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Abstractȷ Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true11

particle-level spectrum from smeared detector-level data. For computational and practical rea-12

sons, these spaces are typically discretized using histograms, and the smearing is modeled through13

a response matrix corresponding to a discretized smearing kernel of the particle detector. This14

response matrix depends on the unknown shape of the true spectrum, leading to a fundamental15

systematic uncertainty in the unfolding problem. To handle the ill-posed nature of the problem,16

common approaches regularize the problem either directly via methods such as Tikhonov reg-17

ularization, or implicitly by using wide-bins in the true space that match the resolution of the18

detector. Unfortunately, both of these methods lead to a non-trivial bias in the unfolded estimator,19

thereby hampering frequentist coverage guarantees for confidence intervals constructed from these20

methods. We propose two new approaches to addressing the bias in the wide-bin setting through21

methods called One-at-a-time Strict Bounds (OSB) and Prior-Optimized (PO) intervals. The OSB22

intervals are a bin-wise modification of an existing guaranteed-coverage procedure, while the PO23

intervals are based on a decision-theoretic view of the problem. Importantly, both approaches24

provide well-calibrated frequentist confidence intervals even in constrained and rank-deficient set-25

tings. These methods are built upon a more general answer to the wide-bin bias problem, involving26

unfolding with fine bins first, followed by constructing confidence intervals for linear functionals27

of the fine-bin counts. We test and compare these methods to other available methodologies in a28

wide-bin deconvolution example and a realistic particle physics simulation of unfolding a steeply29

falling particle spectrum.30
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1 Introduction57

Experimental high-energy physics studies the interactions and properties of fundamental particles.58

This is done by observing particle collision events using massive particle detectors, such as those at59

the Large Hadron Collider (LHC) at CERN. In these experiments, it is often of interest to measure60

functions, called differential cross sections, that represent the probability of producing particles with61

a certain energy, momentum, angle or other kinematic properties. Unfortunately, a particle detector62

can only produce noisy measurements of these kinematic properties. As a result, the function that63

is directly observable in the detector is a “smeared” or “blurred” version of the physical function of64
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interest. The process of using observations from this smeared function and our knowledge of the65

detector response to infer the actual physical function of interest is called unfolding [2», 7, «, «5],66

which is well-recognized to be an ill-posed inverse problem [18, 10].67

Let 𝑓 ∈ F be the unknown true particle-level function of interest among a class of possible68

particle-level functions F and 𝑔 ∈ G be the smeared detector-level function where G is a class of69

possible smeared functions. Then we can represent the relationship between 𝑓 and 𝑔 by 𝑔 = 𝐾 𝑓 ,70

where 𝐾 : F → G is a linear operator that represents the smearing in the detector. In the simplest71

case, 𝐾 might be a convolution operator, but it can also have more complex structure. In most72

cases in high-energy physics, the functions 𝑓 and 𝑔 are discretized using histograms. This leads to73

a discretized version of the problem that we can represent as 𝝁 = 𝑲𝝀, where 𝝀 ∈ R𝑛 and 𝝁 ∈ R𝑚74

denote vectors of bin counts in the particle-level and detector-level histograms, respectively, and75

the elements of the response matrix 𝑲 ∈ R𝑚×𝑛 represent the bin-to-bin smearing probabilities (see,76

e.g., Chapter 11 in [7]).77

The most common approach to unfolding is to use a large number (𝑛) of particle-level his-78

togram bins. This makes the problem severely ill-posed and one needs to use regularization to79

obtain physically plausible solutions. Commonly used techniques for regularized unfolding are two80

variants of Tikhonov regularization [17, 29] (that perform explicit statistical regularization) and81

an expectation-maximization iteration with early stopping [8] (that performs a type of algorithmic82

regularization). Such regularization leads to a reduction in the variance of the unfolded estimators83

by introducing a bias in the estimation. This regularization bias can be beneficial for point estima-84

tion, but it can lead to severely miscalibrated uncertainty quantification [21, 22, 20], with no easy85

workarounds (Section 2.2 gives more details).86

An alternative approach, which is being used in an increasing number of LHC analyses (see,87

e.g., [», 5]), is to instead discretize the problem using large particle-level bins, or equivalently, a88

small number (𝑛) of unfolded bins. This is motivated by the physical intuition that a detector with89

a certain resolution should not be able to resolve features smaller than its intrinsic resolution—90

thus it is futile to attempt to infer bins smaller than the detector’s resolution. Mathematically,91

reducing the number of estimated parameters leads to implicit regularization of the problem and,92

as a result, the model can be inverted without the need for explicit regularization. Unfortunately,93

in the histogram discretization, the elements of the response matrix 𝑲 depend on the unknown94

shape of the particle-level function 𝑓 within the particle-level bins, and the wider the particle-level95

bins, the stronger the dependence. In practice, one has to use an ansatz of 𝑓 to form 𝑲 and the96

resulting estimator will have a wide-bin bias stemming from the misspecification of this ansatz.97

Again, uncertainty quantification is severely hampered, as it is challenging to rigorously quantify98

the resulting systematic uncertainty.99

In this work, we take a different approach to wide-bin unfolding. Instead of imposing external100

regularization (either through explicitly regularized estimators or implicitly through the structure101

of the response matrix as in previous wide-bin unfolding), we focus on inferring certain structured102

functionals of 𝝀 and let the geometry of the functional and the operator along with physical103

constraints on 𝝀 to self-regularize the ill-posed problem. The basic idea of our approach can be104

summarized as followsȷ We first discretize the problem using narrow particle-level bins. When105

these bins are small enough, the systematic uncertainty in 𝑲 becomes negligible which eliminates106

the wide-bin bias. Then, we invert the forward model without explicit regularization. Since 𝑛107
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is large, this gives a solution 𝝀 with massive bin-wise fluctuations that tend to be anti-correlated108

across neighboring bins. Since the solution is not regularized, there is no regularization bias and109

hence the uncertainties are well-calibrated but difficult for humans to interpret and use due to110

their size. This solution can, however, be further used to constrain functionals 𝜃 = 𝜃 (𝝀) = 𝒉⊤𝝀111

of the narrow-bin particle-level histogram 𝝀. When the functional is an aggregation, averaging112

or smoothing operation, the anti-correlated fluctuations in 𝝀 will largely cancel out, leading to a113

well-constrained estimator 𝜃̂ = 𝒉⊤𝝀 for 𝜃 with well-calibrated uncertainties. This basic idea was114

recently demonstrated in a remote sensing inverse problem in [2«]; see also [«2, 16] for a related115

approach where 𝒉 is a given low-pass filter. Of particular interest in unfolding are functionals116

𝜃 that aggregate several neighboring small bins into large bins whose width is comparable to117

the detector resolution. From physical intuition and due to the aforementioned cancellations, it118

should be possible to infer these functionals with well-constrained uncertainties, even though the119

uncertainties of the individual narrow bins are huge. This leads to a principled solution of the120

unfolding problem that provides well-calibrated and well-constrained uncertainties which do not121

suffer from either the regularization bias of explicitly regularized unfolding or the wide-bin bias of122

previous wide-bin unfolding approaches.123

In order to obtain a practically useful implementation of this approach, one needs to address two124

important methodological challenges. First, there are known physical constraints for the function125

𝑓 which should ideally be taken into account to help regularize the problem. These constraints126

depend upon the particular unfolding problem, but one universal constraint is the non-negativity of127

𝝀. Second, in order to diminish the wide-bin systematic uncertainty in 𝑲, it might be desirable to128

use more particle-level bins than detector-level bins so that 𝑛 > 𝑚. In this situation, 𝑲 cannot be129

inverted as it always has a non-trivial null space leading to non-identifiability in inferring 𝝀. The130

approach described in [2«, 26, 27] is designed to handle both of these complications. Briefly, the131

approach is based on using constrained optimization to directly construct confidence intervals for 𝜃132

in a way that allows one to handle the null space of 𝑲 and constraints on 𝝀. We call these resulting133

uncertainties One-at-a-time Strict Bounds (OSB) since they provide uncertainty calibration for134

one functional at a time. In the previous work [2«], this approach was demonstrated in a mildly135

rank-deficient situation with 𝑚 > 𝑛 and a one-dimensional null space in the context of atmospheric136

remote sensing. In this paper, we further demonstrate that the approach works well even when the137

null space is high-dimensional with 𝑛 ≫ 𝑚.138

The One-at-a-time Strict Bounds are empirically well-calibrated, but a rigorous proof of their139

coverage has been elusive [2«, 26, ««]. As a novel alternative, we introduce in this paper a method140

that has provably correct coverage while addressing the aforementioned complications with the141

constraints on 𝝀 and the null space of 𝑲. The method is based on taking a decision-theoretic142

view of the problem. As such, it falls under the emerging area of Decision-Theoretic Uncertainty143

Quantification (DTUQ; see, e.g., [1]). In this method, we regard the confidence interval for 𝜃 as144

a decision rule and optimize its expected width with respect to a prior distribution on 𝝀 among145

those rules that guarantee specified frequentist coverage. We call the resulting uncertainty bounds146

Prior-Optimized (PO) confidence intervals. Even though this method uses a prior distribution to147

optimize the interval width, it is notably distinct from Bayesian uncertainty quantification. The148

decision-theoretic method guarantees frequentist coverage as we only consider rules that guarantee149

specified coverage, which is not the case for Bayesian methods [21, 2«]. We demonstrate that in the150
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wide-bin unfolding problem, these Prior-Optimized intervals are only slightly wider than the One-151

at-a-time Strict Bounds, they provide similar empirical coverage as the One-at-a-time Strict Bounds152

while theoretically guaranteeing correct coverage, and they display little sensitivity to the choice153

of the prior. The utility of this approach is not limited to unfolding—indeed, the Prior-Optimized154

intervals are potentially widely applicable in constrained and rank-deficient linear inverse problems155

and are therefore of independent interest beyond the application presented in this paper.156

The rest of this paper is structured as follows. Section 2 presents the high-energy physics157

unfolding problem, providing the scientific motivation for this work. Section « provides a description158

of both the One-at-a-time Strict Bounds and Prior-Optimized confidence intervals, and how they159

are related. Additionally, this section contains descriptions of three other intervals against which we160

compare our proposed intervals. Section » demonstrates through a simple deconvolution problem161

how traditional wide-bin unfolding can produce intervals with poor empirical coverage because162

of the wide-bin bias from an even slightly misspecified ansatz. Furthermore, we show how the163

proposed intervals can address these challenges and provide further simulation studies to evaluate164

their coverage and expected width across a range of configurations. Section 5 applies these methods165

to a more realistic particle physics application, that of unfolding a steeply falling inclusive jet166

differential cross-section. We show the flexibility of the intervals and their constraints, as this167

application includes additional monotonicity and convexity constraints on the underlying intensity168

function. Finally, Section 6 provides further discussion and conclusions regarding the results in this169

paper and avenues for future work. The Python scripts used to produce the results in this paper are170

available at https://github.com/mcstanle/unfolding_osb_po_uq.171

2 The High-Energy Physics Unfolding Problem172

2.1 Forward Model for Unfolding173

For a detailed overview of the unfolding problem setup, we refer readers to [20, 21, 22]. We follow174

the same notation here. Broadly, data in experimental high energy physics can be modeled as an175

indirectly observed Poisson point process. The unfolding problem is an inverse problem that arises176

in particle physics measurement analyses. The aim of these types of analyses is to estimate the177

true (unknown) probability distribution of some variable of interest, e.g., energy, scattering angle,178

particle mass, or decay length [«]. “Folding" occurs when we observe one of these probability179

distributions through a detector where the observations are corrupted by stochastic noise. Then,180

unfolding is the process of inferring the true distribution that created the smeared or blurred observed181

distribution. This inverse problem is ill-posed because large changes in the true distribution may182

only result in small changes in the observed distribution [20].183

Formally, this setup is described by a Poisson point process 𝑀 , representing the true particle-184

level spectrum of events, and a Poisson point process 𝑁 , representing the detector-level spectrum,185

which is related to 𝑀 via a smearing kernel 𝑘 . More precisely, let 𝑇 ⊆ R, a compact interval, be186

the state space of 𝑀 , and 𝑆 ⊆ R, a compact interval, be the state space of 𝑁 . Each of these Poisson187

point processes is uniquely characterized by an intensity function; we denote by 𝑓 : 𝑇 → R+ the188

intensity function for process 𝑀 and by 𝑔 : 𝑆 → R+ the intensity function for process 𝑁 . These189

intensity functions are the Radon–Nikodym derivatives of the mean measures 𝜆 and 𝜇 of each point190
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process, respectively. For instance, for some event 𝐵 ∈ 𝜎(𝑇) (the Borel 𝜎-algebra over 𝑇), we have191

𝜆(𝐵) =
∫
𝐵
𝑓 (𝑡) 𝑑𝑡. As explained in Section «.1 of [20], letting variable 𝑋 to be a true particle-level192

observation, 𝑋 has the probability density 𝑝𝑋 (𝑡) = 𝑓 (𝑡)/𝜆(𝑇), and hence we have that193

P {𝑋 ∈ 𝐵} =
∫
𝐵

𝑝𝑋 (𝑡) 𝑑𝑡 =
∫
𝐵

𝑓 (𝑡) 𝑑𝑡/𝜆(𝑇) = 𝜆(𝐵)/𝜆(𝑇).

As 𝑋 passes through the detector, it is subjected to noise that produces an observation 𝑌 in the194

smeared space. Note, for simplicity of exposition, we assume that the detector always observes195

the true event and that no event is smeared over the boundaries of the smeared state space. Both196

of these effects can be rigorously treated using thinning as described in detail in [19, 25]. The197

noise is assumed to be independent and identically distributed, and hence we obtain the following198

probability density for 𝑌 ȷ199

𝑝𝑌 (𝑠) =
∫
𝑇

𝑝𝑋,𝑌 (𝑡, 𝑠) 𝑑𝑡 =
∫
𝑇

𝑝𝑌 |𝑋 (𝑠 | 𝑡)𝑝𝑋 (𝑡) 𝑑𝑡. (2.1)

Analogous to the relationship between the marginal distribution 𝑝𝑋 and the intensity function200

𝑓 , we have 𝑝𝑌 (𝑠) = 𝑔(𝑠)/𝜇(𝑆). With no thinning, since 𝑌 is simply a perturbed version of 𝑋 ,201

𝜆(𝑇) = 𝜇(𝑆), and hence we have 𝜆(𝑇)𝑝𝑌 (𝑠) = 𝑔(𝑠). Combining this equality with Eq. (2.1), we202

see that 𝑔(𝑠) =
∫
𝑇
𝑝𝑌 |𝑋 (𝑠 | 𝑡) 𝑓 (𝑡) 𝑑𝑡. This shows that the true intensity 𝑓 and smeared intensity203

𝑔 are connected via the conditional distribution of 𝑌 given 𝑋 . It is reasonable to assume that204

the detector injects Gaussian noise to each particle event, hence this conditional distribution can205

be safely assumed to be Gaussian. Furthermore, this Gaussian distribution defines the smearing206

kernel, 𝑘 : 𝑆 × 𝑇 → R+, and connects the two intensity functions in the form of a Fredholm207

integral operator, 𝑔(𝑠) =
∫
𝑇
𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡, where 𝑘 (𝑠, 𝑡) = 𝑝𝑌 |𝑋 (𝑠 | 𝑡). As such, observations from208

the process characterized by the intensity function 𝑔(·) are used in unfolding to infer the intensity209

function 𝑓 (·) of the particle-level spectrum.210

High-energy physics data are typically binned, discretizing the Poisson point processes. Let

{𝑇𝑗}𝑛𝑗=1
be a partition of the true space and {𝑆𝑖}𝑚𝑖=1

be a partition of the smeared space. By

the definition of Poisson point processes, we have for each 𝑗 ∈ [𝑛] (where we use the conven-

tion [𝑛] to denote the set {1, . . . , 𝑛} for a positive integer 𝑛) 𝑀 (𝑇𝑗) ∼ Poisson(𝜆(𝑇𝑗)), where

𝜆(𝑇𝑗) =
∫
𝑇𝑗
𝑓 (𝑡) 𝑑𝑡. Additionally, since {𝑇𝑗}𝑛𝑗=1

partitions 𝑇 , 𝑀 (𝑇𝑖) and 𝑀 (𝑇𝑗) are independent

for all 𝑖 ≠ 𝑗 . Define the vector 𝝀 = [𝜆(𝑇1), . . . , 𝜆(𝑇𝑛)]⊤. Likewise, let 𝜇(𝑆𝑖) =
∫
𝑆𝑖
𝑔(𝑠) 𝑑𝑠 for

𝑖 ∈ [𝑚] and define 𝝁 = [𝜇(𝑆1), . . . , 𝜇(𝑆𝑚)]⊤. Thus, we can model particle-level and detector-level

histograms, represented as random vectors 𝒙 and 𝒚 with elements 𝑀 (𝑇𝑗), 𝑗 ∈ [𝑛], and 𝑁 (𝑆𝑖),
𝑖 ∈ [𝑚], respectively, as followsȷ

𝒙 ∼ Poisson(𝝀), 𝒚 ∼ Poisson(𝝁). (2.2)

But, we also have

𝜇(𝑆𝑖) =
∫
𝑆𝑖

𝑔(𝑠)𝑑𝑠 =
∫
𝑆𝑖

∫
𝑇

𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑠 (2.«)

=

∫
𝑆𝑖

©­
«

𝑛∑︁
𝑗=1

∫
𝑇𝑗

𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡ª®
¬
𝑑𝑠 =

𝑛∑︁
𝑗=1

∫
𝑆𝑖

∫
𝑇𝑗

𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑠 (2.»)
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=

𝑛∑︁
𝑗=1

∫
𝑆𝑖

∫
𝑇𝑗

𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑠
(∫

𝑇𝑗

𝑓 (𝑡) 𝑑𝑡
)−1

𝜆(𝑇𝑗). (2.5)

Hence, if we define211

𝐾𝑖 𝑗 =

∫
𝑆𝑖

∫
𝑇𝑗
𝑘 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡 𝑑𝑠∫
𝑇𝑗
𝑓 (𝑡) 𝑑𝑡

, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛] (2.6)

a linear system of equations relates the two discretized Poisson point processes212

𝝁 = 𝑲𝝀, (2.7)

where 𝑲 ∈ R𝑚×𝑛 has the 𝑖 𝑗-th element given by Eq. (2.6). Additionally, elements 𝐾𝑖 𝑗 have a213

probabilistic interpretation. Namely, the probability that an event in the true bin𝑇𝑗 propagates to the214

smeared bin 𝑆𝑖 is given by𝐾𝑖 𝑗 (see Proposition 2.11 in [19]), i.e., we have𝐾𝑖 𝑗 = P
(
𝑌 ∈ 𝑆𝑖 | 𝑋 ∈ 𝑇𝑗

)
.215

This discretization allows us to re-express Eq. (2.2) as216

y ∼ Poisson (𝑲𝝀) . (2.8)

This statistical model tells us that we observe Poisson distributed bin counts with mean 𝑲𝝀. Given217

this model, we wish to make inferences on the particle-level histogram 𝝀.218

2.1.1 Approximations219

To frame this statistical model in a more tractable form, we employ the Normal approximation to the220

Poisson distribution, which holds well in this application since each bin of observations typically221

contains a large number of events. Hence, we re-express the model as222

y = 𝑲𝝀 + 𝜺 (2.9)

where 𝜺 ∼ N(0,𝚺) and 𝚺 = diag(𝑲𝝀) is an 𝑚 × 𝑚 diagonal matrix with 𝑲𝝀 on the diagonal. We223

use the statistical model described Eq. (2.9) to perform inference on 𝝀. For the simulations in later224

sections, we assume 𝑲𝝀 is known, but this vector can easily be estimated via the observations y as225

shown in [20].226

As described in [20], the response matrix 𝑲 is typically obtained using detector simulations or227

other knowledge about the response behavior of the detector. But, as can be seen from Eq. (2.6),228

𝑲 depends on the unknown intensity function 𝑓 . There are several ways to get around this when229

computing 𝑲, of which we describe the one that we use in this paper.230

A Monte Carlo (MC) ansatz of the intensity function, denoted 𝑓MC, can be used in the231

computation of 𝑲. This is what happens when a Monte Carlo event generator is used to generate232

particle-level events which are then smeared using a detector simulator to obtain an estimate of 𝑲.233

Hence, a different approximation to Eq. (2.6) is given by234

𝐾𝑖 𝑗 ≈

∫
𝑆𝑖

∫
𝑇𝑗
𝑘 (𝑠, 𝑡) 𝑓MC(𝑡) 𝑑𝑡 𝑑𝑠∫
𝑇𝑗
𝑓MC(𝑡) 𝑑𝑡

, 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛] . (2.10)
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The matrix elements in Eq. (2.10) are usually obtained by tracking propagation of events across235

bins in a Monte Carlo simulation. We assume the simulation is large enough so that the Monte236

Carlo noise in these values is negligible. This approximation improves as the number of true237

bins (𝑛) increases. Hence, we would like to use the finest possible (by computation or otherwise)238

discretization of the true space, leading to a rank-deficient 𝑲 matrix.239

2.2 Regularization Bias, Wide-Bin Bias and Wide-Bins-via-Fine-Bins Unfolding240

As described in the introduction, using a large number of true bins (𝑛) renders the problem severely241

ill-posed. For finite linear operators, this ill-posedness is the result of small values in the spectrum of242

singular values of 𝑲 [18, 10, 15], causing large fluctuations in the point estimators. Regularization243

methods like Tikhonov regularization essentially replace the small singular values with a term that244

is a function of the singular values and the regularization parameter, helping to tamp down the245

large fluctuations. Statistically, regularization introduces a bias to bring down the variance of the246

estimator. As illuminated in Section » of [20], Gaussian confidence intervals generated by these247

regularized estimators suffer from a loss of coverage as the regularization strength increases, due to248

the increasing regularization bias of the estimator. More precisely, letting 𝝀 𝑗 be the point estimator249

for the 𝑗-th bin count as estimated via a regularization method, Kuusela shows in Section » of [20]250

that in most cases251

P

(
𝝀 𝑗 ∈

[
𝝀 𝑗 − 𝑧1−𝛼/2 se(𝝀 𝑗), 𝝀 𝑗 + 𝑧1−𝛼/2 se(𝝀 𝑗)

] )
≪ 1 − 𝛼, (2.11)

where 1 − 𝛼 is the desired confidence level for the interval, 𝑧1−𝛼/2 is (1 − 𝛼/2) quantile of the252

standard Gaussian distribution and se(𝝀 𝑗) is the standard error of 𝝀 𝑗 . This happens because the253

estimator 𝝀 𝑗 is inherently biased and it is very difficult to account for this regularization bias in order254

to construct regularized confidence intervals with accurate coverage. Alternatively, one can reason255

that these small singular values requiring explicit regularization can be avoided by only inverting256

with a bin resolution commensurate with the resolution of the detector with which the data are257

being observed. Using these types of wide bins acts as implicit regularization. Specifically, instead258

of discretizing 𝝀 ∈ R𝑛, we discretize 𝝀 ∈ R𝑘 , where 𝑘 ≪ 𝑛. Unfortunately, this approach is still259

exposed to bias since using wide bins makes 𝑲 increasingly dependent on the assumed MC ansatz260

and hence the standard wide-bin approach can suffer from under-coverage in some bins due to this261

wide-bin bias. Although, instead of the bias coming from explicit regularization as described above262

for Tikhonov regularization, for instance, it comes in this case from the potentially large systematic263

error in 𝑲.264

Our proposed general solution is to first invert, without regularization, using the same number265

of unfolded bins as in typical regularization-based inversion, but to then aggregate and propagate266

the errors of this first inversion to a bin resolution similar to the wide-bin strategy above. This267

strategy is implemented by defining a set of functionals aggregating groups of fine-resolution bins268

to the desired wide-bin resolution. More precisely, using the notation above, for each wide bin,269

𝑙 ∈ [𝑘], we define an associated functional 𝜃𝑙 (𝝀) = 𝒉⊤
𝑙
𝝀, where 𝒉𝑙 ∈ R𝑛 is an aggregation weight270

vector and find a confidence interval for each such functional. A key feature of the two intervals271

presented herein is the direct optimization of the interval endpoints, as opposed to finding a point272

estimator and then subtracting and adding the appropriately scaled standard error of the estimator.273
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This enables us to avoid explicitly performing the first inversion step which allows us to handle274

rank-deficient smearing matrices.275

3 Proposed Methods - One-at-a-time Strict Bounds and Prior-Optimized Intervals276

In Section », we motivate the need and utility of both the One-at-a-time Strict Bounds (OSB)277

and Prior-Optimized (PO) intervals through an expressive toy problem and least-squares intervals,278

which are the simplest analytically tractable confidence intervals one can construct (using the least-279

squares estimator). But these intervals pay for their simplicity in practice since they are unable280

to incorporate the null space of 𝑲 and any constraints on the feasible space and their coverage281

guarantees break down under sufficient systematic error.282

To address these concerns we explore the use of OSB intervals, described in [2«, 26, 27, ««], and283

expand on these intervals with PO intervals. The OSB intervals can leverage physical constraints and284

elegantly handle rank-deficient response matrices, the use of which provides a mitigation technique285

for handling systematic error. The intervals have correct empirical coverage; however, we are286

presently unable to theoretically prove their coverage. By contrast, we can prove coverage for the287

PO intervals even for constrained and rank-deficient situations. Empirical exploration has shown288

the PO intervals to be slightly wider than the OSB intervals, but with the advantage of coverage289

guarantees that are important for scientific applications.290

Using optimization to directly find interval endpoints for statistical models shown in Eq. (2.9)291

is not a novel concept. Notably, Donoho provides a rigorous treatment of confidence intervals for292

linear functionals under model Eq. (2.9) in a minimax sense in [9]. Stark develops the “strict-293

bounds" approach in [«0] which develops techniques for intervals with simultaneous coverage. In294

exploring the utility of the OSB and PO intervals, we compare, when possible, with the minimax295

and strict-bounds intervals from these works. We describe the constructions of these intervals in296

Section «.«.297

3.1 One-at-a-time Strict-Bounds Intervals (OSB)298

We adapt the nomenclature of [2«] to fit the terms we have already defined. As a historical note,299

these intervals have also been described by Rust and O’Leary [26], Rust and Burrus [27], and300

Tenorio et al. [««] for a simpler version of the problem with non-negativity constraints. For ease301

of description, we consider a statistical model described per Eq. (2.9) for which the covariance302

matrix is the identity matrix I𝑚 ∈ R𝑚×𝑚. This assumption is warranted since we can always whiten303

the observation vector y. More precisely, consider the Cholesky decomposition of the covariance304

matrixȷ 𝚺 = LL⊤ where 𝑳 ∈ R𝑚×𝑚 is a lower triangular matrix, and consider305

L−1y = L−1𝑲𝝀 + 𝜼, («.1)

where 𝜼 ∼ N
(
0,L−1

𝚺(L−1)⊤
)
. Since L−1

𝚺(L−1)⊤ = I𝑚, we have that 𝜼 ∼ N(0, I𝑚). As such,306

when building upon the statistical model in Eq. (2.9), we assume that 𝜺 ∼ N(0, I𝑚).307

For the OSB intervals, we wish to perform inference on a single functional of the true underlying308

parameter 𝝀. We denote this functional by 𝜃 = 𝜃 (𝝀) and parameterize it using the vector 𝒉 ∈ R𝑛.309

This functional thus defines a quantity of interest, 𝜃 := 𝒉⊤𝝀, for which we wish to build a confidence310
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interval [𝜃, 𝜃]. Furthermore, the confidence interval should be constructed such that for a fixed311

𝛼 ∈ [0, 1] and any 𝝀 such that A𝝀 ≤ b,312

Py

(
𝜃 ∈ [𝜃, 𝜃]

)
≥ 1 − 𝛼, («.2)

where A ∈ R𝑞×𝑛. Here A𝝀 ≤ 𝒃 reflect any linear constraints that one has on the parameter 𝝀. We

elaborate more below. To find these interval endpoints, [2«] sets up two optimization problems, one

to find the lower endpoint and one to find the upper endpoint. To find 𝜃OSB, we solve the following

optimization problemȷ

minimize 𝒉⊤𝝀

subject to ∥y − 𝑲𝝀∥22 ≤ 𝑧
2
1−𝛼/2 + 𝑠

2, («.«)

A𝝀 ≤ b,

where 𝑧1−𝛼/2 is the quantile at level (1 − 𝛼/2) of the standard Gaussian distribution, the matrix 𝑲

is assumed to be transformed as in Eq. («.1) corresponding to data with identity covariance, and 𝑠2

is defined as the optimum value of the following optimization problemȷ

minimize ∥y − 𝑲𝝀∥22 («.»)

subject to A𝝀 ≤ b.

Similarly, to find 𝜃OSB, we solve the following optimization problemȷ

maximize 𝒉⊤𝝀

subject to ∥y − 𝑲𝝀∥22 ≤ 𝑧
2
1−𝛼/2 + 𝑠

2, («.5)

A𝝀 ≤ b.

The linear inequality constraint A𝝀 ≤ b allows the analyst to implement a wide range of restrictions313

on the feasible set. As we explore in Section 5, these constraints can enforce a variety of shape314

constraints on the vector 𝝀, such as non-negativity, monotonicity, and convexity. For instance,315

to enforce non-negativity, which always holds true for the unfolding problem, we set the linear316

inequality constraint with A = −I𝑛 and b = 0 so that the inequality constraint becomes 𝝀 ≥ 0. Both317

optimization problems («.«), («.5), and («.») are convex optimization problems, and additionally318

can be cast as second-order cone programs.319

Tenorio et al. [««] proved the coverage of these intervals under a stochastic ordering criterion320

which leads to the requirement that 𝒉 be in the row space of 𝑲. For scientists interested in a321

specific functional, this condition is restrictive when 𝑲 does not have full column rank. Yet, both322

later in this paper and in [2«], it is observed empirically that these intervals in practice have the323

desired coverage even in rank-deficient situations. Indeed, in extensive testing, we have yet to find324

a situation where the coverage would breakdown. Unfortunately, rigorous proof in this case seems325

difficult, and hence we attest that these intervals do not yet have provable coverage in a wide range326

of scientifically-relevant situations.327

Generalizing slightly, given 𝜉 ∈ R+, define the setZ such that328

Z(𝜉) =
{
𝝀 : ∥y − 𝑲𝝀∥22 ≤ 𝜉 and A𝝀 ≤ b

}
. («.6)
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Then, defining 𝜓2
1−𝛼/2 := 𝑧2

1−𝛼/2 + 𝑠
2, the OSB intervals can be compactly represented as followsȷ329

[
𝜃OSB, 𝜃OSB

]
=


min

𝝀∈Z
(
𝜓2

1−𝛼/2

)𝒉⊤𝝀, max
𝝀∈Z

(
𝜓2

1−𝛼/2

)𝒉⊤𝝀

, («.7)

We can also consider the Lagrangian dual programs for both optimization problems («.«) and

(«.5) as presented in [2«]. To find 𝜃, the dual problem is formulated as

maximize
𝒘,𝒄

𝒘⊤y − 𝜓1−𝛼/2∥𝒘∥2 − b⊤𝒄

subject to 𝒉 + A⊤𝒄 − 𝑲⊤𝒘 = 0, («.8)

𝒄 ≥ 0.

Similarly, to find 𝜃, the dual optimization problem is formulated as

minimize
𝒘,𝒄

𝒘⊤y + 𝜓1−𝛼/2∥𝒘∥2 + b⊤𝒄

subject to 𝒉 − A⊤𝒄 − 𝑲⊤𝒘 = 0, («.9)

𝒄 ≥ 0.

We will see that these dual optimization problems provide useful insights on the intervals that330

subsequently lead to the construction of the Prior-Optimized intervals as discussed next.331

3.2 Prior-Optimized Intervals (PO)332

As noted in [2«], considering the dual optimization problems («.8) and («.9) can provide useful333

insight into the interval [𝜃OSB, 𝜃OSB]. Namely, let (𝒘, 𝒄) and (𝒘, 𝒄) be dual variables satisfying the334

constraints in the optimization problems («.8) and («.9), respectively. Further, consider an interval335

of the form336 [
𝒘⊤y − 𝑧1−𝛼/2∥𝒘∥2 − b⊤𝒄, 𝒘⊤y + 𝑧1−𝛼/2∥𝒘∥2 + b⊤𝒄

]
. («.10)

Patil et al. demonstrate in [2«] that this interval has the correct coverage, i.e., it satisfies Eq. («.2),337

for any fixed (𝒘, 𝒄) and (𝒘, 𝒄) that satisfy the dual constraints. However, as [2«] also notes (an338

echo of Tenorio et al. [««]), the optimized dual variables depend on y and therefore an optimized339

version of interval Eq. («.10) similar to problems («.8) and («.9) does not necessarily satisfy the340

coverage requirement (which is why problems («.8) and («.9) replace 𝑧1−𝛼/2 by (𝑧2
1−𝛼/2 + 𝑠

2)1/2 to341

inflate the interval).342

Although this subtle point appears to block a path towards provable coverage for the optimized343

interval, the coverage guarantee with respect to fixed elements satisfying the dual constraints exposes344

an opportunity. Namely, since we may choose any (𝒘, 𝒄) and (𝒘, 𝒄) satisfying the dual constraints345

and not depending on y, then perhaps we can use extra information to optimally choose these346

variables. This perspective drives the ethos of the PO intervals.347

To choose optimal (𝒘, 𝒄) and (𝒘, 𝒄) (that do not depend on y), we use a decision-theoretic

framework. We follow the language and notation from Berger [2]. First, define the action space

to consist of real number pairs, A = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ R}. Then, a decision rule, 𝛿 : R𝑚 → A,

is a function mapping an observation to an element in the action space, i.e., 𝛿(y) = (𝜃 (y), 𝜃 (y)).
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Let D be the space of all such decision rules. To match the form of the interval in Eq. («.10), we

parameterize the decision rule 𝛿(y;𝒘, 𝒄, 𝒘, 𝒄) =
(
𝜃 (y;𝒘, 𝒄), 𝜃 (y;𝒘, 𝒄)

)
, where

𝜃 (y;𝒘, 𝒄) = 𝒘⊤y − 𝑧1−𝛼/2∥𝒘∥2 − b⊤𝒄, («.11)

𝜃 (y;𝒘, 𝒄) = 𝒘⊤y + 𝑧1−𝛼/2∥𝒘∥2 + b⊤𝒄. («.12)

Note, these endpoints are affine functions of the data, hence we are limiting ourselves to affine348

decision rules. For compactness, we simply write 𝜃 (y) for 𝜃 (y;𝒘, 𝒄) and 𝜃 (y) for 𝜃 (y;𝒘, 𝒄). To349

guarantee the coverage of the intervals chosen by decision rules parameterized in this way, we define350

the decision space on which coverage is guaranteed by351

D𝑐 :=
{
𝛿 ∈ D | 𝒉 + A⊤𝒄 − 𝑲⊤𝒘 = 0, 𝒉 − A⊤𝒄 − 𝑲⊤𝒘 = 0, 𝒄, 𝒄 ≥ 0

}
. («.1«)

Note, not all elements of the action space A define intervals with 𝑎 < 𝑏, and by extension, the352

decision rules in D𝑐 are not guaranteed to produce intervals for all realizations of data. However,353

all the decision rules are guaranteed (by their construction) to cover the true functional value 𝜃 at354

least (1 − 𝛼) percent of the time. Since a decision rule that covers the truth must be an interval,355

this means that for every 𝛿 ∈ D𝑐, 𝛿 must produce an interval at least (1 − 𝛼) percent of the time.356

Empirically, in all simulations for the applications in Section » and Section 5, we did not encounter357

a situation in which 𝜃 (y) > 𝜃 (y). However, in principle, since y ∼ N(𝑲𝝀, I), which has positive358

measure on all subsets of R𝑚, there exists a realization y′ of the data such that 𝜃 (y′) > 𝜃 (y′). We359

refer to this as the pathological case.360

Picking an optimal decision first requires a way to measure the quality of the decision rule via361

a loss function 𝐿 : A → R. Since we only consider 𝛿 ∈ D𝑐, i.e., decision rules for which coverage362

is guaranteed, we restrict our loss function definition to only account for interval size. As such, we363

simply define the loss to be the interval width, i.e.,364

𝐿 (𝛿(y)) = 𝜃 (y) − 𝜃 (y) =
(
𝒘 − 𝒘

)⊤
y + 𝑧1−𝛼/2

(
∥𝒘∥2 + ∥𝒘∥2

)
+ b⊤

(
𝒄 + 𝒄

)
. («.1»)

Note, this definition of interval size is also the Lebesgue measure of the interval.365

The risk functional of a decision rule is then defined as the expectation of the loss function366

with respect to the probability measure on the data. In other words,367

𝑅(𝛿) = Ey [𝐿 (𝛿(y))] =
(
𝒘 − 𝒘

)⊤
K𝝀 + 𝑧1−𝛼/2

(
∥𝒘∥2 + ∥𝒘∥2

)
+ b⊤

(
𝒄 + 𝒄

)
. («.15)

Optimal choices of the decision rule can now be defined in terms of this risk functional.368

Note that 𝑅(𝛿) is a function of the true parameter 𝝀. Luckily, in physical science applications,369

we often have access to well-justified prior information about 𝝀 stemming from theory or previous370

experimentation. As such, the Bayes Risk Principle sensibly defines an optimal decision rule (see371

Section 1.5 of Berger [2]). Given a prior distribution 𝜋𝝀 on 𝝀 with expectation 𝒎𝝀 , the Bayes risk372

(Definition 6 in Section 1.«.2 of [2]) of a decision rule 𝛿 is defined,373

𝑟 (𝜋𝝀 , 𝛿) := E𝝀 [𝑅(𝛿)] =
(
𝒘 − 𝒘

)⊤
K𝒎𝝀 + 𝑧1−𝛼/2

(
∥𝒘∥2 + ∥𝒘∥2

)
+ b⊤

(
𝒄 + 𝒄

)
. («.16)

Under the Bayes Risk Principle, an optimal decision rule minimizes the Bayes risk and is called a374

Bayes rule. As such, we define the Prior-Optimized intervals by the decision rule that is the Bayes375

rule under the above construction, i.e., we find 𝛿∗ ∈ D𝑐 such that376

𝑟 (𝜋𝝀 , 𝛿∗) ≤ 𝑟 (𝜋𝝀 , 𝛿), for all 𝛿 ∈ D𝑐 . («.17)
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Since our class of decision rules is parameterized by the dual variables, (𝒘, 𝒄, 𝒘, 𝒄), finding the

Bayes decision rule is achieved by solving the following optimization problemȷ

minimize
𝒘,𝒄,𝒘,𝒄

𝑟 (𝜋𝝀 , 𝛿)

subject to 𝒉 + A⊤𝒄 − 𝑲⊤𝒘 = 0, («.18)

𝒉 − A⊤𝒄 − 𝑲⊤𝒘 = 0,

𝒄, 𝒄 ≥ 0.

Under the above construction, only the prior expectation, 𝒎𝝀 needs to be specified, and the coverage377

guarantee follows from the constraints inherited from optimization problems («.8) and («.9). The378

optimization problem («.18) is a convex optimization problem, and can be cast as a second-379

order cone program and solved efficiently. Note, to solve optimization («.18) in practice, we can380

equivalently maximize the expected lower endpoint and minimize the expected upper endpoint.381

It is important to emphasize that since interval («.10) has provable coverage for fixed dual382

variables and since here the choice of these variables is done without using the data y, it follows that383

the PO interval also has provable coverage. This holds true even in the presence of affine constraints384

on 𝝀 and for column-rank-deficient K. Importantly, despite the use of the prior 𝜋𝝀 , the coverage385

guarantee is entirely frequentist. The prior is only used to optimize the interval width. If the prior386

is misspecified (as it usually is), the width might be suboptimal, but the coverage guarantee still387

holds. This is different from standard Bayesian use of prior information in which case the coverage388

depends strongly on the choice of the prior [2«].389

Additionally, although we have made specific choices regarding the parameterization of the390

decision rule and the loss function, the above decision-theoretic framework is general enough to391

accommodate a variety of choices and modifications. For instance, one might parameterize the392

decision rule with non-linear endpoints. Or, with access to a prior covariance matrix, one might393

choose a loss function to incorporate this second-order information in addition to the information394

on the first moment. More generally, this framework suggests a meta-algorithm to find interval395

estimators with frequentist coverage guarantees. Namely, if one is able to define a set of decision396

rules for which coverage is guaranteed as we did in Eq. («.1«), then the Bayes Risk Principle can397

be used to optimize the expected interval size.398

3.3 Other Related Intervals399

The model described by Eq. (2.9) is a well-studied statistical model. In particular, the functional400

interval estimation task accomplished by the OSB and PO intervals can also be accomplished401

by intervals based on the least-squares estimator, minimax intervals [9], and simultaneous strict402

bounds intervals (henceforth referred to as “SSB” intervals) [«0]. Each alternative method provides403

a reference point against which OSB and PO intervals can be compared.404

Each of these methods can be categorized according to its assumptions and properties. For405

instance, both the least-squares and minimax intervals require a full-column-rank linear model to406

ensure that the model has a trivial nullspace. Otherwise, the interval endpoints can be unbounded407

depending on the orientation of the model’s null space. Additionally, these intervals can be408

categorized according to whether they are designed to provide one-at-a-time functional coverage or409
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simultaneous coverage. The SSB intervals are the only simultaneous intervals we consider here. If410

considered for a single functional, this criterion makes these intervals more conservative than the411

others, since their coverage is required to hold over a set of functionals, as opposed to one. As such,412

we expect these intervals to be wider than both the OSB and PO intervals. Similarly, the minimax413

intervals are, by their nature, conservative, and thus, we also expect these intervals to be wider than414

both the OSB and PO intervals.415

Perhaps the most obvious interval construction to use with model in Eq. (2.9) is the uncon-416

strained least-squares (LS) intervals. Not only are these intervals the obvious procedure to use417

given the statistical model of the problem, but [2«] shows that the OSB intervals for unconstrained418

full-column-rank models are equivalent to least-squares intervals, and thus are a natural comparison.419

We refer readers to Appendix C of [2«] for a full description and derivation of this result.420

The primary necessary condition for constructing finite intervals using the least-squares esti-421

mator is for 𝑲 to have full column rank, which implies the invertibility of 𝑲𝑇𝑲. Note, as shown in422

Eq. («.1), the data model can always be transformed to have identity covariance matrix. As such, we423

assume identity covariance. Assuming this condition holds, we can compute the minimum variance424

unbiased estimator of the parameter, 𝝀 = (𝑲⊤𝑲)−1
𝑲⊤y, and construct a confidence interval with425

guaranteed coverage (1 − 𝛼) for the quantity of interest 𝜃 = 𝒉⊤𝝀 as the intervalȷ426

[
𝜃LS, 𝜃LS

]
=

[
𝒉⊤𝝀 − 𝛾, 𝒉⊤𝝀 + 𝛾

]
(«.19)

where 𝛾 = 𝑧1−𝛼/2(𝒉𝑇 (𝑲⊤𝑲)−1
𝒉)1/2.427

By contrast, as shown in Sections » and 5, the SSB intervals [«0] are finite even in rank-428

deficient situations, but are overly conservative for a single functional given their simultaneous429

coverage guarantee. These intervals are computed similarly to optimization problems («.«) and430

(«.5), where431 [
𝜃SSB, 𝜃SSB

]
=

[
min

𝝀∈Z(𝜒2
𝑛,1−𝛼)

𝒉⊤𝝀, max
𝝀∈Z(𝜒2

𝑛,1−𝛼)
𝒉⊤𝝀

]
. («.20)

Note, the SSB intervals are constructed by replacing the feasible region Z(𝜓2
1−𝛼/2) from the OSB432

interval construction in Eq. («.7) with Z(𝜒2
𝑛,1−𝛼), where 𝜒2

𝑛,1−𝛼 is the (1 − 𝛼)-th quantile of the433

chi-squared distribution with 𝑛 degrees of freedom [2«, «0].434

The half-width of the fixed-width affine minimax confidence intervals is described in [9],435

using the notation 𝐶∗
𝛼,𝐴
(𝜎), where 𝛼 is the same as above, and 𝜎 is the standard deviation of the436

Gaussian noise. Computing this exact half-width is difficult, so we instead note that Corollary 2437

in [9] provides upper and lower bounds, which can be more easily computed. Following [«1], we438

compute the lower and upper bounds of the minimax interval half-width by evaluating the modulus439

of continuity as an optimization problem. We use the double of these bounds to compare against440

the other interval widths. Generally, given 𝜖 > 0, the modulus of continuity is defined in [9] as441

followsȷ442

𝜔 (𝜖 ; 𝒉, 𝑲,𝚲) = sup
𝝀1,𝝀−1

{
|𝒉⊤𝝀1 − 𝒉⊤𝝀−1 | : ∥𝑲 (𝝀1 − 𝝀−1)∥2 ≤ 𝜖, 𝝀1, 𝝀−1 ∈ 𝚲

}
, («.21)

where 𝒉 is the functional of interest, 𝑲 is the smearing matrix, and 𝚲 is a convex subset of the443

underlying parameter space. For instance, in Section », we consider the case when this subset is444
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simply the positive orthant of R𝑛. Using the modulus of continuity, Corollary 2 in [9] gives the445

following upper and lower boundsȷ446

𝜔(2𝑧1−𝛼𝜎) ≤ 𝐶∗𝛼,𝐴(𝜎) ≤ 𝜔(2𝑧1−𝛼/2𝜎) («.22)

where 𝑧1−𝛼 and 𝑧1−𝛼/2 are the (1−𝛼) and (1−𝛼/2) level quantiles of a standard normal distribution.

Hence, we can find the lower bound indicated in Eq. («.22) using the following optimization problemȷ

maximize
𝝀1,𝝀−1

|𝒉⊤𝝀1 − 𝒉⊤𝝀−1 |

subject to ∥𝑲𝝀1 − 𝑲𝝀−1∥2 ≤ 2𝑧1−𝛼𝜎, («.2«)

A𝝀−1 ≤ b,

A𝝀1 ≤ b.

To cast optimization problem («.2«) into a more standard form, define z := [ 𝝀⊤1 𝝀
⊤
−1 ]⊤ ∈ R2𝑛,

B := [ I𝑛 −I𝑛 ] ∈ R𝑛×2𝑛, f⊤ := 𝒉⊤B ∈ R1×2𝑛, A2 :=
[

A 0𝑞×2𝑛

0𝑞×2𝑛 A

]
∈ R2𝑞×2𝑛, b2 :=

[
b
b

]
∈ R2𝑞×1,

and 𝑲 := 𝑲B, where I𝑛 is the 𝑛 × 𝑛 identity matrix. Thus, we can re-write Eq. («.2«) as followsȷ

maximize
z∈R2𝑛

|f⊤z|

subject to ∥𝑲z∥2 ≤ 2𝑧1−𝛼𝜎, («.2»)

A2z ≤ b2.

Note, when solving optimization problem («.2») with a non-negativity constraint on the parameters447

as in Section », we can drop the absolute value signs in the objective function. Since the indexing448

of 𝝀1 and 𝝀−1 is arbitrary, if the objective function is negative, the labels can simply be reversed to449

render it positive. Thus, optimization problem («.2») simply becomes a quadratically constrained450

linear program which we can solve using standard convex optimization algorithms. Computing the451

minimax half-width upper bound is performed almost exactly as above in the optimization problem452

(«.2»), but by replacing 𝑧1−𝛼 with 𝑧1−𝛼/2.453

As shown in the results section below, full-column-rank 𝑲 produces finite lower and upper454

bounds on the minimax interval width. However, in the rank-deficient cases, since our functionals455

of interest are not in the row space of 𝑲 (i.e., they are not in the orthogonal complement of the null456

space), the lower bounds on the minimax interval widths are infinite. As a result, these minimax457

intervals are not practical for arbitrary functionals in the rank-deficient situation. Our discussion458

of minimax intervals is restricted to the notion of minimax optimality for fixed-width intervals as459

defined in [9]. It is worth noting that there are other notions of minimax optimality such as that of460

[11, 28].461

4 Application to Wide-Bin Deconvolution462

4.1 Simulation Setup463

In this section, we describe the simulation setup we use to numerically explore the coverage and464

width of the OSB and PO intervals presented above. We must define a true intensity function 𝑓 , a465

smearing kernel 𝑘 , and a collection of functionals for which we seek to build confidence intervals.466
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Table 1: Parameter settings for the GMM simulation.

Parameter Value Description

𝑁𝑐 10,000 Expected number of collision events over the entire true space

(𝜇1, 𝜇2) (−2, 2) Mixture means

(𝜎2
1
, 𝜎2

2
) (1, 1) Mixture variances

𝑇 (𝑆) [−7,−7] True and smeared spaces

(𝜋1, 𝜋2) (0.3, 0.7) Mixture weights

To define the intensity function, we utilize Theorem 1.2.1 in [25], which gives us a convenient467

way to define and sample from a Poisson point process. As described in Section 2, let 𝑋 represent468

a random collision event in the true space 𝑇 . Let 𝜏 ∼ Poisson(𝜆(𝑇)) be independent from 𝑋 ∼ 𝑃𝑋,469

where the distribution 𝑃𝑋 is the same as the normalized measure 𝜆/𝜆(𝑇). Since the mean of a470

Poisson random vriable is the same as its rate parameter, 𝜆(𝑇) = E[𝜏], and hence when the densities471

exist, we have472

𝑓 (𝑥) = E[𝜏]𝑝𝑋 (𝑥) (».1)

where 𝑝𝑋 is the Radon–Nikodym derivative of 𝑃𝑋 (for more details about this construction, see473

[19]). Practically, Eq. (».1) allows us to construct an intensity function for the true particle-level474

Poisson point process by specifying an expected number of events E[𝜏] over the state space 𝑇 , and475

a probability density 𝑝𝑋.476

To define the density 𝑝𝑋, we use a Gaussian mixture model (GMM). For 𝑥 ∈ R, we let477

N(𝑥; 𝜇, 𝜎2) denote the probability density function of a Gaussian distribution with mean 𝜇 and478

variance 𝜎2 at 𝑥. For our simulations, we define 𝑝𝑋 as follows479

𝑝𝑋 (𝑥) = 𝜋1N(𝑥; 𝜇1, 𝜎
2
1 ) + 𝜋2N(𝑥; 𝜇2, 𝜎

2
2 ), (».2)

where 𝜋𝑖 = P[𝑍 = 𝑖], where 𝑍 ∈ {1, 2} and 𝑝𝑋 (𝑥) =
∑2

𝑧=1 𝑝𝑋,𝑍 (𝑥, 𝑧), where 𝑝𝑋,𝑍 is the joint480

density of (𝑋, 𝑍). Hence, the intensity 𝑓 is defined as481

𝑓 (𝑥) = 𝑁𝑐

{
𝜋1N(𝑥; 𝜇1, 𝜎

2
1 ) + 𝜋2N(𝑥; 𝜇2, 𝜎

2
2 )

}
(».«)

where 𝑁𝑐 = E[𝜏]. The full list of parameter settings used for the GMM simulations is shown482

in Table 1. These parameter settings are chosen to continue and build upon the simulation setup483

described in Section «.».1 of [20]. Note, in our setup, we use only two mixture components without484

the uniform background.485

We define the smearing kernel to correspond to the situation where we add independent486

Gaussian noise to smear the points drawn from the intensity in Eq. (».«). Namely,487

𝑘 (𝑠, 𝑡) = 1
√

2𝜋𝛾
exp

(
− 1

2𝛾2
(𝑠 − 𝑡)2

)
. (».»)

Said differently, a true point 𝑋 creates an observed point 𝑌 = 𝑋 + 𝜀, where 𝜀 ∼ N(0, 𝛾2) and 𝑋488

and 𝜀 are independent. As noted above, since 𝑇 = 𝑆 = [−7, 7], points that are smeared beyond489

these boundaries are not included among the observed points. This kernel includes the parameter490
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(a) (b)

Figure 1: Fig. 1a: Illustration of the true intensity function used for simulations and the two ansatz functions used for

computing the smearing matrix 𝑲. Fig. 1b: (Left) True bin expected counts. The deviations in each bin between the

true expectation and the ansatz expectations drives the systematic error. (Right) Smeared bin expected counts. Note the

reduced magnitude of difference in expectation with respect to the true space, emphasizing the convolutional nature of

the smearing matrix.

𝛾, which essentially controls the magnitude of the smearing, and hence, controls the extent to which491

this problem is ill-posed. For our simulations, we use 𝛾 = 0.35.492

Additionally, we create two MC ansatz functions for computing the smearing matrix 𝑲. The493

first is simply a slightly misspecified version of the true data generating process in Eq. (».«). Namely,494

we let (𝜇1, 𝜇2) = (−1.8, 1.8) and (𝜎1, 𝜎2) = (0.8, 1.2) and keep all other parts of Eq. (».«) the same.495

We refer to this ansatz as the “Misspecified GMM Ansatz”. The second is specifically created so496

that it fits the smeared data well but has oscillations which magnify the effect of the systematic497

error. To find such an ansatz, we generate a realization of data from the smeared process (i.e., use498

Eq. (2.8) to generate a vector y ∈ R𝑚), find the non-negatively constrained least-squares estimate499

of the true bin counts (i.e., 𝝀 = argmin𝝀≥0∥y − 𝑲𝝀∥2), and define the ansatz 𝑓MC by fitting a cubic500

spline to 𝝀 and forcing it to be non-negative. Clearly, this ansatz fits the data that generated it well.501

However, because it is a mildly constrained cubic spline, it is highly oscillatory. See A for a more502

detailed account of this its creation. We refer to this ansatz as the “Adversarial Ansatz”. Fig. 1a503

shows the true intensity functions and the two ansatz functions described above.504

4.2 The Wide-Bin Problem505

When obtaining confidence intervals for bin counts in the unfolding problem, it is common practice506

to use more smeared bins than unfolded bins. Fundamentally, the ill-posedness of the problem507

motivates this design choice. However, as more thoroughly described in the sections below,508

systematic error in the Monte Carlo ansatz used when computing the smearing matrix (per Eq. (2.10))509

can cause coverage issues even in simple examples. To demonstrate this point, we consider a true510

intensity function as described by Eq. (».«) and construct 95% confidence intervals for each bin in511

the unfolded space.512

Of course, if the ansatz were correctly specified, systematic error from the wide-bin bias would513

not be a concern, but this would be unrealistic since it would mean assuming that we already know514

the unknown intensity function before carrying out the experiment. So in practice, we need to515

assume that the ansatz will not be correctly specified in any analysis. However, the ansatz is still516

likely to be fairly close to the true function since it usually follows from some assumed physical517
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theory. As such, we first consider the Misspecified GMM Ansatz since it is nearly the same as the518

true intensity function.519

We discretize the true space shown into 𝑛 = 10 bins, while the smeared space discretization520

is set to 𝑚 = 40 bins. Figure 1b shows the deviations in the expected bin counts both in the true521

space (left) and the smeared space (right). The differences in the left side of Figure 1b flow to the522

smearing matrix and provide the source for the systematic error. To show how the wide-bin bias523

disrupts coverage guarantees with even the Misspecified GMM Ansatz, we evaluate the coverage of524

95% least-squares confidence intervals for each of the 10 unfolded bins. To estimate the coverage,525

we generate 𝑀𝐷 = 1,000 realizations of smeared data, y1, . . . , y𝑀𝐷
∼ Poisson(𝝁), where 𝝁 ∈ R40

526

is defined above in Eq. (2.7). Since 𝝁 = 𝑲𝝀, where 𝝀 ∈ R10 is the vector of true bin expected527

counts, and the bin counts are all sufficiently large, we use the Normal approximation to the Poisson528

distribution to construct confidence intervals for each bin using the least-squared intervals described529

in Eq. («.19). The intervals constructed for one realization of data are shown in the left portion of530

Fig. 2. For each 𝑖 = 1, . . . , 𝑀𝐷 , we thus construct ten intervals. For each bin 𝑗 = 1, . . . , 10, we531

estimate the coverage with the following statisticȷ532

𝛾 𝑗 =
1

𝑀

𝑀∑︁
𝑖=1

1

{
𝜃𝑖 𝑗 ∈ [𝜃𝑖 𝑗 , 𝜃𝑖 𝑗]

}
(».5)

where [𝜃
𝑖 𝑗
, 𝜃𝑖 𝑗] is the least-squares interval computed for the 𝑖th realization of data for the 𝑗 th bin,533

and 1{𝐴} denote indicator function for event 𝐴. By the law of large numbers, if the procedure is534

working as expected, 𝛾 𝑗
𝑃→ 1 − 𝛼 for all 𝑗 = 1, . . . , 10. However, as we can see in the right portion535

of Figure 2, all but three of the ten intervals exhibit severely deficient coverage. So, although the536

intervals have a desirable width, they do not cover the true values nearly as often as we would like537

because of the wide-bin bias from the misspecified MC ansatz.

Figure 2: (Left) Bin count intervals constructed from one out of the 𝑀𝐷 samples of data with the Misspecified GMM

Ansatz. (Right) Estimated bin-wise coverage of the least-squares intervals shows that most of the bin count intervals

undercover.

538

4.3 Addressing the Wide-Bin Problem539

If 𝑲 were correctly specified when constructing the intervals, the previous coverage problem would540

not exist. However, with wide true bins, the 𝑲 matrix will realistically never be correctly specified.541
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(a)

(b)

Figure 3: «a: Unfolding with 𝑛 = 40 true bins and least-squares intervals. The Left and Right are analogous to those

in Fig. 2, but with the 𝑛 = 40 true bins. Using more true bins fixes the coverage problem of the least-squares intervals in

Fig. 2 (Right), at the expense of significantly wider bin-wise intervals. «b: (Left) Bin count intervals from one out of the

𝑀 samples using post-inversion aggregation with the Misspecified GMM Ansatz. (Right) Estimated bin-wise coverage

of the post-inversion aggregation approach shows these intervals have the desired coverage.

As such, bin count interval coverage breaks down even with the relatively harmless Misspecified542

GMM Ansatz.543

Since the misspecification is exacerbated by the wide-binning, one strategy is simply to use544

more fine bins, mitigating bin-wise ansatz misspecification. Staying with 𝑚 = 40 smeared bins,545

with the least-squares intervals, we are restricted to at most 𝑛 = 40 true bins so that the smearing546

matrix retains full-column-rank. With more true bins, we obtain results as those shown in Figure «a.547

This figure shows that unfolding with more true bins nearly fixes the coverage problem shown in the548

right side of Figure 2, but at the expense of creating significantly wider bin-wise intervals. Ideally,549

we want to obtain intervals with widths like those on the left of Figure 2, but with the coverages like550

those on the right of Figure «a. The intervals shown in Figure 2 were constructed by first discretizing551

the true space into ten bins and then finding the least-squares intervals directly. However, we could552

alternatively invert at the finest possible binning (as shown in Figure «a) subject to least-squares553

assumptions (namely, that 𝑲 be full rank) and then aggregate the fine-bin intervals to the same554

coarse-bin level. We refer to this wide-bins-via-fine-bins strategy as “post-inversion aggregation”.555
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In the above example, this paradigm leads us to create a new matrix, 𝑲 ∈ R40×40, corresponding to556

𝑛 = 40 true bins which are then aggregated into the original 10 bins post-inversion using a sequence557

of functionals {𝒉}10
𝑖=1

. Changing this order of operations yields significantly wider intervals, as seen558

in the left portion of Figure «b compared with the intervals in the left portion of Figure 2. However,559

in exchange for wider intervals, the right portion of Figure «b shows that the coverage is now at the560

desired level across all bins. This happens because with 𝑛 = 40 true bins, the dependence of 𝑲 on561

the MC ansatz is reduced and, as a result, the systematic misspecification in 𝑲 is no longer large562

enough to cause a substantial bias in the unfolded solutions. In this particular example, as seen in563

the right portion of Figure «a, even using using a finer true binning does not entirely fix the coverage564

deficiency caused by the ansatz misspecification. As such, it is perhaps fortuitous that the post-565

inversion aggregation results in the right portion of Figure «b show nominal coverage. However,566

the coverage improvement with the finer bins is clear and ideally, we would reduce the bin width567

further until we can be confident that the sensitivity to the ansatz misspecification is negligible.568

With the least-squares intervals, the full-rank constraint sets up a barrier for finer binning but the569

other methods presented herein do not have that limitation, as demonstrated in Section ».5.570

4.4 Enforcing Non-negativity Improves Interval Width571

With the bin-wise coverage now at nominal level, one might be tempted to conclude that these572

intervals are the best we can do. However, some of the intervals shown in the left portion of Fig. «a573

used in the aggregations violate the known physical constraints of the unfolding problem; namely,574

that bin counts must be non-negative. Hence, constructing intervals containing negative values575

indicates that some key information is absent from the procedure.576

The OSB and PO intervals are both capable of including this physical constraint. Using577

this additional information in the optimization has a clear benefit for the expected width of the578

constructed intervals. Indeed, the right portion of Figure » shows that the least-squares intervals are579

uniformly wider in expectation than both the OSB and PO intervals constructed with A = −I𝑛 and580

𝒃 = 0 to enforce the non-negativity constraint. These expected widths are estimated using the same581

𝑀𝐷 = 1,000 samples used to estimate the coverage in the previous sections, with the error bars582

computed as twice the mean’s sample standard error. More specifically, but less generally, the left583

portion of Fig. » illustrates how intervals generated for one data sample are dramatically shortened584

when using the non-negativity constraint in the optimization. As presented in Section «.2, the PO585

intervals require a prior expectation. To refrain from adding additional complexity here, the PO586

intervals constructed to make Figure » use a uniform prior, with bin counts set to the average true587

bin count, i.e.,588

𝒎𝝀 :=
𝝀⊤1

𝑛
· 1. (».6)

We consider the effect of using different priors in Section ».6, where we show that the PO intervals589

have little sensitivity to the choice of the prior.590

In addition to providing shorter intervals, both the OSB and PO intervals maintain coverage591

guarantees as shown in Fig. 5. In fact, both the OSB (left) and PO (right) intervals over-cover592

relative to the desired confidence level on most bins. However, we note the nearly nominal coverage593

of the OSB intervals on the boundary bins shown in the left portion of Fig. 5. Given the nature594

of the true intensity, these bins lie on the portions of the domain on which the intensity is nearly595
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Figure 4: (Left) Comparing least-squares, OSB, and PO intervals for one realization of data shows that incorporating

the non-negativity constraint dramatically reduces interval width. (Right) Expected interval width comparison between

the least-squares, OSB, and PO interval constructions shows that incorporating the non-negativity physical constraint

dramatically shortens the constructed confidence intervals. The error bars show the standard error of the average

interval widths in order to demonstrate that the expected widths are significantly different. Additionally, the least-squares

intervals are fixed width, so their standard error is zero.

zero. Similar to an observation made in [22], it appears that having the true intensity close to the596

non-negativity constraint can produce this type of behavior. While over-coverage may indicate a597

lack of efficiency in the form of slack in the interval widths, it is clear that both the OSB and PO598

interval widths are good relative to the least-squares intervals.

Figure 5: (Left) OSB 95% interval coverage. (Right) PO 95% interval coverage using a flat prior mean constructed

from the mean of the true bin expectations. Both methods construct intervals with at least nominal coverage.

599

4.5 Handling an Adversarial Ansatz600

If systematic error from the ansatz can cause coverage problems in the wide-bin unfolding setting as601

shown in Section ».2, it may be the case that there exists an ansatz which induces enough systematic602

error to even break the coverage shown for the OSB and PO intervals in Fig. 5. Exploring this603

scenario was the motivation for creating the Adversarial Ansatz as shown in Fig. 1a.604

To explore this potential failure mode, we compute a smearing matrix 𝑲 ∈ R40×40 with 𝑛 = 40605

true bins, as in Section ».«, but this time using the Adversarial Ansatz for 𝑓MC, and estimate606

the coverage of 95% intervals in the same manner as above for the least-squares, OSB, and PO607

procedures. The results of the 95% interval estimation in Figure 6 show the coverage of least-608

squares, OSB, and PO intervals from left to right. Since we have already demonstrated the effect of609
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the wide-bin bias on the least-squares intervals, it is not surprising that a few of those intervals show610

under-coverage with the Adversarial Ansatz despite using a large number of true bins. But, here611

the systematic misspecification is large enough to also affect the coverage of the OSB intervals as612

shown by their significant under-coverage in the seventh bin. One solution is to further circumvent

Figure 6: Coverage of (from left to right) least-squares, OSB, and PO 95% intervals using a smearing matrix constructed

with the Adversarial Ansatz. This ansatz leads to systematic error in the smearing matrix, creating severe lack of empirical

coverage for both the least-squares and OSB intervals.

613

the systematic error induced by the Adversarial Ansatz by using an even finer binning in the true614

space during inversion and then adjusting each bin functional to aggregate more of the fine bins615

to arrive at the same ten final bins. Assuming that we keep the number of smeared bins fixed616

at 𝑚 = 40, we end up with a column-rank-deficient smearing matrix, and therefore cannot use617

the least-squares intervals. However, there is no such full-rank requirement for the OSB and PO618

intervals. We therefore construct a new smearing matrix, 𝑲 ∈ R40×80 using 𝑛 = 80 true bins, and619

perform the same coverage estimation as above for 95% intervals. The results of this experiment620

are shown in Figure 7. Now, both the OSB and PO intervals (left to right in Figure 7) have at least621

nominal coverage across all bins. By moving to the rank-deficient scenario, we were able to use622

enough true bins to reduce the systematic misspecification in 𝑲 to a level where the OSB intervals623

are no longer affected by the wide-bin bias. Though using a finer true binning fixes the coverage624

issues shown in Figure 6 and gives increased protection against misspecification of 𝑓MC, we pay625

by increasing the expected interval widths as shown in Fig. 8. Both the PO the OSB intervals626

experience substantial width inflation in the rank-deficient regime relative to the full-rank scenario.627

Nevertheless, their expected widths are almost uniformly shorter than those of the full-rank least-628

Figure 7: Coverage of (from left to right) OSB and PO 95% intervals using the 40 × 80 smearing matrix constructed

with the Adversarial Ansatz. Using a finer true-space binning for the inversion ameliorates the coverage issues displayed

in Fig. 6. The least-squares intervals are not applicable in this scenario because of the rank-deficient smearing matrix.
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squares intervals, which are both longer and undercover in this scenario. Since OSB’s seventh bin629

exhibits under-coverage in Fig. 6, the increase in interval width is reasonable. It may be noted that630

the expected least-squares interval width for bin seven is less than the interval width for the 80-bin631

PO interval. However, the PO intervals have coverage while the least-squares intervals do not so632

we would still opt for the PO intervals among these two.633

In summary, we have shown that with the Adversarial Ansatz, both the OSB and PO intervals634

can be constructed to provide coverage and, in most cases, out-perform the width of the least-635

squares intervals, which either undercover or are not applicable in this scenario. This was enabled636

by the ability of the OSB and PO intervals to make use of the physical constraints and to handle a637

rank-deficient 𝑲 while still maintaining frequentist coverage.

Figure 8: Expected 95% interval widths when using 𝑲 ∈ R40×80 and more true bins than in the original full-rank

smearing matrix. For almost all bins, for both the OSB and PO intervals, the 80 true bin expected interval width is

greater than that of the »0 true bin configuration.

638

4.6 Further Simulations639

The sections above provide some insight into the OSB and PO intervals’ ability to incorporate640

physical constraints and to address the coverage issues in least-squares intervals that arise from641

wide-binning due to the systematic error in the MC ansatz. In this section, we provide additional642

interval method comparisons against the OSB and PO intervals, demonstrate that using more bins643

in the true space does not cause interval widths to diverge, and provide evidence that the expected644

PO interval widths are robust to the choice of the prior.645

4.6.1 Comparison against simultaneous strict bounds and minimax intervals646

In the above analysis (e.g., as seen in Fig. »), we compared the expected widths of the OSB and647

PO intervals constructed using the full-rank smearing matrix and the Misspecified GMM Ansatz648

with the fixed-width least-squares intervals. The width improvement for the OSB and PO intervals649

over the least-squares intervals is expected since the latter do not incorporate the non-negativity650

constraint. In order to compare against other methods that also account for constraints, we consider651

the expected interval widths of the SSB intervals and minimax intervals, as described in Section «.«.652

We perform the same procedure as described in Section ».» in order to estimate the expected width653

of the SSB intervals. Like the least-squares intervals, the minimax intervals are fixed-width, and654
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hence have interval width that is independent of any particular realization of data (although the655

actual width is only known up to a fixed range, as described in Section «.«). The results of these656

simulations are shown in Fig. 9.657

Since we are able to only find a lower and upper bound for the minimax interval widths, we658

shade the region between these bounds to indicate where the actual minimax interval widths would659

be for each bin. We observe that the OSB and PO intervals still have the shortest expected width for660

almost all bins (excluding the end bins) when compared against the other three alternatives. This661

result is sensible since the SSB intervals are simultaneous intervals, and are therefore conservative662

if evaluated as one-at-a-time intervals. Furthermore, the minimax intervals are, by definition, the663

most conservative fixed-width affine intervals for this setup, aligning with the observation that they664

are uniformly the widest of these intervals.

Figure 9: Expected 95% interval widths for LS, OSB, PO, and SSB intervals, shown with upper and lower bounds for the

minimax interval widths. All intervals are constructed with the full-rank smearing matrix. Since the minimax intervals

are the most conservative, the least-squares intervals do not take physical constraints into account, and the SSB intervals

are simultaneous intervals applied one at a time, it makes sense the PO and OSB intervals are uniformly narrower across

almost all bins. Between the OSB and PO intervals, the OSB intervals are narrower since each interval optimizes width

with respect to the observed data, whereas the PO intervals optimize width offline.

665

4.6.2 Interval widths as a function of the number of true bins666

One of the primary practical benefits of the OSB and PO intervals is that they can be constructed667

even with rank-deficient smearing matrices. As we demonstrated above by increasing the number668

of true bins from »0 to 80, this flexibility can be used to overcome the systematic error that exists669

due to the MC ansatz. However, this ability is questionable if the width of the intervals diverges as670

a function of the number of true bins. We know from previous work [22] that the SSB intervals are671

finite even for infinite-dimensional true spaces. Since we expect the OSB and PO intervals to be672

shorter than the SSB intervals, we expect these intervals to remain finite as the number of true bins673

is increased. To provide assurance that the interval widths do not diverge, we repeat the simulation674

study in Section ».5, but additionally compute the OSB and PO intervals using 160 and «20 true675

bins in addition to the »0- and 80-bin setups. For this study, we use the Misspecified GMM Ansatz676

to construct each smearing matrix and a flat prior (see Eq. (».6)) for the PO intervals. The results677

of these experiments can be seen in Figures 10 and 11a. Figure 10 shows the estimated expected678

interval widths for each binning setup across all ten aggregated bins for OSB intervals on the left679

– 2« –



portion of the figure and PO intervals on the right. On the left, we observe that the OSB interval680

widths become less sensitive to the number of true bins as the number of these bins increases,681

which indicates that the interval widths will not diverge. On the right, when computed with the flat682

prior, the PO interval widths similarly become less sensitive to the number of true bins, providing683

assurance that the interval widths do not diverge. We also observe the close width performance684

between the two methods to highlight that even with a relatively uninformed prior, the PO intervals685

widths are comparable to the OSB method.686

The previous conclusions can alternatively be viewed in Figure 11a, showing the expected687

width as a function of the binning setup, with one line for each aggregated bin. Across all bins,688

and for both OSB and PO intervals (left and right, respectively), we observe that the interval width689

stabilizes as a function of the number of true bins. As such, if we need to increase the number of690

true bins to circumvent the wide-bin systematic error, we can be reasonably sure that the interval691

widths will not diverge.

Figure 10: Estimated expected 95% interval widths as a function of aggregated unfolding bin for each different smearing

matrix setup. (Left) OSB interval widths are sensitive to the smearing matrix setup, but that sensitivity decreases as the

number of unfolding bins increases. (Right) PO intervals optimized with a flat prior are about as sensitive to smearing

matrix setup as the OSB intervals. Notably, the PO interval expected widths are not wider than the OSB expected widths.

692

Not only are the PO interval expected widths robust to the binning setup, but they also exhibit a693

degree robustness with respect to the choice of the prior. We explore this robustness by repeating the694

simulation in Section ».» with the 40×40 full-rank smearing matrix. In addition to constructing the695

PO intervals with a flat prior (see Eq. (».6)), we consider three additional priors. First, we compute696

the bin means of the true data generating function (see Eq. (».«)) to compute the Correctly Specified697

Prior, followed by the bin means of the Misspecified GMM Ansatz to create the Misspecified GMM698

Prior, and finally the Adversarial Ansatz to create the Adversarial Prior. The expected interval699

widths for each bin for each prior can be seen in Figure 11b. The Adversarial Prior, the most700

misspecified out of the four, shows the largest expected width in most of the bins. The Misspecified701

GMM Prior creates intervals with expected widths close to the correctly specified prior. This result702

is sensible since the Misspecified GMM is close to the true data generating process. For half of703

the bins, the choice of the prior does not appear to lead to substantively different results, but in704

some bins (especially bins 6, 7, and 8), having a more correctly specified prior appears to shorten705

the interval width. Notably, using the Misspecified GMM Prior (or the Correctly Specified Prior)706
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(a) (b)

Figure 11: 11a: Estimated expected 95% interval widths as a function of the number of true unfolding bins provide

assurance that both OSB and PO intervals remain finite as the number of true bins increases. Both OSB (Left) and

PO (Right) interval widths become less sensitive to unfolding dimension as the number of true bins increases. 11b:

The choice of prior used when optimizing 95% PO interval does not have a substantial impact on the expected interval

widths. We observe that for three incorrectly specified priors (Flat, Misspecified GMM, and Adversarial), in all but three

bins, the expected interval widths are close. In bins 6, 7, and 8, we observe the width benefits of having a more correctly

specified prior. We also observe the closeness of most bin expected interval widths to the expected OSB interval widths.

would make the PO interval widths comparable to the OSB intervals.707

5 Application to Unfolding a Steeply Falling Particle Spectrum708

While the above results in Section » demonstrate the properties of the OSB and PO intervals in a709

wide-bin deconvolution setting, the data generating process was not directly motivated by a specific710

particle physics data analysis scenario. In this section, we use the inclusive jet transverse momentum711

spectrum [6] as a more concrete unfolding problem in particle physics. This spectrum reflects712

the production rate of jets (collimated streams of particles) as a function of the jet (transverse)713

momentum at proton-proton collisions at the Large Hadron Collider at CERN. The associated714

intensity is an example of a steeply falling particle spectrum, for which the intensity rapidly decays715

for larger transverse momentum (𝑝𝑇 ) values. We follow the test setup equations and parameters716

outlined in [20] (see Section «.».2). In the same way as we defined a true and ansatz intensity717

function for the deconvolution example in Section », we define a true intensity using the parameters718

in Section «.».2 of [20], and an ansatz intensity using the alternative parameters in Section ».2 of719

[20]. Figure 12 shows both intensities in the left panel and the fine-bin and wide-bin discretized true720

intensity functions in the middle and right panels. As seen in Figure 12, we consider the intensity721

function from 400 to 1,000 GeV.722

Like the wide-bin deconvolution problem, we find confidence intervals for 10 wide bins in two723

ways. First, we provide a baseline by directly computing the wide-bin intervals using least-squares724

via a smearing matrix built on 10 true and 30 smeared bins. Second, we compute the OSB, PO and725

SSB intervals with a rank-deficient smearing matrix built on 60 true and 30 smeared bins to again726

reduce the magnitude of the systematic error induced by the misspecified ansatz intensity. To get a727

sense of the misspecification in this problem, consider Figure 1«. This figure shows |𝐾𝑖 𝑗 − 𝐾MC
𝑖 𝑗
|728

for all rows 𝑖 and columns 𝑗 , plotted on a logarithmic scale. The left panel in Figure 1« shows729

the difference between the true and ansatz smearing matrices for the 30 × 10 case, i.e., the case730

in which intervals are computed directly on the wide bins. The right panel in Figure 1« show the731
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Figure 12: (Left) True and ansatz inclusive jet transverse momentum spectrum intensities. (Middle) Scaled (by bin

width) expected bin counts for the fine binning (black) and wide binning (red). (Right) The middle image but on a

logarithmic scale to more clearly see the right-most bins. All these figures show the spectrum in the true space before

smearing.

Figure 13: |𝐾𝑖 𝑗−𝐾MC
𝑖 𝑗
| for all rows 𝑖 and columns 𝑗 for the (left) 30×10 and (right) 30×60 matrices. The misspecification

in the 30 × 10 case is O(102) times larger than that of the 30 × 60 case.

same difference but for the 30 × 60 matrix, i.e., the rank-deficient case. The misspecification in the732

30 × 10 case is O(102) times larger than the misspecification in the 30 × 60 case.733

In the wide-bin deconvolution example, directly computing wide-bin confidence intervals via734

least squares produces intervals lacking coverage because of the systematic error induced by the735

misspecified ansatz. As shown in Figure 1», least-squares intervals computed in this scenario736

similarly lack coverage. Further, the bottom right panel in Figure 15 shows the wide-bin least-737

squares intervals for one realization of data. As expected, these intervals are very narrow on the738

bins where they lack coverage, namely, the first four bins, making them sensitive to the wide-bin739

bias induced by the misspecification of the ansatz. We now proceed to show that the coverage740

problems displayed in Figure 1» can again be ameliorated by using the rank-deficient setup to form741

the wide-bins-via-fine-bins intervals using the OSB, PO or SSB methods. Although we use 10 wide742

bins in this example as we did in the deconvolution example, reference [20] shows in Eq. («.«6) that743

the additive noise used to model the smearing is heteroskedastic as a function of the 𝑝𝑇 , meaning744

that the wide-bin width should ideally vary across the 𝑝𝑇 domain, unlike the constant wide-bin745

width in the homoskedastic deconvolution example. The physical motivation for this choice is that746

the wide-bin widths should be comparable to the resolution of the measurement apparatus, which747
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Figure 14: Wide-bin unfolding in the steeply falling spectrum example with least-squares intervals produces dramatic

undercoverage in several bins.

in this case varies as a function of 𝑝𝑇 . For the range of 𝑝𝑇 considered, the noise standard deviation748

is characterized by 𝜎(𝑝𝑇 ) ∝
√
𝑝𝑇 . As such, the wide-bin widths in 𝑝𝑇 are enlarged at the same749

proportional rate. Namely, for wide-bin width 𝐵, as 𝑝𝑇 increases, 𝐵 is increased such that 𝐵 ∝ √𝑝𝑇 .750

The resulting endpoints of these bins are then matched to the closest endpoints of the uniformly751

sized 60 true fine bins. As a result, Figure 12 shows that the left-most wide bin includes five fine752

bins while the right-most includes seven fine bins.753

In addition to the inclusive jet transverse momentum spectrum providing a more realistic754

example of unfolding than the simple deconvolution setup, as explained in [22], there are physically755

motivated intensity function shape constraints that can be included when optimizing the intervals756

in addition to the non-negativity constraint used in the deconvolution example. Namely, we expect757

the intensity to be monotonically decreasing and convex. These constraints are implemented via758

the A matrix as seen in the optimization problem («.«), for example.759

When optimizing over the parameter 𝝀 ∈ R𝑛, the non-negativity, monotonically decreasing,760

and convexity shape constraints can be implemented as follows. For the infinite-dimensional761

version of implementing these shape constraints, see [22]. The non-negativity implementation is762

already explained in Section «.1. Denote this constraint matrix by A𝑛 ∈ R𝑛×𝑛. To implement the763

decreasing constraint, we first note that for all 𝑖 ∈ [𝑛 − 1], 𝜆𝑖 ≥ 𝜆𝑖+1 must hold. When working764

with the optimizations like program («.«), these necessary conditions can be met by constructing765

A𝑑 ∈ R(𝑛−1)×𝑛 such that A𝑑
𝑖,𝑖

= −1 and A𝑑
𝑖,𝑖+1 = 1, for all 𝑖 ∈ [𝑛−1]. To create a necessary convexity766

condition, we observe that for three adjacent elements, e.g., 𝜆𝑖 , 𝜆𝑖+1 and 𝜆𝑖+2, in order for the vector767

𝝀 to follow a convex shape, it must be true that for all 𝑖 ∈ [𝑛 − 2], we have 𝜆𝑖+𝜆𝑖+2
2
≥ 𝜆𝑖+1. Thus,768

we must have the following inequality for all 𝑖 ∈ [𝑛 − 2]ȷ −𝜆𝑖 + 2𝜆𝑖+1 − 𝜆𝑖+2 ≤ 0. These necessary769

conditions can be met by creating a matrix A𝑐 ∈ R(𝑛−2)×𝑛 such that A𝑐
𝑖,𝑖

= −1, A𝑐
𝑖,𝑖+1 = 2, and770

A𝑐
𝑖,𝑖+2 = −1, for all 𝑖 ∈ [𝑛 − 2]. Combining these constraints is accomplished simply by stacking771

these individual shape constraint matrices on top of each other. In particular, we work with the same772

three constraint setups as those shown in Table 1 of [22], namely, non-negativity; non-negativity773

and monotonically decreasing; and non-negativity, monotonically decreasing, and convex. These774

setups are referred to as N, ND, and NDC, respectively. Here we assume that the fine bins have a775

uniform width. If the fine-bin discretization was done using variable bin widths, the matrices A𝑑
776
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and A𝑐 would need to be adjusted to account for the variable bin widths.777

Like the deconvolution example, we are primarily interested in evaluating the coverage and778

expected width of the intervals created with each of the above three constraint setups. We estimate779

the coverage and interval width by sampling 𝑀𝐷 = 1,000 draws from the distribution shown in780

Eq. (2.8), and the smearing matrix is constructed as described above. In particular, we build OSB,781

PO, and SSB intervals with each of the above three constraint combinations, for a total of nine782

different interval setups. First, Figure 15 shows one realization of the 1,000 intervals constructed783

for each interval procedure and for each aggregated bin. Despite the rapid interval width decay as784

a function of the number of shape constraints, Fig. 18 in Appendix B shows that across all interval785

procedures, constraint configurations, and aggregated bins, we retain at least nominal coverage, as786

desired.

Figure 15: Example 95% wide-bin intervals across different procedures and constraint configurations for the steeply

falling particle spectrum based on a 30 × 60 smearing matrix. Adding shape constraints significantly shortens interval

widths across all procedures. In the upper left plot, the PO intervals intersecting the horizontal axis have a lower bound

close to zero. The top two and bottom left plots show OSB intervals as the shortest, PO as the middle width, and SSB

intervals as the widest, across most bins. Example least-squares intervals are included in the bottom right and essentially

show interval widths comparable to the OSB/PO/SSB intervals in the bottom left panel, but as shown in Figure 1» the

wide-bin least-squares intervals do not have correct coverage.

787

Interval widths decreasing as a function of the number of shape constraints also holds in788

expectation, as shown in Fig. 16. Additionally, the left panel in Fig. 16 shows the same expected789

width ordering across interval procedures as previously in Section ». Namely, OSB intervals are790

uniformly shorter in expectation than PO intervals, which are in turn uniformly shorter in expectation791

than the SSB intervals. For a few bins in higher 𝑝𝑇 values, these improvements are difficult to see.792

The improvements can be more easily observed in the right panel of Figure 16, showing the percent793

reduction in expected interval width using the SSB intervals as a baseline. This figure additionally794

shows that the percent reduction increases as shape constraints are added. For instance, the PO795

intervals are shorter than the SSB intervals for all bins and constraint configurations, but for the796

ND and NDC constraints, the PO intervals provide a much larger width improvement over the SSB797

intervals compared to the improvement with just the N constraint. The same applies to the OSB798

intervals as well.799

This example provides a more concrete demonstration of how classical wide-bin unfolding800

with systematic error in the smearing matrix can nullify the typical coverage guarantees of least-801

– 28 –



Figure 16: (Left) Expected 95% interval widths across bins. Similar to the deconvolution example, the OSB intervals are

uniformly shorter than the PO intervals, which are uniformly shorter than the SSB intervals. (Right) Percent decrease

in expected interval width with respect to the SSB interval widths. Both the OSB and PO interval procedures produce

shorter intervals across all bins and constraint configurations than SSB. The width improvement with respect to the SSB

intervals increases as more shape constraints are added for both OSB and PO intervals.

squares intervals. This can be addressed using the wide-bins-via-fine-bins approach based on the802

OSB, PO and SSB intervals which are able to handle the nontrivial null space of the smearing803

matrix and incorporate additional physical constraints, while maintaining the desired coverage. It804

additionally demonstrates that the non-simultaneous OSB and PO methods offer substantial interval805

width improvements over the comparable SSB intervals, assuming that one-at-a-time coverage is806

what we are interested in.807

6 Discussion and Conclusions808

When performing unfolding in high energy physics, wide-bin unfolding is an increasingly popular809

alternative for regularization. It reasonably sets wide bin widths to match the detector resolution.810

However, as we showed in Section », even a slight systematic error caused by the ansatz used to811

create the wide-bin smearing matrix can scupper the coverage guarantees of classical least-squares812

intervals. In this paper, we have proposed and substantiated a different approach to avoid these813

coverage issued in the aforementioned setup. Namely, instead of unfolding directly to the detector814

resolution, we propose a general methodology in which one first unfolds with as many true bins as815

possible and then aggregates these narrow-bin inversion results to the detector resolution. In order816

to maximally mitigate the systematic error caused by the ansatz misspecification, we invert with817

a rank-deficient matrix that has more true bins than smeared bins facilitated by the OSB and PO818

intervals.819

In Sections » and 5, we explored the coverage and width properties of the OSB and PO820

intervals for a histogram deconvolution problem and for unfolding a steeply falling particle spectrum,821

respectively. In the deconvolution problem, the OSB and PO intervals clearly address the coverage822

deficiencies of the wide-bin least-squares intervals, while also providing superior interval width823

properties when compared against least-squares, SSB, and minimax intervals. Additionally, we824

demonstrated a low interval width sensitivity to the number of true bins (i.e., the extent to which825

the smearing matrix is rank-deficient) for both the OSB and PO intervals and to the choice of the826
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Table 2: Summary of the properties of the intervals considered or mentioned herein. The SSB intervals are the only

simultaneous intervals considered, the rest of the methods are designed to work with one functional at a time. “Empirical

Coverage” indicates if the method covers at the desired level in simulations. “Provable Coverage” indicates the existence

of a mathematical proof guaranteeing the method’s coverage. “Physical Constraints” indicates the method’s ability to

incorporate physical knowledge in the form of affine constraints into the interval construction. “Rank-Deficient Model”

indicates if the method can be used with a column-rank-deficient linear model, helping mitigate systematic uncertainty

due to the binning. ✓* indicates that the coverage depends upon sufficiently small systematic error in the linear model

used to construct the interval. We assume here that the systematic error can be made sufficiently small for those methods

that can handle a rank-deficient matrix. ✓** indicates that the method makes use of the constraints but the final intervals

do not necessarily respect the physical constraints.

Interval Type Coverage Design Interval Width Empirical Coverage Provable Coverage Physical Constraints Rank-Deficient Model

Tikhonov/Regularized One-at-a-time Narrow ✗ ✗ ✗ ✓

Least-Squares One-at-a-time Medium ✓* ✓ ✗ ✗

OSB One-at-a-time Medium ✓ ? ✓ ✓

PO One-at-a-time Medium ✓ ✓ ✓** ✓

SSB Simultaneous Wide ✓ ✓ ✓ ✓

Minimax One-at-a-time Wide ✓* ✓ ✓ ✗

prior for the PO intervals. Similarly, in the steeply falling spectrum example, we showed that the827

coverage and expected width properties of the OSB and PO intervals carry over to this more realistic828

unfolding setting from the simpler deconvolution example. This example further demonstrates the829

capacity and utility of these intervals to include shape constraints (i.e., non-negativity, monotonicity,830

and convexity) to further reduce the width of the optimized intervals while preserving coverage.831

The OSB and PO intervals have properties that make them good methodological choices for832

the types of ill-posed inverse problems considered herein. However, determination of the “best”833

interval is largely dependent upon the specific application. As such, Table 2 provides an overview834

of some key properties of various intervals relevant to the statistical context of this paper. Note835

in Table 2 that the PO intervals are the narrowest intervals having empirical coverage, provable836

coverage, incorporation of physical constraints, and handling of rank-deficient linear models, which837

stem in part from their methodological novelty. In particular, the decision-theoretic framing allows838

the definition of a set of decision rules for which coverage is guaranteed. With this definition, we839

are able to focus the loss function only on interval width, as opposed to considering both width840

and coverage as in many other decision-theoretic treatments of confidence sets. Indeed, in previous841

literature [11, 12, 28, «»], decision-theoretic loss functions for interval estimation have balanced842

these two criteriaȷ interval size and interval coverage. Restricting the set of decision rules as we843

have adds upfront difficulty in determining such a set, but enables us to obtain guaranteed coverage844

and avoids the downstream difficulty of maintaining two optimality criteria in the loss function.845

More generally, we have shown with the decision-theoretic approach how one can effectively846

use “prior” information available in the form of a prior distribution to construct confidence intervals847

that still maintain frequentist coverage. If the prior is indeed correct, then the method would be848

optimal (in a decision-theoretic sense), but even if the prior was wrong, the method still provides849

correct coverage at the cost of the width of the interval. In a sense, the method is “tuned" using the850

prior information, while ensuring frequentist “validity." Broadly, our work falls under an umbrella851

of work [1«, 1»], among others, that unites the Bayesian and frequentist perspectives, providing852
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direct ways of accommodating prior information while keeping frequentist coverage guarantees.853

Additionally, the decision-theoretic framework elucidates a practical computational advantage of854

the PO intervals over the OSB and SSB intervals. Namely, since the optimal decision rule is855

computed based solely on the functional of interest 𝒉, the forward operator 𝑲, and a given prior,856

the convex program («.18) only has to be solved once to find a sequence of intervals for a sequence857

of observations. Since the interval computation requires only vector-vector multiplication given an858

arbitrary decision rule, computing a sequence of intervals requires relatively little computation. By859

contrast, no such “pre-computing" can be done for the OSB and SSB intervals, meaning that for860

each new data vector, the full end point convex programs must be solved to compute each interval.861

The “pre-computed" nature of the PO intervals provides therefore an advantage in applications with862

a fixed problem setting and a stream of data for which confidence intervals are desired.863

The above results provide strong evidence that the OSB and PO intervals work well in the wide-864

bins-via-narrow-bins unfolding paradigm, but we imagine several immediate next steps to build upon865

these results. One, as stated in Section «.1, despite having shown good empirical coverage results866

in a variety of contexts, the OSB intervals do not yet have a mathematical guarantee that they cover867

for arbitrary functionals. This is an important future direction as a rigorous proof of the coverage868

guarantee would provide a solid basis for the use of these intervals in scientific applications. Two,869

there are a variety of possible configurations we can explore in the decision-theoretic setup for870

the PO intervals. In particular, we could broaden the class of decision rules beyond affine rules871

to non-linear rules, and we could explore different loss functions beyond the interval width that872

take higher-order information into account. It would be interesting to explore how these different873

decision rules and loss functions affect the interval widths and their sensitivity to prior choice.874

Third, the results presented herein are based upon simulated data, so applying this method to real875

data would be a cogent next step. Clearly, applications to real data could not directly assess interval876

coverage, but they would provide more realistic comparisons of unfolded interval widths between877

the OSB and PO intervals and other commonly used methods. Fourth, while we have provided878

a solution to the systematic error stemming from the wide-bin bias, our approach still assumes879

knowledge of the smearing kernel 𝑘 . In reality, since this kernel is also uncertain, a next step would880

be to develop methods for incorporating this uncertainty into the final uncertainty quantification.881

Finally, there is an important middle-ground between the one-at-a-time nature of the OSB and PO882

intervals and the simultaneous SSB intervals, which by construction provide coverage for an infinite883

set of functionals (i.e., the set of all linear functionals). Namely, finding 𝑛-at-a-time intervals or884

other 𝑛-variate confidence sets with a coverage guarantee that holds simultaneously for a finite885

number of 𝑛 functionals would be useful for scientific inference, as such uncertainty quantification886

might be more fitting for answering questions such as how well unfolded results comport with theory887

predictions. The decision-theoretic framework seems like a useful starting point for this extension.888
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A Computing the Adversarial Ansatz889

The ansatz 𝑓MC used to compute the matrix 𝑲 (per Eq. (2.10)) is a source of systematic error. As890

seen in Section », the least-squares intervals in the wide-bin setting are unable to overcome the891

minor misspecification of the GMM Ansatz, but this shortcoming can be addressed by increasing892

the number of true bins and then aggregating those bins to the same wide-bin resolution. The893

OSB and PO intervals are also able to handle this misspecification the same way. But, to motivate894

the need to handle rank-deficient linear models, we construct the Adversarial Ansatz as an ansatz895

that provides enough systematic error to depress the least-squares and OSB intervals’ empirical896

coverages significantly below their nominal levels, thus warranting the use of more true bins. We897

call this constructed ansatz “adversarial" since it is made for the explicit purpose of breaking the898

empirical coverage of these methods. We construct such an ansatz by leveraging the observations899

that this problem is ill-posed (and hence inversions are sensitive to noise) and that least-squares900

estimators have high variance in the absence of regularization.901

The brute-force procedure for generating the Adversarial Ansatz is described in Algorithm 1902

below. On a high level, Algorithm 1 generates an ensemble of potential ansatz functions, estimates903

the bin-wise coverage of the least-squares intervals for each ansatz, and then identifies the ensemble904

element with the lowest minimum estimated bin-wise coverage. The resulting ansatz 𝑓MC from905

this procedure is shown in Figure 1a. Each potential ansatz function is constructed by generating a906

realization of data in the smeared space, estimating the true bin counts via non-negatively constrained907

least-squares estimation, followed by a cubic spline interpolation of the least-squares estimator. This908

constrained least-squares estimator is very sensitive to noise and hence looks nothing like the true909

bin means (see the right panel of Figure 17). A key feature of this construction is that it creates910

an oscillatory ansatz (see Figure 1a) that when mapped back into the smeared space, fits the data911

almost exactly (see the left panels of Figures 17 and 1b). Hence this ansatz could not be ruled912

out based on the smeared observations. Because of its oscillatory nature, this ansatz creates more913

systematic error than the Misspecified GMM Ansatz.914

Figure 17: As shown on the left panel, the constrained least-squares estimator (𝝀) used to create the Adversarial Ansatz

chosen via the minimum bin-wise estimated coverage criterion closely fits the data when mapped back into the smeared

space via 𝑲𝝀, but clearly does not match the true bin means as shown on the right.

– «2 –



Algorithm 1: Brute-Force Construction of the Adversarial Ansatz

Inputsȷ

– 𝑁𝑐 ∈ Nȷ Number of samples for estimating bin-wise coverage.

– 𝑁𝑎 ∈ Nȷ Number of ansatz functions to compute.

– 𝑲 ∈ R40×40ȷ The true smearing matrix.

– 𝝀 ∈ R40ȷ True bin means.

– {𝒉𝑖}10
𝑖=1

ȷ A sequence of linear functionals, each aggregating four adjacent bins into one wide

bin.

Outputȷ

– 𝑓MCȷ Adversarial ansatz.

Procedureȷ

1. Sample y1, . . . , y𝑁𝑐
∼ Poisson(𝑲𝝀).

2. Let 𝐶 denote an array of length 𝑁𝑎 that will store the minimum estimated bin-wise coverage

for each generated ansatz. For 𝑖 = 1, . . . , 𝑁𝑎ȷ

(a) Generate data from the true distributionȷ y𝑖 ∼ Poisson(𝑲𝝀).
(b) Find the non-negatively constrained least-squares estimatorȷ

𝝀𝑖 = argmin
𝝀≥0

∥y𝑖 − 𝑲𝝀∥22.

(c) Interpolate 𝝀𝑖 using a cubic spline, defining an ansatz function 𝑓MC
𝑖

: R→ R.

(d) Compute a smearing matrix 𝑲MC
𝑖

using Eq. (2.10) and the previously computed ansatz

function 𝑓MC
𝑖

.

(e) For each sample y 𝑗 and each function 𝒉𝑘 for 𝑗 ∈ [𝑁𝑐] and 𝑘 ∈ [10], compute the

least-squares interval using Eq. («.19), and estimate the bin-wise coverage using

Eq. (».5), obtaining a sequence of estimated bin-wise coverages {𝛾𝑙}10
𝑙=1

.

(f) Find the minimum estimated bin-wise coverage by 𝛾min
𝑖 = min𝑙∈[10] 𝛾𝑙, and set

𝐶 [𝑖] ← 𝛾min
𝑖 .

«. Identify the generated ansatz with the lowest estimated bin-wise coverageȷ

𝑖∗ = argmin
𝑖∈[𝑁𝑎 ]

𝐶 [𝑖] .

». Return the adversarial ansatz 𝑓MC
𝑖∗ .
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B Additional Supporting Figures915

Figure 18: Coverage across interval constructions, constraint configurations, and aggregated bins for the steeply falling

spectrum. Estimated coverage shows all combinations achieving at least 95% nominal coverage.
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