostly into those discrete groups, although we acknowledge that lat-
itude is, of course, a gradient. We do not go into detail for each study, and we save discussion
of possible underlying mechanisms for later sections. We use this section to highlight com-
monalities and differences in findings and underlying methodologies across the world.

2.1 Shifts in temperate birds

As with most empirical studies of global change impacts [30,31], research on elevational shifts
has been biased towards temperate regions (Fig 1). Most early research on elevational distribu-
tions came from the mountain ranges of Europe where initial signals of climate change were
weak. For example, in the French Alps, Archaux [32] detected no significant change in the
mean elevations of 24 bird species over 25 years. Similarly, overall shifts among 61 bird species
in the Italian Alps were not statistically significant, despite the fact that upslope shifts were
detected in 69% of species [33]. As an island comparison, Massimino et al. [34] found no evi-
dence of consistent changes in elevation for 80 species over 15 years of breeding bird surveys
in the United Kingdom. Indeed, in one study in the Guadarrama Mountains of Spain, 42 spe-
cies were actually found on average to have shifted downslope over four decades [35].
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Fig 1. The distribution of research on elevational shifts in birds. Countries are coloured by the number of studies from 1 (dark purple) to 7 (yellow), with 0
studies in grey. A single study (Peh 2007) was conducted across Southeast Asia, including Myanmar, Cambodia, Laos, peninsular Malaysia, Thailand, and

Vietnam.

https://doi.org/10.1371/journal.pcim.0000174.g001

Other studies in Europe have managed to detect the expected signal of increasing tempera-
tures on elevational distributions. One of the first such studies demonstrated an upward shift
in White Stork (Ciconia ciconia) nest sites in the Tatra Mountains of Poland [36]. In the nearby
Giant Mountains of the Czech Republic, Reif and Flousek [37] detected upslope shifts in 78%
of species over a decade of recent warming temperatures. In the Swiss Alps, Alpine Rock Ptar-
migan have rapidly shifted upslope (Lagopus muta helvetica) [38]. In a broader study of 95
Alpine bird species, Maggini et al. [39] found that 35% of species shifted upslope compared to
29% shifting downslope; this asymmetry in proportions has been corroborated more recently
[40]. The result of these shifts is that bird communities at higher elevations increasingly resem-
ble the community composition of lower elevations [41]. While most European studies
spanned time periods of less than 30 years, a resurvey of the upper range limits of plants,
insects and birds in Bavaria over a century after initial surveys demonstrated upslope shifts in
birds consistent with increasing temperatures over the century [42]. Nevertheless, the eleva-
tional responses of European birds to climate change are highly variable [40].

A lack of consistent findings in Europe [43] has been mirrored in North America. For
example, in the Breeding Bird Atlas of New York State, the mean elevation of 123 species
shifted downslope over 20 years, despite little change in their elevational range limits and
upslope shifts in resident species [44]. By contrast, another study from New York in the Adi-
rondack mountains found a majority of upslope shifts in upper and lower range limits with an
overall shift in mean elevation across 42 species [45]. Nearby in the White Mountains of New
Hampshire, DeLuca and King [46] found that the upper elevational limits of low-elevation spe-
cies shifted upslope over 16 years while the lower limits of high-elevation species shifted down-
slope [46]. Comparatively less research has taken place in the western half of the continent, but
USGS Breeding Bird Surveys across Western North America have been used to show upslope
shifts in the upper limits of 40 species over three decades [47], while a study from Denali
National Park, Alaska, found upslope shifts in most bird species, particularly those associated
with shrub-tundra [48].
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Of the western states, California boasts one of the most comprehensive multi-taxa historical
resurvey efforts, the Grinnell Resurvey Project [49-52]. Although the project has resurveyed
habitats across the biogeographically diverse state, several papers have looked explicitly at ele-
vational range shifts in the Sierra Nevada Mountains. Using data that spanned up to a century
of environmental change, Tingley et al. [19] found that elevational range shifts were common
but that across 100 species shifts were nearly evenly split between upslope and downslope
movements [19]. Despite this heterogeneity in elevational direction, species were found to be
tracking climate in a predictable manner [53], with particular emphasis on precipitation
explaining downslope shifts and temperature-as is usual-explaining upslope shifts [19].

Across these studies from Europe and North America an overall-or “average”-signal of
upslope elevational shifts can be found, however this signal is relatively weak [13], and the
studies highlighted above demonstrate the lack of consistency in findings across space and
time. A lack of consistent signal in elevational range shifts for temperate species could result
from contrasting drivers of elevational shifts [19], from other adaptive responses such as latitu-
dinal shifts [12,34,44,47], or from concurrent adaptations in other ways that compensate for
increasing temperatures, such as shifts in breeding phenology [54]. Perhaps research on these
alternative responses to climate change-especially at low elevations—has led to a relative lack of
research along elevational gradients compared to other parts of the world.

2.2 Shifts in tropical birds

Tropical mountains have long been the focus of ecologists interested in the narrow elevational
ranges and high species turnover of montane communities [55-57]. From a long-term moni-
toring study in Monteverde, Costa Rica, Pounds et al. [58] provided one of the earliest signs
that tropical montane birds may be shifting upslope in response to increasing temperatures.
There, between 1979 and 1998, the abundance and richness of “premontane” (cloud-forest-
intolerant) species increased over time in a mid-elevation study plot, suggesting an upslope
shift in that assemblage, while certain foothill species established breeding populations and
increased in density over time.

Since this landmark work, the number of studies documenting upslope elevational shifts in
tropical birds has remained relatively low. This paucity of research likely reflects a lack of care-
fully standardised and available baseline or time-series data with which to calculate trends over
time [59,60]. Many attempts to quantify tropical elevational shifts have had to make use of less
traditional data sources. For example, Peh [61] used field guides published 25 years apart to
estimate elevational shifts for 306 common resident bird species in Southeast Asia, finding
upslope shifts (>100 m) for 31% of species and downslope shifts for 12% of species. Similarly,
old field guides have also been used to document birds in Rwanda occurring at elevations far
higher than expected [62]. In Borneo, Harris et al. [63] used a combination of sources-includ-
ing checklists, field surveys, trip reports, photos, and other historical and contemporary
sources—to infer elevational shifts in birds for two-thirds of species with sufficient data [63].
Sometimes such creative and integrative methods are the only way that elevational shifts can
be studied.

While not all tropical regions have the baseline data required to make temporal compari-
sons, tropical ornithologists, like temperate ones, have used the revisitation of elevational tran-
sects to study shifts in elevational ranges. In contrast to temperate regions, however, most
tropical resurveys have been more conclusive in their findings of consistent upslope shifts. In
New Guinea, for example, resurveys of a central mountain and an offshore island found that
bird communities in both locations shifted their upper and lower elevational limits upslope by
over 100 m over four decades, exceeding the predicted shifts based on temperature increases
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[64]. In the Peruvian Andes, another resurvey found upslope shifts in the bird community
over a similar timeframe [17]. These shifts were, however, one third of the expected shift based
on local temperature increases. Farther south in Peru, Freeman et al. [16] recorded the first
substantial evidence of localised mountaintop bird extinctions from a three-decade resurvey.
Here, at least five ridgetop species historically recorded could not be re-found despite extensive
survey effort, with statistical evidence supporting the disappearance of four of those species. In
addition, range contractions and population declines were detected in the majority of higher
elevation species, while lowland species expanded their ranges into higher elevations [16]. In
comparison to these resurveys of continuous forest, a study in fragmented forest in Tanzania
detected upslope shifts across 29 species over 40 years, but these shifts were driven predomi-
nantly by contractions in species’ lower elevational range limits [65]. In contrast, a shorter-
term study in Puerto Rico is the only published tropical resurvey to not find an elevational
shift in birds [66].

Although resurveys have been able to capture changes in elevational ranges over long time
periods, continuous datasets have been used to examine changes over shorter time periods.
For example, a study in Rwanda used extensive point count surveys to demonstrate upslope
shifts over 15 years, particularly in species’ lower range limits [67]. In a similar study in Hon-
duras, Neate-Clegg et al. [68] used standardised annual surveys to show elevation-dependent
changes in bird diversity: as species richness increased at higher elevations, it decreased at
lower elevations, indicating upslope shifts in the bird community, and these trends were sup-
ported by increases in the elevation of several common cloud-forest species [68]. At a larger
spatial scale, bird monitoring of 42 species across the Australian Wet Tropics has revealed pat-
terns consistent with the rest of the world, with decreases in relative abundance of high eleva-
tion species at their lower limits concomitant with increases in the relative abundance of
lowland species at higher elevations [69]. While annual monitoring is costly and labour inten-
sive to maintain [60], the fruits of this labour can be high temporal resolution of changes to ele-
vational ranges in a way not afforded by snapshot resurveys [67].

Could citizen science data circumvent issues of monitoring cost? Girish and Srinivasan [70]
recently used eBird data from fixed hotspots in the eastern Himalayas to detect elevational
shifts over time. They found that lower elevation species were increasing in occurrence proba-
bility while higher elevation species decreased, findings consistent with the long-term moni-
toring programs above. As citizen science data continue to accumulate over time, we may have
more ways to detect elevational shifts in the future and at increasingly greater scales.

2.3 Comparing temperate and tropical shifts

In contrast to studies in temperate regions, tropical studies have demonstrated consistent
upslope shifts along elevational gradients [13,71]. This difference in overall signal could result
from several factors [13]. First, tropical species occur over narrower elevational ranges than
their temperate counterparts and are thought to be more sensitive to increased temperatures
due to the reduction in daily and annual temperature variability in the tropics [57,72-74]. Sec-
ond, while temperate species can respond to a warming climate by shifting along other thermal
gradients, such as seasonal and latitudinal temperature gradients [44,54,75], the relative cli-
matic stability of the tropics over time and latitude means that there are fewer thermal gradi-
ents for species to respond to, making elevational shifts the most likely response [2]. Third, the
fact that there are simply more montane species in the tropics compared to temperate regions
might make it easier to detect statistically-significant shifts [13], a point underscored by the
lack of a consistent shift in species-poor Puerto Rico [66]. However, average signals of upslope
shift in the tropics still belie a great deal of heterogeneity in shift rates and even shift direction,
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with many species shifting downslope despite overall upslope trends [15,71]. Some of this vari-
ation could be explained by changes in population size driven by other anthropogenic factors
such as habitat change, causing range margins to expand or contract [32,40,76]. It is also
important to note that, in reality, bird communities across latitudes do not fall into two dis-
crete bins-temperate versus tropical-and avian responses to climate change are unlikely to be
as neatly binned either [13]. More research is needed to fill in biogeographic gaps in montane
studies (Fig 1), including subtropical mountain ranges in North America and Asia, as well as
temperate regions of the Global South, such as Chile, Australasia, and Southern Africa [43].

3 Abiotic determinants of elevational ranges

To understand climate-induced elevational shifts, it is critical to understand the determinants
of elevational ranges. The implicit-and sometimes explicit-assumption of upslope elevational
range shifts is that the elevational ranges of species are limited by temperature. When tempera-
tures increase over time, species are predicted to shift upslope to cooler areas in order to track
their preferred thermal envelope [77]. It is also often assumed that the observed “failure” of
species to perfectly track increasing temperatures is evidence for some kind of lagged response
[17,78]. However, both the fundamental and realised niche of a species is defined by more
than just temperature [21,79-81], including other climatic factors such as precipitation [82],
non-climatic abiotic factors such as oxygen availability [78], and biotic interactions [79]. These
factors may constrain elevational shifts or induce elevational shifts themselves (Fig 1). In this
section we explore the abiotic factors that shape elevational ranges and how these factors
might drive elevational range shifts.

3.1 Temperature

In the literature, there has long been an association between species’ elevational ranges and
their thermal tolerances. In particular, temperatures are thought to more strongly limit the
cold edge of a species’ range—that is, the upper elevational limit [22,83]. Given that elevational
ranges are associated with thermal envelopes [57], the assumption that species would shift
upslope with increasing temperature seems well justified. Indeed, the fact that most observed
elevational shifts are upslope would appear to support this reasoning [13]. However, this evi-
dence is largely correlational. On one hand, increasing temperatures may be causing direct
changes in species distributions, but they may also be acting indirectly via biotic pathways
[84]. Evidence is needed to demonstrate whether temperature actually plays a direct or proxi-
mal role in determining distributions [84]. Searching for the direct role of temperature usually
involves an investigation into physiology and thermal tolerances [79]. Adult birds maintain a
stable internal body temperature, usually around 39-41°C [85]. There exists a narrow range of
ambient temperatures—known as the thermal neutral zone (TNZ)-over which birds can main-
tain this body temperature while at their basal metabolic rate [86]. Below a lower critical tem-
perature (LCT), they must expend additional energy on heat production; above an upper
critical temperature (UCT), they must expend energy on evaporative heat loss [87]. An impor-
tant question is whether species along elevational gradients are constrained by these or other
thermal physiological thresholds.

There has been an increasing array of studies demonstrating the negative effects of
increased temperatures on birds in wild settings. Most of these studies demonstrate sub-lethal
impacts of high temperatures on birds which could plausibly lead to lower fitness consistent
with temperature limiting the fundamental niche. For example, in the Kalihari Desert, hotter
periods are thought to lower foraging efficiency in adult Southern Pied Babblers (Turdoides
bicolor), causing them to lose weight [88]. Likewise, in the summer months, Rufous-eared
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Warblers (Malcorus pectoralis) reduce preening, foraging effort, and foraging success in favour
of increased evaporative cooling and time in the shade [89]. Even in larger-bodied species that
are supposedly better buffered against heat [90], such as the Southern Yellow-billed Hornbill
(Tockus leucomelas), fledging probability and fledgling weight decrease with increased temper-
ature [91]. Species at higher elevations are not immune either, as Cape Rockjumpers (Chaetops
frenatus) reduce provisioning rates with increasing temperature, leading to lower nestling con-
dition [92]. Besides these single-species studies, McKechnie and Wolf [93] predicted that
increasing temperatures are expected to increase water requirements and decrease the time
taken to reach dehydration for desert birds. Furthermore, Conradie et al. [94] projected that
future warming will bring greater exposure of Kalahari bird species to long-term, sublethal
effects of temperature that result in weight reduction, lower nestling growth, and increased
breeding failure [94]. Ultimately, these chronic effects could cause population declines and
community collapse [95].

These studies of extreme desert climates convincingly demonstrate the negative effects of
increasing temperatures in the warmest environments, but are these findings representative of
birds in general, and particularly those along elevational gradients? An early study in France
found that heatwaves more strongly reduced the population growth rates of those species with
narrower elevational ranges [96]. In Southern California, Black-throated Sparrows (Amphis-
piza bilineata) along arid elevational gradients exhibited higher breeding success at higher ele-
vations as lower elevations become too hot [97]. Along tropical elevational gradients,
temperature has also been linked to species richness in the Bolivian Andes [98], and to the ele-
vational distributions of species in Rwanda [99] and the Himalayas [100,101]. In Rwanda,
interannual changes in the elevational distributions of birds showed little association with tem-
perature fluctuations [67]. These studies, however, are largely correlational.

Experimental results that demonstrate direct physiological roles for temperature in struc-
turing elevational ranges should provide better evidence than correlational studies; surpris-
ingly, results from such physiological studies are far more equivocal than similar correlational
ones. For example, in New Guinea, LCTs and thermal conductance (the rate of increase in
metabolic rate below the LCT) were unrelated to the temperatures that 24 species experienced
at their upper elevational limits [102]. Across >200 species in Peru, Londono et al. [103,104]
demonstrated that elevational distributions did not predict basal metabolic rates but did pre-
dict thermal conductance, body temperature, and LCT, meaning that higher elevation species
were more resistant to heat loss. Nevertheless, the limits to acute cold tolerance in these species
were not constrained by elevation [104], nor was there evidence that high temperatures in the
lowlands would prevent downslope shifts. An even stronger experimental design is to manu-
ally transplant organisms to higher elevations and measure their physiological performance
and acclimatisation [105]. While such experiments are exceedingly rare, in Anna’s humming-
bird (Calypte anna), experimental upslope shifts resulted in facultative adaptation through
increased and more efficient torpor, suggesting cold temperature alone is not a limit to upslope
movements in this species [106]. Thus, despite strong correlational work, experimental evi-
dence that temperature directly constrains the elevational ranges of birds is scant.

Single-system studies limited by sample size may be unable to find consistent thermal con-
straints in birds; do broader-scale studies find stronger signals? Globally, Araujo et al. [107]
found that variation in LCT's across 70 bird species was much higher than variation in UCTs,
which are evolutionarily constrained. However, within these 70 species, there was a general
lack of correlation between LCT and ambient temperature, implying little causality. On the
other hand, the TNZ has been shown to correlate with the latitudinal distribution of species,
driven mainly by variation in LCT [108], yet few species currently experience ambient temper-
atures above their UCT. In a more recent study, Pollock et al. [25] cast doubt on these findings.
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Their study demonstrated that temperate species had higher UCTs and heat tolerance limits
(the ambient temperature at which hyperthermia sets in) than tropical species. However, they
also found that both temperate and tropical species exhibited similar thermal safety margins
(the difference between UCT and maximum ambient temperature) and levels of warming tol-
erance (the difference between heat tolerance limit and maximum ambient temperature).
Moreover, even projected warming was expected to be within the thermal safety margins of
most species. In other words, most bird species—regardless of latitude—are unlikely to exceed
their physiological limits to temperature even under future warming scenarios.

Across these studies it appears that most bird species (excluding those in the very hottest
environments) can tolerate temperatures far warmer and far colder than they currently experi-
ence. Observed elevational shifts are therefore less likely to be driven by the physiological
responses of birds to temperature change. Most studies, however, focus on adult birds which
are insulated by their feathers and able to move to preferred microclimates [109]. More
research is needed to investigate the thermal constraints faced by eggs and nestlings [54,92],
which are expected to be more sensitive to changes in temperature [110]. Furthermore,
weather-induced stress could also modulate biotic interactions such as parasite tolerance
[111].

3.2 Precipitation

In matters of climate change, species distributions are generally foremost linked to tempera-
ture envelopes. A more neglected association is how species distributions are affected by rain-
fall, i.e., the hygric niche [82]. As with temperature, species along elevational gradients
experience a range of precipitation regimes. However, unlike temperature, the mechanisms
invoked to explain the hygric niche are more often biotic than abiotic. Primarily, rainfall is
linked to vegetation which, in turn, provides bottom-up structure to bird communities [112].
Less often discussed, but still potentially important, is the direct role of precipitation on species
distributions [82].

There is a lot of evidence to suggest that precipitation indirectly constrains the ranges of
birds [113], as habitats are partly defined by their precipitation regimes so the habitat associa-
tions of birds are necessarily linked to precipitation. Even within a habitat, fluctuations in rain-
fall can affect population dynamics. For example, over 33 years in Panama, Brawn et al. [114]
found that the population growth rates of a third of focal species were reduced in years with
longer dry seasons. Similarly, in the western United States, droughts were found to reduce pro-
ductivity and adult survival across 51 desert species [115]. However, responses to changes in
rainfall can vary greatly within bird communities as some species respond positively to
increased rainfall, and others negatively [116]. Even within a single species, rainfall regimes
have contrasting effects on breeding phenology in different parts of their range [117], demon-
strating the difficulty in predicting responses to changing patterns of precipitation [82].
Despite the assumed indirectness of precipitation in these demographic studies, little research
has demonstrated the mechanisms involved.

In addition to indirect effects, there are numerous ways in which rainfall could directly
limit a species’ range [82]. At the wetter end of the spectrum, abnormally high levels of precipi-
tation could cause damage to nests [118], lead to bacterial or mould-based mortality of eggs
[119] (arguably an indirect effect), or increase thermoregulatory costs (particularly in cooler
temperatures). At the drier end of the spectrum, low amounts of rainfall could limit the avail-
ability of drinking water, cause egg desiccation [120], and reduce the ability to evaporatively
cool [121]. However, many of these direct effects are only likely to be felt at the extreme ends
of the precipitation spectrum where most bird species do not live.
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Along elevational gradients, the elevational ranges of birds can show strong associations
with precipitation independent of habitat. In one region of Rwanda, van der Hoek [99] showed
that precipitation was associated with the lower elevational limits of roughly half of the species
studied. Can precipitation also predict elevational shifts? In another region of Rwanda, birds
were found to expand their elevational ranges both upslope and downslope in wetter years
[67], implying that species’ elevational ranges can respond plastically to rainfall. In the temper-
ate mountains of the Sierra Nevada, California, Tingley et al. [19] found that extensive down-
slope shifts of species over a century were closely associated with increasing precipitation. In
addition, species that showed greater sensitivity to precipitation generally occurred at lower
elevations than species that shifted in association with temperature, indicating a potentially
greater role for precipitation as species escape LCT temperatures [53]. We conclude from
these studies that precipitation has the potential to drive elevational shifts and should not be
ignored. Given its importance, it is critical to then understand how precipitation varies over
elevational gradients and how those patterns are predicted to change over time in order to
understand precipitation-driven elevational shifts [122].

3.3 Non-climatic abiotic factors

While temperature and precipitation form two principal axes of climate that are subject to cli-
mate change, there are other, non-climatic abiotic factors that can shape fundamental niches.
Although these factors may be relatively immutable, they can still present obstacles to shifting
species (Fig 1; for a more thorough review, see [78]). Along elevational gradients, increased
ultraviolet radiation at higher altitudes could be damaging for animals [123], but birds are gen-
erally well-protected by their feathers [124]. For birds, the two most important factors to con-
sider are presumably oxygen availability and air pressure. As elevation increases, the
atmosphere gets thinner, and with this decrease in pressure comes a commensurate decrease
in oxygen density and air viscosity. Lower oxygen availability leads to lower levels of gas
exchange, increasing the risk of hypoxia [125], especially during flight [126]. Lower air viscos-
ity also means less air resistance, resulting in less thrust during flight [127]. However, many
birds migrate at altitudes far higher than their typical breeding altitudes, suggesting at least sea-
sonally high tolerance to both hypoxia and low air pressure [128]. At the extreme, Bar-headed
Geese (Anser indicus) are well known to fly from sea-level to 9000 m a.s.l. [129]. Similarly,
migratory songbirds that breed around sea-level migrate at altitudes around 400 to 800 m a.s.l.
[130], heights that dwarf the potential elevational range shifts of most birds. Long-distance
migrants are not the only flexible species: resident and altitudinal migrant species can employ
different strategies to cope with hypoxia at high elevations [131]. Even hummingbirds, operat-
ing at the extremes of flight capability, are able to alter their hovering flight kinematics at
lower air pressure [127]. Thus, hypobaric altitudes are not without their costs [132], but adap-
tations allow species to perform at such elevations [133], and these constraints may be less
likely to restrict upslope shifts given the relatively small magnitudes of the shifts.

4 Biotic determinants of elevational ranges

Once within a suitable abiotic envelope, birds must interact with a suite of organisms to suc-
cessfully survive and reproduce. They must locate appropriate habitat, forage for food, find a
home for eggs, defend against competitors, and avoid predators, parasites, and pathogens [79].
All of these factors shape the realised niche and thus a species’ geographic distribution [84]
(Fig 2). In particular, biotic factors may be more critical at the warm edge of species’ range lim-
its [22,134]. In turn, these factors can be sensitive to climate change, and modulate the range
shifts of birds. But which factors are most important in determining realised niches, and which
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Fig 2. A conceptual framework of elevational ranges and range shifts. Elevational ranges can be shaped by abiotic factors acting directly or acting indirectly
via biotic factors. All of these factors affect the realized niche of a species including its current and future distributions. In addition, intrinsic and extrinsic
constraints such as dispersal ability and area availability can prevent species from reaching their predicted elevational ranges.
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are likely to influence elevational range shifts? In this section we examine the biotic factors that

modify elevational ranges including bottom-up processes, top-down processes, and
competition.

4.1 Ecotones, habitat, and resource availability

At a fine scale, bird distributions are often tightly linked to habitat. In the Alps, for example,
birds of deciduous forest give way to species of coniferous forest at higher elevations [32];
while in the Andes, the transition from rain forest to cloud forest presents a sharp contrast in

community composition [135]. Above all of these forested habitats, the timberline demarks a
stark boundary between habitats and bird assemblages [136-138].
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Fig 3. Multiple factors shape the elevational ranges of Black-headed Nightingale-Thrush (Catharus mexicanus). While habitat associations appear to drive
the elevational distributions of C. mexicanus, the species is also aggressively dominant over its higher elevation congener Ruddy-capped Nightingale-Thrush (C.
frantzii), displaying the importance of interactions between habitat selection and interspecific competition for elevational ranges [141]. Photo credit: Samuel
Jones.

https://doi.org/10.1371/journal.pcim.0000174.9003

Ecotones, the transition in plant communities between habitats, have long been tied to
distributional limits in birds [55]. In the Peruvian Andes, Terborgh [139] revealed the impor-
tance of ecotones in a comparison of bird distributions between different elevational gradients.
When an ecotone was found at higher elevations, Terborgh demonstrated that species inhabit-
ing the lower elevation habitat were able to expand their upper limits upslope [139]. In the
Tilaran Mountains of Costa Rica, Jankowski et al. [140] showed that turnover in the bird com-
munity was greatest at the cloud forest/rainshadow forest ecotone; while in Rwanda, habitat
availability was a major predictor of bird distributions in the transition from forest to open
habitat [99]. In Honduras, Jones et al. [141] determined that the transition from cloud forest
to elfin forest was the principle driver of parapatry in two congeneric thrushes (Fig 3). In tem-
perate regions, the treeline ecotone is a critical driver of bird community composition in the
Swiss Alps [138], the Chilean Andes [136], and in British Colombia [137]; while in the Himala-
yas, the prevalence of different forest types was an important predictor of bird distributions
[101], including parapatric congeners [142]. Elevational shifts have also been linked to eco-
tones. In Alaska, Mizel et al. [48] noted that shifts in the shrub ecotone have enabled upslope
changes in shrub-tundra species, while forest species have been more limited by forest growth

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000174 March 14, 2023 11/30


https://doi.org/10.1371/journal.pclm.0000174.g003
https://doi.org/10.1371/journal.pclm.0000174

PLOS CLIMATE

Elevational shifts in birds

[48], and similar differences in shift rates above and below treeline were found in Switzerland
[40]. Thus, ecotones are critical points of turnover for montane birds, and climate-induced
range shifts could well be limited by ecotones [40,48].

Besides ecotones, two important predictors of bird community patterns along elevational
gradients are vegetation structure and plant composition. Diversity of vegetation structure is
thought to promote niche partitioning [20], particularly for insectivores [112,135], and has been
shown to predict bird species richness in Peru [55], Chile [136], Tanzania [112], and Papua
New Guinea [143], as well as turnover in species composition in Peru [135] and functional and
phylogenetic diversity in Bolivia [98]. Tree species diversity is thought to promote food avail-
ability, particularly for frugivores [144,145], and has been found to predict species richness in
Cameroon [146], Papua New Guinea [143], and Peru [135]. Though the majority of these stud-
ies have investigated gradients in bird diversity rather than distributional limits, it seems likely
that both structural diversity and plant composition would play a role in determining eleva-
tional range limits [147], as well as species’ ability to adapt to change [148]. Indeed, habitat has
been linked to elevational shifts in temperate regions [32,35,37,40], while in the tropics, lagged
shifts in birds indicate a slow, incremental response to shifts in habitat [17,67,149].

Both structural diversity and plant species richness are connected to birds via resource
availability. Birds need nest sites to breed and food to feed their young. While little is known
about how habitat shapes bird distributions along elevational gradients via nest site availability,
there is more evidence for the role of food availability. For example, in Papua New Guinea,
Sam et al. [143] demonstrated that the abundance and biomass of insects predicted the abun-
dance and biomass of insectivorous birds. Likewise, in the eastern Himalayas, species richness
of insectivores was strongly linked to diversity of foliage arthropods [150], while in Tanzania,
Ferger et al. [112] linked insectivore species richness to invertebrate biomass, and frugivore
species richness to fruit abundance [112]. However, in a study investigating community
assembly, food resources did not predict diversity patterns in the Bolivian Andes [98]. As most
food sources are either plant products or ectothermic prey which are very sensitive to climate
change [151-156], it is likely that climate-induced shifts in these resources will instigate shifts
in the birds that depend on them. More studies are needed to mechanistically link resource
availability to the elevational distributions of birds, but these resources are very likely to be
affected by climate change and therefore modulate elevational shifts in birds. However, every
species has its own individual resource requirements, whether that is bark insects, mistletoe
berries, or cavity nesting sites. Using broad proxies such as invertebrate biomass may capture
general trends in bird communities, but it is very challenging to quantify the resource needs of
each species.

4.2 Competition

Besides top-down and bottom-up processes, another biotic factor limiting elevational ranges is
competition [157]. Competition is often invoked when two congeners have abutting ranges
along an elevational gradient, although competition may also be diffuse if many species are
scrambling for similar resources [158,159]. Detecting signals of competition can be tricky, as
parapatric distributions also result from ecotones [101,141]. One way to detect competition is
to compare the elevational ranges of focal species with and without putative competitors. In an
influential study from Peru, Terborgh and Weske [158] compared the distributions of a suite
of species along two elevational gradients in the Andes. Compared to the Cordillera Vilca-
bamba in the Andes proper, they found that the isolated Cerros del Sira lacked several high ele-
vation bird species. Due to this apparent lack of competition, the ranges of 71% of bird species
expanded upslope when a higher elevation congener was absent. Similarly, 58% of species
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previously thought limited by an ecotone were able to expand to higher elevations in the
absence of diffuse competition.

The influential results of Terborgh and Weske were recently supported by Freeman et al.
[160], who found evidence of competitive release in 23 out of 52 natural experiments selected
from across the Neotropics. In another natural experiment, two species of Arremon brushfinch
were found to occupy entire elevational ranges in allopatry; yet, importantly, the relative eleva-
tional position of the two species in parapatry would flip in different regions suggesting no spe-
cies-specific elevational preferences [161]. Thus, in the Andes, at least, it has long appeared as
if competition plays an important role in range limitation. Similar results have also been found
on isolated mountains in Borneo [159], and some advocate that competition is a key driver of
elevational range limits globally [160] and that competitive release may in fact explain down-
slope shifts in some species [162].

While differing elevational ranges under different contexts provide circumstantial evidence
of competition, several studies have used playback experiments to gain greater mechanistic
insight. These experiments present a focal species with a singing parapatric congener (i.e., via
playback) and compare its reaction (e.g., approach, aggression, counter-singing) to the paired
reaction to a singing conspecific. For example, in Costa Rica, Jankowski et al. [163] demon-
strated that high elevation Gray-breasted Wood-Wrens (Henicorhina leucophrys) respond
aggressively to the songs of low elevation White-breasted Wood-Wrens (H. leucosticta) and
vice versa. However, this aggression is not always symmetrical. In the same study system, low
elevation Orange-billed Nightingale-Thrushes (Catharus aurantiirostris) behaved far more
aggressively towards mid-elevation Black-headed Nightingale-Thrushes (C. mexicanus) than
was reciprocated, while high elevation Slaty-backed Nightingale-Thrushes (C. fuscater) showed
little aggression at all [163]. Other studies from the Neotropics have found similar support for
asymmetric aggression in nightingale-thrushes (Fig 2) and wood-wrens [141,164], and yet
these studies represent just two genera.

Consistent with these Neotropical findings, Freeman et al. [165] documented asymmetric
aggression in New Guinea, where the lower elevation species of three out of five species pairs
behaved more aggressively to its higher elevation counterpart. Similarly, in Borneo, the low
elevation Ochraceus Bulbul (Pycnonotus leucops) dominated the high elevation Pale-faced Bul-
bul (P. leucops). Evidence for asymmetric aggression has also been building outside the tropics.
For example, in temperate Catharus thrushes [166], asymmetric aggression from the low eleva-
tion Swainson’s Thrush (C. ustulatus) was found towards the high elevation Bicknell’s Thrush
(C. bicknelli). In the Himalayas, however, the asymmetry was flipped [142], with the higher ele-
vation Green-backed Tit (Parus monticolus) behaving dominantly over the lower elevation
Cinereous Tit (P. cinereus). As these studies accumulate, it appears that asymmetries in aggres-
sion may actually be the norm [167], but what could explain the patterns of asymmetry?

Higher aggression from a lower elevation species might be expected if the lower elevation
habitat is more optimal (e.g., more resources) [83,168]. Alternatively, higher aggression might
be expected from the higher elevation species if it is also larger, following Bergman’s rule
[169]. One study tested these competing hypotheses in a meta-analysis of pairwise competition
and aggression between congeners of various taxa [168]. Although there was no overall evi-
dence that lower elevation species were dominant, the meta-analysis did find that, in playback
studies (predominantly featuring tropical birds) lower elevation species tended to be more
aggressive, and that this aggression was associated with competitive ability. However, the most
important finding of the analysis was that body size was a significant predictor of competitive
interactions. Large species tended to dominate smaller species, although larger species did not
necessarily follow Bergmann’s rule. Thus, the outcome of competition is driven more by body
size than relative elevation.
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These aggression studies imply that interference competition between closely related spe-
cies limits range boundaries, but they do not examine the effects of scramble competition. To
test the relative strength of the two putative mechanisms, a study of 118 sister species pairs
along the Manu Transect in Peru compared the degree of range overlap with differences in bill
morphology and territoriality [170]. While sister species with similar morphologies regularly
overlapped in range, species that defend year-round territories were less likely to overlap. The
results of this study indicate that interference competition is a strong driver of elevational lim-
its. There is, therefore, increasing evidence for the role of competition in determining eleva-
tional ranges. However, most of these studies focus on parapatric and sympatric sister species
pairs, which form the minority of pairwise species comparisons, especially outside of the
Andes. Indeed, in comparative studies, the role of competition seems to be limited when com-
pared to other abiotic and biotic factors [99,101]. In addition, aggression may only act to rein-
force habitat-based specialism [141], with competitive advantage dependent on the abiotic or
biotic context [100]. There is also disagreement about whether competition is more important
in stable, resource-filled environments [6,84] compared to more variable and resource-limited
environments [98,100]. More resolution is needed to weigh up the relative importance of com-
petition versus other biotic factors [160].

When it comes to factoring competitive interactions into elevational range shifts, studies
should first ask whether a potential parapatric congener is present for a given species, before
asking whether that congener is larger or territorial. For a smaller species, a superior competi-
tor at higher elevations may preclude that species from expanding upslope, while a superior
competitor at lower elevations could force range contractions at a species’ lower limits.

4.3 Natural enemies

Natural enemies comprise the top-down biotic factors that can limit a species’ range. While
there are several types of natural enemy, they generally fall into those that are either smaller
than their prey and reduce prey fitness—parasites and pathogens-or those that are larger than
their prey and kill to consume-predators. While both forms of natural enemy can present a
constant threat to birds, their impacts on species distributions remain poorly understood.
Birds can be affected by myriad parasites, including blood-borne parasites such as malaria,
ectoparasites such as ticks or Philornis fly larvae, and even brood parasites—other birds of the
same or different species that lay their eggs in the nests of hosts, thereby reducing the repro-
ductive success of the host. One of the most frequently studied avian parasites is Plasmodium,
which causes both human and avian malaria. As malaria and many other avian diseases are
transmitted by ectothermic arthropod vectors (e.g., mosquitoes), the prevalence of such dis-
eases is highly associated with specific temperatures that facilitate arthropod growth, and thus
the ranges of both hosts and diseases are projected to increase with global warming [171,172].
Nowhere is this threat to birds more apparent than in the Hawaiian islands, where Paxton
et al. [173] linked non-native avian malaria to widescale declines in native Hawaiian avifauna
[173]. Here, malaria has historically been restricted to lower elevations, but increasing temper-
atures have allowed the mosquito host (Culex quinquefasciatus) to shift upslope, endangering
the honeycreepers already restricted to high elevation forest. As temperatures continue to
increase, these naive hosts are projected to become increasingly threatened [174]. However,
the vulnerability of Hawaiian birds to this non-native disease may say more about issues of
invasion ecology than about the general role of endemic diseases in limiting elevational ranges.
In mainland areas, by contrast, parasites and pathogens may not strongly impact range lim-
its. In Peru, for example, a large study mapped the spatial relationships between birds and
hemosporidian blood parasites across the whole country [175]. Covering almost 1,350 bird
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species and approximately 4,000 parasite lineages, McNew et al. [175] found little evidence
that parasite diversity patterns shaped the patterns of bird communities. Conversely, the distri-
butions of the parasites themselves were predicted by the bird communities as well as precipi-
tation. In Central Africa, the prevalence of trypanosomes—another avian blood parasite-within
a widespread sunbird host (Olive Sunbird, Cyanomitra olivacea) was also linked to places with
lower seasonality in canopy moisture and higher precipitation, while prevalence of Plasmo-
dium was once again linked to temperature [176]. Olive Sunbirds exist across a wide range of
parasite prevalence, suggesting that, like Peruvian bird species, these parasites do not necessar-
ily limit the range of this host. However, there could be thresholds of parasite prevalence above
which sunbirds cannot persist.

In the Australian Wet Tropics, the idea of realised niches influenced by parasites has been
developed further. Zamora-Vilchis et al. [177] found the prevalence of four genera of avian
parasites (Plasmodium, Haemoproteus, Leucocytozoon, and Trypanosoma) to be positively
associated with temperature, even controlling for elevation. The authors determined that if
host species exist within certain parasite prevalence limits, then increasing temperatures would
require the hosts to shift upslope with rising temperatures in order to track their “anti-parasitic
niche”. Given the high fitness cost of these parasites [178,179], shifting may be the fastest solu-
tion in the face of increased mortality or lower reproductive success [177]. The role of parasites
in determining range limits requires a lot more attention, and even less is known about the
role of pathogens such as West Nile Virus [180] or avipoxvirus [181].

While the effects of parasites and pathogens can vary from the chronic sublethal to acute
deadly disease, the effects of predation are usually more immediate. For birds, a critical period
of susceptibility is the nesting phase when predation is one of the highest causes of nest failure
[182-184]. Nest predators generally fall into three groups [185,186]: mammals (e.g., rodents
and monkeys), birds (particularly arboreal hawks and corvids), and reptiles (predominantly
snakes). Each of these groups has their own ecologies and potential responses to climate
change that could mediate predator-prey interactions. Snakes, in particular, are ectotherms
whose activity directly relates to temperature [187-189]. When temperatures increase, snake
activity and depredation rates are also expected to increase [190-192]. The effects of tempera-
ture on endothermic predators-i.e., birds and mammals—are more variable, with mammals
showing little predatory response to higher temperatures [185]. However, changing climate
regimes could still bring birds into greater conflict with predators if phenologies shift towards
periods of higher predator activity [193].

There are also gradients of predation pressure that could be altered by climate change. Lati-
tudinally, Matysiokova and Remes showed an increase in predation pressure towards the trop-
ics, suggesting that predation is more likely to constrain the elevational ranges of tropical birds
[184]. Within the tropics, predation risk also appears-—at least for artificial nests in Costa Rica—
to decrease with elevation, albeit exhibiting a peak around 600 m [186]. However, this gradient
varied depending on the predator group, with bird depredation rates decreasing with elevation
while mammal depredation rates showed a more humped pattern. Snake depredation along
this gradient was almost certainly underestimated as snakes rarely attack fake nests, and yet
snakes are one of the highest causes of nest failure [194]. As with blood parasites, increasing
temperatures could cause this gradient to shift upslope, which would mean higher predation
rates for higher elevation species that may not have evolved to combat such risk [195]. The
suggestion from these studies is that predation risk would be a greater issue for the warm limit
of a species’ elevational range rather than the cool limit [184]. Other risk factors associated
with predation include nest shape-with open nests more vulnerable [184,196]-and body size-
with smaller species more vulnerable [184,197].
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5 Constraints to shifting

It may be the case that every aspect of a species’ fundamental and realised niche is shifting
upslope concurrently and, ideally, the bird population ought to track the shifting niche per-
fectly. However, a shifting population necessitates movements at the individual level and this
may present challenges [198]. There could be constraints that prevent a species from shifting
fast enough [17], and these constraints could be intrinsic traits or extrinsic factors in the envi-
ronment (though these two aspects are likely to interact; Fig 1). In this section we describe
some of the barriers that may prevent species from shifting optimally.

5.1 Intrinsic constraints

Very little is known about how elevational shifts are realised, but for a species to shift its upper
elevation limit upslope, there initially has to be some kind of dispersal prior to successful colo-
nisation [199]. Dispersal, however, can be a critical limiting factor when it comes to range
shifts [8,200]. In one study, La Sorte and Jetz [11] simulated elevational shifts for 1009 bird spe-
cies under three dispersal scenarios, showing that the proportion of species at risk of range
contractions increased dramatically under a scenario of restricted dispersal. Similarly, in the
Andes, dispersal is expected to play a role in mediating elevational shifts in birds [201], while
in the Australian Wet Tropics, isolated species with low dispersal ability are projected to suffer
range contractions and declines [200,202]. However, the importance of dispersal ability likely
varies with latitude and may not be a critical constraint for temperate bird species which tend
to have broader environmental tolerances [57,73] and often engage in movements such as lati-
tudinal migration, altitudinal migration, and nomadic behaviour [203]. In contrast, tropical
bird species tend to have much lower dispersal capability [203], and several studies have
shown the limited ability of rain-forest birds to cross even small gaps between forests [204-
207]. Thus, dispersal ability is probably more important in limiting the shift rates of tropical
birds, as supported by a meta-analysis of documented elevational shifts [71].

Another important factor that could modulate range expansions is reproductive rate
[198,208]. A species at the faster end of the life-history continuum-i.e., high fecundity, fast
generation times—may be able to expand faster than a species at the slow end. However, evi-
dence for this hypothesis is mixed. For example, shift rates of birds in the Sierra Nevada, Cali-
fornia, were actually faster for species with smaller clutch sizes [19], while the opposite was
true for a study of species across the American West [47]. The importance of these vital rates
may depend on the mechanisms by which species shift upslope. For example, are upslope shifts
facilitated by individuals that produce many offspring each year or by individuals that live long
enough to see and respond to environmental change? In the same meta-analysis of shift rates
in the tropics [71], clutch size was not investigated but they did find that body size-which cor-
relates negatively with clutch size [209]-predicted higher rates of upslope shifts for smaller spe-
cies. Ultimately, this result could be driven by a number of factors, and more tests are needed
to determine the roles of various aspects of life-history [210].

Beyond these fundamental morphological and life-history considerations, elevational shifts
may be constrained by other ecological strategies such as territoriality or adaptive capacity. For
example, highly territorial species may shift more slowly than species that are not tied to a par-
ticular area- a phenomenon with evidence from studies across the tropics [71]. However, the
opposite phenomenon was found in Californian birds [19]. Species may also be more likely to
shift if they are less picky about their habitat or dietary requirements—that is, if they have less
ecological specialisation [198,211]. Indeed, tropical bird species with lower forest dependency
tended to shift their upper limits faster than more forest dependent species [71], while birds of
open habitat in the Czech Republic [37] and diet and habitat generalists in the Swiss Alps [40]
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were more likely to shift upslope. However, other evidence suggests that upslope shifts were
greater for species with narrower diet breadths in western North America [47]. More studies
of trait relationships to range shifts are needed to resolve these apparently contradictory find-
ings, perhaps using more appropriate traits or accounting for intraspecific variation in traits
[210].

5.2 Extrinsic constraints

A fundamental limit to elevational shifts is the availability of land at higher elevations. While
available area does not always decrease monotonically with increasing elevation [212], at some
point mountain ranges do reach their peak. For birds whose upper elevational limits already
coincide with the tops of the mountains, range contractions are an inevitability of upslope
shifts [15,16,67]. Perhaps suitable habitat exists on the next mountaintop over, yet dispersal to
higher elevation mountains is unlikely for species with low dispersal propensity.

Besides the fundamental issue of land area availability, the most obvious impediment to ele-
vational shifts is another anthropogenic stressor: habitat loss. Loss of habitat is one of the most
pervasive threats to biodiversity [7], and has the potential to interact strongly with climate
change [10,213], especially as a large fraction of elevational gradients are unprotected [214].
For a species that “wants” to shift upslope, deforestation and habitat fragmentation could limit
the connectivity of a landscape [215-217]. On one hand, a species in continuous forest could
slowly colonise higher and higher elevation. On the other hand, if deforestation removes suit-
able habitat above a species’ upper elevational limit, the gap in habitat presents a barrier to
upslope dispersal [202].

Studies investigating the interaction between habitat loss and elevational shifts are scant,
although there is evidence that habitat loss is more of an issue for species at lower elevations
[68,148,213,218,219], and projections suggest an important role for habitat availability in limit-
ing range shifts [200,219]. In the Usambara Mountains of Tanzania, a 40-yr resurvey of 29
bird species along a fragmented elevational gradient suggested an important role for fragmen-
tation in mediating elevational shifts [65]. Across this gradient, lower elevational limits con-
tracted significantly over time, while upper elevational limits were slow to shift, generally
moving only within continuous blocks of forest. These results indicate that the isolation of for-
est blocks limits upslope colonisation of understory birds [204,207]. However, this study was
restricted to fragmented forest and did not include a control system of continuous forest. For
example, in a spatial study of occupancy in Colombia, Mills et al. [148] suggested that high ele-
vation bird species (~2700 m in elevation) can tolerate greater levels of habitat loss due to the
naturally patchier configuration of montane forest. Perhaps habitat loss is less of an impedi-
ment to range shifts at high elevations. Future studies should attempt to compare shifts for the
same species in continuous versus fragmented landscapes.

6 Conclusions and future directions

It is clear that the elevational distributions of birds can be shaped by diverse abiotic and biotic
factors [79], and that these factors can in turn influence whether and how species shift their
elevational ranges (Fig 1). How can we synthesise all of these factors together to gain a more
holistic understanding of elevational ranges and to better predict distributions into the future?
A fundamental conundrum is whether abiotic gradients like temperature and precipitation
play a greater direct or indirect role on elevational ranges [79]. Based off the current state of
knowledge, the direct effects of temperature and precipitation seem unlikely to constrain eleva-
tional ranges and drive upslope shifts across most bird species—except perhaps in very extreme
environments-but more studies are needed on vulnerable life stages, especially eggs and
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nestlings [54,92]. Biotic interactions, however, appear to be critical [160]. Birds tend to associ-
ate with particular habitats and food resources, so the question then becomes whether these
resources are themselves sensitive to climate change [84], and ultimately, which biotic factors
are most important. The overall direction of elevational shifts [13] would seem to suggest that
warming temperatures are driving gradual upslope movements via changes in resources
[17,67]. Where that is not uniformly the case-possibly temperate, arid environments—changes
in precipitation regimes may be more important in driving the resource shifts that govern
ranges [19,53].

Comparative studies can offer insight into which factors are most likely to drive elevational
range limits and shifts. The role of temperature (direct or indirect) appears to be very impor-
tant in temperate and sub-tropical regions [100,101] and at very high elevations in the tropics
[99], while competition appears more important at lower elevations in tropical forest
[158,159,170]. Across studies, habitat seems to be almost universally important
[32,37,99,101,112,135,136,141], but these associations could also be driven by habitat-associ-
ated resource availability such as invertebrate abundance [112,143]. Habitat is extremely diffi-
cult to experimentally manipulate in distributional studies of birds, however, so ultimately it is
unknown how plastic most species are in their habitat requirements vis a vis other potential
limiting factors.

Future research in the coming years to decades is likely to improve our understanding of
elevational range shifts in several ways. Increases in data availability provide opportunities to
test more nuanced or complex hypotheses and to replicate studies at greater taxonomic or spa-
tial scales. At fine scales, tracking of individual birds with GPS tags could reveal the elevational
movements of individual birds [109], and how these movements temporally scale up to range
shifts. For example, we could fit bird communities with trackers and test whether upslope
shifts results from the directional movements of individuals over their lifetimes. Perhaps we
would find that it is adults choosing nest sites at increasingly high elevations each year that
push range limits upslope, or perhaps we would discover first year birds establishing new terri-
tories in newly suitable areas at higher elevations. Nest monitoring along elevational gradients
could also provide more insights into pressures during the breeding season [220]. Specifically,
monitoring of nest depredation could reveal whether there are gradients in predation pressure
that vary by predator type, and whether these gradients are shifting upslope. Small climate log-
gers placed at nest sites could test whether adults are choosing nest sites in appropriate micro-
climates or whether hatching or fledging success is constrained by temperature in a way that
adult metabolism is not. Mirroring desert studies [91,92], nest monitoring could also reveal if
provisioning rates vary over elevational gradients or quantify the kinds of food brought to the
nest as a function of elevation. Finally, the presence of pathogens and parasites in nestlings
could be examined for possible elevation and climate effects.

At medium scales, the maturation of monitoring schemes will provide longer-term perspec-
tives on elevational ranges including both trends and interannual variation [67,69] while
accounting for imperfect detectability [98,221], especially when paired with data on other taxa.
Mist-netting studies could be used to monitor the demographic rates of populations as a func-
tion of elevation [59]. Perhaps we would find that upslope expansions are driven by higher
recruitment rates at higher elevations or that lower survival rates at lower limits are causing
range contractions. Point counts along transects have the potential to generate huge amounts
of data along elevational gradients [68], especially when paired with autonomous recording
units (ARUs) [222] and machine-learning identification such as BirdNET [223]. If transects
are placed systematically, they could be used to test competing hypotheses of elevational shifts.
For example, we could test whether upslope shifts are more likely when a parapatric congener
is absent or assess whether shift rates differ depending on the relative position of ecotones on
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different gradients. More studies are also needed to compare shift rates along gradients with
different degrees of habitat connectivity. If other taxa such as plants, invertebrates, or preda-
tors are also monitored along elevational gradients, we could test which of these biotic gradi-
ents are shifting and which are influencing bird shifts the most. Knowledge learned from such
studies could then be used to make better projections that include dispersal ability [202], land-
scape configuration, and joint-species co-occurrence [224].

At large scales, the availability of citizen science data coupled with comprehensive trait
datasets [24,203] could be leveraged to better understand drivers of elevational ranges and
shifts [71,160]. The uses of eBird [23] are exploding, as are the number of people using the
platform. Instead of costly monitoring programs, we could make use of citizen science data
along elevational gradients to test drivers of elevational patterns, boundaries and shifts
[70,150,160]. For example, Ramesh et al. [225] used eBird data to explore drivers of bird occu-
pancy in the mountainous Western Ghats of India. Biogeographic gaps could be filled by citi-
zen science data where funding or research opportunities are lacking [226,227]. Citizen
scientists primed with the right knowledge could also make more informed observations, such
as including breeding codes on checklists. Trait datasets are already being used to predict ele-
vational shifts with mixed results [71,210], but more traits with more relevance to elevational
gradients could complement existing datasets. Examples of such relevant datasets include ther-
mal physiology, relative competitive ability, or more specific habitat and dietary requirements.
Higher resolution climate data could also aid elevational studies by testing whether range lim-
its are associated with particular aspects of temperature and precipitation, such as variability
or extremes, or whether climate-induced range limits differ between different mountain
ranges or aspects. Combining all of these variables into more intuitive, interactive databases
would revolutionise the ability of researchers to test hypotheses at ever-increasing scales.

As the threat of climate change increases, the need to understand elevational range shifts
has never been greater. We have an increasing knowledge of the individual pieces that com-
prise the elevational puzzle but we still lack a holistic, all-encompassing view of elevational gra-
dients. Although the future of montane biodiversity hotspots is uncertain, harnessing new
ideas, data, and techniques will reduce that uncertainty, bringing elevational ranges into focus
and providing clearer goals for conservation action.
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