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Abstract

The evaluation of building energy performance requires a baseline for comparison. Common empirical
baselines are usually used for existing buildings since they are fast and convenient. However, the same type of
building at the same location will receive the same baseline despite their difference in usage.
Individualized baselines by creating building energy models are possible solutions, but it is labor intensive
and time-consuming. To fill the gap, this study is to develop individualized empirical baselines for existing
buildings in a fast way. First, common empirical baselines are created based on survey data. Then, to get
training samples, building energy models for large-scale existing buildings are created and simulated.
Finally, based on simulation results, mathematical models to get individualized empirical baselines in a fast
way are created. U.S. medium office buildings were used as an example to demonstrate the method. We
developed 30 mathematical models for medium office buildings in two vintages (constructed before 1980
and after 1980) and 15 climate zones. The mean absolute percentage errors (MAPE) between the
individualized empirical baselines and the modeled baselines for those 30 mathematical models are all
lower than 5.5%. An engineer can obtain the individualized empirical baseline for an existing building in a

few seconds by using the open-source tool we developed.
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Nomenclature
CV(RMSE) Coefficient of variation of the root-mean-square error
D Dataset for all building samples
DV One subset of dataset D
|D| Total number of samples in dataset D
|DY| Total number of samples in subset DV
k Key model input k that has a significant impact on building energy consumption
Emp Individualized empirical baseline site EUI
EUI Empirical baseline site EUI
EUI Modeled site EUI from prototypical building energy models
Gini (DY) Gini value
Gini_impurity(D,j) | Gini impurity
i Building i
INP Model input
INPy, The value of key model input k for prototypical building energy models m
INP 1 ; Ranked value of model input j for building i in all building samples
Ji Neutral building characteristic j
m Prototypical building energy models m
MAPE Mean absolute percentage error
Mod Modeled baseline site EUI
Mod_x Ranked value of modeled baseline site EUI for building i in all building samples
n Number of building samples
12 The probability that output type t occurs in subset DV
q Label g of building site EUI
Q The number of classes in the label of building site EUI
RMSE Root-mean-square error
T Total number of the output types
%4 Total number of the subsets
p Spearman's correlation coefficient




1. Introduction

The evaluation of building energy performance requires a baseline for comparison. Historically,
common empirical baselines are usually used for existing buildings. The empirical baseline represents the
measured median energy use intensity (EUI) for a group of similar buildings. The measured EUI of a
candidate building is then compared with the empirical baseline. For example, the median EUI of medium
office buildings in the hot climate zone is 700 MJ/m*-yr. If a medium office building is in the hot climate
zone and its measured EUI is 600 MJ/m*-yr, this building can be labeled as an energy-efficient building.
The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Building
Energy Quotient In Operation rating (ASHRAE 2022), the United States (U.S.) Environmental Protection
Agency ENERGY STAR program (ENERGY STAR 2021), and ASHRAE Standard 100 (ASHRAE 2015)
adopt empirical baselines. They create empirical baselines based on the median EUI of comparable
buildings based on the U.S. Commercial Building Energy Consumption Survey (CBECS). However, the
same type of buildings at the same location has the same empirical baseline despite their difference in usage.

For examples, buildings with different total floor areas have the same empirical baseline.

Developing individualized modeled baselines for existing buildings is a possible solution. However, it
requires creating building energy models for existing buildings, which is labor intensive and time-
consuming. Because the creation of building energy models highly relies on detailed building physical
feature information. A typical building energy model requires more than 1,000 model inputs, such as
construction material property of each part of buildings, detailed information for HVAC systems, and

occupancy schedules.

One existing approach to address this problem is adding adjustments to the empirical baseline to
account for some neutral building characteristics, such as operating hours, plug loads, and other factors that
are meant to be neutral in the comparison of energy performance. For example, a building with higher
operating hours has a higher empirical baseline. The existing adjustments were made based on measured
data of existing building samples. However, this can only investigate limited neutral building characteristics
because the existing large-scale building energy survey data (e.g., CBECS) has limited information on
buildings. For example, the number of people in the building and the space temperature is difficult to collect

for extensive building samples. As a result, many existing buildings still have a common empirical baseline.

To further develop individualized empirical baselines in an efficient way, this paper developed
mathematical models for existing buildings based on a large-scale building energy simulation result. The
rest of this paper is organized as follows: Section 2 introduces the methodology including the calculation of
empirical baselines, the generation of training samples, key neutral building characteristics, and the

method to develop individualized empirical baselines in a fast way. Section 3 shows the case study on U.S.



medium office buildings. Section 4 discusses the application of this research. Finally, Section 5 concludes

the findings of this research.

2. Methodology

This research developed a method to obtain individualized empirical baselines for existing buildings in
a fast way, as shown in Fig.1. First, empirical baselines are calculated based on survey data. Then, training
samples are generated by creating and simulating a large sample of building energy models. Next, we need
to identify key building characteristics that are meant to be neutral when evaluating energy performance.
The definition of neutral building characteristics is further explained in subsection 2.3.1. Finally,
individualized empirical baselines are developed using the key neutral building characteristics as input
variables. The individualized empirical baseline for a candidate building can be obtained in a few seconds.

Following four subsections will introduce these four steps in detail.
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Fig.1. Methodology of developing individualized empirical baselines for existing buildings.

2.1. Calculation of common empirical baseline

To identify empirical baseline EUIs in various climate zones, ASHRAE standard 100 (ASHRAE 2017)
provided climate zonal EUI ratios. These ratios were used to derive climate zonal EUIs for each building
type by multiplying them with the CBECS’s national median EUIs. This method produces representative
total EUIs by building type and climate zone. We adopted this method to calculate empirical baseline EUIs
for 15 climate zones in two vintages (pre-1980 and post-1980). Vintage pre-1980 means that the building
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was constructed before 1980 and vintage post-1980 means that the building was constructed in or after
1980.

2.2. Generation of training samples
To get a large-scale training sample, prototypical building energy models that can represent empirical
data first need to be created. Then, subsection 2.2.2 introduces the generation of individualized modeled

baselines for a large sample of buildings using the prototypical building energy models as a starting point.

2.2.1. Prototypical building energy models

Fig. 2. shows the process of creating prototypical building energy models that can represent empirical
data. First, we need to identify the ranges of key model inputs and relations of key model input values in
different climate zones and vintages. For example, the insulation of the building should be more in colder
climate zones. The relation types of key model inputs are summarized in Table 1. Then, the values of
various key model inputs are defined through the model calibration. The calibration’s goal is to minimize
the difference between modeled energy consumption and empirical baselines. More detailed information
about the creation of prototypical building energy models can be found in our previous research (Ye et al.
2020).

Constraints of key Model calibration
model inputs A set of building models within constraints Empirical
baselines
Sampling of key model inputs Model
Ranges of key Key Key outputs )
model inputs model - model Prototypical
» input 1 input k building energy
H £TI EUI models based on
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m

Fig. 2. Workflow of creating prototypical building energy models based on empirical data.

Table 1. Relation of model inputs in a set of building models

Relation Model Inputs Relation Description Model Input
Index Climate Vintages Example
Type 1 Values in all climate zones are same Values for post-1980 and pre- Weekly operation

1980 models are same hours
Values for post-1980 models are | Electric equipment
Type 2 . . 0 a .
Values in all climate zones are same Ll 1000 Al power density
a-thigherth-npre-1980-models
Type 3 Values in all climate zones are same }{8% S%Vfé}r gﬁtplrggf’ggb"delagfse Rated cooling COP
Type 4 Values in climate zones 5~8 are not No constraint Window U-factor
higher than-the-other-climate zones.
Exterior wall
Values in climate zones 5~8 are not . . .
Type 5 lowwer than the other climate zones No constraint insulation R-value
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Prototypical building energy models are evaluated using the coefficient of variation of the root-mean-
square error (CV(RMSE)). According to ASHRAE Guideline 14, when the CV(RMSE) is lower than 0.15,
the modeled energy consumption is consistent with the empirical data (ASHRAE 2014). To calculate the
CV(RMSE), we must calculate the root-mean-square error (RMSE) first, as shown in the following

equation:

30 2
RMSE — \/Zm=1(EUIg(1)— EUILy) ’ (1)

where m is the prototypical building energy model, which has 30 models in total (15 climate zonesx2
vintages); EUI is the empirical baseline site EUI; EUI is the modeled site EUI of the prototypical building

energy model.

Based on the results of RMSE, we can calculate the CV(RMSE) by using the following equation:

RMSE

CV(RMSE) = g BULY’ (2)

where avg(EUL,,) is the average value of the empirical baseline site EUI in 15 climate zones and two

vintages, which can be calculated using the following equation:

213,10:1 EUIm

30 ’ G)

avg(EUI,,) =

2.2.2. Training samples

Building model inputs can be classified as neutral inputs and non-neutral inputs (or building assets).
Neutral inputs are inputs that do not affect the energy efficiency rating. For example, climate and occupied
hours should not affect the building performance evaluation. The definition of neutral building
characteristics is further explained in subsection 2.3.1. Non-neutral inputs are inputs with a direct impact on
energy consumption and affect the energy efficiency rating, such as exterior wall insulation and HVAC

system efficiency.

To make the evaluation of building energy performance focus on the building’s assets, when creating
the baseline model for a candidate building, neutral model inputs should be the same as the candidate
building while non-neutral model inputs should be generalized values. In this research, the generalized
values of non-neutral model inputs are the values of the prototypical building energy models created in
subsection 2.2.1. The neutral model inputs and their value range for candidate buildings will be introduced

in subsection 2.3.1. Following introduces the steps to generate modeled baselines.

First, neutral model input combinations are sampled using the Latin Hypercube Sampling (LHS)
(McKay et al. 2000), which is usually used in the sampling of building energy model inputs (Chen et al.
2019; Lim and Zhai 2017, 2018). LHS is a statistical method for generating a near-random sample of
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parameter values from a multidimensional distribution. It is difficult to reveal the distributions of the neutral
model inputs because most neutral inputs are not included in existing survey data. We assume that the

distributions of the neutral model inputs are all near-random and LHS is adopted for sampling.

Then, large-scale baseline models are generated by modifying the neutral model inputs of prototypical
building energy models. Python coding and building component library (NREL 2022a) are adopted to
automize this process. To reduce the simulation time, this research adopts parallel simulation, and the
RMACC Summit Supercomputer (CU Boulder 2022) at the University of Colorado Boulder is used for

parallel simulation.

Finally, the simulation results are post-processed to extract useful information. The values of neutral
model inputs and the simulation results of energy use intensity for all candidate buildings are saved in a
single CSV file.

2.3. Key neutral building characteristics
Building characteristics that should be neutral for building energy rating are first introduced in
subsection 2.3.1. Then, subsection 2.3.2 introduces the method of identifying key neutral building

characteristics.

2.3.1. Neutral building characteristics

Neutral building characteristics are those that do not affect the energy rating of a building. Physical
characteristics that are dictated by the building’s architectural design and functions are generally neutral.
For example, the total floor area is designed by the building’s functions. Building operation characteristics,
such as the number of occupants in the building and operation hours, should also be considered as neutral
building characteristics. The location and the weather conditions that the building is exposed to are neutral
building characteristics. A building should not get a poor rating because it is in a colder climate. This
research will propose neutral building characteristics based on the literature review and engineering

judgment.

2.3.2. Identification of key neutral building characteristics
Key neutral building characteristics are identified by conducting the correlation test between the
proposed neutral building characteristics and site EUIs of building samples generated in subsection 2.2.2.
Spearman's correlation coefficient (p) is adopted for the correlation test. It is a nonparametric measure of
rank correlation. It assesses how well the relationship between two variables can be described using a
monotonic function. The calculation of p is expressed as follows:
nX Y INP 1, ; X Mod r; — ¥ INP_r,; X ¥y Mod 1,

pj =
VX ¥y INP 1,2 = (S INP1 )2V X £y Mod_r? — (B, Mod 1)?

)

4)



where j is one of the neutral building characteristics; n is the total number of building samples; i is the
index for each building sample; INP_r; ; is the ranked value of model input j for building i; Mod_r; is the
ranked value of the modeled baseline site EUI for building i. |p| < 0.1 means that the correlation between
two variables is negligible (Schober et al. 2018). Therefore, |p| > 0.1 is used as a threshold to identify the
key building characteristics that need to be considered when developing individualized empirical baselines in

subsection 2.4.

2.4. Individualized empirical baselines

This research obtains individualized empirical baselines in a fast way by developing mathematical
models. The key neutral building characteristics identified in subsection 2.3.2 are used as input variables for
the mathematical models. Extra Trees (Geurts et al. 2006; Scikit-Learn 2022) is adopted to estimate the
relations between key neutral building characteristics and building site EUIs. The structure of Extra Trees is

summarized in Fig. 3.
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Fig. 3. Structure of Extra Trees (Kapoor 2020).

Extra Trees constructs the set of decision trees by randomly selecting a subset of the dataset. In the
training of each decision tree (Wikipedia 2022), the split point to divide the tree at a particular node is
randomly selected. (Chu et al. 2021). Each decision tree generates one prediction, and the final prediction is

based on the majority prediction.

Extra Trees is a machine learning techniques and was developed as an extension of random forest
algorithm, and is less likely to overfit a dataset (Geurts et al. 2006). Extra Trees is very similar to Random
Forest. Both are composed of a large number of decision trees, where the final decision is obtained taking
into account the prediction of every tree. Furthermore, when selecting the partition of each node, both of
them randomly choose a subset of the dataset. The difference between Extra Trees and Random Forest is the

selection of cut points in order to split nodes. Random Forest chooses the optimum split while Extra



Trees chooses it randomly (John et al. 2015). Therefore, in terms of computational time, the Extra Trees

algorithm is faster because it randomly chooses the split point and does not calculate the optimal one.

The method to measure the quality of the split for one characteristic is the Gini impurity (Scikit-Learn

2022; Yuan et al. 2021), as shown in the following equation:

D‘U
Gini_impurity(D,j) = Y, %Gini(D”), (5)
=1
where, DV refers to one subset of dataset D classified based on characteristic j, V refers to the total
number of the subsets, |D”| and |D| refer to the total number of samples in subset DV and in dataset D

respectively. Gini (DV) is the Gini value of subset DV, which can be expressed in the following equation:

T
Gini(D") =1-% p;*, (6)
t=1
where T is the total number of the output types in subset DV, p; is the probability that output type t

occurs in subset DV, The less the Gini value is, the higher the purity of the dataset is.

Gini impurity has a maximum value of 0.5, which is the worst we can get. This means that under the
split point for one characteristic, the outputs of samples are evenly distributed. Gini impurity has a minimum
value of 0 is the best we can get. This means that under split point for one characteristic, samples have a

same output.

This research used 80% of building samples to train the Extra Trees’ models, and the rest of the 20%
of building samples were used to validate the developed mathematical models. The mean absolute
percentage error (MAPE) between individualized empirical baselines and modeled baselines is adopted to

validate the mathematical models, as shown in the following equation:

100% anEmpi—Modil
MOdi v

MAPE = (7)

i=1
where n is the number of building samples; Emp; is individualized empirical baseline site EUI for
building i; Mod; is the modeled baseline site EUI. If the MAPE value is lower than 10%, the prediction is

accurate (Setiawan et al. 2021).

3. Case Study: Medium Office Buildings

U.S. medium office buildings were used as an example to illustrate the methodology of developing
individualized empirical baselines. Subsection 3.1 presents the common empirical baselines of U.S.

medium office buildings in 15 climate zones and two vintages. There is one common empirical baseline for



buildings in the same climate zone and vintage. Individualized modeled baselines of medium office
buildings are presented in subsection 3.2. Based on these simulation results, key building characteristics
that should be neutral in the comparison of energy performance are identified in subsection 3.3. Finally,
using these key neutral building characteristics as input variables, subsection 3.4 develops mathematical

models for each climate zone and vintage to get the individualized empirical baseline in a fast way.

3.1. Calculation of common empirical baseline

As described in subsection 2.1, median EUIs of medium offices are needed to derive empirical baselines
in each climate zone and vintage. Because the CBECS 2012 only has the label for offices (CBECS 2016),
we proposed the criteria to filter medium office buildings from all office buildings, as shown in Fig. 4. Total
floor area and the number of floors is used as two indicators to filter medium office buildings. Because the
total floor area of the small office reference model is 511 m* and the total floor area of the large office
reference model is 46,320 m? (NREL 2022b), we only consider buildings whose total floor areas are
between 511 m? and 46,320 m?, as candidates for medium office buildings. Then, we considered three
situations to select medium office buildings among these candidates: (1) buildings whose total floor areas
are between 1,000 m? and 10,000 m? are considered medium office buildings; (2) buildings whose total
floor areas are between 511 m? and 1,000 m?, if they have more than one floor, are considered medium
office buildings; (3) buildings whose total floor areas are between 10,000 m? and 46,320 m?, if they have

less than five floors, are considered medium office buildings.

Office
buildings

511 m3<
Total floor area
< 46,320 m?

NO

YES Total floor area
< 1,000 m?
Number of
floors > 1
YES Total floor area YES

> 10,000 m?

floors < 5

Not medium Not medium

/ office / YES / office /
buildings buildings

Fig. 4. Criteria to filter medium office buildings from all office buildings

Medium
office
buildings
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Based on the filtered medium office building samples from the CBECS 2012, the median site EUI is
746.26 MJ/m*-yr for pre-1980 medium office buildings and is 700.21 MJ/m*-yr for post-1980 medium
office buildings. According to the ratio provided by ASHRAE standard 100 (ASHRAE 2017), empirical
baselines of medium office buildings in 15 climate zones and two vintages were calculated, as shown in
Table 2. The division of climate zones is shown in Fig. 5. The buildings in climate zone 8 have a
significantly higher empirical baseline than the other climate zones due to their large heating needs. The
buildings in the post-1980 vintage have a lower empirical baseline than the buildings in the pre-1980 vintage
because the newly constructed buildings have better system efficiency (e.g., the efficiency of the cooling

coil) than the older buildings.

Table 2. Common empirical baselines of U.S. medium office buildings

Climate Weather Empirical Baselines (MJ/m?2-yr)
Representative City

Zone Feature Pre-1980 Post-1980
1A Very hot Miami, FL 731.34 686.20
2A Hot humid Tampa, FL 723.87 679.20
2B Hot dry Tucson, AZ 731.34 686.20
3A Warm humid Atlanta, GA 723.87 679.20
3B Warm dry El Paso, TX 694.02 651.19
3C Warm marine San Diego, CA 574.62 539.16
4A Mixed humid New York, NY 783.58 735.22
4B Mixed dry Albuquerque, NM 679.10 637.19
4C Mixed marine Seattle, WA 694.02 651.19
5A Cool humid Buffalo, NY 828.35 777.23
5B Cool dry Denver, CO 716.41 672.20
6A Cold humid Rochester, MN 925.37 868.26
6B Cold dry Great Falls, MT 813.43 763.23
7 Very cold International Falls, MN 992.53 931.28
Subarctic/arctic Fairbanks, AK 1388.05 1302.39
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Fig. 5. International Energy Conservation Code climate regions (International Code Council 2022).

3.2. Generation of training samples

Thirty prototypical building energy models (15 climate zones x 2 vintages) for U.S. medium office
buildings were created based on the CBECS 2012 (subsection 3.2.1). Using the 30 models as a starting
point, subsection 3.2.2 generated 42,000 training samples.

3.2.1. Prototypical building energy models

The initial models used in this research are DOE Reference models generated by OpenStudio Standards
(NREL 2022b), which include 30 models (15 climate zonesx2 vintages). Key model inputs were calibrated to
let the modeled energy consumption match the empirical baselines calculated in subsection 3.1. These key

model inputs were defined based on our previous research (Ye et al. 2020, 2021).

For the key model inputs provided in the CBECS 2012, the median value is adopted for prototypical
building energy models. For example, the median value of the total floor area for medium office buildings is
3,437m’, and the median value of the weekly operation is 54 hours. The key model inputs that are not
provided in the CBECS 2012 were calibrated using the method described in Fig. 2. The ranges of the model
inputs were determined by referring to the 2012 CBECS and publications (Deru et al. 2011; Griffith et al.
2008; Huang and Franconi 1999; NREL 2022b; Sharp 1996; N Wang et al. 2015; Na Wang and Gorrissen
2013; Winiarski et al. 2006, 2007; Ye et al. 2020), as shown in Table 3.
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Table 3. Ranges of model inputs for creating prototypical medium office building energy models

. Type of
Model Input Unit Range Relation*

Aspect ratio - [1.5,2.4] Type 1
Floor-to-floor height m [3.96, 5.69] Type 1
Window-to-wall ratio % [11,25] Type 1

Pre-1980:

Climate zones 1~4: [0.38, 1.18]
Exterior wall insulation R-value m2-K/W IC)(])lsrzallt;g%c:)nes >~8:0.44, 1.69] Type 5

Climate zones 1~4: [0.18, 2.26]

Climate zones 5~8:[0.81, 4.69]

Pre-1980:

Climate zones 1~4: [1.56, 5.30]
Roof insulation R-value m?-K/W g(l)lslzaitggzc?nes >~8:1.60, 6.10] Type 5

Climate zones 1~4: [1.80, 3.67]

Climate zones 5~8: [1.60, 5.68]

Pre-1980:

Climate zones 1~4: [4.09, 7.00]

. Climate zones 5~8: [2.82, 7.00

Window U-factor W/m2-K Post-1980- L ] Type 4

Climate zones 1~4: [3.27, 7.00]

Climate zones 5~8: [1.99, 6.72]

Pre-1980:

Climate zones 1~4: [0.22, 0.67]
Window solar heat gain coefficient _ Climate zones 5~8: [0.40, 0.77] T 5
(SHGC) Post-1980: ype

Climate zones 1~4: [0.25, 0.65]

Climate zones 5~8:[0.35, 0.62]
Infiltration rate m’/s-m? [0.00031, 0.00113] Type 1
People density person/m? [0.0229, 0.0538] Type 1
Lighting power density W/m? gi)est} 19330[ %2?6716: 12536 g]] Type 2
Electric equipment power density W/m? Ezes_t}?ggo[?;? é’1?38314]‘] Type 2
Rated cooling COP - gf)z ‘:19 983 O[%25621 ,3;"59(])] Type 3
Efficiency for heating system - g:;: 19 gg 0[([)06655’0083 (])] Type 3
Ventilation m°/s-person [0.0066, 0.0261] Type 1
Efficiency for service water heating _ Pre-1980: [0.65, 0.80] Tvoe 3
equipment Post-1980: [0.75, 0.83] ype
Indoor heating setpoint temperature | °C [20, 22] Type 1
Indoor cooling setpoint temperature °C [22, 25] Type 1

* Type of relation is defined in Table 1.

The geometry of prototypical medium office building energy models is shown in Fig.6. The values of
key model inputs are shown in Table 4 and Table 5. The total floor area of the prototypical medium office
building energy models is 3,437 m? with an 18% window-to-wall ratio. It has steel-frame exterior walls and

insulation entirely above deck roofs. The operation time of this building is from 07:45 am - 6:30 pm on
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weekdays. Operation hour in this research is defined as the time period during which the value of people
density is larger than 50% maximum value. These 30 prototypical medium office building energy models

are provided in the GitHub repository (Lou 2022b).

North

Fig.6. Geometry of prototypical medium office building energy models based on the CBECS 2012.

Table 4. Values of key model inputs of prototypical medium office building energy models based on

the CBECS 2012
Category Name Value
Weather 1A, Miami, FL
condition 2A, Tampa, FL

2B, Tucson, AZ

3A, Atlanta, GA

3B, El Paso, TX

3C, San Diego, CA
4A, New York, NY
Climate zone 4B, Albuquerque, NM
4C, Seattle, WA

5A, Buffalo, NY

5B, Denver, CO

6A, Rochester, MN
6B, Great Falls, MT

7, International Falls, MN
8, Fairbanks, AK

Geometry | Total floor area 3,437m?
Aspect ratio 2.07
Floor-to-floor height 453 m
Window-to-wall ratio 18%

Envelope | Exterior wall insulation R-value Table 5
Roof insulation R-value Table 5
Window U-factor Table 5
Window SHGC Table 5

Schedule | Occupancy schedule 07:45 am - 6:30 pm on weekdays
System schedule 05:45 am - 10:30 pm on weekdays

Internal | People density 0.035 person/m?
load Lighting power density Pre-1980: 18.00 W/m? Post-1980: 15.50 W/m?
Electric equipment power density Pre-1980: 13.08 W/m? Post-1980: 8.19 W/m?
Infiltration rate 0.0010m*/s-m? for the whole building
System | Rated cooling COP Pre-1980: 3.39 Post-1980: 3.50

Efficiency for heating system Pre-1980: 0.65 Post-1980: 0.80
Ventilation 0.012 m?%/s-person for the whole building
Efﬁpiency for service water heating Pre-1980: 0.70 Post-1980: 0.83
equipment
Indoor heating setpoint temperature 20°C
Indoor cooling setpoint temperature 25°C
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Table 5. Model inputs for envelopes of prototypical medium office building energy models based on

the CBECS 2012

Name of Input Unit Vintage | 1A | 2A [ 2B [ 3A [ 3B [ 3C [ 4A | 4B | 4C [ 5A [ 5B | 6A | 6B | 7 8

Exterior wall m>K/W | Pre-1980 | L2 | Li2 [ 2| 2| ti2 | 2| 2| 12| 112 [ 119 L19 | 119 [ 1.19 [ 1.19 | 1.69
insulation R-value Post-1980 | 0.38 [ 1.34 | 1.34 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 2.26 | 441 | 4.41 | 4.41 | 441 | 4.46 | 4.69 |
Roof Insulation R- | m?-K/W | Pre-1980 | 4.87 | 4.87 | 487 | 487 [ 487 | 487 | 487 | 487 ] 487 | 491 | 491 [ 4.91 [ 491 | 491 [ 590 |
value Post-1980 | 2.26 [ 3.17 | 3.17 | 3.67 | 3.67 | 3.67 | 3.67 | 3.67 ] 3.67 | 431 | 431 431 [ 431 | 536 | 5.68 |
Window U-factor | W/m?K | Pre-1980 | 4.85[ 485 | 485 ] 485 [ 485 485[ 485 ] 485 485[ 473 473 [ 4.11 [ 411 [3.99 [3.41 |

Post-1980 | 5.25 | 3.86 | 3.86 | 3.29 | 3.29 | 329 | 3.29 | 329 [ 329 | 241 | 2.41 | 2.41 [ 241 | 1.99 | 1.9

Window SHGC - Pre-1980 | 0.38 | 0.65 [ 0.65 [ 0.67 [ 0.67 [ 0.67 [ 0.67 [ 0.67 [ 0.67 | 0.76 | 0.76 [ 0.77 [ 0.77 [ 0.77 [ 0.77

Post-1980 | 0.51 [ 0.51 | 0.51] 0.55[ 0.55 | 0.55] 0.59 [ 0.59 | 0.59 | 0.60 [ 0.60 [ 0.62 | 0.62 | 0.62 [ 0.62

Fig. 7 shows the energy performance of prototypical medium office building energy models. The

CV(RMSE) between empirical baselines and modeled energy consumptions for these 30 models is 0.05,

which meets the requirement of ASHRAE Guideline 14. Most modeled energy consumptions are very close to

the empirical baselines. The relative difference between the modeled energy consumption and the

empirical baseline is even lower than 1% for some climate zones, like 1A, 3A, 4C, 6B, and 8 in pre-1980 and
2A and 4A in post-1980.

— Empirical baseline X Prototypical model
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Fig. 7. Energy performance prototypical medium office building energy models based on the CBECS

2012.
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3.2.2. Training samples

Using the prototypical building energy models as a starting point, the neutral model inputs were
modified to be the same as the candidate buildings. The number of building samples in each climate zone
and vintage depends on the number of neutral building characteristics (will be introduced in subsection
3.3.1). To get a large sample of modeled baselines, this study created and simulated 42,000 building samples.
The distribution of modeled baselines of building samples is shown in Fig. 8 using violin plots. The upper
line in the violin plot represents the upper quartile site EUI in that climate zone; the middle line in the violin
plot represents the median site EUI in that climate zone; the lower line in the violin plot represents the lower
quartile site EUI in that climate zone. The width of each curve corresponds with the approximate frequency
of that site EUI. Buildings in climate 3C have the most concentrated distribution on site EUI while their

site EUIs are most discrete in climate &.
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(b) Post 1980 medium office buildings
Fig. 8. Modeled baselines for medium office buildings in the U.S.

3.3. Key neutral building characteristics
Building characteristics that should be neutral in the comparison of energy performance for medium

office buildings are proposed in subsection 3.3.1. Then, subsection 3.3.2 identifies key neutral building
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characteristics by conducting the correlation test between these proposed neutral building characteristics

and site EUIs of building samples.

3.3.1. Neutral building characteristics

The climate zone and the year of building construction have already been considered as neutral building
characteristics when developing prototypical building energy models in subsection 3.2.1. Furthermore, this
research proposed 14 other neutral building characteristics related to building geometry and operation, as
listed in Table 6. For the model inputs provided by the CBECS 2012 (total floor area, weekly operation
hours, and window-to-wall ratio), the minimum and the maximum values were defined by excluding
outliers (Galarnyk 2018). The ranges of the other 11 model inputs were defined by referring to the existing

literature and engineering judgment.

Table 6. Building characteristics that are neutral in energy rating

Building Characteristics Unit Default Value Range
Total floor area m? 3,437 [520, 15,130]
Aspect ratio - 2.07 [1.45, 2.69]
Floor-to-floor height m 4.53 [3.96, 5.69]
Window-to-wall ratio - 0.18 [0, 0.65]
Building orientation degree 0 [0, 360) *
People density person/m? 0.035 [0.023, 0.054]
Indoor heating setpoint temperature °C 20 [20, 22]
Indoor cooling setpoint temperature °C 25 [22, 25]
Service water usage Ipm 1.86 [1.33,2.43]
Indoor heating (.1esign. supply air kg-water/kg-air 0.0080 [0.0056, 0.0104]
humidity ratio
Indoor cooling c.lesign. supply air kg-water/kg-air 0.0085 [0.0060, 0.0111]
humidity ratio
Weekly operation hours hours/week 53.75 [25, 95]
Electric equipment power density W/m? Pre-1980: 13.08 Pre-1980: [5.40, 21.30]
Post-1980: 8.19 Post-1980: [3.37, 13.34]
Ventilation m’/s-person 0.0123 [0.0066, 0.0236]

* 0 degree means that the direction of the building is south (the direction illustrated in Fig.6); 90 degree means that
the direction of the building is west; 180 degree means that the direction of the building is east; 270 degree means that
the direction of the building is north.

3.3.2. Identification of key neutral building characteristics

The correlation coefficient (p) between the proposed neutral building characteristics and site EUIs of
building samples are shown in Table 7. The positive value means that the building characteristic has a
positive correlation to the energy consumption of the building, while the negative value means that the
building characteristic has a negative correlation to the energy consumption of the building. Total floor area,
window-to-wall ratio, and weekly operation hours are key neutral building characteristics for pre-1980
medium office buildings in all climate zones. Floor-to-floor height, people density, indoor cooling setpoint
temperature, electric equipment power density, and ventilation are key neutral building characteristics for

pre-1980 medium office buildings in several climate zones. Total floor area, floor-to-floor height, window-

17



to-wall ratio, cooling setpoint temperature, weekly operation hours, and electric equipment power density
are key neutral building characteristics for post-1980 medium office buildings in all climate zones. People
density and ventilation are key neutral building characteristics for post-1980 medium office buildings in

several climate zones.

Table 7. Key building characteristics that are neutral in energy rating for medium office buildings

Note: light red shading means key neutral building characteristics

Climate Zone

Neutral building
characteristics 1A | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 4C | 5A | 5B | 6A [ 6B | 7 | 8
Pre-1980 medium office buildings
Total floor area -0.50 | -0.51 | -0.57 | -0.53 | -0.56 [-0.53 | -0.63 |-0.60 |-0.63 |-0.67 |-0.63 |-0.72 |-0.69 |-0.72 |-0.75
Aspect ratio 0.04 | 0.00 |-0.02 | 0.06 | 0.05 | 0.01 | 0.02 | 0.02 | 0.05 | 0.00 | 0.01 [-0.01 | 0.04 | 0.09 | 0.03
Floor-to-floor height 0.07 | 0.11 | 0.15 | 0.09 | 0.14 | 0.04 | 0.10 | 0.11 | 0.16 | 0.16 | 0.17 | 0.15 | 0.16 | 0.19 | 0.20
Window-to-wall ratio 026 | 030 | 029 | 030 | 0.30 | 0.31 | 026 | 0.25 | 0.21 | 0.24 | 0.30 | 0.22 | 0.23 | 0.17 | 0.20
Building orientation 0.02 | 0.02 |-0.01 [-0.02 {-0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |-0.05 | 0.00 | 0.00 | 0.04 |-0.01
People density 0.01 | 0.02 | 0.01 | 0.06 | 0.02 | 0.06 | 0.08 | 0.03 | 0.09 | 0.15 | 0.05 | 0.10 | 0.14 | 0.20 | 0.26

Indoor heating
setpoint temperature
Indoor cooling
setpoint temperature
Service water usage 0.03 | 0.01 | 0.03 |-0.01 [-0.01 | 0.02 |-0.03 | 0.04 | 0.07 |-0.04 | 0.06 | 0.05 [-0.03 | 0.03 | 0.01
Indoor heating design
supply air humidity ratio
Indoor cooling design
supply air humidity ratio
Weekly operation hours 0.64 | 0.59 | 0.58 | 0.60 | 0.56 [ 0.59 | 0.55 | 0.57 | 0.49 | 0.50 | 0.55 | 0.45 | 0.47 | 0.39 | 0.28

0.00 {-0.04 | 0.00 {-0.03 | 0.02 | 0.05 | 0.01 | 0.06 | 0.00 | 0.03 | 0.02 [-0.01 | 0.05 | 0.02 |-0.03

-0.151-0.13 {-0.13 | -0.15 | -0.16 |-0.15 | -0.09 [-0.07 | -0.05 |-0.08 |-0.08 |-0.05 [-0.04 | -0.07 | 0.03

0.01 {-0.02|-0.02 | 0.03 | 0.01 |-0.01 [-0.04 |-0.04 |-0.02 | 0.00 | 0.01 [-0.050.02 | 0.00 | 0.01

-0.01 | -0.01 {-0.02 |-0.03 | 0.01 | 0.03 |-0.02 [ 0.02 |-0.03 | 0.03 | 0.00 |-0.02 | 0.04 |-0.03 | 0.02

Electric equipment power density | 0.39 | 0.36 [ 0.31 |0.38 | 0.35 {0.31 |0.27 (031 [0.25 |0.20 [0.24 |0.16 |0.20 [0.13 |0.07

Ventilation 0.02 | 0.06 | 0.06 | 0.03 | 0.01 [-0.01 | 0.14 | 0.05 | 0.10 | 0.21 [0.13 [0.19 [0.15 [0.28 |0.28

Post-1980 medium office buildings

Total floor area -0.55 [ -0.58 | -0.64 | -0.58 | -0.62 |-0.60 |-0.67 |-0.66 | -0.67 [-0.67 |-0.63 |-0.69 [-0.70 | -0.74 |-0.75
Aspect ratio 0.06 [-0.02 | 0.07 | 0.01 | 0.02 | 0.03 | 0.04 |-0.01 | 0.00 | 0.06 | 0.07 | 0.03 |-0.01 | 0.01 | 0.06
Floor-to-floor height 0.13 { 0.15 | 0.13 | 0.12 | 0.14 | 0.11 | 0.14 | 0.16 | 0.18 | 0.12 | 0.12 [ 0.19 | 0.12 | 0.20 | 0.17
Window-to-wall ratio 0.52 | 044 [ 0.39 | 0.46 | 0.45 [ 0.43 | 0.39 | 0.46 | 0.48 | 0.40 | 0.43 | 0.39 | 0.44 | 0.32 | 0.29
Building orientation 0.00 | 0.00 |-0.01 [ 0.02 | 0.06 | 0.00 |-0.04|-0.03 |-0.03 | 0.03 |-0.01 [ 0.01 [-0.01 |-0.02 | 0.02
People density 0.12 | 0.08 | 0.05 | 0.05 | 0.02 | 0.05 | 0.09 | 0.06 | 0.03 | 0.10 | 0.03 | 0.10 | 0.03 | 0.11 | 0.19

Indoor heating
setpoint temperature
Indoor cooling
setpoint temperature
Service water usage -0.01 |-0.04 | -0.01 | -0.06 | -0.03 |-0.04 | 0.00 | 0.01 | 0.01 [-0.01 | 0.00 | 0.01 | 0.02 |-0.02 | 0.00
Indoor heating design
supply air humidity ratio
Indoor cooling design
supply air humidity ratio
Weekly operation hours 0.28 | 0.31 [ 0.29 | 0.29 | 0.34 | 0.34 | 0.27 | 0.25 | 0.30 | 0.27 | 0.30 | 0.24 | 0.29 | 0.26 | 0.15

-0.02 | 0.04 | 0.02 | 0.00 | 0.07 {-0.01 | 0.00 | 0.02 | 0.00 | 0.03 | 0.03 | 0.00 |-0.01 | 0.02 | 0.00

-0.28 1-0.29 {-0.23 | -0.29 | -0.25 [-0.26 | -0.31 {-0.23 | -0.28 | -0.25 [-0.24 |-0.20 |-0.18 |-0.20 | -0.12

0.06 | 0.03 |-0.02 | 0.02 | 0.01 |-0.02 | 0.00 |-0.03 | 0.00 |-0.02 | 0.02 {-0.01 | 0.02 |-0.02 | 0.04

-0.02 | -0.04 { 0.03 |-0.05] 0.02 |{-0.08 | 0.06 | 0.05 | 0.01 |-0.01 [ 0.03 | 0.04 |-0.05 |-0.03 | 0.02

Electric equipment power density | 0.32 | 0.34 [ 0.31 |0.31 |0.32 {034 |0.26 (030 [0.21 |0.22 [0.26 |0.21 |0.22 [0.15 |0.17

Ventilation 0.13 | 0.05 [ 0.04 | 0.08 | 0.03 [-0.02 | 0.14 | 0.03 | 0.02 | 0.09 [0.08 [0.12 [0.12 [0.18 |0.29
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3.4. Individualized empirical baselines
Using the key neutral building characteristics in corresponding vintage and climate zone as input
variables, this research developed mathematical models to get individualized baselines in a fast way. These

30 well-trained mathematical models were provided in GitHub (Lou 2022a).

To validate these mathematical models, we generated individualized empirical baselines for the rest of
20% of building samples. The MAPE between individualized empirical baselines and their modeled
baselines for these 30 mathematical models are listed in Table 8, which are all lower than 5.5%. According to
the criteria proposed by Setiawan et al. (Setiawan et al. 2021), if the MAPE value is lower than 10%, the
prediction is accurate. Subsection 4.1 will introduce the application of these mathematical models for

engineers to generate individualized empirical baselines in a fast way.

Table 8. Performance of mathematical models to generate individualized empirical baselines

Matlilqe(:g:ltlcal MAPE Mat;l/le;g:ltlcal MAPE
Pre-1980, 1A 3.6% Post-1980, 1A 4.7%
Pre-1980, 2A 3.5% Post-1980, 2A 4.2%
Pre-1980, 2B 3.6% Post-1980, 2B 4.5%
Pre-1980, 3A 3.8% Post-1980, 3A 4.4%
Pre-1980, 3B 4.0% Post-1980, 3B 4.2%
Pre-1980, 3C 3.7% Post-1980, 3C 3.8%
Pre-1980, 4A 4.3% Post-1980, 4A 4.3%
Pre-1980, 4B 4.3% Post-1980, 4B 5.3%
Pre-1980, 4C 4.3% Post-1980, 4C 4.8%
Pre-1980, 5A 3.8% Post-1980, SA 5.0%
Pre-1980, 5B 4.0% Post-1980, 5B 5.1%
Pre-1980, 6A 4.2% Post-1980, 6A 4.5%
Pre-1980, 6B 3.8% Post-1980, 6B 4.7%

Pre-1980, 7 3.7% Post-1980, 7 4.3%
Pre-1980, 8 4.0% Post-1980, 8 4.6%

Fig. 9 shows the quantile-quantile plot between individualized empirical baselines and modeled
baselines for all building samples. One red dot represents one building sample. If a red dot is close to the
black line, it means that the individualized empirical baseline of this building is close to its modeled baseline.
The relative errors between the individualized empirical baseline and the modeled baseline for all validated

building samples are lower than 25%.
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Fig. 9. Quantile-quantile plot between individualized empirical baselines and modeled baselines for
the validation of all building samples

4. Discussion

4.1. Application of this research on medium office buildings in the U.S.

The mathematical models developed in this research can be directly used for a medium office building
in the U.S. to obtain its individualized empirical baseline following three steps (Fig. 10). After downloading
the mathematical models from the GitHub repository (Lou 2022a), the user should first check key neutral
building  characteristics in  corresponding  climate  zones and  vintages in  the
key neutral building characteristics.csv file. Then, the user needs to add the value of key neutral building
characteristics of the candidate building in the input_file.csv file. The final step is running the main.py. The
individualized empirical baseline of the candidate building is generated in a few seconds and saved in the

individualized empirical baseline.txt file.
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¢ Indoor_cooling_setpoint_temperature

key_neutral_building_characteristics.csv

prelA
Total_floor_area
Window_to_wall_ratio

pre2A
Total_floor_area
Floor_to_floor_height
Window_to_wall_ratio
Indoor_cooling_setpoint_temperature
Weekly_operation_hour

Weekly_operation_hour
Electric_equipment_power_density

: Electric_equipment_power_density

input_file.csv

Unit Value Suggested Range
Climate - prelA -
Total_floor_area m? 1341 [520, 15130]
Aspect_ratio - [1.45, 2.69]
Floor_to_floor_height m [3.96, 5.69]
Window_to_wall_ratio - 0.22 [0, 0.65]
Building_orientation - [0, 360]
People_density person/m? [0.023, 0.054]
Indoor_heating_ o
setpoint_temperature ¢ (20, 22]
Inc!oor_coolmg_ oC 5 (22, 25]
setpoint_temperature
Service_water_usage Ipm [1.33,2.43]
Indoor_heating_design_ .
supply_air_humidity._ratio kg-H,0/kg-air [0.0056, 0.0104]
Indoor_cooling_design_ .
e T e kg-H,0/kg-air [0.0060, 0.0111]
Weekly_operation_hour hours/week 28 [25, 95]
Electric_equipment_power Pre-1980: [5.40, 21.30]
- - W/m? 10.56
_density /m i Post-1980: [3.37, 13.34]
Ventilation m3/s-person [0.0066, 0.0236]

individualized_empirical_baseline.txt
760.07 MJ/m?-yr

Fig. 10. General steps and one example to get individualized empirical baselines for medium office

buildings

For example, an engineer may want to get the individualized empirical baseline for a medium office

building in climate zone 1A built before 1980. As illustrated in key neutral building characteristics.csv

file, the key neutral building characteristics in pre-1980 climate 1A are total floor area, window-to-wall

ratio, indoor cooling setpoint temperature, weekly operation hours, and electric equipment power density.

Next, we need to put the value of these five building characteristics of the candidate medium office building in

the input_file.csv file. Then, we need to run the main.py, and the individualized empirical baseline of this

medium office building is saved in the individualized empirical baseline.txt file, which is 760.07 MJ/m?-

VI.

4.2. Application of this research on other types of commercial buildings in the U.S.

To get individualized empirical baselines for other commercial buildings in the U.S., mathematical

models should be reconstructed by following the methodology illustrated Fig.1. Common empirical
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baselines and modeled baselines need to be recreated. Neutral building characteristics and their possible
values may need to be reconsidered. For example, gas equipment use density should be considered as a

neutral building characteristic for restaurant buildings.

5. Conclusion

This research developed a methodology to get individualized empirical baselines for existing buildings
in a fast way. First, empirical baselines are created based on survey data. Then, to get training samples,
building energy models for large-scale existing buildings are created and simulated. Finally, based on
simulation results, mathematical models to get individualized empirical baselines in a fast way are created.
This research used U.S. medium office buildings as an example to demonstrate the method. Empirical
baselines for the U.S. medium office buildings in 30 conditions combining two vintages (constructed before
1980 and after 1980) and 15 climate zones were calculated based on the 2012 CBECS data and ASHRAE
standard 100. Then, to get training samples, 42,000 building energy models based on the 2012 CBECS data
were created and simulated. Finally, based on the simulation results, we developed 30 mathematical models
to get individualized empirical baselines for existing buildings. Those mathematical models were accurate
because the MAPEs between individualized empirical baselines and modeled baselines are all lower than
5.5%. An engineer can get the individualized empirical baseline for a medium office building in a few

seconds by using the open-source tool we developed (Lou 2022a).

The contribution of this study mainly lies in the following two aspects. First, this research developed a
methodology to obtain individualized empirical baselines in a fast way, which can be applied to all
commercial buildings in the U.S. Second, this research developed prototypical building energy models for
medium office buildings based on the latest available survey data. Those models can be used to study the

energy and carbon emissions of existing medium office buildings in the U.S.
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