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Abstract

Atmospheric aerosols influence the Earth’s climate, primarily by affecting cloud formation and scattering visible
radiation. However, aerosol-related physical processes in climate simulations are highly uncertain. Constraining
these processes could help improve model-based climate predictions. We propose a scalable statistical framework
for constraining parameters in expensive climate models by comparing model outputs with observations. Using the
C3.ai Suite, a cloud computing platform, we use a perturbed parameter ensemble of the UKESM1 climate model
to efficiently train a surrogate model. A method for estimating a data-driven model discrepancy term is described.
The strict bounds method is applied to quantify parametric uncertainty in a principled way. We demonstrate the
scalability of this framework with two weeks’ worth of simulated aerosol optical depth data over the South Atlantic
and Central African region, written from the model every three hours and matched in time to twice-daily MODIS
satellite observations. When constraining the model using real satellite observations, we establish constraints on
combinations of two model parameters using much higher time-resolution outputs from the climate model than
previous studies. This result suggests that, within the limits imposed by an imperfect climate model, potentially
very powerful constraints may be achieved when our framework is scaled to the analysis of more observations and
for longer time periods.

Impact Statement

Atmospheric aerosols influence the amount of solar radiation reflected by Earth, but the magnitude of the
effect is highly uncertain, and this is one of the key reasons why climate predictions are highly uncertain.
We propose a framework for reducing uncertainty in aerosol effects on radiation by comparing simulations
from complex climate models to satellite observations. This framework uses parallel computing and statistical
theory to ensure efficient computations and valid inferences.

© The Authors(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
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1. Introduction

Atmospheric aerosols affect the formation of clouds and scatter and absorb visible radiation, thereby
influencing Earth’s climate. Improved estimates of the change in the total effect of aerosols on the
climate over the industrial era — a highly uncertain quantity termed the aerosol effective radiative forcing
(ERF) — have the potential to reduce uncertainty in the sensitivity of the climate to these aerosols. Recent
efforts to constrain ERF have involved first reducing uncertainty in the distributions of more basic
aerosol-related physical parameters and then studying the effects of these constraints on ERF. This has
been notably done by comparing simulated data with observations collected on various global aircraft
and ship campaigns as well as from satellites and ground stations (Johnson et al, 2020, 2018; Regayre
et al, 2020, 2018). Toward constraining the aerosol radiative forcing, Regayre et al (2023) employs
simulated outputs from the UKESMI1 climate model that are averaged over month-long periods. In
contrast, the present work employs three-hourly simulation outputs from the same model, requiring an
inferential framework capable of handling this increase in the resolution and quantity of the data.

Establishing constraints on the input parameters of expensive computer models by comparing their
outputs with observational data is an area of active research (Biegler et al, 2010). It is often imperative
that a surrogate model be trained from an ensemble of model input-output pairs and used in place
of the simulator to ensure tractable computations, but this step contributes an additional source of
uncertainty. If the outputs, or surrogate outputs, do not match observations within some tolerance,
then those parameter values are deemed implausible. In Johnson et al (2020); Regayre et al (2020),
the method of history matching is used, a technique from oil reservoir engineering which has been
adapted to the evaluation of computer models more generally in recent decades (Verly et al, 1984;
Craig et al, 1997; Johansen, 2008; Bower et al, 2010). However, the aim of history matching is to
constrain parameter spaces and not necessarily to provide well-understood probabilistic guarantees on
those constraints.

In contrast with previous work on constraining climate model parameters, our framework draws
on a recent surge of interest in simulator-based inference (Dalmasso et al, 2023; Cranmer et al, 2020;
Schafer and Stark, 2009) to produce parameter constraints that provide rigorous statistical guarantees
of frequentist coverage. Specifically, our work deals with a special case of simulator-based inference
where the observations are given by a deterministic simulator and an additive noise model. Patil et al
(2022); Stanley et al (2022) use a strict bounds method (Stark, 1992) to construct efficient confidence
sets for the model parameters in closely related inverse problems in remote sensing and high energy
physics. Unlike in these works where the forward models of interest are linear and known exactly,
the present problem features a forward model (UKESM1) which is nonlinear and estimated using an
emulator. We take advantage of the strict bounds method while inverting the emulated forward model
numerically and accounting for emulation uncertainty.

Our framework also offers a novel means of accounting for the systematic disagreement, known
as the model discrepancy, between a simulator and the physical system which it purports to model. A
number of approaches to accounting for model discrepancy in computer model calibration or simulator-
based inference have been developed (McNeall et al, 2016; Higdon et al, 2008; Kennedy and O’Hagan,
2001). We propose a new data-driven procedure for incorporating model discrepancy (and other sources
of error that we cannot separately quantify, such as representation errors; Schutgens et al (2017)) into
the strict bounds inversion framework. Cloud-based computing resources are leveraged to make each
step in the framework computationally scalable.

1.1. Data sources

Aerosol optical depth (AOD) is a measure for how much aerosol there is in the atmosphere. It is
measured by MODerate-resolution Imaging Spectroradiometer (MODIS) which is found on board
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Table 1. Seventeen of the 37 UKESM1 parameters (Regayre et al, 2023) used to build the surrogate
model, selected based on relevance for predicting AOD. Ny is the cloud droplet number concentration.
SF is short for scale factor

Parameter name Physical name Min. | Max
sea_spray Sea spray emission flux SF 0.25 4.00
bl_nuc Boundary layer nucleation rate SF 0.1 10
ait_width Aitken mode width (nm) 1.2 1.8
cloud_ph Cloud droplet pH 4.6 7
prim_so4_diam Median diameter of primary ultrafine anthropogenic sulfate particles (nm) 3 100
anth_so2_r Anthropogenic SO, emissions flux SF outside of Europe, Asia and North America 0.6 1.5
bvoc_soa Biogenic secondary organic aerosol from volatile organic compounds SF 0.32 3.68
dms Dimethyl sulfide emission flux SF 0.33 3.0
dry_dep_ait Aitken mode aerosol dry deposition velocity SF 0.5 2.0
dry_dep_acc Accumulation mode aerosol dry deposition velocity SF 0.1 10.0
dry_dep_so2 SO, dry deposition velocity SF 0.2 5.0
be_ri Imaginary part of the black carbon refractive index 0.2 0.8
a_ent_l_rp Cloud top entrainment rate SF 0 0.5
autoconv_exp_nd Exponent of N4 in power law for initiating autoconversion of cloud drops to rain drops -3 -1
dbsdtbs_turb_0 Cloud erosion rate (s™') 0 0.001
bparam Coefficient of the spectral shape parameter (beta) for effective radius -0.15 -0.13
carb_bb_diam Carbonaceous biomass burning primary particle median diameter (nm) 90 300

Table 2. A notational reference table.

Notation | Meaning | Notation | Meaning

u Vector of parameter values from R?” z AOD observations
X Location in space and time of a measurement | ¢ True climate system
Msim SimulatedGrid (as in Figure 1) n Climate model
Mat SatelliteGrid 17 Emulator for the climate model
MatchedGrid Drain Triplets (u, x, n(x,u))
M MatchedGrid, excluding outliers Diegt Tuples (u, x, E [71x () | Dirain ] » Var[ 7jx (¢) | Dirain])

the NASA-launched Terra and Aqua satellites that offer near-global coverage twice daily and pro-
vide easily readable open-access data sets. In the flow chart in Figure I, this data set is the
SatelliteTimeseries. For the present application, we focus on MODIS retrievals from the South
Atlantic and Central African region over July 1-14, 2017. This domain and period of study is selected
for its known biomass burning-related atmospheric aerosol activity.

We compare these data with climate model outputs taken from the UKESM1 model (Sellar et al,
2019). We use simulations that were nudged to the observed meteorology following the method of
Telford et al (2008), and therefore the simulated weather conditions will be sufficiently realistic that we
can examine the ability of the model to represent the observed aerosols. We use the perturbed parameter
ensemble (PPE) of 221 atmosphere-only simulations documented by Regayre et al (2023), which have
a configuration that closely matches the atmosphere component of the UKESM1 model used in the
CMIP6 experiments (Sellar et al, 2019). For each ensemble member, let u be a vector of parameter
inputs which determine climatic aerosol-related processes of practical importance, and let x be a vector
of control variables which define the specific output of the climate model, denoted 77(x, u), representing
the climate observable £(x). In our setting, x denotes a latitude-longitude-time triple in the climate
model output’s spatiotemporal grid, denoted Mgy, and called the SimulatedGrid in Figure 1. The
parameters u are listed in Table 1. The ensemble is a set of simulations, in notation

D train = {(X, Mj’ U(x, MJ)) X € Msim, Jj= 1,2,..., 221}

For reference, this and some later notation used throughout this paper is summarized in Table 2.



4 Carzon et al.

1.2. Problem setup

In order to emulate the model output for unobserved parameter values, we assume as in Johnson et al
(2020) that at x € Mg, the model output is a realization of a Gaussian process,

fx () ~ GPmx (), k()] (u eRP) (1)

For each x, we train the surrogate model 77, as described in Section 2.1.
Let z(x) denote the AOD observations and u* the true parameter value. Assuming that the emulated
climate model is unbiased, these observations and parameters are related according to the equations

72(x) ={(x) + €meas,x = E [ﬁx(“*”Dtrain] + Eemu,x(“*) + €meas,x T+ €other,x -

The different sources of variance in the measurements — namely, the measurement uncertainty (€meas, x)»
the emulation uncertainty (€emy,x), and any other sources (€omer,x) Which are not analyzed uniquely,
including uncertainty due to model discrepancy, including erroneously simulated meteorology, error
in representativeness of measurements, etc. — are assumed to be mean zero and independent across x.
This is a simplifying assumption in that, in reality, these terms might be correlated across x. By further
assuming that €meas,x and €omer,x are Gaussian, the observations z(x) are jointly normally distributed
across the x on the spatiotemporal grid Mgy (SatelliteGrid) on which the MODIS retrivals are
gridded. In particular,

= (Z(x))xel\/lsm ~N (E [(ﬁx(u*))xeMsallDtrain] P Zmeas + 2emu + 62]|M5m|) 5 (2)

where Xpeas and Xeny are covariance matrices such that entry Xpeqs;,; = Var(emeas’ i) 1s the mea-
surement uncertainty at location x! when i = J, otherwise zero (i.e., it is a diagonal matrix and the
measurement errors are assumed to be uncorrelated between locations); emu,i,j = Var(€emy, i (7)) is
the emulation uncertainty when i = j, otherwise zero; and 6> = Var(€other, x) 1S @ homoscedastic vari-
ance term standing in for all other unaccounted-for errors. The matrix | p(, | is an identity matrix with
number of rows equal to the size of the set Mg,. The disagreement between grids Mgim and Mgy is
addressed in the following section. The Zem, ;; are modeled by the surrogate model (see Section 2.1).
The Zeqs,i.i are the published MODIS uncertainties, which may not account for all possible problems
with the retrievals, but these unaccounted-for uncertainties will be captured by 62, which is estimated
from the observations (see Section 2.4).

2. Inference framework

We use the C3.AI Suite, a cloud computing platform for data analytics workflows deployed to
Microsoft Azure infrastructure (C3 Enterprise Al, 2022). The platform combines databases, open-
source packages, and proprietary machine-learning workflows optimized for working with large-scale,
data-intensive applications. We built new data structures and methods for processing NETCDF4 files
containing high-dimensional time-series datasets. We also developed a scalable inference pipeline for
training and predicting through several thousands of Gaussian process models using asynchronous pro-
cessing such as parallel batch and map-reduce jobs. This pipeline is summarized in Figure 1, and
complements other recently published workflows for similar tasks (e.g., Watson-Parris et al, 2021).

The grid of satellite measurements is finer than the grid of simulations. The raw MODIS retrievals
are pre-processed algorithmically by the MODIS team before they are provided on a 1° X 1° spatial grid
in the Level-3 Global Gridded Atmosphere Product (Hubank et al, 2020). However, the model outputs
are on a 1.35° x 1.875° grid. To reconcile these differences, we match simulated grid cells to their
nearest neighbor on the Level-3 MODIS product grid in space and time. Differences are computed on
the resulting 1.35° X 1.875° resolution Mat chedGrid, denoted M.
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imulatedGri * —|'> EmulatorTraining
* MatchedModelTimeseries EmulatorEvaluation
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T Observations DataDrivenModelDiscrep
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\

MatchedSatelliteTimeseries FrequentistConfSet

Figure 1. The flow chart for our pipeline for building frequentist confidence sets on climate
model parameters. After matching both the satellite observation and model output grids, five
steps of processing follow. The EmulatorTraining and EmulatorEvaluation pipes pro-
vide scalability to the framework by leveraging parallel computing in these most expensive steps.
The DataDrivenModelDiscrep, PlausibilityTest, and FrequentistConfSet pipes
implement the strict bounds based method to ensure principled uncertainty quantification.

2.1. Emulate: Inside the EmulatorTraining pipe

As indicated in Eq. (1), we assume the climate model is a realization of a Gaussian process where for
each x € M the mean and anisotropic exponential covariance functions are

m(u) =Po,  kxu,u’) =BT exp| -

We make this choice for k, for the reason that a relatively rough process appears reasonable in this
problem. We place an anisotropy assumption on the model by fitting a different length scale parameter
¢; x for each model parameter u;. By fitting ¢; , separately for each x, we let the parameters’ effects on
the model output vary geographically.

We train the emulating Gaussian processes by estimating their parameters on Dy, using maximum
likelihood (Rasmussen and Williams, 2006) with the scikit-learn Python library and L-BFGS-B opti-
mization algorithm, and thus we obtain a collection of models 77, x € M. Figure 2 illustrates the
quality of these emulators by verifying that the emulated AOD varies with respect to active parame-
ters exactly as the training data set would suggest. In terms of scalability, an ordinary Gaussian process
model on the entire Mode1Timeseries would compute in O ((|M]|n)?) time, n being the number of
members in the PPE, whereas the EmulatorTraining pipe trains in O (| M|n3) time. This routine
is parallelized by distributing batches of training jobs to independent worker nodes on the C3.Al suite
cluster, making the physical wait time much shorter.

2.2. Predict: Inside the EmulatorEvaluation pipe

We uniformly sample within the ranges given in Table | a collection of 5,000 new parameter vectors
u* (in contrast with 221 training vectors) to obtain a testing sample

Dlest = {(-x7 uk’E[ﬁx(uk) |Duain]’var[ﬁx(”k) |Dtrain]) X € Mv k = 192’ e vSOOO}

This set pairs points in the spatiotemporal-parametric space with the emulated mean and variance of
the AOD response, specifying a distribution closely mimicking the model response surface r(x, u).
We expect that this number of sampling points «* is sufficient to reliably constrain a small number of
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Figure 2. Sample curves of the emulated response B[ (u) | Dyin] averaged over two MODIS observ-
ing times on July 1, 2017 for two locations x. (Left) Red gridpoints are missing MODIS AOD retrievals.
Green gridpoints are ruled out as outliers per Section 2.2. (Top right) The scattered points are from
D 1ain, and the 221 curves are slices of the trained emulator response surface where all of the param-
eters are fixed to their training values from D4, except the parameter labeling the x axis of each
subplot, which is varied within its range given in Table 1. Near (0°,20°), AOD decreases as the accu-
mulation dry deposition rate increases. The average MODIS measurement is given by the dashed line.
(Bottom right) At (=20°,—-20°), emulated AOD responds positively to the sea spray emission flux.

parameters. These predictions are performed efficiently by a map-reduce job across the collection of
models 7.

The surrogate model appears to perform well at most locations in the spatio-temporal domain. How-
ever, gross discrepancies between the observations and the model output arise in a small fraction of
the grid points which cannot be accounted for using our model discrepancy term (described later). In
particular, when we consider the distance metric

|E[77x (") | Digain] = 2(x)]

jx,&(uk) =
\/Vﬂr[ﬁx (uk) | Drain] + Var[fmeas,x] + 72

bl

we identify about 2% of the grid points for which J, s(u¥) is a visible outlier for all u*, k =
1,...,5000. The parameter v here was tuned visually based on QQ plots since the other variance
parameter ¢ is yet unestimated. Let M* be the remaining coordinates in the spatiotemporal grid which
have not been excluded either as outliers or due to missingness.

2.3. Discrepancy: Inside the DataDrivenModelDiscrep pipe

The quantity 62 as seen in (2) is the variance of the unaccounted-for uncertainty €gther,x in our model,
which we estimate using maximum likelihood. We write down the likelihood for unknowns u and 6>
from our Gaussian assumption,

1 -1 1 5 (1) — z(x)]?
L(l/l,éz;Dtrain) = l_[ y— (U)%,emu(u)+0'%eas’x+52) 2eXp {_— 7 () 52 },

xeM* V27l' 2 O—)%,ernu(u) + O—r%leas,x + 52

where

U)%,emu(“) = Var[#jx () | Dirain]» a_r%leas,x = Var[emeas,x],  7x () = E[ifx (&) | Dirain]-

To numerically obtain the maximum likelihood estimate for 6%, we compute the maximizing value Si
of log L for each of the test parameters u* using the scipy Python library’s implementation of Brent’s
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algorithm (Press et al, 1992); then among these maximizing values we select the one which gives
the overall maximum likelihood over k = 1,2,...,5000. The resulting estimate 5§ALE = 3%, where

k = arg max « log L(u*, Si; Dyrain), is an approximate estimator, where the approximation is due to the
search over the parameter space being finite.

This part of the pipeline runs quickly. Evaluating the expression for the likelihood and performing
the optimization routine took about five minutes in real time in our case and can be performed in
local memory. Our value for the estimator on the remaining data was 61%/ILE = 0.025, which is of
similar magnitude as the average measurement variance of &2.,, = 0.027 and emulation variance of
=2 () —
0mu (@) = 0.038.

2.4. Test: Inside the PlausibilityTest pipe

To obtain a confidence set for the underlying atmospheric parameters, we perform a test for parameter
plausibility using MODIS AOD observations on the Mat chedGrid. Following the terminology used
in Johnson et al (2020), we write down the implausibility metric

E[#x (u) | Dirain] — 2(x)

() =
<7\ Var[ 7, (u) | Dasin] + Varlemeas ] + 61

For each u in Dy, we compare our observed implausibility measure against its approximate distribu-
tion under the null hypothesis that u is the correct parameter, Hy : I(u) ~ \ x2(df = |M*|). Here we
use the facts that the sum of n squared independent standard Gaussian random variables is distributed
as xy>(df = n) and that n is assumed to be large enough that we can ignore the variation in the model-
discrepancy variance estimate 512\,[LE. In other words, testing at the 0.05 significance level, a parameter
vector u will be deemed implausible if 7(u) exceeds the 95th percentile of the above null distribution.

A method for obtaining confidence sets inspired by the application of history matching in Johnson
et al (2020) can also be derived. We find that inference based on this method is sensitive to the choice
of tolerance level that is explicit in their choice of implausibility statistic. For a discussion of how our
test differs from this instance of history matching, see the Appendix.

2.5. Infer: Inside the FrequentistConfSet pipe

Having obtained a collection of test results for each uk k=1,...,5000, we approximate the Neyman
inversion (Dalmasso et al, 2023) of the test for plausibility described above by retaining all those param-
eters u* for which we do not reject the null at 0.05 significance level to obtain an approximate 95%
confidence set.' This is the region of the 17-dimensional parameter space which exclusively contains
non-implausible parameter vectors. A 2-dimensional projection of this set is on the right of Figure 3.

3. Results

Using our strict bounds-based test for parameter plausibility, we obtain a simultaneous 95% confidence
set on the selected climate model parameters. We find that large values of the sea spray emission flux
parameter are on the verge of being constrained with just two weeks of AOD data, shown in the upper
left panel of Figure 3. However, the two plots on the bottom left show that for no level of either BVOC
SOA or the accumulation mode dry deposition rate does our test for plausibility always fail, and so
formal constraints on these cannot be obtained. To illustrate this point, suppose that the value of the
accumulation dry deposition rate parameter (bottom left of Figure 3) was wrongly set to 1 when the

INote that the repetition of this singular hypothesis test is for inversion purposes. Since we are not inverting more than one
distinct test, we do not face multiple testing issues of controlling Type I error.



8 Carzon et al.

8 EENE
0-;; spray emission flﬁfo EEEE
EEEEEN
6 ENEEEEEEEN
EEEENENEEEEDE
fFEEEFENEEEn
4 IS ENEEEEN
JTEEfFESSFEEEEEDE
EEEEEENNEEEEDn
21 [T AEEEEEDn
pEErEEEEEEEE | [*
FdEFSSFEEEEEEER
o{f IS EENEEEEN
0?5 1f0 1j5 2:0 2?5 3f0 315

BVOC SOA

r 0.8

N
O
o

T
o
o

Proportion plausible

=
w
o
T
N
IS

o
W
N

3.68

Accumulation dry deposition rate

BVOC SOA

Strict bounds implausibilities

N
©
o

L

0.0

0.1 10.0
Accumulation dry deposition rate

Figure 3. Parameter constraints at 95% confidence level. (A-C) One-dimensional projections of the
FrequentistConfSet described in Section 2.5. The 95th percentile of the approximate null distri-
bution Hy is indicated by the horizontal red lines. The sea spray emission flux parameter appears to be
on the verge of being constrained on its own from only two weeks of data. (D) The space spanned by
the BVOC SOA and accumulation mode dry deposition rate parameters is binned, and the color of each
bin shows the proportion of plausible parameter values inside. Dark purple indicates a proportion of
zero—evidently, the lower right corner of this space is ruled out as implausible.

true value is 10. Then there are combinations of the other 16 selected parameters that enable us to fit the
model outputs to the observed AOD data within the modeled uncertainties. Hence we cannot rule out
value 1 for the accumulation dry deposition rate parameter, and likewise for the other values for each
parameter. If evaluated at a lower confidence level, our results seem broadly consistent with Regayre
et al (2023), who constrain the dry deposition rate toward large values, and Regayre et al (2020) and
Johnson et al (2020), who also constrain the sea spray emission parameter.

We are able to obtain a constraint at 95% confidence level on the combination of the deposition
rate of dry aerosols in the accumulation mode and biogenic secondary organic aerosol from volatile
organic compounds. See the right panel of Figure 3 for a binned projection of the resulting confidence
set onto their span. The resulting constraint can be understood as physically meaning the following:
If one hypothesizes that there are a lot of aerosols emitted by vegetation while the deposition rate is
low for relatively large particles, then one will overestimate AOD so much that even when controlling
for the uncertainty of the MODIS retrieval estimates due to instrumental error, the imperfection of
our surrogate model, and any other sources of model discrepancy that we estimate for our climate
model, a significant region of the subspace of these parameters can be ruled as implausible at the 95%
confidence level.

4. Conclusion

To our knowledge, this is the first use of simulated AOD from a climate model at a time resolution
as high as three-hourly to obtain observation-based constraints on input parameters likely to regulate
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AOD. That a salient and meaningful constraint has been gleaned from just two weeks’ worth of data is
suggestive of promising uses of high time resolution data in the future. Our framework is well suited
for problem settings where a perturbed parameter ensemble is available for one’s climate simulator and
where Gaussian process emulation is appropriate. Notably, any unquantified sources of uncertainty in
this setting are accounted for by the data-driven model discrepancy built into the presented pipeline,
an aspect which differs from other recent scalable frameworks for model calibration, such as ESEm
(Watson-Parris et al, 2021). Our approach assumes that the model discrepancy can be captured by
an additive Gaussian error that is independent across space and time so our constraints rely on these
assumptions being at least approximately satisfied. A fundamental difference between our approach and
the previous history matching approach as done by Johnson et al (2020) is that our method provides
frequentist confidence sets with well-defined probabilistic guarantees. In addition, as described in the
Appendix, our method has a potential advantage over Johnson et al (2020) in that the latter is sensitive
to the tuning of its tolerance level. The computational cost of our pipeline is dominated by the Gaussian
process computations, so the approach is computationally feasible as long as enough parallel processing
resources are available for training and evaluating the pixelwise emulators.

There are limitations to what can be achieved: with an imperfect and over-parameterized model,
constraints can become inconsistent, or different parameter combinations can yield the same simulated
ERF (Lee et al, 2016). However, employing more quantities for which we have observational and
simulated data would nonetheless allow us to constrain a larger number of these parameters and get the
most stringent constraints on aerosol radiative forcing we can. Other observable atmospheric quantities,
such as sulfates or organic carbon, are sensitive to different sets of atmospheric parameters than those
to which aerosol optical depth is sensitive, yielding potential opportunities to further constrain the
parameter space using larger, more diverse observational data sets.
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Appendix: Comparison with the method of history matching. It is possible to provide frequentist confidence sets on param-
eters using a method inspired by history matching. Below, we describe an adaptation of the version of the method employed in
Johnson et al (2020). Principally, the typical use of history matching in that work and others is to exclude implausible parameter
values in a systematic way, not to produce a plausible constraint set with fixed probabilistic properties.

One difference between the method of Johnson et al (2020) and our PLAUSIBILITYTEST pipe of Section 2.4 is the choice of
implausibility statistic. Johnson et al (2020) use the statistic

|E[7jx (1) | Dyain] — z(x)|
\/V3r[ 77x () | Digain] + Var[ €meas,x | + Var[ folher,x]

IHM,N(“):{ :xEM*} y

(N)


https://modis.gsfc.nasa.gov/data/dataprod/mod04.php
https://github.com/c3aidti/smoke/tree/main/climateInformatics2023
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Figure 4. Constraints resulting from an adaptation of the history matching method at 95% confidence
level. Referring to the implausibility statistic given by Eq. (3), we use g = 0.25.

where S () denotes the Nth largest element of a set S. For instance,

|E[7jx () | Dyain] — z(x)|
\/V3r[ 77x () | Digain] + Var[ €meas,x | + Var[ Eolher,x]

Iym, 1 (u) = max{ ix € M*}.

The authors then tune the “tolerance level” (which corresponds to the number (| M*| — N) in our expression for the statistic) and
the “exceedence threshold” (which, by analogy to our test, corresponds to an implausibility cutoff or critical value; in most cases
set to 3.5) until a fixed proportion (say, 40%) of test parameters u are retained as plausible under the statistic. By this account, a
constraint on the parameters is necessarily yielded, but the confidence level at which this constraint holds is undetermined.
Alternatively, we can set a confidence level first and compare the resulting constraints obtained by the strict bounds approach

or this history matching-inspired approach, where the former approach yields the constraints shown in Figure 3. In particular,
consider the implausibility statistic

|E[77x (u) | Dygain] — 2(x)|

Var[7jx (u) | Dirain] + Var| €meas,x | + S]%/ILE

I1-4 (u) = quantile;_,, ix e M}, 3)

where quantile, _, returns the (1 — g)th quantile of the given set. For example, I (1) returns the maximum absolute normalized
discrepancy for parameter u and I 5(u) is the median. This is a close analog to the statistic seen in Johnson et al (2020) when
g ~ N /| M*|. Naturally the approximate null distribution for this new statistic is that of the (1 — g)th percentile of a sample of
| M*| half-normal random variables. A critical value for the plausibility test at the 5% significance level can therefore be estimated
quickly by simulating a collection of samples of | M*| half-normal random variables, drawing the (1 — g )th percentile from each
sample, and then selecting the 95th percentile from that collection. In Figure 4, we show the 95% confidence level constraints on
the aerosol parameters that are obtained from the above-described history matching method using parameter g = 0.25.

As this example illustrates, similar non-trivial and principled constraints on aerosol parameters are possible. However, the
history matching-inspired approach requires choosing the tuning parameter g which substantially affects the final constraints.
In Figure 4, we chose g to obtain constraints similar to those given by our method in Figure 3. If we choose g = 0.5 (i.e., use
the median), we find that the constraints (not shown) become looser than those provided by our method. On the other hand, if
we choose g close to zero, we find that this history matching approach becomes sensitive to non-Gaussianities in the tails of the
error distributions, leading to overly discriminating plausiblity test results. If history matching was calibrated like this to obtain
confidence sets at a prescribed confidence level (which, we emphasize, is not currently done), it seems difficult to choose g
optimally to balance the power of the tests with robustness to mismodeling of the error distribution tails.
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