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Uncovering gene regulatory mechanisms in individual cells can provide insight into cell heterogeneity and
function. Recent accumulated Single-Cell RNA-Seq data have made it possible to analyze gene regulation at
single-cell resolution. Understanding cell-type-specific gene regulation can assist in more accurate cell type and
state identification. Computational approaches utilizing such relationships are under development. Methods
pioneering in integrating gene regulatory mechanism discovery with cell-type classification encounter challenges
such as determine gene regulatory relationships and incorporate gene regulatory network structure. To fill this
gap, we developed INSISTC, a computational method to incorporate gene regulatory network structure infor-
mation for single-cell type classification. INSISTC is capable of identifying cell-type-specific gene regulatory
mechanisms while performing single-cell type classification. INSISTC demonstrated its accuracy in cell type
classification and its potential for providing insight into molecular mechanisms specific to individual cells. In
comparison with the alternative methods, INSISTC demonstrated its complementary performance for gene

regulation interpretation.

1. Introduction

Understanding gene regulatory mechanism in a cell-specific manner
is a fundamental task in molecular biology. Genes are regulated at
different stages, such as transcriptional and post-transcriptional gene
regulation. During gene transcriptional regulation, transcription factors
(TFs) and their cofactors interact with the DNA regulatory elements to
regulate the gene expression levels of their target genes. Many algo-
rithms have been developed to identify gene regulatory mechanisms
through TF-target finding [15,45]. Many public resources have been
available to store TF-target information [17,24,57].

Rapidly advanced Single-cell RNA sequencing (scRNA-Seq) enables
genome-wide gene expression measurements in individual cells. scRNA-
Seq data has numerous applications and has been utilized to study
complicated biological processes at the single-cell resolution. For
example, studying the transcriptional similarities and differences using
scRNA-Seq data revealed cell-to-cell gene expression heterogeneity
across species and tissues [7,10,20,42]. The recently accumulated
scRNA-Seq-based transcriptomics data also create opportunities to un-
derstand transcriptional gene regulation at the single-cell level [9].
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Computational methods have been developed to identify gene regula-
tory networks (GRNs), and some of them are in the context of single-cell
transcriptomics [8,12,36,48,51]. Besides, unsupervised methods such as
clustering have become common to discover cell types and cell states
from scRNA-Seq experiments in heterogeneous tissues [20,33,55]. Many
clustering algorithms have been developed for cell-type classification
using scRNA-Seq data [22,25,27,32,52,58]. For example, Seurat V3 uses
a graph clustering approach [6]. This method projects single cells into a
graph structure. Graph partitioning algorithms are then used to identify
clusters. GiniClust aims to use the Gini index to identify rare cell types
from scRNA-Seq data [27]. Although these clustering algorithms have
shown their capability in detecting cell types from scRNA-Seq data, they
are often challenged by the lack of consistency with each other [31].
Single-Cell Consensus Clustering (SC3) attempted to conquer this chal-
lenge through consensus identification. To do that, SC3 combines mul-
tiple clustering solutions to derive a consensus matrix indicating
whether two cells are in one cluster [32]. Hierarchical clustering is
further applied to this matrix to obtain the final clusters.
Classification-based machine learning algorithms have also been
proposed for single-cell type classification based on scRNA-Seq data
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[1,3,34,50]. These classification algorithms apply various machine
learning methods such as Support Vector Machine (SVM), Random
Forests, and deep learning. For example, scPred first applies a singular
value decomposition-based dimension reduction approach to obtain
low-dimensional principle component representations for gene expres-
sion levels [3]. Specific feature selection criteria are then applied to
select informative principle components for further SVM model training
and prediction. Automated Cell Type Identification using Neural Net-
works (ACTINN) is a recent example of deep learning-based methods for
single-cell type classification [34]. ACTINN trained its deep neural
network model using the Tabula Muris Atlas (a mouse cell type atlas)
and a human immune cell dataset. The prediction capability was
demonstrated using immune-related cell types such as mouse leukocytes
and human T cell subtypes. These classification-based methods usually
require training samples and specific feature selection protocols. Most of
these methods utilize only the scRNA-Seq measurements of individual
genes’ expression levels without considering the underlying cellular
mechanisms.

Another computational method called Single-Cell rEgulatory
Network Inference and Clustering (SCENIC) takes a different approach
for cell-type classification. SCENIC aims to infer single-cell-resolution
gene regulatory information from scRNA-Seq data and then use this
information for cell-type classification [48]. SCENIC uses GEne Network
Inference with Ensemble of trees (GENIE3) to infer transcription factor
(TF) target co-expression relationships and uses the motif finding algo-
rithm named RcisTarget to determine direct TF target genes. A TF and its
identified targets together are defined as a regulon. SCENIC then uses
the AUCell algorithm to score regulon activities based on the gene
expression measurements in individual cells. Using gene regulatory in-
formation to classify cell types is beneficial in two aspects. One is that
integrating regulatory information is likely to help the cell type and state
discovery. This is because the sensitivity of scRNA-Seq technology can
result in transcriptional noise [39], and low-expression genes are diffi-
cult to detect, causing dropouts in the data [38], which may be allevi-
ated by integrating expression data with regulatory information. The
other is that cell types inferred from the underlying regulatory states can
provide insight into the cell-type-specificity of gene regulatory mecha-
nisms. However, gene regulatory relationships forming GRNs are com-
plex such that one TF can have many targets, and multiple TFs can
collaboratively regulate the same target genes. The network structure
properties in a GRN have not been taken into account for single-cell data
analysis.

We developed a method called Incorporate Network Structure In-
formation for Single cell Type Classification (INSISTC) to utilized bio-
logical network information to facilitate cell type classification and
interpretation. INSISTC utilizes the Systematic Identification Of Motifs
In ChIP-Seq data (SIOMICS) approach to generate a GRN with its TF-
target relationships identified through de novo DNA regulatory motif
discovery [13,14]. SIOMICS is capable of considering both TFs and their
cofactors for motif prediction and has demonstrated good performance.
Besides, to take the structural properties of the GRN, INSISTC adopts a
random-walk-based graph algorithm to represent the GRN structural
information. INSISTC incorporates genes and GRN structural informa-
tion by creating a Latent Dirichlet Allocation (LDA)-based topic model.
The model generates cell-type-specific topics used for cell-type classifi-
cation and regulatory mechanism discovery. We compared our method
to SCENIC and alternative topic model construction of INSISTC. We
showed that INSISTC can accurately perform cell-type classification for
single cells. We also demonstrated that INSISTC could uncover cell-
specific gene regulatory mechanisms.

2. Material and methods
2.1. Overview of INSISTC

INSISTC is a topic-model-based computational framework developed
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to detect single cell types from scRNA-Seq measurements while
providing insight into cell-type-specific gene regulatory mechanisms.
For a given scRNA-Seq dataset, INSISTC consists of four steps (Fig. 1).
First, INSISTC provides data pre-processing and filtering. Second, based
on GRN generated by SIOMICS, INSISTC executes a random walk-based
graph algorithm to generate word representation for all scRNA-Seq
samples. Third, INSISTC applies the LDA topic model to generate a
topic representation for each scRNA-Seq sample. Fourth, INSISTC per-
forms single-cell clustering and visualization, where the SC3 and UMAP
algorithms can be applied. In the following, we describe each of these
four steps in more detail.

2.2. Data collection and pre-processing

To evaluate the performance of INSISTC, we obtain three scRNA-Seq
datasets: the mouse cerebral cortex data (GSE60361) [4], the mouse
skeletal muscle data (GSE143437: GSM4259473, GSM4259476,
GSM4259478, GSM4259481) [11], and the mouse embryo data (Array
express E-MTAB-3321) [19]. The corresponding cell numbers are 3005,
14,242 and 124. The mouse cortex data is annotated to seven cell types,
including Interneuron, pyramidal SS, pyramidal CA1, oligodendrocytes,
endothelial, astrocytes ependymal, and microglia cells. The muscle data
are annotated with the following 12 cell types: Mature skeletal muscle,
B/T/NK cells, MuSCs and progenitors, Monocytes/Macrophages/Plate-
lets, Endothelial, Fibro-adipogenic progenitors (FAPs), Anti-
inflammatory macrophages, Resident Macrophages/APCs, Pro-
inflammatory macrophages, Neural/Glial/Schwann cells, Tenocytes,
and Smooth muscle cells. The mouse embryo data are annotated with 5
cell stages including 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage,
and 32-cell stage cells.

To filter the most likely unreliable genes that may provide only noise,
we apply two layers of filters on the expression matrix. The first filter is
based on the total number of sequencing reads per gene. If a gene does
not fit the following requirement, we remove the column of this gene
from the expression matrix. The thresholds of this filter are based on
each scRNA-Seq dataset, calculated by Eq. (1). We use the expression
threshold 3 in our experiments, but other values can be explored based
on the mean or median of non-zero expression level. If a gene has a total
number of reads less than this threshold 3, it will be removed from the
dataset. To further remove genes only expressed in one or very few cells,
we apply the second filter such that genes detected in at least 1 % of the
total cells are kept.

thresholdgye;1 = expression_threshold x 1%of cells (@D)]

2.3. Computational identification of TF-target relationships

INSISTC leverages the relationship between the TFs and their target
genes, constructs the gene relation graph, and traverses along the edges
to infer the gene-gene connection. INSISTC uses SIOMICS v3 to obtain
gene regulatory relationships [13,14]. SIOMICS is a computational tool
for de novo discovery of motifs and TF binding sites in a set of DNA
sequences such as those from all peak regions of a ChIP-seq experiment.
SIOMICS simultaneously considers motifs of a TF and those of its co-
factors to discover motifs, which enables it to discover combinations of
any number of co-occurring motifs and significantly reduce false-
positive predictions compared with tools considering individual motifs
separately. We call the significant motif combinations output from
SIOMICS motif modules, which describes the binding pattern of a group
of TFs and cofactors that co-regulate their target genes under the cor-
responding experimental conditions. We construct the GRN with the
motif modules predicted by SIOMICS. The TF-target gene pairs for each
motif were obtained by comparing the predicted motifs in motif modules
with the known motifs in the JASPAR2020 vertebrate database [17]
using the tool STAMP [35] with an E-value cutoff of 1E-5. In this way, we
obtain 430 unique TFs and 20,006 unique targets, corresponding to a
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Fig. 1. The pipeline of INSISTC includes four steps: data pre-processing and filtering; a graph algorithm to generate word representation for all scRNA-Seq samples; a
LDA topic model to generate a topic representation for each scRNA-Seq sample; and single-cell clustering and visualization.

GRN where TFs and genes are identified as nodes, and TFs and their
targets are connected by edges.

2.4. LDA topic model of scRNA-Seq data

INSISTC uses the LDA topic model to model a scRNA-Seq dataset.
LDA is a generative probabilistic model commonly used for topic
modeling [5]. LDA is motivated by the need to model a collection of
discrete data. When applied to text corpora, LDA represents a document
as a collection of words, and the whole word collection is defined as
word vocabulary. A document can then be modeled as a finite mixture
over an underlying set of topics, and a topic can be modeled as a finite
mixture over an underlying set of words.

To apply the LDA to model the collections of individual cells in a
scRNA-Seq dataset, we need to define the corresponding words and
documents. Intuitively, we can consider the single-cell sample as a
document with each gene as a word. However, defining words based on
genes alone does not consider gene regulatory relationships. To account
for the gene regulatory relationship, we can define each TF-target pair as
a word. Nevertheless, this definition ignores the interactions between
different TFs and their target genes, i.e., the structural properties of a
GRN.

To incorporate the structural properties of GRNs properly into the
word definition of the LDA model, INSISTC uses an anchor-based
random walk with a forest fire mechanism [23,40]. Briefly, each TF
serves as an anchor for the beginning of a random walk, and each anchor
is subject to a maximum of five walks. For every step of the random
walk, the edge that connects the nodes of the current step with the nodes
of the following step is removed to avoid a redundant walk path. The
forest fire method provides for a more thorough traversal than a stan-
dard random walk, as well as a more accurate representation of the
graph structure and the retention of only the unique random walk result.
Each obtained random walk path is then defined as a word, named as a

walk-based word. The collection of all the genes and walk-based words
is designated as the INSISTC vocabulary.

To further describe a single cell sample as a document with the above
word definitions, we need to specify the occurrence of a specific word.
INSISTC measures the occurrence of a gene based on its expression level
and defines the occurrence of a walk-based word using the AUCell
scoring schema [2]. Briefly, for all the genes in a walk-based word,
AUCell uses the “Area Under the Curve” (AUC) to calculate whether a
critical subset of the input gene set is enriched within the expressed
genes for a given single cell sample. The AUCell scores are further scaled
by a constant coefficient of 100 to represent the word occurrences.

2.5. Comparison with SCENIC and alternative approaches

To evaluate INSISTC performance, we compare INSISTC with a
popular method, SCENIC. We also compare INSISTC results based on
alternative word and vocabulary definitions. We introduce alternative
definitions including “gene-only”, “walk-only”, and “TF-target-based”
vocabulary. The “gene-only” and “walk-only” are straightforward,
meaning the vocabulary only contains genes and walk-based words. To
define TF-target-based vocabulary, we first filter the TF-target gene pairs
based on both genes’ expression levels; TF-target gene pairs are
considered words if and only if both genes’ expression levels in the
scRNA-Seq expression matrix are non-zero. For TF-target-based vocab-
ulary, the word occurrence is the average expression between TF and
target genes. The occurrence of a word for other definitions is the same
as described in the above section.

To evaluate the cell type classification accuracy between any two
given methods, we compare the results from different approaches with
the cell type annotation from the reference publications using the
adjusted rand index (ARI) [46]. The Rand Index (RI) can measure the
similarity of two clustering results by considering the different ways of
their assignments of objects to clusters. The ARI is the corrected-for-
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chance version of the RI. The ARI score is close to O if the clustering
results are in a random agreement and close to 1 when the clustering
results are nearly identical. Therefore, the ARI scores based on INSISTC
resulted clusters and annotated cell type clusters is able to show the how
consistent INSISTC results are with the cell type annotations. The ARI is
calculated based on the following equation,

=0 - [Z@(%)]/0
@) +n®)]-[mes®)]/o

where njdenotes the number of objects in common between two
clusters, a;and bjdenote the sum of elements for each model.

ARI = (2)

3. Results

3.1. INSISTC reliably classifies different cell types in comparison with
alternative methods

To evaluate INSISTC in terms of cell type classification accuracy, we
run INSISTC on three datasets with previously annotated cell types,
including mouse cortex, mouse skeletal muscle, and mouse embryo
datasets (See “Materials and methods” section). The vocabulary of the
topic model involved in INSISTC was defined as the union of both genes
and walks (gene-walk-based vocabulary). For example, 13,063 gene-
based words and 1982 walk-based words constitute the 15,045-word
vocabulary for the mouse cortex data. Similarly, for the mouse skel-
etal muscle data, there are 13,701 genes-based words and 2035 walk-
based words leading to 15,736 word vocabulary. The INSISTC model
output major topics covered by the input single-cell samples for a
specified vocabulary and topic number. Each topic contains a mixture of
words that are either genes or walks. INSISTC represents each single cell
sample as a mixture of the topics. Take the mouse cortex data as one
example. We found 1223 walk-based words and 1560 gene-based words
with the mixture proportion cutoff p > 0.0005. We observed that 2886
out of 3005 cells have at least one topic with p > 25%, 1238 cells have at
least one topic with p > 50%, and 196 cells have at least one topic with p
> 75%. Of the 45 topics, 40 have at least one cell with p > 25%, 34 have
at least one cell with p > 50%, and 21 have at least one cell with p >
75%. A clustering algorithm was then applied to the topics-represented
single-cell samples to obtain cell type classification.

We performed SC3 clustering on topic-represented single cells to
understand INSISTC results in terms of cell-type classification. SC3 is a
supervised clustering tool that utilizes a consensus strategy to combine
multiple clustering solutions for single-cell samples. Specification of the
number of clusters is not required. To further evaluate the cell classifi-
cation accuracy, we defined true positives as pairs of cells with the same
annotated cell type and fall into the same SC3 cluster. True negatives are
cell pairs with different cell type annotations and fall into different SC3
clusters. Similarly, false negatives are cell pairs with the same cell type
annotations but fall into different SC3 clusters. False positives have
different cell type annotations but fall into the same cluster.

We run INSISTC under various settings of topic numbers ranging
from 15 to 60 and found incorporating walk-based words in INSISTC
topic discovery, in general, provides sufficient cell type classification
accuracy. For the mouse cortex, skeletal muscle, and embryo samples,
the best ARI achieved based on INSISTC results is 0.83, 0.67, and 0.77,
respectively. In contrast, the best ARI achieved running SC3 directly on
the original scRNA-Seq samples is 0.49, 0.31 and 0.58, respectively. The
performance of INSISTC, in terms of additional metrics, is in general
superior to clustering-based cel type classification based on all three
datasets. For example, the average sensitivity, specificity and F1 scores
for the mouse cortex data are 0.73, 0.91 and 0.65. In contrast, the SC3
clustering based on the original scRNA-Seq data has the corresponding
sensitivity, specificity and F1 scores as 0.28, 0.99 and 0.43 (Table 1 &
supplementary Table S1). Therefore, applying the walk-incorporated
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topic model has a measurable impact on the ability to cluster cells
belonging to the same cell types.

We also compared INSISTC results with SCENIC in terms of cell-type
classification. SCENIC has recently demonstrated its capability to suc-
cessfully uncover gene regulatory information and classify cell states
from scRNA-Seq data. Both INSISTC and SCENIC can identify gene
regulatory mechanism from single-cell transcriptomic data. INSISTC
differs from SCENIC in two major aspects. One is that INSISTC focuses on
network-structure incorporation using graph algorithms. The other is
that in terms of regulatory motif finding, INSISTC uses SIOMICS to
identify regulatory motifs that take into account binding cofactors,
while SCENIC utilizes computationally defined TF-targeting relation-
ships called regulons. We ran SCENIC (version 0.11.2) using the pro-
vided TFs and cis-regulatory database from the pySCENIC tutorial
[2,48]. We obtained 422 regulons corresponding to 422 TFs and 11,897
genes. We then performed SC3 clustering based on regulon activities
inferred by SCENIC. SC3 predicted 14 clusters, based on which SCENIC
corresponds to an ARI value of 0.67 comparing with the seven cell type
annotations. SCENIC clustering has its overall sensitivity, specificity and
F1 scores as 0.44, 0.98 and 0.59, respectively. Therefore, INSISTC has
better sensitivity and F1 scores while having a slight disadvantage in
specificity compared to SCENIC.

To understand how different GRN inference methods impact the
results, we compared INSISTC on the GRNs inferred by PIDC, GENIE3
and GRNBoost2 [8,26,37]. PIDC utilizes partial information decompo-
sition to infer gene regulatory relationships efficiently. GENIE3 infers
the relationship between a gene pair based on the feature importance of
one gene for predicting the other gene’s expression. GRNBoost2 has a
similar rationale as GENIE3 but improves the efficiency by adopting
stochastic Gradience Boosting Machine regression. These three GRNs
have been ranked top and consistent performers according to a recent
single-cell transcriptomic data-based GRN benchmark [41]. We run each
of these three methods for each single cell dataset to generate a GRN. We
then applied INSISTC and SC3 clustering on the GRNs under the same
topic settings previously described.

We found that INSISTC’s performance on the three GRNs is consis-
tent with that on the SIOMICS-generated GRN. As stated previously, the
best ARI achieved running SC3 directly on the original scRNA-Seq
samples is 0.49, 0.31 and 0.58, respectively. The best ARIs achieved
based on INSISTC results on the three GRNs indicate more accurate cell
type classification (Supplementary Table S2). Briefly, for PIDC-based
GRN, for the mouse cortex, skeletal muscle, and embryo samples, the
best ARI achieved based on INSISTC results is 0.91, 0.55, and 0.79,
respectively. As to GENIE3-based GRN, corresponding to the mouse
cortex, skeletal muscle, and embryo samples, the best ARI achieved
based on INSISTC results is 0.91, 0.56, and 0.65, respectively. Also, for
GRNBoost-based GRN, for the mouse cortex, skeletal muscle, and em-
bryo samples, the best ARI achieved based on INSISTC results is 0.97,
0.58, and 0.55, respectively. In terms of additional metrics, INSISTC on
the three alternative GRNs also shows advantages compared to
clustering-based cell type classification (Supplementary Table S2). For
example, for the mouse cortex data, the SC3 clustering based on the
original scRNA-Seq data has the corresponding sensitivity, specificity

Table 1
The performance of INSISTC on mouse cortex data.

Topic num Sensitivity Specificity F1-score Cluster num ARI

15 0.90452 0.64029 0.55778 4 0.37418
20 0.83717 0.93290 0.80231 6 0.74606
25 0.88362 0.93989 0.83861 6 0.79217
30 0.77198 0.95326 0.79342 7 0.73952
35 0.72438 0.94701 0.75393 7 0.69080
40 0.58524 0.96586 0.68357 9 0.79773
45 0.57523 0.96536 0.67508 10 0.81575
50 0.53188 0.97448 0.65387 11 0.83474
SCENIC 0.27795 0.99441 0.42803 7 0.49000
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and F1 scores as 0.28, 0.99 and 0.43. In contrast, for PIDC-based GRN,
the average sensitivity, specificity and F1 scores for the mouse cortex
data are 0.74, 0.92 and 0.73. As to GENIE3-based GRN, the average
sensitivity, specificity and F1 scores are 0.95, 0.67 and 0.57. Also, for
GRNBoost-based GRN, the average sensitivity, specificity and F1 scores
are 0.73, 0.92 and 0.73. These results suggest walk-incorporated topic
model’s effect on cell type classification is robust to typical GRN infer-
ence methods.

3.2. Network structure incorporation enhances the accuracy of cell type
classifications

INSISTC defines the vocabulary of its topic model as the collection of
genes and walks. To investigate how alternative vocabulary definition
affects cell topic discovery and cell-type classification, we specified
three alternative definitions to compare INSISTC results: “gene-only”,
“walk-only”, and “TF-target-based”. Briefly, “gene-only” means that
only genes are considered as words for the topic model in INSISTC, and
“walk-only” means that only walk-based words are considered. TF-
target-based means the TF and one of its target genes form a word to
define the vocabulary.

INSISTC was run under eight topic number settings ranging from 15
to 60 for the three scRNA-Seq datasets. SC3 clustering was performed on
the INSISTC topic-represented single cells. ARI was used to evaluate the
cell clustering consistency with the cell-type annotation in the reference
paper. The ARIs corresponding to alternative and gene-walk-based vo-
cabulary were then compared. We found the gene-walk-based vocabu-
lary for INSISTC, in general, resulted in more accurate cell type
classification than alternative vocabulary-based INSISTC versions did
(Fig. 2).

The averaged ARIs for the cortex dataset over eight topic settings are
0.72, 0.54, 0.59, and 0.54 for gene-walk, gene-only, walk-only, and TF-
target-based versions. For the mouse skeletal muscle dataset, the aver-
aged ARI over the eight topic settings are 0.55, 0.48, 0.39, and 0.09 for
the same four versions. The same scenario is for the embryo dataset. The
corresponding averaged ARIs are 0.57, 0.31, 0.30, and 0.29. This result
shows that the network structure incorporation in the clustering pro-
cedure generally enhances the accuracy of cell type classifications.

3.3. INSISTC reveals marker topics contributing to cell type classification

To investigate the capability of INSISTC in interpreting the single cell
type classification, we studied cell-type-specific topics (CSTs) that
significantly contribute to the cell type classification. We identified CSTs
based on their potential to distinguish a cell cluster from others. Using
the SC3 package, we obtained CSTs as marker topics with p-values
smaller than 0.01. A p-value was calculated based on Wilcoxon signed-
rank test. For comparison, we also performed SC3 clustering on SCENIC
results based on regulon activity scores.

For the mouse cortex dataset, we obtained 14 CSTs out of 45 topics
(Fig. 3). Among these topics, topic 32 can distinguish oligodendrocytes
from other cell types. We found that 603 out of the 820 oligodendrocytes
(74%) have topic 32 as their most enriched topic. The average enrich-
ment proportion of the topic 32 in all the oligodendrocytes is 0.56. We
performed GO analysis with Gorilla [16] using 100 top-contributor
words in topic 32 and found the enrichment of “response to inter-
leukin-1" (GO:0070555, corrected p-value: 7.39E-2) and “regulation of
gliogenesis” (G0:0014013, corrected p-value: 0.15). Gliogeneisis is
directly relevant to oligodendroctye generation, while Interleukin-1 has
been found to regulate the proliferation and differentiation of oligo-
dendrocytes [49]. In contrast, besides the zinc finger and BTB domain
containing 33 gene (Zbtb33), SCENIC-based SC3 clustering results do not
show other regulons that overlap with genes or walks in the topic 32
(Supplementary Fig. S1). Zbtb33 is involved in oligodendroglial matu-
ration [56].

We also inspected multiple CSTs identified from the same cluster but
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Fig. 2. The ARIs corresponding to SCENIC and four different vocabulary-based
INSISTC results on mouse cortex, skeletal muscle and embryo datasets,
respectively. For a given topic number, the bars from top to bottom are in the
order of SCENIC, TF-target, Gene-walk, Gene-only, and Walk-only. Here, “Gene-
walk” is when both genes and walk-based words are considered as words for the
topic model in INSISTC. “walk-only” is when only walk-based words are
considered. “gene-only” is when only genes are considered. TF-target-based
means the TF and one of its target genes form a word to define the vocabulary.

correspond to multiple cell types. For example, topics 8, 34 and 43 were
all selected as CSTs that can distinguish astrocytes and the endothelial
cell type from others. Although the majority of astrocytes and endo-
thelial cells are clustered together, topic 8 can tell astrocytes apart from
others, while topic 43 is significantly enriched in endothelial cells. In
both topics, Malatl is the most enriched gene. However, a close inves-
tigation of topic 43 shows a number of top walks connected by the
Kruppel-like factor 6 (KIf6) gene. This TF was reported to regulate target
genes in endothelial injury recovery [18]. It is interesting to see that,
although topics 22, 27, 39 and 44 were all CSTs corresponding to py-
ramidal CA1 cell types, they actually fell into three different SC3 clusters
indicating potential subtypes.
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Fig. 3. The CSTs identified in mouse cortex, illustrated using SC3 package. The SC3 cell outlier scores indicate how well a cell fit into its cluster, calculated based on
the minimum covariance determinant. Cells that fit well into their clusters receive an outlier score of 0, whereas high values indicate that the cell should be

considered an outlier. The scale indicates the topics distribution for the cells.

For the mouse skeletal muscle data, INSISTC identified 2035 walk-
based words and 13,071 gene-based words. Under the setting of gene-
walk-based vocabulary and 55 topics, INSISTC resulted in 14 clusters
corresponding to 15 cell types. We identified CSTs specific for mono-
cytes/macrophage, endothelial, FAPs, anti-inflammatory macrophages
and resident macrophages/APCs. Almost all the CSTs are supported by
the GO annotation of the top-contributor words. For example, topic 14 is
the CST for the anti-inflammatory macrophages. Significant GO anno-
tation terms enriched in topic 14 include “antigen processing and pre-
sentation of peptide antigen” (GO:0048002, corrected p-value: 2.09E-7),
“immune response” (GO:0006955, corrected p-value: 1.18E-3), “defense
response” (GO:0006952, corrected p-value: 0.238), and others. Simi-
larly, topic 1 is the CST for the FAPs. The most significant GO terms
include “regulation of angiogenesis” (GO:0045765, corrected p-value:
0.31), “animal organ development” (GO: 0048513, corrected p-value:
0.183), and “positive regulation of vasculature development” (GO:
1904018, corrected p-value: 0.339).

3.4. INSISTC reveals cell-type-specific regulatory mechanisms

We also explored the walks in the top 100 words of CSTs to identify
cell-specific regulatory mechanisms. The walk-based words ranked top
according to their mixture proportions in a CST are named its top-
contributor walks. We found that top-contributor walks provide in-
sights into the regulatory mechanisms of specific cell types. Take the
topic 32 identified from the cortex data for example, the GLI Family Zinc
Finger 3 (Gli3) induced a number of top-contributor walks, including
Rail, Fev, Tspan2 genes. It has been shown Gli3 is important for devel-
oping mature oligodendrocytes [47]. Similarly, in topic 9, which was
found to be a major marker topic for interneuron cells, we found Tcf4
involved in a few top-contributor walks that form a small network
connecting Mtfrl, Dnajc4, Irf2, Foxol, Ndufa4, Prox1, Chdll, Pmaipl,
Thyl and others (Fig. 4a). These relevant walks include TFs such as
Zscan4, Hmx2, Irf2, Foxol, and Znf16. Studies have demonstrated that
Tcf4 plays an important role in the interneuron function and has been
shown in interneuron dysfunction associated disorders [29]. For the
mouse skeletal muscle data, we found the CST 39 for endothelial cells.
The TF Kruppel-like factor 4 (Kif4) engaged walks were observed in the
top words. KIf4 connects Tead3, E2f2, Fgf7, Irf1, Hicl, Egr2, Kif26 and
other genes. Several of them, such as E2f2 and Irf1, have well-studied
roles in endothelial cell growth and angiogenesis [28,53]. Meanwhile,
Klf4 plays an important role in endothelial transcriptome regulation and

greatly impacts endothelial functions [43]. In addition, Egrl centered
regulatory network was also revealed by the top-contributor walks
involving multiple TFs such as Tgif2lx, Hoxal3, Hnf4a and Znf460
(Fig. 4b). Most of these TFs participate in endothelial proliferation and
angiogenesis [44,53]. Egrl itself is essential to endothelial gene
expression [30]. Similarly, the CST 14 is a marker topic for anti-
inflammatory macrophages. The Irf7 and Spil are connected through a
subnetwork that emerged from the top-container walks. Irf7 and Spil
both play key roles in macrophage phenotype formulation and function
[21,54].

4. Conclusion and discussion

The availability of a large amount of scRNA-Seq data enables the
study of gene regulatory mechanisms at single-cell resolution. Mean-
while, the discovery of underlying gene regulatory mechanisms can
benefit more accurate cell type and state discovery from scRNA-Seq
data. Methods have emerged recently to integrate gene regulatory
mechanism discovery with cell-type classification. However, such
method development is still at its beginning stage, and there is still space
for improvement in terms of GRN construction and strategies for uti-
lizing such GRN information. The INSISTC method was developed to
overcome current challenges. INSISTC takes advantage of a de novo
motif analysis that considers both TFs and their cofactors. Most impor-
tantly, INSISTC considers the graph structure of the GRN and uses a
graph algorithm to incorporate this network structure. INSISTC further
applies a topic model to identify particular cell-enriched topics
involving cell-relevant genes and regulatory mechanisms. Such topics
can be further examined for cell-specific gene regulatory mechanisms
and also can be grouped, e.g., by SC3, for cell-type classification.
INSISTC demonstrated sufficient cell type classification accuracy and
cell-type-specific gene regulatory mechanism discovery. Compared with
the recent method SCENIC, INSISTC demonstrated its complementary
performance for gene regulation interpretation.

At the final stage, INSISTC runs a clustering algorithm on the iden-
tified topics to identify cell types and states. We illustrated INSISTC here
using SC3 algorithm because the SC3 algorithm offers cluster number
estimation, while most clustering algorithms do not have such a func-
tion. However, any clustering algorithms can be plugged into the pipe-
line to derive final single-cell clusters. Besides, although we used three
mouse datasets and mouse GRN to illustrate the usage of INSISTC here,
users can apply INSISTC to scRNA-Seq data of other species and other
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Fig. 4. Illustration of top-contributor walks in CSTs. (a) The Tcf4 network from topic 9 in cortex. (b) the Egrl network from topic 39 in muscle. The network was
built and plotted with the Python packages networkx (https://networkx.org/) and matplotlib (https://matplotlib.org/), respectively.

available biological networks of interest. It is also worth noting that, the
three datasets we discussed here contain different number of cell
numbers, ranging from hundreds to thousands. The number of cells can
have various impacts on the cell type classification results. Low cell
number datasets such as the mouse embryo datasets might not have the
same discrimination power for cell classification as the other two
datasets we used. In addition, for the topic model that is the essential
part of INSISTC, the users need to specify a topic number. There are

multiple ways to determine topic numbers. For example, the topic
coherence and perplexity metrics are often applied in the context of
language modeling. However, it is common to run a set of topic numbers
to observe biological interpretability.

INSISTC runs SIOMICS to generate the TF-target relationship
because SIOMICS considers both TFs and their cofactors in de novo motif
discovery. However, with more TF-target information such as ChIP-Seq
data available, the performance of INSISTC in terms of gene regulatory
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mechanism discovery can be further improved. Finally, although the
usage of INSISTC was illustrated on GRNs, INSISTC is flexible to incor-
porate other types of biological networks such as pathways, protein
interaction networks and gene co-expression networks. It is also possible
for INSISTC to identify cell-type-specific mechanisms from a properly
integrated network.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ygeno.2022.110480.
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