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Abstract

Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular struc-
tures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular com-
plexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data
generally involves isolating regions or particles of interest from tomograms, organizing them into related
groups, and rendering final structures through subtomogram averaging. Template-matching and
reference-based structure determination are popular analysis methods but are vulnerable to biases and
can often require significant user input. Most importantly, these approaches cannot identify novel com-
plexes that reside within the imaged cellular environment. To reliably extract and resolve structures of
interest, efficient and unbiased approaches are therefore of great value. This review highlights notable
computational software and discusses how they contribute to making automated structural pattern discov-
ery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessi-
bility are also presented.

 2023 Elsevier Ltd. Al l  rights reserved.

Introduction

Cryo-electron tomography (cryo-ET) enables
in situ visualization of subcellular structures in
their native states inside a cell, which is not
possible by any other imaging technology.1 X-ray
crystallography, nuclear magnetic resonance
(NMR) spectroscopy, and single particle cryo-
electron microscopy (cryo-EM) can resolve atomic
details of macromolecular structures but are
in vitro methods that lack cell context. Conversely,
fluorescence imaging methods can image an entire
cell and the organelles within but cannot resolve
macromolecular structures. Cryo-ET     uniquely
bridges these imaging methods by providing molec-

0022-2836/ 2023 Elsevier Ltd. All rights reserved.

ular resolution information of structures in a cellular
context.2 The absence of disruptive sample prepa-
ration, such as chemical fixation,3 further enables
the observation of spatial- and temporal-regulated
protein–protein interactions, permitting the study
of a cell’s native molecular sociology.4 Thus, cryo-
ET can reveal complex and novel macromolecular
structures inside the cells which represent active
function-conducting cellular machines. In preferred
scenarios, the resolution can achieve the sub-
nanometer range, thereby directly revealing struc-
tural mechanisms in situ.5–7

In cryo-ET, specimens are immobilized via cryo-
fixation and subsequently imaged as the sample is
progressively tilted about an axis perpendicular to
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the electron beam. This generates a series of 2D
transmission electron micrographs that can then
be used to reconstruct a 3D image, or tomogram.8

The tomograms contain readily visible organelles
and macromolecular structures, represented as
recurring density patterns that appear throughout
the volume. By recognizing and then averaging mul-
tiple instances of a pattern, the underlying structure
can be determined. A complete molecular structural
landscape visualization of a cell can be pursued by
determining multiple structures and localizing them
throughout the tomogram (Figure 1(a)–(e)). Yet,
this is challenging given that raw tomograms con-
tain large, complex data that is further complicated
by artifacts such as the missing wedge effect and
low signal-to-noise ratio (SNR).9 Manual analysis
of such data is not only cumbersome but at risk of
bias. Hence, automated methods to extract and
analyze unique cellular structures captured by
cryo-ET are of great importance.

Tomogram processing suites such as IMOD,10–12

EMAN2,13–16 PyTom,17–20 Protomo,21–25 and
others provide comprehensive tools for general
tomogram analysis (see Table 1). In addition, the
development of new methods that target specific
tasks to advance cryo-ET analysis is also being pur-
sued from many facets (see Table 2). Below we fol-
low the general sequence for a structural
determination that follows tomographic reconstruc-
tion, discussing the advantages, shortcomings,
and accessibility of currently available methods to
contextualize the current state of quantitative cryo-
ET analysis. We primarily focus on approaches that
reduce     the     manual     intervention     required     by
researchers and highlight algorithmic developments
that we envision will advance the field towards min-
ing structures de novo from cryo-ET tomograms.
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to semi-automatically segment biological structures
such as membranes, nuclei, and filaments. Meth-
ods that unite watershed and boundary approaches
have also been investigated.68 Each approach has
its own set of weaknesses, causing its performance
to be highly dependent on the dataset. Moreover,
they require significant input from the user for rea-
sonable segmentations.

SuRVoS 4 4  is a more recent tool that employs
machine learning on manually segmented slices to
predict regions on subsequent slices or automati-
cally segment boundaries by analyzing local density
changes within the tomogram, effectively reducing
the amount of annotation required. Deep learning
methods have also been developed toward fully
automated segmentation. These are capable of
robustly segmenting multiple subcellular structures
at once. For instance, the EMAN2 software
suite14–15     includes a deep learning-based auto-
mated segmentation method that requires only 10
manually annotated images to locate similar parti-
cles throughout the tomogram. This vastly reduces
the need for manual annotation for feature extrac-
tion (Figure 1(f)–(i)). The software can also utilize
a neural network trained on one tomogram to seg-
ment other tomograms, provided they have a simi-
lar imaging quality and voxel size. This semi-
automated segmentation approach has supported
the investigations of Trypanosoma brucei as well
as thylakoid membranes.69–70 In addition to annota-
tion, segmentation is commonly used to facilitate
other structural pattern-mining tasks. Many soft-
ware introduced in later sections of the review can
also perform automated segmentation to facilitate
particle picking by restricting the search space
(e.g., using membrane segmentations to locate
membrane-bound complexes) and informing on
particle orientation.2,36,61

Segmentation
Particle picking

Segmentation is frequently the first step of
examining the tomogram. Voxels that correspond Particle picking can be considered a variation of
to biological features of interest are annotated in        segmentation. This process picks subvolumes, the
tomogram for 3D illustration. Segmentations        also known as subtomograms, of equal size in the can
be performed manually in software such as        tomogram and each contains a structure of IMOD,10

where a user traces the region of interest        interest (the “particle”). The subtomograms can slice-by-
slice, but this strategy is tedious and some-        then be computationally cropped out and the collec-times
inconsistent.61 Low SNR,  low contrast, miss-        tion of particles is overlaid to generate a subtomo-ing

wedge effects, and crowded densities        gram average with     enhanced contrast and
exacerbate the difficulty of this task.26,44,62 Develop-        resolution of the structure of interest. While soft-ing
strategies for fast, reproducible, and high-quality        ware packages often allow users to manually select
segmentations is crucial for reliable data annotation        positions to generate subtomograms, this can
and structural analyses.                                                             be time-consuming, subjective, and incomplete.

Different methods have been developed to Template matching and template-free approaches
reduce the level of human intervention required for for particle picking have been developed to facilitate
segmentation. Early approaches largely focused this task.
on     boundary     detection,63–65       watershed     algo-
rithms,66      and comparisons of regions to pre-
defined models of structures.62,67 Amira26 is a pop-
ular graphics software by Thermo Fisher Scientific            Templates are used to find corresponding density
that implements watershed thresholding algorithms        matches in the tomogram. They are generally
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Figure 1. Exploring the diverse, crowded environment within cellular tomograms. A tomogram slice (a) and
corresponding isosurface rendering (b) of an endoplasmic reticulum (ER)-derived vesicle decorated in ribosome-
transolocon complexes. (c) The cryo-EM structure of the translocon complex bound to the translocon associated
protein complex (TRAP) and oligosaccharyl-transferase (OST), determined from subtomogram averaging of the
complex on vesicles. A tomogram slice (d) and the isosurface rendering of the determined complexes (e) in intact
cells demonstrates the increased complexity of studying structures in the native cellular context and demonstrates the
generation of a limited visual atlas.78 A tomogram slice (f) of a PC12 cell and (g) the training and annotation of regions of
interest in the EMAN2 analysis software. (h) The automated segmentation of four independently trained neural
networks for each labeled structure of interest. (i) The final merged annotation of the four features identified by
EMAN2 segmentation neural network.14

macromolecular structures resolved with X-ray
crystallography, NMR spectroscopy, or single-
particle cryo-electron microscopy (cryo-EM).

These reference structures must be properly low-
pass-filtered and adjusted to reflect the
tomogram’s resolution and distortions from the
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Table 1 Cryo-ET image software for pattern-mining tasks.

Software tool

Amira + EMPackage26

Bsoft (w/ Jsubtomo)27,28

Dynamo29–33

EMAN213–16

emClarity34,35

IMOD (w/ PEET) 1 0 – 1 2

Protomo21–25

PySeg3 6–3 8

PyTom17–20

RELION3 9–4 3

SuRVoS 4 4

Tomominer, TomoMinerCloud45

GUI

Yes

No
Yes
Yes

No
Yes
No
No
Partial
Yes
Yes
No

Segmentation

Yes

Yes
No
Yes

No
Yes
No
Yes
No
No
Yes
No

Template
matching

Yes
(for fiber tracing)
Yes
Manual
Yes

Yes
Manual
Yes
No
Yes
No
No
Yes

Template-free

No

No
No
Yes

No
No
No
Yes
No
No
No
Yes

Subtomogram
averaging

No

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
No
Yes

Classification

No

No
Yes
Yes

No
No
Yes
Yes
Yes
Yes
No
Yes

cryo-ET imaging process.74–75 Templates may also The most inherent disadvantage of template
be generated de novo from subtomogram averages matching is template bias, where detectable
if densities are highly abundant and regular.76 All structures are limited to those with an existing
possible orientations of the templates are scanned template obtained from other structural biology
through the tomogram to calculate correlation methods.2,61,86 Likewise, template-matching algo-
maps. Statistical analyses, such as peak extraction, rithms may suffer sample-specific biases that can
are applied to the map to discern macromolecule occur if templates do not reflect unexpected binding
positions throughout the tomogram. The reference partners or conformations. On the other hand, aver-
structure can even be mapped back to these posi- aging manually selected subtomograms potentially
tions to create a visual atlas of the macromolecule introduces user-dependent bias. Consequently,
populating the tomogram18 (Figure 2(a)). template matching cannot be utilized effectively in

Many software packages offer template studies involving flexible macromolecules or com-
matching, including Dynamo,29–33 emClarity,34–35 plex interactions, and alternative methods must be
PyTom,17–20 EMAN2,13–16 and TomoMiner45 (see considered.
Table 1). Template matching has enabled the deter-
mination of highly resolved structures of large
macromolecular complexes, such as ribosomes,
the 26S proteosome, and viral Gag assembles            To forgo the need for preexisting structural
and is widely used to automatically identify particles        references to recover cellular structures de novo
of interest from cryo-ET tomograms.                Aside        for pattern recognition, template-free approaches
from discrete particles, it can be used in concert with        are of growing interest for cryo-ET data analysis.
tracing algorithms to segment filamentous struc-        To      achieve      the      nonspecific      extraction      of
tures, such as those present in the cytoskele-        subtomogram volumes, some approaches have
ton.                                                                                                     turned to deep learning. Convolutional neural

Despite     its     popularity,     traditional     template        networks (CNNs) are deep learning architectures
matching suffers from several drawbacks. It is low        that are powerful tools especially adept at image
throughput       and      can       be      extremely      time-        processing,       which       is       useful       given       that
consuming. Performance depends on both the subtomograms are essentially 3D images
image quality of the tomogram and the reference representing particles.87 Neural networks such as
structure. Molecular crowding in the tomogram is DeepPicker73      and SPHIRE-crYOLO 8 8       exist for
another major concern. Dense packing of parti- automated particle picking in single-particle cryo-
cles in tomograms may increase the presence of EM micrographs. Performing the same task in cellu-
off-target densities, making it more challenging to lar tomograms is a greater challenge because the
locate densities of interest. While a tight mask native cellular environment is more crowded and
enables algorithms to ignore extraneous densities contains a more diverse set of structures compared
and focus on the most relevant regions of the candi- to cryo-EM micrographs.15

date object when calculating template matching Neural networks for feature extraction have also
scores, this solution can only be used in limited sit- been successfully implemented for cryo-ET. As
uations where molecules are rigid and well- previously noted, the EMAN2 package14–15 imple-
resolved. False positives are another issue, ments deep learning for automated segmentation,
resulting in references being matched to not only but can also perform automatic particle picking.
the true location of structures but also regions of Although this approach can identify particles from
noise.                                                                                                 more than just a single class, the computation time
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Table 2 Recent notable technical developments for specific cryo-ET pattern-mining tasks.

Software tool

SuRVoS 4 4

DSM-Net46

VP-Detector47

DeepFinder48

3D-UCaps49

PySeg3 6

DSRF3D-v2, RB3D, CB3D5 0

DISCA5 1

MPP5 2  7

Jim-Net53

RELION-4.0 Bayesian single-
particle tomography structure
determination43

FAML54

HEMNMA-3D55

-56

-57

CryoETGAN5 8

3D-ADA59

Cryo-Shift60

Task

Segmentation
SegmentationClassification
(supervised)
Structure determination

Segmentation
Particle
pickingClassification
(supervised)
Particle picking

Particle picking
Particle
pickingClassification
(unsupervised)
Classification (supervised)
Classification
(unsupervised)
Classification
(unsupervised)
Structure determination
Classification
(unsupervised)
Structure determination
Structure determination

Structure determination

Structure determination

Data augmentation
Data augmentation

Data augmentation

Domain adaptation

Domain adaptation

Notes

Allows users to vary the degree of manual segmentation required.
Multi-task deep learning model to train three networks
simultaneously on (1) semantic segmentation, (2) classification,
and (3) coarse structure determination. Outperformed single-task
models and was able to identify structures absent in training data.
Uses a CNN to take user-annotated data and automatically
segment, localize, and classify particles of interest.

Efficient multiclass particle picking of structures with various sizes
and shapes.
Efficient multiclass particle picking was given limited training data.
Particle picking of small membrane-bound complexes.

Classifies complexes spanning a range of molecular weights.
High-throughput, fully unsupervised approach to cluster particles
using deep learning.
Iterative alignment to sort a heterogenous set of particles into
structure patterns, capable of identifying patterns de novo.

Uses pair-matching alignment and hierarchical clustering to
achieve comparable accuracy with supervised method to
determine structures de novo.
Structure determination via optimization of a regularized likelihood
function. In contrast to previous RELION renditions, features a
new weighting system and refinement methods.
Combines features of F R M  and maximum likelihood structure
determination methods to achieve higher robustness to noise and
artifacts compared to F R M  methods and requires fewer
subtomograms.
Creates a conformational space of a complex that maps how a
structure may transition between different configurations in situ.
High density packing by modeling structures with multiple spheres.
Computationally efficient packing by modeling structures as single
spheres with gradient descent algorithm.
Deep learning model designed to train on tomograms to generate
imitations that can be used to increased training data without the
need to simulate artificial tomograms, which may not fully reflect
experimental data.
Utilizes deep learning to map particles from images with different
parameters to an intermediate latent space.
Transforms training data to improve the generalization ability of
classifiers to predict on different tomography datasets.

scales linearly for each additional class. Because
particles of different structures could be used to
inform the recognition of each other, it is possible
to develop a more efficient system to leverage this
information. DeepFinder48 is a CNN that can simul-
taneously segment multiple classes of varying
shapes and sizes (Figure 2(b)–(h)). While the
EMAN2 classifier has a shorter training time to iden-
tify a single class, DeepFinder outperforms EMAN2
in multi-class automatic particle picking. Moreover,
it reduces the need for extensive postprocessing
for reliable results. Improving on these attempts,
3D-UCaps49     is a deep learning framework that
can also perform binary and multi-class particle
identification. Replacing the data-hungry CNN
architecture with the data-efficient CapsNet, this

method demonstrates comparable picking perfor-
mance even in situations with limited training data
(defined as less than 10,000 annotated particles).

Specialized segmentation methods exist for
membrane-bound complexes. Pyto89 is specifically
designed to detect small, flexible complexes linking
larger structures such as membranes, organelles,
or filaments. Multiple connectivity-based segmenta-
tion at different thresholds is organized into a hierar-
chy to establish a final segmentation. This is in turn
used to identify particles. Pyto has a high detection
rate and offers statistical analyses to characterize
the segmentations. Another software for particle
picking is PySeg,3 6  a software package that also
focuses on the automatic localization of small,
membrane-bound complexes. It incorporates

5



Structure determination

Once particles have been identified from a

recovered by further processes. The ar icles in

orientations but should contain common features
with other particles of the same structural class.
Thus, subtomograms are aligned and averaged to

resolved structures can then be re-embedded into
the original tomogram space to obtain the visual
landscape. This is similar to template matching
but replaces the reference with the obtained

these strategies are designed to analyze a

section 2. Structure determ nation) iscusses

mining.

Fourier space. The 3D cross correlation values
are ca cula ed between the reference and subtomo-

previous masking to yield a final structure. How-

the costly step of linear interpolation.7 1 Fast rota-
tional matching (FRM) is a form of alignment-

and transla ional search to achieve faster global
alignment,9,90 and has been implemented into
tomogram analysis packages.1 2, 9 1 However, this
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Figure 2. Particle picking via template matching or template-free approaches. (a) Template mapping to
achieve a visual protein atlas. Template matching structures from a template library identifies the cross-correlation
values of each reference against regions of a tomogram, ultimately identifying positions that most likely represent
particles from the library. The rendered structure models at the calculated positions and orientations forms a protein
atlas, providing information on the distribution of these structures throughout the cell and their relation to other
structures.91     (b) manually segmented membranes (gray and yellow) and particle picking positions Rubisco
holoenzymes (orange) in native Chlamydomonas pyrenoid determined by DeepFinder.48 (c) A tomogram slice (top)
with the segmentations as performed by DeepFinder (middle; orange) and template matching (cleaned with C P C A
classification). Scale bar, 50 nm. Subtomogram averages of holoenzymes generated from each particle picking
method with Rubisco molecular structure (d) and F S C  curves showing final resolution of 15 A ( F S C  > 0.143; e). Slice of
tomogram (f) and zoom-in comparing DeepFinder to template matching score map (g). (h) Membranogram
(topological view of membrane surface by projecting tomogram densities onto segmented membrane surface) and
corresponding comparisons between DeepFinder-, template matching-, and expert-derived particle picking positions.

TomoSegMemTV,37 a package that utilizes tensor There are two primary approaches to
voting to achieve robust segmentation of mem- subtomogram averaging. The first is alignment-
branes, as well as PyOrg,38 which offers statistical        based determination, where an angular search is
analyses to characterize the segmentations.                     performed     to     align     the     subtomogram     to     a

reference structure. This is the subtomogram
averaging approach utilized by software such as
Dynamo.29 The reference structure is first masked
and rotated in real space. To account for the miss-

tomogram, the underlying structures must be        ing wedge, the reference is then masked in the
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and is prone to be biased by image noise and the
missing wedge effect.54

The second approach to subtomogram
averaging,              maximum              likelihood-based
determination,        is more robust to the
abovementioned effects, and which is used by
software such as RELION.4 3 , 9 2 Expectation-
maximization algorithms93     optimize a probability
function of observing the experimental data given
the initial reference structure.71,92,94 The
probability-weighted average of each subtomogram
in each orientation becomes the new reference and
the process is repeated. This is repeated in an iter-
ative process as the reference and probability func-
tion are updated with a more refined sampling of
possible orientations. The process converges into
a well-refined high-resolution and identifiable struc-
tural map. This approach also overcomes the need
to extensively tune parameters, as they are instead
inferred     during     estimation.40       Thus,     maximum
likelihood-based determination is more amenable
for non-experts. However, the convergence is rela-
tively slow and requires significant computational
resources. For recovering structures from a very
large data set, this may not be practical.54,71

Efforts have been made to improve subtomogram
averaging methods. One technique that has been
developed to combine these methods to
overcome the weaknesses of F RM  and maximum
likelihood-based determination is the Fast
Alignment Maximum Likelihood (FAML)54 method.
This uses fast alignment to sample transformations;
the sampled transformations then approximate inte-
grals to update the maximum likelihoods of subto-
mogram averages using the expectation–
maximization algorithm. Compared to F RM  alone,
FAML exhibits higher robustness to noise and miss-
ing wedge effects, and it performs better with fewer
subtomograms.

If the underlying structure of subtomograms is
flexible, they will exhibit densities with a degree of
variation. HEMNMA-3D55 is an analysis method
that maps the low-dimensional representation of
heterogeneity within a set of subtomograms. This
technique relies on an initial atomic or pseudo-
atomic reference structure of the complex to per-
form elastic deformations and achieve the mapping.
The resulting conformational space allows for
grouping and averaging, identification of unantici-
pated conformations, and animations of the refer-
ence     structure     deforming     along     the     densest
regions of the space (i.e., conformations shared
by the most subtomograms) or following alternative,
rarer trajectories.

Particle classification

As previously noted, if the total set of
subtomograms contains particles with different
structures, it      must then      be      sorted      into
homogenous groups with similar features, known

Journal of Molecular Biology 435 (2023) 168068

as structure patterns. Each structure pattern
should correspond to a distinct macromolecule or
alternate conformation of the same
macromolecule. For de novo structure mining, the
classification of particles is an inevitable hurdle to
overcome. It can also serve to identify false
positives from particle picking.

A common approach to classification is
multireference alignment.71,95 This slightly modifies
the structure determination strategies discussed in
the previous section (2. Structure determination).
Rather than being compared to a single reference,
the particle is aligned against a set of different refer-
ences. The particle is ultimately assigned to the ref-
erence that yields the closest similarity. This roughly
separates the initial particles into separate classes
for each reference, which are then averaged to gen-
erate a new reference for subsequent iterations.
This approach is implemented in popular software
packages such as Dynamo and EMAN2.29,72 These
strategies require knowledge of particles a priori, in
the form of initial references, so are not conducive
to identifying novel structures that populate the
tomogram. Classification approaches that forgo
the use of references are therefore especially desir-
able for end-to-end pattern mining.

Reference-free classification can either be
supervised or         unsupervised.         Supervised
classification aims to group subtomograms into
homogeneous      structure patterns      based on
knowledge provided by the user. Instead of
providing a reference structure, a user manually
annotates     a     set     of training     subtomograms,
assigning a label to the subtomogram based on
the structure present. With the labeled training
data, the classification algorithm aims to imitate
the labeling scheme for new data. Deep learning
models are powerful tools for this task, especially
the CNN architecture, which as noted before, is
especially adept at image processing. Many of
these     frameworks     localize particles     prior     to
classification,     and so     are     also     capable     of
automated particle picking.

To this end, Che et al. investigated three CNN
architectures (DSRF3D-v2, RB3D, and CB3D).50

Compared to previous, non-deep learning
approaches, the CNNs demonstrate improved dis-
crimination and scalability for structure determina-
tion. They     found CB3D displays     the best
performance with a high level of accuracy, even
with low S N R  (0.01) and the missing wedge effect
present. However, the classifier’s performance
was dependent on the size of the macromolecules,
as larger complexes were associated with higher
accuracies.

Additional supervised deep learning networks
have been employed to locate and classify
heterogeneous     particles, many of     which     are
introduced in the Shape Retrieval Challenge
(SHREC)  for the classification of cryo-ET data.96–98

Such methods include 3D MS-D, 3D ResNet,99–100
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DN3DUnet,101–103 Y O P O , and UMC1 0 2, 1 04–1 0 5

(introduced in S H R E C  2020, see more details
in97, as well as URFinder,99–100,106–107

U-CLSTM,1 0 1–1 02 , 1 0 8–1 1 1      MC DS  Net,102,112     and
CFN9 9 , 1 1 3–1 1 5      (introduced in S H R E C  2020, see
more details in98. The performance of these tech-
niques is evaluated on a fully annotated simulated
tomogram dataset containing particles of various
molecular weights (Figure 3(a)) and compared to
the baseline of template matching methods per-
formed in PyTom.19 This assessment measured
training time, prediction time, performance com-
pared to network architecture size, and observed
general trends for these approaches. The S H R E C
evaluations found that neural networks are more
robust to noise than template matching while also
significantly reducing computation time, depending
on the architecture.96–98 Of these methods, Y O P O
does not require semantic segmentation, and
instead only relies on the coordinate and particle
class for training making it more accessible for
users compared to the other learning-based
methods introduced in S H R E C  2020.97

Similar to the case of CB3D, the performance of
neural networks featured in S H R E C  tends to
increase with size of the particle, a trend that is
especially drastic for smaller particles96–98 (Figure 3
(b) and (c)). VP-detector47 is a deep learning frame-
work designed to better predict on complexes
across a wide range of molecular weights and fea-
tures high accuracy, fewer training parameters,
and good performance despite small training sets
or class imbalances.

In     contrast to fully or partially     supervised
classification, unsupervised approaches do not
rely on any manual annotation inform on structure
pattern and therefore recover novel or unlabeled
structures de novo. k-means is a popular machine
learning approach for clustering that is the basis
for several approaches to unsupervised
subtomogram classification. This strategy was
often        employed in early unsupervised
classification strategies. For instance, Forster
et al. developed the C P C A  method116 to perform
binary classification while also reducing the impact
of the missing wedge effect. A principal component
analysis is performed on pair-wise constrained cor-
relation values and used in conjunction with k-
means clustering. This procedure discriminated
between GroEL and GroEL/GroES complexes (Fig-
ure 3(d)–(h)) but was sensitive to S N R  and the com-
putational cost of calculating the correlation matrix
increased quadratically with the number of subto-
mograms. AC3D85 is an algorithm based upon a
modified k-means clustering algorithm. This classi-
fication scheme is designed to focus on subtomo-
gram regions with large structural discrepancies
between class averages and successfully discrimi-
nates between structures with and without cofactors
(Figure 3(i)). Both the C P C A  and AC3D methods
are implemented in PyTOM.19,8 5
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One drawback of k-means is that the method
requires the user to estimate the initial number of
structural patterns. It also assumes the classes
are evenly populated     and well-distributed.     A
machine learning method capable of forming
structure patterns without an initial cluster number
is affinity propagation, which evaluates similarities
between subtomograms by transferring
information between data points. PySeg3 6  imple-
ments this technique to achieve the automated
detection and classification of heterogeneous
membrane-bound complexes.

Deep learning approaches are another alternative
for unsupervised classification. PySeg,3 6  previously
noted to be capable of locating membrane-bound
complexes in a template-free manner, is also able
to perform unsupervised classification on the
acquired subtomograms. This approach was vali-
dated in microsomal membranes and subsequently
tested on tomograms of P19 embryonic carcinoma
cells (Figure 4(a) and (b)). Of the determined struc-
ture patterns, many were consistent with known
structures (Figure 4(c)), such as the ribosome-
bound translocon, while other averages were not
immediately recognizable (Figure 4(d)). However,
the particles contained in these classes nonethe-
less appeared to be homogenous, suggesting that
new structures may have been identified de novo.

DISCA5 1  is a fully unsupervised method to identify
structure patterns. It first uses template-free particle
picking to collect a large set of heterogenous parti-
cles (105 subtomograms from 10 tomograms; Fig-
ure 4(e)–(g)). The approach makes use of the
Y O P O  CNN,97–98 which achieved the third highest
accuracy of the tested frameworks and outper-
formed template matching for classification on the
S H R E C  2020 dataset. In DISCA, Y O P O  is used
to extract second-order statistics on translation
and rotation invariant features. These are then mod-
eled as multivariate Gaussian distributions, effec-
tively clustering the particles according to their
underlying structure. DISCA is a time-efficient anal-
ysis, where recovering structures of multiple
classes only takes a day or two of computation for
what would take about a month using template
matching.

Classification and structure determination can
also be implemented concurrently, as
subtomograms that fail to align well with each
other can be indicative of particles from distinct
classes. A template-free framework known as
multi-pattern pursuit (MPP)52     structure patterns
from a large, highly heterogeneous collection of par-
ticles from a crowded environment (Figure 4(h)–
(k)). This strategy uses a series of alignments
based on constrained correlation and F R M  to gen-
erate structures aligned to common frames. It dis-
cards redundant patterns until high-quality
patterns remain. The results of MPP depend on
the shape and size of the complex, image resolu-
tion, and levels of crowding. Although the final struc-
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Figure 3. Recent supervised deep learning methods to locate and classify particles from tomograms and
early work on unsupervised classification. (a) Isosurface rendering of protein structures across a range of
molecular weights in the S H R E C  data.47 Neural network performance was evaluated for each particle and PyTom
template matching (TM/TM-F) acted as a baseline. These approaches were evaluated based on their F1 score (i.e., the
harmonic average of precision, the proportion of true positives to all positives, and recall, the proportion of true
positives to all possible relevant elements). (b,c) F1 score versus the molecular weight of the particle for deep
learning localization and classification frameworks assessed in S H R E C  202097 and S H R E C  2021,98 respectively.
Classification by CPCA 1 1 6  using the reference structure shown in (d), generated from the GroEL14GroES7 complex on
tomograms containing GroEL and GroEL/GroES. (e) The average of all subtomograms gathered. (f) Class
averages produced from C P C A  method. Isosurface rendering of subtomogram averages of two classes determined by
C P C A  corresponding to (g) GroEL and (h) GroEL/ES. (i) A schematic demonstrating the classification of
mammalian ribosomes bound to native endoplasmic reticulum translocons by AC3D.85 Four classes were identified:
80S ribosomes bound to translocons with T RA P  only (class #1), 80S ribosomes bound to translocons with T R A P  and
O S T  (class #2), 60S ribosomes with T RA P  only (class #3), and finally 60S ribosomes with both T RAP  and O S T .

tures are coarsely defined, they may serve as refer-        multi-task model for simultaneously performing
ences for multireference alignment to yield higher        semantic segmentation, classification, and coarse
resolution structures.                                                                   structure determination. Three networks each per-

Simultaneous alignment and classification are        form one of these tasks individually, and to achieve
also possible through multi-task learning, where a        multi-task learning, the losses of these networks are
single deep learning model is trained to perform        combined into a global loss function through linear
multiple tasks at once to optimize the entire combination. Each task reinforces the others,
pipeline as opposed to each step. DSM-Net46 is a and DSM-Net demonstrates improved feature
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For pattern mining methods to be used

substantial computational backgrounds or
resources.
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extraction, reaches greater accuracy, and outper-
forms single-task models. The model even identi-
fied new structures that were not present in the
training data. Jim-Net53 is an end-to-end model for
simultaneous, unsupervised alignment and cluster-
ing. After hierarchical clustering of subtomograms,
a pair-matching alignment algorithm couples and
aligns image pairs from a given branch. This archi-
tecture performed better than when each task was
completed alone, and its accuracy was on par with
state-of-the-art supervised methods.

Challenges & future directions

Although there have been significant
advancements in cryo-ET data mining methods,
there remain some outstanding challenges that
need to be overcome to establish the approach’s
routine use.

Limitation of annotated data

Models perform better when trained on large
quantities of unbiased data, but obtaining
tomograms is labor and time intensive, and more
so if manual annotations are required. Although
developments in cryo-ET technology expedite the
imaging process,78     issues remain in objectively
and efficiently labeling tomograms. Data augmenta-
tion addresses the issue by simulating realistic data,
while domain adaptation extrapolates information in
previously labeled data sources to predict new
tomograms.
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once applied to real data. Rather than creating
tomogram simulations from scratch,
CryoETGAN5 8  is a generative adversarial network
designed to use real density maps of particles to
synthesize imitations of subtomograms and effi-
ciently infer undiscovered elements present in a
tomogram of interest.

Domain adaptation to facilitate model perfor-
mance between distinct data sets. Domain
adaptation is another strategy to produce more
training data by permitting a model to train on a
set of annotated data and apply it to a target set.
The primary challenge is overcoming the domain
shift between the annotated data and targets –
where the cross-data prediction is biased due to a
difference in the imaging quality of the two image
sets, or domains. 3D-ADA59     is an adversarial
domain adaptation framework that overcomes this
by mapping subtomograms into a latent space
existing between the domains. This setup improves
cross-data source prediction and even the determi-
nation of novel structures absent from the training
data. Cryo-Shift60 is a framework to address domain
shifts using multi-adversarial domain adaptation.
Simulated tomograms are used as training data
and are transformed by Cryo-Shift through domain
randomization. This randomization improves the
generalization ability of the classifier to better pre-
dict in the case of the experimental data. Despite
being fully unsupervised and not training on any
labeled experimental samples, Cryo-Shift still out-
performs other cross-domain subtomogram classifi-
cation approaches.

Data augmentation via simulated tomograms and
image synthesis. Via simulated tomograms, data
augmentation generates substantial amounts of
objectively labeled training data. In contrast,

extensively, they must be convenient for a wide
subjectivity,     as     users     may     locate     and     label variety of users, including those without
particles differently. Because simulations offer a
ground       truth,       they       can       benchmark       the
performance        of        data        analysis        methods.
Simulations should closely resemble real User convenience. While publicly releasing
tomograms, considering factors such as crowding        software code is now routine for reproducibility
conditions, image distortions, and noise.                             and to foster research developments, there are

To replicate the heterogeneous, crowded additional considerations that can increase their
environment of tomograms, Liu et al.56 simulated        ease     of     use     for     researchers.     For     instance,
macromolecular complexes and ultra-structures as        including a graphic user interface attracts a

multiple spheres with fixed relative positions that broader audience to utilize the protocols, as in the
could deform under a force field. This achieves a        case of IMOD and Dynamo.10,29     Consolidating
high density of packing with considerations of struc-        scripts into a single suite is convenient for a user

tural     diversity     and     deformation     but     is     time- to select analyses of interest. Similarly, Scip-
consuming and unsuitable for large data genera- ionTomo117 is a framework that enables a user to
tion. A more efficient approach57 packs macro- select protocols from multiple suites into a single
molecules, represented as a single sphere, in a analysis pipeline. Computational speed-ups such
noise-free density map that is then used to simulate as GPU acceleration and parallel processing should
a tomographic image. also be considered, especially for machine learning

Simulating realistic data must incorporate a processes, which typically require GPUs to achieve
variety of factors, and neural networks trained on        a reasonable timeframe.61 Finally, cloud support or
such data tend to exhibit reduced performance        web-based portals enable research labs without in-
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Figure 4. Template-free pattern mining approach examples. (a) A P19 cell tomogram slice superimposed with
membranes (yellow) and particles (blue) identified by PySeg.3 6  Tomogram slices (b) where circles encompass the x-y
position of particles identified for classes shown in (c). Scale bar, 50 nm. (c) Average densities of identified particle
classes. From left to right: membrane-associated ribosome (red), ribosome-associated translocon (light red),
ribosome-free translocon (yellow), two putative P L C  complexes (magenta and purple), putative IP3 receptor (blue).
Scale bar, 10 nm. (d) Examples of additional class averages identified by PySeg. (e) A tomogram slice of intact
Synechocystis cell with circles depicting particle picking results. (f) Unsupervised, iterative clustering of extracted
features, plotted in 2D, performed by Y O P O  neural network.51 (g) Isosurface rendering of discovered patterns. A
tomogram slice (h) of intact Acetonema longum and (i) rendered structure models of patterns identified via multi-
pattern pursuit (MPP). (j) Magnified region from (i) showing a close-up of the embedded structures. (k) A comparison of
an acquired GroEL-like pattern compared to the known atomic model. The average of all subtomograms of this
structure pattern aligned to the known structure of GroEL; template is shown.52

house hardware resources to utilize analysis advantageous for many cryo-ET pattern mining
software.29,34,45                                                                                                                        tasks but also can require considerable amounts

of state-of-the-art hardware to train and store,

de
Model size and efficiency considerations for tool reduce the computational

li
load of software when
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possible. To this end, Matuszewski et al.118 aimed
to reduce the size of CNN models, specifically the
popular U-Net architecture102      (utilized by the
UMC, U-CLSTM, and MC DS  Net supervised clas-
sifiers.97–98 The study characterized the impact of a
deep learning model’s size on its accuracy. The
resulting lighter U-Net featured a parameterized
architecture with fewer trainable weights and
achieved comparable accuracy in a particle recog-
nition task with four times fewer weights but at the
cost of more sensitive hyperparameters. Deeper
architectures tended to feature better performance
at the cost of longer training, more required training
data,     and     susceptibility     to     overfitting.     Thus,
researchers must make practical design considera-
tions to avoid making overly complex systems while
also retaining some level of robustness.

Performance benchmarks

Evaluating proposed frameworks is commonly
achieved by comparing their performance against
current standard approaches. However,
researchers may      apply different      evaluation
methods or standards, and the performance of
methods against each other may be ambiguous.
Thus,     implementing     benchmark     studies that
examine several models at once using the same
data set and assessment serves to properly
determine      the performance of      cutting-edge
methods.

The previously noted S H R E C  track96–98 is an
annual study to evaluate learning-based localiza-
tion and classification methods developed by vari-
ous groups using the same set of validation data.
Studies such as these not only introduce new quan-
titative cryo-ET analysis strategies, but also clarify
their strengths, weaknesses, and promising direc-
tions compared to current state-of-the-art technolo-
gies. Benchmark studies should aim to assess new
methods with ground-truth simulated data that clo-
sely reflects experimental data, well-validated
experimental data, or both. Furthermore, factors
such as runtime and user accessibility should also
be important considerations in evaluating the
strengths and weaknesses of each approach.
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segmentation, classification, and structure determi-
nation with great speed, spatial resolution, and
structure identification accuracy.

Template-free, unsupervised approaches are
especially     promising,     as     they     overcome     the
substantial annotation requirements that render
supervised methods laborious and introduce a
pathway towards de novo structure discovery as
they forego a priori knowledge for complex
identification. Aside from generating structure
patterns, unsupervised classification can facilitate
supervised methods. Given sets of patterns, a
user only needs to label groups of subtomograms
rather than each subtomogram individually. This
could be exploited to generate training data for
supervised classification with much less effort
than fully manual approaches. The advancement
of these methods will address a major bottleneck
in the cryo-ET pipeline. Moreover, it will open new
opportunities to revisit existing cryo-ET data and
search for previously overlooked biomolecular
interactions. Such a development would enable
exciting discoveries of protein–protein interactions
and structural conformations at a rapid rate,
significantly accelerating research in numerous
biological contexts.

However, to achieve this goal, it is not sufficient to
simply develop highly effective algorithms. To
ensure     that     these     developments     are     widely
disseminated, software packages should
encourage implementation of cutting-edge cryo-
ET analysis techniques in the broader research
community. Cross-comparative studies of the
latest methods should regularly assess the state
of the field. As methods become more advanced,
integrative modeling becomes essential, as
pattern mining results should be validated or
informed      with      other      techniques      such as
quantitative or cross-linking mass spectrometry
and computational structural predictions.2,78,119–122

Advancements in tomogram processing for pattern
mining will translate into a deeper and more com-
plete understanding of countless cellular
processes.
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