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1 Introduction

Chiral symmetries play an essential role in studying the dynamics of Quantum Field
Theories (QFTs). Since mass terms break chiral symmetries, they are only allowed for
fermions in vectorlike representations, while fermions in theories with chiral matter content
must remain massless unless chiral symmetries are broken spontaneously. It seems almost
obvious that these statements are renormalization group (RG) invariant. However, examples
of RG flows altering the chiral structure of QFTs have been known for some time [1-4].
The underlying physics relies on the existence of models exhibiting confinement without
chiral symmetry breaking [5] referred to as s-confinement.! Generically, the elementary and
low-energy degrees of freedom of s-confining theories transform in different representations
of the global symmetries. Thus the chiral structure of the matter sector may differ between
ultraviolet (UV) and infrared (IR). The early models of this type [1, 2] were motivated by
a search for realistic supersymmetric (SUSY) extensions of the Standard Model (SM) and
contained composite massless SM generations in the IR. More recently, the possibility of
developing a mass gap in theories with apparently chiral matter content attracted some
attention. References [3, 4] explored the deformation class of QFTs by constructing flows in
theory space from anomaly-free chiral theories to the trivial theory with no massless fermions.

!See [6] for a complete classification of s-confining theories.



The ideas introduced in [1-4] were used in [7] to argue that string compactifications may
lead to realistic low energy physics even if the number of chiral generations in the UV differs
from 3. The authors of [7] also began a careful analysis of dynamics underlying the chirality
changing RG flows. The goal of this paper is to complete the systematic analysis of this
phenomenon and elucidate a unifying picture of chirality changing RG flows. While we
will concentrate on the generation of mass gap, our analysis will also cover models where
additional composite chiral multiplets appear in the IR as well as more general cases where
the chiral matter content in IR differs from that in UV.

The model-building prescription for generating a mass gap is quite simple: one deforms
an s-confining gauge theory [6] by introducing the superpotential couplings to a set of
spectators superfields, transforming under the chiral symmetry in representations conju-
gate to the representations of the composites of the strong dynamics. The most general
superpotential allowed by such a deformation of the s-confining model lifts all classical flat
directions of the s-confining sector ensuring that in the ground state the strong s-confining
group is unbroken and confines. One must then verify that the classical flat directions
associated with the spectator superfields are also lifted, which will generically be the case. If
the spectator flat directions are indeed lifted, the global symmetry group of the s-confining
sector is unbroken and a chiral subgroup of the global symmetry may be gauged thus
leading us to the desired result. On the other hand, we will also see examples where the
flat directions associated with the spectator fields are destabilized by the non-perturbative
dynamics. Since the spectators are charged under the chiral sector the chiral symmetry
is broken in this class of models. Finally, if one is interested in the appearance of chiral
composite generations, one chooses different representations for the spectators so that in
the IR some or all of the composites do not have partners to generate mass terms.

The paper is organized as follows. In section 2, we discuss the general construction
in more detail and explain the role of the interplay between tree level superpotential and
non-perturbative s-confining dynamics in the stabilization of chirally symmetric vacua. In
section 3, we construct strongly-coupled SP(2/N) models which gap chiral matter containing
an antisymmetric. We also show that models with dynamically generated mass gaps and
composite chiral matter represent two examples of the same phenomenon. In section 4, we
explore an SO(N) model where naively one expects a dynamically generated mass gap for
chiral matter in a symmetric representation and show how this model fails. In section 5, we
examine a rich space of chirality-changing RG flows in models based on the strong SU(N)
dynamics. Within this class of models, we construct a model which gaps symmetric matter
content and illustrate how to generalize the construction to gap arbitrary representations.
We make concluding remarks in section 6.

2 Generic construction

To construct models of chirality changing RG flows we will adopt the model-building
approach of [3, 4] taking a product group theory H x G as a starting point. Here G is
the chiral symmetry group of interest which may be either a weakly-coupled gauge group
or an anomaly-free global symmetry, while H is the gauge group of an s-confining sector



whose dynamics is responsible for the chirality flows. For now, assume that G is unbroken
by the confining dynamics of H, such that it is sensible to study the chiral properties of
G in both the UV and IR. Fields charged under both G and H confine into composites
which generically transform under tensor representations of G and have different chiral
properties than the elementary representations of G. We call these flows from the UV to IR
chirality changing flows on G induced by H. We are particularly interested in deformations
of s-confining models where some or all of the composite fields pair up with the spectators
of the strong dynamics in vector-like representations. When this is the case, the vector-like
representations can be decoupled with the addition of superpotential interactions that may
be marginal or irrelevant in the UV but behave as mass terms in the IR. As we will show,
the fact that the IR mass terms originate from the dimension d > 2 operators in the UV
implies that dynamical effects of these superpotential terms are quite non-trivial and may
disrupt the confining dynamics of H. We will draw special attention to these scenarios.

In this paper, we restrict our attention to H x G models with A" = 1 SUSY. In our
analysis we will be able to employ familiar tools often used in the study of dynamical
supersymmetry breaking [8] even though the models we consider will possess supersymmetric
ground states.

Let us discuss the construction in a bit more detail. We will start with s-confining
models based on gauge group H and matter fields (); transforming in a chiral representation
of H X é, where G is a possibly anomalous chiral symmetry of the theory. We will limit our
attention to an anomaly-free subgroup G of this global symmetry and thus will study H x G.
As long as G is only a global symmetry, the anomaly freedom means that mixed H2G
anomalies cancel. The anomaly cancellation condition is automatically satisfied whenever
@ is non-Abelian, continuous, and only imposes nontrivial constraints on the model when
G contains U(1) factors. Aside from these weak constraints, G' could be identified with any
subgroup of G. Generically G will have cubic anomalies. These are harmless as long as G
is a global symmetry, however, we will imagine weakly gauging . This is only possible if
we add a set of spectators charged under G whose contribution to cubic anomaly cancels
the contribution of Q;’s. The dynamics of our s-confining model can be described in terms
of the gauge invariant composites M. In the UV these composites scale as My ~ Q?f
and thus have engineering mass dimension d f.Q In the IR the composite moduli My are
weakly coupled and have mass dimension one. Generically, M ; will transform in chiral
representations of G and will contribute to cubic anomalies of G. The 't Hooft anomaly
matching condition ensures that the M saturate the anomalies of the microscopic theory.
To be able to gauge G we must introduce a set of spectator fields that cancel G3 anomalies.
The choice of spectators is not unique. For example, one can choose spectators g; to
transform in representations conjugate to those of elementary fields, @Q;, or a different set of
spectators Mf transforming in representations conjugate to the composites M. As we
shall soon see, the former choice may lead to an appearance of massless chiral composites
of G in the IR while the latter choice may allow an RG flow to a gapped vacuum.

2Here our notation for the composites derives from the simplest case of a bilinear composite, a meson,
M ~ Q2. We stress that in this general discussion, M ¢ represent all moduli of the theory regardless of their
engineering dimension.



For the moment we choose the spectators transforming as Hf so that an IR mass term
is allowed in the superpotential
W => M;M;. (2.1)
f
We must remember that H is s-confining, thus the full non-perturbative superpotential
takes the form
W= f(My,A)+> MMy, (2.2)
f
where f(My,A) is a dynamical superpotential generated by the s-confining dynamics of H.

By construction the full H x G symmetry is chiral and the mass terms are not allowed.
Moreover, even the G sector alone is chiral in the UV. In the IR the strongly coupled H
sector confines while the low energy matter content is vector-like under G. As long as the
deformation (2.1) of the s-confining model does not lift the chirally symmetric vacuum at
the origin of the moduli space, the dynamics of the deformed s-confining theory results in
development of the mass gap in the IR.

For chiral symmetry to be unbroken in the IR, the vacuum expectation values (VEVs)
of both the composite moduli M and the spectators Mf must vanish in the ground state.
This is indeed true for the moduli M since the deformation (2.1) lifts all classical flat
directions of H as long as it contains mass terms for all H moduli. However, while the
deformation (2.1), when written in terms of the IR degrees of freedom, looks like a simple set
of mass terms for all the spectators, the interplay between the non-perturbative dynamics
of the s-confining sector and the tree level superpotential is quite non-trivial and may result
in the spontaneous breaking of G. Indeed, while (2.1) lifts all the classical flat directions of
H, it introduces new classical flat directions parameterized by Mf. To see that one simply
needs to look at the deformation in terms of elementary degrees of freedom

W= (Qi)"My. (2.3)
f

The extrema of this superpotential with respect to M f are found at M = 0 or, equivalently
at @; = 0. On the other hand, the extrema with respect to @Q; are given by

OMy—
Mi=0 2.4
;a@ r=0, (2.4)

which is satisfied for all values of My since in the UV the composites M are simply
monomials of @);’s with dimensions greater than or equal to two.

As we will see in the following sections the interplay between the strong dynamics
and the deformation (2.1) generates a non-perturbative superpotential for the spectators.
This is most easily seen by considering physics along classical flat directions for spectators
that couple to mesons of strong dynamics. Along such flat directions the spectator VEVs
generate large masses for all the quarks ); and the low energy physics is described in
terms of a pure super-Yang-Mills (SYM) theory with dynamical superpotential generated
by gaugino condensation:

, (2.5)

W:M:@fﬁﬁ“



where Ay is the dynamical scale of the low energy SYM theory, b and bz, are one-loop
beta-function coefficients of the UV and IR theories respectively, F' is the effective number
of flavors in our s-confining UV model and in the second equality we used the scale matching
relation AZL — MTAb. As long as 3F/by, > 1 the dynamical superpotential stabilizes the
spectators near the origin, the analysis of the ground state in terms of the IR degrees of
freedom is valid and the mass gap is generated. This is the case, for example, in models
satisfying the s-confinement conditions [5, 6]. On the other hand, whenever 3F/by, < 1 the
dynamical superpotential destabilizes the chirally symmetric vacuum near the origin and
the models of this type cannot lead to a mass gap.

Before moving on to the examples, let us make a connection to Razamat-Tong (RT) [3]
language. The discussion of [3] takes the model with chiral symmetry group G as a starting
point, then assigns some, but not all, chiral superfields charges under the strongly coupled
H sector. In this language, the spectators M represent the basic chiral matter of the UV
description. This is in contrast to our construction where M fields are spectators needed to
generate a mass gap in an s-confining model. Nevertheless, once a model is fully specified
we achieve the same result as in [3] — a chiral theory with a mass gap in the IR.

3 Chirality flows and SP(2N) dynamics

In this section we consider the simplest class of models exhibiting chirality flows. These
models are based on the s-confining models with SP(2N) gauge group with ' = N +2 chiral
matter fields in the fundamental representation. We will identify the chiral symmetry group
G with a subgroup of SU(2F), the maximal chiral symmetry of the SP(2N) dynamics. In
section 3.1 we consider an example of a dynamically generated mass gap [3], while studying
a closely related example of a composite massless generation [2] in section 3.2. In section 3.3
we briefly discuss additional chirality flow models that can be obtained by considering
different embeddings of GG into the maximal global symmetry of the s-confining sector.

3.1 Dynamically generated mass gap

Following [3] we consider SP(2N) models where the chiral symmetry group G is identified
with the maximal global symmetry of the s-confining sector, G = SU(2F) = SU(2N +
4). To analyze the non-perturbative dynamics of this class of models we recall that an
SP(2N) theory with F flavors has an SU(2F) global symmetry and posseses a set of
classical flat directions [9] which, up to gauge and global symmetry transformations, can be
parameterized by?
a1

q2

qr

3Here we have restricted our attention to the F' > N case.



SP(2N) SU(2N +4) U(1)z

1

Q U U Ni2
A 1 H N
A~Q 1 H e
A 1 H N

Table 1. Field content of the SP(2N) model with F' = N + 2 flavors.

Alternatively, the space of classical vacua can be parameterized in terms of mesons, A;; ~
Q:Q; transforming in an antisymmetric representation of the global SU(2F) symmetry. At
a generic point on the moduli space rank(A) = min(2N, 2F"). This means that for ' > N
the mesons must satisfy a set of constraints. Specifically in the case of interest, F' = N + 2,
the meson VEVs satisfy classical constraints

€N A iy Aigiy -+ Aigyyiay = 0. (32)

These constraints may be compactly written as

£4(Pf A)=0. (3.3)

Following Seiberg’s analysis [5] of s-confinement in SU(N), Intriligator and Pouliot argued
that the quantum and classical space coincide in ' = N + 2 SP(2N) models. Since the
origin belongs to the quantum moduli space, the model posseses a supersymmetric vacuum
with unbroken chiral symmetry. The low energy physics is described in terms of mesons
with a non-perturbative superpotential®

1

Wdyn = A2N+2

PfA. (3.4)

To generate the mass gap [3] we deform the theory by including a set of spectator
superfields A transforming in the conjugate antisymmetric representation of the chiral
SU(2F) = SU(2N + 4) symmetry with the tree superpotential

Wiree = AQ* ~ AAA, (3.5)

where the second expression is written in terms of mesons A. The UV and IR matter
content of the model is presented in the top and bottom parts of table 1 respectively:
The IR form of the superpotential (3.5) suggests that all the fields in the low energy
effective theory become massive and the model possesses a unique vacuum at the origin
with an unbroken chiral symmetry. While ultimately correct in this model, the conclusion
requires a more careful analysis of the non-perturbative dynamics. Indeed, while the
tree level superpotential lifts all flat directions associated with SP(2N) gauge group, the
deformed theory has a new set of classical flat directions parameterized by spectators A.

4The equations of motion following from this superpotential enforce classical constraints on mesons A.



SP(2N) SU(2N +3) U(1)z

H 2

N+2
_2
N+2
2N +2
N+2

2N+2
N+2

= 0 o~

Q
o e
O O O

Table 2. IR content of the odd M model, M = 2N + 3.

Far enough along this new branch of classical vacua, A > A, the theory is weakly coupled
and the analysis of dynamics is most easily performed in terms of quark superfields since
their Kéhler potential is nearly canonical in this regime. The spectator VEVs generate
mass terms for quark superfields which can be integrated out. The low energy physics is
then described as a pure SYM theory whose coupling constant is field dependent:

ASIVTD — pr ANV (3.6)

In the IR pure SYM dynamics generates the gaugino condensate superpotential, which can
also be interpreted as a superpotential for the spectators

W=A3 = (Pf(Z)AW“)ﬁ ~ AT A (3.7)

It is easy to see that A is stabilized near the origin of the moduli space thus justifying
the naive analysis based on the tree level superpotential in terms of IR degrees of freedom.
Of course, in this model one does not have to rely on the semiclassical analysis we just
performed. Indeed, the description of the theory in terms of IR degrees of freedom is
valid everywhere on the moduli space of the deformed theory, and analysis of the full
superpotential (given by the sum of (3.4) and (3.5)) would yield the same result.” However,
the semiclassical analysis is often more intuitive and, as we shall see in section 4, in some
models it is the only tool at our disposal.

So far we have illustrated dynamical generation of the mass gap in models where
the chiral symmetry group is SU(M) with M = 2F = 2N + 4 even. This restriction
is a consequence of the fact that the fundamental of SP(2/NV) has an even dimension.
However, it is easy to generalize this construction to models with odd M [3]. Indeed, one
can simply start with the same s-confining SP(2/N) sector but choose the chiral group
G = SU(M) = SU(2F —1) to be a subgroup of the maximal chiral symmetry. Under SU(M)
the meson A decomposes into an antisymmetric .4 and a fundamental Q. Given this choice
of chiral symmetry the IR matter content of the model is given in table 2. Since our mass
gap analysis did not rely on the dynamics of the SU(2N + 4) sector,’ the chirally symmetric
vacuum with mass gap will exist as long as we include the tree level superpotential (3.5),

5One must remember that while the Kéhler potential of mesons is, in principle, calculable it is far from
canonical at large A.

SRecall that aside from requiring a cancellation of cubic anomalies we treat G sector of the model as a
global symmetry.



now written in terms of SU(2N + 3) degrees of freedom. Note that while the tree level
superpotential must result in a maximal rank mass matrix in the IR it does not have to
respect the maximal global SU(2N + 4) symmetry.

3.2 A massless composite generation

In the previous subsection, we have mentioned that the choice of spectators is not unique.
Rather than choosing them in representations of SU(2/N 4 4) conjugate to those of mesons,
we could choose, for example, the spectators transforming in representations conjugate
to those of quark superfields ). In this case, while the full theory is chiral, the UV
matter content from the point of view of the SU(2N + 4) sector is non-chiral. Once the
theory confines, the low energy degrees of freedom contain SP(2N) composites which
transform in an antisymmetric representation of the SU(2N + 4) symmetry. Thus a non-
chiral SU(2N + 4) sector acquires in the IR a massles chiral generation containing an
antisymmetric tensor and 2N antifundamentals. This theory may further be complemented
by superpotential interactions between the SP(/N) moduli and spectators. Consider for
example an SP(2) x SU(6) model with matter given in 1. If we choose G = SU(3) x SU(2) x
U(1) € SU(5) € SU(6) with a standard decomposition of GUT fields under the SM, add
two more spectator generations charged under the SM and include all the superpotential
terms allowed by symmetries we will arrive at the composite supersymmetric model of
Nelson and Strassler [2].

3.3 Different embeddings of G

We conclude the discussion of chirality flows in s-confining SP(2/V) models by noting that one
can construct new models by simply choosing different embeddings of the chiral symmetry
group G into the maximal global symmetry of the s-confining sector. Let’s briefly look at
some examples. For our first example, we consider the model studied in [3] with H = SP(2)
and G = SU(3) x SU(2) x U(1) € SU(5) C SU(6). Once again, the tree level superpotential
must be the most general one consistent with G but does not need to respect the full SU(6)
global symmetry of the s-confining sector. A somewhat more elaborate example can be
found by considering N = 3 case, i.e. an s-confining SP(6) model with 5 flavors and SU(10)
global symmetry. We will take G = SU(5) and embed it into SU(10) global symmetry
so that 10 quark superfields transform in an antisymmetric representation of SU(5). The
mesons M ~ Q? then transform as 45 of SU(5). We now add the spectators in the 45
representation of SU(5). The analysis of strong SP(6) dynamics remains unchanged and the
model develops a mass gap in the IR. In our final example we start with the same SP(6)
s-confining sector and choose G = SU(3) embedding it into SU(10) in such a way that 10
quark superfields transform in a 3-index symmetric representation of SU(3). The SP(6)
mesons decompose as 10 @ 35 of SU(3). Adding spectators in 10 & 35 representations as
well as the most general superpotential results in a mass gap appearing in the IR. Our
discussion so far suggests that, in addition to generating mass gaps or composite chiral
matter, chirality flows may lead to more general results. Indeed, in the following sections, we
will see examples of models where both UV and IR physics is chiral yet the chiral structure
of the theory changes in the course of RG flow. Our examples will include models based on



SO(N) SU(F) U(1)r

F-_N+2
Q O O ot
2(F—N+2)
S 1 m =
= — 2(N—-2)
S 1 mN 7

Table 3. Field content of the SO(NN) model with F flavors.

different s-confining sectors but even within specific s-confining dynamics we will have the
freedom to construct different models of chirality flow by using two different tools: an ability
to choose different representations of spectators introduced to cancel anomalies and use of
different embeddings of GG into the maximal global symmetry of the s-confining sector.

4 The role of s-confinement: an SO(IN) example

In the previous section, we analyzed the dynamics of models where mass gap is generated
in the IR despite the matter content being chiral in the UV. Following [3] our examples
were based on s-confining SP(2/N) theories and the choices of chiral matter representations
were dictated by embedding of the chiral symmetry in the maximal global symmetry of the
s-confining model. The simplest and most illuminating embedding generated a mass gap in
models with matter transforming in an antisymmetric representation of the chiral SU(V)
symmetry. This was a consequence of the fact that the composites of SP(2N) models
transform as antisymmetrics of global symmetries. It is then natural to expect that chiral
matter may be gapped in models where the composites of the confining sector transform in
symmetric representations of the global symmetry. To that end, the authors of [4] argued
that a mass gap in theories with symmetric chiral matter can be generated by deformations
of confining SO(N) sector with F' = N — 4 chiral superfields in a vector representation.
It is known [10] that this class of models exhibits two phases: a phase with dynamically
generated runaway superpotential and a no-superpotential phase where quantum moduli
space coincides with the classical one and extends to the origin. It was argued in [4] that
an appropriate deformation of these models generates a mass gap in the no-superpotential
phase. Unfortunately, this class of SO(N) models is not s-confining [6] and the phase
with chirally symmetric vacuum is quite fragile. We will argue here that the deformations
necessary to generate the gap destroy the chirally symmetric vacuum. Fortunately, as we
will show in section 5 constructions of gapped symmetric fermion models are still possible
albeit they are more cumbersome than hoped for in [4].

4.1 An SU(F) x SO(F + 4) model

We begin the analysis by reviewing the dynamics of SO(NNV) theories with /' = N — 4
flavors [10]. The quantum numbers of the matter fields under the gauge SO(N) and global
SU(N — 4) symmetries are given in table 3.



The one-loop beta function of SO(NN) theory, for N >4 is
b=3(N—-2)—F. (4.1)

The classical moduli space can be parameterized in terms of quark VEVs or gauge invariant
mesons S;; = ;Q;. At a generic point on this moduli space the gauge group is broken to a
pure SYM SO(4) ~ SU(2), x SU(2)g. Further, in the IR SU(2)r x SU(2)r group confines,
generating the gaugino condensate superpotential. Since the dynamical scale of the low
energy physics depends on the moduli, this results in the superpotential for SO(NV) fields
which, in terms of mesons, takes the form

Wayn = 2(AN) L +2(A\) g (4.2)

1 16A20V-D\ /2
= 5(6[/ + GR) ( detS > )

where €, g = +1. As explained in [10] the theory has two phases. When erer = 1 the two

(4.3)

contributions to the superpotential add up constructively and the classical moduli space
is lifted, resulting in a phase without a stable ground state. When erep = —1 the two
contributions to the superpotential cancel”, resulting in a smooth quantum moduli space
with an unbroken SO(N) chiral global symmetry at the origin.

Let us now deform the theory by including superfields S transforming in conjugate
symmetric reprsentation of the chiral SU(F) = SU(N — 4) symmetry.® Since the low energy
matter content is vector-like we can include a tree level superpotential which appears as a
mass term in the IR. The full low energy superpotential takes the form

16A2(N71)

1/2
ASS. 4.4
detS > +ASS (4.4)

W= (er +en) (
A naive analysis of the no-superpotential branch suggests that our deformation generates a
mass gap. However, the absence of s-confinement and the presence of a second, runaway,
phase in SO(NN) models implies that, in contrast to the theories we discussed earlier, the
chirally symmetric vacuum is unstable under any deformation. For example, an explicit mass
term, m@?, lifts the classical moduli space while remaining consistent with an existence of
the chirally symmetric vacuum at the origin. Yet, as argued in [10], at the quantum level
the full no-superpotential branch, including the chirally symmetric vacuum, is lifted.

To better understand the fate of the chirally symmetric phase we will study the non-
perturbative dynamics in a weakly coupled regime. We note that the deformed theory
possesses a new classical flat direction parameterized by S. When S > Ago() the physics is
weakly coupled and the Kéhler potential is nearly canonical in terms of the quark superfields.
Furthermore, along this flat direction the quarks become massive, suggesting that argument

"A pure SYM SO(4) theory is described by two dynamical scales, A, and Ag which need not be equal.
However, in our case the dynamical scales of the low energy gauge groups are determined uniquely (up to
a sign) by the dynamical scale of UV physics and mesons VEV, thus ensuring the cancellation of the two
terms in the superpotential.

8Tt is easy to see that the matter content is anomaly free under the full SO(N) x SU(N — 4) symmetry.
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Table 4. Field content of s-confining SQCD model with FF = N + 1 flavors. The top portion of
the table shows the elementary SU(N) charged fields. The middle section of the table shows the
confined degrees of freedom that are weakly coupled in the IR and near the origin of the moduli
space. The bottom portion of the table shows the quantum numbers of the spectator fields needed
to cancel flavor symmetry anomalies and generate mass gap for chiral fermions in the IR.

of [10] for the disappearance of the chirally symmetric vacuum should apply. The dynamical
nature of S allows us to perform a more detailed analysis. At large S the quarks must be
integrated out, and the low energy physics is described by a pure SO(N) SYM theory with
the dynamical scale given by

NSV — et GAZN-2 (4.5)

The low energy physics then generates the dynamical superpotential
1
W = A} = (detS) NN (4.6)

One can see that this superpotential leads to runaway behavior for S. While our derivation
is only valid at large values of S, holomorphy suggests that in the absence of a singularity
in the Kéhler potential the SUSY vacuum at the origin must be lifted.

5 Chirality flows and SU(N) dynamics

5.1 s-confining SQCD

We begin by briefly reviewing an s-confining SQCD model with ' = N + 1 flavors. The
theory has an SU(N + 1), x SU(N 4+ 1)r x U(1)p x U(1)g anomaly-free global symmetry
and the matter charges under gauge and global symmetries are given in the top part of
table 4. The existence of a large chiral symmetry will allow us to construct a variety of
models exhibiting chirality changing RG flows by considering different embeddings of G in
the maximal global symmetry group of the s-confining sector.

In the absence of the superpotential, the model possesses a large moduli space of
classical flat directions. These flat directions can be parameterized in terms of gauge
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invariant composites, M ~ QQ, B ~ QV, and B ~ @N, whose quantum numbers are
presented in the middle section of table 4. Classically the moduli VEVs satisfy a set of
identities
M;;iBj = BjM;; = B;B; = 0. (5.1)
It is well known that this model s-confines and the low energy physics is described
in terms of mesons, baryons, and anti-baryons with dynamically generated superpotential
which implements the classical constraints at the quantum level
s # (BMB — det M) (5.2)
In the IR, mesons and baryons are weakly coupled and have a nearly canonical Kéhler
potential. Thus it is convenient to rescale the moduli by absorbing appropriate powers
of the dynamical scale into the definition of the moduli so that M, B, and B have mass
dimension one.
In the following subsections, we will consider several illustrative embeddings of a
chiral group G in the maximal global symmetry of the s-confining sQCD where a chirally
symmetric vacuum is preserved while a mass gap is developed.

52 G =SU(N+1)L x SUN + 1)g

As our first example, we choose’ G = SU(N + 1)1, x SU(N + 1)g. As discussed earlier, the
low energy content of G is given by mesons M, baryons B, and anti-baryons B transforming
as (0,0), (0, 1), and (1,0), respectively. Since our goal is to deform this model in such
a way that G® anomalies vanish while the low energy matter content is vector-like, we
introduce a set of spectators, M, B, and B in representations conjugate to those of M, B,
and B. For completeness, the quantum numbers of the spectator fields are displayed in the
bottom portion of table 4.

The inclusion of the spectator fields in the theory allows a tree-level superpotential
consistent with the full H x G symmetry,

Wiree = MM + BQ" + BQ" ~ MM + BB + BB. (5.3)

Repeating the analysis of section 3 far along the meson branch of the moduli space we
obtain the low energy superpotential for mesons

_ 1/N
W= A3 = (det MAQN‘I) m (5.4)
where we used the scale matching relation
AN = det MA?N L, (5.5)

We see that this superpotential stabilizes the spectator mesons at the origin of the
moduli space. The analysis of baryonic directions is more complicated due to the non-
renormalizability of the superpotential terms involving the baryons in the IR. Nevertheless,
an analysis of the full superpotential shows that the baryons are also stabilized at the origin.
Having established the absence of runaway directions on the moduli space we conclude that
this model develops a mass gap.

9The following analysis remains unchanged if we include a U(1)p factor in the definition of G.
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SU(N) SUN+1)p U(l)s

Qi O O 1
Q; d O -1
M=A+S 1 MmeH 0
B 1 5 N
B 1 d -N
M=4+5 1 mufclS 0
B 1 O ~-N
B 1 O N

Table 5. Field content of the SU(N) model with SU(F')p flavor symmetry.

5.3 G = SU(N + 1)p with symmetric and antisymmetric

Our next example involves the identification of G with an SU(N + 1)p diagonal subgroup of
SU(N +1)r x SU(N +1)g. However, if this diagonal subgroup is generated by Tp = Tr, +Tr
the matter fields transform in non-chiral representations of SU(N + 1)p and thus this case
is not of interest to us. Instead, we will consider SU(N)p generated by Tp = Ty, — Tg.
The easiest way to do so is to assign @ to a fundamental rather than antifundamental
representation of SU(N + 1)g. With this charge assignment, the mesons M transform as a
sum of symmetric and antisymmetric representations of G while both baryons and anti-
baryons transform in anti-fundamental representation. This implies that the spectator field
M decomposes as A and S, while both B and B transform as fundamentals of SU(N + 1) p.
The matter content of this model is given in table 5. The deformation superpotential (5.3)
takes the form

W =AA+SS + BB+ BB (5.6)

The non-perturbative dynamics of the model remains unchanged and vacuum is found at
the origin of the moduli space.

Simply by choosing a different chiral symmetry group G and selecting a desirable
embedding of this group in the maximal global symmetry of s-confining SU(N) we have
constructed a model with one chiral symmetric and one chiral antisymmetric representation
in the UV which is fully gapped in the IR.

5.4 Antisymmetric <+ symmetric flows

The early studies of the chirality flows [1, 2] aimed at generating composite chiral matter in
the IR while the recent work [3, 11] was driven by an interest in generating mass gaps in
chirally symmetric vacua. In this section, we will illustrate that these two types of models
are simply extreme examples of a more general class of chiral theories where the chirality
structure changes under the RG flow. Indeed, we have already used the fact that the choice
of spectators necessary to cancel G anomalies is not unique. To generate the mass gap
we chose the spectators in representations of G' conjugate to the representations of the
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composites of the strong dynamics. On the other hand, to generate composite chiral matter
in the IR we chose the spectators in the representations of G conjugate to representations
of the elementary superfields. But one can mix and match. For example, in the model of
section 5.3 we can replace A with N — 4 spectators ¢ transforming as antifundamentals
of SU(N + 1)p. In this case, the UV model contains a chiral symmetric representation
of SU(N + 1)p and N — 4 vector-like flavors (with all antiquarks of SU(N + 1)p being
spectators and all quarks charged under SU(V)). With this choice of G and the spectator
fields the most general tree level superpotential is

W =yAqq+ SS + BB+ BB, (5.7)

where we have explicitly included the Yukawa coupling y in the first term. We note in
passing that y is naturally small since it arises from a non-renormalizable term in the UV
description. Analyzing the non-perturbative dynamics of this model we find that in the
IR the composite S and the spectator S pick up a mass and decouple from the low energy
physics while the massless matter content contains a single antisymmetric generation. Thus
we constructed a more general model of chirality flow where non-perturbative dynamics
modifies the chiral structure of the theory in IR instead of simply adding or removing
a chiral generation. A reverse flow, from an antisymmetric generation in the UV to a
symmetric generation in the IR, is equally easy to achieve.

5.5 Gapping symmetric matter

The results of section 5.4 suggest a model-building trick that allows one to gap the symmetric
S of the chiral G = SU(F') symmetry, even if the required model is somewhat baroque.
To that end, one needs two s-confining sectors, both with fields charged under G. The
first s-confining sector is based on an SU(N), N = F — 1, gauge group whose composites
transform as A and S of G, while the second sector is based on SP(2M), 2M = F — 4,
group whose composites transform as 4. The matter content is given in table 6.

The tree level superpotential in terms of composites and the spectators is given by

Wiree =SS + AA+ BB+ BB. (5.8)

A careful analysis of dynamics in regions where either A or A is large establishes that the
model develops a mass gap in the IR.

6 Summary

In this paper we have conducted a detailed investigation into the non-perturbative dynamics
underlying chirality flows in strongly interacting SUSY gauge theories. Our results suggest
that chirally symmetric vacua are stable under required deformations if and only if the
strongly interacting sector satisfies s-confinement criteria [5, 6]. We analyzed an example
of an SO(N) model which, in the absence of deformations, possesses a phase with chirally
symmetric vacuum and showed that in the deformed theory this vacuum is destabilized by
the interplay between the non-perturbative dynamics and the tree level superpotential.

— 14 —



SU(N) SU(F)p SP(2M)

Qi O 0 1
Q; [ [ 1
q 1 O O
SoAd 1 meH 1
B 1 O 1
B 1 O 1
A 1 H 1
S 1 [ 1
B 1 0 1
B 1 O 1

Table 6. Field content of the gapped symmetric model. The top section shows elementary fields of
the model charged under one of the s-confining sectors, the middle section shows the composites
of strong dynamics, and the bottom section shows the spectators charged only under the chiral
G = SU(F') symmetry.

We also developed model building tools that allow the construction of various models
exhibiting chirality flows, including cases where chiral matter transforming either in sym-
metric or antisymmetric representations can be gapped. Beyond looking at dynamically
generated mass gaps in chiral models, we have presented a more universal approach to the
study of dynamics underlying chirality flows. Although our study focused on theories with
no tree-level superpotential in the UV, it would be interesting to explore generation flow in
theories with tree-level superpotentials, as discussed in [12].
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