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Abstract—In the last decade, research in the field of au-
tonomous vehicles has grown immensely, and there is a wealth
of information available for researchers to rapidly establish an
autonomous vehicle platform for basic maneuvers. In this paper,
we design, implement, and test, in ten weeks, a PD approach to
longitudinal control for pedestrian emergency braking. We also
propose a lateral controller with a similar design for future testing
in lane following. Using widely available tools, we demonstrate the
safety of the vehicle in pedestrian emergency braking scenarios.

Index Terms—Control theory, autonomous vehicles, pedestrian
safety, implementation

I. INTRODUCTION

While autonomous vehicles (AVs) were once a far-fetched
dream only found in science fiction, it has become increasingly
clear that they will be integral to the future of our transporta-
tion systems. In recent decades, many commercial cars have
featured tools to assist drivers, like adaptive cruise control
and lane following technology. With all the research in the
field, there is a wealth of information available for researchers
interested in establishing an AV platform.

The goal of this project was to develop a control algorithm
for longitudinal motion of an AV and demonstrate, on a real-
world vehicle, the ability to safely stop when approaching a
pedestrian. A proportional and derivative gain (PD) controller
was designed for control of throttle and braking and was
interfaced with the vehicle controller area network (CAN) via
the Robot Operating System (ROS). Pedestrians were detected
using the YOLOvS model [1]. The safety of the proposed
longitudinal PD controller was demonstrated by testing the
vehicle’s ability to stop at a safe distance from the pedestrian.
In addition, it is shown that the proposed controller can stop in
a manner that is comfortable for the passengers, by gradually
slowing down rather than slamming on the brakes. A similar
PD controller was designed for lateral control of the vehicle
in lane following, but has not yet been tested in-vehicle.

II. RELATED WORKS

Challenges in AV control have been tackled using a variety
of techniques in the past. One of the most popular techniques
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for vehicular control is model predictive control (MPC), which
excels in nonlinear optimization problems. In [2], researchers
demonstrated that MPC can be used to consolidate the lateral
(steering) and longitudinal (braking) controllers in a manner
that allows a vehicle to accurately follow a given path despite
tortuous conditions of snowy, slippery roads even at high
speeds. In addition, MPC was shown in [3] to be suitable for
improving fuel efficiency of AVs. By defining the controller
to minimize fuel consumption of the vehicle, researchers
increased fuel efficiency by up to 20%.

Alternatively, controllers based on fuzzy logic can offer an
intuitive approach to controller design that closely mimics
human driver behavior [4]. Through the use of fuzzy inference
systems, the controller can make inferences on the state and
the appropriate control action without necessitating rigorous
dynamical models.

Another approach that has gained popularity is the use
of artificial intelligence, through deep neural networks and
reinforcement learning [5], [6]. Deep learning approaches for
AV control often rely on training models to extract features
from input images and mapping them to the desired output,
which are the desired control actions. Sharma et al. [5]
demonstrated that a deep learning approach, even with limited
training data, was capable of navigating tracks in the TORCS
simulation environment with minimal lane departure. Alterna-
tively, reinforcement learning is valuable because it converts
the challenge of designing the controller into a challenge of
training an agent that learns a desirable control law. Kendall
et al. [6] presented a reinforcement learning model that can
achieve lane-following with just 30 minutes of training.

Lastly, another common approach to controller design is
to use proportional, integral, and derivative (PID) controllers.
As one of the simplest to implement control schemes, PID
controllers are computationally light and offer a conceptually
straightforward design approach. Though PID controllers are
not typically as robust as nonlinear approaches, some re-
searchers were able to adopt an adaptive PID controller, where
the control gain is tuned in real-time depending on the driving
conditions [7], to great success. Their approach successfully
demonstrated the ability for path tracking and was accurate to
within 0.5 meters. Alternatively, PID controllers were designed
in a nested loop in [8] for lateral control. In this design,
the outer feedback loop is a PID controller to determine the
desired yaw rate of the vehicle, and the nested feedback loop
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is a separate PID controller to stabilize the yaw rate of the
vehicle to the reference yaw rate. A similar approach to this is
proposed in this study for PD controllers for both longitudinal
and lateral control.

In terms of implementation, one consideration that must be
made when implementing any control scheme in an AV is the
communication between the various sensors and computational
units in the vehicle. ROS is a commonly used, open-source
software that simplifies this communication by allowing the
user to create nodes that publish and read information that can
be read and processed by the main CPU. For example, ROS
was used in [9] for implementation in an electric golf cart and
in [10] for an autonomous mobile robot. Alternatively, Guo
et. al [11] used User Datagram Protocol (UDP) to handle the
communication between processing units when implementing
MPC in an AV. UDP is used in lieu of ROS by Jones et. al [12]
for its favorable speed in an implementation that was similar
in scope to this work. However, their work is more focused on
simulations and neural network training whereas this work will
focus on the implementation of a closed loop control scheme.
In this work, ROS is chosen due to its widespread use and
support for AVs for rapid development.

III. CONTROL SCHEMES

The control basics consists of a longitudinal controller to
regulate acceleration and braking and a lateral controller to
handle steering of the vehicle.

A. Longitudinal Control

For the challenge of braking in the presence of pedestrians,
it is of utmost importance that the longitudinal controller
ensures the vehicle will stop at a safe distance. To assist in
this, the proposed control algorithm subtracts a predetermined
distance from the pedestrian’s position to use as the stopping
position. This distance can be changed depending on the
driver’s comfort. Position and velocity feedback are both used
to prevent overshoot on the desired stopping position and to
ensure the vehicle gradually stops in a manner comfortable for
the passengers.

The PD controller design is shown in the block diagram
in Fig. 1. The outer feedback loop uses position feedback
and proportional and derivative control to generate a reference
velocity, 7, (t),

d
ry(t) = Kpei(t) + Kd%el(t). (1)

This reference velocity is then used in the inner feedback loop,
which is designed to stabilize the velocity of the vehicle and
gradually bring it to a stop using a proportional gain, K. The
inner loop generates the braking force, wu(t),

u(t) = Key (t)> (2)

which is converted into a braking command for the vehicle.
The combination of these feedback loops ensures that, as

the vehicle approaches the referenced stopping position, 7(t),

the reference velocity similarly approaches 0, and the vehicle

Kpe(t)

(t) Vehicle | Y(®)

ei(t)

de,y(t)
dt
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Velocity
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Position
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Fig. 1: Block diagram for longitudinal control algorithm with
both position and velocity feedback.

comes to a stop. This approach is similar to that used by
Marino et al. in [8].

For the stability analysis, a simple model of the vehicle
longitudinal dynamics was used for the plant as shown below:

alz]=loo][2]+[

It accounts for the inertia from the vehicle mass, m, and
treats the braking force as the input. The car’s position is the
variable x. Drag was excluded in stability analysis because
of its nonlinear dependence on the square of velocity and its
minimal impact at the velocities during testing (under 25 miles
per hour). In practice, drag serves to increase the braking force,
and increases the safety margin. Drag effects are included in
the simulations in Section V.

The complementary sensitivity function from the reference
position to the vehicle position is given as:

K (K, + Kus)
ms?+ KKgs+ K + KK,

where K, K,, and K, represent the controller gains as
depicted in the block diagram, and m is the mass of the
vehicle. By definition, all the coefficients of the denominator
polynomial are positive, so the system is stable by the Routh-
Hurwitz stability criterion.

While a PD controller with position feedback would have
been sufficient to ensure stability of the closed-loop system,
velocity feedback was incorporated in the proposed manner
to address the requirement of comfort for passengers. The
sensitivity function for the velocity feedback loop is given
as:

} u. 3)

“4)

GPosition,R (5) =

ms
ms+ K’ )
By the final value theorem, the error of the vehicle velocity
with respect to the reference velocity, es(t), is bounded in
ramp response. This is significant because it means that for any
given pedestrian distance and initial velocity, the acceleration
of the car can be tuned depending on the reference velocity.
With the proposed controller, this means that the gains K,
and K can be tuned to increase or decrease the maximum
acceleration of the vehicle.

GE2 (t)vRv (S) =
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Fig. 2: This design offers control over the acceleration that the
passenger experiences by tuning K.

In Fig. 2, the effect of varying K, is shown. Lowering
K, results in a lower acceleration because the vehicle will
begin braking earlier and will more gradually approach the
stopping point. This extra control over the acceleration of the
vehicle does not sacrifice any safety, as all of the trajectories
converge to the same final position. The experimental behavior
of this control system and the simulated responses are shown
in Section V.

For the experiments conducted in Section V, gain values of
K, =038, K; =0.1, and K = 10,000 were used. The large
value for K is because the force u(t) accounts for the vehicle
mass of approximately 1,725 kilograms.

B. Lateral Control

A lateral control algorithm is also proposed with a similar
design to the longitudinal controller. Whereas longitudinal
control governs how a vehicle will brake or accelerate, lateral
control governs the steering and yaw rate of the vehicle.

The block diagram for the lateral controller is shown in Fig.
3. It is identical to the longitudinal controller in most respects,
but different because the inner loop is used for feedback
control of the yaw rate of the vehicle rather than the velocity.
Instead of a reference velocity, 7, (t), there is a reference yaw
rate, 7.

To model the vehicle yaw rate dynamics, the linearized
model presented by Antonov et al. [13] was used. The state
space model is

crtcy crlp—cyly
d Uy - :m)x - :nvz — Vg Uy +
7 j = —cy 124cpl? i
dt Crly Cflf _Cr r fly
w I,v, I.v, 1/}

cr

pros 0
[ nyf ]5f+ [ 1

1. I,

The variables ¢y and ¢, represent the cornering stiffnesses of
the front and rear axles, m is the mass, v, is the longitudinal
velocity of the vehicle, v, is the lateral velocity of the vehicle,
and [, and [; are the distances of the rear and front axles

] M,. (6)
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Fig. 3: Proposed control algorithm uses both position and
velocity feedback.
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Fig. 4: Response of lateral control algorithm shows that it is
stable in step response.

from the vehicle center of mass [13]. M, is the yaw torque,
but is taken to be 0 in our model. Stability analysis was
not performed on the lateral control algorithm because the
dynamical model of the vehicle’s position as a function of the
yaw rate was a nonlinear equation.

While the lateral control algorithm was ultimately not tested
on the vehicle, the simulated response of the system to a
varying reference position is shown in Fig. 4. The response of
the closed-loop system is stable in step response. While there
is some overshoot, it is negligible compared to the width of
an average road lane.

IV. CAR SETUP AND IMPLEMENTATION

The pedestrian brake controller was implemented on a
vehicle for real-world experimentation. Table I consolidates
information on the vehicle setup.

A. Drive-by-Wire System

The vehicle platform is a 2017 Lincoln MKZ Hybrid,
fitted with a drive-by-wire system provided by Dataspeed
[14]. ROS is used to communicate with the vehicle controller
area network (CAN). The CAN system signals are decoded
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using Dataspeed’s algorithms, so information from the vehicle
sensors can be read and commands can be sent to the vehicle
from a computer. It is through the CAN system that we are
capable of applying feedback control to drive the vehicle.
The drive-by-wire system included a Logitech F310 joystick
controller that can be used to electronically control the vehicle.

For safety purposes, one researcher was always present in
the driver’s seat to take control of the car if necessary. Manual
inputs to the steering wheel or brakes were hard-wired to
disable the drive-by-wire system immediately.

B. Vehicle camera setup

To mount the camera on the vehicle, a rack of extruded
aluminum bars was attached to the roof of the vehicle. The
bar that the camera was attached to was mounted such that
it could be slid to the side of the vehicle in order to hold
the camera at an offset distance from the side of the vehicle.
This setup and the positioning of the pedestrian relative to the
vehicle can be seen in Fig. 5. The purpose of this setup was
to allow for safer testing with pedestrians. With the camera
protruding from the side of the vehicle, the pedestrian could
stand clear of the vehicle’s trajectory while they were detected
as if they were in front of the vehicle.

C. Pedestrian Detection Model

For the pedestrian detection and distance estimation from
a single RGB camera feed, a monocular 3D detection model
[15] was used. In this model, a pre-trained VGG network [16]
without dense layers was used to regress 3D object properties.
Then, these estimates were combined with the geometric
constraints provided by a YOLOvS [1] 2D object detector.
This model provides the distance of the detected object which
was then sent to the ROS longitudinal control node along
with current car velocity to generate the appropriate brake
commands. Fig. 6 shows a sample detection where the person
is approximately 20 meters away from the camera.

D. Lane Detection Model

The YOLOP model [17] was investigated for its lane
detection capabilities. YOLOP is a driving perception model
that is capable of traffic object detection, drivable space seg-
mentation, and lane detection. By default, the YOLOP demo
program will output the drivable space and lane markings.
In order to track the center of the lane, a Kalman filter was
developed, and its output shown in Fig. 7 as the horizontal
red line. The green color and red lane lines in the image
were outputs of the default demo program. The center-of-lane
detection works simply by finding the left and right bounds of
the road and taking averages to find the center of the road and
the center of the lane. While this was not used for a test, it may
be useful for future work with the lateral control algorithm,
where the vehicle is tasked with lane following.

E. ROS Setup

For this experiment, we used ROSI in an Ubuntu 20.04
computer equipped with an Nvidia RTX 2070 GPU. For the

TABLE I: AV Platform Resources

Resource  Description
Vehicle 2017 Lincoln MKZ Hybrid
Drive-by-Wire ~ Dataspeed
Camera Logitech C920 Webcam

Joystick Controller
Computer Specs

ROS

Dataspeed ROS Driver
Pedestrian Detection

Logitech F310

Intel Xeon E5-2603 and Nvidia RTX 2070 GPU
Open source robotics library

dbw_mkz_ros

YOLOVS and 3D Object Detection

programming languages, both C++ and Python were used.
One ROS node received the raw RGB images and published
them as ROS “Image” messages which were then received by
the pedestrian detection node. The object distance published
by that node was sent to the longitudinal control node. The
longitudinal controller as described in section III generates the
brake level based on current velocity and distance. Generally,
the greater the velocity, the earlier it generates brake command
to avoid possible collision. The brake message was then
converted to ROS “CAN” messages and sent to the Dataspeed
CAN system.

V. RESULTS AND DISCUSSION

Experiments were designed to verify the operation of sub-
components before testing with a pedestrian on the road. First,
the ability of the controller to stop the car was verified by
generating a synthetic pedestrian signal at a specified distance
and verifying that braking resulted in stopping at the safety
distance. After confirming the controller’s ability to reliably
stop, the pedestrian detection program was characterized, and
finally a full system in-car pedestrian emergency brake test
was performed.

A. Pedestrian Detection

The quality of distance measurement was evaluated with
the vehicle stationary and having a moving pedestrian to test
the accuracy of the detection at various ranges. The detection
results are shown in Fig. 8. The pedestrian stood at 5, 10, 15,
20, and 25 meters from the vehicle camera for approximately
5 seconds each during this test.

As shown in the plot, the precision of the raw detection
decreased as the distance from the camera increased, though
noise was clearly evident throughout the entire test range. The
noise is unsurprising since the pedestrian distance is estimated
using a monocular 3D algorithm. However, this noise was
problematic for the braking tests and is discussed below.

B. Braking Performance with Pedestrian

The control algorithm was tested in the vehicle setup
described in Section IV. For this test, the vehicle was driven
via the Logitech F310 controller to accelerate up to a speed
of approximately 8.13 meters per second, or approximately 18
miles per hour, and the brake commands were generated inde-
pendently by the longitudinal control algorithm. The results of
this test were compared with simulated results shown in Fig.
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Fig. 5: (a) Picture of vehicle setup with camera mounted. (b) Diagram of test with pedestrian offset from vehicle trajectory.

Fig. 7: YOLOP lane detection on UNLV campus road

9. In both the simulated and in-vehicle results, the vehicle was
specified to stop 5 meters from the pedestrian.

As evidenced by the figure, the simulated case responds
more quickly to the detected pedestrian and stops approxi-
mately one meter earlier than the in-vehicle test, at exactly
five meters. In addition, the simulated response is smoother
than the in-vehicle response. These are likely results of the

Pedestrian distance detected by YOLOvV5

Time (s)

Fig. 8: Raw pedestrian detection with stationary vehicle and
moving pedestrian.

noisy pedestrian signal. The noise in the pedestrian distance
signal during the in-vehicle test can be seen in Fig. 9a. Without
a smooth detection of the pedestrian, the control algorithm
will be unable to properly generate the appropriate braking
command, which may be why the in-vehicle test stopped closer
to the pedestrian than the simulated test.

In addition, while the in-vehicle velocity appears smooth
and linear, the braking was not smooth and rapidly engaged
and disengaged. The brake commands are compared in Fig. 9c,
where the jittery, in-vehicle braking can be observed. This is
most likely another problem introduced by the noisy detection.
The comparison of the brake commands also shows that when
the vehicle first starts braking, both the simulated and actual
vehicle use a brake command of 0.4, but their accelerations
shown in Fig. 9b do not match. When converting the brake
force u(t) into the command signal for the vehicle, the control
algorithm uses information from Dataspeed that characterized
the braking and acceleration of the vehicle. However, the
discrepancy between the simulated and actual accelerations
may warrant additional testing to verify the brake torque, or
a more nuanced model of the vehicle braking.

Despite the issues introduced by the noisy input, the vehicle
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Fig. 9: Comparison between in-vehicle and simulated response for braking test. (a) Distance comparison, (b) velocity

comparison, (c) brake command comparison

was able to safely stop with ample distance from the pedes-
trian. In other tests, it was found that this stopping distance
could be tuned to have the vehicle stop farther or closer to the
pedestrian as well.

VI. FUTURE WORKS

For future work, the Lux LiDAR and Delphi ESR RADAR
in the car will also be used in tandem with the RGB camera to
more accurately estimate the pedestrian position. A tracking
method will also be applied to more smoothly track the pedes-
trian distance. With a smoother and more accurate pedestrian
detection, it will be easier to more rigorously test properties of
the controller, like its reliability at various speeds and comfort
in braking.

Looking beyond the longitudinal controller, future research
will test the proposed lateral controller for its ability in
lane following and implement it alongside the longitudinal
controller for full autonomous control.

VII. CONCLUSION

By building off of the wealth of research in the field of AVs,
a controller for pedestrian emergency braking was designed
and tested in a matter of weeks. We began designing the
controller by reviewing the various approaches to controller
design and selected a PID approach for its simplicity and ease
of implementation. After simulating the results and testing
various components, we were able to implement it in a vehicle
with a drive-by-wire system and demonstrated safe braking.
In addition, a lateral controller was designed that will be
useful for ensuring the vehicle can navigate lanes properly
and increase the degree of autonomy.
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