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ABsTrACT: Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true
particle-level spectrum from smeared detector-level data. For computational and practical rea-
sons, these spaces are typically discretized using histograms, and the smearing is modeled through
a response matrix corresponding to a discretized smearing kernel of the particle detector. This
response matrix depends on the unknown shape of the true spectrum, leading to a fundamental
systematic uncertainty in the unfolding problem. To handle the ill-posed nature of the problem,
common approaches regularize the problem either directly via methods such as Tikhonov reg-
ularization, or implicitly by using wide-bins in the true space that match the resolution of the
detector. Unfortunately, both of these methods lead to a non-trivial bias in the unfolded estimator,
thereby hampering frequentist coverage guarantees for confidence intervals constructed from these
methods. We propose two new approaches to addressing the bias in the wide-bin setting through
methods called One-at-a-time Strict Bounds (OSB) and Prior-Optimized (PO) intervals. The OSB
intervals are a bin-wise modification of an existing guaranteed-coverage procedure, while the PO
intervals are based on a decision-theoretic view of the problem. Importantly, both approaches
provide well-calibrated frequentist confidence intervals even in constrained and rank-deficient set-
tings. These methods are built upon a more general answer to the wide-bin bias problem, involving
unfolding with fine bins first, followed by constructing confidence intervals for linear functionals
of the fine-bin counts. We test and compare these methods to other available methodologies in a
wide-bin deconvolution example and a realistic particle physics simulation of unfolding a steeply
falling particle spectrum.
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1 Introduction

Experimental high-energy physics studies the interactions and properties of fundamental particles.
This is done by observing particle collision events using massive particle detectors, such as those at
the Large Hadron Collider (LHC) at CERN. In these experiments, it is often of interest to measure
functions, called differential cross sections, that represent the probability of producing particles with
a certain energy, momentum, angle or other kinematic properties. Unfortunately, a particle detector
can only produce noisy measurements of these kinematic properties. As a result, the function that
is directly observable in the detector is a “smeared” or “blurred” version of the physical function of
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interest. The process of using observations from this smeared function and our knowledge of the
detector response to infer the actual physical function of interest is called unfolding [24, 7, 3, 35],
which is well-recognized to be an ill-posed inverse problem [18, 10].

Let f € ¥ be the unknown true particle-level function of interest among a class of possible
particle-level functions ¥ and g € G be the smeared detector-level function where G is a class of
possible smeared functions. Then we can represent the relationship between f and g by g = K f,
where K : ¥ — @ is a linear operator that represents the smearing in the detector. In the simplest
case, K might be a convolution operator, but it can also have more complex structure. In most
cases in high-energy physics, the functions f and g are discretized using histograms. This leads to
a discretized version of the problem that we can represent as u = KA, where 4 € R" and g € R™
denote vectors of bin counts in the particle-level and detector-level histograms, respectively, and
the elements of the response matrix K € R™*" represent the bin-to-bin smearing probabilities (see,
e.g., Chapter 11 in [7]).

The most common approach to unfolding is to use a large number (n) of particle-level his-
togram bins. This makes the problem severely ill-posed and one needs to use regularization to
obtain physically plausible solutions. Commonly used techniques for regularized unfolding are two
variants of Tikhonov regularization [17, 29] (that perform explicit statistical regularization) and
an expectation-maximization iteration with early stopping [8] (that performs a type of algorithmic
regularization). Such regularization leads to a reduction in the variance of the unfolded estimators
by introducing a bias in the estimation. This regularization bias can be beneficial for point estima-
tion, but it can lead to severely miscalibrated uncertainty quantification [21, 22, 20], with no easy
workarounds (Section 2.2 gives more details).

An alternative approach, which is being used in an increasing number of LHC analyses (see,
e.g., [4, 5]), is to instead discretize the problem using large particle-level bins, or equivalently, a
small number (n) of unfolded bins. This is motivated by the physical intuition that a detector with
a certain resolution should not be able to resolve features smaller than its intrinsic resolution—
thus it is futile to attempt to infer bins smaller than the detector’s resolution. Mathematically,
reducing the number of estimated parameters leads to implicit regularization of the problem and,
as a result, the model can be inverted without the need for explicit regularization. Unfortunately,
in the histogram discretization, the elements of the response matrix K depend on the unknown
shape of the particle-level function f within the particle-level bins, and the wider the particle-level
bins, the stronger the dependence. In practice, one has to use an ansatz of f to form K and the
resulting estimator will have a wide-bin bias stemming from the misspecification of this ansatz.
Again, uncertainty quantification is severely hampered, as it is challenging to rigorously quantify
the resulting systematic uncertainty.

In this work, we take a different approach to wide-bin unfolding. Instead of imposing external
regularization (either through explicitly regularized estimators or implicitly through the structure
of the response matrix as in previous wide-bin unfolding), we focus on inferring certain structured
functionals of A and let the geometry of the functional and the operator along with physical
constraints on A to self-regularize the ill-posed problem. The basic idea of our approach can be
summarized as follows: We first discretize the problem using narrow particle-level bins. When
these bins are small enough, the systematic uncertainty in K becomes negligible which eliminates
the wide-bin bias. Then, we invert the forward model without explicit regularization. Since n
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is large, this gives a solution 2 with massive bin-wise fluctuations that tend to be anti-correlated
across neighboring bins. Since the solution is not regularized, there is no regularization bias and
hence the uncertainties are well-calibrated but difficult for humans to interpret and use due to
their size. This solution can, however, be further used to constrain functionals § = 8(1) = h™A
of the narrow-bin particle-level histogram A. When the functional is an aggregation, averaging
or smoothing operation, the anti-correlated fluctuations in A will largely cancel out, leading to a
well-constrained estimator § = hT A for 6 with well-calibrated uncertainties. This basic idea was
recently demonstrated in a remote sensing inverse problem in [23]; see also [32, 16] for a related
approach where h is a given low-pass filter. Of particular interest in unfolding are functionals
0 that aggregate several neighboring small bins into large bins whose width is comparable to
the detector resolution. From physical intuition and due to the aforementioned cancellations, it
should be possible to infer these functionals with well-constrained uncertainties, even though the
uncertainties of the individual narrow bins are huge. This leads to a principled solution of the
unfolding problem that provides well-calibrated and well-constrained uncertainties which do not
suffer from either the regularization bias of explicitly regularized unfolding or the wide-bin bias of
previous wide-bin unfolding approaches.

In order to obtain a practically useful implementation of this approach, one needs to address two
important methodological challenges. First, there are known physical constraints for the function
f which should ideally be taken into account to help regularize the problem. These constraints
depend upon the particular unfolding problem, but one universal constraint is the non-negativity of
A. Second, in order to diminish the wide-bin systematic uncertainty in K, it might be desirable to
use more particle-level bins than detector-level bins so that n > m. In this situation, K cannot be
inverted as it always has a non-trivial null space leading to non-identifiability in inferring A. The
approach described in [23, 26, 27] is designed to handle both of these complications. Briefly, the
approach is based on using constrained optimization to directly construct confidence intervals for 8
in a way that allows one to handle the null space of K and constraints on A. We call these resulting
uncertainties One-at-a-time Strict Bounds (OSB) since they provide uncertainty calibration for
one functional at a time. In the previous work [23], this approach was demonstrated in a mildly
rank-deficient situation with m > n and a one-dimensional null space in the context of atmospheric
remote sensing. In this paper, we further demonstrate that the approach works well even when the
null space is high-dimensional with n > m.

The One-at-a-time Strict Bounds are empirically well-calibrated, but a rigorous proof of their
coverage has been elusive [23, 26, 33]. As a novel alternative, we introduce in this paper a method
that has provably correct coverage while addressing the aforementioned complications with the
constraints on A and the null space of K. The method is based on taking a decision-theoretic
view of the problem. As such, it falls under the emerging area of Decision-Theoretic Uncertainty
Quantification (DTUQ); see, e.g., [1]). In this method, we regard the confidence interval for 6 as
a decision rule and optimize its expected width with respect to a prior distribution on A among
those rules that guarantee specified frequentist coverage. We call the resulting uncertainty bounds
Prior-Optimized (PO) confidence intervals. Even though this method uses a prior distribution to
optimize the interval width, it is notably distinct from Bayesian uncertainty quantification. The
decision-theoretic method guarantees frequentist coverage as we only consider rules that guarantee
specified coverage, which is not the case for Bayesian methods [21, 23]. We demonstrate that in the
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wide-bin unfolding problem, these Prior-Optimized intervals are only slightly wider than the One-
at-a-time Strict Bounds, they provide similar empirical coverage as the One-at-a-time Strict Bounds
while theoretically guaranteeing correct coverage, and they display little sensitivity to the choice
of the prior. The utility of this approach is not limited to unfolding—indeed, the Prior-Optimized
intervals are potentially widely applicable in constrained and rank-deficient linear inverse problems
and are therefore of independent interest beyond the application presented in this paper.

The rest of this paper is structured as follows. Section 2 presents the high-energy physics
unfolding problem, providing the scientific motivation for this work. Section 3 provides a description
of both the One-at-a-time Strict Bounds and Prior-Optimized confidence intervals, and how they
are related. Additionally, this section contains descriptions of three other intervals against which we
compare our proposed intervals. Section 4 demonstrates through a simple deconvolution problem
how traditional wide-bin unfolding can produce intervals with poor empirical coverage because
of the wide-bin bias from an even slightly misspecified ansatz. Furthermore, we show how the
proposed intervals can address these challenges and provide further simulation studies to evaluate
their coverage and expected width across a range of configurations. Section 5 applies these methods
to a more realistic particle physics application, that of unfolding a steeply falling inclusive jet
differential cross-section. We show the flexibility of the intervals and their constraints, as this
application includes additional monotonicity and convexity constraints on the underlying intensity
function. Finally, Section 6 provides further discussion and conclusions regarding the results in this
paper and avenues for future work. The Python scripts used to produce the results in this paper are
available at https://github.com/mcstanle/unfolding_osb_po_ug.

2 The High-Energy Physics Unfolding Problem

2.1 Forward Model for Unfolding

For a detailed overview of the unfolding problem setup, we refer readers to [20, 21, 22]. We follow
the same notation here. Broadly, data in experimental high energy physics can be modeled as an
indirectly observed Poisson point process. The unfolding problem is an inverse problem that arises
in particle physics measurement analyses. The aim of these types of analyses is to estimate the
true (unknown) probability distribution of some variable of interest, e.g., energy, scattering angle,
particle mass, or decay length [3]. “Folding" occurs when we observe one of these probability
distributions through a detector where the observations are corrupted by stochastic noise. Then,
unfolding is the process of inferring the true distribution that created the smeared or blurred observed
distribution. This inverse problem is ill-posed because large changes in the true distribution may
only result in small changes in the observed distribution [20].

Formally, this setup is described by a Poisson point process M, representing the true particle-
level spectrum of events, and a Poisson point process N, representing the detector-level spectrum,
which is related to M via a smearing kernel k. More precisely, let T C R, a compact interval, be
the state space of M, and § C R, a compact interval, be the state space of N. Each of these Poisson
point processes is uniquely characterized by an intensity function; we denote by f : T — R, the
intensity function for process M and by g : S — R, the intensity function for process N. These
intensity functions are the Radon—Nikodym derivatives of the mean measures A and u of each point
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process, respectively. For instance, for some event B € o-(T') (the Borel o-algebra over T), we have
A(B) = fB f(t) dt. As explained in Section 3.1 of [20], letting variable X to be a true particle-level
observation, X has the probability density px(¢) = f(¢)/A(T), and hence we have that

P(X ¢ B) = /B px(t)di = /B F() diJA(T) = A(B)/A(T).

As X passes through the detector, it is subjected to noise that produces an observation Y in the
smeared space. Note, for simplicity of exposition, we assume that the detector always observes
the true event and that no event is smeared over the boundaries of the smeared state space. Both
of these effects can be rigorously treated using thinning as described in detail in [19, 25]. The
noise is assumed to be independent and identically distributed, and hence we obtain the following
probability density for Y:

py(s) = /T pxy(t.s) di = /T prix(s | Dpx (1) dr. @.1)

Analogous to the relationship between the marginal distribution px and the intensity function
f, we have py(s) = g(s)/u(S). With no thinning, since Y is simply a perturbed version of X,
AT) = u(S), and hence we have A(T)py(s) = g(s). Combining this equality with Eq. (2.1), we
see that g(s) = fT py|x(s | 1) f(z) dt. This shows that the true intensity f and smeared intensity
g are connected via the conditional distribution of ¥ given X. It is reasonable to assume that
the detector injects Gaussian noise to each particle event, hence this conditional distribution can
be safely assumed to be Gaussian. Furthermore, this Gaussian distribution defines the smearing
kernel, k : S X T — R, and connects the two intensity functions in the form of a Fredholm
integral operator, g(s) = fT k(s,t)f(t)dt, where k(s,t) = py|x(s | t). As such, observations from
the process characterized by the intensity function g(-) are used in unfolding to infer the intensity
function f(-) of the particle-level spectrum.

High-energy physics data are typically binned, discretizing the Poisson point processes. Let
{Tj};.‘=1 be a partition of the true space and {S;}", be a partition of the smeared space. By
the definition of Poisson point processes, we have for each j € [n] (where we use the conven-
tion [n] to denote the set {1,...,n} for a positive integer n) M(T;) ~ Poisson(A(7;)), where
AT;) = /Ti f(¢) dt. Additionally, since {Tj};?zl partitions 7', M(T;) and M(T};) are independent
for all i # j. Define the vector A = [A(T}),...,A(T,)]". Likewise, let u(S;) = /Si g(s) ds for
i € [m] and define g = [u(S1), ..., u(S,)]". Thus, we can model particle-level and detector-level
histograms, represented as random vectors x and y with elements M(T};), j € [n], and N(S;),
i € [m], respectively, as follows:

x ~ Poisson(4), y ~ Poisson(u). 2.2)

But, we also have

u(S;) = ‘/S g(s)ds = '/S /Tk(s, 1) f(t)dtds (2.3)

:‘/Si ]Z:;'/Tjk(s,t)f(t)dt dS:JZ:;./S,»./T,—k(S’t)f(I)dtdS (2.4)
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=, I/Si/Tjk(s’t)f(t)dtds (/T, f(t)dt) A(T)). (2.5)

Jj=

Hence, if we define

Js, Jy, K(s.00 (1) dr ds
T rwar

€ [m], jeln] (2.6)

a linear system of equations relates the two discretized Poisson point processes
u=Ka, 2.7)

where K € R™" has the ij-th element given by Eq. (2.6). Additionally, elements K;; have a
probabilistic interpretation. Namely, the probability that an event in the true bin 7; propagates to the
smeared bin S; is given by K; ; (see Proposition 2.11in[19]), i.e., wehave K;; =P (Y € S; | X € T}).
This discretization allows us to re-express Eq. (2.2) as

y ~ Poisson (KA) . (2.8)

This statistical model tells us that we observe Poisson distributed bin counts with mean KA. Given
this model, we wish to make inferences on the particle-level histogram A.

2.1.1 Approximations

To frame this statistical model in a more tractable form, we employ the Normal approximation to the
Poisson distribution, which holds well in this application since each bin of observations typically
contains a large number of events. Hence, we re-express the model as

y=Kl+e 2.9)

where £ ~ N(0,X) and X = diag(K 1) is an m X m diagonal matrix with KA on the diagonal. We
use the statistical model described Eq. (2.9) to perform inference on A. For the simulations in later
sections, we assume KA is known, but this vector can easily be estimated via the observations y as
shown in [20].

As described in [20], the response matrix K is typically obtained using detector simulations or
other knowledge about the response behavior of the detector. But, as can be seen from Eq. (2.6),
K depends on the unknown intensity function f. There are several ways to get around this when
computing K, of which we describe the one that we use in this paper.

A Monte Carlo (MC) ansatz of the intensity function, denoted fMC, can be used in the
computation of K. This is what happens when a Monte Carlo event generator is used to generate
particle-level events which are then smeared using a detector simulator to obtain an estimate of K.
Hence, a different approximation to Eq. (2.6) is given by

Js, Jp, k(s MC @) di ds
e Jr, PMC@)

i€ [m], jeln]. (2.10)
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The matrix elements in Eq. (2.10) are usually obtained by tracking propagation of events across
bins in a Monte Carlo simulation. We assume the simulation is large enough so that the Monte
Carlo noise in these values is negligible. This approximation improves as the number of true
bins (n) increases. Hence, we would like to use the finest possible (by computation or otherwise)
discretization of the true space, leading to a rank-deficient K matrix.

2.2 Regularization Bias, Wide-Bin Bias and Wide-Bins-via-Fine-Bins Unfolding

As described in the introduction, using a large number of true bins (n) renders the problem severely
ill-posed. For finite linear operators, this ill-posedness is the result of small values in the spectrum of
singular values of K [18, 10, 15], causing large fluctuations in the point estimators. Regularization
methods like Tikhonov regularization essentially replace the small singular values with a term that
is a function of the singular values and the regularization parameter, helping to tamp down the
large fluctuations. Statistically, regularization introduces a bias to bring down the variance of the
estimator. As illuminated in Section 4 of [20], Gaussian confidence intervals generated by these
regularized estimators suffer from a loss of coverage as the regularization strength increases, due to
the increasing regularization bias of the estimator. More precisely, letting 2 ; be the point estimator
for the j-th bin count as estimated via a regularization method, Kuusela shows in Section 4 of [20]
that in most cases

P4 € [ - 21appse(@), A + 21 appse(@)]) < 1 - a, @.11)

where 1 — « is the desired confidence level for the interval, zi_q/2 is (1 — @/2) quantile of the
standard Gaussian distribution and se(/T ;) is the standard error of p) j- This happens because the
estimator A j is inherently biased and it is very difficult to account for this regularization bias in order
to construct regularized confidence intervals with accurate coverage. Alternatively, one can reason
that these small singular values requiring explicit regularization can be avoided by only inverting
with a bin resolution commensurate with the resolution of the detector with which the data are
being observed. Using these types of wide bins acts as implicit regularization. Specifically, instead
of discretizing A € R", we discretize A € R¥, where k < n. Unfortunately, this approach is still
exposed to bias since using wide bins makes K increasingly dependent on the assumed MC ansatz
and hence the standard wide-bin approach can suffer from under-coverage in some bins due to this
wide-bin bias. Although, instead of the bias coming from explicit regularization as described above
for Tikhonov regularization, for instance, it comes in this case from the potentially large systematic
error in K.

Our proposed general solution is to first invert, without regularization, using the same number
of unfolded bins as in typical regularization-based inversion, but to then aggregate and propagate
the errors of this first inversion to a bin resolution similar to the wide-bin strategy above. This
strategy is implemented by defining a set of functionals aggregating groups of fine-resolution bins
to the desired wide-bin resolution. More precisely, using the notation above, for each wide bin,
[ € [k], we define an associated functional 6;(1) = kA, where h; € R" is an aggregation weight
vector and find a confidence interval for each such functional. A key feature of the two intervals
presented herein is the direct optimization of the interval endpoints, as opposed to finding a point
estimator and then subtracting and adding the appropriately scaled standard error of the estimator.
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This enables us to avoid explicitly performing the first inversion step which allows us to handle
rank-deficient smearing matrices.

3 Proposed Methods - One-at-a-time Strict Bounds and Prior-Optimized Intervals

In Section 4, we motivate the need and utility of both the One-at-a-time Strict Bounds (OSB)
and Prior-Optimized (PO) intervals through an expressive toy problem and least-squares intervals,
which are the simplest analytically tractable confidence intervals one can construct (using the least-
squares estimator). But these intervals pay for their simplicity in practice since they are unable
to incorporate the null space of K and any constraints on the feasible space and their coverage
guarantees break down under sufficient systematic error.

To address these concerns we explore the use of OSB intervals, described in [23, 26, 27, 33], and
expand on these intervals with PO intervals. The OSB intervals can leverage physical constraints and
elegantly handle rank-deficient response matrices, the use of which provides a mitigation technique
for handling systematic error. The intervals have correct empirical coverage; however, we are
presently unable to theoretically prove their coverage. By contrast, we can prove coverage for the
PO intervals even for constrained and rank-deficient situations. Empirical exploration has shown
the PO intervals to be slightly wider than the OSB intervals, but with the advantage of coverage
guarantees that are important for scientific applications.

Using optimization to directly find interval endpoints for statistical models shown in Eq. (2.9)
is not a novel concept. Notably, Donoho provides a rigorous treatment of confidence intervals for
linear functionals under model Eq. (2.9) in a minimax sense in [9]. Stark develops the “strict-
bounds" approach in [30] which develops techniques for intervals with simultaneous coverage. In
exploring the utility of the OSB and PO intervals, we compare, when possible, with the minimax
and strict-bounds intervals from these works. We describe the constructions of these intervals in
Section 3.3.

3.1 One-at-a-time Strict-Bounds Intervals (OSB)

We adapt the nomenclature of [23] to fit the terms we have already defined. As a historical note,
these intervals have also been described by Rust and O’Leary [26], Rust and Burrus [27], and
Tenorio et al. [33] for a simpler version of the problem with non-negativity constraints. For ease
of description, we consider a statistical model described per Eq. (2.9) for which the covariance
matrix is the identity matrix I,,, € R™ . This assumption is warranted since we can always whiten
the observation vector y. More precisely, consider the Cholesky decomposition of the covariance
matrix: £ = LLT where L € R"™™ is a lower triangular matrix, and consider

Lly=L"'KA+n, (3.1

where 7 ~ N(0,L7'2(L™)"). Since L'Z(L™1)" = I, we have that 5 ~ N(0,1,,). As such,
when building upon the statistical model in Eq. (2.9), we assume that € ~ N'(0,1,,,).

For the OSB intervals, we wish to perform inference on a single functional of the true underlying
parameter 4. We denote this functional by 6 = §(A4) and parameterize it using the vector h € R”".
This functional thus defines a quantity of interest, 6 := k' A, for which we wish to build a confidence
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interval [, 0]. Furthermore, the confidence interval should be constructed such that for a fixed
a € [0, 1] and any A such that A1 < b,

P, (9 e [6, 5]) >1-a, 3.2)

where A € R?*". Here A1 < b reflect any linear constraints that one has on the parameter 1. We
elaborate more below. To find these interval endpoints, [23] sets up two optimization problems, one
to find the lower endpoint and one to find the upper endpoint. To find 6,45, We solve the following
optimization problem:

minimize h'A
subjectto |y — K/lll% < Z%—a/z + 52, (3.3)
AAd <D,

where zj_4/ is the quantile at level (1 — «/2) of the standard Gaussian distribution, the matrix K
is assumed to be transformed as in Eq. (3.1) corresponding to data with identity covariance, and s>
is defined as the optimum value of the following optimization problem:

minimize ||y — K/l||% (3.4)
subjectto AA <b.

Similarly, to find s, we solve the following optimization problem:

maximize h'A
subject to ||y—K/l||§ < Z%—a/z + 52, (3.5)
AAd <b.

The linear inequality constraint A4 < b allows the analyst to implement a wide range of restrictions
on the feasible set. As we explore in Section 5, these constraints can enforce a variety of shape
constraints on the vector A, such as non-negativity, monotonicity, and convexity. For instance,
to enforce non-negativity, which always holds true for the unfolding problem, we set the linear
inequality constraint with A = —I,, and b = 0 so that the inequality constraint becomes 4 > 0. Both
optimization problems (3.3), (3.5), and (3.4) are convex optimization problems, and additionally
can be cast as second-order cone programs.

Tenorio et al. [33] proved the coverage of these intervals under a stochastic ordering criterion
which leads to the requirement that & be in the row space of K. For scientists interested in a
specific functional, this condition is restrictive when K does not have full column rank. Yet, both
later in this paper and in [23], it is observed empirically that these intervals in practice have the
desired coverage even in rank-deficient situations. Indeed, in extensive testing, we have yet to find
a situation where the coverage would breakdown. Unfortunately, rigorous proof in this case seems
difficult, and hence we attest that these intervals do not yet have provable coverage in a wide range
of scientifically-relevant situations.

Generalizing slightly, given ¢ € R,, define the set Z such that

Z(&) ={A:|ly- K|} < £ and AL < b}. (3.6)
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—ant 5%, the OSB intervals can be compactly represented as follows:
a/2

Then, defining w%_a n=z

[QOSB,5053]= min h'A, max h'A|, (3.7)
1ez(vl, ) 1€z (vt )

We can also consider the Lagrangian dual programs for both optimization problems (3.3) and
(3.5) as presented in [23]. To find 6, the dual problem is formulated as

maximize W'y —yi_apllwlla—b'c
w,C

subjectto h+ATc—K'w =0, (3.8)

c>0.
Similarly, to find 6, the dual optimization problem is formulated as

minimize w'y+ Ui—ap2llwllz + bTc
w,C

subjectto h—ATc—K'w =0, (3.9)

c>0.

We will see that these dual optimization problems provide useful insights on the intervals that
subsequently lead to the construction of the Prior-Optimized intervals as discussed next.

3.2 Prior-Optimized Intervals (PO)

As noted in [23], considering the dual optimization problems (3.8) and (3.9) can provide useful
insight into the interval [qg. fosg]. Namely, let (w, ¢) and (W, ¢) be dual variables satisfying the
constraints in the optimization problems (3.8) and (3.9), respectively. Further, consider an interval
of the form

(W'Y = z1apllwlla =bTe, W'y +z1_aplWl2 +bTe]. (3.10)

Patil et al. demonstrate in [23] that this interval has the correct coverage, i.e., it satisfies Eq. (3.2),
for any fixed (w,¢) and (w,¢) that satisfy the dual constraints. However, as [23] also notes (an
echo of Tenorio et al. [33]), the optimized dual variables depend on y and therefore an optimized
version of interval Eq. (3.10) similar to problems (3.8) and (3.9) does not necessarily satisfy the
coverage requirement (which is why problems (3.8) and (3.9) replace z1_4/2 by (z?_a nt sH)12 1o
inflate the interval).

Although this subtle point appears to block a path towards provable coverage for the optimized
interval, the coverage guarantee with respect to fixed elements satisfying the dual constraints exposes
an opportunity. Namely, since we may choose any (w, ¢) and (w, ¢) satisfying the dual constraints
and not depending on y, then perhaps we can use extra information to optimally choose these
variables. This perspective drives the ethos of the PO intervals.

To choose optimal (w,c) and (w,¢) (that do not depend on y), we use a decision-theoretic
framework. We follow the language and notation from Berger [2]. First, define the action space
to consist of real number pairs, A = {(a,b) | a,b € R}. Then, a decision rule, § : R — A,
is a function mapping an observation to an element in the action space, i.e., 5(y) = (6(y), 0(y)).

~-10-
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Let D be the space of all such decision rules. To match the form of the interval in Eq. (3.10), we
parameterize the decision rule 6(y; w,c,w,¢) = (Q(y;m, c), é(y; w, E)), where

O(y;w.e) =w'y—zi—apllwl—bTc, (3.11)

6(y;w,¢) =w'y+2zi_apnlwl2+b'c. (3.12)

Note, these endpoints are affine functions of the data, hence we are limiting ourselves to affine
decision rules. For compactness, we simply write §(y) for 8(y; w, ¢) and 6(y) for 8(y; w,¢). To
guarantee the coverage of the intervals chosen by decision rules parameterized in this way, we define
the decision space on which coverage is guaranteed by

D.:={6€D|h+AT¢c-Kw=0h-ATc-K'w=0,¢,¢>0}. (3.13)

Note, not all elements of the action space A define intervals with a < b, and by extension, the
decision rules in D, are not guaranteed to produce intervals for all realizations of data. However,
all the decision rules are guaranteed (by their construction) to cover the true functional value 6 at
least (1 — a) percent of the time. Since a decision rule that covers the truth must be an interval,
this means that for every 6 € D., § must produce an interval at least (1 — @) percent of the time.
Empirically, in all simulations for the applications in Section 4 and Section 5, we did not encounter
a situation in which 6(y) > 6(y). However, in principle, since y ~ N (KA, T), which has positive
measure on all subsets of R”, there exists a realization y’ of the data such that §(y’) > 6(y’). We
refer to this as the pathological case.

Picking an optimal decision first requires a way to measure the quality of the decision rule via
a loss function L : A — R. Since we only consider 6 € D, i.e., decision rules for which coverage
is guaranteed, we restrict our loss function definition to only account for interval size. As such, we
simply define the loss to be the interval width, i.e.,

LS(y)=0(y)-0@) =W -w)"y+zi—ap (IWlo +lwl) +bT (¢ +¢). (3.14)

Note, this definition of interval size is also the Lebesgue measure of the interval.
The risk functional of a decision rule is then defined as the expectation of the loss function
with respect to the probability measure on the data. In other words,

R(6) =Ey [L(5(y)] = (W —w) KA+ zi_ap (IWll2 + [lwl2) +bT (c+¢). (3.15)

Optimal choices of the decision rule can now be defined in terms of this risk functional.

Note that R(6) is a function of the true parameter A. Luckily, in physical science applications,
we often have access to well-justified prior information about A stemming from theory or previous
experimentation. As such, the Bayes Risk Principle sensibly defines an optimal decision rule (see
Section 1.5 of Berger [2]). Given a prior distribution 7y on A with expectation m y, the Bayes risk
(Definition 6 in Section 1.3.2 of [2]) of a decision rule ¢ is defined,

r(72,6) =B  [R(8)] = (W —w) Kma+2z1_as (W2 +llwll2) +b7 (C+¢). (3.16)

Under the Bayes Risk Principle, an optimal decision rule minimizes the Bayes risk and is called a
Bayes rule. As such, we define the Prior-Optimized intervals by the decision rule that is the Bayes
rule under the above construction, i.e., we find 6* € D, such that

r(my,6%) <r(my,8), foralld € D.. (3.17)
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Since our class of decision rules is parameterized by the dual variables, (w, ¢, w,¢), finding the
Bayes decision rule is achieved by solving the following optimization problem:

minimize r(my,0)

w.e.w.e
subjectto h+AT¢—K'w =0, (3.18)
h-ATc-K'w=0,
c.c>0.

Under the above construction, only the prior expectation, m , needs to be specified, and the coverage
guarantee follows from the constraints inherited from optimization problems (3.8) and (3.9). The
optimization problem (3.18) is a convex optimization problem, and can be cast as a second-
order cone program and solved efficiently. Note, to solve optimization (3.18) in practice, we can
equivalently maximize the expected lower endpoint and minimize the expected upper endpoint.

It is important to emphasize that since interval (3.10) has provable coverage for fixed dual
variables and since here the choice of these variables is done without using the data y, it follows that
the PO interval also has provable coverage. This holds true even in the presence of affine constraints
on A and for column-rank-deficient K. Importantly, despite the use of the prior m,, the coverage
guarantee is entirely frequentist. The prior is only used to optimize the interval width. If the prior
is misspecified (as it usually is), the width might be suboptimal, but the coverage guarantee still
holds. This is different from standard Bayesian use of prior information in which case the coverage
depends strongly on the choice of the prior [23].

Additionally, although we have made specific choices regarding the parameterization of the
decision rule and the loss function, the above decision-theoretic framework is general enough to
accommodate a variety of choices and modifications. For instance, one might parameterize the
decision rule with non-linear endpoints. Or, with access to a prior covariance matrix, one might
choose a loss function to incorporate this second-order information in addition to the information
on the first moment. More generally, this framework suggests a meta-algorithm to find interval
estimators with frequentist coverage guarantees. Namely, if one is able to define a set of decision
rules for which coverage is guaranteed as we did in Eq. (3.13), then the Bayes Risk Principle can
be used to optimize the expected interval size.

3.3 Other Related Intervals

The model described by Eq. (2.9) is a well-studied statistical model. In particular, the functional
interval estimation task accomplished by the OSB and PO intervals can also be accomplished
by intervals based on the least-squares estimator, minimax intervals [9], and simultaneous strict
bounds intervals (henceforth referred to as “SSB” intervals) [30]. Each alternative method provides
a reference point against which OSB and PO intervals can be compared.

Each of these methods can be categorized according to its assumptions and properties. For
instance, both the least-squares and minimax intervals require a full-column-rank linear model to
ensure that the model has a trivial nullspace. Otherwise, the interval endpoints can be unbounded
depending on the orientation of the model’s null space. Additionally, these intervals can be
categorized according to whether they are designed to provide one-at-a-time functional coverage or

— 12—
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simultaneous coverage. The SSB intervals are the only simultaneous intervals we consider here. If
considered for a single functional, this criterion makes these intervals more conservative than the
others, since their coverage is required to hold over a set of functionals, as opposed to one. As such,
we expect these intervals to be wider than both the OSB and PO intervals. Similarly, the minimax
intervals are, by their nature, conservative, and thus, we also expect these intervals to be wider than
both the OSB and PO intervals.

Perhaps the most obvious interval construction to use with model in Eq. (2.9) is the uncon-
strained least-squares (LS) intervals. Not only are these intervals the obvious procedure to use
given the statistical model of the problem, but [23] shows that the OSB intervals for unconstrained
full-column-rank models are equivalent to least-squares intervals, and thus are a natural comparison.
We refer readers to Appendix C of [23] for a full description and derivation of this result.

The primary necessary condition for constructing finite intervals using the least-squares esti-
mator is for K to have full column rank, which implies the invertibility of K? K. Note, as shown in
Eq. (3.1), the data model can always be transformed to have identity covariance matrix. As such, we
assume identity covariance. Assuming this condition holds, we can compute the minimum variance
unbiased estimator of the parameter, A= (K'K )_1 Ky, and construct a confidence interval with
guaranteed coverage (1 — @) for the quantity of interest @ = k' A as the interval:

[016.0Ls] = [RTA =y, hT A+ ] (3.19)

where y = z1_q /2 (AT (KTK)™" h)'/2.

By contrast, as shown in Sections 4 and 5, the SSB intervals [30] are finite even in rank-
deficient situations, but are overly conservative for a single functional given their simultaneous
coverage guarantee. These intervals are computed similarly to optimization problems (3.3) and
(3.5), where

Occn, Ossp | = min h'A, max h'A|. (3.20)
[Bsso- B5so] 1€Z0Z, ) ACZ0,,)

Note, the SSB intervals are constructed by replacing the feasible region Z (zpf_a /2) from the OSB
2

n,l-a

chi-squared distribution with n degrees of freedom [23, 30].

), where y2 is the (1 — a)-th quantile of the

n,l-a

interval construction in Eq. (3.7) with Z(y

The half-width of the fixed-width affine minimax confidence intervals is described in [9],
using the notation CZ, 4(0), where «a is the same as above, and o is the standard deviation of the
Gaussian noise. Computing this exact half-width is difficult, so we instead note that Corollary 2
in [9] provides upper and lower bounds, which can be more easily computed. Following [31], we
compute the lower and upper bounds of the minimax interval half-width by evaluating the modulus
of continuity as an optimization problem. We use the double of these bounds to compare against
the other interval widths. Generally, given € > 0, the modulus of continuity is defined in [9] as
follows:

w(eh,K,A)= sup {|hTA —h"A_1|: |[K(A - A_)|l2 S €, 21,41 € A}, (3.21)
A

where h is the functional of interest, K is the smearing matrix, and A is a convex subset of the
underlying parameter space. For instance, in Section 4, we consider the case when this subset is

13-
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simply the positive orthant of R”. Using the modulus of continuity, Corollary 2 in [9] gives the
following upper and lower bounds:

w(2z1-00) £ C, 4(0) < W(221-0/20) (3.22)

where 71—, and 71—,/ are the (1 —«) and (1 —a/2) level quantiles of a standard normal distribution.
Hence, we can find the lower bound indicated in Eq. (3.22) using the following optimization problem:

maximize |h'A; —hTA_|

A,
subjectto ||[KA; — KA_{||2 < 2z1-q0, (3.23)
AA_| <D,
Al; <b.
To cast optimization problem (3.23) into a more standard form, define z := [4] 27,]T € R>",
B:=[L L] eR>™" T :=h™BecR>*" A, = [Oq’;n 0";2”] € R?¥2n b, = [lﬁ] e R2ax1,

and K := KB, where I, is the n X n identity matrix. Thus, we can re-write Eq. (3.23) as follows:
maximize |f'z|
zeR2n
subjectto  ||Kz||> < 2zi_a0, (3.24)
Arz < bs.

Note, when solving optimization problem (3.24) with a non-negativity constraint on the parameters
as in Section 4, we can drop the absolute value signs in the objective function. Since the indexing
of A; and A_; is arbitrary, if the objective function is negative, the labels can simply be reversed to
render it positive. Thus, optimization problem (3.24) simply becomes a quadratically constrained
linear program which we can solve using standard convex optimization algorithms. Computing the
minimax half-width upper bound is performed almost exactly as above in the optimization problem
(3.24), but by replacing z;_, with z1_4/2.

As shown in the results section below, full-column-rank K produces finite lower and upper
bounds on the minimax interval width. However, in the rank-deficient cases, since our functionals
of interest are not in the row space of K (i.e., they are not in the orthogonal complement of the null
space), the lower bounds on the minimax interval widths are infinite. As a result, these minimax
intervals are not practical for arbitrary functionals in the rank-deficient situation. Our discussion
of minimax intervals is restricted to the notion of minimax optimality for fixed-width intervals as
defined in [9]. It is worth noting that there are other notions of minimax optimality such as that of
[11,28].

4 Application to Wide-Bin Deconvolution

4.1 Simulation Setup

In this section, we describe the simulation setup we use to numerically explore the coverage and
width of the OSB and PO intervals presented above. We must define a true intensity function f, a
smearing kernel k, and a collection of functionals for which we seek to build confidence intervals.

_ 14—
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Table 1: Parameter settings for the GMM simulation.

Parameter Value Description
N, 10,000  Expected number of collision events over the entire true space
(a1, pu2) (-2,2) Mixture means
(0'12, 0'22) (1,1) Mixture variances
T (S) [-7,-7] True and smeared spaces
(my,m)  (0.3,0.7) Mixture weights

To define the intensity function, we utilize Theorem 1.2.1 in [25], which gives us a convenient
way to define and sample from a Poisson point process. As described in Section 2, let X represent
arandom collision event in the true space T. Let 7 ~ Poisson(A(7T)) be independent from X ~ Py,
where the distribution Py is the same as the normalized measure A/A(T). Since the mean of a
Poisson random vriable is the same as its rate parameter, A(T) = E[7], and hence when the densities
exist, we have

f(x) =Elr]px(x) 4.1

where px is the Radon—-Nikodym derivative of Px (for more details about this construction, see
[19]). Practically, Eq. (4.1) allows us to construct an intensity function for the true particle-level
Poisson point process by specifying an expected number of events E[7] over the state space 7', and
a probability density px.

To define the density px, we use a Gaussian mixture model (GMM). For x € R, we let
N (x; u, %) denote the probability density function of a Gaussian distribution with mean u and
variance o2 at x. For our simulations, we define px as follows

px(x) = mN(x; p1, 0F) + N (x5 2, 73), 4.2)

where n; = P[Z = i], where Z € {1,2} and px(x) = Z?:l px.z(x,z), where px z is the joint
density of (X, Z). Hence, the intensity f is defined as

fx) = Nc{ﬂ']N(x;ﬂl,O'lz) +7r2N(x;p2,0'22)} 4.3)

where N. = E[r]. The full list of parameter settings used for the GMM simulations is shown
in Table 1. These parameter settings are chosen to continue and build upon the simulation setup
described in Section 3.4.1 of [20]. Note, in our setup, we use only two mixture components without
the uniform background.

We define the smearing kernel to correspond to the situation where we add independent
Gaussian noise to smear the points drawn from the intensity in Eq. (4.3). Namely,

k(s,t) =

1 1 5
Vory exp (—272(s -1 ) : (4.4)

Said differently, a true point X creates an observed point Y = X + &, where & ~ N(0,y?) and X

and & are independent. As noted above, since T = § = [-7,7], points that are smeared beyond
these boundaries are not included among the observed points. This kernel includes the parameter
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Figure 1: Fig. la: Illustration of the true intensity function used for simulations and the two ansatz functions used for
computing the smearing matrix K. Fig. 1b: (Left) True bin expected counts. The deviations in each bin between the
true expectation and the ansatz expectations drives the systematic error. (Right) Smeared bin expected counts. Note the
reduced magnitude of difference in expectation with respect to the true space, emphasizing the convolutional nature of
the smearing matrix.

v, which essentially controls the magnitude of the smearing, and hence, controls the extent to which
this problem is ill-posed. For our simulations, we use y = 0.35.

Additionally, we create two MC ansatz functions for computing the smearing matrix K. The
first is simply a slightly misspecified version of the true data generating process in Eq. (4.3). Namely,
we let (uy, u2) = (1.8, 1.8) and (o, 0») = (0.8, 1.2) and keep all other parts of Eq. (4.3) the same.
We refer to this ansatz as the “Misspecified GMM Ansatz”. The second is specifically created so
that it fits the smeared data well but has oscillations which magnify the effect of the systematic
error. To find such an ansatz, we generate a realization of data from the smeared process (i.e., use
Eq. (2.8) to generate a vector y € R™), find the non-negatively constrained least-squares estimate
of the true bin counts (i.e., A= argmin ,¢|ly — KA||2), and define the ansatz fMC by fitting a cubic
spline to Aand forcing it to be non-negative. Clearly, this ansatz fits the data that generated it well.
However, because it is a mildly constrained cubic spline, it is highly oscillatory. See A for a more
detailed account of this its creation. We refer to this ansatz as the “Adversarial Ansatz”. Fig. la
shows the true intensity functions and the two ansatz functions described above.

4.2 The Wide-Bin Problem

When obtaining confidence intervals for bin counts in the unfolding problem, it is common practice
to use more smeared bins than unfolded bins. Fundamentally, the ill-posedness of the problem
motivates this design choice. However, as more thoroughly described in the sections below,
systematic error in the Monte Carlo ansatz used when computing the smearing matrix (per Eq. (2.10))
can cause coverage issues even in simple examples. To demonstrate this point, we consider a true
intensity function as described by Eq. (4.3) and construct 95% confidence intervals for each bin in
the unfolded space.

Of course, if the ansatz were correctly specified, systematic error from the wide-bin bias would
not be a concern, but this would be unrealistic since it would mean assuming that we already know
the unknown intensity function before carrying out the experiment. So in practice, we need to
assume that the ansatz will not be correctly specified in any analysis. However, the ansatz is still
likely to be fairly close to the true function since it usually follows from some assumed physical
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theory. As such, we first consider the Misspecified GMM Ansatz since it is nearly the same as the
true intensity function.

We discretize the true space shown into n = 10 bins, while the smeared space discretization
is set to m = 40 bins. Figure 1b shows the deviations in the expected bin counts both in the true
space (left) and the smeared space (right). The differences in the left side of Figure 1b flow to the
smearing matrix and provide the source for the systematic error. To show how the wide-bin bias
disrupts coverage guarantees with even the Misspecified GMM Ansatz, we evaluate the coverage of
95% least-squares confidence intervals for each of the 10 unfolded bins. To estimate the coverage,
we generate Mp = 1,000 realizations of smeared data, y1, ..., yas, ~ Poisson(u), where u € R*
is defined above in Eq. (2.7). Since u = KA, where A € R is the vector of true bin expected
counts, and the bin counts are all sufficiently large, we use the Normal approximation to the Poisson
distribution to construct confidence intervals for each bin using the least-squared intervals described
in Eq. (3.19). The intervals constructed for one realization of data are shown in the left portion of
Fig. 2. Foreachi = 1,..., Mp, we thus construct ten intervals. For each bin j = 1,...,10, we
estimate the coverage with the following statistic:

M
Vi = %Zﬂ {017 € 16,81} (4.5)

i=

where [0, i 0; 7] is the least-squares interval computed for the ith realization of data for the jth bin,
and 1{A} denote indicator function for event A. By the law of large numbers, if the procedure is

working as expected, LN l—-aforall j =1,...,10. However, as we can see in the right portion
of Figure 2, all but three of the ten intervals exhibit severely deficient coverage. So, although the
intervals have a desirable width, they do not cover the true values nearly as often as we would like
because of the wide-bin bias from the misspecified MC ansatz.

[ True Bin Expected Counts Nominal Coverage Level
T Least-squares 95% Confidence Intervals T 95% Clopper-Pearson Intervals (Mp = 1000)
le3
4.0 1.0
I — ES
35
0.8 £
3.0 °
g Ea Ea
o 2.5 9]
c 2 0.6
3 8
& 2.0 =
c -
“1s 1 go4
&
1.0
T 0.2
0.5
0.0 0.0
-6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6

Figure 2: (Left) Bin count intervals constructed from one out of the Mp samples of data with the Misspecified GMM
Ansatz. (Right) Estimated bin-wise coverage of the least-squares intervals shows that most of the bin count intervals
undercover.

4.3 Addressing the Wide-Bin Problem

If K were correctly specified when constructing the intervals, the previous coverage problem would
not exist. However, with wide true bins, the K matrix will realistically never be correctly specified.
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Figure 3: 3a: Unfolding with n = 40 true bins and least-squares intervals. The Left and Right are analogous to those
in Fig. 2, but with the n = 40 true bins. Using more true bins fixes the coverage problem of the least-squares intervals in
Fig. 2 (Right), at the expense of significantly wider bin-wise intervals. 3b: (Left) Bin count intervals from one out of the
M samples using post-inversion aggregation with the Misspecified GMM Ansatz. (Right) Estimated bin-wise coverage
of the post-inversion aggregation approach shows these intervals have the desired coverage.

As such, bin count interval coverage breaks down even with the relatively harmless Misspecified
GMM Ansatz.

Since the misspecification is exacerbated by the wide-binning, one strategy is simply to use
more fine bins, mitigating bin-wise ansatz misspecification. Staying with m = 40 smeared bins,
with the least-squares intervals, we are restricted to at most n = 40 true bins so that the smearing
matrix retains full-column-rank. With more true bins, we obtain results as those shown in Figure 3a.
This figure shows that unfolding with more true bins nearly fixes the coverage problem shown in the
right side of Figure 2, but at the expense of creating significantly wider bin-wise intervals. Ideally,
we want to obtain intervals with widths like those on the left of Figure 2, but with the coverages like
those on the right of Figure 3a. The intervals shown in Figure 2 were constructed by first discretizing
the true space into ten bins and then finding the least-squares intervals directly. However, we could
alternatively invert at the finest possible binning (as shown in Figure 3a) subject to least-squares
assumptions (namely, that K be full rank) and then aggregate the fine-bin intervals to the same
coarse-bin level. We refer to this wide-bins-via-fine-bins strategy as “post-inversion aggregation”.
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In the above example, this paradigm leads us to create a new matrix, K € R*40_ corresponding to
n = 40 true bins which are then aggregated into the original 10 bins post-inversion using a sequence
of functionals {h }331 . Changing this order of operations yields significantly wider intervals, as seen
in the left portion of Figure 3b compared with the intervals in the left portion of Figure 2. However,
in exchange for wider intervals, the right portion of Figure 3b shows that the coverage is now at the
desired level across all bins. This happens because with n = 40 true bins, the dependence of K on
the MC ansatz is reduced and, as a result, the systematic misspecification in K is no longer large
enough to cause a substantial bias in the unfolded solutions. In this particular example, as seen in
the right portion of Figure 3a, even using using a finer true binning does not entirely fix the coverage
deficiency caused by the ansatz misspecification. As such, it is perhaps fortuitous that the post-
inversion aggregation results in the right portion of Figure 3b show nominal coverage. However,
the coverage improvement with the finer bins is clear and ideally, we would reduce the bin width
further until we can be confident that the sensitivity to the ansatz misspecification is negligible.
With the least-squares intervals, the full-rank constraint sets up a barrier for finer binning but the
other methods presented herein do not have that limitation, as demonstrated in Section 4.5.

4.4 Enforcing Non-negativity Improves Interval Width

With the bin-wise coverage now at nominal level, one might be tempted to conclude that these
intervals are the best we can do. However, some of the intervals shown in the left portion of Fig. 3a
used in the aggregations violate the known physical constraints of the unfolding problem; namely,
that bin counts must be non-negative. Hence, constructing intervals containing negative values
indicates that some key information is absent from the procedure.

The OSB and PO intervals are both capable of including this physical constraint. Using
this additional information in the optimization has a clear benefit for the expected width of the
constructed intervals. Indeed, the right portion of Figure 4 shows that the least-squares intervals are
uniformly wider in expectation than both the OSB and PO intervals constructed with A = —I,, and
b = 0 to enforce the non-negativity constraint. These expected widths are estimated using the same
Mp = 1,000 samples used to estimate the coverage in the previous sections, with the error bars
computed as twice the mean’s sample standard error. More specifically, but less generally, the left
portion of Fig. 4 illustrates how intervals generated for one data sample are dramatically shortened
when using the non-negativity constraint in the optimization. As presented in Section 3.2, the PO
intervals require a prior expectation. To refrain from adding additional complexity here, the PO
intervals constructed to make Figure 4 use a uniform prior, with bin counts set to the average true
bin count, i.e.,
a1
=—

my: 1. (4.6)

We consider the effect of using different priors in Section 4.6, where we show that the PO intervals
have little sensitivity to the choice of the prior.

In addition to providing shorter intervals, both the OSB and PO intervals maintain coverage
guarantees as shown in Fig. 5. In fact, both the OSB (left) and PO (right) intervals over-cover
relative to the desired confidence level on most bins. However, we note the nearly nominal coverage
of the OSB intervals on the boundary bins shown in the left portion of Fig. 5. Given the nature
of the true intensity, these bins lie on the portions of the domain on which the intensity is nearly
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Figure 4: (Left) Comparing least-squares, OSB, and PO intervals for one realization of data shows that incorporating
the non-negativity constraint dramatically reduces interval width. (Right) Expected interval width comparison between
the least-squares, OSB, and PO interval constructions shows that incorporating the non-negativity physical constraint
dramatically shortens the constructed confidence intervals. The error bars show the standard error of the average
interval widths in order to demonstrate that the expected widths are significantly different. Additionally, the least-squares
intervals are fixed width, so their standard error is zero.

zero. Similar to an observation made in [22], it appears that having the true intensity close to the
non-negativity constraint can produce this type of behavior. While over-coverage may indicate a
lack of efficiency in the form of slack in the interval widths, it is clear that both the OSB and PO
interval widths are good relative to the least-squares intervals.

Nominal Coverage Level
T 95% Clopper-Pearson Intervals (Mp = 1000)
0osB PO

1.0

0.9

0.8

0.7

Estimated Coverage
e © o o
> Y ®» © o

0.6

Figure 5: (Left) OSB 95% interval coverage. (Right) PO 95% interval coverage using a flat prior mean constructed
from the mean of the true bin expectations. Both methods construct intervals with at least nominal coverage.

4.5 Handling an Adversarial Ansatz

If systematic error from the ansatz can cause coverage problems in the wide-bin unfolding setting as
shown in Section 4.2, it may be the case that there exists an ansatz which induces enough systematic
error to even break the coverage shown for the OSB and PO intervals in Fig. 5. Exploring this
scenario was the motivation for creating the Adversarial Ansatz as shown in Fig. 1a.

To explore this potential failure mode, we compute a smearing matrix K € R*40 with n = 40
true bins, as in Section 4.3, but this time using the Adversarial Ansatz for fMC, and estimate
the coverage of 95% intervals in the same manner as above for the least-squares, OSB, and PO
procedures. The results of the 95% interval estimation in Figure 6 show the coverage of least-

squares, OSB, and PO intervals from left to right. Since we have already demonstrated the effect of
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the wide-bin bias on the least-squares intervals, it is not surprising that a few of those intervals show
under-coverage with the Adversarial Ansatz despite using a large number of true bins. But, here
the systematic misspecification is large enough to also affect the coverage of the OSB intervals as
shown by their significant under-coverage in the seventh bin. One solution is to further circumvent
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Figure 6: Coverage of (from left to right) least-squares, OSB, and PO 95% intervals using a smearing matrix constructed
with the Adversarial Ansatz. This ansatz leads to systematic error in the smearing matrix, creating severe lack of empirical
coverage for both the least-squares and OSB intervals.

the systematic error induced by the Adversarial Ansatz by using an even finer binning in the true
space during inversion and then adjusting each bin functional to aggregate more of the fine bins
to arrive at the same ten final bins. Assuming that we keep the number of smeared bins fixed
at m = 40, we end up with a column-rank-deficient smearing matrix, and therefore cannot use
the least-squares intervals. However, there is no such full-rank requirement for the OSB and PO

intervals. We therefore construct a new smearing matrix, K € R¥x30

using n = 80 true bins, and
perform the same coverage estimation as above for 95% intervals. The results of this experiment
are shown in Figure 7. Now, both the OSB and PO intervals (left to right in Figure 7) have at least
nominal coverage across all bins. By moving to the rank-deficient scenario, we were able to use
enough true bins to reduce the systematic misspecification in K to a level where the OSB intervals
are no longer affected by the wide-bin bias. Though using a finer true binning fixes the coverage
issues shown in Figure 6 and gives increased protection against misspecification of fMC, we pay
by increasing the expected interval widths as shown in Fig. 8. Both the PO the OSB intervals
experience substantial width inflation in the rank-deficient regime relative to the full-rank scenario.

Nevertheless, their expected widths are almost uniformly shorter than those of the full-rank least-

Nominal Coverage Level
T 95% Clopper-Pearson Intervals (Mp = 1000)

0sB PO

0.8

Estimated Coverage
°
>

Figure 7: Coverage of (from left to right) OSB and PO 95% intervals using the 40 X 80 smearing matrix constructed
with the Adversarial Ansatz. Using a finer true-space binning for the inversion ameliorates the coverage issues displayed
in Fig. 6. The least-squares intervals are not applicable in this scenario because of the rank-deficient smearing matrix.
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squares intervals, which are both longer and undercover in this scenario. Since OSB’s seventh bin
exhibits under-coverage in Fig. 6, the increase in interval width is reasonable. It may be noted that
the expected least-squares interval width for bin seven is less than the interval width for the 80-bin
PO interval. However, the PO intervals have coverage while the least-squares intervals do not so
we would still opt for the PO intervals among these two.

In summary, we have shown that with the Adversarial Ansatz, both the OSB and PO intervals
can be constructed to provide coverage and, in most cases, out-perform the width of the least-
squares intervals, which either undercover or are not applicable in this scenario. This was enabled
by the ability of the OSB and PO intervals to make use of the physical constraints and to handle a
rank-deficient K while still maintaining frequentist coverage.

le3

-=- Least-squares (40 True Bins)
=== OSB (40 True Bins)
2.51 —— 0SB (80 True Bins)
~== PO (40 True Bins)
—— PO (80 True Bins)

Average Interval Length

0.5

0.0

Bin Number

Figure 8: Expected 95% interval widths when using K € R*80 and more true bins than in the original full-rank
smearing matrix. For almost all bins, for both the OSB and PO intervals, the 80 true bin expected interval width is
greater than that of the 40 true bin configuration.

4.6 Further Simulations

The sections above provide some insight into the OSB and PO intervals’ ability to incorporate
physical constraints and to address the coverage issues in least-squares intervals that arise from
wide-binning due to the systematic error in the MC ansatz. In this section, we provide additional
interval method comparisons against the OSB and PO intervals, demonstrate that using more bins
in the true space does not cause interval widths to diverge, and provide evidence that the expected
PO interval widths are robust to the choice of the prior.

4.6.1 Comparison against simultaneous strict bounds and minimax intervals

In the above analysis (e.g., as seen in Fig. 4), we compared the expected widths of the OSB and
PO intervals constructed using the full-rank smearing matrix and the Misspecified GMM Ansatz
with the fixed-width least-squares intervals. The width improvement for the OSB and PO intervals
over the least-squares intervals is expected since the latter do not incorporate the non-negativity
constraint. In order to compare against other methods that also account for constraints, we consider
the expected interval widths of the SSB intervals and minimax intervals, as described in Section 3.3.
We perform the same procedure as described in Section 4.4 in order to estimate the expected width
of the SSB intervals. Like the least-squares intervals, the minimax intervals are fixed-width, and
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hence have interval width that is independent of any particular realization of data (although the
actual width is only known up to a fixed range, as described in Section 3.3). The results of these
simulations are shown in Fig. 9.

Since we are able to only find a lower and upper bound for the minimax interval widths, we
shade the region between these bounds to indicate where the actual minimax interval widths would
be for each bin. We observe that the OSB and PO intervals still have the shortest expected width for
almost all bins (excluding the end bins) when compared against the other three alternatives. This
result is sensible since the SSB intervals are simultaneous intervals, and are therefore conservative
if evaluated as one-at-a-time intervals. Furthermore, the minimax intervals are, by definition, the
most conservative fixed-width affine intervals for this setup, aligning with the observation that they
are uniformly the widest of these intervals.

le3

—— Least-squares
— 0SB
— PO
—— SSB
Minimax Range

Average Interval Length (Error bars are +20)

1 2 3 4 5 6 7 8 9 10
Bin Number

Figure 9: Expected 95% interval widths for LS, OSB, PO, and SSB intervals, shown with upper and lower bounds for the
minimax interval widths. All intervals are constructed with the full-rank smearing matrix. Since the minimax intervals
are the most conservative, the least-squares intervals do not take physical constraints into account, and the SSB intervals
are simultaneous intervals applied one at a time, it makes sense the PO and OSB intervals are uniformly narrower across
almost all bins. Between the OSB and PO intervals, the OSB intervals are narrower since each interval optimizes width
with respect to the observed data, whereas the PO intervals optimize width offline.

4.6.2 Interval widths as a function of the number of true bins

One of the primary practical benefits of the OSB and PO intervals is that they can be constructed
even with rank-deficient smearing matrices. As we demonstrated above by increasing the number
of true bins from 40 to 80, this flexibility can be used to overcome the systematic error that exists
due to the MC ansatz. However, this ability is questionable if the width of the intervals diverges as
a function of the number of true bins. We know from previous work [22] that the SSB intervals are
finite even for infinite-dimensional true spaces. Since we expect the OSB and PO intervals to be
shorter than the SSB intervals, we expect these intervals to remain finite as the number of true bins
is increased. To provide assurance that the interval widths do not diverge, we repeat the simulation
study in Section 4.5, but additionally compute the OSB and PO intervals using 160 and 320 true
bins in addition to the 40- and 80-bin setups. For this study, we use the Misspecified GMM Ansatz
to construct each smearing matrix and a flat prior (see Eq. (4.6)) for the PO intervals. The results
of these experiments can be seen in Figures 10 and 11a. Figure 10 shows the estimated expected
interval widths for each binning setup across all ten aggregated bins for OSB intervals on the left
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portion of the figure and PO intervals on the right. On the left, we observe that the OSB interval
widths become less sensitive to the number of true bins as the number of these bins increases,
which indicates that the interval widths will not diverge. On the right, when computed with the flat
prior, the PO interval widths similarly become less sensitive to the number of true bins, providing
assurance that the interval widths do not diverge. We also observe the close width performance
between the two methods to highlight that even with a relatively uninformed prior, the PO intervals
widths are comparable to the OSB method.

The previous conclusions can alternatively be viewed in Figure 11a, showing the expected
width as a function of the binning setup, with one line for each aggregated bin. Across all bins,
and for both OSB and PO intervals (left and right, respectively), we observe that the interval width
stabilizes as a function of the number of true bins. As such, if we need to increase the number of
true bins to circumvent the wide-bin systematic error, we can be reasonably sure that the interval
widths will not diverge.

—— 40 Bins
—— 80 Bins
—— 160 Bins

320 Bins

3000

2500

2000

1500

Expected Width

1000

500

Figure 10: Estimated expected 95% interval widths as a function of aggregated unfolding bin for each different smearing
matrix setup. (Left) OSB interval widths are sensitive to the smearing matrix setup, but that sensitivity decreases as the
number of unfolding bins increases. (Right) PO intervals optimized with a flat prior are about as sensitive to smearing
matrix setup as the OSB intervals. Notably, the PO interval expected widths are not wider than the OSB expected widths.

Not only are the PO interval expected widths robust to the binning setup, but they also exhibit a
degree robustness with respect to the choice of the prior. We explore this robustness by repeating the
simulation in Section 4.4 with the 40 X 40 full-rank smearing matrix. In addition to constructing the
PO intervals with a flat prior (see Eq. (4.6)), we consider three additional priors. First, we compute
the bin means of the true data generating function (see Eq. (4.3)) to compute the Correctly Specified
Prior, followed by the bin means of the Misspecified GMM Ansatz to create the Misspecified GMM
Prior, and finally the Adversarial Ansatz to create the Adversarial Prior. The expected interval
widths for each bin for each prior can be seen in Figure 11b. The Adversarial Prior, the most
misspecified out of the four, shows the largest expected width in most of the bins. The Misspecified
GMM Prior creates intervals with expected widths close to the correctly specified prior. This result
is sensible since the Misspecified GMM is close to the true data generating process. For half of
the bins, the choice of the prior does not appear to lead to substantively different results, but in
some bins (especially bins 6, 7, and 8), having a more correctly specified prior appears to shorten
the interval width. Notably, using the Misspecified GMM Prior (or the Correctly Specified Prior)
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Figure 11: 1la: Estimated expected 95% interval widths as a function of the number of true unfolding bins provide
assurance that both OSB and PO intervals remain finite as the number of true bins increases. Both OSB (Left) and
PO (Right) interval widths become less sensitive to unfolding dimension as the number of true bins increases. 11b:
The choice of prior used when optimizing 95% PO interval does not have a substantial impact on the expected interval
widths. We observe that for three incorrectly specified priors (Flat, Misspecified GMM, and Adversarial), in all but three
bins, the expected interval widths are close. In bins 6, 7, and 8, we observe the width benefits of having a more correctly
specified prior. We also observe the closeness of most bin expected interval widths to the expected OSB interval widths.

would make the PO interval widths comparable to the OSB intervals.

5 Application to Unfolding a Steeply Falling Particle Spectrum

While the above results in Section 4 demonstrate the properties of the OSB and PO intervals in a
wide-bin deconvolution setting, the data generating process was not directly motivated by a specific
particle physics data analysis scenario. In this section, we use the inclusive jet transverse momentum
spectrum [6] as a more concrete unfolding problem in particle physics. This spectrum reflects
the production rate of jets (collimated streams of particles) as a function of the jet (transverse)
momentum at proton-proton collisions at the Large Hadron Collider at CERN. The associated
intensity is an example of a steeply falling particle spectrum, for which the intensity rapidly decays
for larger transverse momentum (pr) values. We follow the test setup equations and parameters
outlined in [20] (see Section 3.4.2). In the same way as we defined a true and ansatz intensity
function for the deconvolution example in Section 4, we define a true intensity using the parameters
in Section 3.4.2 of [20], and an ansatz intensity using the alternative parameters in Section 4.2 of
[20]. Figure 12 shows both intensities in the left panel and the fine-bin and wide-bin discretized true
intensity functions in the middle and right panels. As seen in Figure 12, we consider the intensity
function from 400 to 1,000 GeV.

Like the wide-bin deconvolution problem, we find confidence intervals for 10 wide bins in two
ways. First, we provide a baseline by directly computing the wide-bin intervals using least-squares
via a smearing matrix built on 10 true and 30 smeared bins. Second, we compute the OSB, PO and
SSB intervals with a rank-deficient smearing matrix built on 60 true and 30 smeared bins to again
reduce the magnitude of the systematic error induced by the misspecified ansatz intensity. To get a
sense of the misspecification in this problem, consider Figure 13. This figure shows |K;; — K}\j’.lc|
for all rows i and columns j, plotted on a logarithmic scale. The left panel in Figure 13 shows
the difference between the true and ansatz smearing matrices for the 30 X 10 case, i.e., the case
in which intervals are computed directly on the wide bins. The right panel in Figure 13 show the

_25_



732

733

734

735

736

737

738

739

740

4

742

743

744

745

746

747

16000 — True [ True Bin Means

—— Ansatz [ Functional Bin Counts
14000

12000

10000

Intensity

8000

6000

4000

2000

400 500 600 700 SOOTrans\?g?ge Mo},?frium,‘,‘ﬁomev) 500 600 700 800 900 1000

Figure 12: (Left) True and ansatz inclusive jet transverse momentum spectrum intensities. (Middle) Scaled (by bin
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Figure 13: |K;; —K?;!C| for all rows i and columns j for the (left) 30x 10 and (right) 30X 60 matrices. The misspecification
in the 30 x 10 case is O(102) times larger than that of the 30 X 60 case.

same difference but for the 30 x 60 matrix, i.e., the rank-deficient case. The misspecification in the
30 x 10 case is O(10?) times larger than the misspecification in the 30 x 60 case.

In the wide-bin deconvolution example, directly computing wide-bin confidence intervals via
least squares produces intervals lacking coverage because of the systematic error induced by the
misspecified ansatz. As shown in Figure 14, least-squares intervals computed in this scenario
similarly lack coverage. Further, the bottom right panel in Figure 15 shows the wide-bin least-
squares intervals for one realization of data. As expected, these intervals are very narrow on the
bins where they lack coverage, namely, the first four bins, making them sensitive to the wide-bin
bias induced by the misspecification of the ansatz. We now proceed to show that the coverage
problems displayed in Figure 14 can again be ameliorated by using the rank-deficient setup to form
the wide-bins-via-fine-bins intervals using the OSB, PO or SSB methods. Although we use 10 wide
bins in this example as we did in the deconvolution example, reference [20] shows in Eq. (3.36) that
the additive noise used to model the smearing is heteroskedastic as a function of the pr, meaning
that the wide-bin width should ideally vary across the py domain, unlike the constant wide-bin
width in the homoskedastic deconvolution example. The physical motivation for this choice is that
the wide-bin widths should be comparable to the resolution of the measurement apparatus, which

_26—



748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

77

772

773

774

775

776

Nominal Coverage Level
T 95% Clopper-Pearson Intervals (Mp = 1000)

i

H

Estimated Coverage

0.0 [ - - - -
400 500 600 700 800 900 1000

Transverse Momentum (GeV)

Figure 14: Wide-bin unfolding in the steeply falling spectrum example with least-squares intervals produces dramatic
undercoverage in several bins.

in this case varies as a function of pr. For the range of pr considered, the noise standard deviation
is characterized by o-(pr) o y/pr. As such, the wide-bin widths in pr are enlarged at the same
proportional rate. Namely, for wide-bin width B, as p7 increases, B is increased such that B oc y/pr.
The resulting endpoints of these bins are then matched to the closest endpoints of the uniformly
sized 60 true fine bins. As a result, Figure 12 shows that the left-most wide bin includes five fine
bins while the right-most includes seven fine bins.

In addition to the inclusive jet transverse momentum spectrum providing a more realistic
example of unfolding than the simple deconvolution setup, as explained in [22], there are physically
motivated intensity function shape constraints that can be included when optimizing the intervals
in addition to the non-negativity constraint used in the deconvolution example. Namely, we expect
the intensity to be monotonically decreasing and convex. These constraints are implemented via
the A matrix as seen in the optimization problem (3.3), for example.

When optimizing over the parameter 4 € R", the non-negativity, monotonically decreasing,
and convexity shape constraints can be implemented as follows. For the infinite-dimensional
version of implementing these shape constraints, see [22]. The non-negativity implementation is
already explained in Section 3.1. Denote this constraint matrix by A" € R™". To implement the
decreasing constraint, we first note that for all i € [n — 1], A; > A;;; must hold. When working
with the optimizations like program (3.3), these necessary conditions can be met by constructing
A? e R=Dxn guch that A?,i = —1and A;{M = 1,foralli € [n—1]. To create a necessary convexity
condition, we observe that for three adjacent elements, e.g., 4;, 4;+1 and A5, in order for the vector
A to follow a convex shape, it must be true that for all i € [n — 2], we have % > A;41. Thus,
we must have the following inequality for all i € [n — 2]: —A; + 24;41 — ;42 < 0. These necessary

conditions can be met by creating a matrix A° € R(""2>" guch that AY, =-1,A7,,, =2 and
Af..,=-l,foralli € [n—2]. Combining these constraints is accomplished simply by stacking

these individual shape constraint matrices on top of each other. In particular, we work with the same
three constraint setups as those shown in Table 1 of [22], namely, non-negativity; non-negativity
and monotonically decreasing; and non-negativity, monotonically decreasing, and convex. These
setups are referred to as N, ND, and NDC, respectively. Here we assume that the fine bins have a
uniform width. If the fine-bin discretization was done using variable bin widths, the matrices A¢
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and A€ would need to be adjusted to account for the variable bin widths.

Like the deconvolution example, we are primarily interested in evaluating the coverage and
expected width of the intervals created with each of the above three constraint setups. We estimate
the coverage and interval width by sampling Mp = 1,000 draws from the distribution shown in
Eq. (2.8), and the smearing matrix is constructed as described above. In particular, we build OSB,
PO, and SSB intervals with each of the above three constraint combinations, for a total of nine
different interval setups. First, Figure 15 shows one realization of the 1,000 intervals constructed
for each interval procedure and for each aggregated bin. Despite the rapid interval width decay as
a function of the number of shape constraints, Fig. 18 in Appendix B shows that across all interval
procedures, constraint configurations, and aggregated bins, we retain at least nominal coverage, as

Non-Negative 108 Non-Negative/Decreasing
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Figure 15: Example 95% wide-bin intervals across different procedures and constraint configurations for the steeply

falling particle spectrum based on a 30 X 60 smearing matrix. Adding shape constraints significantly shortens interval

widths across all procedures. In the upper left plot, the PO intervals intersecting the horizontal axis have a lower bound
close to zero. The top two and bottom left plots show OSB intervals as the shortest, PO as the middle width, and SSB
intervals as the widest, across most bins. Example least-squares intervals are included in the bottom right and essentially
show interval widths comparable to the OSB/PO/SSB intervals in the bottom left panel, but as shown in Figure 14 the
wide-bin least-squares intervals do not have correct coverage.

Interval widths decreasing as a function of the number of shape constraints also holds in
expectation, as shown in Fig. 16. Additionally, the left panel in Fig. 16 shows the same expected
width ordering across interval procedures as previously in Section 4. Namely, OSB intervals are
uniformly shorter in expectation than PO intervals, which are in turn uniformly shorter in expectation
than the SSB intervals. For a few bins in higher p7 values, these improvements are difficult to see.
The improvements can be more easily observed in the right panel of Figure 16, showing the percent
reduction in expected interval width using the SSB intervals as a baseline. This figure additionally
shows that the percent reduction increases as shape constraints are added. For instance, the PO
intervals are shorter than the SSB intervals for all bins and constraint configurations, but for the
ND and NDC constraints, the PO intervals provide a much larger width improvement over the SSB
intervals compared to the improvement with just the N constraint. The same applies to the OSB
intervals as well.

This example provides a more concrete demonstration of how classical wide-bin unfolding
with systematic error in the smearing matrix can nullify the typical coverage guarantees of least-
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Figure 16: (Left) Expected 95% interval widths across bins. Similar to the deconvolution example, the OSB intervals are
uniformly shorter than the PO intervals, which are uniformly shorter than the SSB intervals. (Right) Percent decrease
in expected interval width with respect to the SSB interval widths. Both the OSB and PO interval procedures produce
shorter intervals across all bins and constraint configurations than SSB. The width improvement with respect to the SSB
intervals increases as more shape constraints are added for both OSB and PO intervals.

squares intervals. This can be addressed using the wide-bins-via-fine-bins approach based on the
OSB, PO and SSB intervals which are able to handle the nontrivial null space of the smearing
matrix and incorporate additional physical constraints, while maintaining the desired coverage. It
additionally demonstrates that the non-simultaneous OSB and PO methods offer substantial interval
width improvements over the comparable SSB intervals, assuming that one-at-a-time coverage is
what we are interested in.

6 Discussion and Conclusions

When performing unfolding in high energy physics, wide-bin unfolding is an increasingly popular
alternative for regularization. It reasonably sets wide bin widths to match the detector resolution.
However, as we showed in Section 4, even a slight systematic error caused by the ansatz used to
create the wide-bin smearing matrix can scupper the coverage guarantees of classical least-squares
intervals. In this paper, we have proposed and substantiated a different approach to avoid these
coverage issued in the aforementioned setup. Namely, instead of unfolding directly to the detector
resolution, we propose a general methodology in which one first unfolds with as many true bins as
possible and then aggregates these narrow-bin inversion results to the detector resolution. In order
to maximally mitigate the systematic error caused by the ansatz misspecification, we invert with
a rank-deficient matrix that has more true bins than smeared bins facilitated by the OSB and PO
intervals.

In Sections 4 and 5, we explored the coverage and width properties of the OSB and PO
intervals for a histogram deconvolution problem and for unfolding a steeply falling particle spectrum,
respectively. In the deconvolution problem, the OSB and PO intervals clearly address the coverage
deficiencies of the wide-bin least-squares intervals, while also providing superior interval width
properties when compared against least-squares, SSB, and minimax intervals. Additionally, we
demonstrated a low interval width sensitivity to the number of true bins (i.e., the extent to which
the smearing matrix is rank-deficient) for both the OSB and PO intervals and to the choice of the
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Table 2: Summary of the properties of the intervals considered or mentioned herein. The SSB intervals are the only
simultaneous intervals considered, the rest of the methods are designed to work with one functional at a time. “Empirical
Coverage” indicates if the method covers at the desired level in simulations. “Provable Coverage” indicates the existence
of a mathematical proof guaranteeing the method’s coverage. “Physical Constraints” indicates the method’s ability to
incorporate physical knowledge in the form of affine constraints into the interval construction. “Rank-Deficient Model”
indicates if the method can be used with a column-rank-deficient linear model, helping mitigate systematic uncertainty
due to the binning. V™ indicates that the coverage depends upon sufficiently small systematic error in the linear model
used to construct the interval. We assume here that the systematic error can be made sufficiently small for those methods
that can handle a rank-deficient matrix. v indicates that the method makes use of the constraints but the final intervals
do not necessarily respect the physical constraints.

Interval Type Coverage Design Interval Width Empirical Coverage Provable Coverage Physical Constraints Rank-Deficient Model
Tikhonov/Regularized ~ One-at-a-time Narrow X X X v
Least-Squares One-at-a-time Medium e v X X
OSB One-at-a-time Medium v ? 4 4
PO One-at-a-time Medium v v s v
SSB Simultaneous Wide v v v 4
Minimax One-at-a-time Wide e v v X

prior for the PO intervals. Similarly, in the steeply falling spectrum example, we showed that the
coverage and expected width properties of the OSB and PO intervals carry over to this more realistic
unfolding setting from the simpler deconvolution example. This example further demonstrates the
capacity and utility of these intervals to include shape constraints (i.e., non-negativity, monotonicity,
and convexity) to further reduce the width of the optimized intervals while preserving coverage.

The OSB and PO intervals have properties that make them good methodological choices for
the types of ill-posed inverse problems considered herein. However, determination of the “best”
interval is largely dependent upon the specific application. As such, Table 2 provides an overview
of some key properties of various intervals relevant to the statistical context of this paper. Note
in Table 2 that the PO intervals are the narrowest intervals having empirical coverage, provable
coverage, incorporation of physical constraints, and handling of rank-deficient linear models, which
stem in part from their methodological novelty. In particular, the decision-theoretic framing allows
the definition of a set of decision rules for which coverage is guaranteed. With this definition, we
are able to focus the loss function only on interval width, as opposed to considering both width
and coverage as in many other decision-theoretic treatments of confidence sets. Indeed, in previous
literature [11, 12, 28, 34], decision-theoretic loss functions for interval estimation have balanced
these two criteria: interval size and interval coverage. Restricting the set of decision rules as we
have adds upfront difficulty in determining such a set, but enables us to obtain guaranteed coverage
and avoids the downstream difficulty of maintaining two optimality criteria in the loss function.

More generally, we have shown with the decision-theoretic approach how one can effectively
use “prior” information available in the form of a prior distribution to construct confidence intervals
that still maintain frequentist coverage. If the prior is indeed correct, then the method would be
optimal (in a decision-theoretic sense), but even if the prior was wrong, the method still provides
correct coverage at the cost of the width of the interval. In a sense, the method is “tuned” using the
prior information, while ensuring frequentist “validity.” Broadly, our work falls under an umbrella
of work [13, 14], among others, that unites the Bayesian and frequentist perspectives, providing
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direct ways of accommodating prior information while keeping frequentist coverage guarantees.
Additionally, the decision-theoretic framework elucidates a practical computational advantage of
the PO intervals over the OSB and SSB intervals. Namely, since the optimal decision rule is
computed based solely on the functional of interest &, the forward operator K, and a given prior,
the convex program (3.18) only has to be solved once to find a sequence of intervals for a sequence
of observations. Since the interval computation requires only vector-vector multiplication given an
arbitrary decision rule, computing a sequence of intervals requires relatively little computation. By
contrast, no such “pre-computing" can be done for the OSB and SSB intervals, meaning that for
each new data vector, the full end point convex programs must be solved to compute each interval.
The “pre-computed” nature of the PO intervals provides therefore an advantage in applications with
a fixed problem setting and a stream of data for which confidence intervals are desired.

The above results provide strong evidence that the OSB and PO intervals work well in the wide-
bins-via-narrow-bins unfolding paradigm, but we imagine several immediate next steps to build upon
these results. One, as stated in Section 3.1, despite having shown good empirical coverage results
in a variety of contexts, the OSB intervals do not yet have a mathematical guarantee that they cover
for arbitrary functionals. This is an important future direction as a rigorous proof of the coverage
guarantee would provide a solid basis for the use of these intervals in scientific applications. Two,
there are a variety of possible configurations we can explore in the decision-theoretic setup for
the PO intervals. In particular, we could broaden the class of decision rules beyond affine rules
to non-linear rules, and we could explore different loss functions beyond the interval width that
take higher-order information into account. It would be interesting to explore how these different
decision rules and loss functions affect the interval widths and their sensitivity to prior choice.
Third, the results presented herein are based upon simulated data, so applying this method to real
data would be a cogent next step. Clearly, applications to real data could not directly assess interval
coverage, but they would provide more realistic comparisons of unfolded interval widths between
the OSB and PO intervals and other commonly used methods. Fourth, while we have provided
a solution to the systematic error stemming from the wide-bin bias, our approach still assumes
knowledge of the smearing kernel k. In reality, since this kernel is also uncertain, a next step would
be to develop methods for incorporating this uncertainty into the final uncertainty quantification.
Finally, there is an important middle-ground between the one-at-a-time nature of the OSB and PO
intervals and the simultaneous SSB intervals, which by construction provide coverage for an infinite
set of functionals (i.e., the set of all linear functionals). Namely, finding n-at-a-time intervals or
other n-variate confidence sets with a coverage guarantee that holds simultaneously for a finite
number of n functionals would be useful for scientific inference, as such uncertainty quantification
might be more fitting for answering questions such as how well unfolded results comport with theory
predictions. The decision-theoretic framework seems like a useful starting point for this extension.
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A Computing the Adversarial Ansatz

The ansatz fMC used to compute the matrix K (per Eq. (2.10)) is a source of systematic error. As
seen in Section 4, the least-squares intervals in the wide-bin setting are unable to overcome the
minor misspecification of the GMM Ansatz, but this shortcoming can be addressed by increasing
the number of true bins and then aggregating those bins to the same wide-bin resolution. The
OSB and PO intervals are also able to handle this misspecification the same way. But, to motivate
the need to handle rank-deficient linear models, we construct the Adversarial Ansatz as an ansatz
that provides enough systematic error to depress the least-squares and OSB intervals’ empirical
coverages significantly below their nominal levels, thus warranting the use of more true bins. We
call this constructed ansatz “adversarial” since it is made for the explicit purpose of breaking the
empirical coverage of these methods. We construct such an ansatz by leveraging the observations
that this problem is ill-posed (and hence inversions are sensitive to noise) and that least-squares
estimators have high variance in the absence of regularization.

The brute-force procedure for generating the Adversarial Ansatz is described in Algorithm 1
below. On a high level, Algorithm 1 generates an ensemble of potential ansatz functions, estimates
the bin-wise coverage of the least-squares intervals for each ansatz, and then identifies the ensemble
element with the lowest minimum estimated bin-wise coverage. The resulting ansatz fMC from
this procedure is shown in Figure 1a. Each potential ansatz function is constructed by generating a
realization of data in the smeared space, estimating the true bin counts via non-negatively constrained
least-squares estimation, followed by a cubic spline interpolation of the least-squares estimator. This
constrained least-squares estimator is very sensitive to noise and hence looks nothing like the true
bin means (see the right panel of Figure 17). A key feature of this construction is that it creates
an oscillatory ansatz (see Figure 1a) that when mapped back into the smeared space, fits the data
almost exactly (see the left panels of Figures 17 and 1b). Hence this ansatz could not be ruled
out based on the smeared observations. Because of its oscillatory nature, this ansatz creates more
systematic error than the Misspecified GMM Ansatz.

@ Observed Data @ Constrained Least-Squares Estimator: A

X Smeared Constrained Least-Squares Estimator: KA 3 True Means, A
3 Smeared Means, i

1600 1 .
1400 4
1200 4
1000 4 ®

800

Bin Counts

600 -

200 +

Figure 17: As shown on the left panel, the constrained least-squares estimator ( 2 ) used to create the Adversarial Ansatz
chosen via the minimum bin-wise estimated coverage criterion closely fits the data when mapped back into the smeared
space via KA, but clearly does not match the true bin means as shown on the right.
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Algorithm 1: Brute-Force Construction of the Adversarial Ansatz

Inputs:

— N, € N: Number of samples for estimating bin-wise coverage.

N, € N: Number of ansatz functions to compute.
— K € R**40: The true smearing matrix.
— A € R*: True bin means.

- {h i}}gl: A sequence of linear functionals, each aggregating four adjacent bins into one wide
bin.

Output:

— fMC: Adversarial ansatz.

Procedure:
1. Sample yy,...,yn, ~ Poisson(K2).

2. Let C denote an array of length N, that will store the minimum estimated bin-wise coverage
for each generated ansatz. Fori =1,...,Ng:

(a) Generate data from the true distribution: y* ~ Poisson(KA).
(b) Find the non-negatively constrained least-squares estimator:

A= argmin ||y’ — K/l||§.
1>0

(c) Interpolate Al using a cubic spline, defining an ansatz function fiMC :R—> R
(d) Compute a smearing matrix KZMC

function fMC.

using Eq. (2.10) and the previously computed ansatz

(e) For each sample y; and each function hy for j € [N.] and k € [10], compute the
least-squares interval using Eq. (3.19), and estimate the bin-wise coverage using
Eq. (4.5), obtaining a sequence of estimated bin-wise coverages {y;} 1121.

(f) Find the minimum estimated bin-wise coverage by ylr.“i“ = min;cy10] ¥, and set
Cli] « y;"i".

3. Identify the generated ansatz with the lowest estimated bin-wise coverage:

i* = argmin C[i].
i€[Na]

4. Return the adversarial ansatz flMC
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spectrum. Estimated coverage shows all combinations achieving at least 95% nominal coverage.
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