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We resolve the decades old mystery of what happens when a positron scatters off a minimal GUT
monopole in an s-wave, first discussed by Callan in 1983. Using the language of on-shell amplitudes
and pairwise helicity we show that the final state contains two up quarks and a down quark in an
entangled multiparticle state - the only particle final state that satisfies angular momentum and
gauge charge conservation. The cross section for this process is as large as in the original Rubakov-
Callan effect, only suppressed by the QCD scale. The final state we find cannot be seen in Callan’s
truncated 2D theory, since our new entangled state appears only in more than 2 dimensions.

INTRODUCTION

The scattering of electrically charged fermions with
magnetic monopoles is a very peculiar process [1]. Until
recently the theoretical understanding of these processes
faced three major difficulties:

• Weinberg [2] found that the scattering amplitudes
are not Lorentz invariant.

• Multiparticle scattering states with both electric
and magnetic charges carry additional angular mo-
mentum in the gauge field [3, 4] and cannot be
written as tensor products of Wigner’s one-particle
states.

• The analysis of the scattering of Grand Unified
Theory (GUT) monopoles seemingly led to the con-
clusion that one must either give up on conservation
of gauge charges or accept the existence of frac-
tional particles [5].

The Lorentz violation problem was resolved by all or-
ders resummation in [6] and order-by-order for the special
case of monopoles bound with anti-monopoles in [7]. The
problem with multiparticle states was resolved by the in-
clusion of an additional quantum number called pairwise
helicity [8, 9]. In this letter we will present a resolution
of the final problem.

To understand the essence of the final problem regard-
ing the scattering of GUT monopoles it is helpful to
recall a surprising fact about U(1) theories with mag-
netic monopoles and massless, oppositely charged Weyl
fermions. When one of the Weyl fermions scatters with
the monopole in such a theory, angular momentum con-
servation forbids forward scattering in the lowest partial
wave. Instead, the massless fermion must flip its chi-
rality [10] by turning into the CP conjugate of the other
fermion. We can embed this simple theory into a ‘t Hooft-
Polyakov model [11] with an SU(2) gauge group and two

Weyl doublets1. This theory has an SU(2) flavor sym-
metry, which is perfectly consistent with the helicity flip
process if the flavor flips as well. Things become more
subtle in a model with 4 doublets where the helicity flip
process is forbidden by an SU(4) global symmetry. The
global symmetry allows processes with one fermion initial
state scattering into three fermion final states as well as
processes where [5] two incoming fermions to scatter to
two outgoing fermions [12]. The proton decay catalized
by the latter type of process produce the leading obser-
vational bounds on the relic density of GUT monopoles
in the universe [13].

Callan [5] was the first to study the scattering of a
positron off a GUT monopole. The problem reduces to
the four flavor ‘t Hooft-Polyakov model in a limit where
some gauge couplings are dropped, implying again that
there have to be at least 3 fermions in the final state.
Truncating to 2D and reformulating the problem in terms
of solitons, Callan concluded [5, 14] that there was no
possible 3 fermion final state that preserved all of the
gauge quantum numbers. As noticed by Witten, the
truncated theory produced half-solitons (aka “semitons”)
in the final state [5], which they identified with “half
particles” in the full theory. With the fermion masses
set to zero these states, if they existed, would have to
be true asymptotic final states far from the monopole,
where perturbation theory can be reliably applied. Since
these states cannot arise in perturbation theory, Callan
suggested [5] that there could be some kind of statistical
understanding where charge conservation is violated in
individual events but is conserved on average. However
this explanation was never fully embraced, since gauge
invariance of the full 4D theory does not allow for such
a probabilistic conservation.

The aim of this paper is to find the form of the am-

1 An even number of doublets is required to avoid the Witten
global anomaly.
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plitude for this process by making use of helicity ampli-
tudes and pairwise helicity. We will indeed be able to
identify the unique form of the amplitude that preserves
all gauge quantum numbers, angular momentum and the
approximate global flavor symmetry. As in the helicity-
flip process discussed above, forward scattering is for-
bidden, and surprisingly the unique out state comprises
three fermions in an entangled state2. In this entangled
final state, the spins of the fermions combine with the
angular momentum in the gauge field into a total J = 0
partial wave. This amplitude corresponds to the low-
est dimensional operator without derivatives in the low-
energy effective theory. Thus we find that monopoles can
produce entangled fermions in an overall J = 0 partial
wave, with a cross section satisfying the s-wave unitarity
bound.

RUBAKOV-CALLAN INTERACTIONS

Consider the minimal SU(5) GUT monopole obtained
by embedding the standard ‘t Hooft-Polyakov monopole
[11] into the SU(2)M ⊂ SU(5) generated by T i

M =
diag

(︁
0, 0, τ i, 0

)︁
. Far away from the monopole, the full

SU(5) gauge symmetry is broken by a Higgs in the
adjoint of SU(5) to the standard model (SM) gauge
group which includes the U(1)M generated by T 3

M . The
monopole configuration is invariant under the combined
rotations generated by L⃗+T⃗ , where L⃗ is the orbital angu-
lar momentum operator and T⃗ is the vector of SU(2)M
generators T i

M . In the SU(5) GUT, every generation
of SM fermions is embedded in a 5̄ and a 10. Under
SU(2)M , these decompose into 4 doublets:(︃

e

−d̄
3

)︃
,

(︃
ū1

u2

)︃
,

(︃
−ū2

u1

)︃
,

(︃
d3

ē

)︃
, (1)

where the upper and lower components have charge
eM = ± 1

2 under U(1)M , and all other fermions are
SU(2)M singlets. We labeled the particles by the cor-
responding left-handed fields, the right-handed particles
correspond to hermitian conjugates of these fields. Here
the 1, 2, 3 label global color charge, which is broken in
the vicinity of the monopole. Furthermore, in this pa-
per we take the monopole to have charge gM = −1 for
consistency with Rubakov’s notation [16]. This means
that q = eMgM = −1/2 for e, ū1, ū2, d3 while q = 1/2 for

d̄
3
, u2, u1, ē. In the early ’80s, Rubakov and Callan [12]

independently derived a remarkable feature of fermion-
monopole scattering. When a pair of u1 + u2 quarks is

2 Here and throughout the paper, we use the word ”entangled”
to denote a multiparticle state which is not a direct product of
single-particle states. The famous entangled states used in the
EPR experiment are one example of multiparticle states which
are not direct products of single-particle states.

incident on the monopole, there are seemingly two possi-
ble outgoing states which conserve all SM quantum num-
bers - the initial state itself (i.e. forward scattering), and

the state d3
†
+ e†. Rubakov and Callan showed that the

J = 0 partial wave cannot undergo forward scattering.
Instead, the incoming u1, u2 in this partial wave are con-

verted to d3
†
+ e†, thus violating baryon number (B).

To see this effect, both Rubakov and Callan focused on
a truncated theory in which one only retains the J = 0
partial wave for each fermion. Famously [12], in this
truncated theory, fermions with q = −1/2 exist only as
incoming waves, while those with q = 1/2 exist only as
outgoing waves. In particular, this implies that forward
scattering is always forbidden. Note that the hermitian
conjugates of the fields in (1) have the opposite charge
and helicity so e† is also an outgoing wave.
Consequently, monopoles induce a B-violating process

with a cross section saturating the J = 0 unitarity bound.
When QCD confinement is taken into account, this leads
to monopoles catalyzing proton decay with a QCD scale
cross section, counter to the naive intuition that the
cross section is suppressed by the scattering energy over
the GUT scale. In other words, monopole induced B-
violation is a non-decoupling process. In comparison, the
standard B-violating processes in SU(5) GUT are medi-
ated by the X and Y GUT bosons and are suppressed by
(E/MGUT )

n, n = 2 − 4 and so are negligible compared
to monopole catalysis. The leading observational bounds
on the relic density of GUT monopoles in the universe
are then derived from proton/neutron decay catalysed
by monopole capture in neutron stars [13].

MONOPOLE CATALYSIS AND PAIRWISE
HELICITY

In [8], the most general form of the S-matrix for the
scattering of monopoles and charges was constructed.
The main take away from this construction is that the
multiparticle asymptotic states of the S-matrix are not
tensor products of single particle states. In particular,
under Lorentz transformations, they pick up an extra
little group phase for every monopole-charge (or dyon-
dyon) pair. For example, consider a 2-particle state
where each particle has electric and magnetic charges
(ei, gi) and spin si. This state transforms as

U(Λ) |pi, pj ; si, sj ; qij⟩ =

eiqijϕij Ds′i,si
Ds′j ,sj

|Λpi,Λpj ; s′i, s′j ; qij⟩ , (2)

Here U(Λ) is the unitary representation of the Lorentz
transformation Λ, while the Dab represent single particle
little group factors. The extra “pairwise little group”
phase eiqijϕij is unique to multiparticle states involving
monopoles and charges (or any other mutually non-local
particles). The pairwise helicity qij is half-integer since
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it labels charges under the pairwise little group, which
is a compact U(1) [8]. It has a natural interpretation as
the quantity

qij = eMigMj − eMjgMi , (3)

which is quantized in half integer units by the Dirac-
Zwanziger-Schwinger quantization condition [15].

A more detailed definition of electric magnetic multi-
particle states was given in [9]. The transformation rule
(2) implies additional constraints on scattering ampli-
tudes involving monopoles—the functional form of the
scattering amplitude has to be such that

A(Λp1, . . . ,Λpn; Λk1, . . . ,Λkm) =

e−i
∑︁

qijϕij Ã(p1, . . . , pn; k1, . . . , km) , (4)

where Ã is the amplitude A times all of the single particle
little group transformations Di. To construct amplitudes
with the required transformation rule ref. [8] defined
new spinor-helicity variables called “pairwise spinors,”
denoted by |p♭±ij ⟩, defined for each pair of particles in the
in or out state. For completeness, we repeat the defini-
tion of the standard massles spinor-helicity variables, as
well as the pairwise spinor-helicity variables in the sup-
plemental material. The spinors have pairwise helicity ±
under the pairwise little group associated with the par-
ticles i and j. In other words, they transform as

Λ̃ |p♭±ij ⟩ = e±
i
2ϕ(pi,pj ,Λ) |Λp♭±ij ⟩[︂

p♭±ij

⃓⃓⃓
Λ̃ = e∓

i
2ϕ(pi,pj ,Λ)

[︂
Λp♭±ij

⃓⃓⃓
, (5)

where Λ and Λ̃ are Lorentz transformations acting in vec-
tor and spinor spaces respectively. Finally, the pairwise
spinors have the important property that they align with
some of the standard spinor helicity variables in the mass-
less limit. In particular:⟨︂

i p♭+ij

⟩︂
=

[︂
i p♭+ij

]︂
= 0⟨︂

j p♭−ij

⟩︂
=

[︂
j p♭−ij

]︂
= 0 . (6)

The vanishing of these contractions plays a central role in
explaining the peculiarities of the Rubakov-Callan effect.

To see the relation between pairwise helicity and the
Rubakov-Callan effect, let us consider an incoming state
involving the massless fermions u1, u2, both with elec-
tric charge eM = −1/2 and a scalar monopole M with
magnetic charge gM = −1. Let us now focus on the s-
wave partial amplitude involving in- and out- states with
total angular momentum J = 0. In this case the ampli-
tude splits into an incoming and and outgoing part, each
one depending only on the incoming/outgoing momenta
and with all spinor indices contracted (since J = 0). As

qu1,M = qu2,M = −1/2, the incoming part of the ampli-
tude is [︂

u1 p♭−u1,M

]︂ [︂
u2 p♭−u2,M

]︂
, (7)

where
⃓⃓⃓
p♭−ui,M

]︂
are pairwise spinors, while

[︁
ui
⃓⃓
are the

standard massless spinor helicity variables. To see that

this in-state transforms correctly, note that the
⃓⃓⃓
p♭−ui,M

]︂
each carry pairwise helicity −1/2 under the ui,M pair-
wise little group, while the

[︁
ui
⃓⃓
transform like a helicity

1/2 under the single particle little group for ui, which
is suitable since incoming left-handed fermions carry he-
licity 1/2 in our all-outgoing convention. In contrast,
outgoing left-handed fermions carry helicity −1/2 in this
convention. Note that pairwise helicity is not flipped be-
tween incoming and outgoing particles [8].

We can now easily see why there can’t be forward scat-
tering in this process. Let us try to represent the would-
be out-state relevant for forward scattering, i.e. involving
the same u1, u2. The out part of the amplitude has to
be ⟨︂

u1 p♭+u1,M

⟩︂⟨︂
u2 p♭+u2,M

⟩︂
. (8)

Note that the sign on the pairwise spinors is flipped so as
to preserve their pairwise helicity under |] → |⟩. However,
this expression vanishes by (6). There cannot be forward
scattering of fermions on a monopole in the lowest partial
wave.

Having established that there is no forward scattering
for the Rubakov-Callan in-state, we now turn to write
down the only possible final state which respects all SM
quantum numbers, as well as the overall SU(4) flavor
symmetry. This out state involves the fermions e†, d3†.
The corresponding outgoing part of the amplitude are[︂

e† p♭−
e†,M

]︂ [︂
d3† p♭−

d3†,M

]︂
. (9)

It transforms correctly under the pairwise little group,
since qe†,M = qd3†,M = 1/2. Since this is the only possible
out state, we have a simple derivation of the Rubakov-
Callan amplitude

ARubakov-Callan ∝[︂
u1 p♭−u1,M

]︂ [︂
u2 p♭−u2,M

]︂ [︂
e† p♭−

e†,M

]︂ [︂
d3† p♭−

d3†,M

]︂
.(10)

The overall cross section for the process satisfies the s-
wave unitarity bound, and so should be proportional to
4πp−2

c where pc is the COM momentum. When taking
QCD confinement of the incoming quarks into account,
the incoming quarks are confined to within a distance
Λ−1 of each other, and the cross section becomesO(Λ−2).



4

SOLVING A 40 YEAR OLD MYSTERY

When a positron, ē, scatters off of a GUT monopole,
forward scattering is again forbidden by angular momen-
tum conservation, while the flavor symmetry constrains
the out state to have 3 (mod 4) fermions. The only possi-
ble out state with 3 fermions which conserves all quantum
numbers is:

ū1† + ū2† + d̄
3†
. (11)

However, Callan argued that this final state is impossi-

ble, since in the presence of the monopole, the d̄
3†

cannot
exist in a one-particle outgoing partial wave with J =
0. Starting with a truncated 2D theory including only
fermions in one-particle J = 0 waves, Callan then applied
1+1D bosonization to represent the fermions as solitons.
He then found that the final state consists of four semi-
tons, or “half-particles”. For the initial state of an ē he
found the semitonic final state 1/2(e† + ū1† + ū2† + d3).
Since “half-particles” do not exist in the 4D theory Callan
suggested the interpretation that half the time one would
produce a positron and half the time one would produce
a proton. These proposed individual processes do not
conserve SM gauge charges, but would do so on average.

Analog 2D theories with an SO(8) global symmetry
have been analyzed by Maldacena and Ludwig [18] and
Boyle Smith and Tong [19]. These authors confirmed
that in the absence of additional gauge symmetries the
semiton description is correct, and can be understood via
SO(8) triality. However this does not answer the question
of what happens for the GUT monopole process where
the fermions have chiral non-Abelian charges that break
the SO(8) symmetry.

Sen [20] claimed that conservation laws ensure that
there are no monopole processes allowed with one fermion
in the initial state and three fermions in the final state.
If this were true then there would either have to be pro-
cesses with more fermions (3 mod 4) or a mechanism that
prevented single fermions from encountering a monopole.
However the conservation laws that Sen used are only
valid in the 2D truncated theory which leaves out the
possibility of entangled multiparticle final states. It is
then not surprising then that the truncated 2D analysis
cannot produce the correct final state, as it leaves out
this crucial part of the multiparticle Hilbert space. As
we elaborate below, the correct final state should be an
entangled multiparticle final state, in which the helicity
of one fermion combines with the field angular momen-
tum produced by the other, leading to a total J = 0
partial wave.

Kitano and Matsudo [21] suggested that the semitons
should be identified in the 4D theory with a “pancake”
soliton: a domain wall bounded by a string. These pan-
cakes are supposed to be heretofore unknown asymptotic
states of the gauge theory. For this to be a consistent

interpretation in the massless fermion limit, the pancake
would also have to have arbitrarily small energies since
the incoming positron energy can be arbitrarily small.

Using the pairwise helicity formalism, we are able
for the first time to identify the correct final state for
positron-monopole scattering. This final state does, in
fact, consist of the fermions in (11), which conserve all
of the SM quantum numbers and respect the approxi-
mate SU(4) flavor symmetry. The novelty here is that
the final state fermions are in fact entangled, in the sense
that their quantum state is not a direct product of sin-
gle particle states. In an entangled state, the helicity of
one fermion can combine with field angular momentum
arising from one of the other particles. This allows the
entangled multiparticle state to be in an overall J = 0
state, even though none of the individual fermions is in a
one-particle J = 0 states. The amplitude for this process
is

Aē ∝[︂
ē p♭−

ē†,M

]︂ [︂
ū1† p♭−

ū1†,M

]︂ [︂
ū2† p♭+

d̄3†,M

]︂ [︂
d̄
3†
p♭−
ū2†,M

]︂
− (1 ↔ 2) .

Note that we cannot arrange a similar balancing of he-
licity and field angular momentum when there are only
two fermions in the final state. To see this, consider
the static monopole limit, then in the center of mass
frame the two fermions emerge back-to-back, and the
flat momenta are also back-to-back along this axis, thus
exchanging the flat spinors so that they are contracted
with the opposite particle gives exactly zero. For finite
monopole masses there could be a contribution that is
suppressed by the monopole mass, but this cannot satu-
rate the unitarity bound.

Also note that truncating to 2D is equivalent to de-
manding that each one of the outgoing fermions is in
an individual J = 0 partial wave, which in the on
shell language means that each single particle spinor

[ē| ,
[︁
ū1†

⃓⃓
,
[︁
ū2†

⃓⃓
,
[︂
d̄
3†
⃓⃓⃓
has to be contracted with its own

pairwise spinor. In particular, that means that the cor-
rect final state (12) is missed in the 2D truncated theory.

Moreover,
[︂
d̄
3†
p♭+
d̄3†,M

]︂
= 0 by (6), and so the truncated

2D theory seems to not have any allowed final state for
this process.

APPLICATIONS

Since cross sections that saturate partial wave uni-
tarity grow with the inverse of the initial momentum
one might naively expect that the positron scattering
process we have discussed would lead to an arbitrar-
ily large cross section for B-violation in GUT theories.
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We can see however that the growth is cut off at en-
ergies E < ΛQCD, as happens for the Rubakov-Callan
processes. There is, however, an important distinction
between the two. At energies lower than ΛQCD the
cross section for the Rubako-Callan process remains fixed
at σhadronic

RC ∼ κΛ−2
QCD, where κ is an unknown QCD-

dependent O(1) coefficient. This is because the incom-
ing state for this process involves both a u1 and a u2

that arrive to the monopole confined within a distance of
∼ Λ−1

QCD inside the proton. In contrast, the B-violating
cross section for positron-monopole scattering becomes
zero at low energies. This can be seen as follows. Once
the initial energy is below the sum of the monopole and
proton masses, the final state of three quarks cannot
hadronize into a proton. In the monopole rest frame
the three quark state will carry the initial momentum of
the positron. Once the separations of the quarks reaches
the QCD scale, the quarks will be forced to travel in the
same direction, so two of the quarks will have their mo-
mentum flipped by QCD interactions. Since QCD also
breaks chirality, their chirality can also be flipped and
they can become in-states for a second interaction with
the monopole. Two quarks scattering on the monopole
produce an antiquark and a lepton. The antiquark can
annihilate with the remaining quark to produce two pho-
tons or a lepton-antilepton pair. Thus below the proton
threshold there is no B-violation, as we expect from en-
ergy conservation, and the B-violating cross section is cut
off at the QCD scale.
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