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Macromolecular structure classification from cryo-electron tomography (cryo-ET)
data is important for understanding macro-molecular dynamics. It has a wide range
of applications and is essential in enhancing our knowledge of the sub-cellular
environment. However, a major limitation has been insufficient labelled cryo-ET
data. In this work, we use Contrastive Self-supervised Learning (CSSL) to improve the
previous approaches for macromolecular structure classification from cryo-ET data
with limited labels. We first pretrain an encoder with unlabelled data using CSSL and
then fine-tune the pretrained weights on the downstream classification task. To this
end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit
of augmenting cryo-ET datasets is most prominent when the original dataset is
limited in size. Overall, extensive experiments performed on real and simulated
cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness
of our approach in macromolecular labeling and classification.

KEYWORDS

self-supervised learning, macromolecular structure classification, electron cryo
tomograms, data augmentation, contrastive learning

1 Introduction

Cryo-electron tomography (cryo-ET) is a revolutionary imaging technology with
notable applications in the field of cell and structural biology (Gan and Jensen, 2012; Luci¢
et al, 2013; Zhang, 2013). Our understanding of the structures and accompanying
functions of key components of the cellular microenvironment have been significantly
expanded by cryo-ET (Griinewald et al., 2003; Cyrklaff et al., 2005; Koning and Koster,
2009). Furthermore, cryo-ET has provided new insights into human disease states
including mitochondrial diseases and, most recently, COVID-19 where the structure
and function of SARS-CoV-2 was determined in infected host cells (Klein et al., 2020).
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Another major advantage of cryo-ET is that high-resolution 3D
of (e.g.

macromolecules) are acquired in their near-native states in

images subcellular  structures organelles and
contrast to earlier approaches that require fixation, sectioning
and dehydration steps that may distort or alter cellular
architecture (Oikonomou and Jensen, 2017). The 3D images
are referred to as tomograms and the small subvolumes of the
tomograms that visualize individual macromolecule are termed
subtomograms. 3D visualization by cryo-ET enables resolution
of the structures of the subcellular components and their spatial
interactions in situ within single cells.

To understand macromolecular interactions and dynamics,
classifying individual macromolecular structures from the
subtomograms is a crucial step (Murata and Wolf, 2018). The
classification implies identifying the target macromolecules from
subtomograms. However, due to the crowded and heterogeneous
cellular environment, each subtomogram closely packs several
neighboring potentially unrelated macromolecules alongside the
target macromolecule of interest (Best et al., 2007). Thus, the
closely packed structures in a single subtomogram makes
macromolecular classification challenging (Best et al., 2007).
Due to its resemblance to 3D image classification, several
deep classification models have been deployed to perform
macromolecular classification. VP-Detector (Hao et al., 2022),
which uses 3D multiscale convolutional neural network, is one of
the recent approaches for cryo-ET classification. However, most
of these classification methods are supervised and sample-
inefficient. For cryo-ET, availability of labelled data is limited
due to the rigorous annotation process. Furthermore, the
performance of deep supervised classification models relies on
the number of labelled cryo-ET subtomograms (Frazier et al.,
2017). One strategy to tackle the scarcity of labelled data is to
generate simulated cryo-ET data on which supervised models
will be trained - an approach used by several previous studies that
simulated cryo-ET subtomogram data (Pei et al., 2016; Liu et al.,
2020a,b). There is also a recent study using simulated data for
supervised training followed by application to experimental data
(Moebel and Kervrann, 2022). Nevertheless, models trained
using simulated data often perform poorly when analyzing
actual experimental data due to domain shift. In contrast,
semi-supervised approaches have the capability to deal with
lack of labelled data and avoid the problem of domain shift in
simulated data. Thus several approaches (Yu et al., 2020; Du
et al., 2021) have been developed that utilise both labelled and
unlabelled data for subtomogram classification (Chapelle et al.,
2009). However, the accuracy obtained from these approaches is
yet to reach near the accuracy from supervised approaches. As a
result, improvement of these semi-supervised approaches for
subtomogram classification continues to remain a problem.

Recently, self-supervised learning (SSL) (Noroozi and
Favaro, 2016; Pathak et al, 2016; Zhang et al, 2016;
Komodakis and Gidaris, 2018) has been proven to be an
effective unsupervised technique to learn data representations
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by solving auxiliary tasks on input data, which does not require
any human-defined annotations. Contrastive Self-supervised
Learning (CSSL) (Hadsell et al., 2006), as a subcategory of
SSL, has been widely used to learn better representations of
images and has been successful in achieving state-of-the-art
results in various domains of image classification (He et al,
2020; Tian et al., 2019; Chen et al., 2020a; Caron et al., 2020;
Misra and Maaten, 2020). CSSL learns image representations by
optimizing the contrastive loss using positive and negative pairs,
where positive pairs refers to pairs of images which are
augmentations of the same image, and negative pairs refer to
augmentations sourcing from the rest.

In this work, we use CSSL to improve the current semi-
supervised methods for cryo-ET macro-molecule classification.
Specifically, we use SImCLR (Chen et al., 2020a), MoCo (He et al.,
2020) and SWAV (Zhu et al., 2020) methods to pretrain weights
for the classification. These methods are illustrated in Figure 1.
To this end, we design a domain-specific augmentation pipeline
for cryo-ET data. The augmentation pipeline consists of 3D affine
transformations: translation, rotation and scaling. Given the
augmentation pipeline, the CSSL task is to contrast positive
pairs against negative pairs, enabling a deep-learning model to
learn cryo-ET data representations without the need of labels.
The CSSL-pretrained weights are then fine-tuned on the
downstream classification task using subsets of the training
dataset, so as to mimic semi-supervised learning settings. The
overall pipeline is shown in Figure 2. The main contributions of
this work are summarised as follows:

o We propose a self-supervised learning framework for
classification of macromolecules from subtomograms
extracted from cryo-ET images.

o We design a simple yet effective data augmentation
strategy for 3D cryo-ET subtomogram images.

o We demonstrate the improvements of self-supervised
learning in a semi-supervised learning setting using both
labelled and unlabelled cryo-ET data.

o Experiments on simulated and experimentally-derived
cryo-ET data show the effectiveness and substantial
improvements by our proposed approach.

2 Related works
2.1 Pretraining

The most prominent pretraining approach is supervised
pretraining (SP) (Pan and Yang, 2009), where the model
solves a supervised task, such as predicting class labels,
segmenting images etc., to learn the weight updates. Self-
supervised learning (Oord et al., 2018; He et al., 2020; Chen
et al., 2020a; Misra and Maaten, 2020), has recently gained
promising success as an unsupervised pretraining strategy,
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FIGURE 1
Illustration of methods SIMCLR (Chen et al., 2020a), MoCo (He et al., 2020) and SWAV (Zhu et al., 2020), which we use for cryo-ET subtomogram

classification.
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FIGURE 2
Schematic illustration of the pipeline. The first box represents the CSSL pretraining process. An augmentation pipeline is used to create

augmented cryo-ET images which is then fed into a CSSL framework to perform CSSL pretraining. The pretrained encoder is then fine-tuned using
labelled cryo-ET data as shown in the second box.

unlike SP, the labels which are to be predicted by the

even outperforming supervised pretraining in certain
model are created from input data, rather than being

applications.  Self-supervised pretraining (SSP) solves
prediction problems, as is the case with SP. However, annotated by human beings.
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2.2 Data augmentation

Unfortunately, experimental 3D cryo-ET subtomogram
image data acquired from cellular imaging, is relatively scarce
and hard to collect. Data augmentation is a common method for
reducing data bias and helping model generalize better, and can
be leveraged to address this issue. Cropping, rotating, occlusion,
flipping, shearing, zooming in/out, picture blurring, and
adjusting brightness or contrast are all common data-
augmentation techniques used in computer vision. In this
paper, we propose a brand new data augmentation strategy
for 3D cryo-ET subtomogram images, which is especially
useful for self-supervised learning.

2.3 Self-supervised learning

Self-supervised learning (SSL) has been widely studied to
learn better representations of images. SSL generates a loss from a
pretext challenge to learn relevant features without the need for
human annotations. It only uses the input data to generate
auxiliary tasks, allowing deep neural networks to learn
effective latent representations by solving them. Numerous
methods have been explored for constructing auxiliary tasks,
such as temporal correspondence (Wang et al., 2019b; Liu et al.,
2019), cross-modal consistency (Wang et al., 2019a), and so on.
Rotation prediction (Komodakis and Gidaris, 2018), picture
inpainting (Pathak et al., 2016), automated colorization
(Zhang et al.,, 2016), and instance discrimination (Wu et al.,
2018) are only a few examples of auxiliary tasks in computer

vision.

2.4 Semi-supervised learning

Semi-supervised learning techniques utilise both labelled
and unlabelled data (Chapelle et al., 2009). Unlabelled data
often carry important information which can be leveraged via
semi-supervised learning. It is particularly useful in domains
where getting labelled data is expensive and time-consuming.
Recently, SSL is being increasingly used in conjunction with
semi-supervised learning techniques (Zhai et al., 2019; Chen
et al., 2020b). SSP is first used to learn data representations
from unlabelled data, a process termed as the pretraining
phase. The weights learned in the pretraining phase are then
fine-tuned for the downstream task using labelled data.
Therefore, using SSP, one can utilize both labelled and
unlabelled data.

In this paper, to evaluate the effectiveness of SSP in a semi-
supervised learning setting, the fine-tuning phase only uses a
determined portion of the training set. While in the pretraining
phase, which does not require labels, we use the whole
training set.
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2.5 Subtomogram classification

Identifying macromolecules inside cells essentially implies
classifying subtomograms extracted from cryo-ET data. Several
supervised and semi-supervised methods have been developed
for classifying subtomograms. Popular 3D image classification
networks (Simonyan and Zisserman, 2014; He et al,, 2016; Che
et al., 2018) are used for supervised classification. CB3D,
DSRF3D_v2 and RB3D (Che et al, 2018) are the recent
examples of deep supervised models that have been used. To
deal with limited labelled data, active learning (Du et al., 2021)
and few shot learning (Yu et al., 2020) based methods have been
build classifying

macromolecules from subtomograms.

used to classification models for

3 Methods

The basic flow of our method, demonstrated in Figure 1, is as
follows: Perform CSSL, using the specifically designed data-
augmentation pipeline with RB3D (Che et al, 2018) as an
encoder. For the downstream classification task, we use the
CSSL weights to initialize the RB3D architecture and perform
supervised classification using the labelled subset of cryo-ET
subtomogram images. The steps in our workflow are described in
detail in the sequel.

3.1 Contrastive self supervised learning
techniques

We chose three representative self-supervised learning
approaches for our studies: SimCLR (Chen et al, 2020a),
MoCo (He et al., 2020), and SwAV (Zhu et al., 2020). All of
them are based on contrastive learning (Hadsell et al., 2006). The
core principle behind contrastive self-supervised learning is to
construct augmented instances from original data samples,
design a prediction task that asks if two augmented instances
are augmented from a single data sample or not, and train the
model by solving this auxiliary task. SimCLR (Chen et al., 2020a)
is a simple framework for contrastive learning with bigger batch
sizes and considerable data augmentation that yields competitive
performance as supervised learning. MoCo (Wu et al., 2018) uses
a queue, which holds a dynamic collection of augmented data
instances (called keys), to accomplish contrastive learning. For
the sake of efficiency, a momentum encoder is used to encode the
keys. With a query augmentation, a contrastive loss is defined on
the query and keys based on whether they come from the same
source. SWAV performs contrastive SSP without requiring
computation of pairwise comparisons. In SWAV, clustering is
performed on the augmentations of data examples. For cluster
assignments for different augmentations from the same image,
SWAYV encourages them to be consistent. Specifically, the code of
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RB3D model (Che et al,, 2018). '3x3x3 Conv, 64’ represents a 3D convolutional layer with kernel dimensions 3x3x3 and 64 filters. Other
convolutional layers follow similar definitions. All the convolutional layers have a stride of 1. '2x2x2 MaxPool' represents a max-pooling operation
over the input signal with kernel size 3x3x3 and stride of 2. ‘Concatenation’ denotes the concatenation of the filters of the same dimensions. ‘FC-
1024’ represents a fully connected layer with 1024 neurons. The ‘L" in 'FC-L’ corresponds to the output dimension. '‘RelU’ and ‘Softmax’ are

one augmentation is predicted based on the representation of
another augmentation. Because it does not ask for a big memory
bank, this technique is considered to be more efficient interms of
memory. We introduce detailed descriptions of contrastive
learning for self-supervision and a momentum encoder that is
equipped with a queue-structured dictionary in the following

sections.

3.1.1 Contrastive learning for self-supervision
Based upon an original subtomogram image from the
dataset, CSSL (Hadsell et al., 2006) creates two augmented

versions of this image denoted by x, and x;, where x, is

q
considered as query and x; as key. The query encoder f; (;
8, and the key encoder fi (; 6), with weights 6, and 6
respectively, are adopted to gain latent representations q = f;
(xg 0,) and k = fi (x5 0p) for x,; and x;.

A positive pair consists of a query and a key from the same
image, while a negative pair contains a query and a key from
different images. The auxiliary task is designed to tell if the given
pair is positive or not.

CSSL employs a queue to hold a collection of keys k; from
different images, and the contrastive loss is computed by:

exp(qj . kj/‘r)
exp(q; - k;/7) + Ly exp(q; - ki)

LCL = —IOg (1)

with (gj, k;) being a pair obtained from an image instance and 7
being a temperature parameter (He et al.,, 2020). During the
training process, the encoders are updated by optimizing

this loss.

Frontiers in Physiology

3.1.2 Momentum encoder with queue-
structured dictionary

To maintain and perform sampling over key vectors, existing
approaches use a variety of strategies (Hadsell et al., 2006; Hjelm
etal,, 2018; Oord et al., 2018; Chen et al., 2020a). Resorting to the
same network f; = f, on x; and x, at the same time, the Siamese-
like approach is proposed and has been proven to be effective
(Chen X. et al., 2020). However, learning discriminative features
from comparing f; and f, requires a very big mini-batch size
(Chen et al., 2020a). This Siamese-like approach is simple to use,
but it is of high computation complexity and is quite resource
intensive. As an alternative, a memory bank can be used to store
the representations of historical keys in a negative key dictionary
Dy = {k;} (Wu et al,, 2018). Instead of utilising f;, a mini-batch of
keys is sampled from the memory bank at each iteration. The
memory bank is updated with the current mini-batch of queries.
With an expanded buffer pool, this approach eliminates big batch
sizes by default. However, the key sampling step leads to
inconsistency when training the encoder. Momentum
Contrastive (MoCo) (He et al., 2020) incorporates both types
of learning strategies. The memory bank is replaced with a queue-
structured key dictionary with a preset length. The oldest key
mini-batch will act as the negative key and will be substituted by
fresh queries due to the queue’s first-in-first-out (FIFO)
principle. This method can avoid negative sampling from
being irregular.

An additional important feature of this approach is that
parameters of query encoder and key encoder are fixed and do
not receive gradient updates. Instead, a running average of
the key encoder fi is used to update the query encoder

frontiersin.org
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FIGURE 4

3D isosurface visualization of simulated 2h12 macromolecule, along with randomly simulated macromolecules depicting a crowded subcellular

environment.

(Tarvainen and Valpola, 2017; He et al., 2020), referred as
momentum encoder. Thereby, 0, and 0, are updated as
follows:
oL
0, — 0, —a=-
q < Yq aeq
Gk <—m9k+(1—m)9 5

@)
where the momentum coefficient is denoted by m, and the
query encoder’s learning rate is represented by a. As can be seen,

8, is updated via the back propagating, while 6 from the key

encoder always keeps a running average of previous states.

3.2 Encoder

We have used RB3D (Che et al., 2018) as the encoder in
MoCo. The architecture of RB3D is illustrated in Figure 3. RB3D
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is a 3D residual block based neural network, which was designed
specifically for classifying 3D cryo-ET images.

3.3 Data-augmentation pipeline

Original data-augmentation pipelines used in CSSL
methods such as SIimCLR, MoCo and SwAV were designed
primarily for traditional 2D RGB image-datasets such as
ImageNet (Deng et al., 2009). The augmentation pipeline
used random changes in brightness, contrast, saturation
and hue of RGB images, along with random horizontal flips
and random resized cropping. This augmentation pipeline is
very specific to ImageNet like datasets, and needs to be
modified to be applied to a different domain (Chaitanya
et al., 2020).
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FIGURE 5

2D subtomogram slice visualization of simulated

2h12 macromolecule, along with randomly simulated
macromolecules depicting a crowded subcellular environment.

FIGURE 6

3D isosurface visualization of T20 S proteasome (EMPIAR
10143) macromolecule, extracted from Noble single particle
dataset.

Due to the expensive annotation process, experimentally
acquired, biological cryo-ET dataset sizes are quite small.

Further, the dimensions of subtomograms are also usually

Frontiers in

FIGURE 7

2D subtomogram slice visualization of T20 S proteasome
(EMPIAR 10143) macromolecule, extracted from Noble single
particle dataset.

small (32° and 28 in the two datasets we use in this paper). In
such a case, using strong augmentations can make the
pretraining process difficult. We experimented with various
permutations and combinations of strong augmentations such
as Gaussian blur, Gamma correction, elastic transformations,
bias-field etc ( ). However, due to
small-sized datasets coupled with small dimensions of
subtomograms, such a augmentation pipeline proved to be
too complex for the model to learn useful features during the
pretraining phase.

We also considered other image-level augmentations
such as the tomography artefacts, e.g. missing wedge effect
and electron optical factors [using Contrast Transfer
Function (CTF) and Modulation Transfer Function
(MTEF)], but they are mostly specific to 3D tomography
reconstruction from 2D tilt series of cryo-ET images.
However, since subtomogram classification is a far
downstream task from reconstructing 3D tomograms, it
may not be possible to include artefacts that are
encountered in a far upstream step in our augmentation
pipeline for subtomogram classification. Nevertheless,
simulated subtomograms are extracted from the simulated
tomograms and, while generating simulated tomograms, we
have incorporated the aforementioned tomography artefacts.
Consequently, the tomography artefacts are inherent in the
simulated subtomogram dataset too. Since the contrastive-
learning methods give promising results for simulated data in
the presence of tomography artefacts, we consider that
contrastive learning methods are robust towards the

presence of such artefacts.
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TABLE 1 Comparison of subtomogram classification accuracy (%) with standard deviation on experimental biological data. Classifier with CSSL
pretrained initial weights performs much better than classifier with random initial weights.

(%)Labelled SNR Random init SimCLR SwAV MoCo
100 0 59.1 + 1.1 644 + 1.0 66.7 + 2.4 68.6 + 1.4
0.05 479 + 2.1 63.1+08 65.8 + 2.1 67.3 £ 0.6
0.03 471+ 2.1 549 + 1.0 588 + 1.3 575 + 1.7
75 0 377 £ 1.1 547 + 1.3 554 + 1.6 59.9 + 3.1
0.05 357 0.8 541+ 15 547 + 1.8 59.6 + 0.4
0.03 37.6 £ 0.6 518 + 1.8 520 +23 60.7 0.8
50 0 24.0 £ 0.9 514 + 1.0 50.0 + 3.0 53.0 + 1.6
0.05 235 +0.7 50.1 + 0.9 489 +23 492 + 3.1
0.03 217 £ 0.7 498 + 1.7 465 + 3.1 565 + 0.7
25 0 16.0 + 0.6 374+ 1.0 342+ 18 393 £ 1.0
0.05 129+ 12 339 +24 348 2.9 275413
0.03 151 + 0.8 314+ 1.9 305 + 2.1 301 £ 1.7

TABLE 2 Comparison of subtomogram classification accuracy (%) with
standard deviation on real data. Classifiers with CSSL pretrained
initial weights always perform better than classifiers with random
initial weights proving the efficacy of CSSL pretraining.

(%)Labelled Random init MoCo

100 97.0 0.2 985 + 0.7
75 97.0 0.3 98.6 + 0.7
50 943 + 1.2 98.2 + 0.4
25 465 + 0.9 98.4 + 0.4

Based on the above arguments, we propose a simple yet
effective and fine-tuned data-augmentation pipeline as
follows:

1) Arandom resized crop of the image is taken with a probability
of 50%. The scale range of the cropped image before resizing
is between 0.5 and 1.

2) A random affine transformation is applied with a probability
of 50%.
translation, and scaling. Image rotation is done by a

This affine transformation includes rotation,
random angle in the range -45 to 45° along the z axis.
Horizontal translation of the image is done by a random
fraction <0.1 of horizontal dimension of the image. Similarly,
the vertical translation is done by a random fraction <0.1 of
the vertical dimension of the image. The image may be scaled
up or down by a random scale-factor <0.1.
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The intuition behind the above augmentation-pipeline is
that to judge if a pair of augmented images originate from a
common subtomogram image or not, the model would have to
learn global 3D spatial features. These features would then be
helpful in downstream classification tasks and may prevent
overfitting upon transfer to smaller datasets (Newell and
Deng, 2020).

4 Experiments
4.1 Datasets

4.1.1 Simulated data

Several different methods exist for simulating cryo-ET
data (Pei et al., 2016; Liu et al., 2020a,b). Here, we use the
framework designed by Liu et al. (Liu et al., 2020b). They
proposed an efficient gradient descent based method to
generate 3D cryo-ET subtomogram images of a target
macromolecule with a crowded environment having several
random neighbouring macromolecules. The macromolecules
are randomly rotated and translated. Further, the simulation
procedure includes tomographic artefacts such as the missing
effect
experimentally-acquired cryo-ET images. For illustration,

wedge and electron optical factors to mimic
the 3D visualization formed using Chimera (Pettersen
2004) the 2D

2h12 macromolecule are shown in Figures 4, 5.

et al, and slices of a simulated

frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.957484

Gupta et al.

10.3389/fphys.2022.957484

Random Init

FIGURE 8

(Newell and Deng, 2020).

Grad-CAM Visualizations. CSSL (MoCo) pretrained model shows wider regions of 3D space, indicating regularization effect of CSSL pretraining

For our experiments, we use three simulated datasets with
signal to noise ratio (SNR) as 0o, 0.05 and 0.03. Each dataset has
500 images per class for 10 classes and each subtomogram is of
size 32° (32 x 32 x 32). For our experiments, the three simulated
datasets are split in ratio 60:20:20 for training, validation and
testing respectively.

4.1.2 Experimentally acquired biological data
The real dataset has been constructed from the Noble single
particle dataset (Noble et al., 2018). For each tomogram in the
Noble single particle dataset, potential structural regions have
been extracted using the Difference-of-Gaussians (DoG) method
(Pei et al., 2016). The top 1000 sub-volumes were selected
according to cross-correlation scores (Zeng et al, 2018) and
then 400 subtomograms were selected manually for each class
(Liu et al., 2019). The final constructed dataset has 400 samples
for seven classes and each subtomogram is of size 28” (28 x 28 x
28). For illustration, 3D visualization formed using Chimera
(Pettersen et al., 2004) and 2D slices of an extracted T20 S
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proteasome macromolecule is shown in Figures 6, 7. For our
experiments, the dataset is split with the ratio of 3:1:1 for training,

validation and testing respectively.

4.2 Experimental settings

Simulated data: For the MoCo pretraining phase, the MoCo
queue size is set to 128. The momentum variable for updating the
key encoder is kept as 0.999 and the temperature parameter 7 is

set as 0.2. Adam optimiser (Kingma and Ba, 2014) is used, with

learning rate le™*, weight-decay le™ and batch-size 16. The
training is done for 200 epochs. For SimCLR and SwAV
pretraining phase, the settings are directly inherited from
(Chen et al., 2020a) and (Zhu et al., 2020). For the fine-tuning
phase, we use the SGD optimiser with cosine decay schedule

4

(Loshchilov and Hutter, 2016). The learning rate is 5e™*, weight-

decay le™* and batch-size 16. The fine-tuning is done for

50 epochs and the model with best validation accuracy is
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chosen. For normal supervised learning with random
initialization, the same hyper-parameters as that of MoCo
fine-tuning phase are used.

Experimental biological data: For the MoCo pretraining
phase, the hyper-parameters are the same as those for
simulated data except for MoCo queue size, which is set as
64. In the fine-tuning phase, for 100 and 75% labelled
experiments, the hyper-parameters are same as that for
simulated data. For 25 and 50% labelled experiment, the

learning rate is le ™.

4.3 Experimental results

For both simulated and real datasets, we randomly select
25,50, 75 and 100% of the training set size, and then fine-tune
the these All the
experiments are run 5 times and the average accuracy and

classification models on subsets.
the standard deviation are reported. Our results for simulated
data have been shown in Table 1 and the results for
experimental data in Table 2. We found that subtomogram
classification accuracy for our experimentally acquired
dataset is comparatively higher than the simulated dataset.
This is because of the higher complexity of the simulated
dataset due to higher resolution and more closely packed
macromolecules. As a result of dataset complexity and small
training set, the highest accuracy achieved for simulated
around 69%. At the MoCo

outperforms the other two CSSL baselines in most

dataset is same time,
experiments. This may be because MoCo extends the idea
of contrastive learning by leveraging an extra dictionary
along with a momentum encoder, and is more robust and
adaptable to be applied to cryo-ET data. We use two-tailed
student’s t-test to reject null-hypothesis (Cox, 1982). The
p-value of the MoCo results obtained is 0.046. Considering
significance level, & = 0.05, we reject the null hypothesis.

We further show the Grad-CAM visualizations (Selvaraju
et al, 2017) of a sample subtomogram image for CSSL-
pretrained (MoCo) and randomly initialized models in
Figure 8, which roughly highlights the region important for
making the classification decision. We have used M3d-CAM
(Gotkowski et al., 2020) to make these visualizations. It can be
observed that the CSSL-pretrained model along with giving
higher accuracy also considers wider regions of the 3D
environment. These data indicate that CSSL pretraining has
a regularization effect on the model (Newell and Deng, 2020).
The improvements of CSSL methods over Random Init in all
experiments show that the classifier can leverage knowledge
gained from CSSL and effectively exploit the representations
obtained via pretraining.
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5 Conclusion

In this paper, we addressed the problem of utilizing
unlabelled data for macromolecular structure classification
from cryo-ET subtomograms. We developed a pipeline that
uses the unlabelled subtomogram data for pretraining weights
of a classifier using CSSL methods: SimCLR, MoCo and SwAYV,
yielding a regularization effect over the classification model. To
this end, we designed a unique data-augmentation pipeline for
cryo-ET subtomogram data. Our pipeline was able to generate
cryo-ET subtomogram images, and those generated images
worked well as a source of augmentation for self-supervised
learning. We fine-tune the CSSL pretrained weights using
labelled subtomograms for the downstream classification task.
Taken together, we present a novel workflow that provides
significant traditional  classification

improvement over

methods on both simulated and real data.
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