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In this work, we address the problemof detecting anomalies in a certain laboratory

automation setting. At first, we collect video images of liquid transfer in automated

laboratory experiments. We mimic the real-world challenges of developing an

anomaly detectionmodel by considering two points. First, the size of the collected

dataset is set to be relatively small compared to large-scale video datasets.

Second, the dataset has a class imbalance problem where the majority of the

collected videos are from abnormal events. Consequently, the existing learning-

based video anomaly detection methods do not perform well. To this end, we

develop a practical human-engineered feature extraction method to detect

anomalies from the liquid transfer video images. Our simple yet effective

method outperforms state-of-the-art anomaly detection methods with a

notable margin. In particular, the proposed method provides 19% and 76%

average improvement in AUC and Equal Error Rate, respectively. Our method

also quantifies the anomalies and provides significant benefits for deployment in

the real-world experimental setting.
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1 Introduction

Laboratory automation is the integration of machine learning, computer vision, and

robotics to automate one aspect or the entire process of a laboratory setting including

protocols relying on reagents, tools, and instrument manipulations. With the advent of

computation capabilities and artificial intelligence in the last decade, automation has seen a

meteoric rise in its applications in laboratories especially as a substitute for repetitive or risky

tasks (Felder et al., 1990). The integration of automated components in laboratories is

motivated by the necessity of high precision output, reproducibility of experiments,

minimized risk/exposure to human operators, and subsequent minimized cost of

production through the elimination of manual labor (Bogue, 2012; Holland and Davies,

2020). Proper management of laboratory automation is a stringent requirement in the testing

and production process (Saboe, 1995; Holland and Davies, 2020) where defects and failures

of the automation component have far-reaching consequences. A significant part of the

process is the operators’ abilities to detect these anomalous activities and to intercede when
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needed. Therefore, anomaly detection in the autonomous laboratory

setting plays a pivotal role in ensuring the system’s reliability and

safety (Gupta et al., 2018).

Anomaly detection refers to data pattern detection that deviates

significantly from the majority of data samples. Pang et al. (2022),

Chandola et al. (2009) and Chalapathy and Chawla (2019) state

various applications of anomaly detection algorithms ranging from

fraud detection, intruder detection, and traffic monitoring to

medical anomaly, sensor anomaly, and robotics behavior

anomaly. All of these applications range from a variety of data

mediums among which automatic anomaly detection in video data

has long been a prevalent problem and has drawn a lot of attention

from both the research world and industry (Saligrama and Chen,

2012; Zhao et al., 2017; Hao et al., 2022). Live video streams can be

used to automatically infer situations of interest by extracting

appropriate information from frames (Bebis et al., 2016) and are

important in the laboratory setting as a medium for anomaly

detection.

The task of liquid transfer in the context of laboratory experiments

has profound importance. The mixing of multiple reagents, transfer to

and from source and destination containers, and proper handling of the

final solution are only some of the applications. Quantitative analysis of

such tasks requires proper liquid handling. Automation of such

processes enables parallel execution and feedback on a larger scale.

This study is based on a novel dataset containing video data from an

automated laboratory setting which depicts the automated transfer of

liquid reagents via several pipettes from one container to another. This

is a repetitive and rudimentary task in the context of biochemical

laboratory experiments where precise measurements of the transferred

content are required for proper qualitative and quantitative analysis

(Betz et al., 2011). Thus, automation of this activity reserves a very

important role in the experimentation process but requires

complementary detection algorithms to identify anomalous events.

The dataset contains several such anomalous events where the

transfer of liquid fails due to different kinds of pipette malfunctions.

Additionally, few normal sequences are present where the entire reagent

transfer process is executed without any error. Several challenging cases

of this dataset are the different types of anomalies introduced and the

color variations of the reagents. Furthermore, the dataset provides a

limited number of data samples of each type, and consequently, the

number of normal sequences is far outnumbered by the combined data

of different anomaly sequences. Our work endeavors to find an

appropriate solution in order to subvert these challenging cases

while limiting the scope of the anomalies related to the task of

colored liquid transfer.

Existing anomaly detection solutions have some limitations in

the context of this automated laboratory dataset. Adam et al. (2008)

and Cheng et al. (2015) employ statistical modeling using features

such as optical flows for anomaly detection. But these methods are

not generalized enough to be used in the liquid transfer scenario. For

example, the optical flow information extracted from the video

frames is ineffectual as there are dynamic elements in addition to the

region of interest. Deep learning methods are widely popular and

have been successfully used for anomaly detection in various

settings. These methods include object detection and tracking

using trajectory-based methods (Coşar et al., 2016),

Convolutional Neural Networks (CNNs) for representation

learning (Andrews et al., 2016), and reconstruction methods

using Auto-Encoders (Zhao et al., 2017), etc. As these methods

automatically extract image features from examples, they require a

large number of training samples and a balanced dataset to be

properly trained and generalized to all potential scenarios (Alom

et al., 2019). The dataset presented here has a class imbalance

problem as the normal sequence samples are very few compared

to the abnormal sequence samples. Furthermore, the overall number

of video samples in the dataset is insufficient for training supervised

deep learning methods with reliable cross validation (Fang et al.,

2021). Thus, the application of existing supervised deep learning

methods in the procured automated reagent transfer dataset is

limited. In recognition of these constraints, we instead focus on

human-engineered feature extraction methodologies based on

observations and assumptions to extract features from the

available dataset for the use of machine learning methods to

detect anomalies.

In this study, we introduce an anomaly detection algorithm for

the automated laboratory setting. Due to the limitations of deep

learning approaches in the context of the dataset, we employ

custom-made feature extraction methods to develop these

algorithms. The algorithm is based on pipette region detection

and self-comparison of video frame sequence to quantitatively

identify deviation. This is designed specifically for the dataset

scenario and overcomes sample size constraints due to the

engineered feature extraction property. The algorithm

successfully detects all types of colored reagent transfer anomalies

present in the dataset. Additionally, extra samples created through

manual segmentation from the video data frames are used to extend

the dataset reliably.

The layout of this paper is as follows: Section 2 presents a literature

review, Section 3 discusses the dataset and its challenges in depth,

Section 4 describes the proposed methodologies, Section 5 analyses the

results and finally the conclusion is presented in Section 6.

2 Related works

Anomaly detection has been developed extensively for a wide

range of applications. According to Chalapathy and Chawla (2019),

this includes but is not limited to fraud detection, industrial damage

detection, medical anomaly detection, video surveillance, etc

(Sánchez et al., 2009; Jiang et al., 2011; Arroyo et al., 2015;

Maeda et al., 2018; Caruccio et al., 2019; Nawaratne et al., 2019;

Wan et al., 2022). Hence, the automatic detection of such anomalies

is a popular topic among researchers. In our work, we will focus on

detecting anomalies from a video. Though directions explored by

researchers to solve such problems are very diversified, the

methodologies can be clustered into two major subgroups.

Subsection 2.1 illustrates examples from classical hand-crafted

feature-based approaches and subsection 2.2 describes some of

the modern deep learning-based approaches against this problem.

2.1 Classical methods

In the cases where we don’t have access to large labeled data,

opting for hand-crafted features and statistical models have been

preferred by researchers. Adam et al. (2008) uses monitors in fixed
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locations around the whole frame and extracts some local feature

metrics from them. These features are then used to make a decision.

In another work, crowd behavior dynamics are extracted by a social

force model (Helbing and Molnar, 1995) and used as the indication

factor of anomalies by Mehran et al. (2009). Cheng et al. (2015)

extracts interest points from a frame and merges points from

different times with Gaussian process regression. These merged

points are then compared with samples of an anomalous incident to

infer the situation. Pan et al. (2022) proposes a symplectic relevance

matrix machine (SRMM) that uses probabilistic models and

geometric theory for failure classification.

One important drawback of these types of methods is that these

approaches depend on hand-crafted features and losses their

generality when a new situation arrives.

2.2 Deep learning based methods

Deep learning models, specifically convolutional neural

networks are currently used to achieve state-of-the-art

performance in a wide range of computer vision problems. This

includes image classification (Foret et al., 2020; Brock et al., 2021),

object detection (Wang et al., 2022c; Wang et al., 2022a), instance

segmentation (Mohan and Valada, 2021; Qiao et al., 2021) etc.

For solving anomaly detection problems, trajectory-based

methods (Piciarelli et al., 2008; Coşar et al., 2016) have been

proposed as a solution. These methods include two parts. Firstly,

the methods detect the objects of interest and secondly, track their

trajectory across frames. Deviation in action from normal activities

is marked as an anomaly. The performance of this type of procedure

depends on both detection and tracking accuracy in this scenario.

A CNN feature extractor can reduce high-dimensional video

data into low-dimensional and compact feature vectors and

dictionaries. Afterward, these can be passed through some simple

classifiers to make a decision (Andrews et al., 2016; Ali et al., 2020; Li

et al., 2020; Wang X. et al., 2022).

Reconstruction models represent another deep learning

approach that is popular in the detection of anomalous events. In

this scenario, a model learns normal patterns while trying to

reconstruct frames of normal videos. During inference when an

anomalous frame is encountered, the model will generate high

reconstruction loss which can clearly indicate the presence of an

anomaly. This method has also been supported by many research

works (An and Cho, 2015; Zhao et al., 2017; Zenati et al., 2018). One-

Class Classification is slightly similar to the reconstruction-based

method. The abundance of normal data often leads to using only

normal samples while training, thus making the problem into one

class classification instead of a binary classification task. Chalapathy

et al. (2018) uses this type of solution to address anomaly detection.

There are possibly endless opportunities for using CNNs while

addressing a problem like anomaly detection in videos, but for

providing satisfactory results, these methods need a huge amount of

labeled data. In most real-life scenarios, there is a scarcity of large

volumes of such data which creates a bottleneck. This shortcoming

has been addressed by using unsupervised learning. The general

approach to this method uses a CNN feature extractor to extract

meaningful information or interesting regions. Afterward, some

clustering algorithm is used to cluster normal and anomaly

FIGURE 1

Example of liquid color augmentation. Here the original liquid color is cyan (A) and themanual segmentationmasks (B) are used to change the color

to violet (C).

FIGURE 2

Example of pipette augmentation. Here the 3rd, 5th, and 7th pipettes of the normal frame (A) are replaced with those of an abnormal one (B) to

produce a new abnormal frame (C).
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samples separately (Doshi and Yilmaz, 2020b; Li et al., 2021). Closely

related to this group of solutions are semi-supervised methods. Ruff

et al. (2019) and Demertzis et al. (2020) adopt semi-supervised

solutions for solving anomaly detection problems.

An approach to address data scarcity is zero-shot, one-shot, and

any-shot learning (Ravi and Larochelle, 2016; Snell et al., 2017; Sung

et al., 2018; Doshi and Yilmaz, 2020a; Lu et al., 2020; Rivera et al.,

2020). Generally, different types of augmentations are used in this

type of setting. Besides, these types of approaches require pretraining

and guiding the gradient of the model using a large amount of

labeled data from similar or related problems. In our case, the

volume of data is limited. Furthermore, the definition of the

anomaly is different between our dataset and the publicly

available large datasets. For this reason, the power of few-shot

learning or any-shot learning cannot be leveraged in our case.

Finally, after analyzing all the possibilities, we discard deep

learning based approaches. We have a limited amount of data,

which is not sufficient to make the CNNs learn the necessary feature

representation. On the other hand, we cannot depend solely on a

domain-related hand-crafted feature extraction method as it

provides poor generalization. For this reason, we use machine

learning based models and feed them with processed hand-

crafted features from a few past frames and the current frame.

The model then makes a decision on whether the current frame is

normal or anomalous.

3 Dataset

3.1 Content and challenges

The dataset contains 3 sets of videos with a total of 19 video clips

with a duration of approximately 10 s. The videos are captured using

the camera placed randomly at 30 cm-200 cm from the liquid

transfer device. Both the horizontal and vertical angles for the

camera viewpoint is selected randomly from 0-15°. These values

are selected empirically such that the resulting videos capture the

transfer procedure robustly while having sufficient distractors to

challenge the detection algorithm. In each video, the overall

environment remains constant except for two moving parts. The

first moving part is the table upon which there is a container of

liquid. There are two types of containers. The first one is a series of

glass trays containing a matrix of beakers. These beakers can either

contain a liquid or are empty. And the second type of container is a

plastic tub. The objective is to transfer the liquid from the source

container to the target container. The second moving part is a robot

end effector which contains a series of pipettes aligned in a row.

These pipettes act as the middleman in the transfer of liquid between

the containers. The effector can move both horizontally and

vertically. It moves horizontally to place itself above the correct

position of the source/target container and moves vertically to

interact with them. The interaction of pipettes with the container

is simply filling up the pipettes from the source container or

emptying the liquid from the pipettes into the target container.

The primary challenge is the limited size of the dataset. Overall,

19 videos are present; five videos without any kind of anomaly and

other videos containing bottom out and clogged tip anomalies.

Video-level normal and anomaly labels are available out of the

box. There are no readily available image-level labels, but are created

for experiments based on manual observation. Among anomaly

labels, a bottom-out anomaly occurs when the tip of the pipette is

fixed against the bottom of a beaker while aspirating, which creates a

vacuum and thus the pipette cannot function properly. Also, a

clogged tip anomaly can occur where tips of the pipettes are

completely or partially clogged and thus liquid cannot be

extracted into the pipette properly. Here in this study, we focus

on the anomaly cases that result in a change in the liquid level, and

consequently, reduce the effectiveness of the liquid transfer task.

Additional types of anomalies, such as the movement of the robot

end effector or unpredictable changes to the environment causing

mechanical and manual problems, are deferred to future works to

reduce the challenges of the research problem. Most of the current

studies into anomaly detection deal with supervised deep learning

methods but due to the limited amount of data samples, our

experiments show supervised deep learning under-performs in

this case. To address this shortcoming, we develop methods

using hand-crafted features.

Another challenge of this dataset is to make the solution color-

invariant. As the liquids contained in the beakers can have various

characteristics, the solution has to be effective for a wide range of

liquid colors and shades. As methodologies based on hand-crafted

features or geometric analysis depend on various thresholding and

environment assumptions, these variations should provide a

challenge regarding the robustness of the methods. The most

challenging case is when the liquid is transparent. Here, the

difference between the background and the pipette contents

becomes almost indiscernible to the point that even a human eye

cannot identify whether the liquid is present in the pipette or not.

Only the transparent case remained unsolved in our

experimentation. We surmise that detecting transparent liquid is

not possible without major hardware modifications such as

enhanced lighting using external devices, hyper-spectral imaging

or other augmentations to the setup. We leave these experiments for

future endeavors and focus on the applicability of the current setup

for this study. Out of the 19 video clips, 13 contain colored liquids

and the rest contain transparent liquids which we refrained from

using in the experiments. Furthermore, the pipettes’ volume

capacity and liquid extraction speed are also some parameters

that can vary.

Additional difficulties are introduced in the case where the

container of liquid is a whole tub. When the pipettes are lowered

into the tub, it creates a ripple in the liquid of the container. This

ripple intersects the region of filled liquid in the pipettes. As a result,

the situation gets troublesome for handcrafted methods as

TABLE 1 Dataset information.

Video source Video class Sample count

Laboratory Normal 5

Clogged 3

Bottom Out 11

Segmentation Normal 3

Clogged 3

Frontiers in Molecular Biosciences frontiersin.org04

Sarker et al. 10.3389/fmolb.2023.1147514



additional noise is introduced. Furthermore, here the camera

position changes and the pipette region of interest is further

away from the camera. The further the camera is, the more noise

is introduced in the pipette region. The camera also sometimes auto-

focuses or can have slightly irregular movements which might result

in noisy frames.

3.2 Data processing and augmentation

The video dataset is converted to an image-level dataset by frame

extraction. The original video data has a frame rate of 30fps and each

frame has a height and width of 720 and 1280, respectively. As the

dataset contain only 19 video clips with limited variations of

anomalies, an augmented dataset containing more videos and

additional derived anomalous and normal cases will allow for

more robust experiments. Thus, an additional augmented dataset

is created using manual segmentation of the pipette shape and the

liquid content of both the pipettes and the beakers present in a

frame. By manipulating the pixels of the segmentation mask region,

the brightness, contrast, and color of the original frames are

modified to create new frame-level data as shown in Figure 1.

The liquid color can vary depending on the experiment being

performed in the laboratory but the dataset showcase some

FIGURE 3

Self Comparison Preprocessing step. An input frame is passed through a fine-tuned YOLOv5 algorithm which detects the pipette region of interest.

The detected boundary box values of each frame are used to detect the anchor frame and then the frame is cropped to the pipette region and passed on

to the self comparison step.

FIGURE 4

Self Comparison Method (single pipette view). Here, incoming frames are compared with the anchor frame to get the difference frames. The

morphological opening operation is applied to them before contour detection. The detected contours are further post-processed using prior

knowledge. The algorithm takes this output and extracts three types of features which is passed onto a predictor model for the final classification as an

anomaly or normal frame.
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variations of this case, namely, cyan, red, green and yellow. Hence,

such an augmentation is of paramount importance as this simulates

various liquid color characteristics and can be used in both training

and validation.

Another challenging aspect of the dataset is the case of pipettes

with clogged tips. Only a few examples of this case are given, where

some of the eight pipettes are clogged and cannot extract any liquid.

However, this anomaly can affect any pipette in any order and in any

number. That is why additional augmented data is created by

utilizing the segmentations of the pipette shapes. It can be used

to replace any segmentation of a normal case pipette with that of the

abnormal case as shown in Figure 2. This pipette augmentation

through segmentation is used to create abnormal case videos from

normal videos and vice versa. Furthermore, the same type of

augmentation is used on each frame of a single video in order to

ensure video-level consistency. Otherwise, performing

augmentation with different parameters on frames of a single

video will violate the expected characteristics of natural videos.

For the manual segmentation, every 10th frame from the frame

level dataset is considered. As the original dataset has a high frame

rate, many subsequent frames are ignored due to minuscule changes.

Furthermore, manual segmentation is a monotonous task, and

segmenting each and every frame will cost valuable resources.

Thus, only a subset of the relevant frame sequences is considered

during the augmentation phase. The summary of the entire dataset is

presented in Table 1.

4 Methods and materials

Our methodology is inspired by the following observations. The

anomaly scenarios can be detected more accurately during the liquid

transfer phase between the container and the pipettes. During this

phase, all the environmental elements remain static except the liquid

inside the pipettes, which is moving up or down. Here, we denote the

first frame of a video as p1 where a video has a total of N frames. By

taking the difference between a frame pt and subsequent ones pt+i
where i = 1, 2, ., N, this movement of liquid should be visible as it is

the only dynamic object between the frames. If the number of

detected liquid regions equals the number of pipettes and their

movement corresponds to that of a working pipette, then the video

can be classified as normal. Otherwise, the video is labeled as

anomalous. Furthermore, the group of pipettes is the only region

of interest that is a small part of the whole frame. In order to reduce

computational complexity and eliminate noise and artifacts from the

irrelevant space when comparing frames, we need a way to detect

and crop this region of interest. In the next section, we describe the

preprocessing developed to prepare the frames for the main

processing task.

4.1 Preprocessing step

In order to detect the group of pipettes, the YOLOv5 object

detection algorithm (Jocher et al., 2022) is employed. YOLOv5 is a

one-stage detection algorithm that uses CSPDarknet53 with a

Spatial Pyramid Pooling layer as the backbone, a Path

Aggregation Network as the neck and a head from the original

YOLO algorithm (Redmon et al., 2016). The algorithm outputs

boundary box information of detected objects from a frame. The

pipette region boundary boxes of selected frames from the original

and augmented dataset are manually labeled and used for training,

validation, and testing. The default parameters of the official

YOLOv5 implementation (release v6.1) are used to fine-tune the

model for 200 epochs. Here, as the model is already pretrained on

the COCO dataset (Lin et al., 2014), the detection of the pipette

region is a much easier task compared to anomaly detection which is

evident by the fine-tuning results. The mean average precision score

(map @ 0.5-0.95) of validation and testing is 0.916 and 0.928,

respectively.

The trained model is used to detect the pipette region from

an incoming video stream. The region of interest is only useful

when the pipettes are on top of the liquid container and have

started interacting with the liquid. We call this frame the anchor

frame pa. In order to identify this frame, the y-axis values of the

detected boundary box from the model are extracted and

compared. When the detected boundary box has moved

downwards in the video stream and has stayed like that for

10+ frames, then the pa frame is detected. The subsequent

frames are cropped to the detected boundary box size and

considered as the region of interest (RoI) for the next

step. To account for noise and environmental changes, the

boundary boxes from the algorithm are made 10% bigger.

The preprocessing step is visualized in Figure 3.

4.2 Self-comparison step

After the preprocessing step, the incoming RoIs are compared

with the detected anchor frame pa. The difference between the

frames reveal the change of the pipette contents as time goes on

which is used to classify the video as normal or as an anomaly. Let

this difference frame be called Δp. Environmental disturbances such

as sudden irregular movements of the camera or the ripples of the

liquid in the container during the transfer process can cause noise

and artifacts in Δp. To alleviate this problem, morphological

operations are applied before further processing. For this task,

the opening operation is used which is a sequence of erosion and

dilation operations (Raid et al., 2014). The erosion operation uses a

structuring element for reducing boundary shapes contained in the

input image whereas the dilation operation is used to expand these

shapes. By sequentially applying these operations, small noisy

objects from the foreground of an image can be removed (Soille,

1999).

Most of the noise and artifacts from Δp are stripped away after

applying the opening morphological operation. Then contours are

detected from the cleaned RoI which point to the boundary of each

liquid movement. This process is showcased in Figure 4. The size of

the contours is supposed to increase on the y-axis if the pipettes are

working correctly and the liquid is being successfully extracted.

These contours are further filtered using prior knowledge about the

environment and RoI. Firstly, the number of pipettes, n(p) is known

beforehand, and thus the total number of contours should be the

same. The detected contours are sorted by area and the largest n(p)

contours are further processed. Secondly, each contour must have a

minimum height to width ratio as its shape must conform to that of
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the pipette. Thirdly, these contours must always have vertical growth

as that would mean the liquid level is rising in the pipette. All

the relevant contours are filtered using these post-processes and

tracked.

4.3 Median width denoising

Due to noise present in the difference frame Δp, some of the

detected and post-processed contours’ widths might have some

TABLE 2 AUC score (in percentage) comparison of different machine learning models over different history lengths. History length refers to how many previous

frames’ pipette features are used; e.g., history-13 means that previous 13 frames’ features are used alongside the current frame features. The bold values show

best performance for each history. The underlined values show the best performance for each model.

Models No history History-3 History-5 History-7 History-9 History-11 History-13 History-15

Logistic Regression 90.23 85.21 86.40 87.73 89.62 90.79 91.10 91.00

Support Vector Classifier 87.99 81.51 81.09 89.66 91.62 93.46 94.74 94.64

Gaussian Naive Bayes 80.66 73.12 73.71 75.41 77.48 79.29 80.82 82.73

Multinomial Naive Bayes 84.21 81.29 80.24 80.95 81.96 83.41 84.31 86.23

KNeighbors 87.68 84.41 83.21 83.80 83.25 83.10 81.16 82.27

RandomForest 89.56 84.73 85.73 84.06 83.41 86.06 87.02 84.97

LightGBM 86.38 83.14 82.66 84.61 83.88 85.24 80.71 77.82

XGBoost 85.67 83.27 86.96 87.63 84.59 84.60 83.14 85.64

TABLE 3 EER score (in percentage) comparison of different machine learning models over different history lengths. History length refers to how many previous

frame’s pipette features are used; e.g., history-13 means that previous 13 frames’ features are used alongside the current frame features. The bold values show

best performance for each history. The underlined values show the best performance for each model.

Models No history History-3 History-5 History-7 History-9 History-11 History-13 History-15

Logistic Regression 21.19 26.04 23.73 20.92 17.17 13.07 14.01 15.67

Support Vector Classifier 17.31 23.14 21.07 13.51 12.53 9.61 6.06 7.50

Gaussian Naive Bayes 26.08 28.85 28.30 26.66 24.47 22.50 20.80 19.08

Multinomial Naive Bayes 27.35 26.21 27.11 24.92 23.98 22.95 20.87 19.46

KNeighbors 12.82 22.71 22.17 20.18 20.48 20.93 21.65 18.86

RandomForest 15.95 19.53 19.80 19.22 19.77 19.37 20.24 22.73

LightGBM 23.35 25.36 23.82 21.42 25.10 21.90 28.75 26.92

XGBoost 21.14 20.59 19.55 17.84 22.66 20.55 19.33 18.72

FIGURE 5

Comparison of AUC scores between different ML methods. Logistic Regression, SVC, GaussianNB, MultinomialNB and XGB show gradual

improvement over their baseline score when history is introduced. Here SVC scores the most with an AUC of 94.74% in the history-13 setting.
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discrepancy with the pipettes’. In order to alleviate this deviation, the

prior knowledge that the width of all the pipettes is the same is used.

As most of the noise is stripped away due to the aforementioned

operations, most of the contours portray accurate width information

of the pipettes. That is why the median of all the detected contours’

widths can be a good estimate of the actual width and is used instead

FIGURE 6

Comparison of Equal Error rate scores between different MLmethods. Logistic Regression, SVC, GaussianNB, MultinomialNB and XGB show gradual

improvement over their baseline EER score when history is introduced, similar to the AUC score scenario in Figure 5. Here, SVC has the least EER of 6.06%

in the history-13 setting, making it the best performing model.

FIGURE 7

ROC Curve comparison between our developed method and existing anomaly detection models.
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of the original ones. The algorithm outputs the bounding boxes of

the contours with the width set as this median value. Thus, the width

discrepancy can be avoided and denoised using median width.

4.4 Features for learning

We extract three types of features from the previous step and

pass into a final predictor in order to detect soft scores for

anomaly detection. The first type is the boundary box

information of the contours for each detected pipette for each

frame. The boxes can also give approximate information on how

much a pipette has been filled with a liquid. The height and width

of a detected contour box gives its area, areacontour. Furthermore,

the original pipette area, areapipette, can be estimated

approximately by taking the original RoI bounding box’s

height and a width and comparing it with the number of

pipettes. By taking the ratio of the square root values of

areacontour and areapipette, we can get an approximation of how

much a pipette is filled which is the second type of feature we

extract. This feature contains notable information to deduce

whether a pipette is working properly or not and thus this

feature is also taken into consideration. Nevertheless, the

previous information provides an incomplete picture of the

current state of the pipette if only the current frame is being

considered. In order to provide temporal context to the current

pipette’s state, previous frame pipette information or some form

of history is also needed. Hence, the detected boundary boxes and

ratio information of previous frames are also utilized as the third

type of feature for the final prediction stage. Finally, the predictor

model outputs a probabilistic score on whether the current frame

features constitute a normal or an anomalous event. Later on in

Section 5.1, we conduct ablation studies on the type of the final

predictor and demonstrate that Support Vector Classifier (SVC)

provides the best performance for this task.

5 Experiments

In order to quantify the performance of the proposed method

and compare with other methodologies, we compute ROC curve

and use Area Under the Curve (AUC) and Equal Error Rate (EER)

metrics. Here in Section 5.1, we provide comparison of

results from different machine learning classifiers. Afterward,

in Section 5.2, we compare the best performing predictor in

our model with other baselines for video anomaly

detection including deep learning methods. Finally, the effect

of different components of our methods are discussed in

Section 5.3.

5.1 Comparison of different machine
learning classifiers

We evaluate the performance of different machine learning

models to identify the one that provides the best prediction, given

the features extracted via the self comparison method in Section

4.4. We compare the performance among different methods and

also evaluate the impact of providing previous n frames

information along with the current frame, a setting we define

as history. A complete ablation study of AUC scores on different

history lengths for different machine learning models are given in

Table 2 and the same is given for EER scores in Table 3. The bold

values correspond to best performing model for each history and

the underlined values show the best performance for each of the

models. When there is no history, i.e., only the current frame

history is present, Logistic Regression scores the most in terms of

AUC with a score of 90.23% where Support Vector Classifier

(SVC) scores 87.99%. In terms of no-history EER, KNeighbors

has the best score of 12.82% where SVC scores 17.31%. When

history length of 3 is added, the scores of all the models fall, which

may point to insufficient temporal context. This explains why as

more history or temporal context is added, five of the eight tested

models show improvement over their initial no-history AUC

score and six of the eight models show improvement in terms of

EER. Figure 5 contains the barplots of the AUC scores; Figure 6

shows the barplots of EER (Equal Error Rate) scores and they

both paint a similar picture in regards to the models

performances. The methods KNeighbors and RandomForest

show no improvement in both metrics when any amount of

history is added which may point to their inability to capture

the additional context provided by previous frame information.

XGBoost shows improvement up-to history-7 and then the

score decreases signifying that there might be an optimal

history length for each of the models. The SVC model has the

overall best score when history length of 13 is applied, with an

AUC of 94.74% which is 7% more than its no-history AUC and

an EER of 6.06% which is 64.99% better than its no history

EER. Though SVC is outperformed by Logistic Regression in

terms of AUC and KNeightbors in terms of EER in the no history

case, it manages to surpass their scores comfortably when history

is applied. Furthermore, the SVC model scores the best across

these 2 metrics among all the classifiers apart from the no-history,

history-3 and history-5 cases. Thus, adding history frame

information helps performance by providing historical context

and the SVC method consistently provides the best score as more

context is given. Due to these two observations, the SVC classifier

in addition to a history length of 13, is chosen as the predictor for

the final pipeline.

TABLE 4 AUC and EER Score comparison of best-performing machine learning

model with existing anomaly detection methods of different kinds. 3D ResNet-

50 scored the best among existing deep learning methods. Our developed

method with a SVC predictor outperforms all across both metrics.

Method AUC EER

Registration Based Few-Shot Anomaly Detection 52.37 47.38

Deep Multiple Instance Learning 62.04 43.01

Decoupled Spatio-Temporal Jigsaw Puzzle 62.30 37.66

ResNet-50 77.16 26.29

ResNet-50 with history-15 75.00 26.77

3D ResNet-50 79.55 25.26

Support Vector Classifier with history-13 94.74 6.06

Frontiers in Molecular Biosciences frontiersin.org09

Sarker et al. 10.3389/fmolb.2023.1147514



5.2 Comparison with different methods

We compare our developed method with existing

methodologies proving our method’s effectiveness for this

dataset. As the dataset does not contain an adequate number

of labeled data, we experiment with a few-shot learning method

(Huang et al., 2022). This method uses image registration as a

proxy task to learn the distribution of non-anomaly samples

during training time and was pretrained on MVTec

(Bergmann et al., 2019) dataset. The AUC score for this

method is 52.37%, and the EER is the largest among the tested

methods. This performance can be attributed to the huge

difference in characteristics between the pretraining dataset

and our dataset. Furthermore, as the dataset contains ideo-

level labels, we use the deep multiple instance ranking

framework (Sultani et al., 2018) method to get a detection

baseline score. This method performs slightly better than the

Few Shot Learning method, but still the method cannot give a

usable score due to its dependency on high number of training

samples. Moreover, to test a baseline self-supervised method for

this task, we adopt the video anomaly detection paper (Wang G.

et al., 2022), which tries to detect anomalies by solving decoupled

spatio-temporal jigsaw puzzles. A model pretrained on the

Shanghai Tech dataset is used but it results in an AUC score

of 62.30%, which maybe be due to the characteristic differences

between the datasets.

Finally, we try frame-level binary classification with ResNet

architectures (He et al., 2016). The default setting uses a single

frame as input with three channels (RGB). To make this a fair

comparison with the machine learning methods, the cropped

outputs of the preprocessed steps are used. This yields an AUC of

77.16% and an EER of 26.29% which is the best among all the

previous methods. Similar to the machine learning comparisons,

we try incorporating previous frame information with the input

by stacking the previous 15 consecutive frames along with the

current frame on the channel dimension. But here, the AUC score

FIGURE 8

Effect of morphological operation. The first row depicts the case when sudden camera movement caused noise to appear in Δp. The second row

shows what happens when water ripples in the tray effect the contour detection. Both are resolved using the opening operation.

FIGURE 9

Effect of post-processing operation. In both cases, there are small noisy contours with abnormal height by width ratios which are discarded after

post-processing using prior knowledge.
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drop about 3%–75%. This score can be attributed to the fact that

as we are incorporating the previous 15 frames our training

dataset should also be increased 15X to maintain the same rate

of information. Furthermore, 2D convolutions cannot preserve

the temporal context of the frame stack which can decrease the

score. This provides the rationale for further experimentation

with 3D convolutions via 3D Resnet using the previous settings.

Here the AUC score is 79.55%, which is an improvement of 3%

compared to the 2D Resnet score, showing that the 3D version

can gain some temporal contextual information.

Our developed methodology beat all the experiments by a

large margin. The 3D Resnet model performs the best among all

the deep learning methods with an AUC score of 79.55% and an

EER of 25.26%. On the other hand, our method has an AUC of

94.74% and an EER of 6.06% which is a 19% AUC and 76% EER

improvement. Thus, our developed method provides the most

reliable outputs among all the existing methodologies. A

comparison between the stated methods with our developed

method is presented in Table 4. Additionally, the ROC Curve

comparison between the methods is shown graphically in

Figure 7.

All the aforementioned results are produced for the colored

liquid transfer task. When we incorporate the examples of

transparent liquids, the SVC model AUC score drops to 77%

FIGURE 10

Results of different video frames with each pipette filled percentage shown in a table below each video frame. The first column contains normal

videos as the number of detected contours is equal to the number of pipettes and over 50% of each pipette is filled with liquid. The 2nd column features

anomaly cases where the number of detected contours didn’t match the number of pipettes.
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and the Resnet AUC score drops below 50%. In the event the

liquid is transparent, the self-comparison method cannot

correctly capture the contrast between the liquid filled pipette

and the empty pipette. Thus, the output features of this method

become very noisy and the SVC model’s predictions become

skewed towards anomaly even in the presence of a normal

example. Furthermore, only one normal sample of transparent

liquid transfer event is present and thus there cannot be an

effective cross validation for this special case which is one of

the main reasons deep learning methods are ineffective here.

Consequently, the difficult problem of transparent liquid transfer

remains unsolved in our case, where data scarcity and imbalance

played a big role in the outcome.

5.3 Output result analysis

Here, we compare the effect of some components of the

developed method. Mainly the results of excluding and

incorporating the opening operation and post-processing

operations in the developed methodology are discussed. Then,

the output of the self-comparison method is shown which is used

to output the filled percentage of liquid in the pipettes as auxiliary

information.

5.3.1 Effect of opening operation

The opening morphological operation protects against noise

and makes the solution robust against rapid irrelevant

environmental change. For example, the camera viewing the

pipettes can sometimes shake or lose focus, and it then

immediately re-adjusts. But the frames which show this

instantaneous change have the difference frame Δp filled with

irrelevant artifacts. The opening operation removes this noise

from the frame and stabilizes Δp. This case is shown in the top

row of Figure 8.

Another example of noise reduction through this operation

is the case showcased in the bottom row of Figure 8. Here, the

tray is filled with liquid and the pipettes extract the contents

directly from it. This can cause a ripple effect due to the

movement of the liquid which is visible in Δp. But this

information is irrelevant to the pipette contours and causes

additional noise. The opening operation once again gets rid of

this noise and outputs only the relevant portion of Δp before

contour detection.

5.3.2 Effect of prior knowledge post-process

The post-processing operations utilize prior knowledge to

filter the detected contours and output only the relevant ones.

The opening operation cannot remove all possible noise and

artifacts and thus post processing plays a huge role in

identifying the useful contours. As the prior knowledge

during this step will remain constant throughout the life

cycle of the experiments, it can be used to effectively extract

the contours best matching with the pipettes. The images in

Figure 9 show how the unprocessed images have few noisy

contour boxes with a comparatively negligible area or whose

width is greater than the height. These objects are also

irrelevant to the pipette liquid shape and are filtered out to

compute the final contours which are then reshaped using

median width denoising. Then, relevant information like the

number of contours and pipette filled percentage is used to

identify whether the video frames represent a normal procedure

or not.

5.3.3 Final output

The method is able to successfully differentiate between the

normal and anomalous videos in the dataset which have colored

liquids. Figure 10 shows the decisive Δp frames and the

extracted contours of some of the video cases. The

approximate pipette-filled percentage using area ratio

approximation is also shown below each final contour

output. The first column of the figure contains normal

examples where the number of pipettes equals the number of

contours detected and more than 50% of each pipette is filled

up. In the second column, examples containing anomaly are

shown. In Anomaly Video 1, only a single pipette is detected and

it isn’t filled up to even 50%. Thus, it is classified as an anomaly.

In Anomaly Video 2, all the pipettes have more than 50% filled

up. However, the total number of contours did not match the

total number of pipettes. Therefore, this frame is classified as an

anomaly. In these cases, we consider 50% as the minimum level

for which a pipette is considered as an anomaly. But this

threshold value should be different based on the experiment

environment specifications like the camera-setup distance and

the task requirements. Thus, this value should be tuned based on

the desired false acceptance rate of the algorithm and also the

provisions of the target task.

6 Conclusion

Automatic anomaly detection can undoubtedly save hours of

human labor and is much needed in automated laboratory

procedures where anomalies could result in faulty conjectures

or failed experiments. If an anomaly can be correctly detected

in this scenario, steps to alert, diagnose, and auto-correct the

procedure can be initiated. Here, we presented a novel dataset for

video anomaly detection in laboratory setups with the task of

liquid transfer. The dataset introduces several challenges, such as

limited number of samples, ripples in the liquid container, and

varying environmental conditions.

Because of data scarcity and variable environmental

conditions, conventional deep learning models cannot provide

a satisfactory result. As a result, we presented a feature-based

method to address the several challenges that might occur in

such scenarios. The proposed method is color-invariant and

provides high accuracy despite the aforementioned challenges.

Several experiments and ablation studies confirm the

effectiveness of the proposed method. In particular, the

proposed method surpasses the state-of-the-art methods of
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anomaly detection by 19% and achieves 94.74% AUC in

detecting anomalous events.
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