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Abstract. Vision-language navigation (VLN), in which an agent follows
language instruction in a visual environment, has been studied under the
premise that the input command is fully feasible in the environment. Yet
in practice, a request may not be possible due to language ambiguity or
environment changes. To study VLN with unknown command feasibility,
we introduce a new dataset Mobile app Tasks with Iterative Feedback
(MoT1IF), where the goal is to complete a natural language command in
a mobile app. Mobile apps provide a scalable domain to study real down-
stream uses of VLN methods. Moreover, mobile app commands provide
instruction for interactive navigation, as they result in action sequences
with state changes via clicking, typing, or swiping. MoTIF is the first to
include feasibility annotations, containing both binary feasibility labels
and fine-grained labels for why tasks are unsatisfiable. We further col-
lect follow-up questions for ambiguous queries to enable research on task
uncertainty resolution. Equipped with our dataset, we propose the new
problem of feasibility prediction, in which a natural language instruction
and multimodal app environment are used to predict command feasibil-
ity. MoTIF provides a more realistic app dataset as it contains many
diverse environments, high-level goals, and longer action sequences than
prior work. We evaluate interactive VLN methods using MoTIF, quantify
the generalization ability of current approaches to new app environments,
and measure the effect of task feasibility on navigation performance.

Keywords: Vision-language navigation, task feasibility, mobile apps

1 Introduction

Vision-language navigation (VLN) has made notable progress toward natural
language instruction following [5,17,31,32,38,39,44]. While navigation datasets
exist for home environments [3,8,19,38] and digital environments like mobile
apps and websites [25,26,33,37], none capture the possibility that the language
request may not be feasible in the given environment. When high-level natural
language goals are requested, they may not be feasible for various reasons: the
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Fig. 1: MoTIF natural language commands which may not be possible. At each
time step, action coordinates (i.e., where clicking, typing, or scrolling occurs),
the app screen, and view hierarchy (i.e., the app backend, illustrated behind it)
are captured

request may be ambiguous or state dependent, refer to functionality that is no
longer available, or is reasonable in a similar environment but not satisfiable in
the current. Task feasibility has been studied to determine question relevance
for text-only [12] and visual question answering [14,30,36], but it has not been
explored in interactive multimodal environments.

To study interactive task feasibility, we propose Mobile app Tasks with It-
erative Feedback (MoTIF)?, the largest dataset designed to support interactive
methods for completing natural language tasks in mobile apps. As illustrated in
Figure 1, a sample includes the natural language command (i.e., task), app view
hierarchy, app screen image, and action coordinates for each time step. MoTIF
contains both feasible and infeasible requests, unlike any VLN dataset to date.
In addition to these binary feasibility labels for each task, we collect subclass an-

4 https://github.com/aburns4/MoTIF
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notations for why tasks are infeasible and natural language follow-up questions.
Our dataset provides a domain with practical downstream applications to study
vision-language navigation, as well as data for investigating app design [9,10,27],
human-computer interfaces [21,22,23], and document understanding [4,20,43].

We propose a baseline model for task feasibility prediction and confirm app
exploration is necessary, with visual inputs key to accuracy. Surprisingly, prior
representation learning approaches specific to the mobile app domain (e.g., app
icon features) do not result in the best performance. We then evaluate meth-
ods for automating MoTIF’s commands and find MoTIF’s diverse test set are
challenging for prior work. Performance trends between seen and unseen app
environments point to the need for more in-app exploration during training and
qualitative failures in the best baseline model demonstrate the importance of
visual understanding for MoTIF.

We summarize our contributions below:

— A new vision-language navigation dataset, Mobile app Tasks with Iterative
Feedback (MoTIF). MoTIF has free form natural language commands for
interactive goals in mobile apps, a subset of which are infeasible. It contains
natural language tasks for the most app environments to date. MoTIF also
captures multiple interactions including clicking, swiping and typing actions.

— A new vision-language task: interactive task feasibility classification, along
with subclass annotations on why tasks are infeasible and follow-up questions
for research toward resolving task uncertainty via dialogue.

— Benchmarks for feasibility classification and task automation with MoTIF. A
thorough feature exploration is performed to evaluate the role of vision and
language in task feasibility. We compare several methods on mobile app task
automation, analyze generalization, and examine the effects of feasibility.

2 Related Work

We now discuss the key differences between MoTIF and existing datasets; we
provide a side-by-side comparison in Table 1.

Task Feasibility Vision-language research has recently begun to study task fea-
sibility. Gurari et al. introduced VizWiz [14], a visual question answering dataset
for images taken by people that are blind, resulting in questions which may not
be answerable. To the best of our knowledge, VizWiz is the only vision-language
dataset with annotations for task feasibility, but it only addresses question an-
swering over static images. Additionally, images that cannot be used to answer
visual questions are easily classified, as they often contain blurred or random
scenes (e.g., the floor). Gardner et al. [12] explored question-answer plausibility
prediction, but the questions used were generated from a bot, which could result
in extraneous questions also easy to classify as implausible. Both are significantly
different from the nuanced tasks of MoTIF with human generated queries, for
which exploration is necessary to determine feasibility. MoTIF’s infeasible tasks
are always relevant to the Android app category, making it more challenging to
discern feasibility compared to the distinct visual failures present in VizWiz.
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Table 1: Comparison of MoTIF to existing datasets. We consider the number
of natural language commands, command granularity, existence of feasibility
annotations, the number of environments and whether the visual state is included
in annotations

Language Annotations Dataset Environment
Dataset # Human Task Feasibilit # Visual
Annotations| Granularity Y Environments| State
(a) House
R2R [3] 21,567 Low X 90
IQA [13] X High X 30
ALFRED |[38] 25,743  |High & Low X 120
(b) Webpage
MiniWoB [37] X High X 100 X
PhraseNode [33] 50,000 Low X 1,800 X
(c) Mobile App
RicoSCA [25] X Low X 9,700 X
PIXELHELP [25] 187 Low X 4 X
MoTIF (Ours) 6,100 High & Low 125

Vision-Language Navigation There are datasets that strictly navigate to
locations like Room-to-Room [3] and Room-Across-Room [19], as well as inter-
active datasets where agents perform actions in the environment to complete a
goal like ALFRED [38]. MoTIF is most similar to interactive VLN, as the nat-
ural language instructions are intended to complete a goal for the user, which
requires clicking, typing, or swiping actions in the environment. However, an ad-
vantage of MoTIF is that it is a real, non-simulated domain to study interactive
navigation, unlike all VLN prior work which uses simulated data [13,34,38,45].

Digital Task Automation Prior work has not studied web task automation
in a multimodal setting, ignoring the rendered website image [33,37]. The exist-
ing datasets MiniWoB [37] and PhraseNode [33] also lack realism, as MiniWoB
consists of handcrafted HTML and PhraseNode only captures single action com-
mands on the home screen of websites. Unlike these datasets which limit inter-
action to a single screen, MoTIF contains action sequences with many different
states (as shown in Figure 1), with a median of eight visited screens.

RicoSCA and PIXELHELP were introduced for mobile app task automation
by Li et al. [25]. RicoSCA makes use of the mobile app dataset Rico [9], which
captures random exploration in Android apps. Li et al. synthetically generate
random commands with templates like “click on x” and stitch multiple together
to any prescribed length. These generated step-by-step instructions do not reflect
downstream use, where users ask for a high-level goal. For MoTIF, we instead
collect free form high-level goals, and then post-process our data to automatically
generate the low level subgoal instructions. PIXELHELP is a small mobile app
dataset, but most commands are device specific. Ie., the tasks refer to the phone
itself, such as “in the top control menu click the battery saver,” and are not in-
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Fig. 2: We illustrate captured app modalities: the rendered screen and view hier-
archy, which contains element metadata such as the Android class, resource ID,
and text

app tasks like those in Figure 1. PIXELHELP also only contains clicking, while
MoTTIF has clicking, typing and swiping actions.

3 MOoTIF Dataset

For a mobile app task dataset, we need natural language tasks for apps and their
resulting action sequence. Figure 1 illustrates MoTIF tasks like “open settings
and change temperature unit to C.” For each command, we collect expert demon-
strations of attempts to complete the request. At each time step we capture the
app screen, the app backend view hierarchy, what type of action is taken, and
where the action occurred. We show the modalities captured at each time step
in greater detail in Figure 2. The Android app backend, i.e., view hierarchy, is a
tree-like structure akin to the Document Object Model (DOM) used for HTML.
It organizes each screen element hierarchically, and contains additional metadata
like the Android class of an element (e.g., a text view or image view), its resource
identifier, the text it contains, whether it is clickable, and other attributes.

3.1 Data Collection

We provide a general framework for others to collect natural language data with
unknown feasibility; Figure 3 illustrates the collection pipeline. We select 125
apps for MoTIF over 15 app categories (the complete app list can be found in the
Supplementary). Ten apps with (1) at least 50k downloads and (2) a rating higher
than or equal to 4/5 were chosen for each category. Next, a first set of annotators
writes commands. A list of (app, task) pairs are then provided to a second set
of annotators in an interactive session, where they attempt the task, specify if
it is not feasible, and can ask a clarifying question if not. The Supplementary
includes annotator demographics, payment, and collection interface details.
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Fig.3: The data collection pipeline (see Section 3.1). Colored boxes (app, task,
demonstration, and feasibility collection) are stages of curating the dataset

Natural Language Commands To collect natural language tasks, we instruct
workers to write commands as if they are asking the app to perform the task for
them. Annotators can explore the app before deciding on their list of tasks. We
ask them to write functional or navigational tasks, and not commands requiring
text comprehension like summarizing an article. We neither structure the written
tasks nor prescribe a specific number of tasks to be written for each app.

Task-Application Pairing When collecting natural language tasks, annota-
tors can first explore the app. Once we have tasks for every app, we introduce
additional feasibility uncertainty for the demonstration stage by collecting de-
mos for both the original (app, task) list, as well as tasks paired with apps they
were not originally written for. We create these additional (app, task) pairs by
clustering tasks within each Android category (for example, clustering all tasks
for Music and Audio Android apps) and selecting representatives from each clus-
ter. These representative tasks are then collected for all apps of that category,
which we coin “category-clustered.” Specifically, we cluster the mean FastText
embedding [7] of the language commands using K-Means [28].

Clusters are visualized with T-SNE [29] (see Supplementary). If a particular
app’s tasks are isolated from other clusters, we retain “app-specific” pairings, i.e.,
the (app, task) pairs for tasks specifically written for the given app. This resulted
in 40 apps having only app-specific tasks. If two apps’ tasks are closely clustered,
we group them; 17 apps’ tasks were gathered this way. Figure 1 (bottom) shows
a category-clustered task which was deemed infeasible by annotators. The com-
mand “open settings and clear search history” was paired with the music app
Spotify even though it was not written for it. This is a sensible request given
that Spotify is a music streaming app. Yet, no search history is found under
settings, only the option to “delete cache,” and follow-up questions are asked.

Task Demonstration and Feasibility Annotations Once the language com-
mands are paired with apps, we instruct new annotators to demonstrate the task
in the given app. We provide a website interface connected to physical Android
phones for crowd workers to interact with, as well as anonymized login credentials
so that no personally identifiable information is collected. They are instructed
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Table 2: Task feasibility and follow-up question breakdown. Annotators can state
the action: can’t be completed (impossible), is under-specified (unclear), may be
possible, but are unsure how or other tasks need to be completed first (prema-
ture)

. Infeasible
7 Feasible Impossible|Unclear|Premature Total
Task Demonstrations| 3,337 911 159 300 4,707
Follow-Up Questions| 93 253 136 164 646

to record their demonstration after they have logged in (we consider logging in
to be a separate task). After attempting to complete the task, they are brought
to a post-survey where they provide details on whether or not the task was
successfully completed. We therefore have demonstrations of actions taken both
in successful and unsuccessful episodes, which may provide interesting insight
toward how to reason about whether a task is or is not feasible, and why.

3.2 Dataset Analysis

Natural Language Commands We collected over 6.1k natural language tasks
across 125 Android apps. The vocabulary size was 3,763 after removing non-
alphanumeric characters. The average number of tasks submitted per app is 56,
with average length being 5.6 words. The minimum task length is one, consisting
of single action tasks like ‘refresh’ or ‘login,” with the longest at 44 words. Word
cloud visualizations, additional examples and statistics are in the Supplementary.

Feasibility Annotations We collect at least five expert demonstrations per
(app, task) pair for two purposes: to reach a majority feasibility label and to
capture different attempts of the same task, as some tasks can be completed in
multiple ways. See the Supplementary for an annotator agreement histogram.
Of the resulting tasks, 29.2% are deemed infeasible by at least five crowd
workers. However, the tasks considered infeasible do not always correlate to
mismatched (app, task) pairs, i.e., some app-specific tasks are deemed infeasible
during demonstration. This confirms the need to study commands with unknown
feasibility, as someone familiar with an app can still pose requests that are either
not possible, ambiguous, or state dependent. Of the infeasible tasks, 16.8% are
from app-specific pairs. E.g., the request “click shuttle and station” originally
written for the NASA app was labeled infeasible because the app has chang-
ing interactive features. Thus app changes and dynamic features also motivate
studying infeasible requests, as a task that was once feasible may not always be.
Table 2 provides statistics on the number of task demonstrations and follow-
up questions per feasibility category. There are three options for annotators to
choose from: (1) the action cannot be completed in the app, (2) the action is
unclear or under-specified, or (3) the task seems to be possible, but they cannot
figure out how or other tasks need to be completed first. These map to Table 2’s
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impossible, unclear, and premature columns. If a crowd worker cannot complete
the task, they are prompted to ask a follow-up question. We instruct them to
write the question(s) such that if they had the answer, they may now be able to
complete the original action or perform an alternative task for the user.

4 Task Feasibility Experiments

We first perform experiments with MoTIF for task feasibility. Given a natural
language command and the app states visited during its demonstration, the pur-
pose of task feasibility prediction is to classify if the command can be completed.
To determine feasibility, we expect a model to learn the most relevant state for
the requested task and if the functionality needed to complete it is present. Our
results provide an initial upper bound on performance, as the input action se-
quences can be considered the ground truth exploration needed to determine
feasibility, as opposed to a learned agent’s exploration. MoTTF has 4.7k demon-
strations and we reserve 10% for testing. Note that our test set only includes
(app, task) pairs for which all annotators agreed on their feasibility annotation.

4.1 Models

We propose a Multi-Layer Perceptron (MLP) baseline with two hidden layers
that outputs a binary feasibility prediction. Each MLP is trained for 50 epochs
with cross entropy using Stochastic Gradient Descent with a learning rate of le-
2. The natural language command is always input to the classifier, and we ablate
which app environment features are additional input. In addition to the feature
ablations, we ablate how the demonstration sequence is aggregated (averaging
or concatenating over time steps or using the last hidden state of an LSTM [16]).

Features We encode the task command and view hierarchy elements per step
with mean pooled features. Specifically, we try both FastText [6] and CLIP [35]
(trained with a Transformer backbone for its image and text encoders [11,41]).
As seen in Figure 2, the view hierarchy captures all rendered app elements and
their attributes: the element’s text (ET), resource-identifier (ID) and class labels
(CLS) which provide content and type information. We use the best combination
of these attributes in Table 3 and have more ablations in the Supplementary. We
also include Screen2Vec [24] in our view hierarchy representations. Screen2Vec
is a semantic embedding of the view hierarchy, representing the view hierarchy
with a GUI, text, and layout embedder. The GUI and text encoders make use of
BERT features while the layout features are learned with an autoencoder. Thus,
it tries to encode both textual and structural features, but no visual information.

For visual features, we extract ResNet152 [15] features for ten crops of each
app image and CLIP features of each whole app image. We also include icon
features by cropping all icon images per screen (e.g., the menu and umbrella
icons shown in Figure 2). We embed each icon image using the embedding layer
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Table 3: Task feasibility F1 score using our MLP. We ablate input features and
action sequence aggregation. The random baseline predicts a feasibility label
given the train distribution. On the right is a confusion matrix for the predictions
of our best classifier

Cfeas Input Features gig%;g‘gfg?ﬁzn (c) Best Combination
Random 20.1

(a) View Hierarchy Ground Truth
FastText [6] (ET, ID) 16.7/43.6) 34.1 : )
CLIP [35] (ET, ID) 28.0(50.9| 36.2 | easible Infeasible
Screen2Vec [24] 25.9(33.7|  36.0 =

(b) App Screen Image g § 76.4% 8.6%
ResNet [15] 31.3/41.9 359 | =&

Tcons [27] 0.4 [40.0] 15.2 22

CLIP [35] 44.7|58.2| 42.8 o2

(c) Best Combination &S 4.0% 11.0%
CLIP [35] (Screen, ET, ID)|44.8/61.1| 40.9 A=

of a CNN trained for the downstream task of icon classification by Liu et al. [27].

Metrics We report the average F1 score over ten runs with different random
initialization. “Infeasible” is defined as the positive class, as we care more about
correctly classifying tasks that are infeasible, than misclassifying feasible tasks.

4.2 Results

Our best task feasibility classifier (Table 3(c) left) achieves an F1 score of 61.1
when CLIP embeds the task, view hierarchy, and app screen image. This is still
fairly low, and feature ablations demonstrate room to improve both the language
and visual representations. While CLIP has shown significant performance gains
in other vision-language tasks, it is somewhat surprising that domain-specific
embeddings (e.g., Screen2Vec, Icons) are not as competitive. The combination
of view hierarchy and app screen features does not largely outperform the app
screen image CLIP results (and does worse with LSTM aggregation), suggesting
a need for better vision-language encodings which can pull features together
from different modalities such as the view hierarchy.

We include the confusion matrix on the right of Table 3 for our best model.
In downstream use, the classifier would result in 5% of tasks being missed out on;
i.e., 5% of tasks were incorrectly classified as infeasible. This reduces the utility
of assistive applications, where we’d like all possible commands to correctly be
completed. However, the 44% of infeasible tasks that were incorrectly classified as
feasible can have more negative consequences. In application, this means a vision-
language model would attempt to complete an unsatisfiable request, resulting
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in unknown behavior. We need downstream models to behave in reliable ways,
especially for users that cannot verify the task was reasonably completed.

Table 3(a) left compares methods of encoding the view hierarchy. Using CLIP
for view hierarchy elements results in notably better performance than FastText,
albeit less significant when input demos are aggregated with an LSTM. Our final
view hierarchy embedding is Screen2Vec which performs worse than CLIP and on
par with FastText, despite being trained on mobile app data. Screen2Vec may not
capture enough low level view hierarchy information to predict feasibility, and
methods trained on huge data, even if from another domain, are more powerful.

In Table 3(b) left we ablate over the visual representations of the app screen.
While icon representations are trained on images from the same domain as Mo-
TIF, they are significantly less effective than ResNet and CLIP. The F1 score
nearly drops to zero when the average icon feature is used, illustrating that the
average icon does not carry useful information for feasibility classification. Icon
features may be too low-level or require improved aggregation methods.

Comparing demonstration aggregation methods (averaging, concatenating,
or LSTM), there is a trend that concatenating time steps is the best method,
suggesting a sequential representation of the action sequence is needed. However,
when the best representations for the view hierarchy and app screen are combined
in Table 3(c), averaging manages to outperform the LSTM performance.

In future work we hope to learn hierarchical representations in order to en-
code global information such as that of Screen2Vec as well as local information
from icon embeddings. Taking advantage of the tree structure from the view hi-
erarchy via Transformers or Graph Neural Networks may help learn structured
app features. Additionally, all current approaches do not take into account any
notion of app “affordance,” i.e., which app elements are most actionable.

5 Task Automation Experiments

In app task automation, we are given an app environment (with all of its modal-
ities) and a language command. The goal is to interact with the app and output
a sequence of app actions that complete the task, akin to interactive VLN. At
each time step there are two predictions: an action (clicking, typing, or swiping)
and a localization (grounding visually on the app screen or classifying over the
app elements). We benchmark several methods and analyze performance below.

5.1 Models

We adapt three models for the mobile app domain with as few changes as possi-
ble. The VLN approaches described below (Seq2Seq and MOCA) take both the
high-level goal and low level instructions as input while Seq2Act only supports
low level instruction. In the supplementary we include input language ablations
to consider what performance with real downstream use would look like.

Seq2Seq is a VLN model for the ALFRED, a dataset of actionable commands
for tasks in household environments. It originally predicts an action and binary
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mask at each time step. The mask isolates the household object on which the
action is performed. The features at each time step include the attended language
instruction, the current step’s visual features, the last predicted action, and the
hidden state of a BILSTM which takes the former as input. The previous step’s
BiLSTM hidden state attends to the language input. These features are passed to
a fully connected layer with Softmax for action prediction and a deconvolutional
network for mask prediction. We replace the mask prediction network for three
fully connected layers that predict a point in the app screen and minimize the
mean squared error. Action prediction is trained via cross entropy.

MOCA [39], also proposed for ALFRED, decouples the action and grounding
predictions of each step in a VLN sequence. One model stream is for the action
prediction policy, and another for interaction grounding. Both streams first use a
BiLSTM language encoder, which take the high-level goal or low level instruction
as input, respectively. The encoded tokens are attended to using ResNet visual
features via dynamic attention filters. Then, two LSTM decoders are used: one
for the action policy stream and another for the interaction grounding.

At test time MOCA makes use of an off-the-shelf object segmentation model
to perform grounding given the predicted object class. To adapt the object class
prediction to mobile apps, we instead perform app element type prediction (pre-
diction is over twelve classes, including button, checkbox, edit text, image view,
and more). As no such segmentation model exists for mobile apps yet, we also
predict bounding box localization directly using the LSTM decoder output, but
use the app element type prediction to narrow grounding options at evaluation.

Seq2Act [25] models mobile app task automation in two stages: action phrase
extraction and action grounding. Both stages are modeled with Transformers.
The first model predicts a span (i.e., substring) of the original input command
that corresponds to the action type, action location, and action input. It has an
encoder-decoder architecture: the encoder embeds the instruction’s text tokens
and the decoder computes a query vector for the action type, location, and input
phrases given the previously decoded spans. A text span is selected for each
decoder query (action type, action location, action input) via cosine similarity.

The action grounding model takes each extracted phrase as input to predict
an action type and location (which app element it is performed on). Actions are
predicted given the encoder embedding of the predicted action type span via a
Multi-Layer Perception. To localize the action, a Transformer is trained to embed
app elements using the view hierarchy attributes as shown in Figure 2. A Softmax
is applied to the similarities of the predicted app location span embeddings and
the latent app element representations. The max scoring app element becomes
the grounding prediction for that time step.

Datasets We evaluate task automation on two MoTIF test splits: an app seen
and an app unseen split to study generalization to new environments; general-
ization of tasks across apps is provided in the Supplementary. We jointly train
VLN models on MoTIF and RicoSCA for additional data (see the Supplemen-
tary for additional experiments trained solely on MoTIF). Seq2Act was originally
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Table 4: Mobile app task accuracy on MoTIF. We evaluate the Seq2Seq and
MOCA navigation models and the Transformer grounding model Seq2Act

App Seen App Unseen
Model Action|Ground Action + Action|Ground Action +
Ground Ground

(a) Seq2Seq [38]
Complete Sequence| 68.5 | 22.5 22.5 54.3 | 18.0 17.7
Partial Sequence 89.5 | 40.4 40.1 81.7 | 31.3 30.6

(b) MOCA [39]
Complete Sequence| 51.1 21.3 20.7 44.8 17.0 15.1
Partial Sequence 78.5 | 40.0 38.6 72.2 | 32.7 30.0

(c) Seq2Act [25]
Complete Sequence| 97.3 | 324 32.4 96.8 | 28.3 28.3
Partial Sequence 99.2 | 66.4 66.3 99.6 | 67.7 67.6

trained on RicoSCA and we adapt its training data split to be able to evaluate
seen versus unseen apps at test time.

Features Visual features for Seq2Seq and MOCA are from the last convolutional
layer of a ResNet18, as done for the original models; these features are needed for
meaningful localization on the mobile app screen. We also include CLIP features
of the screen at each time step. Note that VLN methods require a test-time
environment; we build an offline version of each Android app to approximate a
complete state-action space graph. Details on the creation of these graphs can
be found in the Supplementary. Seq2Act does not use off-the-shelf features as
input; all text and app element embeddings are learned from scratch.

Metrics We report complete and partial sequence accuracy per [25]: the com-
plete score for an action sequence is 1 if the predicted and ground truth sequences
have the same length and the same predictions at each step, else 0. The partial
sequence score is the fraction of predicted steps that match the ground-truth.
These are reported for action prediction (Action), action grounding (Ground),
or both jointly. Seq2Seq localization is correct if the predicted point falls within
the bounding box of the ground truth app element. MOCA localization is correct
if the predicted bounding box and ground truth have an IoU greater than 0.5.

5.2 Results

Despite MOCA being a more recent model for interactive vision-language naviga-
tion, it generally does not outperform Seq2Seq. The app element type prediction
MOCA uses may be responsible for the similar or lower accuracy, as the original
intention of object class prediction was to narrow down grounding interaction
to very few options. E.g., in the home environments of ALFRED, which MOCA
evaluated on, the object class predicted may be apple. If there is only a single
apple in the scene, the object segmentation model would be highly effective for
grounding. The mobile app domain differs in that there are many app elements
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App: @ Task: App: @ Task:| Go to my profile

@ IsabellaCruz_01 I:l

0 0 0

W ey

Inbox

Fig. 4: Seq2Act text matching. Green and red boxes are valid and invalid predic-
tions, respectively; black are additional valid ground truth. The left shows valid
text matching, identifying “notifications” in the app Pinterest. The right shows
Seq2Act incorrectly matching “my” in the input task to the app element “My
favorite” in the Opera news app

per time step of the same type, e.g., there are many app icons or app buttons,
and this prediction may not significantly reduce the grounding prediction space.

The Seq2Seq and MOCA models perform worse than Seq2Act. While addi-
tional model ablations may improve performance, it is clear that action localiza-
tion on the continuous app screen is more challenging. Seq2Act achieves the high-
est performance for all metrics. Seq2Act was originally evaluated with PIXEL-
HELP [25] and achieved 70.6% complete Action + Ground accuracy on it, much
higher than the accuracy reported on MoTIF. This may be due to PIXELHELP
containing click-only tasks for four test environments, which does not reflect the
model’s performance on a greater variety of apps or tasks. MoTIF’s step-by-
step instructions also contain location descriptions for app elements which don’t
contain text, differing from the Seq2Act training data distribution.

Qualitatively inspecting misclassifications, we find one culprit to be Seq2Act
overly relying on matching input task text to view hierarchy text. In Figure 4,
we show Seq2Act’s text matching tendency, which can result in failure. For
example, Seq2Act predicts the app element with the word “my” in it for the
input command “go to my profile.” These results, in addition to the high visual
performance from the feasibility classifier, verifies the need for visual input to
correct model bias to match input task text directly to the view hierarchy.

Performance is unsurprisingly worse for unseen app environments. We sus-
pect that current model formulations do not learn enough about app elements
outside of the ground truth action sequences during training. None of the bench-
mark models include exploration, and as a result, may be biased to the small
subset of elements seen in expert demonstration. In future work, using pre-
trained generic app features or incorporating exploration into the training pro-
cess through reinforcement learning approaches may alleviate this.
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6 Discussion

We find our best task feasibility prediction results to be low at a 61.1 F1 score,
given that the input demonstrations serve as the oracle exploration needed to
determine feasibility. In addition to improving vision-language feasibility reason-
ing, a necessary next step is to instead use learned explorations during training.
Our ablations demonstrate that visual inputs are useful for feasibility prediction,
and research toward better mobile app features that actually use the rendered
screen could increase performance. Building hierarchical visual and textual fea-
tures may provide stronger context clues for determining command feasibility
in the app environment. We also hope to perform experiments classifying why
tasks are not feasible and automating question generation in response, making
use of MoTTF’s subclass annotations for infeasible tasks and follow up questions.

By evaluating action and grounding performance independently, we found
that models for completing mobile app tasks can have more difficulty grounding
and consistently perform more poorly in new app environments. Better represen-
tations of app elements are needed; specifically, incorporating pretraining tasks
for improved app features or allowing for exploration outside of ground truth
action sequences may be necessary to diversify test time predictions.

Limitations The MoTIF dataset is not on the scale of pretraining datasets used
in other VL tasks (e.g., Alt-Text [18], JET-300M [40]), as it is very expensive and
time costly to collect natural language commands and feasibility labels. MoTIF
is nonetheless useful to the research community as it can be used to evaluate how
existing methods would solve language-based digital tasks in realistic settings.

Societal Impact Methods for automating language commands and predicting
command feasibility can be used to assist people who are not able to interact with
apps, either situationally (e.g., while driving) or physically (e.g., users who are
low-vision or blind). Improving mobile app task automation could better balance
the capabilities of current assistive technologies, which typically lack agency or
flexibility [42]. E.g., screen readers are primarily used for web browsing and
information consumption (lacking agency), while interactive virtual assistants
(e.g., Siri, Alexa) have limited, structured commands (lacking flexibility).
MoTTIF’s collection was designed to ensure no personally identifiable informa-
tion is captured. But, in downstream use of app task automation, user privacy
is of concern. People who use assistive tools (e.g., people who are blind) already
expose sensitive information to other humans to receive help [1,2]. To mitigate
potential harm, deployment of our research can be limited to apps which do
not require log in information; these are less likely to include name, address, or
payment data. MoTIF does not have tasks which require payment, and we can
deny payment related tasks to prevent fraud and other undesired outcomes.

7 Conclusion

We introduced Mobile app Tasks with Iterative Feedback (MoTIF), a new VLN
dataset that contains natural language commands for tasks in mobile apps which
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may not be feasible. MoTIF is the first dataset to capture task uncertainty for
interactive visual environments and contains greater linguistic and visual diver-
sity than prior work, allowing for more research toward robust vision-language
methods. We introduced the task of feasibility prediction and evaluate prior
methods for automating mobile app tasks. Results verify that MoTIF poses new
vision-language challenges, and that the vision-language community can make
use of more realistic data to evaluate and improve upon current methods.

Acknowledgements This work is funded in part by Boston University, the
Google Ph.D. Fellowship program, the MIT-IBM Watson AI Lab, the Google
Faculty Research Award and NSF Grant I1S-1750563.
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Supplementary

8 MOTIF Collection

For data collection, we use UpWork® as our crowd sourcing platform and hired
34 people to collect our dataset. Of the annotators, 21 identified as female and
13 identified as male. The median age of the annotators was 23.5 years old.
Annotators were from 18 different states in the U.S. and had a range of education
from a high school diploma to a master’s degree (2 have high school degrees, 24
have bachelor’s degrees, and 8 have master’s degrees).

Annotators were selected on UpWork if their profile skills listed data entry. As
the initial iteration of MoTIF is in English, we also required annotators be fluent
in English, but did not require them to be native speakers. We posted separate
job listings for the task writing (base rate $15/hr) and task demonstration (base
rate $10/hr) portions of the data collection, having independent annotators for
the two stages. Annotators hired for the task writing portion were not informed
of our interest in potentially ambiguous or infeasible tasks.

For the annotators hired for task demonstration, we additionally required
them to have personal experience with Android devices so that there was no ad-
ditional noise introduced from people unfamiliar with Android apps. We created
anonymized login information for annotators so that no personally identifiable
information was collected. Additional interface details and an example of the
interface used by the workers (Figure 5) is provided in Section 8.1.

8.1 Data Collection Interface

We provide an example of what our data collection interface looks like for an-
notators while they explore an Android app and perform a task demonstration
in Figure 5. Annotators are given the natural language task to attempt within

® https://www.upwork.com/
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Time Remaining: 29 minutes, 45 seconds

Recording is OFF

START

Your Task

Complet
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ate a new account to save

four favorite recipes

Log in with Facebook

Log in with Google

Fig. 5: The website interface annotators use to interact with an Android app and
record their task demonstration. We provide anonymized information if needed
for logging in or for forms at any point so that no personal identifying information
is collected

the Android app in the ‘Your Task’ section on the right side of the interface.
Below, we provide anonymized email login and password credentials for them to
use if needed. The left hand side of the collection interface displays the phone
screen from a physical Android device which is remotely connected to our col-
lection website, from which we record all actions taken on the phone and the
app modalities as described in the main text.

8.2 Application List

We include lists of all Android apps we collect demonstrations for in Tables 5-7.
In addition to listing the app package name, we provide the corresponding Google
Play Store Category and how that particular app’s tasks were paired (app-
specific, paired, or category-clustered). The apps selected for MoTIF were across
fifteen app categories: lifestyle, communication, dating, food and drink, maps and
navigation, news and magazines, productivity, shopping, social, travel, weather,
tools, music and audio, entertainment, and education. For privacy, we do not in-
tend to collect any demonstrations of natural language commands within dating
apps, and will not be releasing any of the raw data collected when annotators
decided on a list of natural language tasks for dating apps in the first stage of col-
lection. We simply include dating apps as one Android category to see what kinds
of tasks people would consider being automated in this setting. We will share the
resulting natural language tasks, but no captured screen or view hierarchy data.
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The dating apps included com.wildec.dating.meet4u, com.once.android, emo-
tion.onekm, ru.fotostrana.sweetmeet, com.mason.wooplus, and com.hitwe.android.

8.3 Dataset Examples

We include more example (app, task) pairs and their resulting action sequences
from MoTIF. Figure 6 and 7 show samples for infeasible and feasible commands,
respectively.
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Table 5: A list of applications used in MoTIF, their Google Play Store Category,
and how their submitted natural language tasks were grouped with applications
in the (app, task) pairing stage. N/A refers to apps which has technical difficulties
during the demonstration stage and we are working to resolve

Google Play
Store Category

App Name

(app, task)
Pairing Method

com.ted.android

app-specific

gov.nasa

app-specific

example.matharithmetics

paired

org.khanacademy.android

app-specific

Education com.duolingo app-specific
com.quizlet.quizletandroid app-specific
com.remind101 N/A
org.coursera.android N/A
com.microblink.photomath paired
com.megogo.application app-specific
com.app.emotes.dances.fortnite |app-specific
com.scannerradio app-specific

. com.google.android.youtube app-specific

Entertainment com.zombodroid. MemeGenerator| app-specific
tv.pluto.android app-specific
com.tubitv app-specific
com.imdb.mobile app-specific
com.eventbrite.attendee app-specific
com.google.android.gm app-specific
com.sec.android.app.sbrowser paired

. . _|com.facebook.orca N/A

Communication
com.whatsapp N/A
org.mozilla.firefox paired
com.skype.raider N/A

Food & Drinks

com.joelapenna.foursquared

app-specific

com.yum.pizzahut

app-specific

com.chickfila.cfaflagship

app-specific

com.dominospizza

paired

in.swiggy.android

app-specific

com.opentable

app-specific

com.starbucks.mobilecard

app-specific

vivino.web.app

app-specific

Lifestyle

com.hm.goe

app-specific

com.adpog.diary

app-specific

com.aboutjsp.thedaybefore

app-specific

info.androidz.horoscope

N/A

ru.mail.horo.android

paired

com.urbandroid.sleep

app-specific

com.hundred.qibla

app-specific
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Table 6: A list of applications used in MoTIF, their Google Play Store Category,
and how their submitted natural language tasks were grouped with applications
in the (app, task) pairing stage. N/A refers to apps which has technical difficulties

during the demonstration stage and we are working to resolve

Google

& Navigation

Play Store |App Name é’azfi)fi,ntgail/;()a thod
Category
com.tranzmate category-clustered
com.mapfactor.navigator category-clustered
Maps com.thetrainline category-clustered

com.citymapper.app.release

app-specific

com.prime.studio.apps.route.finder.map

category-clustered

com.waze

category-clustered

com.nyctrans.it

category-clustered

com.radio.fmradio

app-specific

deezer.android.app

app-specific

com.spotify.music

category-clustered

& Magazines

Music com.pandora.android category-clustered

& Audio com.springwalk.mediaconverter category-clustered
com.google.android.music category-clustered
com.clearchannel.iheartradio.controller category-clustered
com.melodis.midimiMusicldentifier.freemium| category-clustered
fm.castbox.audiobook.radio.podcast category-clustered
com.ss.android.article.master N/A
com.opera.app.news category-clustered

News bbc.mobile.news.ww category-clustered

com.quora.android

N/A

com.google.android.apps.magazines

category-clustered

com.reddit.frontpage

app-specific

com.sony.nfx.app.sfrc

category-clustered

com.amazon.mShop.android.shopping

app-specific

com.abtnprojects.ambatana

category-clustered

com.contextlogic.wish

category-clustered

Shopping com.joom category-clustered
com.ebay.mobile category-clustered
com.walmart.android category-clustered
club.fromfactory app-specific
com.zzkko app-specific
com.groupon category-clustered
cn.wps.moffice_eng category-clustered
com.google.android.apps.docs.editors.sheets |category-clustered
com.google.android.apps.docs N/A

Productivity |com.microsoft.office.outlook category-clustered

com.google.android.calendar

category-clustered

com.google.android.apps.docs.editors.slides

category-clustered

com.dropbox.android

N/A
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Table 7: A list of applications used in MoTIF, their Google Play Store Category,
and how their submitted natural language tasks were grouped with applications
in the (app, task) pairing stage. N/A refers to apps which has technical difficulties
during the demonstration stage and we are working to resolve

Google app, task

Play Store|App Name %’a%fing Mithod

Category
com.lenovo.anyshare.gps app-specific
com.antivirus paired
com.google.android.calculator paired

Tools com.miui.calculator paired
com.google.android.apps.translate app-specific
com.avast.android.mobilesecurity paired
com.kayak.android paired
com.tripadvisor.tripadvisor paired
com.trivago paired
com.google.android.apps.maps paired

Travel com.yelp.android app-specific
com.booking N/A
com.google.earth paired
com.mapswithme.maps.pro app-specific
com.google.android.street paired
com.yellowpages.android.ypmobile app-specific
com.gau.go.launcherex.gowidget. weatherwidget|N /A
com.devexpert.weather category-clustered
com.chanel.weather.forecast.accu category-clustered
com.weather.Weather category-clustered

Weather |com.droid27.transparentclockweather app-specific
aplicacion.tiempo category-clustered
com.accuweather.android category-clustered
com.windyty.android category-clustered
com.handmark.expressweather category-clustered
com.zhiliaoapp.musically category-clustered
com.pinterest category-clustered
com.instagram.android category-clustered

Social com.facebook.katana category-clustered
com.sgiggle.production app-specific
com.snapchat.android app-specific
com.ss.android.ugc.boom category-clustered
com.lazygeniouz.saveit category-clustered
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Fig. 6: Example tasks from MoTIF deemed infeasible by annotators. We show
the input (app, task) pair for task demonstration, the resulting task demo (which
captures the rendered screen, app view hierarchy, and action localization), and
the feasibility annotations and follow up questions posed by annotators
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Fig. 7: Example tasks from MoTIF deemed feasible by annotators. We show the
input (app, task) pair for task demonstration, the resulting task demo (which
captures the rendered screen, app view hierarchy, and action localization), and
the feasibility annotations and follow up questions posed by annotators
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Fig. 8: Additional statistics on MoTIF’s language tasks

9 MOoTIF Statistics

We include statistics over the high-level goals collected for MoTIF in Section 9.1
and word cloud visualizations over all commands and per category in Section 9.2.
We discuss annotator agreement when determining command feasibility in Sec-
tion 9.3. Lastly, the cluster visualizations used to define (app, task) pairs in
MoTIF are illustrated in Section 9.4.

9.1 Natural Language Command Statistics

We provide additional statistics on the natural language high-level goals in Mo-
TTF in Figure 8. In Figure 8a we plot a histogram over the word frequency of the
command vocabulary and Figure 8b shows a histogram over the task length (i.e.,
how many words a task consists of ) across all collected natural language tasks.
Both reflect a long tail distribution, which is common for word frequency, and
follows Zipf’s Law. For task length, the distribution is skewed towards shorter
length tasks (nearly all collected tasks have fewer than ten words), which aligns
with MoTIF’s natural language commands mostly capturing high-level goals.

9.2 Word Cloud Visualizations

We include a word cloud illustration over all high-level commands in MoTIF in
Figure 9. The larger the word in the word cloud, the more often it occurs in
MoTIF’s collected tasks. As we compute the word cloud over all tasks (which
span fifteen different Google Play Store app categories) we can see the largest
words are those that are action or instruction oriented words, like ‘click,’ ‘search,’
or ‘show.” In Figure 10, we show word clouds for tasks per app category.

While there are some common words with high frequency across all app
categories (like the action oriented words largest in Figure 9), there are other
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Fig.9: Word cloud visualization over all MoTTF high-level language commands.
The larger the word is illustrated, the more often it occurs

words illustrated that reflect each app category and functionality specific to that
topic. For example, in the Education word cloud in the top left of Figure 10, we
see words ‘lesson,” ‘math,” and ‘history.” In contrast, the Shopping category in
Figure 10 shows words like ‘deal,” ‘search,” and ‘cart’ with high frequency.

The word cloud visualizations also show the density of words for each Android
app category’s collected tasks. The Food & Drink, Productivity, and Music &
Audio app categories have the smallest vocabularies, with less densely populated
word clouds. This reflects there being lower diversity in the kinds of requests
asked by people for these app categories. On the other hand, Maps & Navigation,
Weather, and Travel are examples of Android app categories with larger task
vocabularies. This can reflect greater diversity in app requests collected, which
may be due to the diversity of functionality in these app categories, or the fact
that these apps can have highly specific, i.e., very fine-grained, requests (like
searching for one location’s weather out of the nearly unlimited locations one
could request).

9.3 Annotator Feasibility Agreement

We define annotator feasibility labeling agreement as the fraction of the number
of votes for the majority voted label (max(Cyes, Cno)) over all votes (Cyes+Cho)
for an (app, task) pair in MoTIF, where Cy.s is the count of votes for feasible
and C,, is the count of votes for infeasible. In Figure 11, we bin different de-
grees of annotator agreement and plot each bin’s counts over all (app, task) pairs
with demonstrations in MoTIF. The minimum agreement is 50% and maximum
agreement is 100%. The majority of our (app, task) pairs have annotation agree-
ment between 90-100%, with 296 (app, task) pairs falling in this maximal bin.
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Fig.10: Word cloud visualization of MoTIF high-level language tasks per An-
droid app category. There are fifteen total categories: Education, Dating, Com-
munication, Food & Drink, Entertainment, Lifestyle, Maps & Navigation, News
& Magazine, Music & Audio, Shopping, Productivity, Social, Tools, Weather,
and Travel. The larger the word is illustrated, the more often it occurs
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Fig.11: The annotator feasibility labeling agreement for (app, task) pairs with
demonstrations in MoTIF

9.4 App Category Clustering Visualizations

We provide the K-Means T-SNE cluster visualizations used in the (app, task)
pairing process for each category of apps in Figure 12. These clusters decide
whether an app’s tasks are kept app-specific, paired to one or two other apps, or
are category clustered. We zoom into the cluster visualization for the Weather
Android app category in Figure 13. On the left, we see the cluster output for
K-Means on the average task embedding (using FastText representations) for
the commands written for weather apps. On the right we show the exact same
clustering, but now color the points (i.e., the written tasks) by which app they
were originally written for. In the lower left corner of the cluster visualization
is an isolated cluster for the com.droid27.transparentclockweather app. As its
tasks form an isolated cluster, they are kept app-specific, while all other apps
have (app, task) pairs obtained from the category clustering.

To actually select the category clustered tasks, we select natural language
commands near each cluster’s centroid. These serve as cluster representatives
for our task demonstration data collection. So, for every Google Play Store app
category, we perform K-Means with K=5, as we start by collecting demonstra-
tions for five commands per app. Then, for apps that are chosen to be category
clustered, we select the cluster representatives and collect demonstrations of
these representatives for each weather app. For additional clarity, see Tables 5-7
for the (app, task) pairing method per app. Eventually, the goal is to collect all
possible combinations of (app, task) pairs within a category.
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Fig. 12: T-SNE visualization of K-Means clusters for each Android Google Play
Store Category. The visualizations are colored with the originating app label
(and not the K-Means cluster label). These visualizations are used to inspect
which apps should retain their app-specific tasks during the action sequence
demonstration stage
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Points Colored by K-Mcans Cluster Labels ‘ ‘ Points Colored by Originating Apps

Fig.13: T-SNE visualization of K-Means clusters on MoTIF commands from
the Weather Google Play Store app category. Points represent MoTIF com-
mands (represented by their mean FastText embedding). The left plot colors
points by the clusters output by K-Means, while the right plot colors points
by their originating app. In the lower left corner of both plots is a cluster
(the green cluster on the left hand side), which when colored by the app the
command was originally written for (on the right hand side), we see primar-
ily comes from a single app, com.droid27.transparentclockweather. As a result,
this app’s commands will not be category clustered, and will stay paired with
com.droid27.transparentclockweather
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Table 8: Task feasibility F1 score using our MLP. We ablate input features
and how action demonstration sequences are aggregated. The random baseline
predicts a feasibility label given the train set distribution

Cfeas Input Features Eigl\%ig\gfg%tﬁn
Random 20.1
(a) View Hierarchy
FastText
ET 22.8|144.3| 37.0
ET + ID 16.7|43.6| 34.1
ET 4+ ID + CLS 19.7(39.6| 36.2
CLIP
ET 27.0148.4| 35.9
ET 4+ ID 28.0150.9] 36.2
ET 4+ ID + CLS 29.649.2| 35.2
Screen2Vec 25.9133.7 36.0
(b) App Screen Image
ResNet 31.3(41.9] 35.9
Icons 0.4 [40.0| 15.2
CLIP 44.7\58.2| 42.8
(c) Best Combination
CLIP (Screen + ET + ID)|44.8[61.1| 40.9

10 Task Feasibility Experiments

In Table 8(a), we have additional rows for which view hierarchy element at-
tributes are included as input features to our feasibility classifier. The view
hierarchy of an Android app contains several element attributes, including text
(ET), resource-identifier (ID), and class (CLS) attributes. We ablate using one or
multiple of these attributes and find that on average across demonstration aggre-
gation type, the (ET 4+ ID) input combination results in the best performance.
Consequently, we keep it for our best results in the main text.

11 Task Automation Experiments

We further detail how task automation experiments are performed in a vision-
language navigation paradigm in Section 11.1, where we describe the test-time
environment. Then, we report performance when training VLN methods only
on our data in Section 11.2. In Section 11.3, we evaluate our models from the
main paper on different language inputs (high-level goal, low-level instruction,
or both) at test-time and describe performance trends. Lastly, in Section 11.4
we include some additional results on generalization of tasks across apps for a
subset of our baselines.



Interactive Vision-Language Navigation with Unknown Command Feasibility 33

Table 9: Mobile app task complete and partial sequence accuracy on MoTIF
when trained on MoTIF alone, or MoTIF and RicoSCA data for the Seq2Seq
model. The training and testing language input are kept the same; input contains
the high-level goal and low level step by step instructions

MOoTIF Test Split

Model Train App Seen App Unseen
Seq2Seq|  Data Action|Ground Action + Action|Ground Action +
Ground Ground
Complete 45.0 17.1 15.9 33.8 13.6 11.7
Partial MoTIF 79.4 | 37.7 35.5 66.8 | 27.8 25.0
Complete MoTIF +| 68.5 | 22.5 22.5 54.3 | 18.0 17.7
Partial |RicoSCA| 89.5 | 40.4 40.1 81.7 | 31.3 30.6

Table 10: Mobile app task complete and partial sequence accuracy on MoTIF
when trained on MoTIF alone, or MoTIF and RicoSCA data for the MOCA
model. The training and testing language input are kept the same; input contains
the high-level goal and low level step by step instructions

MOoTIF Test Split

Model Train App Seen App Unseen
MOCA Data Action|Ground Action + Action|Ground Action +
Ground Ground
Complete 37.8 16.2 12.3 24.6 17.0 13.2
Partial | MOTTF | 660 | 349 | 209 | 604 | 320 | 277

Complete MoTIF +| 51.1 | 21.3 20.7 44.8 | 17.0 15.1
Partial |RicoSCA| 78.5 | 40.0 38.6 72.2 | 32.7 30.0

11.1 Test-time Evaluation of Seq2Seq and MOCA

We build an offline version of each Android app environment to approximate a
complete state-action space graph at test time. We merge demonstrations we’ve
collected across all samples. The nodes in this state-action space graph are unique
‘views’ of an application, i.e., a particular screen within an action demonstration
sequence. Nodes are connected by edges which represent the transition between
any pair of screens. This transition is defined by the action class (clicking, typing,
or swiping) and the location of the action taken at the current screen state (point
or bounding box coordinates in the rendered app screen image).

11.2 Training Data Ablations

We also ran experiments with Seq2Seq and MOCA when trained only on Mo-
TIF data instead of both MoTIF and RicoSCA. We include these comparisons
for Seq2Seq and MOCA in Tables 9 and 10, respectively. Jointly training on
both datasets consistently performs better across all metrics. Additionally, per-
formance trends generally remain the same when comparing the app seen versus
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Table 11: Mobile app task complete and partial sequence accuracy on MoTIF
with various language inputs at test time for the Seq2Seq model. The training
input contains the high level goal and low level step by step instructions
MOoTIF Test Split

Model Test App Seen App Unseen
Seq2Seq| Input Action + Action|Ground Action +
Ground Ground
Complete|High +| 68.5 22.5 22.5 54.3 18.0 17.7
Partial Low | 89.5 | 404 40.1 81.7 | 31.3 30.6

Action|Ground

Complete Low 47.1 18.6 18.0 27.1 13.9 13.9
Partial 73.7 | 36.6 33.9 43.6 | 22.6 21.2
Complete Hich 309 | 15.3 14.7 18.9 | 11.7 8.8
Partial & 68.1 | 31.6 29.5 59.1 | 24.0 19.8

app unseen test split: regardless of training data, accuracy is higher on the app
seen test split. We report the joint training performance for these methods in
the main text for a closer apples-to-apples comparison with Seq2Act.

11.3 Test-time Language Input Ablations

We include ablations for the trained models in the main text for all possible lan-
guage inputs at test time. Seq2Seq and MOCA were trained on both high-level
goal and low-level instructions, as their original models supported both inputs
and obtained best performance with them in prior work. Seq2Act does not cur-
rently support high-level goal language input, so we cannot jointly evaluate both
in a meaningful way. We benchmark models as close to their original architecture
as possible, and leave adaptations to future work.

In the main text, all task automation results were reported on the same
language input as was used during training to avoid confounding factors when
analyzing generalization to new app environments. Thus, Seq2Seq and MOCA
took both high-level and low-level command as input while Seq2Act took only
low-level instruction. We now evaluate all possible input language ablations at
test time. Evaluating the high-level goal input alone replicates what these models
would be provided in practical application, as users would request high-level goals
(and not provide step by step instruction). Our high-level input results are useful
to evaluate generalization to downstream settings, but we also include results
for low-level input alone or both high-level and low-level language instruction
(where applicable, as Seq2Act cannot support both) in Tables 11, 12, and 13.

The Seq2Seq partial and complete sequence accuracy for action prediction
show that having both high-level goal and low-level instruction inputs result
in the best performance, followed by low-level instruction, and then high-level
goal. On the other hand, MOCA performs quite similarly when both high-level
goal and low-level instruction are input versus low-level instruction alone on
action prediction. Additionally, there is less grounding performance degradation
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Table 12: Mobile app task complete and partial sequence accuracy on MoTIF
with various language inputs at test time for the MOCA model. The training
input contains the high level goal and low level step by step instructions
MOoTIF Test Split

Model Test App Seen App Unseen
MOCA | Input Action + Action|Ground Action +
Ground Ground
Complete|[High +| 51.1 21.3 20.7 44.8 17.0 15.1
Partial Low | 78.5 | 40.0 38.6 72.2 | 327 30.0

Action|Ground

Complete Low 48.6 | 19.5 19.2 454 | 17.0 15.8
Partial 77.3 | 36.5 36.5 74.1 | 324 30.8
Complete Hich 13,5 | 19.5 8.4 114 | 18.6 6.9
Partial & 43.6 | 38.8 26.1 41.1 | 33.5 21.2

Table 13: Mobile app task complete and partial sequence accuracy on MoTIF
with various language inputs at test time for the Seq2Act model. The training
input contains the low level step by step instructions

MOoTIF Test Split
Model Test App Seen App Unseen
Seq2Act Tnput Action|Ground Action + Action|Ground Action +

Ground Ground
Complete Low 97.3 | 324 32.4 96.8 | 28.3 28.3
Partial 99.2 | 66.4 66.3 99.6 | 67.7 67.6
Complete Hich 10.6 7.6 7.6 8.5 1.9 1.9
Partial 8% 981 | 13.0 10.8 31.3 7.0 5.4

over the ablations, which may be a result of MOCA’s more constrained test-time
environment (which uses app type prediction to narrow the grounding prediction
space).

Seq2Act performs best across all metrics when provided the low-level instruc-
tion at test time. This is expected, given that Seq2Act was trained on step by
step instructions. For both test splits, the action and grounding accuracy is sig-
nificantly higher with low-level input. As the VLN methods showed having both
high-level and low-level inputs can improve performance, adapting Seq2Act to
take both as input would be important in future work.

11.4 Generalization of Natural Language Commands across Apps

We lastly evaluate generalization of our task automation methods to natural
language tasks. Specifically, we present results on two additional test splits: an
app seen and task unseen app split (where the task was seen in other apps,
but not the current) and an app unseen and task seen split. The former shows
the easier setting of having seen the app environment with other tasks during
training and the task with other apps during training, whereas the app unseen
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Table 14: Mobile app task complete and partial sequence accuracy on MoTIF
with various test splits for evaluating task generalization. The training and test-
time input contains the high level goal and low level step by step instructions
MOoTIF Test Split
App Seen Task Unseen

App Unseen Task Seen

Model (Current App)
Action|Ground Action + Action|Ground Actlon +
Ground Ground

Seq2Seq
Complete| 75.4 | 31.0 31.0 70.9 | 25.8 25.8
Partial 92.7 | 46.6 46.6 91.5 | 414 41.2
MOCA
Complete| 66.5 | 34.3 33.1 57.9 | 29.5 28.1
Partial 87.8 | 47.7 46.2 77.8 | 44.7 42.7

test split means the task was seen during training with other apps but the model
has never seen any task in this particular app.

Intuitively, performance is consistently higher on the easier setting of app seen
and task unseen (current app), as the model has had the chance to learn about
both the app environment and task instruction, albeit independently. Comparing
these task generalization results to the app generalization results in the main
text (can also be found in Tables 11-13), the models can consistently generalize
tasks across applications better than they can generalize to new environments.
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