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A B S T R A C T   

Uncovering gene regulatory mechanisms in individual cells can provide insight into cell heterogeneity and 
function. Recent accumulated Single-Cell RNA-Seq data have made it possible to analyze gene regulation at 
single-cell resolution. Understanding cell-type-specific gene regulation can assist in more accurate cell type and 
state identification. Computational approaches utilizing such relationships are under development. Methods 
pioneering in integrating gene regulatory mechanism discovery with cell-type classification encounter challenges 
such as determine gene regulatory relationships and incorporate gene regulatory network structure. To fill this 
gap, we developed INSISTC, a computational method to incorporate gene regulatory network structure infor
mation for single-cell type classification. INSISTC is capable of identifying cell-type-specific gene regulatory 
mechanisms while performing single-cell type classification. INSISTC demonstrated its accuracy in cell type 
classification and its potential for providing insight into molecular mechanisms specific to individual cells. In 
comparison with the alternative methods, INSISTC demonstrated its complementary performance for gene 
regulation interpretation.   

1. Introduction 

Understanding gene regulatory mechanism in a cell-specific manner 
is a fundamental task in molecular biology. Genes are regulated at 
different stages, such as transcriptional and post-transcriptional gene 
regulation. During gene transcriptional regulation, transcription factors 
(TFs) and their cofactors interact with the DNA regulatory elements to 
regulate the gene expression levels of their target genes. Many algo
rithms have been developed to identify gene regulatory mechanisms 
through TF-target finding [15,45]. Many public resources have been 
available to store TF-target information [17,24,57]. 

Rapidly advanced Single-cell RNA sequencing (scRNA-Seq) enables 
genome-wide gene expression measurements in individual cells. scRNA- 
Seq data has numerous applications and has been utilized to study 
complicated biological processes at the single-cell resolution. For 
example, studying the transcriptional similarities and differences using 
scRNA-Seq data revealed cell-to-cell gene expression heterogeneity 
across species and tissues [7,10,20,42]. The recently accumulated 
scRNA-Seq-based transcriptomics data also create opportunities to un
derstand transcriptional gene regulation at the single-cell level [9]. 

Computational methods have been developed to identify gene regula
tory networks (GRNs), and some of them are in the context of single-cell 
transcriptomics [8,12,36,48,51]. Besides, unsupervised methods such as 
clustering have become common to discover cell types and cell states 
from scRNA-Seq experiments in heterogeneous tissues [20,33,55]. Many 
clustering algorithms have been developed for cell-type classification 
using scRNA-Seq data [22,25,27,32,52,58]. For example, Seurat V3 uses 
a graph clustering approach [6]. This method projects single cells into a 
graph structure. Graph partitioning algorithms are then used to identify 
clusters. GiniClust aims to use the Gini index to identify rare cell types 
from scRNA-Seq data [27]. Although these clustering algorithms have 
shown their capability in detecting cell types from scRNA-Seq data, they 
are often challenged by the lack of consistency with each other [31]. 
Single-Cell Consensus Clustering (SC3) attempted to conquer this chal
lenge through consensus identification. To do that, SC3 combines mul
tiple clustering solutions to derive a consensus matrix indicating 
whether two cells are in one cluster [32]. Hierarchical clustering is 
further applied to this matrix to obtain the final clusters. 

Classification-based machine learning algorithms have also been 
proposed for single-cell type classification based on scRNA-Seq data 
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[1,3,34,50]. These classification algorithms apply various machine 
learning methods such as Support Vector Machine (SVM), Random 
Forests, and deep learning. For example, scPred first applies a singular 
value decomposition-based dimension reduction approach to obtain 
low-dimensional principle component representations for gene expres
sion levels [3]. Specific feature selection criteria are then applied to 
select informative principle components for further SVM model training 
and prediction. Automated Cell Type Identification using Neural Net
works (ACTINN) is a recent example of deep learning-based methods for 
single-cell type classification [34]. ACTINN trained its deep neural 
network model using the Tabula Muris Atlas (a mouse cell type atlas) 
and a human immune cell dataset. The prediction capability was 
demonstrated using immune-related cell types such as mouse leukocytes 
and human T cell subtypes. These classification-based methods usually 
require training samples and specific feature selection protocols. Most of 
these methods utilize only the scRNA-Seq measurements of individual 
genes’ expression levels without considering the underlying cellular 
mechanisms. 

Another computational method called Single-Cell rEgulatory 
Network Inference and Clustering (SCENIC) takes a different approach 
for cell-type classification. SCENIC aims to infer single-cell-resolution 
gene regulatory information from scRNA-Seq data and then use this 
information for cell-type classification [48]. SCENIC uses GEne Network 
Inference with Ensemble of trees (GENIE3) to infer transcription factor 
(TF) target co-expression relationships and uses the motif finding algo
rithm named RcisTarget to determine direct TF target genes. A TF and its 
identified targets together are defined as a regulon. SCENIC then uses 
the AUCell algorithm to score regulon activities based on the gene 
expression measurements in individual cells. Using gene regulatory in
formation to classify cell types is beneficial in two aspects. One is that 
integrating regulatory information is likely to help the cell type and state 
discovery. This is because the sensitivity of scRNA-Seq technology can 
result in transcriptional noise [39], and low-expression genes are diffi
cult to detect, causing dropouts in the data [38], which may be allevi
ated by integrating expression data with regulatory information. The 
other is that cell types inferred from the underlying regulatory states can 
provide insight into the cell-type-specificity of gene regulatory mecha
nisms. However, gene regulatory relationships forming GRNs are com
plex such that one TF can have many targets, and multiple TFs can 
collaboratively regulate the same target genes. The network structure 
properties in a GRN have not been taken into account for single-cell data 
analysis. 

We developed a method called Incorporate Network Structure In
formation for Single cell Type Classification (INSISTC) to utilized bio
logical network information to facilitate cell type classification and 
interpretation. INSISTC utilizes the Systematic Identification Of Motifs 
In ChIP-Seq data (SIOMICS) approach to generate a GRN with its TF- 
target relationships identified through de novo DNA regulatory motif 
discovery [13,14]. SIOMICS is capable of considering both TFs and their 
cofactors for motif prediction and has demonstrated good performance. 
Besides, to take the structural properties of the GRN, INSISTC adopts a 
random-walk-based graph algorithm to represent the GRN structural 
information. INSISTC incorporates genes and GRN structural informa
tion by creating a Latent Dirichlet Allocation (LDA)-based topic model. 
The model generates cell-type-specific topics used for cell-type classifi
cation and regulatory mechanism discovery. We compared our method 
to SCENIC and alternative topic model construction of INSISTC. We 
showed that INSISTC can accurately perform cell-type classification for 
single cells. We also demonstrated that INSISTC could uncover cell- 
specific gene regulatory mechanisms. 

2. Material and methods 

2.1. Overview of INSISTC 

INSISTC is a topic-model-based computational framework developed 

to detect single cell types from scRNA-Seq measurements while 
providing insight into cell-type-specific gene regulatory mechanisms. 
For a given scRNA-Seq dataset, INSISTC consists of four steps (Fig. 1). 
First, INSISTC provides data pre-processing and filtering. Second, based 
on GRN generated by SIOMICS, INSISTC executes a random walk-based 
graph algorithm to generate word representation for all scRNA-Seq 
samples. Third, INSISTC applies the LDA topic model to generate a 
topic representation for each scRNA-Seq sample. Fourth, INSISTC per
forms single-cell clustering and visualization, where the SC3 and UMAP 
algorithms can be applied. In the following, we describe each of these 
four steps in more detail. 

2.2. Data collection and pre-processing 

To evaluate the performance of INSISTC, we obtain three scRNA-Seq 
datasets: the mouse cerebral cortex data (GSE60361) [4], the mouse 
skeletal muscle data (GSE143437: GSM4259473, GSM4259476, 
GSM4259478, GSM4259481) [11], and the mouse embryo data (Array 
express E-MTAB-3321) [19]. The corresponding cell numbers are 3005, 
14,242 and 124. The mouse cortex data is annotated to seven cell types, 
including Interneuron, pyramidal SS, pyramidal CA1, oligodendrocytes, 
endothelial, astrocytes ependymal, and microglia cells. The muscle data 
are annotated with the following 12 cell types: Mature skeletal muscle, 
B/T/NK cells, MuSCs and progenitors, Monocytes/Macrophages/Plate
lets, Endothelial, Fibro-adipogenic progenitors (FAPs), Anti- 
inflammatory macrophages, Resident Macrophages/APCs, Pro- 
inflammatory macrophages, Neural/Glial/Schwann cells, Tenocytes, 
and Smooth muscle cells. The mouse embryo data are annotated with 5 
cell stages including 2-cell stage, 4-cell stage, 8-cell stage, 16-cell stage, 
and 32-cell stage cells. 

To filter the most likely unreliable genes that may provide only noise, 
we apply two layers of filters on the expression matrix. The first filter is 
based on the total number of sequencing reads per gene. If a gene does 
not fit the following requirement, we remove the column of this gene 
from the expression matrix. The thresholds of this filter are based on 
each scRNA-Seq dataset, calculated by Eq. (1). We use the expression 
threshold 3 in our experiments, but other values can be explored based 
on the mean or median of non-zero expression level. If a gene has a total 
number of reads less than this threshold 3, it will be removed from the 
dataset. To further remove genes only expressed in one or very few cells, 
we apply the second filter such that genes detected in at least 1 % of the 
total cells are kept. 

thresholdfilter1 = expression threshold × 1%of cells (1)  

2.3. Computational identification of TF-target relationships 

INSISTC leverages the relationship between the TFs and their target 
genes, constructs the gene relation graph, and traverses along the edges 
to infer the gene-gene connection. INSISTC uses SIOMICS v3 to obtain 
gene regulatory relationships [13,14]. SIOMICS is a computational tool 
for de novo discovery of motifs and TF binding sites in a set of DNA 
sequences such as those from all peak regions of a ChIP-seq experiment. 
SIOMICS simultaneously considers motifs of a TF and those of its co
factors to discover motifs, which enables it to discover combinations of 
any number of co-occurring motifs and significantly reduce false- 
positive predictions compared with tools considering individual motifs 
separately. We call the significant motif combinations output from 
SIOMICS motif modules, which describes the binding pattern of a group 
of TFs and cofactors that co-regulate their target genes under the cor
responding experimental conditions. We construct the GRN with the 
motif modules predicted by SIOMICS. The TF-target gene pairs for each 
motif were obtained by comparing the predicted motifs in motif modules 
with the known motifs in the JASPAR2020 vertebrate database [17] 
using the tool STAMP [35] with an E-value cutoff of 1E-5. In this way, we 
obtain 430 unique TFs and 20,006 unique targets, corresponding to a 
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GRN where TFs and genes are identified as nodes, and TFs and their 
targets are connected by edges. 

2.4. LDA topic model of scRNA-Seq data 

INSISTC uses the LDA topic model to model a scRNA-Seq dataset. 
LDA is a generative probabilistic model commonly used for topic 
modeling [5]. LDA is motivated by the need to model a collection of 
discrete data. When applied to text corpora, LDA represents a document 
as a collection of words, and the whole word collection is defined as 
word vocabulary. A document can then be modeled as a finite mixture 
over an underlying set of topics, and a topic can be modeled as a finite 
mixture over an underlying set of words. 

To apply the LDA to model the collections of individual cells in a 
scRNA-Seq dataset, we need to define the corresponding words and 
documents. Intuitively, we can consider the single-cell sample as a 
document with each gene as a word. However, defining words based on 
genes alone does not consider gene regulatory relationships. To account 
for the gene regulatory relationship, we can define each TF-target pair as 
a word. Nevertheless, this definition ignores the interactions between 
different TFs and their target genes, i.e., the structural properties of a 
GRN. 

To incorporate the structural properties of GRNs properly into the 
word definition of the LDA model, INSISTC uses an anchor-based 
random walk with a forest fire mechanism [23,40]. Briefly, each TF 
serves as an anchor for the beginning of a random walk, and each anchor 
is subject to a maximum of five walks. For every step of the random 
walk, the edge that connects the nodes of the current step with the nodes 
of the following step is removed to avoid a redundant walk path. The 
forest fire method provides for a more thorough traversal than a stan
dard random walk, as well as a more accurate representation of the 
graph structure and the retention of only the unique random walk result. 
Each obtained random walk path is then defined as a word, named as a 

walk-based word. The collection of all the genes and walk-based words 
is designated as the INSISTC vocabulary. 

To further describe a single cell sample as a document with the above 
word definitions, we need to specify the occurrence of a specific word. 
INSISTC measures the occurrence of a gene based on its expression level 
and defines the occurrence of a walk-based word using the AUCell 
scoring schema [2]. Briefly, for all the genes in a walk-based word, 
AUCell uses the “Area Under the Curve” (AUC) to calculate whether a 
critical subset of the input gene set is enriched within the expressed 
genes for a given single cell sample. The AUCell scores are further scaled 
by a constant coefficient of 100 to represent the word occurrences. 

2.5. Comparison with SCENIC and alternative approaches 

To evaluate INSISTC performance, we compare INSISTC with a 
popular method, SCENIC. We also compare INSISTC results based on 
alternative word and vocabulary definitions. We introduce alternative 
definitions including “gene-only”, “walk-only”, and “TF-target-based” 
vocabulary. The “gene-only” and “walk-only” are straightforward, 
meaning the vocabulary only contains genes and walk-based words. To 
define TF-target-based vocabulary, we first filter the TF-target gene pairs 
based on both genes’ expression levels; TF-target gene pairs are 
considered words if and only if both genes’ expression levels in the 
scRNA-Seq expression matrix are non-zero. For TF-target-based vocab
ulary, the word occurrence is the average expression between TF and 
target genes. The occurrence of a word for other definitions is the same 
as described in the above section. 

To evaluate the cell type classification accuracy between any two 
given methods, we compare the results from different approaches with 
the cell type annotation from the reference publications using the 
adjusted rand index (ARI) [46]. The Rand Index (RI) can measure the 
similarity of two clustering results by considering the different ways of 
their assignments of objects to clusters. The ARI is the corrected-for- 

Fig. 1. The pipeline of INSISTC includes four steps: data pre-processing and filtering; a graph algorithm to generate word representation for all scRNA-Seq samples; a 
LDA topic model to generate a topic representation for each scRNA-Seq sample; and single-cell clustering and visualization. 
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chance version of the RI. The ARI score is close to 0 if the clustering 
results are in a random agreement and close to 1 when the clustering 
results are nearly identical. Therefore, the ARI scores based on INSISTC 
resulted clusters and annotated cell type clusters is able to show the how 
consistent INSISTC results are with the cell type annotations. The ARI is 
calculated based on the following equation, 
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where nijdenotes the number of objects in common between two 
clusters, aiand bjdenote the sum of elements for each model. 

3. Results 

3.1. INSISTC reliably classifies different cell types in comparison with 
alternative methods 

To evaluate INSISTC in terms of cell type classification accuracy, we 
run INSISTC on three datasets with previously annotated cell types, 
including mouse cortex, mouse skeletal muscle, and mouse embryo 
datasets (See “Materials and methods” section). The vocabulary of the 
topic model involved in INSISTC was defined as the union of both genes 
and walks (gene-walk-based vocabulary). For example, 13,063 gene- 
based words and 1982 walk-based words constitute the 15,045-word 
vocabulary for the mouse cortex data. Similarly, for the mouse skel
etal muscle data, there are 13,701 genes-based words and 2035 walk- 
based words leading to 15,736 word vocabulary. The INSISTC model 
output major topics covered by the input single-cell samples for a 
specified vocabulary and topic number. Each topic contains a mixture of 
words that are either genes or walks. INSISTC represents each single cell 
sample as a mixture of the topics. Take the mouse cortex data as one 
example. We found 1223 walk-based words and 1560 gene-based words 
with the mixture proportion cutoff p > 0.0005. We observed that 2886 
out of 3005 cells have at least one topic with p > 25%, 1238 cells have at 
least one topic with p > 50%, and 196 cells have at least one topic with p 
> 75%. Of the 45 topics, 40 have at least one cell with p > 25%, 34 have 
at least one cell with p > 50%, and 21 have at least one cell with p >
75%. A clustering algorithm was then applied to the topics-represented 
single-cell samples to obtain cell type classification. 

We performed SC3 clustering on topic-represented single cells to 
understand INSISTC results in terms of cell-type classification. SC3 is a 
supervised clustering tool that utilizes a consensus strategy to combine 
multiple clustering solutions for single-cell samples. Specification of the 
number of clusters is not required. To further evaluate the cell classifi
cation accuracy, we defined true positives as pairs of cells with the same 
annotated cell type and fall into the same SC3 cluster. True negatives are 
cell pairs with different cell type annotations and fall into different SC3 
clusters. Similarly, false negatives are cell pairs with the same cell type 
annotations but fall into different SC3 clusters. False positives have 
different cell type annotations but fall into the same cluster. 

We run INSISTC under various settings of topic numbers ranging 
from 15 to 60 and found incorporating walk-based words in INSISTC 
topic discovery, in general, provides sufficient cell type classification 
accuracy. For the mouse cortex, skeletal muscle, and embryo samples, 
the best ARI achieved based on INSISTC results is 0.83, 0.67, and 0.77, 
respectively. In contrast, the best ARI achieved running SC3 directly on 
the original scRNA-Seq samples is 0.49, 0.31 and 0.58, respectively. The 
performance of INSISTC, in terms of additional metrics, is in general 
superior to clustering-based cel type classification based on all three 
datasets. For example, the average sensitivity, specificity and F1 scores 
for the mouse cortex data are 0.73, 0.91 and 0.65. In contrast, the SC3 
clustering based on the original scRNA-Seq data has the corresponding 
sensitivity, specificity and F1 scores as 0.28, 0.99 and 0.43 (Table 1 & 
supplementary Table S1). Therefore, applying the walk-incorporated 

topic model has a measurable impact on the ability to cluster cells 
belonging to the same cell types. 

We also compared INSISTC results with SCENIC in terms of cell-type 
classification. SCENIC has recently demonstrated its capability to suc
cessfully uncover gene regulatory information and classify cell states 
from scRNA-Seq data. Both INSISTC and SCENIC can identify gene 
regulatory mechanism from single-cell transcriptomic data. INSISTC 
differs from SCENIC in two major aspects. One is that INSISTC focuses on 
network-structure incorporation using graph algorithms. The other is 
that in terms of regulatory motif finding, INSISTC uses SIOMICS to 
identify regulatory motifs that take into account binding cofactors, 
while SCENIC utilizes computationally defined TF-targeting relation
ships called regulons. We ran SCENIC (version 0.11.2) using the pro
vided TFs and cis-regulatory database from the pySCENIC tutorial 
[2,48]. We obtained 422 regulons corresponding to 422 TFs and 11,897 
genes. We then performed SC3 clustering based on regulon activities 
inferred by SCENIC. SC3 predicted 14 clusters, based on which SCENIC 
corresponds to an ARI value of 0.67 comparing with the seven cell type 
annotations. SCENIC clustering has its overall sensitivity, specificity and 
F1 scores as 0.44, 0.98 and 0.59, respectively. Therefore, INSISTC has 
better sensitivity and F1 scores while having a slight disadvantage in 
specificity compared to SCENIC. 

To understand how different GRN inference methods impact the 
results, we compared INSISTC on the GRNs inferred by PIDC, GENIE3 
and GRNBoost2 [8,26,37]. PIDC utilizes partial information decompo
sition to infer gene regulatory relationships efficiently. GENIE3 infers 
the relationship between a gene pair based on the feature importance of 
one gene for predicting the other gene’s expression. GRNBoost2 has a 
similar rationale as GENIE3 but improves the efficiency by adopting 
stochastic Gradience Boosting Machine regression. These three GRNs 
have been ranked top and consistent performers according to a recent 
single-cell transcriptomic data-based GRN benchmark [41]. We run each 
of these three methods for each single cell dataset to generate a GRN. We 
then applied INSISTC and SC3 clustering on the GRNs under the same 
topic settings previously described. 

We found that INSISTC’s performance on the three GRNs is consis
tent with that on the SIOMICS-generated GRN. As stated previously, the 
best ARI achieved running SC3 directly on the original scRNA-Seq 
samples is 0.49, 0.31 and 0.58, respectively. The best ARIs achieved 
based on INSISTC results on the three GRNs indicate more accurate cell 
type classification (Supplementary Table S2). Briefly, for PIDC-based 
GRN, for the mouse cortex, skeletal muscle, and embryo samples, the 
best ARI achieved based on INSISTC results is 0.91, 0.55, and 0.79, 
respectively. As to GENIE3-based GRN, corresponding to the mouse 
cortex, skeletal muscle, and embryo samples, the best ARI achieved 
based on INSISTC results is 0.91, 0.56, and 0.65, respectively. Also, for 
GRNBoost-based GRN, for the mouse cortex, skeletal muscle, and em
bryo samples, the best ARI achieved based on INSISTC results is 0.97, 
0.58, and 0.55, respectively. In terms of additional metrics, INSISTC on 
the three alternative GRNs also shows advantages compared to 
clustering-based cell type classification (Supplementary Table S2). For 
example, for the mouse cortex data, the SC3 clustering based on the 
original scRNA-Seq data has the corresponding sensitivity, specificity 

Table 1 
The performance of INSISTC on mouse cortex data.  

Topic num Sensitivity Specificity F1-score Cluster num ARI 

15 0.90452 0.64029 0.55778 4 0.37418 
20 0.83717 0.93290 0.80231 6 0.74606 
25 0.88362 0.93989 0.83861 6 0.79217 
30 0.77198 0.95326 0.79342 7 0.73952 
35 0.72438 0.94701 0.75393 7 0.69080 
40 0.58524 0.96586 0.68357 9 0.79773 
45 0.57523 0.96536 0.67508 10 0.81575 
50 0.53188 0.97448 0.65387 11 0.83474 
SCENIC 0.27795 0.99441 0.42803 7 0.49000  
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and F1 scores as 0.28, 0.99 and 0.43. In contrast, for PIDC-based GRN, 
the average sensitivity, specificity and F1 scores for the mouse cortex 
data are 0.74, 0.92 and 0.73. As to GENIE3-based GRN, the average 
sensitivity, specificity and F1 scores are 0.95, 0.67 and 0.57. Also, for 
GRNBoost-based GRN, the average sensitivity, specificity and F1 scores 
are 0.73, 0.92 and 0.73. These results suggest walk-incorporated topic 
model’s effect on cell type classification is robust to typical GRN infer
ence methods. 

3.2. Network structure incorporation enhances the accuracy of cell type 
classifications 

INSISTC defines the vocabulary of its topic model as the collection of 
genes and walks. To investigate how alternative vocabulary definition 
affects cell topic discovery and cell-type classification, we specified 
three alternative definitions to compare INSISTC results: “gene-only”, 
“walk-only”, and “TF-target-based”. Briefly, “gene-only” means that 
only genes are considered as words for the topic model in INSISTC, and 
“walk-only” means that only walk-based words are considered. TF- 
target-based means the TF and one of its target genes form a word to 
define the vocabulary. 

INSISTC was run under eight topic number settings ranging from 15 
to 60 for the three scRNA-Seq datasets. SC3 clustering was performed on 
the INSISTC topic-represented single cells. ARI was used to evaluate the 
cell clustering consistency with the cell-type annotation in the reference 
paper. The ARIs corresponding to alternative and gene-walk-based vo
cabulary were then compared. We found the gene-walk-based vocabu
lary for INSISTC, in general, resulted in more accurate cell type 
classification than alternative vocabulary-based INSISTC versions did 
(Fig. 2). 

The averaged ARIs for the cortex dataset over eight topic settings are 
0.72, 0.54, 0.59, and 0.54 for gene-walk, gene-only, walk-only, and TF- 
target-based versions. For the mouse skeletal muscle dataset, the aver
aged ARI over the eight topic settings are 0.55, 0.48, 0.39, and 0.09 for 
the same four versions. The same scenario is for the embryo dataset. The 
corresponding averaged ARIs are 0.57, 0.31, 0.30, and 0.29. This result 
shows that the network structure incorporation in the clustering pro
cedure generally enhances the accuracy of cell type classifications. 

3.3. INSISTC reveals marker topics contributing to cell type classification 

To investigate the capability of INSISTC in interpreting the single cell 
type classification, we studied cell-type-specific topics (CSTs) that 
significantly contribute to the cell type classification. We identified CSTs 
based on their potential to distinguish a cell cluster from others. Using 
the SC3 package, we obtained CSTs as marker topics with p-values 
smaller than 0.01. A p-value was calculated based on Wilcoxon signed- 
rank test. For comparison, we also performed SC3 clustering on SCENIC 
results based on regulon activity scores. 

For the mouse cortex dataset, we obtained 14 CSTs out of 45 topics 
(Fig. 3). Among these topics, topic 32 can distinguish oligodendrocytes 
from other cell types. We found that 603 out of the 820 oligodendrocytes 
(74%) have topic 32 as their most enriched topic. The average enrich
ment proportion of the topic 32 in all the oligodendrocytes is 0.56. We 
performed GO analysis with Gorilla [16] using 100 top-contributor 
words in topic 32 and found the enrichment of “response to inter
leukin-1” (GO:0070555, corrected p-value: 7.39E-2) and “regulation of 
gliogenesis” (GO:0014013, corrected p-value: 0.15). Gliogeneisis is 
directly relevant to oligodendroctye generation, while Interleukin-1 has 
been found to regulate the proliferation and differentiation of oligo
dendrocytes [49]. In contrast, besides the zinc finger and BTB domain 
containing 33 gene (Zbtb33), SCENIC-based SC3 clustering results do not 
show other regulons that overlap with genes or walks in the topic 32 
(Supplementary Fig. S1). Zbtb33 is involved in oligodendroglial matu
ration [56]. 

We also inspected multiple CSTs identified from the same cluster but 

correspond to multiple cell types. For example, topics 8, 34 and 43 were 
all selected as CSTs that can distinguish astrocytes and the endothelial 
cell type from others. Although the majority of astrocytes and endo
thelial cells are clustered together, topic 8 can tell astrocytes apart from 
others, while topic 43 is significantly enriched in endothelial cells. In 
both topics, Malat1 is the most enriched gene. However, a close inves
tigation of topic 43 shows a number of top walks connected by the 
Kruppel-like factor 6 (Klf6) gene. This TF was reported to regulate target 
genes in endothelial injury recovery [18]. It is interesting to see that, 
although topics 22, 27, 39 and 44 were all CSTs corresponding to py
ramidal CA1 cell types, they actually fell into three different SC3 clusters 
indicating potential subtypes. 

Fig. 2. The ARIs corresponding to SCENIC and four different vocabulary-based 
INSISTC results on mouse cortex, skeletal muscle and embryo datasets, 
respectively. For a given topic number, the bars from top to bottom are in the 
order of SCENIC, TF-target, Gene-walk, Gene-only, and Walk-only. Here, “Gene- 
walk” is when both genes and walk-based words are considered as words for the 
topic model in INSISTC. “walk-only” is when only walk-based words are 
considered. “gene-only” is when only genes are considered. TF-target-based 
means the TF and one of its target genes form a word to define the vocabulary. 
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For the mouse skeletal muscle data, INSISTC identified 2035 walk- 
based words and 13,071 gene-based words. Under the setting of gene- 
walk-based vocabulary and 55 topics, INSISTC resulted in 14 clusters 
corresponding to 15 cell types. We identified CSTs specific for mono
cytes/macrophage, endothelial, FAPs, anti-inflammatory macrophages 
and resident macrophages/APCs. Almost all the CSTs are supported by 
the GO annotation of the top-contributor words. For example, topic 14 is 
the CST for the anti-inflammatory macrophages. Significant GO anno
tation terms enriched in topic 14 include “antigen processing and pre
sentation of peptide antigen” (GO:0048002, corrected p-value: 2.09E-7), 
“immune response” (GO:0006955, corrected p-value: 1.18E-3), “defense 
response” (GO:0006952, corrected p-value: 0.238), and others. Simi
larly, topic 1 is the CST for the FAPs. The most significant GO terms 
include “regulation of angiogenesis” (GO:0045765, corrected p-value: 
0.31), “animal organ development” (GO: 0048513, corrected p-value: 
0.183), and “positive regulation of vasculature development” (GO: 
1904018, corrected p-value: 0.339). 

3.4. INSISTC reveals cell-type-specific regulatory mechanisms 

We also explored the walks in the top 100 words of CSTs to identify 
cell-specific regulatory mechanisms. The walk-based words ranked top 
according to their mixture proportions in a CST are named its top- 
contributor walks. We found that top-contributor walks provide in
sights into the regulatory mechanisms of specific cell types. Take the 
topic 32 identified from the cortex data for example, the GLI Family Zinc 
Finger 3 (Gli3) induced a number of top-contributor walks, including 
Rai1, Fev, Tspan2 genes. It has been shown Gli3 is important for devel
oping mature oligodendrocytes [47]. Similarly, in topic 9, which was 
found to be a major marker topic for interneuron cells, we found Tcf4 
involved in a few top-contributor walks that form a small network 
connecting Mtfr1, Dnajc4, Irf2, Foxo1, Ndufa4, Prox1, Chd1l, Pmaip1, 
Thy1 and others (Fig. 4a). These relevant walks include TFs such as 
Zscan4, Hmx2, Irf2, Foxo1, and Znf16. Studies have demonstrated that 
Tcf4 plays an important role in the interneuron function and has been 
shown in interneuron dysfunction associated disorders [29]. For the 
mouse skeletal muscle data, we found the CST 39 for endothelial cells. 
The TF Kruppel-like factor 4 (Klf4) engaged walks were observed in the 
top words. Klf4 connects Tead3, E2f2, Fgf7, Irf1, Hic1, Egr2, Kif26 and 
other genes. Several of them, such as E2f2 and Irf1, have well-studied 
roles in endothelial cell growth and angiogenesis [28,53]. Meanwhile, 
Klf4 plays an important role in endothelial transcriptome regulation and 

greatly impacts endothelial functions [43]. In addition, Egr1 centered 
regulatory network was also revealed by the top-contributor walks 
involving multiple TFs such as Tgif2lx, Hoxa13, Hnf4a and Znf460 
(Fig. 4b). Most of these TFs participate in endothelial proliferation and 
angiogenesis [44,53]. Egr1 itself is essential to endothelial gene 
expression [30]. Similarly, the CST 14 is a marker topic for anti- 
inflammatory macrophages. The Irf7 and Spi1 are connected through a 
subnetwork that emerged from the top-container walks. Irf7 and Spi1 
both play key roles in macrophage phenotype formulation and function 
[21,54]. 

4. Conclusion and discussion 

The availability of a large amount of scRNA-Seq data enables the 
study of gene regulatory mechanisms at single-cell resolution. Mean
while, the discovery of underlying gene regulatory mechanisms can 
benefit more accurate cell type and state discovery from scRNA-Seq 
data. Methods have emerged recently to integrate gene regulatory 
mechanism discovery with cell-type classification. However, such 
method development is still at its beginning stage, and there is still space 
for improvement in terms of GRN construction and strategies for uti
lizing such GRN information. The INSISTC method was developed to 
overcome current challenges. INSISTC takes advantage of a de novo 
motif analysis that considers both TFs and their cofactors. Most impor
tantly, INSISTC considers the graph structure of the GRN and uses a 
graph algorithm to incorporate this network structure. INSISTC further 
applies a topic model to identify particular cell-enriched topics 
involving cell-relevant genes and regulatory mechanisms. Such topics 
can be further examined for cell-specific gene regulatory mechanisms 
and also can be grouped, e.g., by SC3, for cell-type classification. 
INSISTC demonstrated sufficient cell type classification accuracy and 
cell-type-specific gene regulatory mechanism discovery. Compared with 
the recent method SCENIC, INSISTC demonstrated its complementary 
performance for gene regulation interpretation. 

At the final stage, INSISTC runs a clustering algorithm on the iden
tified topics to identify cell types and states. We illustrated INSISTC here 
using SC3 algorithm because the SC3 algorithm offers cluster number 
estimation, while most clustering algorithms do not have such a func
tion. However, any clustering algorithms can be plugged into the pipe
line to derive final single-cell clusters. Besides, although we used three 
mouse datasets and mouse GRN to illustrate the usage of INSISTC here, 
users can apply INSISTC to scRNA-Seq data of other species and other 

Fig. 3. The CSTs identified in mouse cortex, illustrated using SC3 package. The SC3 cell outlier scores indicate how well a cell fit into its cluster, calculated based on 
the minimum covariance determinant. Cells that fit well into their clusters receive an outlier score of 0, whereas high values indicate that the cell should be 
considered an outlier. The scale indicates the topics distribution for the cells. 
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available biological networks of interest. It is also worth noting that, the 
three datasets we discussed here contain different number of cell 
numbers, ranging from hundreds to thousands. The number of cells can 
have various impacts on the cell type classification results. Low cell 
number datasets such as the mouse embryo datasets might not have the 
same discrimination power for cell classification as the other two 
datasets we used. In addition, for the topic model that is the essential 
part of INSISTC, the users need to specify a topic number. There are 

multiple ways to determine topic numbers. For example, the topic 
coherence and perplexity metrics are often applied in the context of 
language modeling. However, it is common to run a set of topic numbers 
to observe biological interpretability. 

INSISTC runs SIOMICS to generate the TF-target relationship 
because SIOMICS considers both TFs and their cofactors in de novo motif 
discovery. However, with more TF-target information such as ChIP-Seq 
data available, the performance of INSISTC in terms of gene regulatory 

Fig. 4. Illustration of top-contributor walks in CSTs. (a) The Tcf4 network from topic 9 in cortex. (b) the Egr1 network from topic 39 in muscle. The network was 
built and plotted with the Python packages networkx (https://networkx.org/) and matplotlib (https://matplotlib.org/), respectively. 
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mechanism discovery can be further improved. Finally, although the 
usage of INSISTC was illustrated on GRNs, INSISTC is flexible to incor
porate other types of biological networks such as pathways, protein 
interaction networks and gene co-expression networks. It is also possible 
for INSISTC to identify cell-type-specific mechanisms from a properly 
integrated network. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2022.110480. 
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