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Abstract

Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular struc-
tures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular com-
plexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data
generally involves isolating regions or particles of interest from tomograms, organizing them into related
groups, and rendering final structures through subtomogram averaging. Template-matching and
reference-based structure determination are popular analysis methods but are vulnerable to biases and
can often require significant user input. Most importantly, these approaches cannot identify novel com-
plexes that reside within the imaged cellular environment. To reliably extract and resolve structures of
interest, efficient and unbiased approaches are therefore of great value. This review highlights notable
computational software and discusses how they contribute to making automated structural pattern discov-
ery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessi-
bility are also presented.
2023 Elsevier Ltd. All rights reserved.

ular resolution information of structures in a cellular

Introduction ) : .
context.” The absence of disruptive sample prepa-

Cryo-electron tomography (cryo-ET) enables
in situ visualization of subcellular structures in
their native states inside a cell, which is not
possible by any other imaging technology.’ X-ray
crystallography, nuclear magnetic resonance
(NMR) spectroscopy, and single particle cryo-
electron microscopy (cryo-EM) can resolve atomic
details of macromolecular structures but are
in vitro methods that lack cell context. Conversely,
fluorescence imaging methods can image an entire
cell and the organelles within but cannot resolve
macromolecular structures. Cryo-ET uniquely
bridges these imaging methods by providing molec-

0022-2836/ 2023 Elsevier Ltd. All rights reserved.

ration, such as chemical fixation,® further enables
the observation of spatial- and temporal-regulated
protein—protein interactions, permitting the study
of a cell’s native molecular sociology.? Thus, cryo-
ET can reveal complex and novel macromolecular
structures inside the cells which represent active
function-conducting cellular machines. In preferred
scenarios, the resolution can achieve the sub-
nanometer range, thereby directly revealing struc-
tural mechanisms in situ.””’

In cryo-ET, specimens are immobilized via cryo-
fixation and subsequently imaged as the sample is
progressively tilted about an axis perpendicular to
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the electron beam. This generates a series of 2D
transmission electron micrographs that can then
be used to reconstruct a 3D image, or tomogram.®
The tomograms contain readily visible organelles
and macromolecular structures, represented as
recurring density patterns that appear throughout
the volume. By recognizing and then averaging mul-
tiple instances of a pattern, the underlying structure
can be determined. A complete molecular structural
landscape visualization of a cell can be pursued by
determining multiple structures and localizing them
throughout the tomogram (Figure 1(a)—(e)). Yet,
this is challenging given that raw tomograms con-
tain large, complex data that is further complicated
by artifacts such as the missing wedge effect and
low signal-to-noise ratio (SNR).° Manual analysis
of such data is not only cumbersome but at risk of
bias. Hence, automated methods to extract and
analyze unique cellular structures captured by
cryo-ET are of great importance.

Tomogram processing suites such as IMOD, %2
EMAN2,*®  pyTom,'”*° Protomo,’** and
others provide comprehensive tools for general
tomogram analysis (see Table 1). In addition, the
development of new methods that target specific
tasks to advance cryo-ET analysis is also being pur-
sued from many facets (see Table 2). Below we fol-
low the general sequence for a structural
determination that follows tomographic reconstruc-
tion, discussing the advantages, shortcomings,
and accessibility of currently available methods to
contextualize the current state of quantitative cryo-
ET analysis. We primarily focus on approaches that
reduce the manual intervention required by
researchers and highlight algorithmic developments
that we envision will advance the field towards min-
ing structures de novo from cryo-ET tomograms.

Segmentation

Segmentation is frequently the first step of
examining the tomogram. Voxels that correspond
to biological features of interest are annotated in
tomogram for 3D illustration. Segmentations
be performed manually in software such as
where a user traces the region of interest
slice, but this strategy is tedious and some-
iNcoNsiStent-®* Low SNR, 1o0w coNtrast, miSs-

wedge effects, and crowded densities
exace'bate the difficulty of this task.?®**®? pevelop-
strategies for fast, reproducible, and high-quality
segmentations is crucial for reliable data annotation
and st'uCtural analyses.

Different methodS have b€en developed to
reduce the |evel of human iNt€rvention required for
segmentation. Early approaches largely focused
on boundary detection,®*®* watershed algo-
rithms,®® and comparisons of regions to pre-
defined models of structures.®>®” Amira®® is a pop-
ular graphics software by Thermo Fisher Scientific
that implements watershed thresholding algorithms

to semi-automatically segment biological structures
such as membranes, nuclei, and filaments. Meth-
ods that unite watershed and boundary approaches
have also been investigated.®® Each approach has
its own set of weaknesses, causing its performance
to be highly dependent on the dataset. Moreover,
they require significant input from the user for rea-
sonable segmentations.

SuRVoS** is a more recent tool that employs
machine learning on manually segmented slices to
predict regions on subsequent slices or automati-
cally segment boundaries by analyzing local density
changes within the tomogram, effectively reducing
the amount of annotation required. Deep learning
methods have also been developed toward fully
automated segmentation. These are capable of
robustly segmenting multiple subcellular structures
at once. For instance, the EMAN2 software
suite’ ' includes a deep learning-based auto-
mated segmentation method that requires only 10
manually annotated images to locate similar parti-
cles throughout the tomogram. This vastly reduces
the need for manual annotation for feature extrac-
tion (Figure 1(f)—(i)). The software can also utilize
a neural network trained on one tomogram to seg-
ment other tomograms, provided they have a simi-
lar imaging quality and voxel size. This semi-
automated segmentation approach has supported
the investigations of Trypanosoma brucei as well
as thylakoid membranes.®®’° In addition to annota-
tion, segmentation is commonly used to facilitate
other structural pattern-mining tasks. Many soft-
ware introduced in later sections of the review can
also perform automated segmentation to facilitate
particle picking by restricting the search space
(e.g., using membrane segmentations to locate
membrane-bound complexes) and informing on
particle orientation.>3%%!

Particle picking

Particle picking can be considered a variation of

segmentatign. This process pjcks subvolymes, the
a|so known as suptomograms, of equal size in the can
tomogram anpd egch coptains a structure of IMOD,*°
interest (the “particlg”).
then be computatijonally cropped out and the cojlec-times
tion of particles is overlaid to generate a subtomo-ing

The sliptomograms can slice-by-

gram gverage wijth ephanced conptrast apd
resolution of the structure of interest. While soft-ing
ware packages often ajlow users to manyally select
PoSitiohs to generate sybtomegrams,22.72 this can
be time-consuming, subjective, and incomplete.”?
Template matching and template-free approaches
for particle picking have been developed to facilitate
this task.

Template matching

Templates are used to find corresponding density
matches in the tomogram. They are generally
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Figure 1. Exploring the diverse, crowded environment within cellular tomograms. A tomogram slice (a) and
corresponding isosurface rendering (b) of an endoplasmic reticulum (ER)-derived vesicle decorated in ribosome-
transolocon complexes. (c) The cryo-EM structure of the translocon complex bound to the translocon associated
protein complex (TRAP) and oligosaccharyl-transferase (OST), determined from subtomogram averaging of the
complex on vesicles. A tomogram slice (d) and the isosurface rendering of the determined complexes (e) in intact
cells demonstrates the increased complexity of studying structures in the native cellular context and demonstrates the
generation of a limited visual atlas.”® A tomogram slice (f) of a PC12 cell and (g) the training and annotation of regions of
interest in the EMAN2 analysis software. (h) The automated segmentation of four independently trained neural
networks for each labeled structure of interest. (i) The final merged annotation of the four features identified by

EMAN2 segmentation neural network.™

macromolecular structures
crystallography,
particle

resolved with X-ray
NMR spectroscopy, or single-
cryo-electron  microscopy (cryo-EM).

These reference structures must be properly low-
pass-filtered and adjusted to reflect the
tomogram’s resolution and distortions from the
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Table 1 Cryo-ET image software for pattern-mining tasks.

Software tool GUI Segmentation Template Template-free Subtomogram Classification
matching averaging
Amira + EMPackage?® Yes Yes Yes No No No
(for fiber tracing)
Bsoft (w/ Jsubtomo)?’%® No Yes Yes No Yes No
Dynamo??3? Yes No Manual No Yes Yes
EMAN27716 Yes Yes Yes Yes Yes Yes
emClarity®**° No No Yes No Yes No
IMOD (w/ PEET)™*"*? Yes Yes Manual No Yes No
Protomo?'™?* No No Yes No Yes Yes
PySeg®?® No Yes No Yes Yes Yes
PyTom'’~*° partial  No Yes No Yes Yes
RELION®®7* Yes No No No Yes Yes
SuRVos™ Yes Yes No No No No
Tomominer, TomoMinerCloud*® No No Yes Yes Yes Yes

cryo-ET imaging process.”*”’> Templates may also
be generated de novo from subtomogram averages
if densities are highly abundant and regular.”® All
possible orientations of the templates are scanned
through the tomogram to calculate correlation
maps. Statistical analyses, such as peak extraction,
are applied to the map to discern macromolecule
positions throughout the tomogram. The reference
structure can even be mapped back to these posi-
tions to create a visual atlas of the macromolecule
populating the tomogram®® (Figure 2(a)).

Many software packages offer template
matching, including Dynamo,*™** emcClarity,>*>°
PyTom,*” 2 EMAN2,**'®* and TomoMiner® (see
Table 1). Template matching has enabled the deter-
mination of highly resolved structures of large
macromolecular complexes, such as ribosomes,
the 26S proteosome, and viral Gag assembles
and is widely used to automatically identify particles
of interest from cryo-ET tomograms.’s.77-79 Aside
from discrete particles, it can be used in concert with
tracing algorithms to segment filamentous struc-
tures, such as those present in the cytoskele-
tonso-s2

Despite its popularity, traditional template
matching suffers from several drawbacks. It is low
throughput and can be extremely time-
consuming.s; Performance depends on both the
image quality of the tomogram and the reference
structure. Molecular crowding in the tomogram is
another major concern.®® Dense packing of parti-
cles in tomograms may increase the presence of
off-target densities, making it more challenging to
locate densities of interest. While a tight mask
enables algorithms to ignore extraneous densities
and focus on the most relevant regions of the candi-
date object when calculating template matching
scores, this solution can only be used in limited sit-
uations where molecules are rigid and well-
resolved.”* False positives are another issue,
resulting in references being matched to not only
the true location of structures but also regions of
noise.84-85

The most inherent disadvantage of template
matching is template bias, where detectable
structures are limited to those with an existing
template obtained from other structural biology
methods.>®"%¢ Likewise, template-matching algo-
rithms may suffer sample-specific biases that can
occur if templates do not reflect unexpected binding
partners or conformations. On the other hand, aver-
aging manually selected subtomograms potentially
introduces user-dependent bias. Consequently,
template matching cannot be utilized effectively in
studies involving flexible macromolecules or com-
plex interactions, and alternative methods must be
considered.

Template-free particle picking

To forgo the need for preexisting structural
references to recover cellular structures de novo
for pattern recognition, template-free approaches
are of growing interest for cryo-ET data analysis.
To achieve the nonspecific extraction of
subtomogram volumes, some approaches have
turned to deep learning. Convolutional neural
networks (CNNs) are deep learning architectures
that are powerful tools especially adept at image
processing, which is useful given that
subtomograms are essentially 3D images
representing particles.®’” Neural networks such as
DeepPicker’® and SPHIRE-crYOLO®® exist for
automated particle picking in single-particle cryo-
EM micrographs. Performing the same task in cellu-
lar tomograms is a greater challenge because the
native cellular environment is more crowded and
contains a more diverse set of structures compared
to cryo-EM micrographs.*®

Neural networks for feature extraction have also
been successfully implemented for cryo-ET. As
previously noted, the EMAN2 package'*** imple-
ments deep learning for automated segmentation,
but can also perform automatic particle picking.
Although this approach can identify particles from
more than just a single class, the computation time
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Table 2 Recent notable technical developments for specific cryo-ET pattern-mining tasks.

Software tool Task

Notes

SuRVos**
DSM-Net*®

Segmentation
SegmentationClassification
(supervised)

Structure determination
VP-Detector®’ Segmentation
Particle
pickingClassification
(supervised)
DeepFinder* Particle picking
3D-UCaps®’
PySeg?3®

Particle picking
Particle
pickingClassification
(unsupervised)

DSRF3D-v2, RB3D, CB3D*° Classification (supervised)

DISCA®! Classification
(unsupervised)

Mpp®? 7 Classification
(unsupervised)

I Structure determination

Classification
(unsupervised)
Structure determination

RELION-4.0 Bayesian single- Structure determination

particle tomography structure
determination®

54
FAML Structure determination

55
HEMNMA-3D Structure determination

Data augmentation
Data augmentation

58
CryoETGAN Data augmentation

_ 59
3D-ADA Domain adaptation

Cryo-Shift®°
rye-shi Domain adaptation

Allows users to vary the degree of manual segmentation required.
Multi-task deep learning model to train three networks
simultaneously on (1) semantic segmentation, (2) classification,
and (3) coarse structure determination. Outperformed single-task
models and was able to identify structures absent in training data.
Uses a CNN to take user-annotated data and automatically
segment, localize, and classify particles of interest.

Efficient multiclass particle picking of structures with various sizes
and shapes.

Efficient multiclass particle picking was given limited training data.
Particle picking of small membrane-bound complexes.

Classifies complexes spanning a range of molecular weights.
High-throughput, fully unsupervised approach to cluster particles
using deep learning.

Iterative alighment to sort a heterogenous set of particles into
structure patterns, capable of identifying patterns de novo.

Uses pair-matching alignment and hierarchical clustering to
achieve comparable accuracy with supervised method to
determine structures de novo.

Structure determination via optimization of a regularized likelihood
function. In contrast to previous RELION renditions, features a
new weighting system and refinement methods.

Combines features of FRM and maximum likelihood structure
determination methods to achieve higher robustness to noise and
artifacts compared to FRM methods and requires fewer
subtomograms.

Creates a conformational space of a complex that maps how a
structure may transition between different configurations in situ.
High density packing by modeling structures with multiple spheres.
Computationally efficient packing by modeling structures as single
spheres with gradient descent algorithm.

Deep learning model designed to train on tomograms to generate
imitations that can be used to increased training data without the
need to simulate artificial tomograms, which may not fully reflect
experimental data.

Utilizes deep learning to map particles from images with different
parameters to an intermediate latent space.

Transforms training data to improve the generalization ability of
classifiers to predict on different tomography datasets.

scales linearly for each additional class. Because
particles of different structures could be used to
inform the recognition of each other, it is possible
to develop a more efficient system to leverage this
information. DeepFinder*® is a CNN that can simul-
taneously segment multiple classes of varying
shapes and sizes (Figure 2(b)—(h)). While the
EMAN2 classifier has a shorter training time to iden-
tify a single class, DeepFinder outperforms EMAN2
in multi-class automatic particle picking. Moreover,
it reduces the need for extensive postprocessing
for reliable results. Improving on these attempts,
3D-UCaps*® is a deep learning framework that
can also perform binary and multi-class particle
identification. Replacing the data-hungry CNN
architecture with the data-efficient CapsNet, this

method demonstrates comparable picking perfor-
mance even in situations with limited training data
(defined as less than 10,000 annotated particles).
Specialized segmentation methods exist for
membrane-bound complexes. Pyto®’ is specifically
designed to detect small, flexible complexes linking
larger structures such as membranes, organelles,
or filaments. Multiple connectivity-based segmenta-
tion at different thresholds is organized into a hierar-
chy to establish a final segmentation. This is in turn
used to identify particles. Pyto has a high detection
rate and offers statistical analyses to characterize
the segmentations. Another software for particle
picking is PySeg,® a software package that also
focuses on the automatic localization of small,
membrane-bound complexes. It incorporates
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Figure 2. Particle picking via template matching or template-free approaches. (a) Template mapping to
achieve a visual protein atlas. Template matching structures from a template library identifies the cross-correlation
values of each reference against regions of a tomogram, ultimately identifying positions that most likely represent
particles from the library. The rendered structure models at the calculated positions and orientations forms a protein
atlas, providing information on the distribution of these structures throughout the cell and their relation to other
structures.””  (b) manually segmented membranes (gray and yellow) and particle picking positions Rubisco
holoenzymes (orange) in native Chlamydomonas pyrenoid determined by DeepFinder.*® (c) A tomogram slice (top)
with the segmentations as performed by DeepFinder (middle; orange) and template matching (cleaned with CPCA
classification). Scale bar, 50 nm. Subtomogram averages of holoenzymes generated from each particle picking
method with Rubisco molecular structure (d) and FSC curves showing final resolution of 15 A (FSC > 0.143; e). Slice of
tomogram (f) and zoom-in comparing DeepFinder to template matching score map (g). (h) Membranogram
(topological view of membrane surface by projecting tomogram densities onto segmented membrane surface) and
corresponding comparisons between DeepFinder-, template matching-, and expert-derived particle picking positions.

There are two primary approaches to
subtomogram averaging. The first is alignment-
based determination, where an angular search is
performed to align the subtomogram to a
reference structure. This is the subtomogram
averaging approach utilized by software such as
Dynamo.”’ The reference structure is first masked
and rotated in real space. To account for the miss-
ing wedge, the reference is then masked in the
Fourier space. The 3D cross correlation values

are ca kulated between the reference and subtomo-
gram. The algorithm identifies the transformations

that produce highest cross correlation score. These
transformations are applied to the subtomograms, a
w ighted average is p rform d to account fort e
pr%éviohls masking to yfeld a?‘inalnstrutc:)ture. Hou/-

TomoSegMemTV,>’ a package that utilizes tensor
voting to achieve robust segmentation of mem-
branes, as well as PyOrg,*® which offers statistical
analyses to characterize the segmentations.

Structure determination

Once particles have been identified from a
tomogram, the underlying structures must be

recovered by further processes. The PRarfcles in
subtomograms are typically positioned in various
orientations but should contain common features
with other particles of the same structural class.

Thus, subtomograms are alighed and averaged to
recover the high-resolution structure shared by the

edyidedlspatigles WiRimea $e fasmidel bttt

=d | i ev r,t esearchrisks converg ngo tol cal minima,
the original tomogram space to obtain the visual

resulting in a suboptimal structure. Without a priori

landscape. This is similar to template matching
but replaces the reference with the obtained
t e e ab hd

strucure. S veral well- st lis e analysis
packages provide subtomogram averaging and
man p lation pr t co (ee Table 1). N te t at
thesé ustrategies oards designed to analyzeha

relatively homogenous particle set, The following
section (2. Structure ‘determ;nation) giscusses

strategies to handle heterogeneous particles,
which is especially relevant for de novo structure

mining.

information on the search parameters, the algorithm
may also be computationally intensive due to the
Fourier transforms and rotations, wl;llich require
the costly step of linear interpolation.”” Fast rota-
tional matching (FRM) is a form of alignment-

based determination that forgo explicit rotation of

\a/gﬂj mg%s?yg’?gg?@%;ﬂ%ha ltignmﬁ?etviﬁt?aas‘terz?tgtwam

alignment, and has been implemented into
tomogram analysis packages.'”" However, this

comes at the cost of reaching suboptimal solutions



Hannah Hyun-Sook Kim, M.R. Uddin, M. Xu, et al.

Journal of Molecular Biology 435 (2023) 168068

and is prone to be biased by image noise and the
missing wedge effect.>*

The second approach to
averaging, maximum likelihood-based
determination, is more robust to the
abovementioned effects, and which is used by
software such as RELION.**°? Expectation-
maximization algorithms® optimize a probability
function of observing the experimental data given
the initial reference  structure.”*?>°"  The
probability-weighted average of each subtomogram
in each orientation becomes the new reference and
the process is repeated. This is repeated in an iter-
ative process as the reference and probability func-
tion are updated with a more refined sampling of
possible orientations. The process converges into
a well-refined high-resolution and identifiable struc-
tural map. This approach also overcomes the need
to extensively tune parameters, as they are instead
inferred during estimation.” Thus, maximum
likelihood-based determination is more amenable
for non-experts. However, the convergence is rela-
tively slow and requires significant computational
resources. For recovering structures from a very
large data set, this may not be practical.®*’*

Efforts have been made to improve subtomogram
averaging methods. One technique that has been
developed to combine these methods to
overcome the weaknesses of FRM and maximum
likelihood-based determination is the Fast
Alignment Maximum Likelihood (FAML)®** method.
This uses fast alignment to sample transformations;
the sampled transformations then approximate inte-
grals to update the maximum likelihoods of subto-
mogram averages using the expectation—
maximization algorithm. Compared to FRM alone,
FAML exhibits higher robustness to noise and miss-
ing wedge effects, and it performs better with fewer
subtomograms.

If the underlying structure of subtomograms is
flexible, they will exhibit densities with a degree of
variation. HEMNMA-3D>® is an analysis method
that maps the low-dimensional representation of
heterogeneity within a set of subtomograms. This
technique relies on an initial atomic or pseudo-
atomic reference structure of the complex to per-
form elastic deformations and achieve the mapping.
The resulting conformational space allows for
grouping and averaging, identification of unantici-
pated conformations, and animations of the refer-
ence structure deforming along the densest
regions of the space (i.e., conformations shared
by the most subtomograms) or following alternative,
rarer trajectories.

subtomogram

Particle classification

As previously noted, if the total set of
subtomograms contains particles with different
structures, it must then be sorted into
homogenous groups with similar features, known

as structure patterns. Each structure pattern
should correspond to a distinct macromolecule or
alternate conformation of the same
macromolecule. For de novo structure mining, the
classification of particles is an inevitable hurdle to
overcome. It can also serve to identify false
positives from particle picking.

A common approach to classification s
multireference alignment.”*%> This slightly modifies
the structure determination strategies discussed in
the previous section (2. Structure determination).
Rather than being compared to a single reference,
the particle is aligned against a set of different refer-
ences. The particle is ultimately assigned to the ref-
erence that yields the closest similarity. This roughly
separates the initial particles into separate classes
for each reference, which are then averaged to gen-
erate a new reference for subsequent iterations.
This approach is implemented in popular software
packages such as Dynamo and EMAN2.?°7? These
strategies require knowledge of particles a priori, in
the form of initial references, so are not conducive
to identifying novel structures that populate the
tomogram. Classification approaches that forgo
the use of references are therefore especially desir-
able for end-to-end pattern mining.

Reference-free classification can either be
supervised or unsupervised. Supervised
classification aims to group subtomograms into
homogeneous structure patterns based on
knowledge provided by the user. Instead of
providing a reference structure, a user manually
annotates a set of training subtomograms,
assigning a label to the subtomogram based on
the structure present. With the labeled training
data, the classification algorithm aims to imitate
the labeling scheme for new data. Deep learning
models are powerful tools for this task, especially
the CNN architecture, which as noted before, is
especially adept at image processing. Many of
these frameworks localize particles prior to
classification, and so are also capable of
automated particle picking.

To this end, Che et al. investigated three CNN
architectures (DSRF3D-v2, RB3D, and CB3D).*°
Compared to previous, non-deep learning
approaches, the CNNs demonstrate improved dis-
crimination and scalability for structure determina-
tion. They found CB3D displays the best
performance with a high level of accuracy, even
with low SNR (0.01) and the missing wedge effect
present. However, the classifier's performance
was dependent on the size of the macromolecules,
as larger complexes were associated with higher
accuracies.

Additional supervised deep learning networks

have been employed to locate and classify
heterogeneous particles, many of which are
introduced in the Shape Retrieval Challenge

(SHREC) for the classification of cryo-ET data.’®™®
Such methods include 3D MS-D, 3D ResNet,?? 1%
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DN3DUnet, ' YOPO, and UMC'#104710°
(introduced in SHREC 2020, see more details
in”’, as well as  URFinder,?9100,106-107
U_CLSTM’101—102,108—111 MC DS Net’lOZ,llZ and
CEN??1137115 (introduced in SHREC 2020, see
more details in°®. The performance of these tech-
niques is evaluated on a fully annotated simulated
tomogram dataset containing particles of various
molecular weights (Figure 3(a)) and compared to
the baseline of template matching methods per-
formed in PyTom.'® This assessment measured
training time, prediction time, performance com-
pared to network architecture size, and observed
general trends for these approaches. The SHREC
evaluations found that neural networks are more
robust to noise than template matching while also
significantly reducing computation time, depending
on the architecture.’®°® Of these methods, YOPO
does not require semantic segmentation, and
instead only relies on the coordinate and particle
class for training making it more accessible for
users compared to the other learning-based
methods introduced in SHREC 2020.°’

Similar to the case of CB3D, the performance of
neural networks featured in SHREC tends to
increase with size of the particle, a trend that is
especially drastic for smaller particles®® %% (Figure 3
(b) and (c)). VP-detector*’ is a deep learning frame-
work designed to better predict on complexes
across a wide range of molecular weights and fea-
tures high accuracy, fewer training parameters,
and good performance despite small training sets
or class imbalances.

In contrast to fully or partially supervised
classification, unsupervised approaches do not
rely on any manual annotation inform on structure
pattern and therefore recover novel or unlabeled
structures de novo. k-means is a popular machine
learning approach for clustering that is the basis
for several approaches to unsupervised
subtomogram classification. This strategy was
often employed in early unsupervised
classification strategies. For instance, Forster
et al. developed the CPCA method!*® to perform
binary classification while also reducing the impact
of the missing wedge effect. A principal component
analysis is performed on pair-wise constrained cor-
relation values and used in conjunction with k-
means clustering. This procedure discriminated
between GroEL and GroEL/GroES complexes (Fig-
ure 3(d)—(h)) but was sensitive to SNR and the com-
putational cost of calculating the correlation matrix
increased quadratically with the number of subto-
mograms. AC3D®° is an algorithm based upon a
modified k-means clustering algorithm. This classi-
fication scheme is designed to focus on subtomo-
gram regions with large structural discrepancies
between class averages and successfully discrimi-
nates between structures with and without cofactors
(Figure 3(i)). Both the CPCA and AC3D methods
are implemented in PyTOM. %8>

One drawback of k-means is that the method
requires the user to estimate the initial number of
structural patterns. It also assumes the classes
are evenly populated and well-distributed. A
machine learning method capable of forming
structure patterns without an initial cluster number
is affinity propagation, which evaluates similarities
between subtomograms by transferring
information between data points. PySeg®® imple-
ments this technique to achieve the automated
detection and classification of heterogeneous
membrane-bound complexes.

Deep learning approaches are another alternative
for unsupervised classification. PySeg,>® previously
noted to be capable of locating membrane-bound
complexes in a template-free manner, is also able
to perform unsupervised classification on the
acquired subtomograms. This approach was vali-
dated in microsomal membranes and subsequently
tested on tomograms of P19 embryonic carcinoma
cells (Figure 4(a) and (b)). Of the determined struc-
ture patterns, many were consistent with known
structures (Figure 4(c)), such as the ribosome-
bound translocon, while other averages were not
immediately recognizable (Figure 4(d)). However,
the particles contained in these classes nonethe-
less appeared to be homogenous, suggesting that
new structures may have been identified de novo.

DISCA*®? is a fully unsupervised method to identify
structure patterns. It first uses template-free particle
picking to collect a large set of heterogenous parti-
cles (10° subtomograms from 10 tomograms; Fig-
ure 4(e)—(g)). The approach makes use of the
YOPO CNN,°’°% which achieved the third highest
accuracy of the tested frameworks and outper-
formed template matching for classification on the
SHREC 2020 dataset. In DISCA, YOPO is used
to extract second-order statistics on translation
and rotation invariant features. These are then mod-
eled as multivariate Gaussian distributions, effec-
tively clustering the particles according to their
underlying structure. DISCA is a time-efficient anal-
ysis, where recovering structures of multiple
classes only takes a day or two of computation for
what would take about a month using template
matching.

Classification and structure determination can
also be implemented concurrently, as
subtomograms that fail to align well with each
other can be indicative of particles from distinct
classes. A template-free framework known as
multi-pattern pursuit (MPP)°? structure patterns
from a large, highly heterogeneous collection of par-
ticles from a crowded environment (Figure 4(h)—
(k)). This strategy uses a series of alignments
based on constrained correlation and FRM to gen-
erate structures aligned to common frames. It dis-
cards redundant patterns until high-quality
patterns remain. The results of MPP depend on
the shape and size of the complex, image resolu-
tion, and levels of crowding. Although the final struc-
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Figure 3. Recent supervised deep learning methods to locate and classify particles from tomograms and
early work on unsupervised classification. (a) Isosurface rendering of protein structures across a range of
molecular weights in the SHREC data.?”” Neural network performance was evaluated for each particle and PyTom
template matching (TM/TM-F) acted as a baseline. These approaches were evaluated based on their F1 score (i.e., the
harmonic average of precision, the proportion of true positives to all positives, and recall, the proportion of true
positives to all possible relevant elements). (b,c) F1 score versus the molecular weight of the particle for deep
learning localization and classification frameworks assessed in SHREC 2020°” and SHREC 2021,°® respectively.
Classification by CPCA!'® using the reference structure shown in (d), generated from the GroEL14GroES7 complex on
tomograms containing GroEL and GroEL/GroES. (e) The average of all subtomograms gathered. (f) Class
averages produced from CPCA method. Isosurface rendering of subtomogram averages of two classes determined by
CPCA corresponding to (g) GroEL and (h) GroEL/ES. (i) A schematic demonstrating the classification of
mammalian ribosomes bound to native endoplasmic reticulum translocons by AC3D.%° Four classes were identified:
80S ribosomes bound to translocons with TRAP only (class #1), 80S ribosomes bound to translocons with TRAP and
OST (class #2), 60S ribosomes with TRAP only (class #3), and finally 60S ribosomes with both TRAP and OST.

tures are coarsely defined, they may serve as refer-
ences for multireference alignment to yield higher
resolution structures.

Simultaneous alignment and classification are
also possible through multi-task learning, where a
single deep learning model is trained to perform
multiple tasks at once to optimize the entire
pipeline as opposed to each step. DSM-Net*® is a

multi-task model for simultaneously performing
semantic segmentation, classification, and coarse
structure determination. Three networks each per-
form one of these tasks individually, and to achieve
multi-task learning, the losses of these networks are
combined into a global loss function through linear
combination. Each task reinforces the others,

and DSM-Net demonstrates improved feature
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extraction, reaches greater accuracy, and outper-
forms single-task models. The model even identi-
fied new structures that were not present in the
training data. Jim-Net? is an end-to-end model for
simultaneous, unsupervised alignment and cluster-
ing. After hierarchical clustering of subtomograms,
a pair-matching alignment algorithm couples and
aligns image pairs from a given branch. This archi-
tecture performed better than when each task was
completed alone, and its accuracy was on par with
state-of-the-art supervised methods.

Challenges & future directions

Although there have been significant
advancements in cryo-ET data mining methods,
there remain some outstanding challenges that
need to be overcome to establish the approach’s
routine use.

Limitation of annotated data

Models perform better when trained on large
quantities of wunbiased data, but obtaining
tomograms is labor and time intensive, and more
so if manual annotations are required. Although
developments in cryo-ET technology expedite the
imaging process,’® issues remain in objectively
and efficiently labeling tomograms. Data augmenta-
tion addresses the issue by simulating realistic data,
while domain adaptation extrapolates information in
previously labeled data sources to predict new
tomograms.

Data augmentation via simulated tomograms and
image synthesis. Via simulated tomograms, data
augmentation generates substantial amounts of

objectively labeled training data. In contrast,
annotating real tomograms suffers from
subjectivity, as users may locate and label
particles differently. Because simulations offer a
ground truth, they can benchmark the
performance of data analysis methods.
Simulations should closely resemble real

tomograms, considering factors such as crowding
conditions, image distortions, and noise.

To replicate the heterogeneous, crowded
environment of tomograms, Liu et al.’® simulated
macromolecular complexes and ultra-structures as
multiple spheres with fixed relative positions that
could deform under a force field. This achieves a
high density of packing with considerations of struc-
tural diversity and deformation but is time-
consuming and unsuitable for large data genera-
tion. A more efficient approach®’ packs macro-
molecules, represented as a single sphere, in a
noise-free density map that is then used to simulate
a tomographic image.

Simulating realistic data must incorporate a
variety of factors, and neural networks trained on
such data tend to exhibit reduced performance

10

once applied to real data. Rather than creating
tomogram simulations from scratch,
CryoETGAN®? is a generative adversarial network
designed to use real density maps of particles to
synthesize imitations of subtomograms and effi-
ciently infer undiscovered elements present in a
tomogram of interest.

Domain adaptation to facilitate model perfor-
mance between distinct data sets. Domain
adaptation is another strategy to produce more
training data by permitting a model to train on a
set of annotated data and apply it to a target set.
The primary challenge is overcoming the domain
shift between the annotated data and targets —
where the cross-data prediction is biased due to a
difference in the imaging quality of the two image
sets, or domains. 3D-ADA®® is an adversarial
domain adaptation framework that overcomes this
by mapping subtomograms into a latent space
existing between the domains. This setup improves
cross-data source prediction and even the determi-
nation of novel structures absent from the training
data. Cryo-Shift®® is a framework to address domain
shifts using multi-adversarial domain adaptation.
Simulated tomograms are used as training data
and are transformed by Cryo-Shift through domain
randomization. This randomization improves the
generalization ability of the classifier to better pre-
dict in the case of the experimental data. Despite
being fully unsupervised and not training on any
labeled experimental samples, Cryo-Shift still out-
performs other cross-domain subtomogram classifi-
cation approaches.

Accessibility

For pattern mining methods to be used
extensively, they must be convenient for a wide
variety of users, including those without
substantial computational backgrounds or
resources.

User convenience. While publicly releasing

software code is now routine for reproducibility
and to foster research developments, there are
additional considerations that can increase their
ease of use for researchers. For instance,
including a graphic user interface attracts a
broader audience to utilize the protocols, as in the
case of IMOD and Dynamo.'”* Consolidating
scripts into a single suite is convenient for a user
to select analyses of interest. Similarly, Scip-
ionTomo''’ is a framework that enables a user to
select protocols from multiple suites into a single
analysis pipeline. Computational speed-ups such
as GPU acceleration and parallel processing should
also be considered, especially for machine learning
processes, which typically require GPUs to achieve
a reasonable timeframe.®! Finally, cloud support or
web-based portals enable research labs without in-
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Figure 4. Template-free pattern mining approach examples. (a) A P19 cell tomogram slice superimposed with
membranes (yellow) and particles (blue) identified by PySeg.>® Tomogram slices (b) where circles encompass the x-y
position of particles identified for classes shown in (c). Scale bar, 50 nm. (c) Average densities of identified particle
classes. From left to right: membrane-associated ribosome (red), ribosome-associated translocon (light red),
ribosome-free translocon (yellow), two putative PLC complexes (magenta and purple), putative IP3 receptor (blue).
Scale bar, 10 nm. (d) Examples of additional class averages identified by PySeg. (e) A tomogram slice of intact
Synechocystis cell with circles depicting particle picking results. (f) Unsupervised, iterative clustering of extracted
features, plotted in 2D, performed by YOPO neural network.’ (g) Isosurface rendering of discovered patterns. A
tomogram slice (h) of intact Acetonema longum and (i) rendered structure models of patterns identified via multi-
pattern pursuit (MPP). (j) Magnified region from (i) showing a close-up of the embedded structures. (k) A comparison of
an acquired GroEL-like pattern compared to the known atomic model. The average of all subtomograms of this
structure pattern aligned to the known structure of GroEL; template is shown.>?

house hardware resources to utilize analysis advantageous for many cryo-ET pattern mining
software.??3%4° tasks but also can require considerable amounts
of state-of-the-art hardware to train and store,
diminishing their accessibility."*® Thus, it is ideal to

Model si d effici id ti for tool X
odel size and etficiency considerations for too reduce the computational load of software when

design. Deep learning models such as CNNs are
11
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possible. To this end, Matuszewski et al.'*® aimed
to reduce the size of CNN models, specifically the
popular U-Net architecture’® (utilized by the
UMC, U-CLSTM, and MC DS Net supervised clas-
sifiers.”’?® The study characterized the impact of a
deep learning model’s size on its accuracy. The
resulting lighter U-Net featured a parameterized
architecture with fewer trainable weights and
achieved comparable accuracy in a particle recog-
nition task with four times fewer weights but at the
cost of more sensitive hyperparameters. Deeper
architectures tended to feature better performance
at the cost of longer training, more required training
data, and susceptibility to overfitting. Thus,
researchers must make practical design considera-
tions to avoid making overly complex systems while
also retaining some level of robustness.

Performance benchmarks

Evaluating proposed frameworks is commonly
achieved by comparing their performance against
current standard approaches. However,
researchers may apply different evaluation
methods or standards, and the performance of
methods against each other may be ambiguous.
Thus, implementing benchmark studies that
examine several models at once using the same
data set and assessment serves to properly
determine the performance of -cutting-edge
methods.

The previously noted SHREC track®® % is an
annual study to evaluate learning-based localiza-
tion and classification methods developed by vari-
ous groups using the same set of validation data.
Studies such as these not only introduce new quan-
titative cryo-ET analysis strategies, but also clarify
their strengths, weaknesses, and promising direc-
tions compared to current state-of-the-art technolo-
gies. Benchmark studies should aim to assess new
methods with ground-truth simulated data that clo-
sely reflects experimental data, well-validated
experimental data, or both. Furthermore, factors
such as runtime and user accessibility should also
be important considerations in evaluating the
strengths and weaknesses of each approach.

Perspectives

In terms of studying protein structure and
interactions, cryo-ET offers a large-scale

perspective, presenting a unique opportunity to
investigate the molecular sociology within a cell.
To this end, computational pattern mining
methods can achieve visual proteomics, mapping
positions of complexes in tomograms to elucidate
the spatial and population distributions of identified
macromolecules.’”® Given that a tomogram is both
information dense and costly to image and anno-
tate, effective pattern mining is critical for high-
throughput analysis. Ideal methods should perform

12

segmentation, classification, and structure determi-
nation with great speed, spatial resolution, and
structure identification accuracy.

Template-free, unsupervised approaches are
especially promising, as they overcome the
substantial annotation requirements that render
supervised methods laborious and introduce a
pathway towards de novo structure discovery as
they forego a priori knowledge for complex
identification. Aside from generating structure
patterns, unsupervised classification can facilitate
supervised methods. Given sets of patterns, a
user only needs to label groups of subtomograms
rather than each subtomogram individually. This
could be exploited to generate training data for
supervised classification with much less effort
than fully manual approaches. The advancement
of these methods will address a major bottleneck
in the cryo-ET pipeline. Moreover, it will open new
opportunities to revisit existing cryo-ET data and
search for previously overlooked biomolecular
interactions. Such a development would enable
exciting discoveries of protein—protein interactions
and structural conformations at a rapid rate,
significantly accelerating research in numerous
biological contexts.

However, to achieve this goal, it is not sufficient to
simply develop highly effective algorithms. To
ensure that these developments are widely
disseminated, software packages should
encourage implementation of cutting-edge cryo-
ET analysis techniques in the broader research
community. Cross-comparative studies of the
latest methods should regularly assess the state
of the field. As methods become more advanced,

integrative modeling becomes essential, as
pattern mining results should be validated or
informed with other techniques such as

quantitative or cross-linking mass spectrometry
and computational structural predictions.?’81197122
Advancements in tomogram processing for pattern
mining will translate into a deeper and more com-
plete understanding of countless cellular
processes.
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