A Distanced Matching Game, Decremental APSP in Expanders, and
Faster Deterministic Algorithms for Graph Cut Problems*

Julia Chuzhoy

November 6, 2022

Abstract

Expander graphs play a central role in graph theory and algorithms. With a number of power-
ful algorithmic tools developed around them, such as the Cut-Matching game, expander pruning,
expander decomposition, and algorithms for decremental All-Pairs Shortest Paths (APSP) in ex-
panders, to name just a few, the use of expanders in the design of graph algorithms has become
ubiquitous. Specific applications of interest to us are fast deterministic algorithms for cut problems
in static graphs, and algorithms for dynamic distance-based graph problems, such as APSP.

Unfortunately, the use of expanders in these settings incurs a number of drawbacks. For example,
the best currently known algorithm for decremental APSP in constant-degree expanders can only
achieve a (logn)?(/<)-approximation with n!T(total update time for any e. All currently
known algorithms for the Cut Player in the Cut-Matching game are either randomized, or provide
rather weak guarantees: expansion 1/(log n)l/ € with running time n'*©(). This, in turn, leads to
somewhat weak algorithmic guarantees for several central cut problems: the best current almost
linear time deterministic algorithms for Sparsest Cut, Lowest Conductance Cut, and Balanced Cut
can only achieve approximation factor (logn)*(?). Lastly, when relying on expanders in distance-
based problems, such as dynamic APSP, via current methods, it seems inevitable that one has to
settle for approximation factors that are at least Q(logn). In contrast, we do not have any negative
results that rule out a factor-5 approximation with near-linear total update time.

In this paper we propose the use of well-connected graphs, and introduce a new algorithmic
toolkit for such graphs that, in a sense, mirrors the above mentioned algorithmic tools for expanders.
One of these new tools is the Distanced Matching game, an analogue of the Cut-Matching game for
well-connected graphs. We demonstrate the power of these new tools by obtaining better results
for several of the problems mentioned above. First, we design an algorithm for decremental APSP
in expanders with significantly better guarantees: in a constant-degree expander, the algorithm
achieves (log n) e _approximation, with total update time n'*°(), We also obtain a deterministic
algorithm for the Cut Player in the Cut-Matching game that achieves expansion W in time

ntto(deterministic almost linear-time algorithms for Sparsest Cut, Lowest-Conductance Cut, and
Minimum Balanced Cut with approximation factors O(poly log n), as well as improved deterministic
algorithm for Expander Decomposition. We believe that the use of well-connected graphs instead
of expanders in various dynamic distance-based problems (such as APSP in general graphs) has
the potential of providing much stronger guarantees, since we are no longer necessarily restricted
to superlogarithmic approximation factors.

*SODA 2023, to appear.
fToyota Technological Institute at Chicago. Email: cjulia@ttic.edu. Supported in part by NSF grant CCF-2006464.

Contents
1 Introduction

2 Overview of Our Results and Techniques

2.1 The Distanced Matching Game and Related Algorithmic Toolkit
2.2 Decremental APSP in Expanders

2.3 Advanced Path Peeling and Deterministic Algorithm for the Cut Player in the Cut-
Matching Game oL

2.4 Sparsest Cut and Lowest Conductance Cut

2.5 Minimum Balanced Cut and Expander Decomposition

Preliminaries
3.1 Dynamic Algorithms
3.2 Cuts, Flows, Sparsity, Conductance and Expanders.
3.3 Embeddings with Fake Edges and Expansion
3.4 The Cut-Matching Game
3.5 Graph Cutting and Partitioning L o o
3.5.1 Procedure ProcCut
3.5.2 Procedure ProcPartition
3.5.3 Procedure ProcSeparate
3.6 Basic Path Peeling

The Distanced Matching Game
Hierarchical Support Structure

Algorithm for the Distancing Player — Proof of Theorem 5.2

6.1 Phase 1: Construction of Smaller Well-Connected Graphs
6.1.1 Description of Iteration ¢

6.2 Phase 2: Distancing or Well-Connectedness

6.3 Proof of Lemma 6.5

APSP in Well-Connected Graphs — Proof of Theorem 2.3

7.1 Base Case: j <8 e

T2 Step: 7>8 . o
7.2.1 Data Structures and Initialization

7.2.2 Maintaining the Data Structures L.

10
10
14

14
16
16

18
19
20
21
22
23
23
24
27
27

29

36

41
42
42
46
48

7.2.3 Analysis of Total Update Time 62

7.2.4 Response to Queries 64

8 APSP in Expanders — Proof of Theorem 2.4 65
8.1 Proof of Lemma 8.1 e 68
8.1.1 Data Structures and Initialization, 68

8.1.2 Maintaining the Data Structures oL, 71

8.1.3 Responding to Short-Path Queries 71

9 Advanced Path Peeling — Proof of Theorem 2.5 72
9.1 Proof of Lemma 9.2 79
9.1.1 Special Case: £k <nf e e 80

9.1.2 Stage 1: Embedding a Well-Connected Graph 81

9.1.3 Stage 2: Computing the Routing 82

10 An Algorithm for the Cut Player in the Cut-Matching Game — Proof of Theo-

rem 2.6 86
11 Further Applications 88
11.1 Main Technical Tools o 88
11.1.1 Degree Reduction 88

11.1.2 Faster Basic Path Peeling o oL 89

11.2 Most-Balanced Sparse Cut 89
11.3 Sparsest Cut and Lowest-Conductance Cut — Proof of Theorem 2.7 92
11.4 Minimum Balanced Cut — Proof of Theorems 2.8 and 2.9 93
11.4.1 Proof of Theorem 2.8 95

11.4.2 Proof of Theorem 2.9 97

11.5 Expander Decomposition — Proof of Theorem 2.10 98

A Proof of Lemma 4.1 100

B Proof of Lemma 11.5 100

1 Introduction

Expander graphs are a central graph theoretic object that has been studied extensively, and they
are frequently used in the design of graph algorithms. In recent years, a number of powerful algo-
rithmic tools have been developed around expanders, including, for example, the Cut-Matching Game
of [KRV09], expander pruning of [SW19], Expander Decomposition, and algorithms for decremental
All-Pairs Shortest Paths (APSP) in expanders (see e.g. [CS21, Chu2l]), to name just a few. This
powerful algorithmic toolkit has led to many new algorithms for optimization problems in graphs.
In this paper we are most interested in applications to fast deterministic algorithms for classical cut
problems, such as Sparsest Cut, Lowest Conductance Cut, and Minimum Balanced Cut, and to dynamic
algorithms, especially for distance-based graph problems, such as APSP.

Unfortunately, the use of expander graphs with the currently available expander-related tools incurs
a number of drawbacks in these settings. While the results of [KRV09] provide a near-linear time ran-
domized algorithm for the Cut Player in the Cut-Matching Game, which guarantees that the resulting
graph is an (1)-expander, in the regime of deterministic algorithms, the best currently known results
are significantly weaker: the algorithm of [CGL™"20] provides an implementation of the Cut Player in
time O (n1+0(6)), but only guarantees expansion of W for a sufficiently large €. As a result, de-
spite having randomized algorithms for Sparsest Cut, Lowest Conductance Cut, and Minimum Balanced
Cut, that achieve O(log? n)-approximation in m!*°(!) time, the best current deterministic algorithms
for these problems with running time m!+°() can only achieve approximation factor (log n)“(l). Sim-
ilar issues, that we discuss in more detail below, arise in algorithms for Expander Decomposition. We
note that all these cut problems are used extensively, including in settings (such as, e.g. dynamic algo-
rithms), where deterministic algorithms are especially desirable. In recent years, the above mentioned
expander-based tools have also found many applications in dynamic algorithms; for now we focus on
decremental All-Pairs Shortest Paths (APSP). In this context, the use of expanders with the currently
available algorithmic tools also has several drawbacks. First, in a typical use of expanders in dynamic
APSP, one cannot obtain a better than ©(logn) approximation factor; we discuss this in more de-
tail below. Second, the use of expanders usually involves either the Cut-Matching Game, or Expander
Decomposition, which suffer from the drawbacks mentioned above. Lastly, in most uses of expander
graphs for dynamic APSP, one needs to rely on algorithms for decremental APSP in expanders. How-
ever, the best such current algorithm only provides a rather weak tradeoff between the approximation
factor and total update time: for bounded-degree expanders, the results of [CS21, Chu2l] achieve
(log n)o(l/ €2)—approximation with total update time n!tO(©) where € is a given precision parameter.

In this paper, we propose to study a different kind of graphs, that we call well-connected graphs.
Given an n-vertex graph G, a set S of its vertices called supported vertices, and parameters n,d > 0,
we say that graph G is (n, d)-well-connected with respect to S, if, for every pair A, B C S of disjoint
equal-cardinality subsets of supported vertices, there is a collection P of paths in G, that connect
every vertex of A to a distinct vertex of B, such that the length of each path in P is at most d,
and every edge of G participates in at most 7 paths in P. For intuition, it would be convenient to
think of d = 2P°W(/9) 5 = nO© and |S| > [V(G)| — n'~¢, for some parameter 0 < ¢ < 1. In the
discussion below, we will informally refer to a graph G that is (n, d)-well-connected with respect to a
set S of its vertices, with the above setting of parameters, as a well-connected graph. We develop an
algorithmic toolkit for well-connected graphs that is, in a sense, analogous to some of the tools that
are known for expander graphs. We then show that using well-connected graphs, together with these
new algorithmic tools, allows us to overcome many of the hurdles mentioned above. For example,
we obtain deterministic almost linear time O(poly log n)-approximation algorithms for Sparsest Cut,
Lowest Conductance Cut, Minimum Balanced Cut, as well as a better deterministic algorithm for the Cut
Player in the Cut-Matching Game, and better algorithm for Expander Decomposition and decremental

APSP in expanders. While our algorithmic toolkit immediately leads to strengthening the currently
known algorithmic tools for expander graphs, it is our hope that they will eventually lead to replacing
expanders with well-connected graphs in some of the applications mentioned above. We start by
describing the algorithmic tools that we developed for well-connected graphs. We then provide an
overview of several of applications of these results to static graph cut problems, and then discuss new
results and potential future uses of these new algorithmic tools in dynamic APSP.

Before we continue, we need to introduce some notation. Given a graph G, a cut is a partition (A, B)
of its vertices into non-empty subsets. The sparsity of the cut (A, B) is ﬂ%. Throughout this
paper, we say that a graph G is a p-expander, if every cut in G has sparsity at feast . All graphs
discussed in this paper are unweighted and undirected, unless stated otherwise. We will informally
say that the running time or a total update time of an algorithm is almost linear, if it is bounded by
O(mHo(l)), where m is the number of edges in the input graph (or the initial number of edges, if the
graph is decremental). Given a graph G and a subset S of its vertices, the volume of S, denoted by
Vol (S), is the sum of degrees of all vertices in S. The volume of the graph G, denoted by Vol(G), is
Vol(G) = Volg(V) = 2|E(G)|. Given a collection M of pairs of vertices in graph G, and a collection
P of paths in G, we say that the paths in P route the pairs in M if, for every pair (u,v) € M of
vertices, there is a path in P whose endpoints are u and v. The congestion of a collection P of paths
in a graph G is the largest number of paths that contain the same edge.

Algorithmic Tools for Well-Connected Graphs

The Distanced Matching Game. The first tool that we develop is a Distanced Matching Game, that
can be viewed as an analogue of the Cut-Matching Game of [KRV09] for well-connected graphs. The
input to the Distanced Matching Game consists of an integer n, a distance parameter d, and another
parameter 0 < § < 1. The game uses the notion of a distancing. Given an n-vertex graph G, a
(0, d)-distancing for G is a triple (A, B, E’), where A and B are disjoint equal-cardinality subsets of
vertices of G with |A| > n'™° and E' is a subset of edges with |E’| < |A|/16. We require that the
length of the shortest path connecting a vertex of A to a vertex of B in G\ E’ is at least d.

The Distanced Matching Game is played between a Distancing Player and a Matching Player. Similarly
to the Cut-Matching Game, we start with a graph H that contains n vertices and no edges, and then
iteratively add edges to H. In each iteration i, the Distancing Player needs to compute a (4, d)-
distancing (A4;, B;, EY) in the current graph H, if it exists. The matching player then needs to compute
an arbitrary matching M; C A; x B;, of cardinality at least |4;|/4. The edges of M; are added to graph
H, and we continue to the next iteration. The game terminates when no (0, d)-distancing exists in H
(alternatively, we may terminate it earlier, if we establish that graph H has some desired properties,
such as, e.g. it is well-connected).

Our first result shows that, if d > 249, then the number of iterations in the Distanced Matching
Game is bounded by n®, regardless of the strategies of the two players. We note that this is signifi-
cantly larger than the number of iterations in the Cut-Matching Game, which is typically bounded by
O(polylogn) (see, e.g. [KRV09, KKOVO07]). However, as we show later, we gain an advantage that,
under some specific strategy of the Distancing Player that we provide below, the resulting graph H
is well-connected, and the distances between the vertices lying in the set .S of supported vertices are
quite low, as opposed to the (super)-logarithmic distances that expander graphs guarantee. We also
note that, while it appears that the bound on the number of iterations is close to being tight, it is not
clear whether the exponential dependence of the distance parameter d on 1/§ in our result is necessary.

Hierarchical Support Structure and an algorithm for the Distancing Player. Our next
result provides a deterministic algorithm for the Distancing Player. Suppose we are given a parameter

n, and a precision parameter €. Let § = 4¢3 and d = 232/ 64, and let H be an n-vertex graph, that we
can think of as arising during the execution of the Distanced Matching Game. The algorithm either
computes a (4, d)-distancing in graph H, or it computes a large set S C V(H) of its vertices, such that
H is (n, d)-well-connected for S, where = n®© and d = 2°(/<") The running time of the algorithm
is O(|B(H)[1+009)).

In fact the above algorithm provides stronger guarantees. We define the notion of a Hierarchical Sup-
port Structure for an n-vertex graph H. Informally, the structure consists of a collection {H1, ..., H,}
of r = Q(n) graphs, where |V (H;)| = [n'~¢| for all 4, and an embedding of graph |J_, H; into H
via short paths that cause low congestion. For each one of the graphs H;, we must in turn be given a
Hierarchical Support Structure, that can be used to define a set S(H;) of supported vertices for H;;
graph H; must be well-connected with respect to S(H;). We then let S(H) = J; S(H;) be the set
of supported vertices for graph H. We note that a somewhat similar notion was (implicitly) used in
[CGL'20, CS21] in the context of expander graphs: that is, all graphs in the Hierarchical Support
Structure were required to be expanders.

Our deterministic algorithm for the Distancing Player either provides the desired (0, d)-distancing in
graph H, or it constructs a Hierarchical Support Structure for H, so that H is well-connected with
respect to the resulting set S(H) of vertices. In all our subsequent results, we use the Distanced
Matching Game with this implementation of the Distancing Player. This ensures that, once the algo-
rithm terminates, we obtain a Hierarchical Support Structure for graph H, and a guarantee that H is
well-connected with respect to S(H).

APSP in Well-Connected Graphs. The Hierarchical Support Structure provides a convenient
basis for decremental APSP in well-connected graphs obtained via the Distanced Matching Game.
Indeed, suppose we are given such a graph H, that undergoes an online sequence of edge deletions.
As edges are deleted from H, the graph may no longer be well-connected with respect to S(H). We
design a deterministic algorithm for decremental APSP that, given such a graph H, can withstand up to
[V (H)['=©() edge deletions, as it maintains a set S’'(H) C S(H) of supported vertices. Over the course
of the algorithm, vertices may leave S’(H) but they may not join it, and |S’(H)| > |V (H)|/2°(/¢ holds
at all times. The algorithm supports short-path queries between pairs of vertices in S’(H): given a pair
x,y € S'(H) of such vertices, it must return a path P of length at most 20(1/¢°) connecting them in the
current graph H, in time O(|E(P)]). The total update time of the algorithm is O(|E(H)|*+9(©). This
algorithm can be thought of as mirroring similar algorithms for APSP in expanders of [CS21, Chu21]
that we discuss below. For comparison, the best previous algorithm for APSP in bounded-degree
expanders could only report paths whose length is bounded by (log n)o(l/ <) in response to short-
path queries, with total update time is O (nHO(G)), though it could withstand a longer sequence of
edge deletions. Interestingly, the algorithmic tools presented so far can also be used to obtain better
algorithms for APSP in expanders, as we discuss below. We note that it is currently not clear to
us whether the exponential dependence of the lengths of the paths returned in response to short-
path queries on poly(1/€) in our results is necessary. Improving this dependence may lead to further
improvements in applications discussed below.

Applications to Other Algorithmic Tools

We use the machinery that we have developed in order to design better implementations of existing
algorithmic tools. The first such tool that we discuss is the Cut-Matching Game of [KRV09].

Cut-Matching Game. The Cut-Matching Game was initially introduced by [KRV09], as part of their
fast approximation algorithms for Minimum Balanced Cut and Sparsest Cut. The game has a single
parameter n, that is an even integer, and it is played between two players: a Cut Player and a Matching

Player. The purpose of the game is to construct an n-vertex expander. The game starts with a graph
H containing n vertices and no edges, and in every iteration edge are added to H, until we can certify
that it becomes an expander. In the original version of the game suggested by [KRV09], in every
iteration 7, the cut player needs to compute a partition of V(H) into two equal-cardinality subsets
A; and B;, and the matching player needs to return an arbitrary perfect matching M; C A; x B;.
The edges of M; are then added to graph H, and the algorithm continues to the next iteration. In
their paper, [KRV09] provided an algorithm for the Cut Player, that computes, in every iteration, a
partition (A;, B;) of V(H), so that, regardless of the strategy of the Matching Player, the algorithm
is guaranteed to terminate with an Q(1)-expander after O(log®n) iterations. While the algorithm of
[KRV09] for the Cut Player is very efficient — its running time is O(n), it is unfortunately randomized,
and it is unclear how to derandomize it, if our goal is an algorithm with almost linear running time.

Instead, we consider a variant of the Cut-Matching Game due to [KKOV07], that was also studied in
[CGL'20]. In this variant, in every iteration i, the Cut Player must either compute a partition (A}, BY)
of V(H) with |A}| > |B}| > n/4 and |Eg (A}, B})| < n/10; or it must compute a subset X C V(H)
of at least n/2 vertices, so that graph H[X] is a p-expander (and we would like ¢ to be as close to 1
as possible). In the former case, the matching player must compute an arbitrary partition (A;, B;) of
V(H) with |4;] = |B;| and B} C B;, together with a perfect matching M; C A; x B;. The edges of M;
are added to H, and we continue to the next iteration. In the latter case, the matching player must
compute an arbitrary matching M; C X x V(H) \ X, of cardinality |V (H) \ X|. The edges of M; are
then added to graph H, which is now guaranteed to be a ¢/2-expander, and the algorithm terminates.
As shown by [KKOVO07], this variant of the game must terminate after O(logn) iterations!. Note that
the question of obtaining a fast deterministic algorithm for the Cut Player in this variation of the
game leads to a sort of chicken and egg situation: the Cut Player essentially needs to solve a Minimum
Balanced Cut problem on the current graph H, and solving this problem efficiently typically requires
running the Cut-Matching Game, which in turn requires an efficient implementation of the Cut Player.

In [CGL'20], a deterministic algorithm for the Cut Player was presented for the above setting. For

a given precision parameter ¢ > (iil%, the algorithm has running time O (nHO(E)), and it ensures

that the resulting graph has expansion ¢ > 1/(logn)'/¢. The algorithm proceeds by constructing a
hierarchical system of expanders that are embedded into H, similarly to our Hierarchical Support
Structure, except that expanders are used instead of well-connected graphs. Unfortunately, it appears
that the use of expanders forces one to lose a polylogarithmic in n factor in the expansion (or alter-
natively, in the length of the embedding paths) with every recursive level, which eventually leads to
a rather weak expansion guarantee. In this paper we design a deterministic algorithm for the Cut
Player with running time n!'+°()_ that ensures that the resulting graph has expansion 1/(log n)5+°(1).
Instead of using the approach of [CGLT20], we rely on another algorithmic tool introduced in this
paper, that we call advanced path peeling. We believe that this algorithmic tool is of independent
interest, and in fact it can be used in order to either embed an expander graph into a given input
graph G, or compute a sparse cut in G, thereby completely bypassing the Cut-Matching Game. Before
we provide more details on advanced path peeling, we briefly mention a typical implementation of the
Matching Player in the Cut-Matching Game, since it is related to the path peeling technique.

Path Peeling Algorithms. Typically, a Cut-Matching Game is used in order to either embed a
large expander graph H into a given input graph G, or to compute a sparse cut in G. The game is
played on graph H, that initially contains the set V(G) of vertices and no edges. The Cut Player is
implemented using one of the algorithms described above. In order to implement a Matching Player,
in each iteration i, we try to construct a large large matching M; C A; x B;, and its routing P; in

'In fact the game presented here is a slight modification of the game suggested by [KKOV07]. A formal proof that
the number of iterations in this variations is still bounded by O(logn) appears in [CGL*20].

G via short paths that cause low congestion. Matching M; is then used in order to compute the
response of the Matching Player. Paths in P; also define an embedding of the edges of M; into G,
and so, as the algorithm progresses and new edges are added to H, we maintain an embedding of
H into G. Once graph H becomes an expander, the algorithm terminates. Alternatively, if we are
unable to compute a routing of a large matching M; C A; x B;, we would like to compute a sparse
cut in G, and in this case the algorithm terminates with this cut. Therefore, in order to implement
the Matching Player, we need an algorithm that, given a pair A;, B; of disjoint sets of vertices in a
graph G, either computes a routing P; of a large enough matching M; C A; x B; via short paths that
cause low congestion, or returns a sparse cut in G. In the original paper of [KRV09], the Matching
Player was implemented via an algorithm for computing maximum flow and minimum cut. However,
as was later observed in [CK19], it is sufficient to compute a mazimal collection of such paths in
G, by a simple greedy algorithm, that can be implemented very efficiently. We informally refer to
such algorithms as basic path peeling. The algorithm keeps greedily adding short paths connecting
vertices of A; to vertices of B; to set P;, while deleting from G edges that already participate in
many paths. If, at the end of the algorithm, |P;| is not sufficiently large, a simple application of
the calssical Ball Growing technique is used to compute a sparse cut in G. As an example, in one
implementation of such an algorithm (Theorem 3.2 of [CGL'20]), given a graph G, equal-cardinality
sets A;, B; of vertices of G, and parameters z > 0 and 0 < ¢ < 1, the algorithm either computes a
cut (X,Y) of sparsity at most ¢ in G with | X|, |Y| > z/2; or it constructs a routing P; of a matching

M; C A; x B;, with |M;| > |A;| — z, such that paths in P; have length at most O (%) each, and

. 2 2
cause congestion at most O <A };Qg "), where A is maximum vertex degree of G. The running time

of the algorithm is O(|E(G)|/¢*). Using different methods (that rely on algorithms for approximate
Maximum Flow), [CGL"20] design algorithms with better guarantees: the congestion is only bounded
by O (A(logn)/¢), and the running time is m!T°W),

Consider now a more general setting (that we refer to as advanced path peeling), where we are given
two sets A, B of vertices, and we need to route a specific matching M C A x B. In this case, the
input consists of an m-edge graph G, a collection M = {(s1,%1),..., (sk,tx)} of pairs of its vertices,
and parameters 0 < ¢ < 1 and z > 0. The goal is to either route a collection M’ C M of at least k — 2
pairs of vertices via paths that are short and cause low congestion (compared to 1/¢), or return a cut
(X,Y) of sparsity at most ¢ in G, with |X|,|Y| > €Q(z). One could use the techniques employed in
basic path peeling in order to design such an algorithm, but it seems inevitable that the running time
of the algorithm can only be bounded by O(mk).

In this paper, we provide a deterministic algorithm for advanced path peeling. For a given precision

parameter €, the algorithm has running time O (m1;§<6)), and, in case a routing P is returned, the

6
length of every path is bounded by M, with congestion bounded by , where

A is maximum vertex degree in G. The fact that we can pre-specify pairs of vertices to be routed
makes advanced path peeling a much more powerful algorithmic tool than basic path peeling. For
example, we can use it directly in order to either embed some fixed low-degree expander H into a
given graph G, or to compute a sparse cut in G. This approach allows us to completely bypass the
Cut-Matching Game, and we use it in some of our algorithms.

2001/€%) . A2log%
2

Applications to Static Graphs

Sparsest Cut and Lowest-Conductance Cut. Recall that the sparsity of a cut (A, B) in a graph

G is %A"@;}. In the Sparsest Cut problem, the goal is to compute a cut of minimum sparsity in the

input graph G. A closely related notion is that of conductance: the conductance of a cut (A4, B) in G is

|Ec(A,B)|
min{Volg(A),Volg(B
a cut of smallest conductance. We define the conductance of a graph G, U(G), to be the smallest con-
ductance value of any cut in G. Both Sparsest Cut and Lowest Conductance Cut problems are among
the most fundamental optimization problems, and are routinely used in the design of graph algo-
rithms, for example, when divide-and-conquer paradigm is involved. The best current approximation
algorithms for these problems, due to [ARV09], achieve a factor-O(y/log n)-approximation. Unfortu-
nately, these algorithms are rather slow (though their running times are polynomially bounded), as
they need to solve an SDP. The work of [KRV09], that introduced the Cut-Matching Game, provided
a randomized O(log? n)-approximation algorithm for both problems, with running time O(m + n3/2).
The super-linear running time in this algorithm is mostly due to the rather slow state of the art
algorithms for (approximate) maximum flow that were available at the time. With the more recent
improvements in such algorithms, the running time of the algorithm of [KRV09] becomes almost linear.
Since the Sparsest Cut and Lowest Conductance Cut problems are so ubiquitous, it is however highly
desirable to obtain fast deterministic algorithms for them. A number of deterministic algorithms,
that are based on the Multiplicative Weights Update framework of [GK98, Fle00, Kar08], achieve a
factor O(logn)-approximation for both problems, in time O(m?). Additionally, several algorithms in
which the approximation factor is roughly O(gpl/ 2), where ¢ is the value of the optimal solution, are
known (see e.g. [Alo86, ACL07, GLN*19]; the algorithms achieve running times O(n®), O(mn), and
O(m!5+0M) | respectively). In [CGL*20], deterministic algorithms for both Sparsest Cut and Lowest

Conductance Cut problems were presented, that, for a parameter (llgil% < € < 1, achieve a factor

(log n)°1/<*) _approximation in time O(m!*T<t°()). Unfortunately, in time m!*t°(!) these algorithms
cannot achieve a polylogarithmic approximation factor. Our improved algorithm for the Cut Player
in the Cut-Matching Game immediately leads to deterministic algorithms for both Sparsest Cut and

Lowest Conductance Cut problems, with approximation factor O(log” nloglogn), and running time
1+o(1)
m .

e In the Lowest Conductance Cut problem, given a graph G, the goal is to compute

Minimum Balanced Cut. Minimum Balanced Cut is another classical graph partitioning problem
that is extensively used in algorithm design. Given a graph G, we say that a cut (A, B) in G is
B-balanced, if Volg(A), Volg(B) > Vol(G)/B. We say that the cut is balanced, if it is [-balanced for
B = 1/3, and we say that it is almost balanced, if it is S-balanced for some absolute constant 5. In
the Minimum Balanced Cut problem, given a graph G, the goal is to compute a balanced cut (A, B)
minimizing |Eg(A, B)|. It is quite common to use bicriteria approximation algorithms for the problem:
a factor-a bicriteria algorithm must return an almost balanced cut (A, B) with |Eg(A, B)| < a-OPT,
where OPT is the lowest possible value of |Eg(A’, B')| for any balanced cut (A’, B’). The seminal
work of [ARV09] provides the best currently known bicriteria approximation algorithm for the prob-
lem, whose approximation factor is O(y/logn), though the algorithm is somewhat slow due to the
need to solve an SDP. As with the Sparsest Cut and Lowest Conductance Cut problems, the random-
ized algorithm of [KRV09] can be used to obtain a factor-O(log? n) bicriteria approximation in time
O(mH"(l)). The best current deterministic algorithm for the problem, due to [CGL™20], obtained,

(Eilr?)gl?? < € < 1, a factor-(log n)2(/€) bicriteria approximation, in time O(m!Teto()) Ag

for Sparsest Cut and Lowest Conductance Cut problems, this algorithm can only achieve (logn)~()-
approximation in time m!*°() . In this paper we provide a deterministic bicriteria factor-(log n)8+"(1)
approximation algorithm, with running time m!+e(),

for any

We also consider an important variant of the problem, that we call Minimum Balanced Cut with Cer-
tificate. In this problem, we are given a graph G, and a target parameter . The goal is to compute
a cut (A, B) in G with |Eg(A, B)| < ay - Vol(G) (where « is the approximation factor of the algo-
rithm), such that either Volg(A), Volg(B) > Vol(G)/3; or Volg(A) > 2 Vol(G)/3, and graph G[A] has
conductance at least 1. In the latter outcome, if Volg(B) < Vol(G)/4, we can view graph G[A] as a

certificate that the value of the Minimum Balanced Cut in G is (¢ - |E(G)|). A factor-a approxima-
tion algorithm for Minimum Balanced Cut with Certificate can be easily converted into a factor-O(«)
approximation algorithm for the MinimumBalancedCut problem, with running time that increases by
at most factor O(logn) (this was shown in [CGL™20]; we also provide more details in Section 2.5). Al-
gorithms for Minimum Balanced Cut with Certificate however appear to be significantly more powerful
than those for Minimum Balanced Cut, as they can be used in order to compute expander decom-
position of a given graph efficiently. In [CGL™20], a deterministic algorithm for Minimum Balanced
Cut with Certificate that achieves approximation factor v = (logn)°1/<*) in time O(m!*+ete() for

alny loglog n < € < 1, was presented. We provide a deterministic algorithm for Minimum Balanced
172) p p g
(log n)1/

Cut with Certificate with approximation factor (logn)8+°(1), whose running time is O(m!+°(}) /4)). For
v >1/ m°1) | which is a common setting used in algorithms for expander decomposition, the running
time becomes O(m!'*t°(M)). We provide another algorithm, whose running time is O(m!*°(1)) for any
value of ¢ and approximation factor remains the same, but it provides a somewhat weaker certifi-
cate: in case where Volg(B) < Vol(G)/3, it only guarantees that G[A] contains a large subgraph with
conductance at least %, but it does not compute such a graph.

Expander Decomposition. An (§,v)-expander decomposition of a graph G = (V, E) is a partition
IT = {V1,...,Vi} of the set V of vertices, such that for all 1 < i < k, the conductance of graph
G[V;] is at least 9, and Zle 0 (Vi) < 6 - Vol(G). Algorithms for expander decomposition are used
extensively in the design of graph algorithms, in both static and dynamic settings. A long line of
research [ST04, NS17, Wull7, SW19, ADK22| culminated in a randomized algorithm that computes a
(8, 6/ poly(log n))-expander decomposition in time O(m,/d). The best previous deterministic algorithm,
due to [CGLT20], computes a (8, p)-expander decomposition with ¢ = Q(5/(log m)°1/<)) in time
O (m!*e+e(V). This algorithm was in turn used by [CGL*20] in order to obtain the first deterministic
algorithms for Dynamic Connectivity and Dynamic Minimum Spanning Forest, with n°}) worst-
case update time, making a significant progress on a major open question in the area of dynamic
algorithms. We provide a deterministic algorithm for computing a (6, 1)-expander decomposition of

G with ¢ = Q <$>, in time O(m!*+°(M)/§).

(log n)9+o(1)

Applications to Dynamic Graphs: All-Pairs Shortest Paths (in Expanders)

In the decremental All-Pairs Shortest Paths (APSP) problem, the input is an n-vertex graph G with
non-negative length on edges, that undergoes an online sequence of edge deletions. The goal is to
support (approximate) shortest path query: given a pair x,y of vertices, return an (approximate)
shortest path connecting x to y in the current graph G. We say that the algorithm achieves a factor-a«
approximation, if, in response to a shortest path query between x and y, it is guaranteed to return
a path of length at most « - distg(x,y). Decremental, and, more generally, dynamic APSP is one
of the most basic problem in the area of dynamic algorithms. It also has important connections to
designing algorithms for classical cut and flow problems in the static graph model. For example, by
combining the standard primal-dual technique-based algorithm of [GK98, Fle00] with an algorithm
for a special case of decremental APSP, called Single-Source Shortest Paths (SSSP), one can obtain
fast approximation algorithms for maximum s-t flow, minimum-cost s-t flow, minimum s-¢ cut, and
so on, in both edge- and vertex-capacitated settings (see e.g. [CK19, Chu21]). Until recently, some of
these algorithms provided the best available guarantees. Additionally, by combining the same tech-
niques with the ideas of [Mad10] and the standard Ball Growing technique of [LR99, GVY95], we can
essentially reduce the Maximum Multicommodity Flow and Minimum Multicut problems to decremen-
tal APSP. Indeed, a recent algorithm for APSP by [Chu2l] has led to fast deterministic algorithms
for Maximum Multicommodity Flow and Minimum Multicut: for any ©(1/loglogn) < € < 1, the algo-

rithms achieve approximation factor (log m)QO(IM

, with running time O <m1+0(5)(log m)QOWe) + k‘/e),
where m is the number of edges in the input graph and k is the number of the demand pairs. Most
likely any further improvements in the current guarantees for decremental APSP will immediately
lead to improved bounds for both these problems. For comparison, the fastest previous approximation
algorithms for Maximum Multicommodity Flow, achieving (1 + €)-approximation, had running times
O(kCM) . ;mA/3 /c0M)) [KMP12] and O(mn/e2) [Mad10], and we are not aware of any algorithms that

achieve a faster running time with possibly worse approximation factors.

We now turn to discuss the APSP problem in more detail. In addition to the approximation factor that
the algorithm achieves and its total update time (the time it takes to maintain its data structures),
two other parameters of interest are query time (the time the algorithm takes to respond to shortest
path query), and whether the algorithm can withstand an adaptive adversary. The latter means that
the input sequence of edge deletions may depend on the responses to the queries that the algorithm
returned so far, and even on the inner state of the algorithm. This is in contrast to the oblivious
adversary setting, where the input sequence of edge deletions is fixed in advance. We note that
a deterministic algorithm by definition can withstand an adaptive adversary. With four different
parameters of interest to optimize, there is a vast amount of research achieving different tradeoffs
between them; we will not attempt to present them all. Instead we will focus on a specific setting,
where the algorithm must withstand an adaptive adversary (and is ideally deterministic), and the
query time for shortest path query is bounded by O(|E(P)|), where P is the path returned; note
that this is close to the best possible query time. The main reason to restrict ourselves to these
two constraints is that both these constraints are necessary in order to obtain almost-linear time
algorithms for various cut- and flow problems in static graphs via methods mentioned above. Subject
to these two constrains, we are interested in optimizing the tradeoff between the approximation factor
that the algorithm achieves and its total update time. The best current algorithm for APSP in this
setting, due to [Chu21], is a deterministic algorithm that achieves approximation factor (log m)QO(l/e)
with total update time O (mHO(G) - (log m)o(1/€2) -log L), for any Q(1/loglogm) < e < 1; here, L
is the ratio of longest to shortest edge length. In contrast, the best current negative results only
rule out obtaining a better than factor-4 approximation in time O(n37%) and query time O(n!=?),
for any constant 0 < § < 1, under either the Boolean Matrix Multiplication, or the Online Boolean
Matrix-Vertex Multiplication conjectures [DHZ00, HKNS15]. Furthermore, in the setting of oblivious
adversary, a much better tradeoff between the approximation factor and total update time can be
achieved: the algorithm of [Chel8], for any 0 < € < 1, obtains an O(1/¢)-approximation, with total
update time O(m!*t<te() log L).

)

A very interesting special case of decremental APSP is decremental APSP on expanders. In this
problem, the input graph G has unit edge lengths, and it is initially an expander. It is well known
that, if an n-vertex graph G with maximum vertex degree A is a p-expander, then for any pair =,y of
its vertices, there is a path of length at most O (%) connecting them. Assume now that we are

given an n-vertex p-expander G as above, that undergoes a sequence of edge deletions. We would like
to design an algorithm that supports short-path queries: given a pair z,y of vertices of G, return a
path connecting x to y in the current graph GG, whose length is at most «a - Alzg”, where we refer to «

as the approximation factor of the algorithm?. As graph G undergoes edge deletion, it may no longer
remain an expander, and distances between some of its vertices may grow significantly. In order to
overcome this difficulty, we only ask that the algorithm maintains a large enough subset S(G) C V(G)
of supported vertices, and we restrict short-path queries to pairs of vertices in S(G). We additionally

2Note that « is not necessarily an approximation factor strictly speaking, as it is possible that for a pair z,y of vertices

queried, distg(z,y) < %. However, the approximation factors that we discuss are quite high, making this difference
insignificant, and it is convenient for us to use the ”approximation factor” notion for brevity.

require that the set S(G) of supported vertices is decremental, that is, vertices may leave S(G) over
the course of the algorithm, but they may not join it. In its typical applications, the problem needs
to be solved on expander graphs that arise from the Cut-Matching Game; these are usually expanders
with maximum vertex degree A < O(log®n) and expansion ¢ = 0(1).

Decremental APSP in expanders is especially interesting for several reasons. First, it seems to be
a relatively simple special case of APSP, and, if our goal is to obtain better algorithms for general
APSP | solving the problem in expander graphs is a natural first step. As we discuss below, the bounds
provided by the best current algorithms for APSP in expanders are nowhere near the best current
negative bound of 4 on the approximation factor for APSP in general graphs. Second, this problem
arises in various algorithms for static cut and flow problems, and seems to be intimately connected
to efficient implementations of the Cut-Matching Game. Third, expander graphs are increasingly
becoming a central tool for designing algorithms for various dynamic graph problems, and obtaining
good algorithms for APSP in expanders will likely become a powerful tool in the toolkit of algorithmic
techniques in this area. As such, we feel that it is crucial to obtain a good understanding of this
problem.

The best previous algorithm for APSP in expanders due to [CS21] (see also [Chu21]), uses techniques
similar to those in [CGL*20], and provides the following guarantees®. Suppose we are given an n-
vertex and m-edge graph G with maximum vertex degree A that is a p-expander, which undergoes a
sequence of at most O (%) edge deletions, and a precision parameter €. The algorithm maintains a
set U of vertices of G, that is incremental: that is, vertices may be added to U but not deleted from
it. For every integer ¢, after t edges are deleted from G, we are guaranteed that |U| < O(tA/p) holds.
Throughout the algorithm, we let S = V(G) \ U be the set of supported vertices. The algorithm
supports short-path queries between pairs of vertices in S. Given such a pair z,y € S, it returns

a path P in G[S] of length at most O <A2(log n)o(l/EQ)/gp>, with query time O(|E(P)|). The total
update time of the algorithm is O <n1+O(E)A7(10g n)0(1/62)/g05). Assuming a typical setting where

A < polylogn, ¢ > (1/polylogn), and € > 1/(logn)'/3, the algorithm achieves approximation factor
(log n)o(l/ 62), with total update time O (nHO(E)). For example, if we wish to achieve a polylogarithmic
approximation factor, then the total update time of the algorithm is only bounded by O(n'*?) for
some constant ¢, and if we would like the total update time of the algorithm to be bounded by plite)
then the approximation factor must be super-polylogarithmic, that is, (log n)*(1).

We use the algorithmic tools that we develop for well-connected graphs in order to design a determinis-
tic algorithm for APSP in expanders that achieves a better tradeoff between the approximation factor
and total update time: our algorithm, when responding to short-path query between a pair x,y € .S

L : 0(1/5). A2 .
of vertices is guaranteed to return a path P connecting x to y, of length at most w, with

m1+O(e).A5

query time O(|E(P)|). The total update time of the algorithm is O (T) If we consider again

the setting where A < polylogn and ¢ > 1/ polylogn, the algorithm achieves approximation factor
O(poly log n) with total update time n'te(M) On the negative side, our algorithm can only withstand
a somewhat shorter sequence of edge deletions: at most O (n oy A4) edges may be deleted, and it
only guarantees that, after ¢ edge deletions from G, |U| < O (A4t / 902). However, since the algorithm is
typically used in the setting where A, 1/¢ < O(poly logn), these drawbacks are generally insignificant.
Another difference is that the path returned in response to a query by our algorithm is guaranteed to
be contained in the current graph G, while the paths returned by the algorithm of [CS21, Chu2l] is
contained in G\ U. We are not aware of any negative implications of this difference.

3The algorithm from [CS21] was only analyzed for a specific setting of the parameters; a proof for the whole range of
the parameters was provided in [Chu21].

Returning to the APSP problem in general graphs, the best current deterministic algorithm of [Chu21]
uses APSP in expanders as its building block. As mentioned already, the algorithm of [Chu21] achieves
approximation factor (log m)20(1/€>, with total update time O <m1+o(€) - (log m)o(l/ez) -log L). It
seems conceivable that the techniques from [Chu21] can be used in order to improve the approximation
factor to (log m)o(l/pOIY(E)) with similar total update time, but there are significant obstacles to further
improvements. The first such obstacle is that the algorithm relies on the best previous algorithm for
APSP in expanders, in the setting where A < polylogn and ¢ > 1/ poly logn, whose approximation
factor is (log n)o(l/EQ) with total update time O (n1+o(€)). Our new algorithm removes this obstacle.
The second obstacle is that the algorithm from [Chu2l] is recursive. The number of recursive levels
is O(1/¢), and in each recursive level, a factor (logn)?(/<") is lost in approximation (due to the
algorithm for APSP in expanders). Even when using our new algorithm for APSP in expanders, at
least a poly logn factor must be lost in each recursive level, resulting in a (log n)g(l/) approximation
factor. One of the main reasons for this polylogarithmic loss in each recursive level is that, when we rely
on APSP in expanders, we are committing ourselves to at least a logarithmic loss in the approximation
factor. The reason is that we typically only require that, in response to short-path query, the algorithm
returns a path whose length is within factor a of M, a quantity that bounds the diameter of the
expander, even if the two queried vertices are very close to each other. Furthermore, one of the typical
ways to exploit expanders is to first embed a large expander into the given input graph G, for example,
using the Cut-Matching Game, and such an embedding typically does not preserve distances between
vertices, except with a polylogn distortion. We note that well-connected graphs do not suffer from
this drawback, and it is our hope that they can replace expander graphs in future algorithms for APSP
and related problems. With the Distanced Matching Game replacing the Cut-Matching Game, and our
algorithm for APSP in well-connected graphs replacing APSP in expanders, it looks like we have a
necessary toolkit in place for this. An improved algorithm for general APSP would likely immediately
lead to improved approximation algorithms for Maximum Multicommodity Flow and Minimum Multicut
via the techniques mentioned above.

Organization. For convenience, we provide a formal statement of our main results, and a high-level
overview of our techniques in Section 2. We provide preliminaries in Section 3. In Section 4 we
formally define the Distanced Matching Game, and prove the upper bound on its number of iterations.
We formally define Hierarchical Support Structure in Section 5, and provide an algorithm for the
Distancing Player in Section 6. We provide algorithms for decremental APSP in well-connected graphs
and in expanders in Sections 7 and 8 respectively. Our algorithm for the Cut Player in the Cut-
Matching Game is presented in Section 10. Finally, we present our algorithms for Sparsest Cut, Lowest
Conductance Cut, Minimum Balanced Cut, and Expander Decomposition in Section 11.

2 Overview of Our Results and Techniques

2.1 The Distanced Matching Game and Related Algorithmic Toolkit

Let G be an n-vertex graph, and let d > 0 and 1 < § < 1 be parameters. A (6, d)-distancing in G is
a triple (A, B, E'), where A, B are disjoint equal-cardinality subsets of vertices of G with |A| > n!=?,
and E’ is a subset of edges of G with |E'| < |A|/16. We require that, in graph G \ E’, the smallest
distance between a vertex of A and a vertex of B is at least d.

We introduce the Distanced Matching Game, that is played between two players: a Distancing Player
and a Matching Player. The game can be thought of as an analogue of the Cut-Matching Game for
well-connected graphs. The input to the game consists of an integral parameter n, and two additional
parameters, 0 < § < 1 and d. The game starts with a graph H containing n vertices and no edges, and

10

then proceeds in iterations. In every iteration some edges are inserted into H. In order to execute the
ith iteration, the Distancing Player must provide a (9, d)-distancing (A;, B;, E}) in the current graph
H. The matching player must return a matching M; C A; x B; of cardinality at least |A;|/8. The
matching cannot contain any pairs of vertices (x,y) for which an edge (x,y) lies in E!. We then add
the edges of M; to H, and continue to the next iteration. The game terminates when the distancing
player can no longer compute a (4, d)-distancing, though we may choose to terminate it earlier, if graph
H has desired properties. Our first result bounds the number of iterations in the Distanced Matching
Game:

Theorem 2.1 Consider a Distanced Matching Game with parameters n > 0,0 < 6 < 1/4 and d, such
14
that d > 24/% and nd > 251#. Then the number of iterations in the game is at most nso.

This theorem can be thought of as an analogue of similar results of [KRV09, KKOV07], that bound
the number of iterations in the Cut-Matching Game. The bound on the number of iteration that we
obtain here is significantly higher that those for the Cut-Matching Game, which are typically bounded
by O(polylogn). However, as we show below, we gain in other aspects — specifically, by constructing
a large enough subset S of vertices of H, so that H is well-connected with respect to S. This in
turn allows us to achieve significantly shorter distances between the vertices of S in H, than those
guaranteed in expander graphs.

Our proof of Theorem 2.1 is completely different from the types of arguments that were used in order
to bound the number of iterations in the Cut-Matching Game by [KRV09, KKOVO07]. For all i > 0, let
H; denote graph H at the beginning of iteration i. Let E' = |J; E, and, for all ¢ > 0, let H, = H; \ E'.
We observe how the graphs Hj, H), ... evolve over the course of the execution of the game (note that
the set E’ of edges is computed in hindsight, after the game terminates, so in a sense we “replay” the
game to observe the evolution of these graphs). For all i, we define a partition C’ of the vertices of
H; into clusters. We ensure that the set C'T! of clusters can only be obtained from set C* by merging
existing clusters. We say that a cluster C' € C* belongs to level j, if n% < |V(C)| < nd0+D). We also
ensure that, for all j, the diameter of every level-j cluster in C; is at most 2°0U). If C' € C' is a level-j
cluster, then we say that all vertices of C' lie at level j. If a vertex of H lies at level j of clustering C°,
and at a level j/ > j of clustering C**!, then we say that vertex v has been promoted over the course of
iteration 7. The key in the proof is to show that, once (n45] iterations pass, a large number of vertices
are promoted. Since every vertex may only be promoted at most O(1/d) times, this is sufficient in
order to bound the total number of iterations in the game.

Next, we define a Hierarchical Support Structure. The structure uses two main parameters: the
base parameter N > 0, and a level parameter 5 > 0. We also assume that we are given a precision
parameter 0 < € < 1. The notion of Hierarchical Support Structure is defined inductively, using the
level parameter j. If H is a graph containing IV vertices, then a level-1 support structure for H simply
consists of a set S(H) of vertices of H, with |[V(H)\ S(H)| < N'~¢'. Assume now that we are given a
graph H containing exactly N7 vertices. A level-j Hierarchical Support Structure for H consists of a
collection H = {Hy,...,H,} of r = N — {2]\71_64} graphs, such that for all 1 < <r, V(H;) CV(H),
and V(Hy),...,V(H,) are all mutually disjoint. Additionally, it must contain, for all 1 < ¢ < r,
a level-(j — 1) Hierarchical Support Structure for H;, which in turn must define the set S(H;) of
supported vertices for graph H;. We require that each such graph H; is (n;-1, czj_l)—well—connected
with respect to S(H;), where Jj,l = 200/<") and Nj—1 = N6+0G), Lastly, the Hierarchical Support
Structure for graph H must contain an embedding of graph H' = |J;_, H; into graph H, via path of
length at most 2°0(/<) | that cause congestion at most NO(<). We then set S(H) = Ui_, S(H;), and
we view S(H) as the set of supported vertices for graph H, that is defined by the Hierarchical Support
Structure.

11

We provide an algorithm for the Distancing Player of the Distanced Matching Game, that either pro-
duces the desired (9, d)-distancing in the current graph H, or constructs a level-[1/e] Hierarchical
Support Structure for H, together with a large set S(H) of supported vertices, such that H is well-
connected with respect to S(H).

Theorem 2.2 There is a deterministic algorithm, whose input consists of a parameter 0 < e < 1/4,
such that 1/e is an integer, an integer N > 0, and a graph H with |V (H)| = NY¢, such that N is

sufficiently large, so that lé\(ﬁ > 2128/€° polds. The algorithm computes one of the following:

e cither a (8,d)-distancing (A, B, E') in H, where § = 4¢3, d = 232/¢* gnd |E'| < %; or

e a level-(1/€) Hierarchical Support Structure for H, such that graph H is (n,d)-well-connected

with respect to the set S(H) of vertices defined by the support structure, where n = N6+0©) gnd
d = 20(1/€%)

The running time of the algorithm is bounded by: O(|E(H)|**+0(),

We note that our definition of the Hierarchical Support Structure ensures that |S(H)| > |V(H)]| -
(1 - ﬁ) The proof of Theorem 2.2 is similar to some of the arguments from [CGL"20], and

arguments used in previous algorithms for decremental APSP in expanders by [CS21, Chu2l]. We
prove by induction on the level j that there is a deterministic algorithm, that, given a graph H with
\V(H)| = N7, either computes a (d;,d;)-distancing in graph H (for appropriately chosen parameters
d; and dj), or computes a level-j Hierarchical Support Structure for H, such that H is (n;, Jj)—well—
connected with respect to the set S(H) of vertices defined by the support structure, for appropriately
chosen parameters nj,cij. The algorithm for level j proceeds as follows. We partition the vertices
of H into N subsets Vi,..., Vy, each containing N7~! vertices. We then let H' = {Hi,...,Hy} be
an initial collection of graphs, where for all 1 < ¢ < N, V(H;) = V; and E(H;) = (0. We run the
Distanced Matching Game on all of the graphs of H' in parallel, with the level parameter (j — 1); the
algorithm for the Distancing Player is obtained from the induction hypothesis for level (j — 1). The
algorithm for the Matching Player performs a routing in graph H via basic path peeling, and is very
similar to the algorithm employed together with Cut-Matching Game in numerous previous results, e.g.
[CK19, CS21, CGL™20, Chu21]. If we successfully complete the Distanced Matching Game on at least
r" = Q(r) graphs of H, that we denote by H' = {Hil, cee Hiw}7 then we simultaneously obtain an

embedding of graph U;lzl H;_ into H, and also a guarantee that each graph H; € H' is well-connected
with respect to the corresponding set S(H;,) of vertices that is defined by its Hierarchical Support
Structure that the algorithm constructed . We then attempt to connect, for every pair 1 < z < 2’ <7/
of indices, the sets S(H;,),S(H;_) of vertices by many paths in graph H, so that the paths are
sufficiently short and cause a low congestion. If we manage to do so for many such pairs z,z’ of
indices, then we will obtain a collection H"” C H' of r graphs, and a certificate that graph H is well-
connected with respect to the set S(H) = U}, cqn S(H;) of vertices. Otherwise, we will compute the
required (d;, d;)-distancing in graph H. Lastly, if we fail to complete the Distanced Matching Game on
many of the graphs in #, then we will also compute the required (d;, d;)-distancing in graph H.

In all our subsequent algorithms, we will employ the Distanced Matching Game with the algorithm for
the Distancing Player implemented by Theorem 2.2. Therefore, when the algorithm terminates, it
outputs a level-(1/¢) Hierarchical Support Structure for the input graph H, together with a large set
S(H) of supported vertices, so that graph H is well-connected with respect to S(H).

Lastly, we provide an algorithm for decremental APSP in a well-connected graph. Specifically, we
assume that we are given a graph H that is an outcome with the Distanced Matching Game, in which

12

the Distancing Player is implemented by the algorithm from Theorem 2.2. Therefore, we are given
a level-(1/¢) Hierarchical Support Structure for H, together with a large set S(H) of its vertices, so
that H is well-connected with respect to S(H). We then assume that graph H undergoes a sequence
of edge deletions. As edges are deleted from H, the well-connectedness property may no longer hold,
and the Hierarchical Support Structure may be partially destroyed. Therefore, we only require that
the algorithm maintains a large enough subset S'(H) C S(H) of supported vertices, and that it can
respond to short-path queries between pairs of vertices in S’(H): given a pair z,y of such vertices, the
algorithm needs to return a path of length at most 20/ <) in the current graph H connecting them.
We also require that the set S’(H) is decremental, so vertices can leave this set but they may not join
it. The result is summarized in the following theorem.

Theorem 2.3 There is a deterministic algorithm, whose input consists of:

a parameter 0 < e < 1/400, so that 1/€ is an integer;

64
an integral parameter N that is sufficiently large, so that ICJXW > 2128/¢° holds;

a graph H with |V (H)| = N'¢; and

a level-(1/€) hierarchical support structure for H, such that H is (1, d)-well-connected with respect
to the set S(H) of vertices defined by the Hierarchical Support Structure, where n and d are
parameters from Theorem 2.2.

Further, we assume that graph H undergoes an online sequence of at most A = |V (H)|'*71% edge

deletions. The algorithm maintains a set S'(H) C S(H) of vertices of H, such that, at the beginning
of the algorithm, S'(H) = S(H), and over the course of the algorithm, vertices can leave S'(H) but
they may not join it. The algorithm ensures that |S'(H)| > |‘;gi)‘ holds at all times, and it supports
short-path queries between supported vertices: given a pair x,y € S'(H) of vertices, return a path P
connecting = to y in the current graph H, whose length is at most 2°/<) in time O(|E(P)|). The

total update time of the algorithm is O(|E(H)|'+t0).

The algorithm for Theorem 2.3 is somewhat similar to the algorithm for APSP in expanders from
[CS21]. Instead of proving Theorem 2.3 directly, we prove a more general theorem, that, for all
1 < j < 1/e, given a graph H with |V(H)| = N7 and a level-j Hierarchical Support Structure for
H, such that H is well-connected with respect to the set S(H) of vertices defined by the Hierarchical
Support Structure, supports APSP in H, as the graph undergoes a limited number of edge deletions.
The proof of the theorem is by induction on j. In order to obtain an algorithm for a fixed level
j, we recursively maintain a data structure for APSP in graphs Hi,..., H, € H that belong to the
Hierarchical Support Structure of graph H. We also maintain, for all 1 < ¢ < r, an Even-Shiloach Tree
data structure in graph H, that is rooted at the vertices of S'(H;). These data structures allow us
to maintain a large enough decremental set S’(H) C |J, S’(H;) of vertices, and to support short-path
queries between pairs of vertices in S’(H) efficiently.

We compare this algorithm to the best previous algorithm for APSP in expanders, due to [CS21,
Chu21]. For APSP in expanders, we consider a typical setting where the maximum vertex degree
A = O(polylogn), and the expansion parameter is ¢ = Q(1/polylogn), where n is the number of
vertices in the input graph. For this setting, the algorithm of [CS21, Chu21] could only return paths
between pairs of vertices from the supported set of length at most (log n)o(l/ 62), compared to path
length 20/ <) of the above algorithm. The running time of both algorithms in this setting (assuming
that € is not too small) is similar. On the negative side, our algorithm can only withstand n1=00)

13

edge deletions, compared to the algorithm of [CS21], that can withstand up to ©(m/ polylogn) edge
deletions. Also, the size S(H) of supported vertices that the algorithm from [CS21] is significantly
larger: it is (n), compared to our bound of n/ 20(1/¢) Interestingly, the tools that we developed here
allow us to obtain better algorithms for the APSP in expanders problem itself, as we show next.

2.2 Decremental APSP in Expanders

In the decremental APSP in expanders problem, the input is a graph G, that is initially ¢-expander.
The graph undergoes an online sequence of edge deletions. The algorithm needs to maintain a partition
(S,U) of vertices of G into a set S of supported vertices, and a set U of unsupported vertices. As the
algorithm progresses, vertices may be moved from S to U, but not in the opposite direction. The
algorithm must support shorth-path query: given a pair z,y € S of supported vertices, return a short
path P connecting x to y, in time O(|E(P)|). Ideally, we would like to ensure that the algorithm can
withstand a long enough sequence of edge deletions, and that the set S of supported vertices remains
sufficiently large. We prove the following theorem for decremental APSP in expanders.

Theorem 2.4 There is a deterministic algorithm, whose input consists of an n-vertex graph G with
|E(G)| = m that is a p-expander for some 0 < ¢ < 1, with mazimum vertex degree at most A, and

a parameter W <e< ﬁ, such that 1/e is an integer. We assume that graph G undergoes an

online sequence of at most % edge deletions. The algorithm maintains a set U C V(G) of vertices,
such that, for every integer t > 0, after t edges are deleted from G, |U| < %%th holds. Vertex set U is
incremental, so vertices may join it but they may not leave it. The algorithm also supports short-path
query: given a pair of vertices xz,y € V(G) \ U, return an x-y path P in the current graph G, of

6
length at most M, with query time O(|E(P)|). The total update time of the algorithm is

)
1+0(€e) . AD
0(7”1 e)

For a typical setting where A,1/¢ = O(polylogn), the algorithm, in response to a short-path query,
returns a path of length at most 20(1/<) . poly logn, with total update time O(nHO(E)). For the
same setting, the best previous algorithm of [CS21], returned paths of length at most (logn)?(/ ¢)
in response to queries, and had similar total update time. On the negative side, the algorithm of
[CS21, Chu21] could withstand a longer sequence of edge deletions, though in both cases it remains
Q(n/polylogn). The cardinality of the set U of unsupported vertices is somewhat lower in [CS21],
though for this setting it remains in both cases Q(t - polylogn) after ¢ edge deletions. Note that,
for constant-degree expanders, by letting ¢ = (1/logloglogn), we can ensure that the paths returned
in response to short-path queries have length at most (log n)”o(l), and the total update time of the
algorithm is n!+o).

2.3 Advanced Path Peeling and Deterministic Algorithm for the Cut Player in
the Cut-Matching Game

We prove the following theorem for advanced path peeling.

Theorem 2.5 There is a deterministic algorithm, whose input consists of a connected n-verter m-
edge graph G, a collection M = {(s1,t1),...,(Sk,tx)} of pairs of vertices in G, such that M is a

matching, and parameters 0 < a <1/2,0< ¢ <1 and %/24 <e< ﬁ. The algorithm computes

(log n)
one of the following:

14

e cither a cut (A, B) with |Eq(A, B)| < ¢-min{|Eg(A)|,|Ec(B)|}, and each of A, B contains at
least 01‘—5 vertices of set T = {s1,t1,...,Sk, tx}; or

e a routing P in G of a subset M C M containing at least (1 —)k pairs of vertices, such that

200/ 1og n

every path in P has length at most , and the total congestion caused by the paths in

. 20(1/) Joon .1
P is at most Tg -min {1, logn}.

The running time of the algorithm is bounded by O (m1;§<6)>.

The idea in the proof of the theorem is to attempt to embed a well-connected graph H, whose vertex
set is T', into GG, via the Distanced Matching Game. We require that the embedding paths are short and
cause low congestion. If we fail to do so, we will immediately obtain the desired sparse cut. Otherwise,
we can rely on the algorithm for APSP in well-connected graphs from Theorem 2.3, together with an
ES-Tree in graph G that is rooted at the set S'(H) of supported vertices of H that the algorithm
from Theorem 2.3 maintains, in order to support approximate shortest path query in graph G. We
then greedily compute short paths routing pairs of vertices in M, while deleting edges that participate
in too many paths from G. Once a large enough number of paths is routed (so the algorithm from
Theorem 2.3 may no longer support short-path queries), we start the whole procedure from scratch.

Next, we provide the following deterministic algorithm for the Cut Player from the Cut-Matching
Game.

Theorem 2.6 There is a deterministic algorithm, that, given an n-vertex and m-edge graph G =

(V, E) with maximum vertex degree A, and a parameter < € < =, returns one of the

2
(logn)1/25 400

following:

e cither a cut (A, B) in G with |A|,|B| > n/4 and |Eg(A, B)| < n/100; or

e a subset S C V of at least n/2 wvertices, such that graph G[S] is ¢*-expander, for p* >

1
{ (20(1/56)-A3~10g2 n) ’
The running time of the algorithm is O (mHO(E) : A7).

We note that, since the number of iterations in the Cut-Matching Game is bounded by O(logn),
we can assume that A < O(logn). By setting € = 1/(logloglogn)'/®, we can then guarantee that

o* > W, and the running time of the algorithm is bounded by O(n!'*°(})). In contrast, the
1+0(e)

algorithm of [CGL*20] could only achieve expansion ¢* > 1/(logn)'/¢ with running time n
so in time n!'*+°(M) it could only achieve expansion 1/(logn)<(1).

, and

Our techniques are different from those of [CGL'20], who rely on a recursive application of the
Cut-Matching Game to smaller and smaller graphs. Instead, we compute a constant-degree n-vertex
expander H, and then attempt to embed it into GG using the algorithm for advanced path peeling
from Theorem 2.5. If we successfully embed most edges of H into G, then, by invoking the expander
pruning result of [SW19], we can compute a large enough subset X C V(G) of vertices, such that
G[X] is a ¢*-expander. Otherwise, we obtain a sparse cut (A, B) in G with |A| > |B|. We then delete
the vertices of B from G, and repeat this procedure. The algorithm continues as long as G contains
at least 2n/3 vertices. Once the number of vertices in G falls below 2n/3, if we did not successfully
embed an expander into G so far, then we obtain a sparse cut (A’, B') in G, where A’ contains all
vertices that currently remain in G.

15

2.4 Sparsest Cut and Lowest Conductance Cut

We prove the following result for the Sparsest Cut and Lowest Conductance Cut problems.

Theorem 2.7 There are deterministic algorithms for the Sparsest Cut and the Lowest Conductance
Cut problems, that achieve a factor-O(log7nlog log n)-approzimation in time O (m”o(l)), where n
and m are the number of vertices and edges, respectively, in the input graph.

The best previous deterministic algorithm for both problems, due to [CGLT20], achieved a factor
(log n)1/62—approximati0n, in time O(m!*€), for any (}zilr?)gl% < e < 1. Our algorithms for Sparsest Cut
and Lowest Conductance Cut are essentially identical to those of [CGL120], except that we plug in our

stronger algorithm for the Cut Player in the Cut-Matching Game from Theorem 2.6 into their proof.

As in [CGL*20], we first consider the Most Balanced Sparse Cut problem. The input to the problem
is an n-vertex graph G, and a parameter 0 < ¢ < 1. The goal is to compute a cut (X,Y) in G
of sparsity at most ¢, while maximizing min {|X|,|Y|}, that we refer to as the size of the cut. An
(o, B)-bicriteria approximation algorithm for the problem, given parameters 0 < ¢ < 1 and z > 1,
must either compute a cut (X,Y) in G of sparsity at most ¢ and size at least z; or correctly establish
that every cut (X',Y”) whose sparsity is at most ¢/« has size at most - z.

The problem is a natural intermediate step for obtaining fast algorithms for Sparsest Cut and Lowest
Conductance Cut problems. It was first introduced independently by [NS17] and [Wull7], and has
been studied extensively since (see e.g. [CK19, CS19, CGL20]). As observed in previous work, a fast
bicriteria approximation algorithm for this problem can be obtained by employing the Cut-Matching
Game. In [CGL'20] (see Lemma 7.3), an («, 8)-bicriteria deterministic approximation algorithm was
obtained for the Most Balanced Sparse Cut problem, with o = (logn)?(1/¢) and g = (logn)?1/¢), in

time O (m1+o(€)+0(1) - (log n)o(1/62)> for any —1-— < e < 1, for some fixed constant c. We obtain a

clogn —

deterministic (c, 3)-bicriteria approximation algorithm with o = 2001/ <) log"n and g = 200/).
log® n, with running time O (m!TO©+°M) for any € > 2/(logn)/?%. For example, by setting e =
1/(logloglogn)'/®, we can obtain an («, 3)-bicriteria approximation with a = (logn)7t°1) and g =
(log n)6+°(1), and running time m!*°()_ In contrast, obtaining an (a, B)-bicriteria approximation with
a = O(log®n) and 8 = O(log® n) for any constant ¢, using the algorithm of [CGL™20] would result in a
running time that can only be bounded by m!+©(/¢) On the other hand, if we restricted the running
time to m!t°() then the results of [CGL*20] could not yield an («, 3)-bicriteria approximation in
which both « and f are polylogarithmic in n. Our algorithm for the Most Balanced Sparse Cut is
essentially identical to that of [CGLT20], except that it uses our stronger algorithm for the Cut Player
in the Cut-Matching Game. Algorithms for Sparsest Cut and Lowest Conductance Cut easily follow from
the algorithm for Most Balanced Sparse Cut, as shown in [CGL™"20].

2.5 Minimum Balanced Cut and Expander Decomposition

We provide a deterministic factor-(log n)8+°(1) approximation algorithm for Minimum Balanced Cut
with Certificate problem, by proving the following theorem.

Theorem 2.8 There is a deterministic algorithm, that, given a graph G with n vertices and m edges,
3

and a parameter long < < 1, computes a cut (A, B) in G with |Eg(A, B)| < 4-(logn)8t°M.Vol(Q),

such that one of the following holds:

e cither Volg(A), Volg(B) > Vol(G)/3; or

16

e Volg(A) > 2Vol(G)/3, and graph G[A] has conductance at least 1.
The running time of the algorithm is O(m () /4)).

For ¢ > 1/ m°M), which is a common setting used in algorithms for expander decomposition, our run-
ning time becomes O(m!*+°(1)). As mentioned already, [CGL*20] presented a deterministic algorithm
for Minimum Balanced Cut with Certificate, that achieves approximation factor o = (log n)o(l/EZ), in

time O(m!*€), for any (iif)gl% <e<l.

We provide another algorithm, that can be used in low-conductance regime, whose running time does
not depend on . Unfortunately, this algorithm provides a somewhat weaker certiciate if the cut that
it returns is not balanced.

Theorem 2.9 There is a deterministic algorithm, that, given a graph G with n vertices and m edges,
and a parameter 0 < 9 < 1, computes a cut (A, B) in G with |Eg(A, B)| < ¢ - (logn)8t°M . Vol(G),
such that one of the following holds:

e cither Volg(A), Volg(B) > Vol(G)/3; or

e Volg(A) > 2Vol(G)/3, and for every partition (Z,Z") of A with Volg(Z), Volg(Z") > Vol(G) /100,
|Eq(Z,2")] > - Vol(G).

The running time of the algorithm is O(m!+e()),

The algorithm from Theorem 2.9 can be easily used to obtain a deterministic factor-(log n)8+0(1)
approximation algorithm for the Minimum Balanced Cut problem in time O(mHo(l)). Given an input
graph GG, we perform a binary search on the parameter ¢, until we find a value for which the algorithm
from Theorem 2.9, when applied to G' and 1, returns a cut (A, B) with |Eg(A, B)| < 9 - (logn)$to).
Vol(G) and Volg(A), Volg(B) > Vol(G)/4; while, if applied to G and /2, it returns a cut (A’, B")
with |Eg(A’, B)| <4 - (logn)®+t°M . Vol(@) and Volg(B') < Vol(G)/4. Note that (A, B) is an almost
balanced cut, with |Eg(A, B)| < at - Vol(G), where o = (logn)8t°(1). Let (A*, B*) be the optimal
balanced cut, so Volg(A*), Volg(B*) > Vol(G)/3. We claim that |Eq(A*, B¥)| > % - Vol(G). This is
since cut (A*, B*) defines a partition of the set A’ of vertices, that we denote by (Z, Z’), for which
Volg(Z), Volg(Z') > Vol(G)/100 must hold. Therefore, |Eq(A*, B*)| > |Eq(Z,Z")| > % - Vol(G). We
conclude that cut (A, B) is a factor-« bicriteria solution to instance G' of Minimum Balanced Cut.

Our proofs of Theorem 2.8 and Theorem 2.9 depart from that of [CGLT20], who iteratively used
the algorithm for Most Balanced Sparse Cut. The reason is that, while we obtain significantly better
guarantees for the Most Balanced Sparse Cut problem, the approximation factor is still at least poly-
logarithmic in n, and, if we follow the framework of [CGL*20], who apply the algorithm for the Most
Balanced Sparse Cut over the course of O(1/¢) iterations, we will still accumulate an approximation
factor that is at least as high as (log n)@(l/e). Instead, we employ the Cut-Matching Game directly and
iteratively. In every iteration, we either cut off a large enough subgraph of G via a low-conductance
cut, or we (implicitly) embed a large expander into G.

Lastly, we consider expander decomposition. Recall that an (d,v)-expander decomposition of a graph
G = (V,E) is a partition II = {Vi,...,Vi} of the set V of vertices, such that for all 1 < i < k,
the conductance of graph G[Vj] is at least ¢, and Z;g:l dc(V;) < 6 - Vol(G). We prove the following
theorem.

17

Theorem 2.10 There is a deterministic algorithm, that, given a graph G with n vertices and m edges,
13
cogZm 5 < 1, where ¢ is a large enough constant, computes a (6,1)-expander

W), n time 0(m1+0(1)/5)

and a parameter

decomposition of G with 1) = Q) (

The best previous deterministic algorithm, due to [CGL™20], computes a (4, ¢)-expander decompo-
sition with ¢ = Q(5/(logm)°1/)), in time O (m”o(e)‘“’(l)). Our algorithm is very similar to the
algorithm of [CGL™20], except that we use the algorithm from Theorem 2.8 for the Minimum Balanced
Cut problem, instead of its counterpart from [CGL™20].

3 Preliminaries

All logarithms in this paper are to the base of 2. All graphs are simple, undirected and unweighted,
unless stated otherwise. Graphs with parallel edges are explicitly referred to as multigraph. Through-
out the paper, we use a O() notation to hide multiplicative factors that are polynomial in log n, where
n is the number of vertices in the input graph.

We follow standard graph-theoretic notation. Given a graph G and two disjoint subsets A, B of its
vertices, we denote by Eg(A, B) the set of all edges with one endpoint in A and another in B, and by
E¢(A) the set of all edges with both endpoints in A. We also denote by dz(A) the set of all edges with
exactly one endpoint in A. For a vertex v € V(G), we denote by dg(v) the set of all edges incident to
v in G, and by degs(v) the degree of v in G. We may omit the subscript G when clear from context.
Given a subset S of vertices of G, we denote by G[S] the subgraph of G induced by S. We say that a
subgraph C of GG is a cluster, if C' is a connected vertex-induced subgraph of G.

Matchings and Routings. If G is a graph, and P is a collection of paths in G, we say that the
paths in P cause congestion 7 in G if every edge e € E(G) participates in at most 7 paths in P, and
some edge e € F(G) participates in exactly n such paths.

Let G be a graph, and let M = {(s1,t1),...,(sk,tx)} be a collection of pairs of vertices of G. We say
that M is a matching if every vertex v € V(G) participates in at most one pair in M, and for every
pair (s;,t;) € M, s; # t;. Note that we do not require that the pairs (s;,t;) € M correspond to edges
of G. We say that a collection P of paths is a routing of the pairs in M in graph G, if |P| = k, the
paths in P are simple paths that are contained in G, and for every pair (s;,t;) € M of vertices, there
is a path P; € P whose endpoints are s; and t;.

Assume now that we are given a graph G, two disjoint sets S, T of its vertices, and a collection P of
paths. We say that the paths in P route vertices of S to vertices of T', or that P is a routing of S to
T,if P={P(s)|s €S} and, for all s € S, path P(s) originates at vertex s and terminates at some
vertex of T. We say that P is a one-to-one routing of S to T, if the endpoints of all paths in P are
distinct.

Embeddings of Graphs. Let G, X be two graphs with V(X) C V(G). An embedding of X into G
is a collection P = {P(e) | e € E(X)} of paths in graph G, such that, for every edge e = (x,y) € E(X),
path P(e) connects vertex x to vertex y. The congestion of the embedding is the maximum, over all
edges €/ € E(G), of the number of paths in P containing ¢’.

Given graphs G and X as above, and a subset E' C E(X) of edges of X, an embedding of E’ into G
is defined similarly: it is simply an embedding of the subgraph of X induced by E’.

18

We will sometimes use a more general setting, where V(X)NV(G) =). In this case, an embedding of
X into G must include a mapping 7 : V(X) — V(G), where every vertex of X is mapped to a distinct
vertex of G. Additionally, it must also include a collection P = {P(e) | e € E(X)} of paths in graph
G, such that, for every edge e = (z,y) € E(X), path P(e) connects vertex m(x) to vertex 7(y). The
congestion of this embedding is defined as before.

We will use the following easy observation.

Observation 3.1 There is a deterministic algorithm, whose input consists of a pair H,G of graphs
with V(H) C V(G), an embedding P of H into G, so that the paths in P have length at most d
each and cause congestion at most 1, a collection 11 of pairs of vertices of H, and a collection Q =
{Q(u,v) | (u,v) € I} of simple paths in H, such that, for every pair (u,v) € II of vertices, path Q(u,v)
connects u to v, the paths in Q have length at most d’ each, and cause congestion at most n' in H.
The algorithm computes a collection Q" = {Q'(u,v) | (u,v) € I} of paths in graph G, such that, for
every pair (u,v) € II of vertices, path Q'(u,v) connects u to v, the paths in Q' have length at most
d-d each, and cause congestion at most n-n' in G. The running time of the algorithm is at most
O (min {[T1] - - d, |E(G)| -n - 7'}).

Proof: We process every pair (u,v) € I one by one. When pair (u,v) is processed, we consider the
path Q(u,v) € Q, and we denote the sequence of edges on Q(u,v) by (e1,e2,...,¢e.), where r < d'.
For all 1 < i < r, let P(e;) € P be the path that serves as the embedding of edge e;, whose length
must be at most d. We obtain path @'(u,v) connecting u to v in G by concatenating the paths
P(ey), P(e2),...,P(e;). It is immediate to verify that the length of path Q’(u,v) is at most d-d’. Let
Q' ={Q'(u,v) | (u,v) € II} be the resulting set of paths. Consider any edge e € E(G), and let S(e)
be the collection of all edges e’ € E(H) with e € P(¢'), where P(e’) € P is the embedding path of €.
Then |S(e)] < 1, and every edge ¢ € S(e) participates in at most 1’ paths in Q. Therefore, edge e
may participate in at most 7 -1’ paths in @', and so the congestion that the paths in Q' cause in G is
at most 7 - 7. It is immediate to verify that every pair (u,v) € P of vertices can be processed in time
O(d - d'), and so the total running time of the algorithm is at most O(|II| - d - d’). Since every edge of
E(G) belongs to at most 1 -7’ paths in @', it is also easy to verify that the running time is bounded

by O(n -1’ - |E(G)]). =

Distances and Balls. Given a graph G, for a pair u,v € V(G) of its vertices, we denote by
distg(u,v) the distance between u and v in G, that is, the length of the shortest path between wu
and v. For a pair S,T of subsets of vertices of G, we define the distance between S and T to be
distg(S,T) = mingeger distg(s,t). For a vertex v € V(G), and a vertex subset S C V(G), we also
define the distance between v and S as distg(v, S) = min,cg distg(v,u). The diameter of the graph
G, denoted by diam(G), is the maximum distance between any pair of vertices in G. For a vertex
v € V(G) and a distance parameter D > 0, we denote by Bg(v, D) = {u € V(G) | distg(u,v) < D}
the ball of radius D around v. Similarly, for a subset S C V(G) of vertices, we let the ball of radius
D around S be Bg(S,D) = {u € V(G) | distg(u,S) < D}. We will sometimes omit the subscript G
when clear from context.

3.1 Dynamic Algorithms

Dynamic Graphs. Consider a graph G that undergoes an online sequence ¥ = (01,09, ...) of edge
deletions, that we may also refer to as updates. After each update operation, the algorithm will
perform some updates to the data structures that it maintains. We refer to different “times” during
the algorithm’s execution. The algorithm starts at time 0. For each ¢ > 0, we refer to “time ¢ in the

19

algorithm’s execution” as the time immediately after all updates to the data structures maintained by
the algorithm following the tth edge deletion o, € X are completed. When we say that some property
holds at every time during the algorithm’s execution, we mean that the property holds at all times
t of the algorithm’s execution, but it may not hold, for example, during the procedure that updates
the data structures maintained by the algorithm, following some edge deletion o; € X. For t > 0, we
denote by G® the graph G at time t; that is, G(*) is the original graph, and for ¢ > 0, G is the
graph obtained from G after the first ¢ edge deletions o7, ..., oy.

We say that a set S of elements is decremental if, over time, elements can be deleted from S but they
may not be added to S. Similarly, we say that S is incremental if elements can be added to S as the
time progresses, but not deleted from S.

Even-Shiloach Trees [ES81, Din06, HK95]. Suppose we are given a graph G = (V, F) with
integral lengths ¢(e) > 1 on its edges e € E, a source vertex s, and a distance bound D > 1. Even-
Shiloach Tree (ES-Tree) algorithm maintains, for every vertex v with distg(s,v) < D, the distance
distg(s,v), under the deletion of edges from G. Moreover, it maintains a shortest-path tree 7 rooted
at vertex s, that includes all vertices v with distg(s,v) < D. We denote the corresponding data
structure by ES-Tree(G, s, D), or just ES-Tree when clear from context. The total running time of the
algorithm, including the initialization and all edge deletions, is O(m - D logn), where m is the initial
number of edges in G and n = |V|.

3.2 Cuts, Flows, Sparsity, Conductance and Expanders.

Even though all graphs that we deal with are undirected, it will sometimes be useful to assign directions
to paths in such a graph. In order to do so, for a path P in an undirected graph G, we designate one
of its endpoints (say u) as the first endpoint of P, and the other endpoint (say v) as its last endpoint.
We may then say that path P is directed from u to v, or that it originates at u and terminates at v.
If P is a collection of path in an undirected graph G, and we have assigned a direction to each of the
paths, we may refer to P as a collection of directed paths, even though graph G is undirected.

Flows. Let G be a graph, and let P be a collection of directed paths in graph G. A flow over the set
P of paths is an assignment of non-negative values f(P) > 0, called flow-values, to every path P € P.
We sometimes refer to paths in P as flow-paths for flow f. For each edge e € E(G), let P(e) C P be
the set of all paths whose first edge is e, and let P’(e) C P be the set of all paths whose last edge is e.
We say that edge e sends z flow units in f if Zpep(e) f(e) = z, and we say that edge e receives z flow
units in f if ZPGP’(e) f(P) = z. Similarly, for a vertex v € V(G), we say that v sends z flow units in f
if the sum of flow-values of all paths P € P that originate at v is z. We say that v receives z flow units
in f if the sum of the flow-values of all paths P € P that terminate at v is z. The congestion that

flow f causes on an edge e is > pecp. f(P), and the total congestion of the flow f is the maximum
ecE(P)
congestion that it causes on any edge e € E(G).

Cuts and Expansion. Given a graph G = (V, E), a cut in G is a bipartition (A, B) of the set V of

its vertices, with A, B # (). The sparsity of the cut (A4, B) is pg(A, B) = %. We denote by

®(G) the smallest sparsity of any cut in G, and we refer to ®(G) as the expansion of G.

Expanders. We define the notion of expanders using graph expansion.

20

Definition 3.1 (Expander) We say that a graph G is a p-expander, for a parameter 0 < ¢ < 1, if
O(G) > .

We will sometimes informally say that graph G is an expander if ®(G) is a constant independent of
|[V(G)|. We use the following immediate observation, that was also used in previous works, (see e.g.
Observation 2.3 in [CGL™'20]).

Observation 3.2 Let G = (V, E) be an n-vertex graph that is a p-expander, and let G' be another
graph that is obtained from G by adding to it a new set V' of at most n vertices, and a matching M,
connecting every vertex of V' to a distinct vertex of G. Then G’ is a ¢/2-expander.

We also use the following theorem that provides a fast algorithm for an explicit construction of an
expander, that is based on the results of Margulis [Mar73] and Gabber and Galil [GG81]. The proof
was shown in [CGL120].

Theorem 3.3 (Theorem 2.4 in [CGL120]) There is a constant ag > 0 and a deterministic algo-
rithm, that we call CONSTRUCTEXPANDER, that, given an integer n > 1, in time O(n) constructs a
graph H,, with |V (H,)| = n, such that H, is an agp-expander, and every vertex in Hy, has degree at
most 9.

Expander Pruning. We use an algorithm for expander pruning by [SW19]. We slightly rephrase
it so it is defined in terms of graph expansion, instead of conductance that was used in the original
paper. This variation of the original expander pruning theorem of [SW19] was proved explicitly in
[Chu21] (see Theorem 2.2 in full version of the paper).

Theorem 3.4 (Adaptation of Theorem 1.3 in [SW19]; see Theorem 2.2 in [Chu2l]) There
is a deterministic algorithm, that, given an access to the adjacency list of a graph G that is a p-
expander, for some parameter 0 < ¢ < 1, such that the maximum vertex degree in G is at most A, and
a sequence ¥ = (e1,€3,...,¢ex) of k < % online edge deletions from G, maintains a set U C V(G)
of vertices, with the following properties. Let G denote the graph G \ {e1, ..., e;}; let Uy = () be the
set U at the beginning of the algorithm, and for all 0 < i < k, let U; be the set U after the deletion
of the edges of e1, ..., e; from graph G. Then, for all 1 < i < k: U;_; C Uj; \UZ\ < %; and graph

GI\Tj is a ax -expander. The total running time of the algorithm is O(kAZ/p?).

Graph Conductance. For a graph G = (V, E) and a subset S C V of its vertices, the volume of
S is Volg(S) =), cg degg(v). We denote by Vol(G) = Volg(V'). The conductance of a cut (A, B) in

Gis: Ya(A, B) = — {Vfg(%”@hc @7 We denote by V(@) the smallest conductance of any cut in G,

and we refer to ¥(G) as the conductance of G.

3.3 Embeddings with Fake Edges and Expansion

Typically, when using the Cut-Matching game, we either embed an expander graph H with V(H) =
V(G) into the given graph G, or compute a sparse cut (A, B) in G. Unfortunately, it is possible that
one side of the cut, say A, is quite small in the latter case. This often poses challenges in applications
of the Cut-Matching game where the goal is to obtain very efficient algorithms. This is since we
essentially spend time Q(|E(G)|) in order to execute the Cut-Matching game, and end up computing
a sparse cut whose one side may be very small. Ideally, for efficient algorithms, it is desirable that the
sparse cut that we compute is as balanced as possible. A standard way to overcome this issue, that

21

was suggested in the original paper of [KRV09] that introduced the Cut-Matching game, is to use fake
edges. Intuitively, we will augment the graph G with a small number of edges, that we refer to as fake
edges, to indicate that they do not actually lie in G. If F' is the set of fake edges, we will denote by
G + F' the graph obtained by adding the edges of F' into G. We will use the Cut-Matching game to
either compute a sparse cut in G, whose both sides are relatively large; or to compute an embedding
of some expander graph H into G + F'. In the latter case, both the embedding and the set F' of fake
edges are constructed during the Cut-Matching game, and we will then extract a large expander graph
from G. The following lemma from [CGL'20] provides an algorithm to extract a large expander graph
from G efficiently.

Lemma 3.5 (Lemma 2.9 from [CGL120]) Let G be an n-vertex graph, and let H be another graph
with V(H) = V(G), with mazimum vertex degree Ap, such that H is a v-expander, for some 0 < 1) <
1. Let F be any set of k fake edges for G, and let Ag be the mazximum vertex degree in G+ F. Assume
that there exists an embedding P = {P(e) | e € E(H)} of H into G+ F, that causes congestion at most

n, for some n > 1. Assume further that k < 3272277. Then there is a subgraph G' C G that is a 1)'-

expander, for ' > ﬁ, such that, if we denote by A =V (G') and B =V (G)\ A, then |A| > n— %
and |Eg(A, B)| < 4k. Moreover, there is a deterministic algorithm, that we call AlgExtractExpander,
that, given G, H, P and F, computes such a graph G' in time O(|E(G)|Aq - n/1).

3.4 The Cut-Matching Game

The Cut-Matching Game was introduced by Khandekar, Rao, and Vazirani [KRV09] as a tool for
obtaining fast approximation algorithms for the Sparsest Cut and Minimum Balanced Cut problems.
We describe here a variant of this game, that was introduced by Khandekar et al. [KKOV07], and
later slightly modified by [CGL*20]. The game is played between two players, the Cut Player, and
the Matching Player. The game uses a parameter n, which is an even integer. The purpose of the
game is to construct an n-vertex expander graph H. At the beginning of the game, graph H contains
n vertices and no edges, and then in every iteration some edges are added to H. For intuition, it may
be convenient to think of the Cut Player’s goal being to construct the expander in as few iterations
as possible, and the Matching Player’s goal as trying to delay the construction of the expander.

The game starts with graph H containing n vertices and no edges. The ith iteration is played as
follows. The Cut Player either computes a partition (A4;, B;) of V(H) with |4|,|B;| > n/4 and
|Er(A;, Bi)] < n/100; or it computes a set X C V(H) with |X| > n/2, such that H[X] is a ¢-
expander, for some expansion parameter 0 < ¢ < 1. Assume first that the former happens, and
assume without loss of generality that |A;| < |B;|. The Matching Player must compute any partition
(AL, Bl) of V(H) with |A}| = |Bj|, such that A; C A}, and then it must compute an arbitrary perfect
matching M; between A] and B]. The edges of M; are then added to the graph H, and the algorithm
continues to the next iteration. If the latter case happens, that is, the Cut Player returns a set
X C V(H) of at least n/2 vertices, so that H[X] is a ¢-expander, denote Y = V(H) \ X. The
Matching Player must then compute a matching M; C X x Y with |M;| =Y. The edges of M; are
added to graph H, and the algorithm terminates. In this case, from Observation 3.2, we are guaranteed
that H is a ¢/2-expander. The following theorem follows directly from the result of [KKOV07], and
was proved explicitly in [CGL120] (see Theorem 2.5 in the full version).

Theorem 3.6 There is a constant ¢, such that the algorithm described above terminates after at most
clogn iterations.

22

3.5 Graph Cutting and Partitioning

We use several graph cutting and partitioning procedures, that exploit standard tools. We start with
procedure ProcCut, which is a variation of Leighton and Rao’s ball growing technique [LR99]. In all
these procedures, the input is a graph G, with a subset T of vertices of G called terminals. The goal
is to either compute a single cluster, or a collection of clusters in G with some specific properties.
Throughout, a subgraph C' C G, we denote by Tc = T'NV(C) the set of all terminals contained in C.

3.5.1 Procedure ProcCut

The input to the procedure is an n-vertex graph G, a set T C V(G) of k vertices called terminals, a
specific terminal to € T, and distance parameters d and A.

The procedure returns a cluster C' C G, and a subset T C T of terminals, for which the following
properties hold:

Cl. Te C T¢;

C2. |Te| < |Tc| - kSYA,

C3. V(C) C Bg(te, A - d);

C4. To € Ba(te, A - d); and

C5. for every pair z € V(C), ¢ € T'\ T of vertices, distg(v,t") > 4d.

The following lemma summarizes Procedure ProcCut.

Lemma 3.7 There is a deterministic algorithm called ProcCut, that, given an n-vertex graph G, a
subset T C V(Q) of k vertices called terminals, a specific terminal tc € T, and parameters d, A > 0,
computes a cluster C C G together with a set Tc C T of terminals, for which properties (C1) — (C5)
hold. The running time of the algorithm is O(|E(C)| - n8/2).

Proof: We assume that we are given as input an n-vertex graph G, a set T'C V(G) of k vertices called
terminals, together with a specific terminal tc € T' that we denote by ¢ for simplicity, and distance
parameters d and A. The procedure performs a breadth-first-search (BFS) from vertex ¢ in graph G,
up to a certain depth, that will be determined later.

For all i > 1, we denote by L; the set of all vertices of G that lie at distance 4(i — 1)d + 1 to 4id from
t in G. In other words:

Li = Ba(t, 4id) \ Ba(t, 4(i — 1)d).

We refer to the vertices of L; as layer i of the BEF'S. We denote by k; the number of terminals lying
in Ly U---UL;. We also denote by m; the total number of edges of G whose both endpoints lie in
L1 U---UL;. The following definition is crucial for the description of Procedure ProcCut.

Definition 3.2 (Eligible Layer) For an integer i > 1, we say that layer L; of the BFS is eligible if
both of the following two conditions hold:

L1. m; <m;_q- n64/A; and

23

L2, k; < kj_q - KOY/A

We need the following claim, whose proof uses standard arguments.

Claim 3.8 There exists an index 1 < i < A/8, such that layer L; is eligible.

Proof: Assume otherwise. Then for all 1 < i < A/8, layer L; is ineligible. For each such index i, we
say that layer L; is type-1 ineligible if it violates Condition (L1). Otherwise, we say that it is type-2
ineligible, in which case it must violate Condition (L2). Since every layer L; with 1 < i < A/8 is
ineligible, either there are at least A/32 type-1 ineligible layers L; with 1 < i < A/8, or there are at
least A/32 type-2 ineligible layers L; with 1 < i < A/8. We now consider each of the two cases and
prove that they are impossible.

Assume first that there are at least A/32 type-1 ineligible layers L; with 1 < i < A/8, and denote
their indices by 41, 12,...,7,, where 1 < i3 < iy < --- <i, < A/8 and z > A/32. But then, for all
1<a<z mi, >m - 842 Therefore, m;_ > n%*/2 > n?, a contradiction.

Assume now that there are at least A/32 type-2 ineligible layers L; with 1 < i < A/8, and denote
their indices by ji, jo,...,Js, where 1 < j; < jo <--- < j, < A/8, and z > A/32. But then, for all

1<a<z, kj,,, >Fkj,- k642 Therefore, k;, > K64/ > k. a contradiction. O

We are now ready to describe the algorithm for ProcCut. The algorithm performs a BFS from the
input terminal ¢ in graph G, until it encounters the first index ¢ > 1, such that layer L; is eligible.
The algorithm then returns cluster C, which is a subgraph of G induced by Ly U Lo U---U L;_1, and
the set TC of terminals, containing all terminals in Ly U---U L;.

We now show that properties (C1) — (C5) hold for this output. Properties (C1), (C3) and (C4) follow
immediately from the definition of cluster C' and set Te of terminals, and from the fact that, from
Claim 3.8, i < A/8. Property (C2) follows immediately from Condition (L2) in the definition of an
eligible layer, since |To| = k;_1 and |Te| = k;. Lastly, property (C5) follows immediately from the fact
that the vertices of C' and the terminals of T\ T are separated by layer L;, so every path connecting
a vertex of C' and a terminal of 7'\ T must contain at least 4d edges.

Notice that the running time of the algorithm is O(m;). Since |E(C)| = m;_1, from Condition (L1)
of an eligible layer, we get that the running time of the algorithm is bounded by O(m;_1 - n6%/4) =
O(|E(C)| - nSY/~). O

Next, we describe a procedure called ProcPartition, that exploits Procedure ProcCut in order to compute
a number of clusters in the input graph (G, that contain a large fraction of terminals, such that
the diameter of every cluster is relatively small, but pairs of vertices lying in different clusters are
sufficiently far away from each other.

3.5.2 Procedure ProcPartition

The input to Procedure ProcPartition consists of an n-vertex graph G, a set T' C V(G) of k vertices
called terminals, and distance parameters d and A.

The output of the procedure is a collection C of disjoint clusters of GG, and, for every cluster C' € C, a
center terminal tc € Tc, and two sets T/, T of terminals, such that the following properties hold.

R1. for every cluster C' € C, tc € T(; T, C V(C'), and Tf, C Te;

R2. for every cluster C € C, |TC| <|T}|- k64/A,

24

R3. for every cluster C € C, V(C) C Bg(tc, A - d);
R4. for every cluster C € C, T C Bg(te, A - d);

R5. for every pair C,C’" € C of distinct clusters, for every pair ¢ € T, t" € T/, of terminals,
distg(t',t") > d; and

The following lemma summarizes Procedure ProcCut.

Lemma 3.9 There is a deterministic algorithm, called Procedure ProcPartition, whose input is an
n-vertex graph G, a set T C V(G) of k vertices called terminals, and distance parameters d and A.
The output of the procedure is a collection C of disjoint clusters of G, and, for every cluster C € C,
a center terminal tc € Teo and sets T(’;,TC of terminals, for which Properties(R1)—(R6) hold. The
running time of the procedure is O(|E(G)| - n8/2).

Proof: Throughout the algorithm, we maintain a set C of disjoint clusters of G, and, for every cluster
C € C, we maintain a center terminal t¢ € T, and sets T, é,TC of terminals. We ensure that,
throughout the algorithm, properties (R1)—(R5) hold. The algorithm terminates once we achieve
Property (R6).

At the beginning of the algorithm, we set C = () and Gg = G. We then iterate. In iteration j,
we add a new cluster Cj to set C, and define the corresponding terminal ¢c; and sets T(’;j7 Zf’cj of
terminals. We denote G; = G\ (V(C1) UV (Ca)U---UV(Cj)). As the algorithm progresses, we will
also delete some terminals from the set 7. Specifically, we set T = T, and, for all j > 1, we set

TU) = T\ (Tcl U TCZ U---u TC]). We will ensure that the following additional invariants hold at the

end of iteration j:

1. T7U) C V(Gj), and for every pair ¢,t' € T of terminals, if distg; (¢, ') > 4d, then distg(t,t') >
4d.

12. for every pair t,t' of terminals with ¢ € U;:,:l Téj/ and t' € TU), distg(t,t') > d.

At the beginning of the algorithm, C = 0, Go = G, and Ty = T. Clearly, Properties (R1)—(R5)
and invariants (I1) and (I2) are satisfied. We perform iterations until Property (R6) holds. We now
describe the execution of the jth iteration.

Execution of the jth iteration. We assume that we are given a set C = {C1,...,C;_1} of disjoint
clusters, and, for every cluster Uy € C, a terminal te,, and sets T/, , ch, of terminals, such that Prop-
J

erties (R1)-(R5), and Invariants (I1) and (I2) hold. Recall that Gj_1 = G\(V(C1) UV (Ce)U---UV(Cj_1))
and TU-1 =T\ (Tcl ulg,U---U T(;j_l). We assume that Property (R6) does not hold, so there

must be at least one terminal in 7U=1; we let t € TU—Y be any such terminal.

In order to execute the jth iteration, we apply Procedure ProcCut from Lemma 3.7 to graph G;_1,
set TU—D of terminals, and terminal ¢, keeping the parameters d and A unchanged. We denote by
Cj the cluster of G; that the algorithm returns, by T, C TU=1) the resulting set of terminals, and

by T(’Jj = 70D NV(C). Notice that, equivalently, T’Cj =Tg; \ (Tcl Ulg,U---U TCJ-,1>- We also
denote t¢; = t, and we add Cj to C, completing the iteration.

25

Analysis of the jth iteration. We now verify that all required properties hold at the end of
iteration j, assuming that they held at the beginning of the iteration. Consider first Properties (R1)—
(R4). Let C' € C be any cluster. If C # C, then these properties clearly continue to hold for C. Assume
now that C' = Cj. Properties (R1) and (R2) immediately follow from Properties (C1) and (C2) that
are guaranteed by Procedure ProcCut, and from the definition of the set T, of terminals. Properties
(R3) and (R4) similarly follow from Properties (C3) and (C4), since, for every pair z,y € V(G;),
distg, ,(z,y) > distg(x,y), and so Bg,_, (tc, A -d) C Ba(tc, A - d).

Consider now any pair Cj,Cj» € C of clusters, and a pair t' € T/, , t" € T/, = of terminals. If both
J J

j', 7" < j, then we are guaranteed that distg(¢',¢") > d from the fact that Property (R5) held at the
beginning of the iteration. Assume now w.l.o.g. that j/ < j and j” = j. In this case, t/ € TU~D,
and, since we have assumed that Invariant (I2) held at the beginning of the iteration, we get that
distg (', ") > d, establishing Property (R5).

Next, we establish Invariant (I1). Recall that TU) = T\ (Tl U---u T]) = 70-1) \TJ Consider
some terminal # € T\, and assume for contradicting that ¢ ¢ V(G;). Recall that V(G;) = V(G) \
(V(Cy)U---UV(Cy)) = V(Gj-1) \ V(C}). From Invariant (I1), since ¢ € TU~D ' € V(G;_1) must
hold. Since t' ¢ V(G}), it must be the case that ¢’ € V(C;). However, set T(’jj contains every terminal

that lies in V/(Cj) \ (’f’cl U---u ch,l) Since t' ¢ Te, U---U ch,a it must be the case that ¢’ € T(’Jj,
and so t' € T, c;- But then t' ¢ T, a contradiction.

Consider now some pair ¢t € T\ of terminals, and assume that distg;(t,t') > 4d. Note that, if
distg;_, (t,1') > 4d, then, from the fact that Invariant (I1) held at the beginning of the iteration, we
get that distg(t,t") > 4d must hold. We now show that distg,_, (t,t') > 4d must hold. Indeed, assume
otherwise. Let P be any path of length less than 4d in graph G;_; connecting ¢ to t'. Since this
path does not lie in graph G, at least one vertex v € V(P) must lie in V(G;-1) \ V(G;) = V(Cj).
Therefore, graph G;_; contains a path P’ C P of length less than 4d between a vertex v € V(C}) and
a terminal t € TU~1) \ch. This is impossible from Property (C5) of Procedure ProcCut. Therefore,
Invariant (I1) continues to hold at the end of iteration j.

Finally, we establish Invariant (I2). Consider a pair ¢, ¢ of terminals with ¢ € U?,:l T, and t' € TU).
. J

Ifte Uj,;l) Téj/, then, since Invariant (I2) held at the beginning of the current iteration, we get that

distg(t,t") > d. Therefore we assume that t € T’Cj. In this case, t € V(C;), and ' € TU~1) \ T¢; holds,

so from Property (C5) of Procedure ProcCut, distg;_, (t,t') > 4d. From the fact that Invariant 11 held
at the beginning of the iteration, we then get that distg(¢,t) > 4d.

We conclude that at the end of iteration j, Properties (R1)—(R5), and Invariants (I1) and (I2) continue
to hold.

We terminate Procedure ProcPartition once Property (R6) holds. Since, in every iteration, the number
of vertices in the current graph G; decreases, we are guaranteed that the algorithm indeed terminates.

Running time analysis. Recall that, from Lemma 3.7, the running time of Procedure ProcCut is
bounded by O(|E(C)|-n%%/2), where C is the cluster that the procedure returns. Therefore, for all 7,
the running time of iteration j is at most O(|E(C;)|-n%*/?). The total running time of the algorithm
is then bounded by chec O(|E(C))| - n54/5). Since the clusters in C are disjoint, we get that the

total running time of Procedure ProcPartition is bounded by O(|E(G)| - n84/2). O

26

3.5.3 Procedure ProcSeparate

Lastly, we provide Procedure ProcSeparate, whose input is similar to that of Procedure ProcPartition.
The goal of the procedure is to either produce two large subsets 17, T5 of terminals that are sufficiently
far from each other in G, or to compute a single terminal ¢ € T' with set B (t, A - d) containing many
terminals.

Lemma 3.10 There is a deterministic algorithm, that we call ProcSeparate, whose input is an n-vertex
graph G, a set T C V(QG) of k vertices called terminals, distance parameters d and A, and an additional
parameter 0 < a < 1. The algorithm either computes a terminalt € T with |Bg(t,A-d)NT| > ak, or it
computes two subsets Ty, Ty of terminals, with |T1| = |Ts|, such that |T1| > k*~5%/2 . min {(1 - a), i
and for every pair t € Ty, t' € Ty of terminals, distg(t,t') > d. The running time of the algorithm is
O(IB(G)| - nS¥/2).

Proof: We use the following simple observation.

Observation 3.11 There is a deterministic algorithm, that, given a collection {ki, ke, ..., k.} of non-
negative integers with Z;Zl kj = k and max; {k;} < ok, computes a partition (Ji,J2) of the set
J=A{1,...,r} of indices, such that 3 ;c; kj,> e, kj = k-min{(1 —«),1/3}. The running time of
the algorithm is O(r).

Proof: Assume w.l.o.g. that k; > ko > --- > k,. Assume first that k; > k/3. In this case, we let
J1 ={k1} and Jo = J\ J — 1. Clearly, Zjng k; > Z§:1 kj — ki1 > (1 — a)k, while Zjeh kj > k/3.

Assume now that k; < k/3. In this case, we start with J; = Jo = (), and process the indices of J one
by one. When index j is processed, we add it to Jp if Ej’eh ki < Zj’ejl kj currently holds, and we
add it to Jo otherwise. It is easy to verify that, at the end of this algorithm, |3 /¢ kjr —> e, kjr| <
max;ey {kj} < k/3. Therefore, djen kis2jen ki = k/3. O

We are now ready to describe the algorithm for the proof of Lemma 3.10. We start by apply-
ing Procedure ProcPartition to graph G, the set T of terminals, and parameters d and A. Let

(C ={Cy,...,C.}, {tcj };:1 , {Téj };:1 , {Toj }:1> be the outcome of the procedure. For 1 < j <,

denote k; = |T]| If there is a cluster C; € C with k; > ak, then we return terminal ¢¢,; from Property
(R4), TCJ. C Bg(tc;,A-d), and so |Bg(tc, A-d)NT| > \TCJ.\ = k; > ok must hold.

Assume now that, for all 1 < j < r, k; < ak. Using the algorithm from Observation 3.11, we
compute a partition (Ji,J2) of the set J = {1,...,r} of indices, such that > ;. ; k;, D> ;e kj =
k-min{(1 — «),1/3}.

Denote 7" = T(;j, and 72 =

Tc;. Then ITY[,|T?| > k- min{(1 —),1/3}. Lastly, we

jeJi JEJ2
let Tv = Ujes, T(’;j and To = e, T(’J],. From Property (R5) of ProcPartition, for every pair ¢t € T},

t' € Ty of terminals, distg(t,t') > d. From Property (R2), |T1| > |TV|/kSY/2, and |Tp| > |T2|/k54/A.
We conclude that |Ty|,|Ts| > k=42 . min {(1-a),1}. We discard terminals from the larger of the
sets 11, Ty as needed, until the cardinalities of both sets become equal. O

3.6 Basic Path Peeling

In this subsection we present an algorithm, that we refer to as ProcPathPeel. This is a simple greedy
algorithm for connecting pre-specified pairs of subsets of vertices to each other with short paths.

27

Similar algorithms were used numerous times before (see e.g. Lemma 6.2 in [CK19], as well as [CS21,
Chu21], and Theorems 3.2 and 3.8 in [CGL*20]).

The input to Procedure ProcPathPeel consists of a graph G, collections A1, By, ..., A, By of subsets
of its vertices, and parameters d,n > 0. The output of the procedure is collections Py, Ps, ..., Py of
paths in graph G, for which the following properties hold:

P1. for all 1 < i < k, every path in P; connects a vertex of A; to a vertex of B;, and the endpoints
of all paths in P; are distinct;

P2. every path in set P = Ule P; has length at most d, and the paths in P cause congestion at
most n; and

P3. let E’ be the set of all edges e € E(G), such that exactly n paths of P use e. For all 1 <i <k,
let A; C A;, B C B; be the sets of vertices that do not serve as endpoints of the paths in P;.
Then for all 1 <4 <k, distq\ g/ (4], B) > d.

We note that we allow a path of P; to contain vertices of A; U B;, and also vertices from other sets
Aj U Bj as inner vertices. The following simple lemma summarizes our algorithm for ProcPathPeel.

Lemma 3.12 There is a deterministic algorithm, called ProcPathPeel, that, given a graph G, collec-
tions A1, By, ..., Ay, B of subsets of its vertices, and parameters d,n > 0, outputs sets P1,Pa, ..., Pk
of simple paths in G, for which properties (P1) — (P3) hold. The running time of the algorithm is
O(mn + mdklogn), where m = |E(G)| and n =V (G).

Proof: We use a simple greedy algorithm combined with the ES-Tree data structure. The algorithm
consists of k phases, where for all 1 < ¢ < k, we construct the set P; of paths in phase 7. At the
beginning of the algorithm, we set, for all 1 <4 < k, P; = (0. Throughout the algorithm, we maintain
the set P = [J_, P; of paths (that is set to {) at the beginning), and, for every edge e € E(G), we
maintain a counter n(e), whose value is equal to the number of paths in P containing e. At the
beginning of the algorithm, we initialize n(e) = 0 for every edge e.

We now describe the execution of the ith phase, for some 1 < ¢ < k. We start by constructing a
graph G;. Initially, we let G; = G. We then delete from G; every edge e € E(G) with n(e) = 7.
Additionally, we add a source vertex s; to GG;, that connects with an edge to every vertex of A;, and a
destination vertex t;, that connects with an edge to every vertex of B;. We also initialize an ES-Tree
data structure 7; in graph G;, with source vertex s;, and distance bound d + 2.

We then perform iterations, as long as the distance between s; and ¢; in 7; is bounded by d+2. In every
iteration, we use the ES-Tree data structure 7; to compute the shortest s;-t; path P in the current
graph G;, whose length must be at most d + 2. We delete the first and the last edges of P, obtaining a
path P’ of length at most d, that connects some vertex x € A; to some vertex y € B;. We add path P’
to P;, and increase the counter n(e) for every edge e € E(P’). We then update the current graph G,
by deleting the edges (s, x), (y,t;) from it, as well as every edge e whose counter n(e) has reached 7.
The ES-Tree data structure 7; is also updated with these deletions. Once the ES-Tree data structure
T; reports that the distance between s; and t¢; in the current graph G; is greater than d + 2, the phase
terminates. This completes the description of a phase, and of the algorithm.

From the description of the algorithm, it is immediate to verify that properties (P1) and (P2) hold
for the resulting sets Pi,..., Py of paths. Property (P3) is also easy to establish. Indeed, assume for
contradiction that, for some index 1 < i < k, there is a path P’ of length at most d, connecting a

28

vertex of A to a vertex of B in graph G \ E’. Then this path must have existed in graph G; at the
end of the ith phase, and so the phase should not have terminated when it did.

Lastly, we bound the running time of the algorithm. Let m = |E(G)|. The time that is required to
maintain a single ES-Tree 7; is bounded by O(mdlogn). Additionally, whenever a path P is added to
set P, the algorithm spends O(|E(P)|) time on processing this path, and on increasing the counters
n(e) of edges e € E(G). Since the counter of an edge may be increased at most 1 times, the total
running time of the algorithm is bounded by O(mn + mkdlogn). O

4 The Distanced Matching Game

All graphs discussed in this section are unweighted, so a distance between a pair x,y of vertices is
simply the smallest number of edges on any x-y path.

The goal of the Distanced Matching Game is to construct a well-connected graph, that we define next.

Definition 4.1 (Well-connected graph) Let G = (V, E) be a graph, let S(G) C V be a subset of
its vertices called supported vertices, and let n, D > 0 be parameters. We say that graph G is (n, D)-
well-connected with respect to the set S(G) of supported vertices if, for every pair A,B C S(G) of
disjoint equal-cardinality subsets of supported vertices, there is a collection P(A, B) of paths in graph
G, routing every vertex of A to a distinct vertex of B (that is, P(A, B) is a one-to-one routing of A
to B), such that the paths in P(A, B) cause congestion at most n, and the length of every path is at
most D.

Unlike the Cut-Matching Game, whose goal is to construct an expander graph, the goal of the Distanced
Matching Game is to construct a graph that is (1, D)-well-connected with respect to a set S(G) of
supported vertices; typically, for an n-vertex graph G, we will require that |S(G)| > n — nl=0,

n < nP© and D = 200/9 for a given parameter 0 < € < 1.

The main component of the Distanced Matching Game is a distancing, that is defined next. Distancings
play a role similar to that of cuts in the Cut-Matching Game.

Definition 4.2 (Distancing) Let G be an n-vertex graph, and let 0 < § < 1,d > 0 be parameters.
A (8, d)-distancing for G is a triple (A, B, E"), where A, B are disjoint subsets of V(G) of cardinality
at least n'=0 each, with |A| = |B|, and E' C E(G) is a subset of edges of cardinality at most |A|/16.
We require that diste\ g/ (A, B) > d.

While the notion of distancing, to the best of our knowledge, was never formally defined before, it
is a well-known and widely used fact that one can efficiently obtain a sparse cut in a graph from a
distancing. The following lemma, whose analogues have been widely used before, summarizes such an
algorithm. The proof uses standard ball-growing technique, and appears in Section A of Appendix.

Lemma 4.1 There is a deterministic algorithm, whose input consists of a connected graph G with
[V(G)| =n and |E(G)| =m, a parameter 0 < ¢ < 1/2, and a (0, d)-distancing (X,Y, E') in G, where
0 <6 < 1 is any parameter, d > (32logm)/p, and |E'| < ¢|X|/4. The algorithm computes a cut
(X", Y") in graph G, with X C X' and Y CY’, such that |Eq(X",Y")| < ¢ -min{|Eq(X")|,|Ec(Y")|}.
The running time of the algorithm is bounded by O(n + min{|E(X")|,|E(Y")|}).

We note that, if the maximum vertex degree in G is bounded by A, then |E(X')] < A-|X’|, and simi-
larly |[E(Y')| < A-|Y’|. Therefore, the algorithm guarantees that |[E(X’,Y")| < ¢-A-min {|X’],|Y|}.

29

A Distanced Matching Game receives as input an integral parameter n, and two other parameters
0<d<1andd>2%% The game is played between a distancing player and a matching player, in
iterations. Over the course of the game, a graph G is constructed. Initially, graph G contains a set V'
of n vertices and no edges. In every iteration, some edges are added to G.

The ith iteration is executed as follows. First, the distancing player either computes a (4, d)-distancing
(A;, B;, E!) in the current graph G, or returns “END”. If the distancing player returned “END”,
then the game terminates, and we say that the game lasted for (i — 1) iterations. Otherwise, the
matching player computes a (possibly partial) matching M; between vertices of A; and vertices of B;,
of cardinality at least |A4;|/8. We require that M; does not contain pairs (u,v) of vertices for which
edge (u,v) € E’. We note that M; is not a subset of edges of Gj; it is just a collection of pairs of
vertices from A; x B;, with every vertex of A; U B; appearing in at most one pair in M;. We add the
edges of M; to graph GG, completing iteration i, and proceed to the next iteration.

We note that, once the current graph G contains no (4, d)-distancing, the game must terminate. From
the above description, graph G remains a simple graph (that is, we never add parallel edges to it).

The main technical result of this section is the proof of Theorem 2.1, that bounds the number of
iterations in the Distanced Matching Game. We restate the theorem here for convenience.

Theorem 4.2 (Restatement of Theorem 2.1) Consider a Distanced Matching Game with param-

etersn > 0,0 < § < 1/4 and d, such that d > 2%° and n® > 21 log". Then the number of iterations
i the game is at most n®9.

We note that we do not currently know whether the bounds in this theorem are tight, and in particular
whether the requirement that d > 2%/9 is necessary. It would be interesting to establish whether a
similar theorem can be proved for values of d that have a lower dependence on 1/6.

We now turn to prove Theorem 4.2. We assume that the paramters n,d and d are fixed. We let V' be
a set of n vertices, over which the game is played.

Consider a Distanced Matching Game that lasts for z iterations. We can summarize the game via
a transcript T = ((Ay, By, EY), M, ..., (A, B, E.), M), where for 1 < ¢ < z, (A;,B;, E}) is the
distancing computed by the distancing player, and M; is the matching returned by the matching
player in iteration i. For all 1 < ¢ < z, we denote by G; the graph obtained after i iterations of the
game, so V(G;) =V and E(G;) = U, L My. We also let Gy be the graph with V(Gy) = V and
E(Gp) = 0.

Consider now any subset I C {1,...,z} of indices, and assume that I = {i1,i2,...,1,} with i1 <is <
- < 1g. Consider now the following sequence, that, intuitively corresponds to only executing the
iterations of the Distanced Matching Game whose indices lie in I:

((A“,B“,E”) My, (Aiy, Biy, B, Ml-q>.

Here for all 1 < j < ¢, E{; is defined to be E{j N (U;,_:ll Mij,).

We claim that T’ is a valid transcript of a Distanced Matching Game. In order to show this, for all
1 <5 <gq, let G;- be the graph obtained after j iterations of the game, that is, V(G;) =V, and
E(G)) = U;,:l M;,. We also let G, be the graph containing the set V' of vertices and no edges. It is
enough to show that, for all 1 < j < ¢, (AzJ,BzJ,EZ{;) is a valid (9, d)-distancing in graph G;fl. We
now prove that this is indeed the case.

Since (4;,,B;., E!) is a valid (9, d)-distancing in the graph G;, 1 obtained after (i; — 1) iterations of

159 159

30

the original Distanced Matching Game, it is enough to show that there is no path of length less than
d connecting a vertex of A;; to a vertex of B;, in graph G;JA \E;; . Assume for contradiction that

such a path P exists. Recall that G;j_l C Gy;-1, and that every edge e € E’ N E(G’) lies in EY'.
Therefore, path P also lies in graph G;, 1 \EZ(],, contradicting the fact that (A B; EZ) is a Vahd

159 159
(6, d)-distancing in graph G;, 1. We conclude that (AZ],BZ],EZ{;) is a valid (9, d)- dlstancmg in graph
G%_y, and T’ is a valid transcript of a Distanced Matching Game.

To summarize, we can select a subset of iterations from the transcript of the Distanced Matching Game,
and obtain a valid transcript of a Distanced Matching Game, induced by these iterations. We say that
the Distanced Matching Game associated with transcript T’ is defined by the set I of indices.

For the sake of the proof of Theorem 4.2, it would be convenient for us to assume that the cardinalities
of the matchings M; returned in every iteration of the Distanced Matching Game are roughly the same.
In order to do so, we partition the set I* = {1,..., 2z} of indices into at most r = [16dlogn| subsets,
as follows. Recall that for all 1 < i < 2, we are guaranteed that |M;| > |A4;|/8 > n'=9/8, and clearly
|M;| < n must hold. For all 1 <j <r, welet I; C I contain all indices i, for which 3> < [M;| < 57%.

Clearly, there must be an index j, such that |I;| > % = W From now on we Wlll focus on the
Distanced Matching Game that is defined by the set I; of indices, and we will bound the number of
iterations in this game, that we denote by 2’ > W For simplicity of notation, for all 1 < < 2/,
we denote the distancing associated with the ith iteration of the game by (A;, B;, E!) and the matching
associated with iteration ¢ by M;. As before, we denote by Gg the graph whose vertex set is V and
edge set is empty, and for 1 < i < 2/, we let G; be the graph obtained after i iterations of the game,

that is, V(G;) =V and E(G;) = My U---U M;. We also denote I = {1,...,2'} and G = G,

Let B* = UZ L Ef, and for all 1 <@ < 2/, let M] = M;\ E*. We also denote Hy = Gy, and for all
1<i<z, we let H; be a graph whose vertex set is V, and edge set is E(G;) \ E* = J,,_, M/,. We
also denote H = H,:,. The following observation is immediate from the definitions.

Observation 4.3 For all 1 < i < 2/, (A;, B;,0) is a (8, d)-distancing in graph H;; in other words,
there is no path of length less than d connecting A; to B; in H;.

Note that:

E(G)|

[E(H)| = B(@)\E* =) [Mi| =Y |E]| > (IM;] - |E]}) = (1)
i=1 i=1 =1

We have used the fact that, from the definition of the Distanced Matching Game, for all 4, |M;| > | A4;|/8,
while |E!| < |A4;|/16, so |E!| < |M;|/2 must hold.

We say that an iteration i € I is bad if |M]| < |M;|/16; otherwise, iteration i is good. We let I® C I
be the set of all indices i, such that the ith iteration is bad, and we let 19 = I \ I be the set of all
indices of good iterations. We use the following simple observation.

Observation 4.4 |I°| < 72//8.

Proof Denote @ = [, and assume for contradiction that 8 > 7/8. Recall that, for all i € I,

37 < |M;i| < 5% . Therefore:

31

[E(H)| =) M|+ Y |M|

ielt el
<5.z’z | M| +(1_5).z’.Z|M~|
>~ 16] 7
ielb iel9
, n , n
<pB-z 'W‘F(l—ﬁ)'z gy
_22'n BZ'n 15
2 278
BT
-2 27 8 8
64 2
2'n
o
On the other hand, from Equation 1:
z |M;| _ 2'n
1
LD P s
i=1
a contradiction. We conclude that 8 < 72'/8 holds. O
To summarize, so far we have shown that:
119] > Z > * 2)
~ 8 T 256dlogn’

In order to bound z, it is now enough to bound the number of good iterations in the game. In order
to do so, we partition the game into phases, each of which (except for, possibly, the last one), contains
exactly {n45] good iterations. It is now enough to prove the following claim.

Lemma 4.5 The number of phases is bounded by 2’326.

Indeed, assume that Lemma 4.5 holds. Then |/, < @ . [nAﬂ < @, and, from Equation 2, we get
that:

z < |19 - 2560 logn < 1024n% logn < n75,

since nd > 1024 log n.

In order to complete the proof of Theorem 4.2, it is now enough to prove Lemma 4.5, which we do
next. We denote the number of phases in the game by 2.

For every integer 1 < k < Z, we denote by H®) the graph H at the beginning of the kth phase. In
other words, if the last iteration of phase (k — 1) is 4, then H® = H;. We will define, for every phase
k, a collection C™*) of disjoint subgraphs of H®) that we refer to as clusters; we also refer to C*) as
a clustering of graph H® . For all integers 1 < s < [1/0], we let Cgk) C C) be the set of all clusters

C € ¢, with n(s~1% < |V(0)| < n®, and let Cék) C C®) be the set of all clusters C' containing a

32

single vertex. For 0 < s < [1/4], we say that a cluster C' € ¢ lies at level s of the clustering C\F).
If cluster C lies at level s of C%), then we say that every vertex of C lies at level s of C(F).

We will ensure that the following invariants hold for every integer 1 < k < z:

1.V =Uceew V(CO);

I2. forall 0 < s < [1/0],if C € Cgk) is a level-s cluster of C%), then for every pair z,y € V(C) of
vertices, distc(z,y) < 4° (and in particular disto(x,y) < d must hold, as d > 2%/9); and

I3. if C is a cluster of C*), and C” is a cluster of C**1) | then either V(C)NV(C") =0, or C C C".

Note that Invariant I3 ensures that, if C’ is a cluster of C**1)_ then either €’ is a cluster of C¥), or
C' is obtained by taking the union of several clusters of C(*), and possibly adding some edges to the
resulting graph. In particular, the level of any given vertex v € V may only grow from phase to phase.
Consider now some vertex v € V. If vertex v lies at level s of C**), and at level s’ > s of C(**1) | then
we say that vertex v was promoted by C*t1) or that it is promoted during phase k.

Initially, we let C(V) contain, for every vertex v € V, a separate cluster C (v), consisting of only vertex v
iteslf, so C(Y) = {C(v) | v € V}. Therefore, every vertex lies at level 0 of C(1). Clearly, as the algorithm
progresses, the level of a vertex may be at most [1/§]. The key in bounding the number of phases is
to show that the clusterings C*) can be constructed so that a large number of vertices are promoted
in every phase. Since every vertex may only be promoted at most [1/d] times, this will be sufficient
in order to bound the number of phases. In order to complete the proof of Lemma 4.5, it is enough to
prove the following claim.

Claim 4.6 Consider some integer k > 1, such that phase k is not the last phase, and assume that
we are given a clustering C*%) of graph ﬁ(k’), for which Invariants 11 and I2 hold. Then there is a
clustering C*Y of graph H*Y | for which Invariants I1 and I2 hold. Additionally, for every pair
C ec®, ¢ e c*tD) of clusters, either V(C)NV(C') =0 or C C C' hold. Lastly, the number of
vertices that are promoted in C*+Y) is at least n'=2%.

Note that Lemma 4.5 follows immediately from Claim 4.6. Since every vertex may be promoted at
most [1/6] times, and every phase promotes at least n'=2% vertices, the total number of phases must
be bounded by ”[1_/2? < @. We now prove Claim 4.6.

n

Proof of Claim 4.6. Let I, C I be the collection of indices 7 € I, such that iteration ¢ belongs to
phase k, and let I} = I, N I9 be the set of indices corresponding to good iterations of phase k. Recall
that |I]| = [n]. We will use the following simple observation.

Observation 4.7 Consider an iteration i € Iy, and the corresponding distancing (A;, B;, Ef). Then
for every cluster C € C¥), either A; NV (C) = 0, or B;NV(C) = 0. Moreover, if there is a pair
C,C" e C®) of clusters, such that some edge e € M/ connects a vertex of C' to a vertex of C', then for
every subsequent iteration i’ > i, either Ay N (V(C)UV(C")) =0, or By N (V(C)UV(C")) =0 must
hold.

Proof: We fix an index ¢ € Ij, and consider the corresponding distancing (A;, B;, Ef). From Obser-
vation 4.3, (A;, B;,0) is a (9, d)-distancing in graph H;. Therefore, if P is any path in H; connecting a
vertex of A; to a vertex of B;, then the length of P is at least d. Consider now some cluster C' € C(),
and assume that C' € cﬁ’“), for some 0 < s < [1/d]. Assume for contradiction that there is a pair

33

u,v € V(C) of vertices, with u € A; and v € B;. From Invariant 12, distc(u,v) < 45 < 41/ < ¢
(since d > 24/5). Since C C H®*) C H;, this is a contradiction.

Assume now that there is a pair C,C’ € C®) of clusters, such that some edge e € M] connects a
vertex of C to a vertex of C’. Using the same reasoning as above, and since edge e is added to graph
Hiy1, we get that, for every pair u € V(C),v € V(C") of vertices, disty,,, (u,v) < 14241/ < 4.
Therefore, for all i’ > i, disty,, (u,v) < d holds as well. Since, from Observation 4.3, (A, By, () is a
(0, d)-distancing in graph H;/, we conclude that at most one of the sets A;, By may contain a vertex
of V(C)u VvV (C). |

In the remainder of the proof of Claim 4.6, we consider good iterations ¢ € I;. For each such iteration
i, we will select a large enough subset M/ C M of edges, and integers 0 < ', s < [1/§], so that every
edge in M/ connects a vertex of Ugeetn V(C) to a vertex of U, oo V(C).

We then say that iteration i belongs to class (s, s’). Since the number of possible classes is small, we
can find a class (s,s’) to which many iterations of I; belong. Assume w.l.o.g. that s > 5. We will
then use the iterations of I; from class (s,s’) in order to identify a large number of level-s clusters
that can be merged together, so that, on the one hand, Invariants I1 and I2 continue to hold, while,
on the other hand, a large number of vertices are promoted. The remainder of the proof of Claim 4.6
consists of three steps. In the first step, we define a subset M/ C M/ of edges for each iteration i € I,
and classify the iteration into some class (s,s’). Then in the second step we define a new contracted

graph J, representing the clusters of Cgk) U ng), where (s,s’) is the most common class among the

iterations of I;. Graph J is then used in Step 3 in order to define the new clustering Cc*+1) | We now
present each of the three steps in turn.

Step 1: Iteration Classification. Consider an iteration ¢ € I;. Since iteration ¢ is good, |M/| >
“Yg' > |1A2¢8\ > ”112;6. Consider now an edge e = (u,v) € M/, with u € A;,v € B;. From Invariant I1,
there must be clusters C,C’ € C*) with u € V(C) and v € V(C"). Moreover, from Observation 4.7,
C # C' must hold. We say that edge e is of type (s,s’), for a pair 0 < 5,5 < [1/§] of indices, if

u € Cgk) and v € ¢ note that it is possible that s = s’. Clearly, there is a pair 0 < s,s" < [1/4]

. 0| oo
[1/612 = 512
on we fix this pair of indices, and we denote by M/ C M/ the set of all edges of type (s,s’) in M/, so

of indices, such that the number of edges of type (s,s’) in M/ is at least . From now

M| > ”1;162'52. We say that iteration i is an iteration of type (s,s’).
Note that there must be an ordered pair (s, s’) of indices, with 0 < s,s' < [1/4], such the number of

good iterations in I; that are of type (s,s’) is at least: % > % . [n‘w] From now on we fix

this pair (s, s”) of indices, and we denote by I}/ C I} the set of all good iterations i from phase & that
are of type (s,s’), so |I}/| > % - [n19]. We assume w.lo.g. that s > .

Step 2: Contracted Graph. In this step we construct a weighted contracted graph J, as follows.
For every cluster C € Cgk) U Cgc), we add a vertex v(C) to graph J; we refer to vertices of J as
supernodes, to distinguish them from vertices of V. The set of edges of J is the union of the sets
{E;|ieI} of edges that we define below. We refer to the edges of J as meta-edges. For every

iteration i € I}/, every meta-edge é € E; represents some collection S(€) C M/ of edges.

Consider some iteration ¢ € I;/. For every pair C € Cgk), C' e CSC) of clusters, such that at least one

edge of M/ connects a vertex of C to a vertex of C’, we add a meta-edge é = (v(C),v(C")) to E;.
We let S(é) be the set of all edges of M/" that connect vertices of C' to vertices of C’, and we set the
weight of the meta-edge é to be w(é) = |S(€)|]. We note that, since M/ is a matching of cardinality at

34

—4.52

least "15%, we get that) ..p w(e) > n157152,52' Moreover, for every cluster C' € ey Cgc), the total

weight of all meta-edges of E; incident to C' is at most |V (C)].

Consider a pair ¢,7" € I} of indices with ¢ < . Note that, if a meta-edge (v(C),v(C")) belongs to
E;, then, from Observation 4.7, meta-edge (v(C'),v(C”)) may not lie in Ey. We set E(J) = Uz‘el,;’ E;.
From the above discussion, graph J contains no parallel edges. For every supernode v(C) € V(J),
the total weight of all meta-edges incident to v(C) is bounded by [V(C)|- |I}/|. The total weight of all

meta-edges in graph J is at least %62'52 |

Step 3: Constructing the Clustering C**1. In order to construct clustering C*+1) we start

with C*t1) = ¢(®) and then iteratively merge some clusters of C***1). In every iteration, we consider
the graph J. Assume that there is a cluster C' € ng), such that supernode v(C”) has at least n’
neighbor vertices in graph J. We denote the neighbor vertices of v(C’) by v(C1),...,v(Cy). Note that

foralll <a<gq, C, € Cs(,k) must hold. We delete clusters C’,C1, ..., C, from C+1) and instead
add a single cluster C*, whose vertex set is V(C") UV (Cy) U---UV(Cy), and edge set is the union
of E(C")U E(Cy)U---U E(C,) with the set JZ_, S(v(C"),v(C,)) of edges. Note that C* € H*+1)
holds. We then delete vertices v(C"),v(C1),...,v(Cy) from graph J.

Observe that, for every vertex x € V(C*), the level of z in C*) was either s or s < s, and, since
[V (C*)| > s-n9, the level of z in C**Y is at least s+ 1. Therefore, every vertex in V(C*) is promoted
in the current phase. We use the following simple observation, that will allow us to establish Invariant
12.

Observation 4.8 For every pair x,y € V(C*) of vertices, distc~(,y) < 45FL,

Proof: If both z and y belong to a single cluster of {C’, C1,...,C,}, then, since Invariant 12 held for
C®). and since each such cluster is contained in C*, distc- (x,y) < 4° must hold. Assume now that z
and y belong to different clusters. We assume w.l.o.g. that = € V(C}) and y € V(C2); the other cases
are treated similarly.

From the definition of cluster C*, meta-edges é; = (v(C"),v(C1)), é2 = (v(C"),v(C2)) lie in J. Consider
any real edge e; € S(é1) and ez € S(é3). Both edges must lie in H**1 and in C*. We denote
e1 = (x1,11) with 1 € V(C1), and ey = (22, y2) with yo € V(C2). In particular, y1,22 € V(C’) must
hold. From Invariant 12, there is a path P; of length at most 4° connecting x to x; in C7; a path P’
of length at most 45" < 45 connecting y; to xo in C’; and a path P of length at most 4° connecting
y2 to y in Cy. By combining these three paths with edges e; and ey, we obtain a path in cluster C*,

connecting = to y, whose length is at most 3 - 4% + 1 < 45!, Therefore, disto«(x,y) < 45+, O

The algorithm terminates once, every supernode v(C") of J with C’ € Cgc), the number of meta-edges
incident to v(C") in the current graph J is less than nf.
From the above discussion, once the algorithm terminates, Invariant 12 holds for the final clustering
C+1) as every newly added cluster to C-+1) belongs to level at least (s + 1). It is immediate to
verify that Invariant I1 holds for the final set C*T1) of clusters. It now only remains to prove that

sufficiently many vertices are promoted in the current iteration.

Consider the graph J that is obtained at the end of the algorithm. In this graph, for every cluster
C e CSC), its corresponding supernode v(C"') has fewer than n’ meta-edges incident to v(C”). Since,
for every meta-edge é € FE(J) that is incident to a supernode v(C), w(é) < |V(C)| must hold, we get

that the total weight of all edges remaining in graph J at the end of the algorithm is bounded by:

35

SV n® <t
crec™®

Recall that the total weight of all meta-edges of J at the beginning of the algorithm was at least:

nl=9o. 52 nl+36 . 54

" 1+6

since |I}/| > %- [n49] and n® > 214/5%.

Therefore, the total weight of the meta-edges that remain at the end of the algorithm in J is less than
half the original total weight. In other words, the total weight of all meta-edges that were deleted

from J is at least "116;'452 - |I}/|. Each of the deleted meta-edges is incident to some supernode v(C),

with C € C's(k) that was deleted from J. Recall that every vertex of such a cluster C is promoted in
the current phase.

Consider now some supernode v(C') that was deleted from J in the current phase. The total weight
of all meta-edges incident to v(C') in the original graph J was at most |V(C)| - |I}|, and each of the
vertices of C' was promoted in phase k. Therefore, if we denote by U is the set of all vertices of V
that were promoted in phase k, then the total weight of all meta-edges that were deleted from J is at
most |U| - |I}/|. Since, as shown above, the total weight of all such edges is at least 4% |1}/, and

1024
. 1-6.52 _
since we have assumed that n® > 214 /52 we get that |U| > ”10245 > pl=29, 0

This concludes the proof of Theorem 4.2. We obtain the following immediate corollary of the theorem.

Corollary 4.9 Consider a Distanced Matching Game with parameters n > 0,0 < 6 < 1/4 and d,

such that d > 249, nd > 2141#. Let G be the graph that is obtained at the end of the game. Then

&
|E(G)| < n'*8 holds, and every vertex of G has degree at most n®.

The corollary follows from the fact that the set F(G) of edges is partitioned into at most n® matchings
— the responses of the matching player in the game.

5 Hierarchical Support Structure

A Hierarchical Support Structure uses two parameters, an integer N > 0, and another parameter
0 < e < 1/4. Throughout, we denote ¢ = ¢*. For an integer j > 1, we also let n; = N6+256i¢* and
d; = 2ci/ 64, where c is a sufficiently large constant.

For all 1 < j < [1/€], we define a level-j Hierarchical Support Structure for a graph containing N7
vertices. The definition of the support structure is recursive.

Level-1 Hierarchical Support Structure. Given a graph H with |V (H)| = N, level-1 Hierarchical
Support Structure for H consists of a subset S(H) of vertices of H, such that [V (H)\ S(H)| < N1=¢".

Level-j Hierarchical Support Structure. Consider now some integer 1 < j < [1/e]|. Let H
be a graph with |V (H)| = N7. A level-j Hierarchical Support Structure for graph H consists of the
following:

36

a collection H = {Hy,...,H,} of r = N — {2]\71_54—‘ graphs, such that all vertices in sets
V(H,),V(Hsg),...,V(H,) are mutually disjoint, and additionally, for all 1 < i < r: V(H;) C
V(H); |V(H)]—NJ L and |E(H;)| < N7=1+32¢ pold;

an embedding of the graph H' = J;_, H; into graph H via paths of length at most 264/64’ that
causes congestion at most NV 12852;

for all 1 <1 <r, alevel-(j — 1) Hierarchical Support Structure for graph H;; and

a set S(H) C V(H) of vertices, where S(H) = Uy, <y S(H;), and, for all H; € H, S(H;) is the
set of vertices that is given as part of the level-(j — 1) Hierarchical Support Structure for H;.

Additionally, we require every graph H; € H is (77];1,d‘jfl)—well—connected with respect to the set
S(H;) of vertices. We say that H is the set of graphs associated with the level-j Hierarchical Support
Structure for graph H.

This completes the definition of a Hierarchical Support Structure. We will need to use the following
simple claim.

Claim 5.1 Let 1 < j < [1/€] be an integer, and let H be a graph with |V(H)| = N7, together with a

level-j Hierarchical Support Structure. Then |V (H)\ S(H)| < |V(H)]- 1354.

Proof: The proof is by induction on j. When j = 1, then |V(H)| = N, and, from the definition of

level-1 Hierarchical Support Structure, |V (H)\ S(H)| < N1=<' = |V Dl < |V (H)| -]3{4.

Consider now some integer j > 1, and assume that the claim holds for j—1. Let H be a graph with
|\V(H)| = N, for which a level-j Hierarchical Support Structure is given, and let H be the collection
of graphs associated with the structure. Let Vi = Up.cq V(H;) and Vo = V(H) \ V4. From the

definition of level-j Hierarchical Support Structure, |H| = N — [2]\7 l_ﬁﬂ > N — 4N, Therefore,

> NI — 4NJ < ANT _ AV(H)_
Vi| > N ,and V5 < NI Nl

Let V| = UHZEH S(H;) and V" =V \ V/. Clearly, V(H)\ S(H) = V" U Va. We now bound |V/’].

Since, for every graph H; € H, by the induction hypothesis, |V (H;) \ S(H;)| < |[V(H;)]| - (sze D
4(j—1)-NI— AG=1)-N’ _ AG=1)|V(H)|

Net Net T Net)
Altogether, we get that:

, and since |H| < N, we get that |V]'| <

4 —1)-[V(H)| n AV(H)| _ 4j-|V(H)|
Ne* Ne* Ne*

V(H)\ SH)| = V]| + V| <
O

The following theorem provides an algorithm for the Distancing Player in the Distanced Matching
game.

Theorem 5.2 There is a large enough constant c, and a deterministic algorithm, whose input consists
of a parameter 0 < € < 1/4, a pair N, 1 < j < [1/€] of integers, and a graph H with |V(H)| = N7,

4
such that N s sufficiently large, so that gﬁ > 2128/€° holds. The algorithm computes one of the
following:

e cither a (0;,d)-distancing (A, B, E') in graph H, where §; = 4j¢, d = 232/ gnd |E'| < NA4

37

e a level-j Hierarchical Support Structure for H, such that graph H is (n;,d;)-well-connected with

respect to the set S(H) of vertices defined by the support structure, where n; = N6+2565€* gnd
dj =269/,

The running time of the algorithm is bounded by:

cj - Nj(1+6452)+7 + C’E(H)| . NS

We prove Theorem 5.2 in Section 6. Note that Theorem 2.2 follows from the theorem directly, by
setting j = 1/e.

The following immediate corollary of the theorem can be used in order to either embed a large graph
H into an input graph G, and construct a Hierarchical Support Structure for H, so that graph H is
well-connected with respect to the resulting set S(H) of vertices given by the Hierarchical Support
Structure; or to compute a distancing in graph G. The latter can in turn be used in order to compute
a sparse cut in G, via Lemma 4.1. We state the corollary in a slightly more general form that will be
helpful for us later: we assume that, together with graph G, we are given a subset T of its vertices
called terminals, and that we are interested in embedding a large graph H into G with V(H) C T.

Corollary 5.3 There is a deterministic algorithm, whose input consists of an n-vertex graph G, a set

T of k vertices of G called terminals, and parameters W <e< ﬁ, d>1andn > 1, such that

1/e is an integer. The algorithm computes one of the following:
e cither a pair Ty, T> C T of disjoint subsets of terminals, and a set E' of edges of G, such that:

k.174e3

— |Th| = [Ix| and |T1| > *—5—;

— B < d'|nTl|;. and

— for every pair t € Ty, t" € Ty of terminals, distgy g (¢, 1) > d;

e or a graph H with V(H) C T, |V(H)| = NY¢ > k — k'=</2, where N = |k|, and mazimum
vertex degree at most k:3263, together with an embedding P of H into G via paths of length at
most d that cause congestion at most 7 - k32€3, and a level-(1/€) Hierarchical Support Structure
for H, such that H is (n/,d)-well-connected with respect to the set S(H) of vertices defined by
the support structure, where ' = N6+256¢ qnd d = 20/55, with ¢ being the constant used in the
definition of the Hierarchical Support Structure.

The running time of the algorithm is O (kH'O(e) +|E(G)| - kO . (n + dlog n))

Proof: Let g =1/¢,let N = |k€|, and let T/ C T be any subset of N9 terminals. Observe that:

1 1/e 1 El—e
Nq:LkeJl/ez(k;E_l)l/é:k.<1_k;€> zkj.(l_k)Zk_ 2]{3—]{:1_6/2 (3)

€.€ €

(we have used the fact that for all0 < 6 <1l and a > 2, (1 —-6)*>1—da).

We will attempt to construct a graph H with V(H) = T", together with an embedding P of H into
G with congestion at most 7 - k32¢° and path lengths at most d, and a level-g Hierarchical Support

Structure for H, such that H is (1, d)-well-connected with respect to the set S(H) of vertices defined

38

by the support structure. If we fail to construct such a graph H, we will compute the sets 11,7, C T
of terminals and the set E' C E(G) of edges as required.

We will employ the distanced-matching game on graph H with parameters n = |T'|, § = 4¢3, and
distance parameter d’ = 232/¢!

We will use the algorithm from Theorem 5.2 for the distancing player, with parameter j = ¢, and
parameters N and € remaining unchanged. In order to be able to use the algorithm, we need to verify

54
that lé\iﬁ > 2128/€° [olds. Recall that, from the conditions of Corollary 5.3, W <e< ﬁ.
Therefore, logk > (2/¢)'? and k > 2(2/e)"% Moreover, from the above calculations, ; Og)f%l; 5> 6% holds,

and so k¢ > log k must hold. Altogether, we get that:

4 5

NE kE 6 5
> > kS > 2128/ 4
logN = 2-logk — - (4)

We will bound the number of iterations of the Distanced Matching game via Theorem 4.2. In order

Th 4.2 d ify that —1_ > 2! valently: 1 > 2% Recall

to use eorem 4.2, we need to verily that Tog((T]) = sz OF, equiva ently: Tog((T) = - Reca
T 4¢3 3 462 et 5 10 . .

that |7”| = N = N/¢, and so log(‘|T’|) = elé\éN > 1<]>VgN > 2128/¢% > 26—6 from Equation 4, and since

e < 1/400. We also need to verify that d’' > 24/ Since d' = 232/¢" and § = 4¢3, this is immediate
to verify. From Theorem 4.2, we can now conclude that the number of iterations in a Distanced

Matching game with parameters n = |T”|, § = 4¢3, and distance parameter d’ = 232/¢" is bounded by
T80 < E32€%

We start with a graph H whose vertex set is V(H) = T”, and edge set is E(H) = (), and then iterate.
In each iteration i, we will add some set E; of edges to graph H, and we will define an embedding
P(e) for every edge e € E;. We now describe the execution of a single iteration.

Execution of Iteration ;.

We apply the algorithm from Theorem 5.2 to the current graph H, with parameter j = ¢, and
parameters N, e remaining unchanged. Note that |[V(H)| = |T’| = N, and, as we have established

64
above, lo]\iﬁ > 2128/¢® Y0]ds.

We now consider two cases. The first case is when the algorithm from Theorem 5.2 returns a (4,4, d’)-
distancing (X;,Y;, EY) in graph H, where &, = 4j¢’ = 4qe* = 4¢3 = § (since ¢ = 1/¢), and d’ = 232/¢*
In this case, we say that iteration ¢ is regular. We view this distancing as the response of the distancing
player in iteration ¢ of the Distanced Matching game that we play on graph H.

We then apply Procedure ProcPathPeel from Lemma 3.12 to graph G and sets A; = X;,B; = Y; of
its vertices, together with parameters d and 7 from the statement of Corollary 5.3. Let Q; denote
the collection of paths that the algorithm returns. Recall that every path in Q1 connects some vertex
of X; to a vertex of Y;, and that every vertex of X; UY; may serve as an endpoint of at most one
such path. We let M; C X; x Y; be the matching that is defined by the paths in Q;: a pair (z,y) of
vertices with x € X,y € Y; is added to M; iff some path Q(z,y) € Q; has endpoints z,y. We again
consider two cases. The first case happens if |M;| > |X;|/2. In this case, we say that iteration ¢ is
successful. We obtain a collection E; C M; of edges as follows: we start with F; = M;, and we delete
from E; all pairs (x,y) of vertices where edge (x,y) lies in E/. Since, from the definition of distancing,
|El| < |X;]/16, we get that |E;| > |X;|/4. We let P; = {Q(z,y) | (z,y) € E;} be the collection of
paths that route the pairs of vertices in E;. We add the edges of F; to graph H, and we view E; as

39

the response of the matching player in iteration ¢. We also view the set P; of paths in graph H as an
embedding of the set E; of edges. Recall that each path in P; has length at most d, and the paths in
‘P; cause congestion at most 7. We then continue to the next iteration.

The second case happens if |M;| < |X;|/2. In this case we say that iteration ¢ is unsuccessful. Let E’
be the set of all edges e in graph G that participate in exactly n paths in Q1. Let X’ C X; and Y’ C Y’
be the sets of vertices that do not serve as endpoints of the paths in Q7. Recall that Lemma 3.12
guarantees (via Property P3) that the length of the shortest path connecting a vertex of X’ to a vertex
of Y/ in G\ E’ is greater than d.

—463

kL0 17— Since every path in Q; has length at most

7}
< d-|X’|. Since set E’ contains edges that participate in 7

Recall that [X'| = [v7| > X > T > k!

d, we get that > oo, [E(Q)] < d
<

paths in Qq, we get that: |E’| d";(,

\%

v

2
Xl

— N

. We return the set E’ of edges and the sets T = X', T, =Y’

— 63 . .
of terminals. From the above discussion, |T1| = |T»|, |T1| > %, and |E'| < @ hold as required.
Moreover, for every pair ¢ € T1,t € Ty of terminals, distq\ g (t,t") > d.

It remains to consider the second case, when the algorithm from Theorem 5.2 constructs a level-q
Hierarchical Support Structure for H, such that graph H is (14, dq)-well-connected with respect to the
set S(H) of vertices defined by the support structure, where d, = 9ca/e! = 9¢/€ — d, and:

Mg = NO6+256g¢* _ pnr6+256¢ _ .

In this case, we say that iteration i is irregular. Recall that |V(H)| = |T'| = N7 > k — k'=</?
from Inequality 3. As observed already, the number of iterations in the Distanced Matching game is
bounded by k32€3, and so the maximum vertex degree in H is bounded by k:3263, and the number of
edges in graph H is bounded by f1+32¢° throughout the algorithm. If we denote by z < k32¢ the
number of iterations in the Distanced Matching game, then for all 1 < ¢ < z, we have constructed a
set P; of paths in graph H embedding the edges of F;. The paths in P; have length at most d each,
and they cause congestion at most 7 in G. By letting P = (J;_; P;, we obtain an embedding of graph

H into G via paths of length at most d, that cause congestion at most -2z < 7 - k32¢° . We output
graph H, its embedding P, and the level-q Hierarchical Support Structure for H.

This completes the description of a single iteration. It now remains to bound the running time of the
algorithm.

Running Time Analysis

Recall that, throughout the algorithm, |[E(H)| < k'*32¢ holds, and that the number of regular
successful iterations in the algorithm is at most |32€° Additionally, there could be at most one
irregular iteration, and at most one regular but unsuccessful iteration.

We now bound the running time of a single iteration. This running time is dominated by the running
times of the algorithms from Theorem 5.2 and Lemma 3.12.

The former is bounded by:

O(q- Na(H642)+7 | \E(H)|- N%) <O (kl-i-O(e) I RES .k0(6)> <0 <k1+0(e)) .

The latter is bounded by: O(|E(G)|(n + dlogn)).
The total running time of the algorithm is then bounded by:

40

0 (K09 4 |B(@) KO- (n + dlogn))

6 Algorithm for the Distancing Player — Proof of Theorem 5.2

This section is dedicated to proving Theorem 5.2. Throughout the proof we use the following three
parameters: € = ¢*; A = 64/€; and d’ = 2d - A. Note that:

1284 128 -2%%/¢

d =2Ad = i

/

1
S 264/64 < Z . 20/64’ (5)

€ €

since c is large enough.

The proof is by induction on j. We start with the base case, where j = 1.

Base Case: j =1

We assume that we are given a graph H on N vertices. Our goal is to either compute a (41, d)-distancing
in graph H, or to construct a set S(H) C V(H) of vertices, such that [V(H)\ S(H)| < N and
graph H is (m,d;)-well-connected with respect to S(H).

We apply Algorithm ProcSeparate from Lemma 3.10 to graph H, with the set 7' = V(H) of terminal

vertices, with distance parameters d and A remaining the same, and parameter o = 1 — Nla-

Assume first that the outcome of the algorithm is a pair 77,7» C V(H) of subsets of vertices, with
|T1| = |T3|, such that for every pair ¢t € Ty, t' € Ty of vertices, disty(¢,t') > d, and additionally:

1 :
|Ty| > N'=04/A . min {(1 —a), 3} > N1

(recall that A = 64/¢’ and N¢ > 3). In this case, since §; = 4¢/, we obtain a (1, d)-distancing
(T1,T,0) in graph H. We return this distancing as the outcome of the algorithm.

Otherwise, Procedure ProcSeparate must return a vertex v € V(H), with |Bg(v,A-d)| > a- N =
N - <1 -) In this case, we set S(H) = Bp(v,A - d), and we report that graph H is (11, d;)-

N
well-connected with respect to S(H). We also return S(H) as level-1 Hierarchical Support Structure
for H. Note that |[V(H)\ S(H)| < N*=¢ = N'=<" as required. It remains to show that graph H is
indeed (11, dy)-well-connected with respect to S(H). Recall that 71 > N and d’ < d; from Inequality
5, since dq = 2¢/ < Let A, B C S(H) be any pair of equal-cardinality subsets of vertices. We define
an arbitrary perfect matching M C A x B between vertices of A and vertices of B. Consider now
any pair (a,b) € M of matched vertices. Since a,b € By (v, A - d), there is a path P(a,b) connecting
a to bin H of length at most 2A - d = d’ < d;. We then let P(A4, B) = {P(a,b) | (a,b) € M} be the
resulting collection of paths, that routes every vertex of A to a distinct vertex of B. The length of
every path in P(A, B) is at most czl, and the congestion caused by the paths in P(A, B) is at most
P(A, B) < [V(H)| < N < 1.

The running time of the algorithm is dominated by the running time of Procedure ProcSeparate,
which is bounded by O(|E(H)| - N%/2) < O(|E(H)|- N¢) < ¢|E(H)| - NS, if ¢ is large enough, since
A =64/¢.

41

Step: 1 <j<h

We now assume that we are given some integer 1 < j < [1/€], such that the statement of Theorem 5.2
holds for j — 1, and we prove the statement of the theorem for j. Recall that we are given as input a
graph H with |V(H)| = NJ.

We partition the set V (H) of vertices into N subsets Vi, ..., Vi, each of which contains exactly N7~}
vertices. The algorithm consists of two phases. In the first phase, we run the Distanced Matching
Game in parallel on N graphs Hy,..., Hy, where for all 1 <i < N, V(H;) = V;. We will add edges to
graphs Hi, ..., Hy gradually via the Distanced Matching Game, while computing an embedding of all
resulting edges into graph H, so that the resulting embedding paths have sufficiently low length and
cause sufficiently low congestion. In this phase, we will either compute the required (¢;, d)-distancing
in H, or we will be able to successfully complete the Distanced Matching Game on a sufficiently large
collection H' C {Hq,...,Hy} of the graphs. In the latter case, for each such graph H; € H’', we will
also compute a level-(j — 1) Hierarchical Support Structure for H;. If the outcome of the first phase
is a (9, d)-distancing for H, then we terminate the algorithm and return this distancing. Otherwise,
we continue to the second phase. In the second phase we will exploit the graphs in H’ to either
compute a (d;,d)-distancing in graph H, or to compute a subset H” C H’ of r graphs, so that, if we
let S(H) = Upg,eqqr S(Hi), then graph H is (8;,d;)-well-connected with respect to the set S(H) of
vertices. We now describe each of the two phases in turn.

6.1 Phase 1: Construction of Smaller Well-Connected Graphs

In this phase, we gradually construct a collection H = {Hq,...,Hy} of graphs, over the course of
at most N64¢ iterations, by running the Distanced Matching Game over these graphs in parallel with
parameters § = ;1 and d = 232/¢"Tnitially, for all 1 < i < N, we let V(H;) = V; and E(H;) = 0.
In every iteration 1 < ¢ < N, we will compute, for all 1 < i < N, a partial matching E over the
vertices of V;. We will ensure that either EY =), or |EJ| > NU~D0=%-1) /8 The edges of E! are
then added to graph H;. Additionally, in the gth iteration, we will compute an embedding P? of all
edges in Uf\; 1 B into H. We now describe a single iteration g.

6.1.1 Description of Iteration ¢

Using the induction hypothesis, we apply the algorithm from Theorem 5.2 to each of the graphs
H; € H, with parameter (j — 1). We denote by H' C H the collection of all graphs H;, for which the
algorithm returned a (d;_1, d)-distancing in H;, and we denote by H? = # \ H! all remaining graphs.
Recall that, for each graph H; € H?, the algorithm computes a level-(j — 1) Hierarchical Support
Structure. We now consider two cases, depending on whether |H!| > N 1-¢

Case 1: |[H!|> N 1=€' " If this case happens, then we say that iteration ¢ is regular. Recall that, for
every graph H; € H', the algorithm from Theorem 5.2 returned a (J;_1,d)- distancing (4;, By, E}),

where [A;| = |Bi| > |V (H;)|'~%-1 = NG-D0=%-1) and B < 4],

Let 2/ = [2107?;]\[1 We further partition the collection H' of graphs into subsets Hé, . 7—[2,, where

for all 0 < z < 2/, class H! contains all graphs H; € ", for which & 2z+1 <A < 2 ' holds. Clearly,
there must be an index 0 < z < 2/, such that:

42

/

> ’/’L[l|'€>‘Nl_E '€>N1—26

1
[l 2 4logN = 4logN — ’ (6)

(since % > 2128/€° from the statement of Theorem 5.2).

From now on we fix this index z. Since, for all H; € H!, |A;| > NG-DA=0-1) > NI=i0i-1-1 we get
that:

2% < NI%-1, (7)

For convenience, we denote by I C {1,..., N} the set of all indices i with H; € H!. Next, we apply
Algorithm ProcPathPeel from Lemma 3.12, to graph H, collections of subsets {(A;, B;)},c; of its

vertices, length parameter d’, and congestion parameter n = N 8¢ Consider the resulting collections
{P? }ie ; of paths. Recall that, from Lemma 3.12, for all 7 € I, every path in the corresponding set P!
has length at most d’, and it connects a vertex of A; to a vertex of B;, so that the endpoints of all
paths in P; are distinct. Therefore, we can use the paths in P! in order to define a partial matching
M between vertices of A; and vertices of B;: a pair (a,b) € A; x B; of vertices is added to M} iff
some path of P! has endpoints a,b. We denote by A, C A; and B} C B; the subsets of vertices of 4;
and B; respectively, that do not serve as endpoints of the paths in P/. Let E* C E(H) be the set of
all edges e that participate in exactly 1 paths of (J;c; PI. Recall that Lemma 3.12 further guarantees
that the paths of (J;.; PI cause congestion at most 1 in H. Moreover, if we consider graph H \ E*,
then for all ¢ € I, the length of a shortest path connecting a vertex of A} to a vertex of B] is greater
than d'.

Running time of Algorithm ProcPathPeel is O(|E(H)| - (n + jNd'log N)) < O(|E(H)| - (N® +
jNd'log N)) < O(|E(H)| - jNd'log N), since |H| = N.

We say that a graph H; € H! is successful if [P}| > |A;|/4, and it is unsuccessful otherwise. We let
Ggs C Hi be the collection of all successful graphs, and G“ = ’Hi \ G* the collection of all unsuccessful
graphs. For convenience, we also partition the collection I of indices into a set I° containing all indices
i € I where H; € G¥ and I* = I\ I*. We consider again two cases, depending on whether |G¥| > |H1|/2.

Case la: |G®| > |Hl|/2. If Case la happens then we say that iteration q is successful. Consider
some index i € I°. Recall that the matching M that we have defined contains at least |A;]/4 pairs of
vertices (that we refer to as edges), while |Ef| < |A4;]/16 by the definition of distancing. We discard
from M all edges that lie in E; note that |M]| > |A;|/8 continues to hold. We add the edges of the
resulting matching M to graph H;, and we say that graph H; received a matching in iteration g. We
view this matching as the response of the matching player in the Distanced Matching Game. We let
P? = J;ers P{. Notice that the paths in P9 can be viewed as an embedding of the set (J;c s M of
edges into graph H. The length of each path is at most d’, and the congestion of the embedding is
at most n. Observe that, if an iteration is successful, then the number of graphs in H that receive
matchings is at least |G*] > [#1]/2 > N'=2¢/2 (from Equation 6). We terminate the current iteration,
and proceed to the next iteration.

Case 1b: |G*| < |H!|/2. If Case 1b happens, then we say that the current iteration is unsuccessful.
In this case, we will construct a (d;, d)-distancing (A, B, E*) in graph H, where E* is the set of edges
that we have defined above. We will ensure that |[E*| < |A|/N7€". The current iteration then becomes
the last iteration of the algorithm, and we return (A, B, E*) as its output. We need the following
simple observation bounding |E*|:

43

Observation 6.1 |E*| <]\7722[/
Proof: Note that for every graph H; € Hl, |P¥| < |A;| < N’~" Since the length of each such path is
at most d’, the total number of edges on all paths in | J;c; Pf < d'- |11 Néj < Né;d, (as |HL < N).
Since set E* only contains edges that lie on 1 path of P4, the observation follows. 0

Recall that, if H; € G¥, then |A}| > 4

2” >];[;;1. Recall also that | Bj| = |Aj|, and dist g\ g+ (A3, B) > d'.

We denote T' = |J,;cu (A} U Bj), and we call the vertices of T' terminals. Since we have assumed that
1G%| < |H1|/2, we get that:

Ni-1 - ‘Hl‘ . Ni-1 Nj—2e’

T > 16" - 9z+1 = 92+2 = 9242 (8)

(we have used Equation 6.)
We need the following simple observation.

Observation 6.2 For every terminal t € T, at most |T|/2 terminals may lie in By p«(t,d'/2).

Proof: Consider any terminal ¢ € T, and denote B = By g+(t,d’/2). Recall that for all Hy € G,
dist g\ g (A}, Bj,) > d’. Therefore, B may not contain a vertex of A/, and a vertex of B},. We conclude
that, for every terminal t € T, |[B'NT| < |T|/2. m
We apply Algorithm ProcSeparate from Lemma 3.10 to graph G = H \ E*, the set T of terminals,
distance parameters d and A that remain unchanged, and o = 1/2. The running time of the algorithm

is O(|E(H)| - |V (H)|*2) < O(|E(H)| - N79).

From Observation 6.2, the algorithm may not return a terminal ¢ € T with [Bg\ g« (t,A-d) N T| =
|Br\g=(t,d'/2) N T| > « - |T|. Therefore, it must compute two subsets 71,75 of terminals, with
|T1| = |T»], such that for every pair ¢ € T1,t" € Ty of terminals, disty\ g- (¢, ') > d. Moreover:

|T‘1—64/A . |T’1_E/ - N(j—?e’)(l—e’) Nj—?je’

T3] = 3 =3 = 3.9(:+2)(1-¢) = 9z+4

(we have used the fact that A = 64/¢’, and Equation 8).

Recall that, from Observation 6.1, |E*| < jsz‘f Recall also that n = Nsé”, Jj < [1/e], and d' <

264/* <N from Inequality 5, and since % > 2128/¢” from the statement of Theorem 5.2. Therefore,
we get that:

NI NN 1 Ni 1 N1 T
<

B < 9z N8 = 22+4 " 6e3 < 92+4 " N3ekT1/e] < 9244 " N3G = Ni€”

Lastly, recall that we have shown in Inequality 7, that 2% < N7%-1. Therefore, we get that:

NI N7 NI A
— Ni(1=6;)
T 2 T e5aers,) 2 TeNiaG-DeT2d) = Nie) "

We conclude that (1, Ta, E*) is a (0}, d)-distancing, with |E*| < |T1|/N7¢ as required. We return this
distancing and terminate the algorithm.

44

Case 2: |H!| < N 1=¢' " If this case happens, then we say that the current iteration is irregular.
In this case, we terminate Phase 1. The outcome of the phase is the collection H2 C H of at least
N — N'=¢ graphs. Recall that, for each graph H; € H2, we computed a level-(j — 1) Hierarchical
Support Structure, that includes a subset S(H;) C V(H;) of vertices, such that H; is (1,1, d;—1)-
well-connected with respect to S(H;). Let H = 1,2 Hi- Notice that the sets P7 of paths that are
computed in each iteration provide an embedding of graph H’ into H. The length of each resulting
path is bounded by d’. We use the following observation in order to both bound the congestion of this
embedding, and the running time of the algorithm.

Observation 6.3 At the end of Phase 1, for each graph H; € H, |E(H;)| < NI=132¢ - The number
of iterations in Phase 1 is at most NG4e?,

Proof: Recall first that 6, 1 = 4(j — 1)¢ > 4€*, while d = 23%/<". Therefore, d > 24/%-1 holds. We
can then view our algorithm from Phase 1 as running the Distanced Matching Game simultaneously
over the graphs in H. Note that for every graph H; € H:

2128 1og N S 2124 10g N S 2M(j —1)log N 2" 1og(|V(H;)|)

ell — 16(¢)%e3 (5]2-71 (5?-71 ’

V([= NUD5 > N>

4
since 9,1 = 4(j — 1)¢/, 2 < j < [1/e€], and lé\gﬁ > 2128/€° from the statement of Theorem 5.2.
14 .
We conclude that |V (H;)[%-1 > M holds, satisfying the conditions of Theorem 4.2. From
-1

Theorem 4.2, the number of iterations in a Distanced Matching Game in a single graph H; € H is
bounded by:

’V(Hi)|86j,1 < N—1)8 1 < N32(j71)26’ < N32€2,

since ¢ = €, §;_1 = 4(j — 1)€, and j < [1/€]. Therefore, a graph H; € H may receive a matching in
at most N32 iterations, and the cardinality of each such matching is at most |V (H;)| / 2 < NI7t)2.
We conclude that at the end of Phase 1, for each graph H; € H, |E(H;)| < N7—1. N32¢,

Next, we bound the number of iterations in Phase 1. Note that at most one iteration of Phase 1 may
be irregular, and at most one iteration may be regular and unsuccessful. It is now enough to bound
the number of regular and successful iterations. In every regular and successful iteration, at least
N1-2¢ /2 graphs in H receive matchings. Therefore, every regular and successful iteration of Phase
1 results in the completion of a single iteration of the Distanced Matching Game in at least N1—2¢ /2
graphs of H. At the same time, the number of pairs (4, q), where graph H; € H receives a matching in
iteration ¢ must be bounded by |H|- N 32 < N1432¢* Gince in every regular and successful iteration
at least N1-2¢ /2 graphs in H receive matchings, we get that the number of iterations is bounded by
2N3262+26’ < N6462' 0

Since every set P? of paths causes congestion at most n = N 863, and the number of iterations is bounded
by N 6462, we obtain an embedding of graph H’ into H via paths of length at most d’ < 264/ et (from
Equation 5), that cause total congestion at most N 64e* . N8e* < N128¢ We denote this embedding by
P.

Note that the Phase 1 can either terminate with a regular unsuccessful iteration, in which case we
terminate the algorithm and return the resulting distancing for graph H, or with an irregular iteration,
in which case we proceed to Phase 2 of the algorithm. Before we describe Phase 2 of the algorithm,
we analyze the running time of Phase 1.

45

Running Time Analysis of Phase 1.

We start by bounding the running time of a single iteration. Over the course of the iteration, we apply
the algorithm from Theorem 5.2 to each of the graphs H; € H, with parameter (j — 1). Recall that,
from Observation 6.3, for each graph H; € H, |E(H;)| < N9=1+32 From the induction hypothesis,
the running time of the algorithm from Theorem 5.2 on a single graph H; € ‘H is bounded by:

C(_] o 1) . N(jfl)(1+6462)+7 4 C’E(Hl)’ . N6
<c(j—1)- NIH64G—1)e*+6 | i—1432¢2 | /6
=c(j—1)- NI+64(i—1)e*+6 + NI To+32¢%

<cj- Nj+64(j—1)62+6.
Since |H| = N, the running time of this part of the algorithm is bounded by:
cj- NIH64(G—1)e2+7

If the iteration is regular, then we apply Algorithm ProcPathPeel from Lemma 3.12, to graph H,
collections of subsets {(A;, Bi)};c; of its vertices, length parameter d’, and congestion parameter
n = N3, As observed above, the running time of Algorithm ProcPathPeel is O(|E(H)|-jNd'log N) =
O(|E(H)|-N-264/<".10g N/€) < O(|E(H)|-N?), since d’ < 264/<" from Equation 5 and N¢ > 264/<".Jog N
from the statement of Theorem 5.2.

If the iteration is regular and unsuccessful, then we apply Algorithm ProcSeparate from Lemma 3.10,

whose running time, as observed above, is bounded by O(|E(H)|-N’¢') < O(|E(H)|-N*°), as j < [1/€]

and € = €.

Overall, the running time of a single iteration is bounded by:

¢j - NITOG=DEHT L o (|E(H)| - N2) '

Since, from Observation 6.3, the number of iterations in Phase 1 is at most N 6452, we get that the
total running time of Phase 1 is bounded by:

cj - NIHOUEHT L o (|E(H)| - N?).

6.2 Phase 2: Distancing or Well-Connectedness

The starting point of Phase 2 is the collection H? C H of at least N — N 1—¢ graphs that was computed
in Phase 1. Recall that, for each graph H; € Hy, we computed a level-(j — 1) Hierarchical Support
Structure, that includes a subset S(H;) C V (H;) of vertices, such that H; is (nj_1, czj_l)—well—connected
with respect to S(H;). Additionally, we have computed an embedding P of graph H' = Jp 32 Hi,
so that the length of each path in P is at most d’ < 264/ 54, and the paths in P cause congestion at
most N128¢*,

In this phase we will either compute a subset H' C H? of r graphs, such that graph H is (n;, Jj)—well—
connected with respect to the set S(H) = [y, ¢y S(H;) of vertices; or we compute a (J;, d)-distancing
(A, B, E') in graph H, with |E’'| < %.

46

We consider every pair H;, Hy € H? of graphs, with i < i’ one by one. When the pair (H;, H;/) of
graphs is considered, we apply Procedure ProcPathPeel from Lemma 3.12 to graph H, and two sets
Ay = S(H;), By = S(Hy) of its vertices, with distance parameter d’ and congestion parameter = N4.
Recall that the running time of the procedure is O(|E(H)|(N* + jd'log N)) < O(|E(H)| - N*). We
denote by Q; ;s the set of paths that the algorithm returns, and by EZ'Z, the set of all edges of H that
participate in N4 paths of Q; s. We also denote by A}, C S(H;) and B/, C S(Hy) the sets of vertices
that do not serve as endpoints of paths in Q; ;. Recall that the pathé in Q;; have length at most
d’ each, and they cause congestion at most N4. Every path in Q;.i» connects a vertex of S(H;) to a
vertex of S(H;), and every vertex of S(H;) U S(H;) may serve as an endpoint of at most one path
in Q; . Moreover, the length of the shortest path in H \ El’l/ connecting a vertex of A;,i’ to a vertex
of Bj ; is greater than d’. Observe also that, since |Q; »| < |S(H;)| < |V(H;)| = N7~} and since the
length of every path in Q; ;s is at most d’, we get that ZQeQi . |E(Q)| < d - NJ~'. Since £}, only

contains edges that participate in N4 paths in Q, we get that |El | <d- Ni—5,

Let E’ be the union of all sets E! , of edges, over all pairs H;, Hy € H? of graphs with i < ¢’. Clearly,
|E'| < d'- N7=3. Moreover, for every pair H;, H;y € H? of graphs with i < 4’, the length of the shortest
path in [\ E’ connecting a vertex of A; ;, to a vertex of B;, is greater than d'.

Next, we apply procedure ProcSeparate from Lemma 3.10 to graph H= H\E’, with the set T' =V (H)

of terminal vertices, distance parameters d and A that remain unchanged, and parameter « = 1— 3]\1;4 .

Recall that the running time of the algorithm is O(|E(H)|-N4/2) < O(|E(H)|-N2<") (since A = 64/¢/,
j < [1/€], and ¢ = *).

We now consider two cases. The first case is that Procedure ProcSeparate returns two subsets A, B C
V(H) of vertices, such that |A| = |B|, and for every pair v € A,u € B of vertices, disty(u,v) > d.
Recall that in this case, the algorithm also ensures that:

4] > |V ()52 . min {(1 —a), ;}

1
SN¢

9
> Nj(l—e’)—Qe’ ()
> NI(—45€)
= |V (H)|"%.

> NI(A=€)

(We have used the fact that A = 64/€¢' and §; = 4j¢).
Recall that:

’El| < d/‘Njf?, < Njf3+€"
(since d’ < 264/ < from Equation 5 and N¢' > 2!28/<" from the statement of Theorem 5.2.) Since, from
Equation 9, |A| > Ni—3¢=2¢ > Ni=3¢ (a5 ¢ = ¢*), we get that |E'| < |A]/N7<".
We conclude that (A, B, E') is a valid (9, d)-distancing in graph H, with |E’| < |A|/N7¢". We return
this distancing and terminate the algorithm.

From now on we assume that Procedure ProcSeparate computed a vertex v € V(H), such that

By (v,A-d)| >a-|V(H)|=NJ- (1 — 81\1[6,). For convenience, we denote B* = B (v, A - d).

47

In this case, we construct a set H' C H? of graphs as follows: we add graph H; to H' iff |B*NV (H;)| >

w. We need the following observation.

Observation 6.4 |H/| > N — 2N~

Proof: Recall that [#2| > N — N'=¢. Notice that, if H; € #2\ H/, then |V (H;) \ B*| > |V (H;)|/8 =
NI=1/8. Since |V(H)\ B*| < N7=¢/8, we get that |H2\ H'| <]]ijg':el//s = N'=¢. Therefore, [H'| >
[H?| — N1=¢ > N —2N1=¢, -

We discard arbitrary graphs from H', until |H'| = N — [QNl_ﬂ holds. Let S(H) = Upg,eqy S(Hi).
Note that we have now obtained a level-j Hierarchical Support Structure for graph H, whose associated
collection of graphs is H', with |H'| = N — [2N 1*% = r. We use the embedding P of the graph

U H,en2 Hi that we have computed in Phase 1. By discarding paths that are no longer needed from
P, we obtain an embedding P of graph |J H,en Hi into H, such that every path in the embedding

has length at most d’ < 264/ 54, and the paths in P cause congestion at most N128/ <. We prove the
following lemma in Section 6.3.

Lemma 6.5 Graph H is (n;,d;)-well-connected with respect to S(H).

In order to complete the proof of Theorem 5.2, it is now enough to show that the running time of the
algorithm is suitably bounded.

Running Time Analysis
The algorithm performs at most N? calls to Procedure ProcPathPeel. As observed above, the running

time of each such call is at most O(|E(H)|- N*). The running time of Procedure ProcSeparate, as
shown above, is at most O(|E(H)| - N2¢"). Overall, the running time of Phase 2 is O(|E(H)| - N°).

Altogether, the running time of the whole algorithm is bounded by:

¢j - NI*O9E4T L0 (|B(H)| - N%) < cj - NIOHET Lo B(H) | NO),

if ¢ is a large enough constant.

6.3 Proof of Lemma 6.5

We will use the following simple observation.

Observation 6.6 For every pair H;, Hy € H' with i <4, |Q; | > NI=1/4. (Here, Q, i is the set of
paths that was computed in Phase 2 of the algorithm.)

Proof: Recall that, from Claim 5.1, [V (H;) \ S(H;)| < |V (H;)| - 2450 <« VL (ginee j < [1]).

’ ¢ ‘
Therefore, |S(H;)| > 63“/651&)‘ = 63'2271, and similarly, |S(Hy)| > 63'1&]71.

Assume now for contradiction that [Q; ;| < #. Recall that we have defined sets A}, C S(H;) and
Bgﬂ-, C S(Hy) of vertices that do not serve as endpoints of paths in Q; ;. If [Q; | < %71, then:

48

63- N1 NITL 2. NITE
64 4 3

|A} 0| > |S(Hy)| — Qi >

Similarly, |B; | > 2_]\‘(;_1' Since H; was added to H', |B* NV (H;)| > 7]\%7]_1 So at least one vertex

u € A, must lie in B*. For similar reasons, at least one vertex u’ € B; , must lie in B*. From the
definition of B*, dist 7 (u,u') < 2A-d = d'. Recall however that H = H\ E', and B}, C E'. Procedure
ProcPathPeel guarantees that the shortest path connecting u to «’ in graph H \EZ'Z, has length greater
than d’. So dist;(u,u’) > d’ must hold, contradicting our previous claim that dist;(u,u") < d'. O

We now turn to the proof of Lemma 6.5. We assume that we are given two disjoint equal-cardinality
subsets A, B of vertices of S(H). Our goal is to prove that there exists a set P* of paths in graph
H, routing every vertex of A to a distinct vertex of B, such that the paths in P* cause congestion at
most 7; in H, and the length of every path is at most Jj. We will prove that such a set of paths exists
by exploiting the fact that, every graph H; € H' is (n;-1, Jj_l)—well—connected with respect to the set
S(H;) of its vertices, together with the embedding of these graphs into H, and the sets Q; ;» of paths
that we have computed in Phase 2 of the algorithm for every pair H;, H;y € H' of graphs with ¢ < 7'.

The remainder of the proof of Lemma 6.5 consists of three steps. In the first step, we route some
pairs in A x B within the graphs H; € H'. After the completion of this step, for every graph H; € H/,
either all vertices of S(H;) that remain to be routed lie in A, or all such vertices lie in B. In the
remaining two steps we complete the routing of these remaining vertices. Specifically, in Step 2 we
define a “meta-graph” G, whose vertices represent the graphs H; € H’, with weights on its edges.
Intuitively, if an edge connecting two vertices that represent graphs H; and H; has weight w(e), then
we intend to construct w(e) paths that connect vertices of S(H;) N A to vertices of S(H;)N B. In this
step, we also perform a “global routing”: for every pair H;, Hy € H' of graphs, whose corresponding
edge in G has weight w, we connect vertices of S(H;) to vertices of S(Hy) with w paths. In the third
and the final step, we complete the construction of the set P* of paths by using “local routing”, in
which some pairs of vertex subsets are routed within each graph H; € H'. We now describe each of
the three steps in turn.

Step 1: Initial Routing within the Graphs of H’

We process every graph H; € H' one by one. When graph H; is processed, we denote NZ-A = |ANS(H;)]
and NP = |B N S(H;)|. Denote 8; = min { N/}, NP}. Next, we select two arbitrary subsets X; C
ANS(H;) and Y; € BNS(H;), each of which contains exactly (; vertices. Since our algorithm ensures
that graph H; is (n;-1, Jj,l)-well-connected with respect to S(H;), there exists a set R; of paths in
graph H;, which is a one-to-one routing of vertices of X; to vertices of Y;. Every path in R; has length
at most Jj,l, and the paths in R; cause congestion at most n;_1 in H;.

Let H = m;e3 Hi- Recall that we have computed, in Phase 1 of the algorithm, an embedding P
of H' into H, where every path in the embedding has length at most d’, and the paths in P cause
congestion at most N 128¢ 4 .

Consider now the set ;e Ri of paths in graph H ’. This set of paths defines a one-to-one routing
of vertex set X = (Jp, 5y Xi to vertex set Y = (Jy <4y Vi, where the length of every path is at most

dj_1, and the paths in R cause congestion at most n;_1 in H’. We now use the embedding P of H'
into H in order to compute a set P’ of paths in graph H, that route every vertex of X to a distinct
vertex of Y, via the algorithm from Observation 3.1. We are then guaranteed that the length of every
path in P’ is at most d;_; - d’. Recall that d;_; = 2¢-1)/€" while d' < % -2¢/<" from Inequality 5.
Therefore, the length of every path in P’ is bounded by:

49

dj_y-d <200=D/ge/et —gei/et — g

The algorithm from Observation 3.1 also guarantees that the congestion caused by the paths in P’ in
H is at most 1;_1 - N128¢° Since -1 = N6+256(j*1)62, we get that the congestion caused by the paths
in P’ is bounded by:

o1 - 1286 < N6+256(j—1)e* | pr128¢? < _

We have now obtained a set P’ of paths in graph H, that routes every vertex of X to a distinct vertex
of Y, so that the length of every path is at most d;, and the congestion caused by the paths in P’ is
bounded by n;/2.

We partition the graphs of H’ into three subsets. Set HY contains all graphs H; € H’, in which N; A —
N; B We no longer need to route any vertices in such graphs, as for each such graph 3; = N; A N B
X; = ANS(H;); and Y; = BN S(H;) must hold. Set H* contains graphs H; € H' with N/ > NB For
each such graph H;, we denote by D(H;) = N/~ NP, and by X! = (ANS(H;))\ X; — the set of vertices
of S(H;) that remain to be routed. Clearly, |X 'l = D(H;). Slmllarly, set HP contains graphs H; € H’
with NP > N#. For each such graph H;, we denote by D(H;) = NP —N# and by X! = (BNS(H;))\Y;
— the set of vertices that remain to be routed. As before, | X/| = D(H;) holds. Notice also that, since
Al = |Bl, X pp,ena DH) = 3 c3s D(H;) must hold. Denote A = gy qya X[and B = Uy, cqy5 X1-
It is now enough to prove the following lemma.

Lemma 6.7 There is a set P” of paths in graph H, _routing every vertex of A to a distinct vertex of
B, so that the length of every path in P" is at most dj, and the paths in P" cause congestion at most
nj/2 in H.

Indeed, by letting P* = P"UP”, we obtain a set of paths in graph H that defines a one-to-one routing
of the set A of vertices to the set B of vertices via paths of length at most Jj, so that the paths in P*
cause congestion at most ;. In order to complete the proof of Lemma 6.5, it is now enough to prove
Lemma 6.7. We focus on the proof of Lemma 6.7 in the remainder of this section.

We will start by constructing a “meta-graph” representing the graphs of H4 UH?, that will guide the
construction of global routing.

Step 2: Meta-Graph and Global Routing

Abusing the notation, for simplicity, in the remainder of this proof we denote H4 = {Hy, Ha, ..., H,},

and for all 1 < i < ¢, we denote D(H;) by D;. We also denote H? = {H{,Hé,...,H(’Z,}, and for

1 < < ¢, we denote D(H},) by Dj. For all 1 <1i < ¢, we denote the set X; C S(H;) of D; vertices
that remains to be routed by Y;, and for all 1 < ¢/ < ¢/, we denote the correspondmg subset of D)
vertices of S(H},) by Y;,. We now define a routing meta-graph, that will be used in order to guide the
construction of the paths in P*, and show that such a graph exists.

Routing Meta-Graph

We start by defining a routing meta-graph.

20

Definition 6.1 (Routing Meta-Graph) A bipartite graph G = (U, U’,E’) with integral weights
w(e) > 0 on its edges e € F is a routing meta-graph if:

o U={v1,...,uq};
o U = {1)'1,...,1);/};
e for every vertex v; € U, Zee%(vi) w(e) = D;; and

o for every vertex v}, € U, Zee%(v/_/) w(e) = D).

7

We refer to vertices ofCAvY as supernodes and edges ofé' as meta-edges.

We use the following claim to show that a routing meta-graph exists.

Claim 6.8 There exists a routing meta-graph.

Proof: We start with the graph G = (U,U’, E), where U = {vi,...,vq4}, U = {vi,...,vfl,}, and

E = 0, and then iterate, as long as there exist indices 1 < i < g and 1 < ¢ < ¢, such that D; > 0 and
D!, > 0 holds.

In order to execute an iteration, we consider any pair of such indices (i,i"). Let A = min {Di, Dg,}. We
add an edge (vs,v),) to E, whose weight is A, and we decrease D; and D), by A. Once the algorithm
terminates, since > 7 | D; = Zg,lzl D!, it is immediate to verify that the resulting graph G is a valid
routing meta-graph. O

Global Routing

Consider some pair v; € U, v}, € U’ of supernodes in graph G. From Observation 6.6, there exists a
collection of paths in graph H, that we denote, abusing the notation, by Q; ;, such that the following
hold:

e every path in Q;; originates at a vertex of S(H;) and terminates at a vertex of S(H,);

e every vertex of S(H;) U S(H),) is an endpoint of at most one path in Q; ;/;
Qi = [N /4];

each path in Q;;» has length at most d’; and

the paths in Q; ;# cause congestion at most IV 4in H.

The set Q; i of paths naturally defines a matching M, C S(H;) x S(H/,): we include a pair (z,y)
of vertices in M, if x € S(H;), y € S(H],), and some path in Q;;» has = and y as its endpoints.
Clearly, |M; | = [N77'/4]. Notice that for every meta-edge e = (v;,v},) in graph G, w(e) < D; <
|S(H;)] < N9~! must hold. We will select, for every edge e = (v;,v),) € G, a multi-set M; ;, of pairs
(x,y) € M;; of vertices, of cardinality w(e). (We note that a pair (x,y) € M;; of vertices may be
added to MZ’Z, multiple times). We will ensure that, for every supernode v; € U, a vertex x € S(H;)

may participate in at most four pairs in | J e=(vi0),) €64 (v1) M .,, and the same holds for supernodes of

o1

U'. For every meta-edge e = (v, v),) € E we will then use the paths of Q;; whose endpoints lie in
M; ! to define a global routing. Let QY denote the resulting collection (multlset) of all such paths.

So for every meta-edge (v;,v),) € E, for every pair (x,y) € M, of vertices, QY contains the path of
Q; i+ whose endpoints are x and y. If (x,y) appears multiple times in M/, then Q" contains multiple

copies of this path. For every graph H € HANHE, for every vertex z € S(H), we denote by k(z) the
number of paths of QY for which z serves as an endpoint. Our construction will guarantee that, for all
1<i<4q, Y pesm,) k(@) = D;, and similarly, for all 1 <i' < ¢', 37 o) k(z) = Dj;. As mentioned

already, we will ensure that, for every graph H € #’, for every5 vertex = € S(H), k(z) € {0,...,4}.

In our last step, we will perform local routing, in which, for all 1 < ¢ < ¢, we connect every vertex

of Y; to some vertex of S(H;) by a path, such that every vertex = € S(H;) is an endpoint of exactly

k(z) such paths. We perform a similar routing in graphs of H?. This local routing explores the fact

that every graph H € H' is (-1, dj 1)-well-connected, together with the embedding P of the graph
= Ufey H' into H that we have computed.

In order to simplify the notation, for all 1 < ¢ < ¢, we denote by E; C F the set of all meta-edges of
G that are incident to supernode v; in G. Similarly, for all 1 < i’ < ¢/, we denote by EZ’, C E the set
of all meta-edges of G that are incident to supernode v}, in G. We prove the following lemma, that
allows us to perform global routing.

Lemma 6.9 For every meta-edge e = (v;,v},) € E, there is a multiset M o of pairs of vertices of
S(H;) x S(H}), for which the following hold. For all 1 < i < gq, for every verter x € S(H;), let
k(x) be the total number of pairs in U(vi o)ebs M .., in which vertex x participates. Similarly, for all
1 < < ¢, for every vertex v € S(H},), let k(x) be the total number of pairs in |J MZ i

which vertex x participates. Then:

(vl,v;,)e

o for every meta-edge e = (v;,v),) € E(@), a pair (x,y) of vertices may only belong to M, if
(z,y) € M, i+ (but it may be added to M,L’Z, multiple times);

e for every vertex x € (Jl_, S(H;)) U (q, _, S(H],)) k(x) € {0,...,4};
e foralll <i<gq, ZIES(Hi) k(x) = D;; and

o forall1 <i' < ¢, 3 cqum, k(z) =Dj.

Proof: We construct the following directed flow network. We start with a blpartlte graph G =

(X,Y,E), where X = UL, S(H;), Y = a S(H}), and E = {J

1 YeB(C) M; ;. All edges are

(vl,'u
directed from vertices of X towards vertices of Y, and they have capacity 4 each. For all 1 < i < ¢, we
add a vertex s;, that connects to every vertex in S(H;) with an edge of capacity 4. For all 1 <4’ < ¢/,
we add a vertex ty, to which every vertex of S(H/,) connects with an edge of capacity 4. Lastly, we
add a source vertex s, and a destination vertex ¢t. For all 1 <1i < ¢, we add an edge (s, s;) of capacity
D;, and for all 1 < ¢’ < ¢/, we add an edge (t;,t) of capacity D/,.

We claim that this network as a valid s-¢ flow f of value D = Y7 | D; = ?//:1 D!,. We obtain
this flow as follows. Consider a meta-edge e = (v;,v),) € E(G) Recall that we are given an integral

weight w(e) < N7~ and a matching M;; C S(H;) x S(H},) of cardinality [N’~!/4]. For every edge
e = (z,y) € M;y, we set the flow f(e’) = |}\U4(e),‘ = [quﬁl)/zq. Notice that this ensures that the total
flow on all edges of M; ;s is precisely w(e), and for every edge €’ € M; 1, f(e/) < 4. Once we process

every meta-edge of G, we finalize the flow values f (¢/) for all edges ¢’ € E.

92

Consider now some index 1 < i < ¢, and some vertex x € S(H;). We claim that the total flow on all
edges of E that are incident to z in the flow network is at most 4. Indeed, recall that E; is the set of
all meta-edges of G that are incident to supernode v;. From the definition of a routing meta-graph,
we are guaranteed that ZeeEi w(e) = D;. For every meta-edge e = (v;,v},) € E;, if some edge of M; i
is incident to x, then the flow on this edge is %. Therefore, the total flow on all edges of E that
are incident to x is bounded by:

wle) D;
2 [N = TN St

eck;

since D; < |S(H;)| < N9~ must hold.

We set the flow on edge (s;,z) to be equal to the total amount of flow on all edges of E that are
incident to x in the flow network, which, from the above discussion, is bounded by 4.

From similar arguments, for every index 1 <4’ < ¢’, and every vertex y € S(Hj,), the total flow on all
edges of E that are incident to y in the flow network is at most 4. We set the flow on the edge (y, ;)
to be the total flow on all edges of F that are incident to y in the flow network.

Next, we consider an index 1 < i < ¢q. We set the flow on edge (s,s;) to be D;. We claim that
>_zesm;) f(si @) = D;. Indeed, from our construction:

_ _ wle) _
Z f(si,x) = Z Z flz,y) = Z Z TN/ Z w(e) = D;.

z€S(H;) (vi,0))€E; () €M, o e=(vi,v),)€E; (TY)EM; e=(vi,v},)EE;

(we have used the fact that [M; ;| = [N7~!/4] for every meta-edge (v;,v)) € E(G)).

Similarly, we consider an index 1 < i’ < ¢’. We set the flow on edge (t;,t) to be D),. Using the same
reasoning as above, > gy) f(y,ti) = Dj;. We conclude that we have obtained a valid s-¢ flow in
the above flow network, whose value is D. Since all edge capacities in the flow network are integral,
from the integrality of flow, there is an integral s-t flow f’ of value D in this flow network.

We are now ready to define the multisets M, of pairs of vertices from S(H;) x S(H},), for all (v, v},) €

E(G). Consider any meta-edge (v;,v;,) € E(G), and some pair (z,y) € M; ;s of vertices. If f'(x,y) > 0,
then we include f(z,y) copies of the pair (z,y) to M.

We now verify that all requirements hold for this definition of the multisets M, for all (v;,v},) € E (@).
Clearly, a pair (x,y) of vertices may only be added to M/, if (z,y) € M, ;.

Consider now some vertex z € | J!_, S(H;). Recall that k(x) is the total number of pairs in U(Ui vV M.,
in which z participates. This is equal to the total flow leaving vertex z in f’, which, in turn, is equal
to the flow on edge (s;,x). From our definition, the capacity of this edge is 4, so k(x) € {0,...,4}. If

T € Ug,/zl S(H}), then k(x) € {0,...,4} for similar reasons.

Consider now some index 1 < i < ¢. From the above discussion, » ¢, k(2) = > cs(m, [/ (si,2).
In other words,) . S(H) k(x) is the total amount of flow leaving vertex s; in f’. From conservation
of flow this must be equal to the total amount of flow entering s;. Since we send D = Y7 | D; flow
units from s to ¢, and since, for all 1 < i < g, the capacity of the edge (s, s;) is D;, we must send D;
flow units on edge (s,s;). In other words, for all 1 <4 < ¢, >° g, k() = D; must hold. From
similar arguments, for all 1 <i' <¢’, >° g) k(x) = D}, must hold. O

23

We are now ready to define the global routing. For every meta-edge e = (v;,v),) € E(G) we consider
the resulting collection M/, C S(H;)x S(Hy) of pairs of vertices. We define a (multl) set Q; ;» of paths,
as follows. Consider any palr (x,y) € M, and assume that the number of times that it appears in
M. is N(z,y). Recall that (z,y) € M, ;s fnust hold, so there must be a path Q(z,y) € Q; # connecting
T to y. We add N(z,y) copies of this path to Q;;j" Note that, from Lemma 6.9, N(z,y) < k(x) < 4
must hold.

We then let Q0 = U(vhv;/) cE(G) Q;’i, (again, set Q¥ is a multiset, so if some path appears several times
in some set Q) ,, then it will appear several times in Q.

Recall that, for every pair H;, H], € H' of graphs, the paths in Q;; have length at most d' each,
and they cause congestion at most N* in H. Since Q' ., contains at most four copies of each path in

Q, 7, and since |E(G)| < |H'|? < N2, the paths in Q° cause congestion at most 4N® in H, and every
path has length at most d’ as before. For every vertex z € (Ji_, S(H;)) U (g/lzl S(H;)), we use

the definition of the value k(z) from Lemma 6.9. The number of paths in Q°, in which x serves as
an endpoint is then precisely k(z), and, from Lemma 6.9, k(z) € {0,...,4}. Recall also that, for all
1<i<¢q, Y esuy k() = Diyand for all 1 <4 < ¢', 37 g) k() = D;

i

Step 3: Local Routing

Consider some graph H; € HA. We have defined a set Y; C S(H;) of D; vertices of H; that need to be
routed. For every vertex z € S(H;), we are also now given a value k(z) € {0,...,4}, which is exactly
the number of paths in Q¥ for which vertex x serves as an endpoint. We are also guaranteed that
>_zes(u) k(z) = Di. We can then construct four sets 7z}, 72,73, 7} of vertices of S(X), such that
for every vertex x € S(X), each of the four sets contains at most one copy of z; and the number of
sets in {Z},...,Z}} containing z is exactly k(z). Clearly, S 128 = D;. We also partition the set
Y; of vertices into four subsets Y;!,... Y arbitrarily, so that, for all 1 < a <4, [V*] = |Z}]. Since
Y; C S(H;), from the fact that graph H is (1;-1,d;_1)-well-connected with respect to S(H;), for all
1 < a <4, there is a set 73“ of |Z¢| paths in graph H;, routing every vertex of Y to a distinct vertex
of Z¢, such that the length of every path is at most dj 1, and the paths cause congestion at most 7;_1
in graph H;. Let P; = Ua 1 77a We think of the paths in P; as being directed away from vertices of
Y;. Notice that the paths in P; route every vertex of Y; to some vertex of S(H;), such that, for every
vertex = € S(H;), exactly k(z) paths of P; terminate at z. The paths in P; cause congestion at most
4n;_1 in graph H;, and have length at most d] 1 each.

Consider the graph H' = J 1,3 Hi- Recall that we have computed, in Phase 1 of the algorithm, an
embedding P of H' into H, where every path in the embedding has length at most d’, and the paths
in P cause congestion at most N 128¢ 4 .

Consider now the set P = Ui<i<q P; of paths in graph H’. This set of paths routes every vertex of
Ui<i<q Yi to some vertex of U1<z<q S(H;), such that, for every vertex « € (J;<;, S(H;), exactly k(z)
paths of 77 terminate at z. Additionally, the length of every path in P is is at most dJ 1, and the
paths in P cause congestion at most 4n;_q in H'.

We now use the algorithm from Observation 3.1 with the collection P of paths, and the embedding
P of graph H' = UHieH’ H; into H, in order to compute a set Q' of paths in graph H, routing every
vertex (J; <;«, Yi to some vertex of |, <;, S(H;), such that, for every vertex z € J, <, S(H;), exactly
k() paths of P terminate at z. The algorithm ensures that the length of every path in P is at most
dJ 1 -d', and the paths in P cause congestion at most 4n;_1 - N 128¢2

For every index 1 < ¢/ < ¢/, we similarly compute a set 73{/ of paths in graph HJ,, that route some

o4

vertices of S(Hy) to vertices of Y}, so that for every vertex y € Y}, exactly one path in 751’, terminates
at y, and for every vertex x € S(H],), exactly k(x) paths of P/, originate at . We use the embedding
P of graph H' into H exactly as before, in order to compute a set Q2 of paths in graph H, routing
vertices of ;<< S(Hj) to vertices of ;<< Vi, such that, for every vertex z € U;<;<, S(H;),
exactly k(z) paths of Q2 originate at z, and for every vertex y € Ui<ir<y Y exactly one path of Q?
terminates at 3. As before, we can ensure that the length of each every path in Q2 is at most Jj,l -d,
and the paths in Q2 cause congestion at most 4nj_1-N 128¢ i [,

By concatenating the paths of Q!, QY and Q?, we obtain the final set P” of paths, that defines a
one-to-one routing between vertices of |JI_; ¥; and vertices of Ug,zl Y. The length of every path in
P" is bounded by 2d;_; -d' +d' <3d;—, -d'.

Recall that Jj_l = 2¢i-1)/ 64, while d’ < % - 2¢/¢" from Inequality 5. Therefore, we get that the length
of every path in P” is at most:
3d;_q - d < 200D/ 9¢/¢ —9ci/¢ — g

The total congestion caused by the paths in P” is bounded by:

2
ANS + 811 - N128® _ g N6 1 g NO+256(—1)e* | pr128e® < NGJF;W =5

since nj_1 = NO6+256(-De* and N is sufficiently large.

This completes the proof of Lemma 6.7

7 APSP in Well-Connected Graphs — Proof of Theorem 2.3

The goal of this section is to prove Theorem 2.3. We do so using the following theorem.
Theorem 7.1 There are large enough constants ¢’,c”, and a deterministic algorithm, whose input

consists of:

e a parameter 0 < € < 1/400;

54
e apair N, 1 < j < [1/€] of integers, such that N is sufficiently large, so that gﬁ > 9128/¢
holds;

a graph H with |V(H)| = N7; and

a level-j Hierarchical Support Structure for graph H, such that graph H is (n;, d;)-well-connected
with respect to the set S(H) of vertices defined by the Hierarchical Support Structure.

Further, we assume that graph H undergoes an online sequence of less than A; = NJ—8-3005¢* edge
deletions. The algorithm maintains a set S'(H) C S(H) of vertices of H, called supported vertices,
such that, at the beginning of the algorithm, S'(H) = S(H), and over the course of the algorithm,
vertices can leave S'(H) but they may not join it. The algorithm ensures that |S'(H)| > % holds
over the course of the algorithm, and it supports short-path queries between supported vertices: given
a pair x,y € S'(H) of vertices, return a path P connecting x to y in the current graph H, whose

95

length is at most d; = 2¢9/€° in time O(|E(P)|). The total update time of the algorithm is bounded
by 2¢"FNI+3 . 24¢ /€ 4 My o N2 24¢/€° uhere m is the number of edges in graph H at the beginning
of the algorithm. (If Aj <1, then the algorithm only needs to support short-path queries until the first
edge deletion).

It is immediate to verify that Theorem 2.3 follows from Theorem 7.1, by substituting j = 1/e. In the
remainder of this section we prove Theorem 7.1. The proof is by induction on j.

7.1 Base Case: j <8

We first consider the base case, where j < 8. In this case, A; < 1 holds, and so we only need to
support short-path queries until the first edge deletion.

In this case, the level-j Hierarchical Support Structure for graph H defines a set S(H) of vertices,

and, from Claim 5.1, |V(H) \ S(H)| < |V(H)| -]334. Since j < [1/€], and N¢' > 2128/ from the

statement of Theorem 7.1, we get that |S(H)| > |V(H)|/2 = N7/2. We set S’'(H) = S(H), and this
set remains unchanged throughout the algorithm.

Recall that are guaranteed that graph H is (n;, Jj)—well—connected with respect to S(H), where Jj =
e/t < 26,]2/65 = % (if ¢ > ¢), and n; = N6t2565€ n particular, for every pair z,y € S'(H) of
supported vertices, there is a path of length at most d /2 connecting x to y in H. We let s € S(H) be
an arbitrary vertex, and we construct a BFS tree 7 rooted at vertex s. From the above discussion, the
depth of the tree is bounded by d;/2. Computing the tree takes time O(|E(H)]|). In order to respond
to a short-path query between a pair z,y of vertices of H, we simply compute the unique simple path
P connecting x to y in the tree 7, which can be done in time O(|E(P)|). Since the depth of the tree
is bounded by d /2, the length of the path is at most d;.

7.2 Step: j > 8

We assume that we are given a graph H with |V (H)| = N/, together level-j hierarchical support
structure for graph H, whose associated collection of graphs is H = {Hi,..., H,}. Recall that r =

N — [2]\7 1_541, and we are guaranteed that graph H is (7, d;)-well-connected with respect to the
set S(H) = Uy, ey S(H;) of vertices. Additionally, the hierarchical support structure contains an
embedding P of the graph H' = (Ji_, H; into graph H via paths of length at most 264/ <! that causes

congestion at most N 128¢ For every edge e € F(H'), we denote by P(e) € P the unique path that
serves as the embedding of e in G.

Our algorithm will maintain a set S'(H) C S(H) of supported vertices, where initially S’(H) = S(H).
While vertices may leave set S'(H) over the course of the algorithm, set S(H) remains unchanged.

Our algorithm recursively applies the algorithm from Theorem 7.1 to each of the graphs in H. When
an edge e € E(H) is deleted, then for all 1 < i < r, for every edge ¢/ € E(H;) whose corresponding
embedding path P(e’) contains e, we delete edge ¢’ from graph H;. Since the paths in P cause
congestion at most N 12862, the deletion of a single edge from graph H may trigger the deletion of up
to N128¢° edges from graphs Hi,..., H, overall. As the result of these edge deletions, the supported
sets of vertices S’(H;) that the algorithm from Theorem 7.1 maintains recursively for each of the
graphs H; € ‘H may need to be updated. Once a graph H; € H undergoes [Aj_1] edge deletions, we
say that it is destroyed. Once graph H; is destroyed, the corresponding set S’(H;) of vertices is set to
0.

o6

Our algorithm maintains a partition of the set H of graphs into three subsets: set HP of destroyed
graphs, set H! of inactive graphs, and set HA of active graphs. Set %P contains all graphs that have
been destroyed so far. Once a graph joins set H?, it remains in % for the remainder of the algorithm.
We define the sets H! and H4 of graphs later. We will ensure that the set H*4 of active graphs is
decremental, and we will set S"(H) = Uy, cya S'(H;) throughout the algorithm. Intuitively, we will
maintain, for every active graph H; € H*, an ES-Tree data structure that is rooted at the vertices of
S'(H;). We need the following simple observation bounding the number of graphs in HP.

Observation 7.2 Quer the course of the algorithm, |HP| < N/32 always holds.

Proof: Assume otherwise, and consider the first time ¢ during the algorithm when |H?| > N/32 held.
Recall that a graph H; € #H is destroyed once it undergoes [A;_1] edge deletions. Therefore, at least
2 - TAj_1] edges have been deleted from Um,en E(H;) by time t. On the other hand, the deletion
of a single edge from H may trigger the deletion of at most N 128¢* edges from graphs Hy,..., H,.
Therefore, the number of edges that have been deleted from H by time ¢ is at least:

N N1712852

sanvizse Al ="

‘ [Nj—9—300(j—1)e2—‘ < NJ—8-300j¢% _ A;,

a contradiction. O

Consider now a graph H; € H \ HP at some time during the algorithm’s execution. For every vertex
s € S'(H;), we denote by G(s) the set of all graphs Hy € H\H”, such that S'(Hy)N By (s, dz/32) # 0.
In other words, set G(s) contains all graphs H; that have not been destroyed yet, such that some vertex
in the current set S’(H;) of supported vertices is sufficiently close to s in the current graph H. Recall
that the set S’(H;) of vertices is decremental. The following observation will be useful for us.

Observation 7.3 Consider any time t during the algorithm’s execution. Let H; € H\HP be a graph
that has not been destroyed by time t, and let s € S'(H;) be any vertex in the current set of supported
vertices for H;. Then, since the beginning of the algorithm and until time t, the collection G(s) of
graphs has been decremental: that is, graphs may have left it, but no graph may have joined it since
the beginning of the algorithm.

Proof: Assume for contradiction that Hy € H is some graph that did not belong to set G(s) at time
', but belongs to set G(s) at time t”, where t' < ¢” < t.

From the definition, at time ¢, Hy € H \ HP held. Since graphs may leave set H \ H” (when they
are destroyed) but they may never join H \ H” over the course of the algorithm, we get that at
time ¢/, Hy € H \ H” held. Furthermore, from the definition, at time ¢, some vertex z € S’(Hy)
belonged to By (s,d}/32). Since set S'(H;) of vertices is decremental, z € S'(Hy) held at time ¢'.
Since distances in graph H may only grow over time, z € Bp/(s,d}/32) held at time #'. Therefore,
S"(Hy) N Br(s,d}/32) # () must have held at time #', and graph H; must have belonged to G(s) at
time t', a contradiction. O

Throughout the algorithm, the set H! of inactive graphs will only contain graphs H; € H that have
not been destroyed yet, for which the following property holds:

P1. For every vertex s € S'(H;), |G(s)| < 7TN/8.

We note that it is possible that some graph H; € H \ H” has Property P1 but is not added to H'.

The following observation shows that once property P1 holds for some graph H;, it will continue to
hold until the algorithm terminates or the graph is destroyed.

o7

Observation 7.4 Let H; € H be any graph, and assume that Property P1 holds for H; at some time
t during the algorithm’s execution. Then Property P1 holds for H; until the algorithm terminates or
until H; is destroyed.

Proof: Assume that Property P1 holds for graph H; € H at some time t during the algorithm’s
execution, and consider some time ¢’ > ¢ during the algorithm’s execution. We assume that graph H;
is not destroyed at time ¢, and prove that Property P1 continues to hold for H; at time t’. Indeed,
consider any vertex s that lies in set S'(H;) at time t'. Since set S’(H;) is decremental, vertex s lied
in S’(H;) at time t. Since Property P1 held for graph H; at time t, |G(s)] < 7N/8 held at time ¢.
From Observation 7.3, set G(s) is decremental, so |G(s)| may not grow between time ¢ and time t'.
Therefore, |G(s)| < 7N/8 holds at time t'. We conclude that Property P1 continues to hold for H; at
time ¢'. O

To summarize, over the course of the algorithm, we maintain a partition of the collection H of graphs
into three subsets: the set %P of destroyed graphs; the set H! of inactive graphs; and the set H4 of
all remaining graphs, that are called active graphs. We ensure that every graph in H! has Property
P1. We also ensure that the set #* of active graphs is decremental — graphs may leave it but they
may not join it over time. The following claim bounds the cardinality of the collection H! of graphs.

Claim 7.5 Owver the course of the algorithm, |H'| < N/32 must hold.

Proof: Assume otherwise, and consider the first time ¢ during the algorithm when |H!| > N/32 held.
We will construct two large sets 11,15 of vertices, so that the distance between the vertices of 17 and
the vertices of T5 is large in the current graph H. We will then reach a contradiction by using the
facts that, at the beginning of the algorithm, graph H was well-connected with respect to S(H), and
that the number of edges that were deleted from H is relatively small.

Recall that [H| =r = N— [2]\[1_64-‘ > 63N/64, since N¢' > 2128/<” from the statement of Theorem 7.1,

Additionally, from Observation 7.2, |H”| < N/32 holds at time ¢. Therefore, at time ¢, |H \ H”| >

Ggiv évz > 61N .Let HCH \ #P be a collection of graphs that is obtained as follows. We start with

H=H \ HD We then consider the graphs of H one by one, starting with the graphs of HA. If, when

graph H; is considered, |H| > {%TN] holds, then we discard H; from set H. Otherwise, we terminate

the algorithm with the final collection H of graphs, whose cardinality must be {M] Notice that, if

any graph of H4 lies in H, then H! C H. Recall that, from the induction hypothesis, for every graph
H; € H\ HP, |S'(H;)| > 16] r holds throughout the algorithm. We construct a set T' of vertices as

follows. For every graph H; € H, we let S”(H;) be an arbitrary collection of {
in set S'(H;) at time ¢. We then let T'= {Jy; o5 8" (H;). Clearly:

61N Ni-1
T = |~ | | Tt |-
64 167

Intuitively, we would like to apply Procedure ProcSeparate from Lemma 3.10 to graph H, set T of

67— i—‘ vertices that lie

terminals, and distance parameters A = 64/¢> and d = é—k, in order to compute two large subsets
Ty,T, C T of vertices with disty(71,72) > d. However, the procedure may instead return a single
vertex s € T', for which the ball By (s, d}/64) contains many vertices of T'. In the next observation we
show that this is impossible, that is, for every vertex s € T, |Bu(s,d;/64) NT| is sufficiently small.

Observation 7.6 At time t, for every vertez s € T, |Bu(s,d;/64) NT| < [T (1 — 5i5) holds.

o8

Proof: Consider some vertex s € T', and denote B = By (s,d;/64). Let T" = Uy cyiqgy S" (Hi).
Assume first that B does not contain any vertex of 7”. Notice that in this case, at least one graph of
HA lies in H, and so H! C H. Since we have assumed that |H| > 3%, we get that:

~ ~ 61N N 61N 1 61N 1
HI<|H|I - H < | =2 | - = < 1——)< 1—— .
HAHT] < [H] = | ’—[&J 32-[61& (61)‘[&& (256)

Therefore:

- Ni—1 61N 1 N1 1
BNT|<|T|-|T'| < n. . (1o —=—). | < 1 —
IBOTI < T =T < [HAH] {16%1-‘_[64-‘ < 256) [w—lw—' - < 256>

Assume now that B contains at least one vertex of T”, and let s’ be any such vertex. Note that B =
By (s,d;/64) C Bp(s',d}/32). Observe that s’ must lie in the current set S'(H;) of supported vertices

of some graph H; that currently lies in H!. From Property P1, |G(s')] < T, Let G'(s') = H \ G(s'),
so |G'(s")] > &.

From our definitions, for every graph Hy € G'(s"), S'(Hy)N B (s',d;/32) = (), and therefore, S'(H;)N
B=1.

Let H = H NG (s'). On the one hand, since |H| = (8], and |G/(s")] > &, while [H| = N, we get
that [H'| > 5 > [81]. On the other hand, the vertices of Uy <7/ S”(H;) may not lie in set B.
Therefore:

S\ [N [6IN LY [a L
< —|H) - | < Ao) 7| = 256
[BNT| < (I”HI H |) {1@1} - [64 W <1 256) [wlw =T (1 256)

We apply Algorithm ProcSeparate from Lemma 3.10 to graph H, set T of terminals, distance parame-

256

O

d*
ters A = 64/e2, and d = gin» and parameter o = (1 — %6) From Observation 7.6, the algorithm may

not return a vertex s € T' with |By (s, A-d)| = |Bu(s,d;/64)| > a-|T'|. Therefore, it must compute two

. . 1-64/A .
subsets 17, T» of vertices with |T7| = |T3|, such that |T7| > |T|2756, and for every pair s € T}, s € Ty

of terminals, disty(s,s’) > d. We will now exploit the facts that graph H was well-connected with
respect to set S(H) of vertices at the beginning of the algorithm, and that relatively few edges were
deleted from H, in order to reach a contradiction.

Observe first that:

N

256 T 256 4-167 ~ 1024 -167°

On the other hand:

d* 201_7/65 ’62 .4 ~
J cj/er — .
d_64 = 512 > 264/ = d;.

Let H® denote the graph H at the beginning of the algorithm, and let H) denote graph H at time
t. Recall that, at the beginning of the algorithm, graph H(® was (nj, d; j)-well-connected with respect
to the set S(H) = Uy, cy S(Hi) of vertices. Since the sets S'(H;) of vertices for graphs H; € H are

29

decremental, and since S’(H;) = S(H;) at the beginning of the algorithm for each such graph, we get
that T C S(H) held at the beginning of the algorithm. Therefore, there was a collection P (171, 7%)
of paths in graph H(® routing every vertex of T} to a distinct vertex of Th, such that the paths in
P(T1,T3) cause congestion at most n; = N 6+256j¢* and the length of every path is at most Jj.

Let E’ be the set of edges that have been deleted from graph H by time ¢. Note that, in graph H),
no path of length at most d; connecting a vertex of T; to a vertex of T exists. Therefore, set £’ must
contain at least one edge from every path in P(77,7%). We conclude that:

j(1—€2) j—257j€2—6))
m> s il — s NIEBTE S 6
nj 1024167 . N6+256j¢? 1024 - 167 J

since j < [1/€], € < 1/400, and N¢ > 28/¢ from the statement of Theorem 7.1. This is a contradiction,
since fewer than A; edges may be deleted from H. O

From Observation 7.2 and Claim 7.5, throughout the algorithm, |H!| + |[H”| < N/16 holds. Since
|H|=r=N — [2]\71_64—‘ > 63N/64, we get that, throughout the algorithm:

A I p . 6BN N _ 59N
e e e e U ey e Ty (10)
The set S"(H) that we maintain throughout the algorithm is defined to be: S"(H) = g, cya S'(Hi).
Since, for every graph H;, set S'(H;) of vertices is decremental, and since the collection H* of graphs
is decremental, we get that the set S'(H) of vertices is decremental as well. It is also easy to see
that S'(H) = S(H) = Uy, S(H) hods at the beginning of the algorithm. Since, from Inequality
10, [HA| > % holds throughout the algorithm, and since, from the induction hypothesis, for every

graph H; € HA, |S'(H;)| > {\g% holds, we get that, throughout the algorithm:
NI=L 59N NI NI

(H)| > |HA - — S —
IS 2 [1651 = 64 167-1 ~ 167’

as required.

7.2.1 Data Structures and Initialization

Consider a graph H; € H. Note that, as part of the level-j hierarchical support structure for H,
we are given a level-(j — 1) hierarchical support structure for H;, and we are guaranteed that H; is
(nj—1,d;j_1)-well-connected with respect to S(H;). Therefore, from the induction hypothesis, we can
apply the algorithm from Theorem 7.1 with parameter (j — 1) to graph H;, and the corresponding
level-(j — 1) hierarchical support structure. Parameters N and e remain unchanged. We denote the
corresponding data structure by D;_;(H;).

As part of the initialization procedure, for every graph H; € H, we initialize the corresponding data
structure D;_1(H;).

Our algorithm also maintains, for every edge e € E(H), a list L(e) of edges €’ € Uy, 4 E(H;), such
that path P(e’) contains e. Together with this list, we maintain a pointer from e to each such edge ¢’
in its corresponding graph H;, and a pointer in the opposite direction. We initialize the lists L(e) for
edges e € E(H) at the beginning of the algorithm.

We also initialize HA = H, H! = HP =0, and S'(H) = S(H).

60

Lastly, for every graph H; € H, we initialize an ES-Tree data structure, whose corresponding tree is
denoted by 74, that, intuitively, is rooted at the set S’(H;) of vertices. Specifically, in order to construct
data structure 7;, we let G; be a graph that is obtained from H, after we add a source vertex s; to it,
which connects to every vertex in S’'(H;) with an edge. We then let 7; be an ES-Tree data structure
in graph Gi, rooted at vertex s;, with depth bound d}f /8 + 1. When an edge is deleted from H, we
will also delete it from G;, and update the ES-Tree data structure 7; accordingly. When a vertex s is
deleted from set S’(H;), we will delete the edge (s;, s) from graph G;, and update 7; accordingly.

We maintain, for every pair of graphs H; € HA and Hy € H \ HP, a counter n;;, that counts the
number of vertices of S"(Hy) that lie at distance at most d}/32 + 1 from s; in tree 7;. Note that, if
n;i» = 0, then for every vertex s € S'(H;), S'(Hi)NBp (s, d}/32) = 0. In other words, Hy ¢ G(s) holds
for all s € S’(H;). We also maintain a counter 7;, whose value is the number of graphs Hy € H \ HP,
with n; » > 0. We can initialize the values n; ; for every pair H;, Hy € H of graphs, and the counters in
{ni} H,e3 &b the beginning of the algorithm. The time that is required in order to do so is subsumed by
the time required to initialize the ES-Tree data structures. We need the following simple observation.

Observation 7.7 Let H; € H be a graph. Assume that at some point t in the algorithm’s execution,
H; & HP holds, and 7; < TN/8. Then graph H; has Property P1 at time t.

Proof: Assume otherwise. Then at time ¢, there is some vertex s € S'(H;) with |G(s)| > 7TN/8. If
Hj is a graph that lies in G(s) at time #, then at least one vertex of S"(H;) must lie in By (s, d}/32)
at time ¢, and so n; 7 > 0 must hold. But then n; > 7N/8 must hold at time ¢, a contradiction. 0

Throughout the algorithm’s execution, whenever, for some graph H; € H?, the value of counter 7,
becomes at most 7N/8, we move graph H; from HA to H!. Lastly, we need the following simple
observation.

Observation 7.8 Let H;, Hy be any pair of graphs that lie in set H” at some time t during the
algorithm’s execution. Let s be any vertex that lies in S'(H;) at time t, and let s’ be any vertex that
lies in S'(Hy) at time t. Then disty(s,s') < d}/8 at time t.

Proof: Let G; be the set of all graphs Hy» € H \ HP with n; 4 > 0 at time t. Since H; € HA at time
t, |Gi| > 7N/8 must hold. Similarly, let Gy be the set of all graphs H;» € H \ HP with ngr i > 0 at
time t. As before, |G| > 7TN/8. Therefore, there is some graph H;» € G; N Gyr.

In the remainder of this proof, whenever we refer to vertex sets S'(H;),S'(Hy), S (H;»), or to graphs
H;, H;, H;», H, we mean the corresponding sets of vertices or the corresponding graphs at time t.

Since, at time ¢, n; ;» > 0, there is some vertex z € S’(H;»), such that the distance from s; to z in tree
7; is at most dj/32 + 1. Therefore, there is some vertex 2’ € S'(H;), such that disty(z,2’) < dj/32.
Let @ be a path of length at most d; /32 connecting x to ' in H. From a similar reasoning, there is
a pair of vertices y € S'(H;») and y' € S'(Hy), such that disty(y,y') < dj/32. Let Q' be a path of
length at most d; /32 connecting y to y' in H.

From the induction hypothesis, there is a path P; of length at most d;_, connecting s to 2’ in graph
H;. Recall that we are given an embedding P of the edges of | Jy 4 F(H,) into H, where the length
of every path in P is at most 264/ <!, From Observation 3.1, there is a path P| in graph H, connecting
s to 2/, whose length is at most 964/e" . d}k'—r

*

Using similar reasonings, there is a path Py in graph H connecting z to y of length at most 964/ 1

and a path P} in graph H connecting ' to s', of length at most 964/t . d;_;. By concatenating the
paths PJ,Q, Py, Q’, P, we obtain a path in graph H, connecting s to s’, whose length is bounded by:

61

* * * ci/ed *
;lé+3.264/64. ;flzi%+3.264/64.20/(11)/65 S;lé_|_21jé Sdg
(since d} = 2¢3/%) O

Next, we describe an algorithm for updating the data structures after each edge deletion, followed
by the analysis of the total update time of the algorithm. We then conclude with an algorithm for
responding to queries.

7.2.2 Maintaining the Data Structures

For each graph H; € H, our algorithm will only maintain ES-Tree data structure 7;, together with the
corresponding counters 7; and n; ;s for all Hy € H \ HP . as long as graph H; lies in HA. Once graph
H; is removed from H*, we no longer maintain these data structures.

We now describe an algorithm for updating the data structures following the deletion of an edge e from
graph H. The algorithm, called DeleteEdge(e), is straightforward and it is summarized in Figure 1.

When an edge e is deleted from graph H, we consider every edge ¢ € L(e) (that is, edges € €
Ug,ew E(H;), whose embedding path P(e’) contains edge e. We assume that ¢’ € E(H;), and that
H; € H\ HP (if H; € HP, no further action is required for processing edge €¢’). We then delete edge
¢/ from graph H; and update the corresponding data structure D;j_;(H;). As a result, we obtain a set
X; (that may be empty) of vertices that have been deleted from S’(H;). We also update lists L(e) of
edges €’ € E(H) that contain €', to remove €’ from these lists.

If the number of edges deleted so far from H; reaches at least A;_1, then graph H; is destroyed. We
add the graph to set P, and we update all counters ny ; and ny for graphs Hy € HA as needed.
Otherwise, we process every vertex s € X; one by one. If H; € H*, then we delete edge (si,8) from
graph G;, and the corresponding ES-Tree data structure 7;. As the result, some distances in tree

7; may have increased, and we need to update all counters in {nm-/} Hoer\HD: 88 well as counter 7;
7

accordingly. Additionally, for every graph Hy € H4, if the distance from s; to s in tree 7; was bounded
by df/32 + 1, then we need to decrease ny; by 1 (as vertex s no longer lies in S'(H;)), and if needed,
we need to update counter ;.

Once we finish processing every edge e’ € L(e), we also need to delete edge e from every graph Gy,
where Hy € HA, and the corresponding ES-Tree data structure 7;,. As before, this may increase some

distances in tree 7,7, and we may need to update counters {ni/7i//} Ho HAMD ,ny accordingly. Lastly,

we consider every graph H; € HA in turn. If 7y < 7N /8 holds for any such graph, then we move it
from HA to H!.

It is easy to verify that the algoritm maintains all data structures correctly, and, from Observation 7.7,
when graph H; is added to H!, Property P1 holds for it. From Observation 7.4, once H; is added to
H!, Property P1 continues to hold for it until the end of the algorithm, or until H; is added to HP.
From the above discussion, we are guaranteed that, throughout the algorithm,]HA] # 0.

7.2.3 Analysis of Total Update Time
Let m denote the number of edges in graph H at the beginning of the algorithm. Recall that every

edge e € E(H) participates in at most N128e paths in P. Therefore, the length of the list L(e) is
bounded by N28¢ Every edge of |J H,en B (H;) may be added at most once to list L(e) when the

62

ALGORITHM DeleteEdge(e)

1. For every edge ¢/ € L(e), such that the graph H; € H containing ¢’ lies in H \ H”
do:

(a) Delete ¢’ from H; and update the corresponding data structure D;_1(H;). Let
X be the set of vertices that were deleted from S’(H;) as the result of this
update.

(b) For every edge €’ € E(H) with € € L(e"), delete €' from L(e”).

(c) If the number of edges deleted so far from H; becomes at least A;_q:

i. Add graph H; to HP and remove it from the set H* or H! to which it
belonged.
ii. For every graph H; € HA4, if ng; > 0, set ny ; to 0 and decrease n; by 1.

(d) Otherwise: for every vertex s € X; do:

i. If H; € H*, delete edge (s;,s) from graph G; and update the ES-Tree 7;,
together with counters {n“/} H eH\HD ,n; accordingly.

ii. For every graph H; € HA, if dist,, (s, 8) < d§/32 + 1, decrease n;; by

1. If ny ; decreases from 1 to 0, decrease n; by 1.

2. For every graph H; € H*, delete edge e from graph Gy, and update the ES-Tree

Ty, together with counters {nilﬂ;l/} Hop eH\MD , Ny accordingly.

3. For every graph Hy € HA, if iy < 7N/8 holds, move Hy from HA to HI.

Figure 1: Algorithm DeleteEdge(e)

63

data structure is initialized, and subsequently it may be deleted at most once from L(e). Therefore,
the total time required to maintain the lists L(e) for all edges e € E(H) is at most O(m - N128¢%).

Consider now some graph H; € H, and denote by m; the number of edges in H; at the beginning of the
algorithm. Recall that, from the definition of the hierarchical support structure, |E(H;)| < Ni—1+32¢,
From the induction hypothesis, maintaining data structure D;_;(H;) recursively takes time at most:

2c(j — YNTH2. 28/ L | B(H,)| - N? - 24/ < 2¢(j — 1) NTH2 . 916/ o NI 1H82E7 e/
S C”<2j _ 1>N]+2 . 240’/56.

Since |H| = N, the total update time needed in order to maintain these data structures for all graphs
H; € H is bounded by ¢’(2j — 1)N/*3. 9de! /é5

Consider now some graph H; € H. The total update time that is needed in order to maintain ES-Tree
7; is bounded by:

O(jm - d; -log N) < O(jm - 9c'i/” log N) < O(m - 94c' /e log N),

since dj = 2¢9/<* and j < [1/€]. We can initialize the counters n; i for all graphs Hy € H and 7,
without increasing this asymptotic running time. We can also perform updates to these counters in
Step 1(d)i within the same asymptotic running time. Since |H| = N, this part of the algorithm takes
total update time at most O(N - m - 9’ /e log N).

Whenever a vertex s is deleted from a set S’(H;) for any graph H; € H, we may need to update the
counters ny ; and ny for some graphs H;y € HA. This can be done in time O(N) per vertex. Since a
vertex may be deleted at most once from (Jy <y S'(H;), these updates can be done in time O(N7*+1).

Lastly, every graph H; € H may be moved to set H” at most once over the course of the algorithm, at
which time we may need to update counters n; ; and 7, for graphs H; € H 4. This takes time O(N)
per graph H; € H, and O(N?) overall.

From the above discussion, the total update time of the algorithm is bounded by:

C”(Qj _ 1)Nj+3 . 240'/66 + O(N m - 240’/56 log N) + O(Nj—i—l) < QC/lej-i-?)) 240//66 ' N2 240//66.

7.2.4 Response to Queries

In this subsection we describe an algorithm for responding to a short-path query between a pair
x,y € S'(H) of vertices. Recall that the goal is to return a path P of length at most d; connecting x
to y in H, in time O(|E(P)]).

Recall that S"(H) = Uy, ¢34 S'(Hi). Therefore, there is a pair of graphs H;, Hy € HA (where possibly
H; = Hy), with x € S'(H;) and y € S'(Hy). From Observation 7.8, disty (7, y) < d;/8 must hold. In
particular, if we consider the ES-Tree data structure 7;, then y € V(7;) must hold, and the distance
from y to s; in the tree must be at most d;k»/8 + 1. Let @1 be the path connecting y to s; in tree
7;. We delete the last vertex on the path, and let 2/ € S'(H;) be the new last vertex of 1. Using
the induction hypothesis, we can compute a path P’ in graph H; connecting z to z’, whose length is
at most d;_;. Assume that the sequence of edges on path Q' is (e1,e2,...,¢e;). Forall 1 <2/ <z,
consider the path P(e,/) € P that serves as the embedding of edge 2’ into H. Recall that the length

64

of the path is bounded by 264/¢* By concatenating the paths P(e1),..., P(e;), we obtain a path Q2
in graph H, connecting x to 2/, whose length is at most dj_y - 264/¢" Lastly, by concatenating paths
Q1 and @2, we obtain a path P in graph H connecting x to y. The length of the path is bounded by:

* YR
d;f,l . 264/64 +Cl8] < 2c’(j71)/65 . 264/64 + 2c'd/e < 26/j/65 _ d;(

since dj = 2¢'3/" Tt is casy to see that the algorithm can be implemented in time O(|E(P)|).

8 APSP in Expanders — Proof of Theorem 2.4

This section is dedicated to the proof of Theorem 2.4. We first prove the following lemma, that can
be viewed as a weaker variation of Theorem 2.4, in the sense that it can only withstand a significantly
shorter sequence of edge deletions.

Lemma 8.1 There is a deterministic algorithm whose input consists of an n-vertex graph G with
|E(G)| = m that is a ¢*-expander, for some 0 < ¢* < 1, with maximum vertex degree at most A,
and a parameter W <e< ﬁ, such that 1/€ is an integer. We assume that graph G undergoes

(

1—20€(,,*\2
an online sequence of at most % edge deletions. The algorithm maintains a set U C V(G) of

vertices, such that, for every integer t > 0, after t edges are deleted from G, |U| < 4@%75 holds. Vertex
set U is incremental, so vertices may join it but they may not leave it. The algorithm also supports
short-path queries: given a pair of vertices x,y € V(G)\ U, return an x-y path P in the current graph

66
G, of length at most M, with query time O(|E(P)|). The total update time of the algorithm

%)
X m1+0(e),A3>
is O (7(@*)2 .

The proof of Lemma 8.1 is deferred to Section 8.1. We now complete the proof of Theorem 2.4 using
nl*QOc 2

ﬁJ . The first phase lasts
as long as the number of edges deleted from G via the input update sequence is at most k. Once k'
edges are deleted from graph G, the second phase begins. Each subsequent phase similarly lasts for as
long as at most k' edges are deleted since the beginning of the phase, except for the last phase which
may be shorter, if the input update sequence terminates before k' edges are deleted from G since the
beginning of the phase. For all ¢ > 1, we denote by X; the sequence of edge deletions that graph G
undergoes as part of the online input sequence of edge deletions in phase i, and we denote by E; the
set of edges that belong to 3;. Since the total number of edges in the input sequence of edge deletions

is bounded by %, we get that the number of phases is bounded by #ﬁ%k, < ”106.

it. We partition the execution of our algorithm into phases. Let k' = [

We define another dynamic graph G’. At the beginning of the algorithm, we set G’ = G. As the
algorithm progresses, we will delete some edges from G’. Specifically, at the end of every phase of
the algorithm, we will define a set of edges to be deleted from graph G’; we do not delete any edges
from G’ as long as a phase progresses. We run the algorithm from Theorem 3.4 on graph G’. We will
ensure that the number of edges that are deleted from G’ over the course of the entire algorithm is
bounded by & :~1‘g—z. Clearly, k£ < %. From Theorem 3.4, we are guaranteed that, throughout
the algorithm, |U| < % < 3 holds.

In order to execute the first phase, we let H; = G’ = G, and we apply the algorithm from Lemma 8.1
to graph Hi, and the online sequence X1 of edge deletions. Recall that graph G is a @-expander, and

n1—205 2

that |X1] < ¥ = LﬁJ. Recall that the algorithm maintains an incremental set U C V(G) of

65

vertices, that we denote by Uy, such that, for every integer ¢ > 0, after ¢ edges are deleted from G,
U] < 441 })6]ds. Throughout the first phase, we let the set U of vertices that our algorithm maintains
be U;. Recall that the algorithm from Lemma 8.1 supports queries short-path queries: given a pair
of vertices z,y € V(G) \ Uy, return an z-y path P in the current graph H; = G, of length at most

6
M, with query time O(|E(P)]).

From the above discussion, at the end of the first phase, |U;| < Aﬁk/ < % holds. We denote by

E; the set of all edges that are incident to the vertices of Uy in the current graph G. We then update
graph G’, by deleting the edges of FyUFE; from it. Therefore, at the end of the first phase, the number
of edges that are deleted from G’ is bounded by:

1-20e

~ n .
|E1] + |Er| < L4

A <k

We denote by Ui the set of vertices that the algorithm from Theorem 3.4 produces at the end of
Phase 1, and the deletion of the edges of E; U E; from G’'. We also denote by Hy = G’ \ U;. From
Theorem 3.4, graph Hj is a ¢/(6A)-expander. Notice also that, if U is the set of vertices that the
algorithm from Lemma 8.1 maintains at the end of the phase, then U; C Ul must hold.

The remaining phases are executed similarly, with several minor differences. We let U; be the set U
that the algorithm from Theorem 3.4 produces at the end of Phase (i — 1), and we denote H; = G\ U;.
We will ensure that the total number of edges that are deleted from graph G’ over the course of the
first (i — 1) phases is bounded by:

nl=20¢ . o

(=134

Since the total number of phases is bounded by #, this ensures that the number of edges deleted so
far from G’ is less than {g% = k. Therefore, from Theorem 3.4, graph H; is a ¢/(6A)-expander, and
furthermore, |U;| < n/2, so |V (H;)| > n/2. Denote ¢* = 5%, and note that:

k, _ n1—20€¢2 - ‘V(Hi)|1—206(¢*)2
T 21l AL | — A2

Therefore, we can apply the algorithm from Lemma 8.1 to graph H; with the sequence ¥; of edge

deletions. We denote by U; the incremental set of vertices of H; that the algorithm maintains. The

set U of vertices of G that our algorithm maintains over the course of the ith phase is defined to be

U, UU;.

Recall that the total number of edges that are deleted over the course of the first (¢ — 1) phases of the

algorithm from graph G'is (i —1)- k' > (i —1) - L%J.

Since the total number of edges deleted from graph G’ over the course of the first (i — 1) phases is
nl—20e.

bounded by (i — 1) - 551, from Theorem 3.4, we get that:

1-20e _ (;
~ n c(z—1
e PG
Consider some integer 0 < t < k’, and the time during the execution of phase i, immediately after
the t-th edge of ¥; is deleted from graph G in phase i. Then at this point, the total number of edges
deleted from graph G since the beginning of the algorithm is at least:

66

1—-20€, 12
my=(i—1)- LMJ + t.

At the same time:

nl—QOE AAL (1) n1—206 N 24A2t - 211A4 ;
=(@{-1)- -my.
4 4 o T 2 t

U= 0| + U] < (i = 1)

Notice that, over the course of the ith phase, V(H;) \ Ui = V(G) \ (U; UT;) = V(G) \ U holds.
Therefore, when short-path query arrives for a pair z,y € V(G) \ U of vertices, it must be the case
that x,y € V(H;) \ U;. We can then perform short-path query in the data structure maintained by
the algorithm from Lemma 8.1, to obtain a path P in the current graph H; C G, of length at most

0(1/%) A, 0(1/%) . p2. .
2 A-logn < 2 A=logn in

- < - time O(|E(P)|). We return this path as the response to the query.

From the above discussion, at every time ¢ during the execution of phase i, if m! is the number of
edges deleted so far by the algorithm, and U® is the current set U, then:

QA2
\U(t)|§ 2 -mi.

Once all edges of ¥; edges are deleted from graph G, we let E; be the set of all edges that are incident
to the vertices in the current set U;. Observe that:

4A2 24A3 1—20¢, 2 1-20€ |,
Bl<a o)<k <= g
©* @ 211 A4 64 - A

. 1-20e¢,,2
since ¢* = g% and k' = {WJ

We delete the edges of E; U E; from graph G’, and update the data structure maintained by the
n1—20€ 2

algorithm from Theorem 3.4. Since |E;| < k' = {ﬁj, we get that |E; U E;| < n 32A . Recall

that we have assumed that, over the course of the first (¢ —1) phases, the total number of edges deleted
1 206
from graph G’ is bounded by (i — 1) - *55x. We then get that, over the course of the first 7 phases,
1 206

the total number of edges deleted from graph G’ is bounded by i - *55x*. We then let Ui,1 the set
U that the algorithm from Theorem 3.4 maintains after the edges of E; U E; are deleted from G'.
Since the vertices from the set U; obtained at the end of phase i are isolated in graph G\ E;, while
graph G’ \ U;;1 must be a ¢/(6A)-expander, we get that U; C U;y1. We then let the set U that the
algorithm maintains be Uz+17 and we continue to the next phase, with the graph H; 1 = G’ \ Uz+1

It is easy to verify that the set U of vertices that the algorithm maintains is incremental. Indeed,
consider some phase i of the algorithm. Throughout the phase, we let U = U; U U;, where U is fixed
over the course of the phase, and U; is incremental. If we denote by U/ the set U; at the end of Phase
i, then we are guaranteed that U, C ﬁi+1, and, from Theorem 3.4, Ul - Ui+1. At the beginning of
Phase (i 4+ 1), we set U = Uj41, and so U; U U/ C U at this point. Therefore, set U is incremental
throughout the algorithm.

It now only remains to bound the total update time of the algorithm. The algorithm consists of at
most O(n?%¢) phases. In every phase, we run the algorithm from Lemma 8.1, whose total update time

<0 (22 <o ()

67

Additionally, the total update time of the algorithm from Theorem 3.4, over the course of at most m

deletions of edges from G, is bounded by 0] (”:‘pA;).

Altogether, the total update time of the algorithm is bounded by:

1+0(e) . AD " 2 1+0(e) . AD
Om™) . 0 (mA) 5 (mg) <0 (mA) |
2 ¥ ¥

In order to complete the proof of Theorem 2.4, it now remains to prove Lemma 8.1.

8.1 Proof of Lemma 8.1

We start by describing the data structures that the algorithm maintains, together with their initializa-
tion. We then describe an algorithm for maintaining the data structures under the deletion of edges
from G. Finally, we describe an algorithm for responding to short-path query.

Before we do so, we establish some bounds on the parameters that will be useful for us later. All of

these bounds follow from the fact that W <e< ﬁ holds, from the statement of Lemma 8.1.
First, since € > W, we get that logn > (2/€)'2, and:
n > 2(2/9™ > 9800% (11)
Additionally:
ne > p(2/(ogm)/12)% _1256/(1ogn)>/® o g(logn)'/? o log n. (12)

8.1.1 Data Structures and Initialization

We start by applying the algorithm from Corollary 5.3 to graph G, with the set T = V(G) of terminals,

64A log m 512A2logm

parameter € given by the statement of Lemma 8.1, and parameters d = o and n =)2

We claim that the algorithm may not return a pair 77, 7o C T of disjoint subsets of terminals, and a set
1-4e3

E' of edges of G, with |T1| = |T3|, |T1| > *—5— and |E'| < %, such that for every pair t € T, t' € Ty
of terminals, diste g (t,t") > d. Indeed, assume for contradiction that the algorithm returns a pair

T1,Ts of disjoint subsets of vertices of G with the above properties. Denote ¢ = %*, and note that
|E'| <] _ <p*8-\AT1| < ‘P'|4T1|. Note also that d = 64Awlfgm > 321257”. Clearly, we can view (T, Ty, E')
as a (0, dg-distancing in graph G, for some parameter 0 < § < 1. From Lemma 4.1, there is a cut
(X,Y) in graph G, with 71 € X and T5 C Y, such that |[Eq(X,Y)| < ¢ - min{|E(X)|,|E(Y)|}. Since
the maximum vertex degree in G is bounded by A, |E(X)| < A -|X], and similarly |[E(Y)| < A-[|Y].
Therefore, we are guaranteed that |E(X,Y)| < ¢-A-min{| X, |Y|} = ¢* -min {| X|, |Y|}, contradicting
the fact that G is a ¢*-expander.

We conclude that the algorithm from Corollary 5.3 must return a graph H with V(H) C V(G),
V(H)| = NY¢ > n—nl=¢/2 > n/2 where N = |n|, so that the maximum vertex degree in H is
at most n32€°. The algorithm also must return an embedding P of H into G via paths of length at
most d that cause congestion at most 7 - n32€3, and a level-(1/¢) hierarchical support structure for H,

such that H is (1, d)-well-connected with respect to the set S(H) of vertices defined by the support

68

structure, where i/ = N6+256¢ and d=2¢ 65, with ¢ being the constant used in the definition of the
Hierarchical Support Structure. Recall that the running time of the algorithm is:

3 1+0(e) . A3
1) <n1+0(e) + ’E(G)‘ _nO(e3) - (n + dlog n)) <0 <n1+0(e) + n1+O(e3) . A(Spl;))g;l) <O (W) .

(We have used the fact that d = 64%}#, n= 512@# and Inequality 12).

For every edge ¢/ € E(H), let P(e’) € P be the path embedding edge ¢ into G. For every edge
e € E(G), we will maintain a list L(e) of all edges ¢/ € E(H) with e € E(P(e’)). The list also
contains, for each edge ¢’ € L(e), a pointer to edge €’ in graph H, and each edge ¢’ € F(H) maintains
a pointer to every edge in F(P(¢’)). Whenever an edge e € E(G) is deleted from graph G, we
will delete every edge ¢/ € L(e) from graph H. Since the paths in P cause congestion at most

2,323 &3
n - n32¢° — 5124 '(7;*)2 logm A?"iiz in H, every deletion of an edge in G may trigger the deletion of

An

at most 1 = edges from H. Let ¢ = 1/e. Then the total number of edge deletions from graph

H over the course of the algorithm is bounded by:

nl—QOe(1—-16¢€

©*)?
A T

as ¢ = 1/e and § < N9,

2 2
— n1—206+33e X 51210gm < < Nq—16qe < Nq—8—300qe 7

Note that ' = N6+256c — N6+2560¢* _ n, and d = 2/ € = d,, where 7, and d, are the parameters
from the definition of Hierarchical Support Structure. We will use the algorithm from Theorem 7.1
in graph H, with parameter j = ¢, and parameters €, N remaining unchanged. In order to be able to

use the theorem, we need to verify that N N > 2128/€" holds. Since N = [n€], we get that:

4 6
N¢ > n > pet/2 > 9128/
logN ~— e-logn — - '

6)12

(we have used the fact that, from Inequality 12, logn < nﬁg, from Inequality 11, n > 22/9 and

€ < 1/400).

As observed already, the number of edge deletions that graph H undergoes over the course of the
algorithm is bounded less than N q—8-300ge* A4. We will maintain a data structure from Theorem 7.1
in graph H, with parameters e, N and ¢ as defined above. We denote this data structure by D(H).
At the beginning of the algorithm, we initialize this data structure. Recall that data structure D(H)
maintains a decremental set S’(H) C S(H) of vertices of H, called supported vertices, such that, at
the beginning of the algorithm, S’(H) = S(H). The algorithm ensures that |S'(H)| > {\éq holds over
the course of the algorithm, and it supports short-path queries between supported vertices: given a
pair z,y € S’(H) of vertices, return a path P connecting z to y in the current graph H, whose length
is at most dj = 20(a/<”) = 20(/°) 'in time O(|E(P)|). If m’ < n'*32¢ is the number of edges in H at
the beginning of the algorithm, then the total update time needed to maintain data structure D(H)
is bounded by:

0 <qu+3 L 90(1/%) 4t N2 20(1/66)) <0 <n1+0(5) . 20(1/65)) <0 <n1+0(5)>
(We have used the fact that, from Inequality 11, n¢ > 2(2/e)!%e > 20(1/66)).

69

Lastly, we maintain an ES-Tree data structure 7 in graph G, rooted at the set S’'(H) of vertices, with
depth parameter d = 64%&. Specifically, we maintain a graph G’, that is obtained from graph G by
adding a source vertex s, that connects to every vertex that lies in the current set S’(H) of supported
vertices with an edge. We then let 7 be an ES-Tree data structure in graph G’, rooted at s, with
depth d + 1. Whenever a vertex z is deleted from set S'(H), we will delete edge (s,z) from G’, and
update the data structure 7 accordingly. Also, whenever an edge e is deleted from graph G, we will
also delete e from graph G’, and update the data structure 7 accordingly. Throughout the algorithm,
we let U be the set of all vertices v € V(G), such that v € V(7). In other words, distg(S'(H),v) > d.
Clearly, the set U of vertices is incremental: vertices can joint it but they cannot leave it. In the next
claim we bound the cardinality of U.

Claim 8.2 Let t be any time during the algorithm’s execution, let E, be the set of edges that were
deleted so far from G, and let Uy be the current set U of vertices. Then |Uy| < %.

Proof: Assume otherwise, and let ¢ be some time during the algorithm’s execution, when |U;| > A5

Lp*
holds. Denote ¢ = -, so that |Ef| < ¢ - |Uy| /4.

Let S be the set S'(H) of vertices at time ¢. Recall that we are guaranteed that |S'(H)| > &2 > ST

holds throughout the algorithm. Since the total number of the edges deleted from G over the course
1—20€(,,*)2

of the algorithm is at most HA# = nl720¢p2 < pl=20¢. o we get that |E;| < n'=20¢. ». On the

other hand, from Inequality 11, n20¢ > 2%/¢+4 and so:

n nl=20¢ 4|E]|
>

/
‘St’224/e+1 = 4 T

be arbitrary subsets of vertices of cardinality M each. Let GV be the graph G at the beginning of
the algorithm. Clearly, distgo\;(X,Y) > d. Recall that d = 64%337” = 64lzgm. From Lemma 4.1,
there is a cut (X’,Y’) in graph G°, with with X C X’ and Y C Y, such that |Eqo(X',Y")| <
¢ -min{|Eqo(X")|,|Ego(Y")|}. Since |Ego(X")] < A-|X'| and |Ego(Y')| < A-|Y’|, we get that:

We conclude that |Ej| < £ -min{|Sj[,|U;|}. Denote M = min{|S}|,|U;|}. Let X C S}, Y C U;

|Ego (X", Y')| < ¢+ A-min {|X'|, Y[} = ¢" - min {|X'|, Y]},

contradicting the fact that graph GO is a ¢*-expander. O

At the beginning of the algorithm, we initialize the ES-Tree data structure 7, and set U =). The
mA long)

total update time needed in order to maintain 7 is bounded by O(mdlogm) < O (>

We now bound the running time that is needed to initialize all data structures, and to maintain data
structures D(H), 7, and {L(€)}.cpq) over the course of the algorithm. The running time of the

algorithm from Corollary 5.3, from the above discussion, is bounded by O <%§;§A3). The time that

is needed in order to initialize and maintain the lists L(e) for edges e € FE(G) is subsumed by this
running time. Additionally, from the above discussion, the total update time of data structure D(H)

is bounded by O (nHO(e)), and the total update time of data structure 7 is bounded by O (”m;#*g%).

The set U of vertices can be maintained within this asymptotic running time. Overall, the total time
needed to initialize all data structures, and to maintain data structures D(H), 7, and {L(€)}.cp(q)
over the course of the algorithm is bounded by:

70

ALGORITHM DeleteExpanderEdge(e)
1. For every edge ¢’ € L(e) do:
(a) Delete € from H and update data structure D(H). Let X be the set of
vertices that were deleted from S’(H) as the result of this update.
(b) For every edge ¢” € E(G) with ¢’ € L(e"), delete €’ from L(e").
(c) for every vertex z € X, delete edge (s,z) from graph G’ and update the

ES-Tree 7 with this deletion. Add every vertex that is removed from 7 to U.

2. Delete edge e from graph G’ and update data structure 7 accordingly. Add every
vertex that is removed from 7 to U.

Figure 2: Algorithm DeleteExpanderEdge(e)

Alog? 1+0(e) . A3 1+0(e) . A3
o () o (0) o (200
@ (") (#*)

8.1.2 Maintaining the Data Structures

Maintaining the data structures under the deletion of edges from G is now straightforward. In Figure 2
we describe algorithm DeleteExpanderEdge(e) that is invoked whenever an edge e is deleted from graph
G. We start by considering every edge ¢/ € E(H) whose embedding path P(¢’) contains edge e — in
other words, all edges of L(e). We delete each such edge €’ from graph H, and update data structure
D(H) with this deletion. As a result, it is possible that some vertices are removed from set S'(H). For
each such vertex z, we delete edge (s,z) from graph G’, and update the data structure 7 accordingly.
Finally, we delete edge e from data structure 7. Whenever a vertex leaves the tree 7, we add it to U.

It is easy to verify that the total update time of the algorithm is dominated by the time needed to
initialize the data structures, and to maintain data structures D(H), 7, and {L(e)}.cp(q)- From the

nHO(E)A?’)

above discussion, the total update time of the algorithm is bounded by O <)2

8.1.3 Responding to Short-Path Queries

We assume that we are given a pair of vertices xz,y € V(G) \ U, and describe an algorithm for
responding to short-path query between z and y. Recall that our goal is to return an z-y path P in

6G
the current graph G, of length at most w, with query time O(|E(P)|).

Using the ES-Tree 7, we compute a path @) connecting x to some vertex 2’ € S'(H), and a path Q’
connecting vertex y to some vertex 3y’ € S’(H), so that the length of each path is bounded by d. Next,
we query data structure D(H) with the pair 2,y € S'(H) of vertices. The data structure must return
a path Q connecting 2’ to ' in H, whose length is at most 200/<°) in time O(|E(Q)|). Using the
embedding P of H into GG, in which the length of every path is bounded by d, we can compute a path
Q" in graph G, connecting ' to ¢/, whose length is bounded by |E(Q)| - d < 20(1/<°) . 4. Lastly, by
concatenating the paths @, Q" and), we obtain a path P connecting x to y in graph G, whose length
is at most:

71

66 66
2001/%) g < 2001/<°) . A - logm < 2001/)-A-logn.
¢ a @

It is easy to see that the running time of the algorithm is O(|E(P)]).

9 Advanced Path Peeling — Proof of Theorem 2.5

In this section we prove Theorem 2.5. The main tool in the proof is the following theorem.

Theorem 9.1 There is a large enough constant c*, and a deterministic algorithm, whose input con-
sists of a connected n-vertex m-edge graph G, a collection M = {(s1,t1),..., (sg, tg)} of pairs of vertices
of G, such that M is a matching, and parameters d,n >0, 0 < a <1/2 and %/24 <e< ﬁ, such

(logm)
that 1/e is an integer and 256d < n < — holds. The algorithm computes one of the following:

d2
2¢* /€0 -log

e cither a cut (A, B) with |Eg(A, B)| < %M-min{]Eg(A)L |Ec(B)|}, and each of A, B contains

at least %k vertices of set T = {s1,t1,...,Sk,tp}; or

e a routing P in G of a subset M' C M containing at least (1 —)k pairs of vertices, such that
every path in P has length at most d, and the total congestion caused by the paths in P is at
4
most =L,
[e%

The running time of the algorithm is bounded by O (m1+0(€) (d* + nd)).

The proof of Theorem 2.5 easily follows from Theorem 9.1. Let z = E], and let ¢ = % Clearly,

€ 4

% < z < %, and so § < € < e. Since we have assumed that Togn) 172 <e< ﬁ, we get that

W <é < ﬁ. For convenience, in the remainder of the proof we will denote €' by e.

20*/€6+10.10gm 1024d _ 26*/66+20~10gm Tt

® ©?

Let ¢* be the constant from Theorem 9.1. We set d =
is immediate to verify that n > 256d. Observe also that:

and n =

d? _ 1024d
2/ logm @

We start by considering the case where é < logn. In this case, we apply the algorithm from The-
orem 9.1 to graph G, the set M of pairs of its vertices, and parameters d,7n,« and €. Assume first
that the outcome of the algorithm is a cut (A4, B) with |[Eg (A, B)| < 103}& -min {|Eg(A)|,|Ec(B)|} =
¢ -min{|Eg(A4)|,|Ec(B)|}, and |T'N A|,|T'N B| > %k. In this case, we return the cut (A, B) as the
outcome of the algorithm. Otherwise, the outcome of the algorithm from Theorem 9.1 is a routing
P in G of a subset M’ C M containing at least k- (1 — «) pairs of vertices, such that every path in

o(1/€8
P has length at most d < %

4y o 200/ Jogn
a — o p?

, and the total congestion caused by the paths in P is at most
. We then return this set of paths as the outcome of the algorithm.
The running time of the algorithm from Theorem 9.1 is bounded by:

O1/%) ou2n 200/) . 1og? 140(9
O (m'*+0O(d +nd)) < 0 <m1+0<€> (2 log'n | 2 ~log ”)) <0 (m -) .
¥ ¥ 2

72

Next, we consider the case where é > logn. In this case, we perform at most logn iterations. At the
beginning of iteration i, we are given a collection M; C M of pairs of vertices that have been already
routed, together with their routing P; in graph G. At the beginning of the algorithm, M; = () and
P1 = 0. The iterations continue as long as |M;| < (1 — a)k holds.

We now describe the execution of the ith iteration. Let M/ = M \ M;, and recall that |M]| > ak
must hold. We apply the algorithm from Theorem 9.1 to graph G, the set M/ of pairs of its vertices,
and parameters d,n,a’ = 1/2 and e. Assume first that the outcome of the algorithm is a cut (A, B)
with |Eg(A, B)| < 19244 . min {| E(A)|,|[Ea(B)|} = ¢+ min {|Ea(A)], |Ec(B)l}, and [T A}, [T B| >

|]i/[6i‘ > ?‘—g. In this case, we terminate the algorithm and return the cut (A, B) as the outcome of the

algorithm. Otherwise, the outcome of the algorithm from Theorem 9.1 is a routing P; in G of a subset
M; C M/ containing at least |M/|/2 pairs of vertices, such that every path in P has length at most

20(1/<%) 16g . . . 20(1/<%) 16g
d < — and the total congestion caused by the paths in P is at most 8n < — We
then set M;41 = M; U Mi, Pit1 =P U 75i, and continue to the next iteration.

Assume that the last iteration of the algorithm is iteration ¢. If the algorithm did not terminate with
a cut, then |M; 1] > (1 — @)k must hold. We then return the set M’ = M;; of pairs of vertices, and
their routing P = P;y1. It is easy to verify that the cardinality of the set M}, of pairs of vertices that
remains to be routed decreases by at least factor 2 in every iteration, and so the number of iterations in

the algorithm is bounded by log k. Since, for every iteration i, the congestion caused by the set P; of

. o(1/é%). . . 0(1/€%) 102
paths is at most 2,108 ! 2) logn the total congestion caused by the set P of paths is at most 258" il log”n
@ @

The running time of a single iteration is bounded by O <m1;30(6)> as before, and, since the number of

iterations is O(logn), the total running time of the algorithm remains bounded by O (ml;zgo «©)

In the remainder of this section we prove Theorem 9.1. Following is a key lemma that we use in the
proof.

Lemma 9.2 There is a large enough constant c*, and a deterministic algorithm, whose input consists
of a connected m-edge graph G with |V(G)| < n, a collection M = {(s1,t1),...,(Sk,tx)} of pairs of

vertices of G, such that M is a matching, and parameters d,n > 0 and W <e< ﬁ, such that

—~ holds. The algorithm computes one of the following:

, - &
1/€ is an integer, and 128d < n < 2777 Tog

e cither a cut (A, B) with |Eg(A, B)| < 6747—d -min {|Eg(A)|, |Ec(B)|}, and each of A, B contains

at least % vertices of set T = {s1,t1,..., Sk, tx}; or

e a routing P in G of a subset M' C M containing at least z = kl;lm pairs of vertices, such that
every path in P has length at most d, and the total congestion caused by the paths in P is at
most 1.

The running time of the algorithm is bounded by O (mHO(e)(n + dlog n))

We defer the proof of Lemma 9.2 to Section 9.1, after we complete the proof of Theorem 9.1 using it.
Our algorithm iteratively applies the algorithm from Lemma 9.2, while gradually constructing both a
routing of some pairs from M, and a low-conductance cut in G.

Let 0 = %’. Our algorithm consists of two stages. In the first stage, we either construct the desired
routing P of a large subset M’ C M of pairs of vertices, or compute a collection S of disjoint subsets
of vertices of G with some useful properties. In the former case, we terminate the algorithm and

73

return the resulting routing P, while in the latter case we continue to Stage 2, in which we exploit the
collection S of vertex subsets, in order to construct the desired low-conductance cut (A, B). We now
describe each of the two stages in turn.

Stage 1: Constructing a Routing

Let ¢ = 4d - k?*¢ - log k. Our algorithm in Stage 1 consists of at most ¢ iterations. At the beginning
of iteration ¢, we are given a subset M; C M of pairs of vertices with [M| < (1 —«)-k, and a routing
P, of the matching Mé in graph G. Additionally, we are given a collection S, of disjoint subsets of
vertices of G, and we denote A, = (Jg, s, 5+ We will ensure that the following invariants hold:

I1. every path in P, has length at most d;

2. [Py < (1—a)k;

I3. the paths in P, cause congestion at most 7’ in G;

I4. if we denote by Fy the set of all edges that lie on at least 7/ /2 paths in P, then) (USeSq 60(S)> \ B
% Zsesq |Ec(S)]; and

I5. [A,NT| < %

<

At the beginning of the algorithm, we set P; = () and S; = 0, so A; = () holds. Clearly, all invariants
hold for this setting. We now describe the execution of the gth iteration, for some ¢ > 1. We assume
that we are given a set Mé C M of pairs of vertices, a set P, of paths routing the pairs in Mé in G,
and a collection &, of disjoint subsets of vertices of G, for which invariants I1-I5 hold.

We let M, be a set of pairs of vertices of G, containing all pairs (s;,¢;) € M\ M, with s;,t; € V(G)\ Ag.

We also let G4 be the graph obtained from G, after we delete from it all vertices of A,, and all edges e €
E(G), such that e that belongs to at least 7'/2 paths of P;. In other words, Gy = (G\ 4;)\ E. Denote
kq = |My|. Since, from Invariant 15, |4, NT| < %, while from Invariant 12, M\ M| > k—|Py| > ak,
we get that k, > 0‘7’“ must hold. Notice that graph G, may not be connected. We assume first that
there is some connected component C, of graph G, and a subset Mq C M, containing at least kq/2
pairs, such that all vertices participating in the pairs in M, lie in Cj.

We apply the algorithm from Lemma 9.2 to graph Cj, the set Mq of pairs of vertices, and parameters
d, n, € that remain unchanged. We now consider two cases. The first case happens if the algorithm from
Lemma 9.2 returns a cut (Xg, Y,) in graph C, with |Eg, (X, Yy)| < %‘min {|Ea,(X)|,|Eq,(Yo)|} <

6747—d -min {|Eq(Xy)|,|Eq(Yy)|}. Recall that we are also guaranteed that each of X,, Y, contains at
1—e ~
least k"32 vertices of set T' = {Sz‘,ti | (si,ti) € Mq}. We say that iteration ¢ is a type-1 iteration.

We assume w.l.o.g. that | X, NT'| < |[Y;NT'|. We set Sg11 = S, U{X,}, and we let MéH = Mé
and Pyy1 = Py. It is immediate to verify that Invariants I1-I3 continue to hold for P,yq1. It is also
(USESq 50(5)) \Efz+1‘ < O Yses, |Ea(S)]. Let

E; = ((USeSq+1 5g(5’)) \ (USesq 50(5))) \ E;. Then Ey = Eg,(X,,Y,), and we are guaranteed that
|Ey| < % - |Eq(Xg)|. Therefore, we get that:

immediate to verify that £, , = Ej. Therefore,

74

U e | \Epn| < || U 0e(9) |\ Epp | + 1]
S€ES+1 SES,

64d 64d
<— > |Ea(9)|+ R [Ea(Xq)

T Ses,

Therefore, Invariant 14 continues to hold for ;1. If Invariant I5 continues to hold as well, then we
continue to the next iteration. Otherwise, we terminate the first stage, and continue to the second
stage.

Consider now the second case, when the algorithm from Lemma 9.2 returns a routing R, in G, of a

1-22¢
subset My C M containing at least kqQ -— Dairs of vertices, such that every path in R, has length at

most d, and the total congestion caused by the paths in R, is at most 7. In this case, we say that
iteration ¢ is a type-2 iteration. We set Pyi1 = Py URy and My, = M, U M. Clearly, Pyi1 is a
routing of the pairs in M, é 41 in graph G, and every path in P;41 has length at most d. Furthermore,
since the edges of G that participate in at least 7//2 paths in P, do not lie in graph Gy, and since
n <n'/2, we get that the total congestion that the paths of Pgy1 cause in graph G is at most 1. We
also set Sg11 = §,. Since Eé; C E; 11, it is easy to verify that Invariant I4 continues to hold for Sy 1,
and it is immediate to verify that Invariant I5 holds as well. If |Pgy1]| > (1 — o)k, then we terminate
the algorithm and return the set M’ = Mgy of pairs of vertices and the set P = P41 of paths. From
the above discussion, the paths in P are a routing of the pairs in M’; every path in P has length at
most d, and the paths in P cause congestion at most 7. Otherwise, if |Py41]| < (1 — «)k, then from
the above discussion, all invariants hold for P,,1 and Sy41, and we continue to the next iteration.

It remains to consider the case where for every connected component C' of graph G, the number of
demand pairs (s;,t;) € M, with s;,t; € V(C) is less than k,;/2. Let C denote the set of all connected
components of Gy, and let 77 = {s;,t; | (si,t;) € Mgy}, so |T'| = 2kq. For each component C' € C, let
nc = [V(C)NT'|. Then for all C' € C, n¢ < 1.5k, must hold. Let (A’, B’) be a partition of V(Gy), that
is computed as follows. We denote C = {C1,Cy,...,C,}, where the components are indexed so that
ne, > ney, > - > ne,. We start with A’ = B’ = (), and consider the components of C in the order of
their indices. When component C; is processed, if |[A'NT’| < |B'NT’|, then we add the vertices of C;
to A’, and otherwise we add the vertices of C; to B’. Consider the partition (A’, B") of the vertices of
V(G,) that we obtain at the end of the algorithm, and assume w.l.o.g. that |[A'NT'| > |B'NT'|. Tt is
easy to verify that |[A'NT'|— |B'NT'| < max; {nc,} < ne, < 1.5k, Since |T| = 2ky, we then get that
|A'NT'|,|B'NT'| > ¥ > ek We obtain a cut (4, B) in graph G by letting A = A’ U A, and B = B
Clearly, |ANT], |BNT| > &F. Next, we show that |Eg(A, B)| < 124.min {|Eg(A)|, |Ec(B)|}. Indeed,
it is immediate to verify that Fg(A, B) C Eél. Since the paths in P, have length at most d each, and

since /= %’7, we get that |Ep| < 2”:7?"6! < 0‘2—]:76[. On the other hand, since graph G is connected,
and since [A] > % we get that |Eg(A)| + |Eg(A, B)| > %%, Similarly, |Eq(B)| + |Eq(A4, B)| > 4.
Altogether, we get that: |Fy| < O‘TI;d < %d -min {|Eq(A)|,|Ea(B)|} + 877—d|Eg(A, B)|. Since n > 128d,

we get that:

|Ec(A, B)|

8d .
|[Ec(A,B)| < |E)| < 0 -min {|Eg(A)|, |[Ec(B)|} + 5 :

and so:

75

Bal(A, B)] < 2 - min (|G (A)]. |[Ea(B)]}

In this case, we terminate the algorithm and return the cut (A, B). We say that the current iteration
is a type-1 iteration.

This completes the description of the first stage of the algorithm. We now show that the number of
iteration in this stage is bounded by ¢’, and bound the running time of the algorithm.

Observation 9.3 The number of iterations in the algorithm is bounded by ¢' = 4d - k**¢ - log k.

Proof: We partition the execution of the algorithm into phases. For all ¢ > 1, the ¢th phase includes
all iterations ¢, for which % <Myl < 21% Clearly, the number of phases is bounded by log k. Next,
we bound the number of iterations in a single phase.

Consider some integer ¢, and denote by n; = % If iteration ¢ is a type-2 iteration that belongs to phase
1—22¢

i, then k; = |My| > n;, and, from Lemma 9.2, at least ni2 o— Dbairs of vertices are routed in iteration q.

Therefore, after 2d -n?2¢ type-2 iterations, the number of pairs that remain to be routed must decrease

by at least factor 2. We conclude that the ¢th phase may contain at most 2d - n?% < 2d - k??¢ type-2

iterations.

1—e

n;

If iteration ¢ is a type-2 iteration in phase i, then we are guaranteed that set X, contains at least

32
terminals that participate in pairs in M,. Therefore, after 32n§ < 32k° type-1 iterations, the number

of terminals in V(G) \ A, that remain to be routed (that is, the terminals of M), must decrease by
at least factor 4. We conclude that a single phase may contain at most 32k¢ type-1 iterations.

Overall, a single phase may contain at most 2d - k22¢ + 32k¢ < 3d - k%2¢ iterations, and the total number
of iterations in the algorithm is bounded by 3dk*%¢logk < ¢'. O
Since the running time of the algorithm from Lemma 9.2 is bounded by O (mHO(G) (n+ dlogn)), the
total running time of the first stage of the algorithm algorithm is bounded by O (mHO(e) (nd + d?log n))

o) (m1+0(e)(nd + d2)), since € > (logj)l/%’ SO Nt > n2/(logn)t/24 S 9(logn)3/24 > logn.

Stage 2: Computing the Cut

Assume that the last iteration of the algorithm was iteration q. Let E’ be the set of all edges e € E(G),
such that e belongs to at least 1’/2 paths of P,. Since the paths in P, have length at most d each,

and since 7' = %7, we get that |E/| < % < %’j}d. Let G’ = G\ E'. In the second stage, we
will compute a cut (A, B) in graph G’, with |Eq (4, B)| < % -min {|Eg(A)|, |Ec(B)|}, so that
each of A, B contains at least % vertices of 7. Assume w.lo.g. that |[Eg(A)| < |Eq(B)|. Since
graph G is connected, and since |A| > % we get that |Eg(A)| + |Eq(A, B)| > ‘i‘—g. Therefore,
[E'| < 4 < 8 (|Eg(A)| + |Ea(A, B)|). We then get that:

|Ec(A,B)| < |Ecr(A, B)| + |E'|

L2,) + 4: (IEa(A)| + |Ea(A, B)))

IN

4d
T’EG(A)’ + ?\EG(AB)’-

76

IN

Since 7 > 256d, we get that |Eq(A, B)| < 124 |Eq(A)| = 124 . min {|Eg(A)],|Eg(B)[}. In the
remainder of the algorithm, it is enough to compute a cut (A, B) in graph G’, with |Eg/ (4, B)| <
5177—% -min{|Eqg(A)|, |Ec(B)|}, so that each of A, B contains at least %k vertices of T'.

Recall that the last iteration of the algorithm was iteration ¢, and in iteration g we have computed a cut
(X4, Yy) of the connected component C; of the corresponding graph G. We denote Y, = V(G,) \ Xy,
so Y, C Yq’. We have also defined a set S;41 of disjoint subsets of vertices, with X, € S;41. Let
S =8411U {Y:;/} From the description of the algorithm, it is immediate to verify that the subsets of
vertices in &’ are all disjoint, and they partition V(G). Since the algorithm terminated at iteration g,
we are guaranteed that |4, 1NT| > %k Additionally, if 77 denotes the set of all terminals participating
in the demand pairs in Mq, then at least k, terminals from 7" lie in Cj;. Since we have assumed that
X, NT'| < |Y,NT|, we get that [V, NT'| >k > ak,

Let E" = Uges, ., c/(S) = (LJSESQ+1 6G(S)> \ B = <US€SQ+1 5G(S)> \ El,,. Recall that we have
established that Invariant I4 holds for Sy41, so |E”| < % ZSeSq+1 |Ec(S)].

We now consider two cases. The first case happens if |Eg(Y])| > 55| E”|. In this case, we consider
the cut (A, B) in graph G, where B = Y,/ and A = V(G)\Y,. From the above discussion |[BNT| > o
and [ANT| = |Ag1 N T| > 4. Moreover, |Eci(A, B)| < [E"| < 843 o o |Ea(S)| < S| E(A)].
Altogether, we get that |Eg/(A, B)| < |E”| < L:d -min{|Eg(A)|, |Ec(B)|}, as required.

From now on we consider the second case, where |Eg(Y,)| < 5z|E”|. We compute a partition
(A, B') of V(G) \ Y, as follows. Assume w.lo.g. that Sgy1 = {S1,52,...,5,}, where the sets are
indexed so that |Eg(S1)| > |Eq(S2)| > -+ > |Eq(S,)|- We start with A’ = B’ = (), and then
consider the sets Si,...,S, in this order. When set S; is considered, if |Eg(A4")| < |Eq(B’)|, then we
add the vertices of S; to A’, and otherwise we add the vertices of S; to B’. Consider the partition
(A', B') of V(G) \ Y, that we obtain at the end of this algorithm. If [A"NT| < |[B' N T, then we set
A=A"UY, and B = B'. Otherwise, we set A= A" and B = B'UY,. We now show that cut (4, B)
has all required properties. Assume w.lo.g. that |[A' NT| < |B’NT| (the other case is symmetric).
Then [BNT| = |[B'NT| > Wl > ak = Ao |ANT| > [Y/NT| > %, We next show that
|E"| < % -min{|Eqg(A)|,|Eq(B)|} in the following claim.

Claim 9.4 5194
|E"| < - min {|Eg(A)|, |Ec(B)|} .
Proof: Recall that we have denoted Sg1 = {S1,...,S5,}, where the sets of vertices S; are indexed

in the non-increasing order of the cardinalities of the corresponding sets of edges Eg(S;). We use the
following observation.

Observation 9.5 >\, |Eq(S;)| > ﬁ|E”|.

We prove Observation 9.5 below, after we complete the proof of Claim 9.4 using it. Since A’ C A and
B’ C B, it is enough to prove that |E"| < %l -min {|Eg(A")],|Eq(B’)|}. Denote M = =L |E"|. We
consider two cases. The first case happens if |[Eg(S1)| > M. Our algorithm then adds the vertices of
S1 to A’, and it will keep adding vertices from sets S; to B’ until |Eg(B’)| > |Eg(A’)| > M holds.
Therefore, we are guaranteed that, at the end of the algorithm, |Eg(A)|, |Eq(B')| > M = g5 |E"|,
and so |E"| < % -min {|Eg(A")|, |Ec(B’)|}.

Consider now the second case, where |Eg(S1)| < M. Assume for contradiction that |E"| >
min {|Eg(4’)|,|Eg(B’)|}, and assume w.l.o.g. that |Eg(A")| < |Eg(B')|, so |Eq(A")| < =5|E"].

512d
n

7

Recall that, from Invariant I4, 3 gcs .\ [Ea(S)] = sia|E"|. Since |Eg(A’)| < #5|E"|, it must be the

case that Y ses ... [Eq(S)| > kg E”|. Let S; € Sg41 be the set whose vertices were added to B’ last.
SCB’
Then at the time when the vertices of S; were added to B', |Eg(A’)| < £155|E"| held. Therefore, from

our algorithm, at the same time |Eg(B’)| < s55|E"| held. Therefore, at the end of the algorithm,
ZSequ: |Ec(9)] < =g E"| 4 |Eq(S;:)|. But since |Eg(S;)| < |[Eq(S1)| < M = g55|E"|, we get that
SCB/
> sesyi: [Ea(S)| < 5567 E"| holds at the end of the algorithm, a contradiction.
SCB

In order to complete the proof of Claim 9.4, it is now enough to prove Observation 9.5.

Proof of Observation 9.5. Let 1 < iy < iy < --- <1, = q be the indices of type-2 iterations. Recall

that for each 1 < j < r, in iteration i; we computed a cut (X;,,Y;;) of the connected component Cj;

of graph G, with]EGZ. (Xi;, Y5,)| < %d -min {|Eq(Xi,)|, |Ea(Y:;)| }-

We can then denote Sp+1 = {Xj,, 22,...,XZ-T}. For all 1 < j < r, we define a subset E; C E” of
edges that the set X;, of vertices is responsible for. We let E1 = dg/(X;,), and for 1 < j < r, we let
= o (Xy;) \ (B4 U---U Ej_1). It is easy to verify that (E1,..., E,) is a partition of E”.

Con81der now some index 1 < j < r, and the cut (X;;,Y;;) that our algorithm computed in iteration
. It is easy to verify that ¥;, € X; 1 U---UX; U Y/ Moreover, Ej = Eg, (X;;,Y;;) \ E', and so,
: 5\ iy L
from the above discussion:

64d .
|E;| < T - min {]Ec;(Xz'j)’, ’EG(Yz])‘} :

Assume w.l.o.g. that S1 = X; .. We partition the edges of E" into three subsets: set By = U1§j<j* E;;;
set Ey = Eij*; and set F3 = U, v <j<r E;;. From the discussion so far, we get that:

A 64d
&G

- 64d
J*<j<q

and

64d
|Bs| < . |EG(Yi,.)l-

Recall that Y;].* - Xij*+1 U---UX;, UY;Z'. Therefore, for every edge e € Eg(Yij*), either both endpoints
of e lie in one of the sets Xj= 11, , Xiz, Yy (in which case e € Eg(Xj.+1) U+ UEg(X;,) U Ec(Y,)),

or the endpoints of e lie in different sets of {Xz‘j*+17 e ,X,-T,Yq’}. In the latter case, e € E; .41 U
-+ E, UE' = F3 U E' must hold. Altogether, we get that:

78

Ba(Yi)l <) 1Ea(Xi)| + [Ec(Yy)| + | Es| + |E

j*<j<T
64d
(1+) S E(X,)| + |Ea(Y)| + |
A
51
<50 > 1Ea(Xi)|+ | Ea(Y)] + B,

Jr<j<r

(since n > 256d).

Recall that |E'| < C“QI:?‘I < %, while |Y,| > [T NY,| > %’“. Since Y, is a set of vertices of a con-

nected component of Gy, |Eq,(Yy)| + |Eq,(Xq, Yy)| > lé—“ > %k. Moreover, we are guaranteed that
Eg, (Y.

|Eg,(Xq. Yy) < 84| Eg, (V)] < P9 Therefore, | Ea(Y))| > [Ea(Yy)| > [Eq, (Y,)| = %%, and so

|E'| < ak < lEG(o) . Overall, we get that:

512
5 51|Eq(Y,)]
B (Y.)|l < 7 |EG(Xi,)| + ———
i 4 . 50
Jr<g<r
Altogether:
80d 80d
|Bol < — > |Ea(Xy)| + f\EG s
Jr<j<r
and:

144d 80d
‘E”‘—‘EIH“Eﬂ‘HES‘<7Z‘EG I+ = 1Ea(Y, -

Recall that we have assumed that |Eq(Y;)| < 5255 E”|. Therefore, we get that |E"| < % > o |Ec(Sa)|+
B2, and so Y0y |EG(Sa)| = 555l E"]. O O
Since E¢/ (A, B) C E”, we get that, in the second case, |Eg/ (A, B)| < |E"| < 5117—2d-min{\Eg(A)], |Ec(B)|}
holds. To conclude, we have computed a cut (A, B) in graph G, with |[ANT|,|BNT| > %’“ and
|Ec(A, B)| < 224 - min {|Eg(A)], | Ec(B)|}.

Recall that the running time of the first stage of the algorithm is at most O (m”o(e) (d? + nd)), while
the running time of the second stage can be bounded by O(m). Therefore, the total running time
of the algorithm is O (mHO(E)(d2 +nd)). In order to prove Theorem 9.1 it now remains to prove
Lemma 9.2, which we do next.

9.1 Proof of Lemma 9.2

We denote T' = {s1,t1,..., Sk, tx}, and for convenience we denote by k= |T| = 2k.

The algorithm consists of two stages. In the first stage, we apply the algorithm from Corollary 5.3
to graph G and the set T of terminals. If the algorithm returns two subsets 77,75 C T of terminals

79

and a set E’ of edges (essentially defining a distancing (73,7T%, E')), then we will use the algorithm
from Lemma 4.1 in order to convert this distancing into a low-conductance cut (A, B) as required.
Otherwise, the algorithm must embed a large graph H into G, and construct a level-(1/e) hierarchical
support structure for H, so that H is (1, d)-well-linked with respect to the set S(H) of vertices defined
by the hierarchical support structure. In this latter case, we continue to Stage 2. In Stage 2, we will
initialize an ES-Tree data structure, rooted at the set S(H) of vertices in graph G. Additionally, we
will maintain a data structure from Theorem 7.1 in order to support approximate short-path queries
in graph H, as it undergoes edge deletions. We will use these data structure to iteratively identify
pairs (s;,t;) € M of vertices, that can be connected via a short path P; in G. The corresponding path
P; is then added to the routing P that we are constructing, and every edge of G that currently appears
on 7 paths in P is deleted from G. Edges of H whose embedding paths have thus been eliminated will
be deleted from H. The algorithm terminates when we can no longer route the remaining paths of P
via short paths. If, by that time |P| > z, then we return the routing in P. Otherwise, we will obtain
a distancing in graph G, that can again be converted into a low-conductance cut. Before we describe
each of the two stages, we need to consider an easier special case where k < n€.

9.1.1 Special Case: k < nf

For all 1 <i <k, let A; = {s;} and B; = {t;}. We apply Procedure ProcPathPeel from Lemma 3.12
to graph G and the collections Ay, By, ..., Ag, B of subsets of its vertices, and parameters d and
n. Let P1,...,Pr be the collection of paths that the algorithm outputs. Then for all 1 < i < k,
either P; = (), or P; contains a single path P;, connecting s; to t; in G. Let P = Ule P;, and let
M’ C M contain all pairs (s;,t;) € M, such that some path in P connects s; to t;. Clearly, P is a
routing of the pairs in M’, and we are guaranteed that every path in P has length at most d, and the
paths in P cause congestion at most 7. Let E’ be the set of all edges of G that participate in exactly
n paths in P, and let M” = M \ M’. From Property P3, for every pair (s;,t;) € M" of vertices,

dist\ g (i, ti) > d. Notice also that |E'| < ZPEPn‘E(P)l < d'g)‘. Recall that the running time of the
algorithm is O(mn + mdklogn) < O(mn®9d +mn) < O (M) (y + dlog n)).

We now consider two cases. The first case happens if |P| > z. In this case, we return the routing P
of the set M’ of pairs of vertices.

Consider now the second case, where |P| < z. In this case, |M"| > k—2z > k/2. Let T C T be the set
of all vertices that participate in the pairs in M”, and let G = G\ E'. Since, for every pair (s;,t;) € M"
of vertices, dists(si, t;) > d, we get that for every vertex z € 7', |Bs(z,d/2)NT"| < |T"|/2. Let A = &
and d = % = 1‘%. We apply Procedure ProcSeparate from Pemma 3.10 to graph G, the set T” of
terminals, parameters A, a = 1/3, and distance parameter d replacing d. Note that the algorithm
may not return a terminal ¢ € 7" with |Bx(t, A-d)NT'| = |Bi(t,d/2)NT'| > o|T'|, since, as observed
above, for each such terminal ¢, |Bs(t,d/2) N T'| < |T']/2.

Therefore, the algorithm must return two subsets 77,75 of terminals, with |T}| = |T5|, such that
111—64/A —e . . . -
T1| > EM 3 > kiﬁ . Moreover, for every pair t € T1, t' € T of terminals, dists(t,t') > d = %58.

Recall that the running time of Procedure ProcSeparate is bounded by O(m-|V (G)[04/2) < O(m!+0(9).
Recall that |E’'| < % < %’Z = # < %'Tl‘. Clearly, (T1, Ty, E') is a (4, d)-distancing in graph G,
for some parameter 0 < § < 1. Let ¢ = %, so that |E'| < @. Since n > 128d, we get that ¢ < 1/2.
Notice also that:

q— ﬁ S nlogm _ 3210gm’
128 = d ®

80

d? d?e

7T dogm = T8 logm from the statement of Lemma 9.2.

since n <

We can now use the algorithm from Lemma 4.1 to compute a cut (A, B) in graph G, with T3 C A,
T, C B, such that |Eg(A, B)| < ¢-min{|Eg(A)|, |Eq(B)|} < % ‘min {|Eg(A)|,|Eq(B)|}. We return
the cut (A, B) as the outcome of the algorithm. From the above discussion, |[ANT|,|BNT| > |T1| >

klfe
16 -

The running time of the algorithm from Lemma 4.1 is bounded by O(m), and so the total running
time in Case 1 is bounded by O (m!'*© (5 + dlogn)).

From now on, we assume that k& > n°. The remainder of the algorithm consists of two stages, that we
now describe.

9.1.2 Stage 1: Embedding a Well-Connected Graph

In this stage, we will apply the algorithm from Corollary 5.3 to graph G and the set T of terminals.

In order to be able to do so, we need to ensure that € > W holds. Recall that k = 2k > 2n¢

from our assumption. Therefore:

212 212 212

= < < .
logk ~ log(2n¢) ~ e-logn

2

From our assumption that € > ~——=57., we get that logn > z%l Therefore:

(logn)
912 23
= < —.
loghk — 212
We conclude that:
2 2

€>

- > - . 1
(log k)1/23 - (log k)1/12 (3)

1 _ _8d /o
Let d = 20*/56 and n = W

terminals, parameters d’, 1, and parameter ¢ that remains unchanged. Recall that the running time
of the algorithm is:

We apply the algorithm from Corollary 5.3 to graph G, set T of

O <k1+0(€) +m - kOE). (n' +d'log m)) <0 <m1+0(6) (d + 77’)) <0 <m1+0(6) (d+ 77)))

We now consider two cases.

Case 1. The first case happens if the algorithm from Corollary 5.3 returns a pair 71, T> C T of disjoint

F1_4¢3
subsets of terminals, and a set E’ of edges of G, such that |T7| = |T3| and |T3| > % >
Recall that the algorithm also guarantees for every pair ¢ € T1,t € Ty of terminals, distey g/ (¢, ") > d'.

pl—4e3

Moreover, we are guaranteed that: |E’| < % = %. Denote ¢ = %d, so that |E'| < @ holds.
Since 1 > 128d, we get that ¢ < 1/2. Since n < ﬁ, we get that:
-logm

3210gm_87710gm< 8d ,

v g = geje =

81

We can now apply the algorithm from Lemma 4.1, to compute a cut (A, B) in graph G, with 71 C A,
T> C B, such that |Eg(A,B)| < ¢ - min{|Eg(A)|,|Eq(B)|} = %d -min {|Eg(A)|,|Ec(B)|}. The
running time of this algorithm is bounded by O(m). We return the cut (A, B) as the output of the

algorithm. Clearly, |[ANT)|,|BNT| > |Ty| > 5 463 >k
Y, 1 Z 16 *

Case 2. In the second case, the algorithm from Corollary 5.3 must return a graph H with V/(H) C T,
V(H)| = NY¢ >k — k'~/2 where N = VﬁEJ = | (2k)¢], so that the maximum vertex degree in H is
at most k32¢°.

Recall that the algorithm must also return an embedding P* of H into G via paths of length at most
d', that cause congestion at most 7’ - 1253263, and a level-(1/€) hierarchical support structure for H,
such that H is (7, cZ)—well—connected with respect to the set S(H) of vertices defined by the support
structure, where 7 = N6+256¢ and d = 2¢ 55, with ¢ being the constant used in the definition of the
Hierarchical Support Structure. In this case, we continue to Stage 2 of the algorithm.

This completes the description of the first stage of the algorithm. From the above analysis, the running
time of this stage is bounded by O (m - n®(d + n)).

9.1.3 Stage 2: Computing the Routing

In this stage, we start with P = (), and then gradually add paths to P. We also maintain a graph
G, where initially G = G. As the algorithm progresses, every edge e € E(G) that participates in n
paths of P is deleted from G. Therefore, we can think of graph G as a dynamic graph, with edges
deleted from G over time. Whenever an edge e is deleted from graph G, for every edge € € E(H)
whose embedding path P(e’) € P* contains e, we also delete edge €’ from graph H. Therefore, graph
H can also be viewed as a dynamic graph. We will maintain the following data structures throughout
the algorithm.

The first data structure, that we denote by D(H), will be used in order to support approximate
shortest-path queries in graph H. The data structure is maintained using the algorithm from Theo-

rem 7.1. Recall that N = V;EJ, and that we have established in Inequality 13 that W <e<

4
1/400. In order to be able to use Theorem 7.1, we need to verify that lffw > 2128/<° polds. Indeed

observe first that, since ¢ > W, we get that

fe s R/ (ogR)/12)8 _ £256/(10g)/ o o(logB)1/® S o4

Additionally, from the inequality € > we get that logk > (2/€)*2, and:

k> o@/a" (14)

Lastly, since N = LIEEJ and € < 1/400, we get that:

4 > .6
1NEN]‘;’6 - > %66/2 > 21/56 > 2128/66.
0og € -log

We let ¢ = 1/e. We maintain the data structure from Theorem 7.1 in graph H, with parameters j = ¢,
and parameters N and € that remain unchanged. Recall that we are given a level-q hierarchical support

82

structure for H, such that H is (7, cZ)—well—connected with respect to the set S (H) of vertices defined
by the support structure, where 7 = N6+256¢ — NO+2560¢* — pp and d = 2¢/€" = 29/ = d,,, where 7,
and d, are the parameters that are used in the definition of the Hierarchical Support Structure.

We denote the data structure that the algorithm from Theorem 7.1 maintains by D(H). Recall that
this data structure can withstand the deletion of up to Ay = N q—8-300ge* — pq—8—300e edge deletions
from graph H. As long as fewer than A, edges are deleted from H, the algorithm maintains a

decremental set S'(H) C V(H) of vertices, with |S'(H)| > % — \‘/1(61;1)\ > 25/6.

The algorithm supports short-path queries between vertices of S’(H): given a pair xz,y € S'(H)
of vertices, return a path P connecting x to y in the current graph H, whose length is at most
d = 200/€) = 200/<) iy time O(|E(P))).

If we denote by m’ the number of edges in H at the beginning of the algorithm, then the total update
time of the algorithm is bounded by:

O (q Na+3 .90/ L N2 2@(1/66)) .

Recall that N < ke < nf, and maximum vertex degree in H is at most nO€) . Recall also that N9 <n,
and ¢ = 1/e. Furthermore, as established in Inequality 14, n > k > 2(2/6)12, and so 20(1/€%) < no9,
It is then easy to verify that the running time of the algorithm is bounded by O (nHO(E)).

The second data structure is, intuitively, an ES-Tree in G that is rooted at the set S’(H) of vertices,
and whose depth parameter is d/2. Specifically, we maintain a graph G’, that is defined as follows.
Initially, we obtain graph G’ from G, by adding a source vertex s, that connects to every vertex
v € S(H) with an edge. As the algorithm progresses and new paths are added to the set P of paths
that we construct, whenever some edge e € E(G) appears in 1 paths of P, we delete e from G’. For
every edge ¢’ € E(H), whose embedding path P(¢’) € P* contains edge e, we also delete ¢’ from H,
and update data structure D(H) accordingly. If, as the result of this update, some vertex x is deleted
from set S’(H), then we also delete edge (s, z) from graph G’. We maintain an ES-Tree data structure
in graph G’, rooted at vertex s, with depth bound d/2 4+ 1. We denote the data structure, and the
corresponding tree, by 7. The total update time that is needed in order to maintain the ES-Tree data
structure 7 is bounded by O(mdlogn).

Lastly, for every edge e € F(G), we maintain a list L(e) of all edges ¢/ € F(H), such that the
embedding path P(e’) € P* contains e. We also maintain a pointer from e to every edge in L(e) and
back. Recall that the embedding P* causes congestion at most 7’ - 153263, so the length of each such
list is bounded by 7’ - k32, Moreover, the deletion of an edge e € E (@) from graph G’ may trigger
the deletion of at most 7’ - f;32¢° edges from graph H. We will ensure that |P| < z holds throughout
the algorithm, and that every path in P has length at most d. Therefore, if we denote by E' C E(G)
the collection of all edges that participate in n paths in P, the we are guaranteed that throughout the
algorithm:

B’ <

Srep E(P) _[Pld _ 2d
n n n

Therefore, the total number of edges that may be deleted from graph H over the course of the algorithm
is bounded by:

83

zd 13268 < p1-22e 13268

—_ 77
n
< Jl-21e
N4 .94
< N2leg
< N9 < A,
(For the first inequality, we have used the fact that z = %, k<Ek and nf = gﬁ% < 7. For the

third inequality we used the fact that N = V@EJ, and ¢ = 1/€, so N9 < k < N7.27 holds. The fourth
T e 9
inequality follows since 27 = 21/¢ < <%) < N? from Inequality 14.)

If (s;,t;) is a pair of vertices in M, then we say that s; is a mate of t;, and ¢; is a mate of s;. Throughout
the algorithm, we will also maintain a subset S”(H) C S’(H) containing all vertices x € S’(H), such
that no path in P has x as its endpoint, and the mate of z still lies in the tree 7. We also maintain,
for every edge e € E(G), a counter n(e), counting the number of paths in P that contain e.

We are now ready to describe our algorithm. The algorithm consists of at most z iterations, and they
are performed as long as |P| < z and S”(H) # () hold.

In order to perform a single iteration, we let x be any vertex in set S”(H). Assume w.lo.g. that
x = s;, and that its mate is ¢;. Since x € S”(H), vertex t; currently lies in the tree 7. Using the tree,
we can compute a path @ in graph G’, that connects t; to some vertex y € S(H’), so that the length
of the path is bounded by d/2, and the path does not contain any vertices of S'(H) \ {y}. This can
be done in time O(|E(Q)|). Next, using data structure D(H), we compute a path Q' connecting y
to s; in graph H, such that the length of the path is bounded by 20(1/¢) " This can be done in time
O(|E(Q")|). Lastly, by replacing every edge ¢ on path Q' with its embedding path P(e/) € P*, we
obtain a path @’ in graph G, connecting y to s;, whose length is bounded by:

90(1/€%) yr <d/2,
8d

PYCYRE
and @', we obtain a path P, connecting s; to t; in graph G, whose length is at most d. If path P is
not simple, then we convert it into a simple path, in time O(d). This can be done, for example, by
traversing the vertices of P in the order of their appearance on the path, and marking every vertex
that has been traversed in an array of length n. Whenever we attempt to mark a vertex v that was
already marked before, we recognize that we closed a simple cycle C C P. We can then retrace this
cycle and un-mark all its vertices except for v. We delete all vertices of C'\ {v} from P, and continue
the traversal of P starting from v. Since every vertex on P may be traversed at most twice (once when
we visit it for the first time, and the second time when we remove a cycle on which that vertex lies),
this algorithm takes time O(d), assuming that we are provided an empty array of length n, that can
be used in order to mark and un-mark the vertices of P. At the end of this procedure, we un-mark
every vertex of P, so the array can be reused in the next iteration. We denote the resulting simple
path P by P;, and we add P; to the set P of paths that we maintain.

since d' = and we can assume that ¢* is a large enough constant. By combining the paths @

Next, we consider every edge e € E(F;) one by one. For each such edge e, we increase the counter
n(e) by 1. If n(e) = n holds, then we delete e from graph G’, and update data structure 7 accordingly.
Additionally, fo every edge e’ € L(e), we delete ¢ from graph H, updating the data structure D(H)

84

accordingly, and we update all lists L(e”) of edges ¢” € E(G) with ¢ € L(e"), by deleting €’ from
L(e").

As the result of these updates to data structure D(H), we may have deleted some vertices from set
S'(H). Let Y be the set of all such vertices. For every vertex v € S'(H), we delete the edge (s,v)
from graph G’, and update the data structure 7 accordingly. We also delete v from set S”(H) if it
belongs to this set.

Lastly, whenever a vertex u leaves tree 7, if either u or its mate v’ lie in S”(H), then we delete both
vertices from S”(H). We also delete s; and t; from S”(H). This completes the description of an
iteration. Besides the time that is needed in order to maintain data structures D(H), 7, S”(H), and
{L(e),n(e)}eep(c), the additional time that is needed in order to execute an iteration is bounded by

0(d).

We now consider two cases. In the first case, the algorithm terminates with |P| > z. In this case, we
return the set P of paths as the algorithm’s outcome, together with the collection M’ C M of pairs
of vertices, containing every pair (s;,t;) € M for which some path connecting s; to t; lies in P. It is
easy to verify that the set P of paths has all required properties.

Consider now the second case, when |P| < z = kl:iw < 216 5167 (from Inequality 14). In this case, the

algorithm must have terminated because S”(H) = () holds. Since the number of vertices that serve as
endpoints of paths in P is bounded by 2z < While we are guaranteed that [S'(H)| > 5 /E, there

216/5)
must be a set X C S’(H) of at least 1S"(H)| (H)| > 216/6 vertices, such that, for every vertex z € X, no
path in P has x as its endpoint, and the mate of x does not belong to the tree 7. Therefore, if we
denote by X’ the set of vertices that are mates of the vertices of X, then, in the current graph G’,
diste/ (X, X') > d/2. Clearly, X’ N X = 0, and |X'| = |X|. Let E’ be the set of all edges of graph G
that belong to n paths of P. Then |E'| < ‘P% < %- | X|. Moreover, distey g (X, X') > d/2. Therefore,
(X, X', E) is a (§,d/2)-distancing in graph G, for some parameter 0 < ¢ < 1.

. . 2
We denote ¢ = 47]—d, so that |E'| < % holds. Notice that: 32l;gm = Snloam 4 gince n < W
logm

from the statement of Lemma 9.2. We can now apply the algorithm from Lemma 4.1, to compute
a cut (A, B) in graph G, with X C A, X' C B, and \Eg(A B)| < ¢ -min{|Eg(A)|,|Ec(B)|} =
4nd min {|E¢(A)|, |Ea(B)|}. Recall that | X/, |X'| > 216/5 > le , since 216/¢ < 16k¢ from Inequality
14. We then return the cut (A, B) as the output of the algorithm. The running time of the algorithm

from Lemma 4.1 is O(m).

It now remains to analyze the running time of the algorithm. The running time of Stage 1 is bounded
by O (m'*9)(d + 1)), as shown already.

In order to analyze the running time of Stage 2, recall that the total update time for maintaining
data structure D(H), as established already, is bounded by O(n!T©(), and the total update time for
maintaining data structure 7 is bounded by O(mdlogn). Since the paths in P* cause congestion at
most 7'-kC(*) | maintaining the lists {L(e)}eep(q) takes total time O(m-n/-kO)) < O(mnkC). The
time required for additional computation in every iteration (that is, computing the path P, converting
it into a simple path, and reducing the counters n(e) for all edges e € E(P)) is bounded by O(d). The
number of iterations is bounded by O(k). The running time required for the remaining calculations
that the algorithm performs (such as, for example, applying the algorithm from Lemma 4.1 to compute
a low-conductance cut at the end of the algorithm if |P| < z) is subsumed by the above running times.
The total running time is then bounded by:

© (mlm(e)(d + 77)) +0(n'*09) + O(mdlogn) + O(m - - k%)) < O (mHO(E) (d+ n)) ‘

85

10 An Algorithm for the Cut Player in the Cut-Matching Game —
Proof of Theorem 2.6

In this section we provide an algorithm for the Cut Player in the Cut-Matching Game, proving The-
orem 2.6. The algorithm consists of a number of phases. At the beginning of phase ¢, we are given a
partition (X, Yy) of V(G), with | Xy| > 32, and |Eq(X,, Yy)| < %. At the beginning of the algorithm,
we use the partition (X7,Y7) of V(G), with X; = V(G) and Y; = (). We now describe the execution

of Phase q.

Let G, = G[X,]. Assume first that, for every connected component C' of graph Gy, |V (C)| < 5n/8.
Let C be the largest connected component of G,. If |V(C)| > n/4, then we return a cut (A4, B) in
graph G with A = V(C) and B = V(G)\V(C). Clearly, |A| > n/4, and, since |A| < 5n/8, we get that
|B| > n/4 as well. Moreover, Eg(A, B) C Eq(X,,Y,), and so |Eg(A, B)| < % < 105- Otherwise,
if [V(C)| < n/4, then we compute a partition (A, B) of V(G) as follows. We start with A = () and
B =Y, and then process every connected component C’ of G, one by one. When a component C” is
processed, if |A| < |B] holds, then we add the vertices of C’ to A, and otherwise we add them to B.
Since every connected component of G, contains at most n/4 vertices, and |Y;| < n/4, it is easy to
verify that at the end of the algorithm, |A|,|B| > n/4 holds. As before, Eq(A, B) C Eq(X,,Y,), and
Yyl

so |[Eg(A,B)| < 155 < 155- We terminate the algorithm and return the cut (A4, B).

We assume from now on that there is a connected component Gf, of graph G, with |V (G})| > 5n/8.
We denote n, = [V(GY)|. We use algorithm CONSTRUCTEXPANDER from Theorem 3.3 to construct
a graph H,, with |V (H,)| = ng, such that H, is an ag-expander, and maximum vertex degree in H,
is at most 9. The running time of this algorithm is O(ny) < O(n). It will be convenient for us to
identify the vertices of H, with the vertices of Gj. In other words, we assume that V(H,) = V(Gy),
by arbitrarily mapping every vertex of H, to a distinct vertex of sz.

Using a simple standard greedy algorithm, we compute, in time O(n), a partition My, My, ..., Mg
of the set E(H,) of edges, so that, for each 1 < ¢ < 19, M; is a matching. We use a parameter

— n A
P = T AsTogEn’ where ¢ is a large enough constant.

Next, we perform 19 iterations. For 1 < ¢ < 19, in the ith iteration, we use the algorithm for advanced
path peeling from Theorem 2.5 in order to embed the edges of M; into graph G; with low congestion.
If we successfully embed all but at most p edges of M;, then we partition the set M; of edges into two
subsets: set M/ containing all edges that we managed to embed, and set F; containing all remaining
edges. We say that the ith iteration ended with a routing, and continue to the next iteration. If we
failed to embed a large enough subset of M; into G;, then we will compute a sparse cut in graph G;,
that will allow us to update the partition (A, B,) of V(G). We then say that the ith iteration ended
with a cut, and terminate the current phase. If every one of the 19 iterations ended with a routing,
then, by letting letting G;’ be the graph that is obtained from Gﬁ] by adding to it a set U£1 F; of
fake edges, we obtain an embedding of H, into Gg with low congestion. We can then use Algorithm
AlgExtractExpander from Lemma 3.5, to extract a large enough expander graph G* C Gfl. We now
describe the execution of a single iteration.

Consider an index 1 < i < 19. If |M;| < p, then we let M/ =0, P; =0, F; = M;, and continue to the
next iteration. From now on we assume that |M;| > p.

We apply the algorithm from Theorem 2.5 to graph G; and the set M; of pairs of its vertices, with

parameters €, ¢ = ﬁ, and a = 2|]f4i|, so 0 <a< % holds. Recall that W <e< ﬁ, and so

logn > (%)25. Since ng > n/2, we get that log(ng) > logn —1 > (%)24. Therefore, the condition of

Theorem 2.5 that W <e< ﬁ holds. We denote by T; the set of all vertices of G, that serve

86

as endpoints of the edges of M;, so |T;| = 2|M;| > 2p.

We now consider two cases. In the first case, the algorithm from Theorem 2.5 returns a cut (Ag, B q) in
Gy, with |Egr (Ag, By)| < ¢ - min {|Eg(A)|, |Ec(Bg)|}, such that [Ag N T, | By N > < |M| > 4. In
this case we say that iteration ¢ ended with a cut. Since maximum vertex degree in G is at most A we
get that |[Eg(Aq)] < A-]A,| and |Eg(B,)| < A-|Byl, and since ¢ = ﬁ, we get that [Eq; (Aq, Bg)| <
1055 min {|Eq(Ag)|, [Ea(By)|} < 1o - min{|Ag],[By|}. Assume w.lo.g. that |[Ag| > [By|. Since we
have assumed that |V (G})| > 5", we get that [Ag| > 22 > 2 We set X1 = Ag and Yyq1 = V(G)\ A,
Clearly, (Xq41,Yg41) is a partition of V(G), and, from our discussion, [Xq41| > . Moreover, we can
think of the cut (X441, Y5+1) as obtained from cut (X, Y;), by moving all vertices of V(G,) \ A4 from
Xq to Yy Therefore |[Ec(X q+1, tH-l)’ < ’EG(XIDY” + |EG(Aqu)| < 1(1)0|Y |+ 1(1)0|B | < 17(1)0|Y;1+1|
If \Xq+1| > < then we terminate the current phase and continue to Phase (¢ + 1). Otherwise we
return the cut (A, B) = (Xg41,Yg41). In the latter case, we are guaranteed that [A|,|B| > %, and
Ea(A, B)| < b [Vyu| <

In the second case, the algorithm from Theorem 2.5 computes a routing P; in G; of a subset M C M;
containing at least (1 —)| M;| = |M;| — § pairs of vertices, such that the total congestion caused by

. . 0(1/€5) 1502
the paths in P; is at most % < 20(1/¢) . A2 . 1og? n. In this case, we say that iteration i

ended with a routing. For every edge e € M/, we let P(e) € P; be the embedding path of edge e. We
set F; = M; \ M/, so |F;| < £, and we continue to the next iteration. This concludes the description
of the ith iteration. We now complete the description of Phase q.

If any iteration in Phase ¢ ended with a cut, then the phase is terminated as described above. We
assume therefore from now on that every iteration in Phase ¢ ended with a routing. Let ' = Uili1 F;
Recall that, for all 1 <i < 19, |Fi| < p, so |F| < 19p. Consider the graph Gy = G U F', where we
treat the edges of F' as fake edges. For every fake edge e € F, we let P(e) = {e} be a path that
embeds the edge e into itself in graph Gi]’ . Note that the maximum vertex degree in G” is at most
A +19 < 19A. We have also now obtained an embedding P” = {P(e) | e € E(H,)} of H into Gy,

such that the paths in P” cause congestion 1, where n < 20(1/¢%) L A2. log? n.
For convenience, we denote the maximum vertex degree of GZ by Ag < 19A, the maximum vertex
degree of H, by Ay <9, and ¢ = . Notice that:

Y- ng > Qg - 1N > n
32A6m ~ 200/¢%) . A3 . log?n ~ 200/) L A3 . log?n

> 20p > |F],

since p = and ¢ is a large enough constant. We can then use the algorithm AlgExtractExpander

- n
2¢/<5.A3.1og2 n’

from Lemma 3.5 to compute a subgraph G* C Gy, such that G* is a v’-expander, for ¢’ > 6&2.” >
m. Moreover, since |F| < 3;& & we get that 4‘F"7 < 82‘1 , and so |[V(G*)| > ng — @ >
1?6 Since ng > 22, we get that [V (G*)| > %. We return the set S = V(G¥) of vertices and terminate

the algorithm.

We now bound the running time of a single phase. A phase has at most 19 iterations, and in every

O (mHO(E) : A3). Additionally, the running time of the algorithm from Lemma 3.5 is bounded by

O(|E(®)|A¢ - n/v) < O (n-A4) 20(1/66)) <0 (n1+o(e) -A4) (since € > W’ son > 2(2/6)25)‘

Overall, the running time of a single phase is bounded by O (mHO(E) . A4).

iteration we use the algorithm from Theorem 2.5, whose running time is bounded by O <m1;?(e)) <

Next, we bound the number of phases. Note that in every phase, the cardinality of the set Y, of

vertices grows by at least 45 > W. Therefore, the number of phases is bounded by
€. log®n

87

20(1/¢%) . A3. log? n, and so the total running time of the algorithm is bounded by:

O (m1+0(e) AT 20(1/66)) <0 (m1+0(e)) A7) ‘

11 Further Applications

In this section we provide our improved deterministic approximation algorithms for Sparsest Cut,
Lowest Conductance Cut, Minimum Balanced Cut, and Most-Balanced Sparse Cut. We also provide
a new algorithm for expander decompositions. Several (but not all) of these results are obtained in
the same manner as their weaker counterparts from [CGLT20], by plugging in our stronger algorithm
for the Cut Player in the Cut-Matching Game from Theorem 2.6 instead of its weaker analogue from
[CGL*20]. Some of the proofs in this section are therefore essentially identical to the proofs from
[CGL*20], and are only provided here for completeness. We point out explicitly when this is the case.
We start by introducing some technical tools that will be useful for us.

11.1 Main Technical Tools

In this subsection we introduce two main technical tools that will be used in order to obtain improved
algorithms for Minimum Balanced Cut, Sparsest Cut, Lowest Conductance Cut, and Expander Decom-
position. Both these tools - degree reduction and a faster algorithm for basic path peeling - appeared
in [CGL'20], and we do not make any changes to them.

11.1.1 Degree Reduction

Some of our algorithms are easier to describe, and provide better guarantees, when the maximum
vertex degree of the input graph is low. However, in general, an input graph may have an arbitrarily
large maximum vertex degree. We describe here a standard algorithm for transforming a general graph
into a low-degree graph, by replacing every vertex of the input graph with an expander of appropriate
size. The algorithm is identical to that from [CGL'20], and similar algorithms have been used in the
past extensively.

We now turn to describe a deterministic algorithm, that we call REDUCEDEGREE. The algorithm
is given as input an arbitrary graph G = (V, E), and transforms it into a bounded-degree graph G.
Throughout, we denote |V| = n and |E| = m. For convenience, we denote V' = {vy,...,v,}. For
every vertex v; € V, we denote by d(v;) the degree of v; in G, and we let {e1(v;), ... ,ed(vi)(vi)} be the
set of edges incident to v, indexed in an arbitrary order. For every vertex v; € V, we use Algorithm
CONSTRUCTEXPANDER from 3.3 to construct a graph H;, whose vertex set V; = {u1 (Vi) -5 Ud(wy) (vl)}
contains d(v;) vertices, such that H; is an ap-expander, and the maximum vertex degree in H; is at
most 9. Recall that the running time of the algorithm for constructing H; is bounded by O(d(v;)).

In order to obtain the final graph G, we start with a disjoint union of all graphs in {H; | v; € V}. All
edges lying in such graphs H; are called type-1 edges. Additionally, we add to G a collection of type-2
edges, defined as follows. Consider any edge e = (v,v") € E, and assume that e = ¢;(v) = e; (V')
(that is, e is the jth edge incident to v and it is the j'th edge incident to v’). We then let é be the
edge (u;(v),uj(v)). For every edge e € E, we add the corresponding new edge é to graph G as a
type-2 edge. This concludes the construction of the graph é, that we denote by G = (V, E’) Note
that the maximum vertex degree in G is at most 10, and \V\ = 2m. Moreover, the running time of
the algorithm for constructing the graph G is O(m).

88

We say that a set S C V of vertices of G is canonical if, for every vertex v; € V, either V; C S, or
V;NS = (. Similarly, we say that a cut (X,Y) in a subgraph of G is canonical, if each of X,Y is a
canonical subset of V. The following lemma, that was proved in [CGL*20] allows us to convert an
arbitrary sparse balanced cuts in a subgraph of G into a canonical one.

Lemma 11.1 (Lemma 5.4 from [CGLT20]) Let ag > 0 be the constant from Theorem 3.3. There
is a deterministic algorithm, that we call MAKECANONICAL, that, given a subgraph G C é, where
V(G is a canonical vertex set, together with a cut (A, B) in G', computes a canonical cut (A’, B')
in G, such that |A'| > |A|/2, |B'| > |B|/2, and moreover, if |Es(A, B)| < % - min {|A],|B|}, then
|Es(A', B < O(|E4(A, B)|). The running time of the algorithm is O(m),

11.1.2 Faster Basic Path Peeling

The following theorem provides a more efficient algorithm for basic Path Peeling. The theorem was
proved in [CGL™20]; a similar result appeared in [NS17] (see Lemma B.18).

Theorem 11.2 (Theorem 7.1 from [CGLT20]) There is a deterministic algorithm, that we call
MATCHORCUT, whose input consists of an m-edge graph G = (V, E), two disjoint subsets A, B of its
vertices with |A| < |B|, and parameters z > 0 and 0 < ¢ < 1/2. The algorithm computes one of the
following:

e cither a matching M C Ax B with |M| > |A|—z, such that there exists a set P = {P(a,b) | (a,b) € M}
of paths in G, where for each pair (a,b) € M, path P(a,b) connects a to b, and the paths in P

cause congestion at most O (loi”> ;or

e acut (X,Y) in G, with |X|,|Y| > 2/2, and |[Eq(X,Y)| < ¢-min{|X|,|Y]}.
The running time of the algorithm is O (m1+°(1)).

We note that the algorithm from Theorem 11.2 does not compute the set P of paths explicitly, as even
listing all paths in the set may take time that is greater than m!+°() if parameter ¢ is sufficiently
small. It only guarantees that set P of paths with the above properties exists.

11.2 Most-Balanced Sparse Cut

|[Eq(X,Y)|

=G, We sometimes
min{|X|,[Y}

Recall that, given a cut (X,Y) in a graph G, the sparsity of the cut is
refer to min {|X|, |Y|} as the size of the cut (X,Y).

In the Most Balanced Sparse Cut problem, the input is an n-vertex graph G, and a parameter 0 < ¢ < 1.
The goal is to compute a cut (X,Y") in G of sparsity at most ¢, while maximizing the size min {|X|, |Y|}
of the cut. An («, 8)-bicriteria approximation algorithm for the problem, given parameters 0 < ¢ < 1
and z > 1, must either compute a cut (X,Y) in G of sparsity at most ¢ and size at least z; or correctly
establish that every cut (X', Y”’) whose sparsity is at most ¢/« has size at most (3 - 2.

In [CGL"20] (see Lemma 7.3), an («, 3)-bicriteria deterministic approximation algorithm was obtained
for the Most Balanced Sparse Cut problem, with o = (logn)®/€) and 8 = (logn)®1/9) | in time
O (m1+o(€)+0(1) . (logn)o(1/€2)> for any Togn < € < 1, for some fixed constant c. By using our
algorithm for the Cut Player from Theorem 2.6, we immediately obtain the following stronger bicriteria
approximation algorithm for the problem. The proof is essentially identical to the proof of Lemma

89

7.3 in [CGL120]; the only difference is that we use the stronger algorithm for the Cut Player from
Theorem 2.6. We provide the proof here for completeness.

Theorem 11.3 There is a constant cy, and a deterministic algorithm, that, given an n-vertex and

m-edge graph G = (V, E) and parameters 0 < ¢ <1, 0 < z < n, and parameter %/25 <e< ﬁ:

(log n)

o cither returns a cut (X,Y) in G with |[Eq(X,Y)| < ¢-min{|X|,|Y|} and | X|,|Y| > z;

e or correctly establishes that, for every cut (X',Y") in G with |Eq(X',Y")| < £ - min {|X'],|Y"|},
min {|X'|,[Y'|} < o - z holds, for o =2°/<" .log"n and o/ = 2°/<" .1og® n.

The running time of the algorithm is O (mTOE+eL)),

Proof: The algorithm employs the Cut-Matching Game. We will maintain a set F' of fake edges that
are added to graph G. Initially, F' = (). We assume that n is an even integer; otherwise we add a new
isolated vertex vg to G, and we add a fake edge connecting vy to an arbitrary vertex of G' to F. We
also maintain a graph H, that initially contains the set V' of vertices and no edges. We then perform
a number of iterations, that correspond to the Cut-Matching Game. In every iteration 7, we will add
a matching M; to graph H. We will ensure that the number of iterations is bounded by O(logn),
so the maximum vertex degree in H is always bounded by Ay < O(logn). At the beginning of the
algorithm, graph H contains the set V of vertices and no edges. We now describe the execution of the
1th iteration.

In order to execute the ith iteration, we apply Algorithm from Theorem 2.6 to the current graph
H, with parameter € remaining unchanged. Assume first that the output of the algorithm from
Theorem 2.6 is a cut (A;, B;) in H with |A4;|,|B;| > n/4 and |Eg(A, B)| < n/100. We treat this
partition as the move of the Cut Player. Assume w.l.o.g. that |A;] < |B;|. Next, we compute
an arbitrary partition (A%, Bl) of V(G) with |A}| = |Bj|, such that A; C A,. We apply Algorithm
MATCHORCUT from Theorem 11.2 to the sets A}, B! of vertices, a sparsity parameter ¢’ = /2 and
parameter z’ = 4z. If the algorithm returns a cut (X,Y) in G, with |X|,|Y| > 2//2 > 2z, and
|Ec(X,Y)] < ¢ -min{|X]|,|Y]|}, then we terminate the algorithm and return the cut (X,Y’), after
we delete the extra vertex vy from it (if it exists). It is easy to verify that |X|,|Y| > z and that
|Eq(X,Y)| < ¢-min{|X|[,|Y|}. Otherwise, the algorithm from Theorem 11.2 computes a matching
M/ C Al x B} with |M]| > | Al| — 4z, such that there exists a set P/ = {P(a,b) | (a,b) € M/} of paths in
G, where for each pair (a,b) € M/, path P(a,b) connects a to b, and the paths in P/ cause congestion
at most O <1°§”). We let A7 C AL, B/ C Bj be the sets of vertices that do not participate in the

matching M/, and we let M/ be an arbitrary perfect matching between these vertices. We define a
set F; of fake edges, containing the edges of M/, and an embedding P/ = {P(e) | e € F;} of the edges
in M/, where each fake edge is embedded into itself. Lastly, we set M; = M/ U M. We view the

matching M; as the response of the matching player in the Cut-Matching Game. We add the edges of
M; to H, and continue to the next iteration. Notice that |F;| < 4z.

We perform the iterations as described above, until the algorithm from Theorem 2.6 returns a subset

S C V of at least n/2 vertices, such that graph H[S] is ¢*-expander, for p* > Q <W) >

Q (W) Recall that Theorem 3.6 guarantees that this must happen after at most O(logn)

iterations. We then perform one last iteration, whose index we denote by g¢.

We let B, = S and Ay = V(G) \ S, and apply Algorithm MATCHORCUT from Theorem 11.2 to
the sets A,, By of vertices, a sparsity parameter ¢’ = ¢/2 and parameter 2z’ = 4z. As before, if the

90

algorithm returns a cut (X,Y) in G, with | X|,|Y| > 2//2 > 2z and |Eg(X,Y)| < ¢’ - min {|X|, |V},
then we terminate the algorithm and return the cut (X,Y), after we delete the extra vertex vg from
it (if it exists). As before, we get that |X|,|Y| > 2z and |Eq(X,Y)| < ¢ - min{|X|, |Y|}. Otherwise,
the algorithm from Theorem 11.2 computes a matching M, C A} x By with [M,| > [Ay| — 4z, such
that there exists a set P, = {P(a,b) | (a,b) € M/} of paths in G, where for each pair (a,b) € M),

path P(a,b) connects a to b, and the paths in 77(’1 cause congestion at most O <10%>. We let Af] c A,

By, C B, be the sets of vertices that do not participate in the matching M, and we let M be an
arbitrary matching that connects every vertex of A; to a distinct vertex of B(’J (such a matching must
exist since |Ay| < [By]). As before, we define a set Fy of fake edges, containing the edges of M/, and
an embedding Py = {P(e) | e € F;;} of the edges in M|/, where each fake edge is embedded into itself.
Lastly, we set My = M, U M/, and we add the edges of M, to graph H.

From now on we assume that the algorithm never terminated with a cut (X,Y") with | X|,|Y| > z and
|Eq(X,Y)| < ¢-min{|X],|Y]}. Note that, from Observation 3.2, the final graph H is a t)-expander,

for ¢ > %* > Q (. Moreover, we are guaranteed that there is an embedding of H into

-1
20(1/€6) 1065

G + F with congestion O <1°g: n), where F' = |J;_, F; is a set of O(zlogn) fake edges. Notice that,

in the embedding that we constructed, every edge of H is either embedded into a path consisting of
a single fake edge, or it is embedded into a path in the graph G; every fake edge in F' serves as an
embedding of exactly one edge of H.

We now claim that there is a large enough universal constant co, such that, if we let o = 2°0/ € log®n
and o/ = 20/ . 1og%n, then for every cut (X’,Y’) in G with |Eg(X’,Y") < £ - min {|X’|, [Y'|},
min {| X[, |Y’|} < - z holds.

Indeed, consider any cut (X', Y”) in G with | X'|,|Y’| > o/ - z. We assume w.l.o.g. that |X'| < |Y’|. Tt
is enough to show that |Eq(X’,Y")| > %.

Notice that (X', Y”) also defines a cut in graph H, and, since H is a vy-expander, |Ey (X', Y")| >
Yo X' > 2>z 9co/€° -log®n. Since ¢ > m, assuming that cg is a large enough
constant, we get that |[Ey (X', Y")| > cozlogn.

We partition the set Ef(X',Y’) of edges into two subsets. The first subset, Ey, is the set of edges
corresponding to the fake edges (so each edge e € E; is embedded into a path P(e) = {e} in G + F),
and Ey contains all remaining edges (each of which is embedded into a path of G). Recall that the

total number of the fake edges, |F| < O(zlogn), while |[Eg (X', Y")| > cozlogn. Therefore, by letting
cp be a large enough constant, we can ensure that |Fy| < |[Eg (X', Y")|/2.

The embedding of H into G + F defines, for every edge e € F3 a corresponding path P(e) in G,
that must contribute at least one edge to the cut Eg(X’,Y”’). Since the embedding causes congestion

(0] (%), we get that:

91

|Eq(X,Y")| > Q (’EH(X/’Y/” : “’)

log?n

(@-¢-|X'l>

log?n

~ - |X']
20(1/¢%) . 10g" n
- |X']

200/<® . log" n

| X'|

)
(67

v
o)

v

(we have used the fact that ¢y is a large enough constant). We note that we have ignored the extra
vertex vg that we have added to G if |V (G)| is odd, but the removal of this vertex can only change the
cut sparsity and the cardinalities of X’ and Y’ by a small constant factor that can be absorbed in cj.

Lastly, we bound the running time of the algorithm. The algorithm consists of O(logn) iterations. Ev-
ery iteration employs the algorithm from Theorem 2.6, whose running time is O (\E (H)|+0O() . AL) <
(0] (nHO(G)), since Ag < O(logn), and log®n < n* (the latter follows from the assumption that
€> W, and since, from the inequality W <e< ﬁ, n must be large enough). Addition-
ally, in every iteration we use Algorithm MATCHORCUT from Theorem 11.2, whose running time is
O (mHO(l)). Therefore, the total running time is O (m”o(e)*"(l)). |

We also immediately obtain the following analogue of Lemma 7.4 from [CGL™20].

Theorem 11.4 There is a constant cg and a deterministic algorithm, that, given an n-vertex and

m-edge graph G = (V, E) and parameters 0 < ¢ <1 and W <e< ﬁ:

o cither returns a cut (X,Y) in G with |Eq(X,Y)| < ¢ -min{|X|,|Y]};

)

e or correctly establishes that G is a ¢'-expander, for ¢/ = —F——.
2¢0/¢".1og" n

The running time of the algorithm is O (mTO©+e)),

Proof: The proof is almost identical to the proof of Theorem 11.3. The only difference is that we set
the parameter z that is used in the calls to Algorithm MATCHORCUT from 11.2 to 1. This ensures
that no fake edges are introduced. O

11.3 Sparsest Cut and Lowest-Conductance Cut — Proof of Theorem 2.7

In this section we prove Theorem 2.7. Theorem 11.4 immediately gives a deterministic {20/). log” n)—

approximation algorithm for the Sparsest Cut problem with running time O (m1+0(6)+"(1)), for all
€ > W. Indeed, let G be the input m-edge graph. For 1 < i < [logm], let ¢; = 1/2%. For
1 <i < [logm|, we apply the algorithm from Theorem 11.4 to graph G, with the parameter ;. Let i be
the smallest integer, for which the algorithm returned a cut (X,Y") with |Eg(X,Y)| < ¢;-min | X|, Y.
Then, when applied to G with parameter ;11 = ;/2, the algorithm correctly established that G is a

©'-expander, for ¢ = W. In other words, the sparsity of the sparsest cut in G is at least ¢'.
€ J-log'n

92

Therefore, (X,Y) is a 201/ <) . log” n-approximate sparsest cut. The running time of the algorithm
remains O (m!+tO(+e(1)) By setting € = (1/clogloglogn)/®, for a large enough constant ¢, we obtain
a factor-O(log” n log log n)-approximation, in time O (mHO(l)).

We now show that we can obtain an algorithm with similar guarantees for the Lowest Conductance
Cut problem. The algorithm follows easily from the algorithm for the Sparsest Cut problem, and is
identical to that of [CGL"20]. The only difference is that we are using the stronger algorithm for
Sparsest Cut that we obtained. Let G = (V, E) be an input to the Lowest Conductance Cut problem,

with |V| = n and |E| = m. Let W <e< ﬁ be a parameter. We start by obtaining a

factor- (20(1/66) -log” n)—approximation algorithm with running time O (m!*0(€+e(D),

Denote by ¢ the conductance of the lowest-conductance cut in G. We can assume without loss of

generality that ¥ < W for some large enough constant ¢, since otherwise we can let v be a
-10 n

lowest-degree vertex in G, and return the cut ({v},V'\{v}), whose conductance is 1. We use Algorithm
REDUCEDEGREE from Section 11.1.1, in order to construct, in time O(m), a graph G, whose maximum
vertex degree is bounded by 10, and |V (G)| = 2m.

Note that, if we denote ¢ the value of the sparsest cut in G, then ¢ < v must hold. This is since
every cut (A, B) in G naturally defines a cut (A’, B’) in G, with |A’| = Volg(A),|B’| = Volg(B),
and |Es(A', B')| = |Eg(A, B)|. We use our approximation algorithm for the Sparsest Cut problem
in graph G’, to obtain a cut (X', Y”’) of G, whose sparsity is at most (20(1/66) -log7 n) -, in time
1) (m1+0(e)+o(1))_

Using Algorithm MAKECANONICAL from Lemma 11.1, we obtain a cut (X”,Y") of G, with |X"| >
[X71/2, [Y"]| > [Y'|/2, and |[E5 (X", Y")| < O(|Eq (X", Y')]) < (20(1/66) log” n) - - min {| X[, [Y'[} <

(20(1/66) -log” n) <4 - min {|X”|,|Y"|}, such that both X” and Y” are canonical vertex sets. This

cut naturally defines a cut (X,Y) in G, with Volg(X) = |X"|, Volg(Y) = Y], and |Eq(X,Y)| =
|Es(X",Y")|. Therefore:

|Ea(X,Y)| = |[Eg(X",Y")]
S (20(1/56) . 10g7 n) . w . min {‘X”‘, ‘Y//‘}

< (200/66) log” n) -4 - min {Volg(X), Volg(Y)} .

We conclude that cut (X,Y) is a factor (200/¢") . log” n)-approximate solution to instance G of
Lowest Conductance Cut. Since the running time of Algorithm MAKECANONICAL is O(m), the
running time of the whole algorithm remains bounded by O (m1+o(€)+0(1)). As before, by set-
ting € = (1/clogloglogn)'/S, for a large enough constant ¢, we obtain a factor-O(log” nloglog n)-
approximation for Lowest Conductance Cut, in time O (m1+°(1)).

11.4 Minimum Balanced Cut — Proof of Theorems 2.8 and 2.9

In this section we prove Theorem 2.8 and Theorem 2.9. Our proof is somewhat more involved than
that of [CGL™20], who iteratively used the algorithm for Most Balanced Sparse Cut from (the weaker
version of) Theorem 11.3. The reason is that, while our bounds for the parameters a and o’ are better
than those obtained by Theorem 11.3, they are still super-logarithmic, and if we follow the framework

93

of [CGL120], who apply the algorithm from Theorem 11.3 over the course of O(1/e) iterations, we
will still accumulate an approximation factor that is at least as high as (log n)e)(l/ o),

The proofs of Theorem 2.8 and Theorem 2.9 are very similar to each other, and we start with presenting
the part that is common to both proofs. Recall that we are given as input a graph G with |V (G)| = n,
|E(G)| = m and a parameter 0 < ¢ < 1. We can assume w.l.o.g. that both m and n are greater than
a large enough constant, since otherwise we can use the algorithm of [CGL™"20], whose running time
can now be bounded by O(m).

We use a parameter € = 1/(logloglogm)'/?>. Tt is easy to verify that m® = 20(logn/(logloglog n)!/2%)
log* n must hold. We can also assume that ¢ < 1 / (20/ € log® n) for a large enough constant ¢, since
otherwise we can compute an arbitrary partition (A, B) of V(G) with Volg(A), Volg(A) > Vol(G)/3
(since for every vertex v € V(G), degq(v) < Vol(G)/2, such a partition can be computed by a simple
greedy algorithm, that iteratively adds each vertex to a set of { A, B}, whose current volume is smaller).
Clearly, |Eg(A,B)| <m < %(G) < 1p- 29 . (log® n) - Vol(G) < 1 - (logn)¥T°M) . Vol(@). Therefore,
from now on we assume that ¢ < 1/ (26/ o log® n) for a large enough constant c.

As in the algorithm of [CGL™20], we start by applying Algorithm REDUCEDEGREE from Section 11.1.1
to graph G, in order to construct, in time O(m), a graph G whose maximum vertex degree is bounded
by 10, and |V (G)| = 2m. Denote V(G) = {v1,...,vn}. Recall that graph G is constructed from graph
G by replacing each vertex v; with an ag-expander H (v;) on degq(v;) vertices, where ap = ©(1). For
convenience, we denote the set of vertices of H(v;) by V;. Therefore, V(G‘) =ViuV2u.--UV,.
Denote |V(G)| = 7. Consider now some subset S of vertices of G. As before, we say that S is a
canonical set of vertices if, for all 1 < i < n, either V; C S or V; NS = () holds. Our starting point is
the following lemma, that is an easy application of the Cut-Matching Game, combined with Algorithm
MAKECANONICAL from Lemma 11.1. The proof is included in Section B of Appendix.

A~

Lemma 11.5 There is a deterministic algorithm, whose input consists of a canonical set V' C V(G)
of vertices of G, with |V'| > 2n/3, and parameters 0 < ¢ <1 and p > logn. The algorithm computes
one of the following:
e cither a partition (X,Y) of V', where both X,Y are canonical subsets of V(G), X, |Y] > p,
and |Eq(X,Y)| < ¢ - min {| X[, [Y]};

e or a p*-expander graph H with V(H) = V' and mazimum vertex degree O(logn), where ¢* >
Q (%) , together with a set F' of at most O(p-logn) edges of H, such that there exists

20(1/66)-log5 n

an embedding P of H \ F into G[V/] with congestion at most O (—log:").

The running time of the algorithm is O (m*TO©+eL)),

We emphasize that the algorithm from the above lemma does not compute the embedding P ex-
plicitly, and instead it only guarantees its existence. We obtain the following immediate corollary of

Lemma 11.5. The corollary uses the parameter ¢* > Q) () from Lemma 11.5.

-1
20<1/66>~log5n

Corollary 11.6 There is a deterministic algorithm, that, given a parameter p > logn, and a param-
eter ¢ > 1, computes a cut (X*,Y*) in graph G‘, such that both X* and Y™ are canonical sets of
vertices, | X*| > |Y*|, and |[E4(X*,Y™)| < %#3" -n. Moreover, if |Y*| < n/3, then the algorithm
also computes a @*-expander graph H with V(H) = X* and mazimum vertex degree O(logn), together

with a set F of at most O(plogn) edges of H, such that there exists an embedding P of H \ F into
m2+O(e)+o(1),)
P

*

G’[X*] with congestion n < O (%) .The running time of the algorithm is O (

94

Proof: The proof easily follows by iteratively applying the algorithm from Lemma 11.5. Let ¢ =

c wlog n
Sp A

of iteration i, we are given a partition (X;,Y;) of V(G), such that both X;,Y; are canonical sets,

1 X;| > 22, and |Ea(Xi,Y:)| < ¢-|Y;|. At the beginning of the algorithm, we use the partition (X1,Y?)
of V(G), with X; = V(G) and Y; = (. We now describe the execution of the ith iteration.

n

. Our algorithm consists of at most r = =5 iterations. For all 1 < ¢ < r, at the beginning

In order to execute the ith iteration, we apply the algorithm from Lemma 11.5 to set V' = X; of
vertices of G, and parameters p and ¢, that remain unchanged. We now consider two cases.

Assume first, that the algorithm returned a partition (X’,Y”) of X;, with | X'|, [Y'| > p, and |E4(X',Y")| <
¢ - min {|X’|,|Y’|}, such that both X’ and Y’ are canonical sets of vertices. Assume w.l.o.g. that

| X'| > |Y']. We then construct a new cut (X;y1,Y;+1) in G, by letting X;11 = X' and Y;,; =
V(G)\ X' = Y’ UY;. Note that cut (X;;1,Y;;1) can be obtained from cut (X;,Y;) by moving the
vertices of Y” from X; to Y;. Therefore, Ex(Xit1,Yir1) € En(Xy,Yi) U Ea(X',Y'), and:

|Eg(Xit1, Yipr)| < |Bg(Xa, V)| + [Eg(X Y| <o Vil + o Y| <@ [Yil.

If [Xiy1| > 20/3 holds, then we simply continue to the next iteration. Otherwise, since |X;| > 27/3,
we get that |X;y1| > |X;|/2 > n/3. Therefore, we obtain a partition (X;i1,Yiy1) of V(G) with
| Xiv1], |Yig1] > /3, and [Ep(Xi1, Yig1)] < o [Yiga| S @0 = %#B" - .. We then return cut
(X*,Y*) = (Xi+1, Yi+1) and terminate the algorithm.

Next, we assume that the algorithm from Lemma 11.5 returned a ¢*-expander graph H with V(H) =
X; and maximum vertex degree O(logn), together with a set F' of at most O(p-logn) edges of H, such
that there exists an embedding P of H\ F into G[X;] with congestion at most O (#) <0 <
In this case, we return cut (X*,Y*) = (X;,Y;), graph H, and set F' of edges.

’z/)logn)

It now remains to bound the running time of the algorithm. Notice that in every iteration, the
cardinality of the set Y; of vertices grows by at least p, and, since |[V(G)| = 2m, the number of
iterations is bounded by 2m/p. In each iteration we use the algorithm from Lemma 11.5, whose
running time is at most O (m1+o(€)+0(1)). Overall, the running time of the algorithm is bounded by

24+0(e)+o(1)
O (%) O

We are now ready to complete the proofs of Theorem 2.8 and Theorem 2.9.

11.4.1 Proof of Theorem 2.8

We start by computing a graph G exactly as described above, and then applying the algorithm from

Corollary 11.6 to it, with parameter p = 52%’%, where ¢ is a large constant, whose value we set later,

log® m
m

and parameter ¢/, that is a large enough constant, whose value we set later. Since 1) > ,and m

is large enough, we get that p > logn. Let (X*,Y™*) be the outcome of the algorithm.
Recall that both X* and Y* are canonical sets of vertices, | X*| > |Y*|, and |E4(X*,Y™)| < Y logB” ‘.

Notice that cut (X* Y*) in G naturally defines a cut (4, B) in G: for every vertex v; € V(), W
add v; to A if V; € X*, and we add it to B otherwise. It is immediate to verify that Volg(A4) = |

Volg(B) = [Y*|, and |Eg(A, B)| = |Eg(X*,Y*)| < “XREn < . 200/€) - (1og®n) - Vol(G
¥ - (logn)3+tM . Vol(G), since p* > Q () and € = 1/(loglog log m)/?.

)

X |
) <
-1
20(1/56)-10g5n

Consider first the case that |Y*| > n/3. Then, from the above discussion, Volg(A), Volg(B) > n/3 =
Vol(G)/3. In this case, we return cut (A, B) as the outcome of the algorithm.

95

We assume from now on that |[Y*| < 7/3, and so the algorithm from Corollary 11.6 computed a
p*-expander graph H with V(H) = X* and maximum vertex degree O(logn), together with a set F’
of at most O(plogn) edges of H, such that there exists an embedding P of H \ F into G[X*] with

SO*

Tologn and ¢ is a sufficiently large constant,

congestion at most n, where n < O () Since p =

Pm
2 logn’
we get that |F| < d’gn. Let G’ be the graph that is obtained from G[X*], by adding the edges of F to
it. We need the following simple observation.

Observation 11.7 Graph G is a ¢'-expander, for ¢' = Q('1hlogn).

Proof: Consider any partition (4’, B') of V(G'), with |A’| < |B/|. It is enough to prove that
|E~, (A, B")| > ¢ -|A’|. Recall that the set P of paths defines an embedding of H \ F' into G[X*] with
congestion at most 7. By embedding every edge of F into itself, we can augment the set P of paths
to obtain an embedding of H into G/ = G[X*] U F, with congestion at most 7.

Notice that cut (4’, B') in G’ also defines a cut in graph H. Since graph H is a ¢*-expander, if we
denote by E' = Ey(A’, B'), then |E’| > ¢* - |A’|. Consider now the set P’ = {P(e) | e € E'} of paths,
where for each edge e € E’, P(e) is the path of P that serves as an embedding of the edge e. Then
every path in P’ must contain an edge of EG,(A’ , B’), and the paths in P’ cause congestion at most

n. Therefore, |Ez, (A, B')| > % > % > Q(dp|A|logn) = ¢ - |A|, since n < O (%). O
Recall that we have used the cut (X*,Y*) in G to define a cut (4, B) in G, with Volg(A) = |X*],
Volg(B) = [Y*|, and |Eg(A, B)| = |[E4(X*,Y*)| <1 (log n)8+t°() . Vol(G). Consider now a graph G’,
that, intuitively, is obtained from G[A], by adding the edges of F' to it. Formally, in order to obtain
graph G’, we start from graph G[A], and the consider the edges e € F one by one. Let e = (z,y)
be any such edge, and let v;,v; € A be the vertices with x € V; and y € V;. If ¢ # j, then we add
edge ¢ = (v;,v;) to graph G’, and we think of ¢’ as a copy of edge e. Notice that graph G’ can be
equivalently obtained from graph G by contracting, for every vertex v; € A, all vertices of V; into a
single node. Next, we use the following easy observation:

Observation 11.8 Graph G’ has conductance at least 244).

Proof: Consider any cut (X,Y) in G'. We can naturally define a corresponding cut (X,Y) in
graph G': for every vertex v; € X, we add all vertices of V; to X, and for every vertex v; € Y,
we add all vertices of V; to Y. It is easy to verify that |X| = Volg(X). Since every vertex of X*
is incident to at most ¢*logn edges of F', for some constant ¢* (as maximum vertex degree in H is
O(logn)), it is easy to verify that, for every vertex v; € A, dege(v;) < (c¢*logn)degq(v;). Therefore,
Vol (X) < (¢*logn) Volg(X), and so |X| > Yolgr (X) Using similar reasoning, |Y| > Volgr (¥)

c*logn c*logn °

Lastly, since, from Observation 11.7, graph G’ is a ¢/-expander, for ¢/ = Q(ciplogn), we get that
B (X,Y)| = |Es(X,7)] > ¢ - mm{|f<|,|f/|} > Q() - min {Volgr (X), Vole (Y)}. Since c*

c*

is a fixed constant, and we can set ¢ to be a large enough constant, we get that |Eq/(X,Y)| >
244) - min { Vol (X), Volg/ (Y) }. We conclude that the conductance of graph G’ is at least 244). |

Next, we use the following pruning theorem of [SW19], that works with graph conductance instead of
expansion.

Theorem 11.9 (Restatement of Theorem 1.3 from [SW19|) There is a deterministic algorithm,
that, given access to adjacency list of a graph G = (V, E) that has conductance v, for some 0 < 1) <1,
and a collection E' C E of k < |E|/10 edges of G, computes a subgraph G' C G \ E’, that has con-
ductance at least /6. Moreover, if we denote A =V (G') and B =V (G)\ A, then |Eg(A, B)| < 4k,
and Volg(B) < 8k/v. The total running time of the algorithm is O(k/v?).

96

We apply the algorithm from Theorem 11.9 to graph G’, conductance parameter 241, and the set
E' = F of edges. Since we have assumed that [Y*| < 7/3 = Vol(G)/3, we get that |X*| >
27/3 > 2Vol(G)/3. At the same time, |Eq(X*,Y*)| < ¢ - 200/<) . (log®n) - Vol(G) < Vol(G)/10,
since we have assumed that ¢ < m for a large enough constant c. Therefore, |E(G')| >
VOIG(X*)_EEG(X*’Y*)' > VOZ(G) > 5. Recall that [F]| < ¥m

- - - (&

24| E(G)|
|Fl< =%

holds, where ¢ is a large enough constant.

Therefore,

The algorithm must then return a partition (Z, Z") of V(G') = A, such that graph G[Z] has conduc-

tance at least @ > p, and Volg (Z') < Z@ < 5%, while |Eq(Z,2")| < 4|F| < me < O(®) - Vol(G).

We construct a cut (A*, B*) in graph G, by letting A* = Z and B* = Z’ UY*. Notice that
|Eq(A*, B*)| C |Eg(A, B)| + |Eq(Z,Z")| < 9 - (logn)3¥T°M) . Vol(@). Additionally, we get that:

2Vol(G) m S 7Vol(G)

Volg(A*) = Volg(Z) > Volg(A) — Volg(Z') > 3 ~3%2 71

If Volg(B*) > Vol(G)/3, then we get that Volg(A*), Volg(B*) > Vol(G)/3. Otherwise, we are guar-
anteed that Volg(A*) > 2Vol(G)/3, and that the conductance of graph G[A*] is at least 1.

It now remains to bound the running time of the algorithm. The running time of the algorithm from
Corollary 11.6 is bounded by O <w> <0 (mlto(t) m

) since p = gz and € = 1/(logloglog m)/?5.
The running time of the algorithm from Theorem 11.9 is O (|F|> <0 (?) Therefore, the total run-

ning time of the algorithm is bounded by O (IZ)(U)

11.4.2 Proof of Theorem 2.9

1—2¢

)

The proof is very similar to the proof of Theorem 2.8. The main difference is that we set p = m
and that we do not employ Theorem 11.9.

We start by computing a graph G exactly as before, and then applying the algorithm from Corol-

lary 11.6 to it, with parameter p = m!~2¢, and ¢’ a large constant whose value we set later. Let

(X*,Y™) be the outcome of the algorithm. Recall that both X* and Y™ are canonical sets of vertices,
* * * * / 1 3 A 3 *

[X*| 2 V¥, and | Eg(X*, Y*)| < CUE 5 < (log n)*+e() - Vol(G), since ¢* > © (m) and

= W. We use cut (X*,Y*) in G in order to define a cut (4, B) in G exactly as before. As

before, Volg(A) = |X*|, Volg(B) = |Y*|, and |Eg(A, B)| = |E4(X*,Y*)| < ¢ - (logn)5T°W . Vol(G).
As before, if |Y*| > n/3, then Volg(A), Volg(B) > /3 = Vol(G)/3, and we return cut (A, B) as the
outcome of the algorithm.

We assume from now on that |[Y*| < 7/3, and so the algorithm from Corollary 11.6 computed a ¢*-
expander graph H with V(H) = X* and maximum vertex degree O(logn), together with a set I of at
most O(plogn) edges of H, such that there exists an embedding P of H\ F into G[X*] with congestion
at most 7, where n < O (W) Notice that in this case, Volg(A4) > |X*| > 2n/3 = 2Vol(G)/3
holds.

Consider any partition (Z, Z’) of A, with |Eq(Z, Z")| < ¢-Vol(G), and assume w.l.o.g. that Volg(Z) <
Volg(Z'). We claim that Volg(Z) < Vol(G)/100 holds. Indeed, assume otherwise. Consider a cut

(Z A) in graph H, obtained as follows: for every vertex v; € Z, we add all vertices of V; to Z, and
for every vertex v; € Z’, we add all vertices of V; to Z'. Clearly, |Z| = Volg(Z) > Vol(G)/100, and

similarly |Z’| > Vol(G)/100. Since graph H is a @*-expander, |Ey(Z,Z')| > ¢* -min{\Z\, |Z’|} >

97

%(%(G). Denote E = EH(Z, Z/) Recall that QO* > Q (m)

On the other hand, |F| < O(plogn) < O(m'=2¢-logn). From our choice of € = W,
that |F| < |E'|/2, and so |E"\ F| > %%(G). Since there exists an embedding of H \ F into G[X*]

*

with congestion at most 7, and n < O (c%ﬁW)’ we get that:

,and so |E'| > Q<$)

20(1/56)-10g5 n
we get

A oA E'
\Ex(2,2")] > ’277| > Q(c'¢p Vol(G) log n).

Since |Eq(Z,2")| = |EG(Z, Z")|, we reach a contradiction to our assumption that |Eq(Z,Z')| <
1 - Vol(G). We conclude that for every partition (Z, Z’) of A with Volg(Z), Volg(Z') > Vol(G)/100,
|Eq(Z,2")| > 1 - Vol(G) must hold.

The running time of the algorithm is asymptotically bounded by the running time of the algorithm
from Corollary 11.6, which is in turn bounded by O (M) <0 (m1+0(€)+0(1)) < O(m!tte))y,

since p = m!~%¢ and e = 1/(log loglog m)'/%.

11.5 Expander Decomposition — Proof of Theorem 2.10

In this section we prove Theorem 2.10. The proof is essentially identical to the proof of Corollary 6.1
from [CGL"20]. The only difference is that we use our algorithm from Theorem 2.8 instead of the
algorithm of [CGL™20].

We maintain a collection H of disjoint vertex-induced subgraphs of G that we call clusters, which is
partitioned into two subsets, set HA of active clusters, and set H! of inactive clusters. We ensure
that for every inactive cluster H € H!, the conductance of H is at least). We also maintain a set
E’ of “deleted” edges, that are not contained in any cluster in H. At the beginning of the algorithm,
we let H = HA = {G}, H! = 0, and E' = (). The algorithm proceeds as long H* #), and consists
of iterations. For convenience, we denote a = (logn)3t°() | so that the algorithm from Theorem 2.8,
when applied to an n-vertex graph G and some parameter ¢, is guaranteed to return a cut (A, B) in
G with |Eg(A,B)| < ¢ - a - Vol(G). We set 1) = —— where ¢ is the constant from the theorem

ca-logn?

13
statement. Clearly, ¢ = Q (W). Since, from the theorem statement, § > Clong holds,
3
¥ > & must hold.

In every iteration, we apply the algorithm from Theorem 2.8 to every graph H € M4, with the
parameter 1. Consider the cut (A4, B) in H that the algorithm returns, with |Egx(A,B)| < av -
Vol(H) < 232UD \We add the edges of Ex (A, B) to set E'. If Voly(A), Vol (B) > Vol(H)/3, then
we replace H with H[A] and H[B] in H and in H4. Otherwise, we are guaranteed that Volg(A) >
2Vol(H)/3, and graph H[A] has conductance at least 1). Then we remove H from H and H*, add

H[A] to H and H!, and add H[B] to H and HA.

When the algorithm terminates, H“ = (), and so every graph in # has conductance at least 1. Notice
that in every iteration, the maximum volume of a graph in H“ must decrease by a constant factor.

Therefore, the number of iterations is bounded by O(logm). It is easy to verify that the number of
4-Vol(G)
clogm *

be a large enough constant, we can ensure that |E’| < § - Vol(G). The output of the algorithm is the
partition II = {V(H) | H € H} of V. From the above discussion, we obtain a valid (4,)-expander

decomposition, for ¢ = Q)

edges added to set E’ in every iteration is at most a -9 - Vol(G) < Therefore, by letting ¢

)
(log m)9+o(1)) ’

98

It remains to analyze the running time of the algorithm. The running time of a single iteration is
bounded by O(m!'*t°(M) /4)), and, since the number of iterations is O(logm), the total running time of
the algorithm is bounded by O(m!'*t°M) /4) < O(m!' o) /5).

99

A Proof of Lemma 4.1

The proof uses a standard ball-growing technique. Let H = G \ E’. Let S be any set of vertices of
H, such that not all vertices of S are isolated in H. We define Ly = S, and, for integers ¢ > 0, we
define L; = By (S,1). We refer to the sets Lo, L1, ... of vertices as BF'S layers defined with respect to
S. For an index 1 < < [d/2], we say that layer L; is acceptable if [0p(L;)| < § - |En(L;)|. We use
the following simple claim:

Claim A.1 Let B = By (S,d), and assume that |Ey(B)| < |E(H)|. Then there is an index 1 < i <
|d/2] — 1, such that layer L; is acceptable.

Proof: Assume otherwise. Then for all 1 < i < |d/2] — 1, layer L; is not acceptable, and so
61(Ls)| > % - |Eg(L;)|. Therefore, |Ef(Lit1)| > (14 %) |En(L;)|. Since not all vertices of S are

isolated in H, we get that |Ey(L1)| > 1. Overall, we get that:

ld/2]—2 (8logm)/¢
Br(Luap-) 2 (145) 7 = (1+7) > 5 > m,
(we have used the fact that for all k£ > 1, (1+ %)kﬂ > e). This is impossible, so there must be an
index 1 <i < |d/2] — 1 for which layer L; is acceptable. o

We are now ready to complete the proof of Lemma 4.1. We denote the BFS layers in graph H
defined with respect to X by L{, L}, ..., and BFS layers defined with respect to Y by L{j, LY],.... We
run two algorithms in parallel. The first algorithm performs a BFS search in H starting from X to
compute layers Ly, L}, ... one by one. When a layer L] is computed, the algorithm checks whether
it is acceptable. The second algorithm similarly performs a BFS search starting from Y to compute
layers Lgj, LY, ... one by one, and, when a layer L/ is computed, the algorithm checks whether it is
acceptable. The two algorithms run in parallel, so that at every time point both algorithms have
explored the same number of edges of H. The moment one of the two algorithms finds an acceptable
layer, we terminate both algorithms.

Assume w.l.o.g. that the first acceptable layer that was computed by either algorithm is L. We then
set X' =L, and Y = V(G) \ X'. Note that, from Claim A.1, i < d/2 must hold, so X' NY =0 (as
disty(X,Y) > d). Clearly, X C X’ and Y C Y’. From the definition of an acceptable layer, we are
guaranteed that |Eg(X',Y")| = [0g(X')| < - |Ex(L])| = % - |[Ex(X’)|. Since we ensured that the
number of edges that the two BFS searches explore at every time point is the same, we are guaranteed
that |[Eg(X’)| < |E(Y’)|. The running time of the algorithm is bounded by O(|Eg(X")| + [0 (X)| +
n) < O(1Ex(X')| +n) < O(|EG(X')] +n).

Lastly, observe that |Eg(X')| > |[Eg(X')| and |Eg(Y')| > |Eg(Y”)|. Furthermore:
[Ec(X',Y")| < |B'[+En(X',Y")| < £|X|4+Emin {| B (X)), |Ea(Y)]} < min {| Ea(X")],| E(Y)]},

since |X| = |Y], and graph G is connected, so |X| < 2min {|Eq(X’)|, |[Ec(Y)|} .

B Proof of Lemma 11.5

The proof of the lemma is a simple application of the Cut-Matching Game. Let G’ = G[V’], and let
n' = |V(G)|. If n’ is an odd integer, then we add an extra vertex vy to G’, and connect it with an
edge to an arbitrary vertex of G’. We let H be a graph with V(H) = V(G’) and E(H) = 0.

100

We will execute the Cut-Matching Game on graph H, while simultaneously computing an embedding
of H into G’. Some of the edges of H will be designated as fake edges and added to the set F of fake
edges. These edges do not need to be embedded into G’. Initially, F' = (.

We perform a number of iterations, that correspond to the Cut-Matching Game. In every iteration
i, we will add a matching M; to graph H, and a set F; C M; of fake edges to set F. We will also
implicitly maintain embedding P; of the set M; \ F; of edges into G’ (in other words, the paths in P;
are not computed explicitly, but are only guaranteed to exist). We will ensure that the number of
iterations is bounded by O(logn’) < O(logn), so the maximum vertex degree in H is always bounded
by Ag < O(logn). At the beginning of the algorithm, graph H contains the set V[G'] of vertices and
no edges. We now describe the execution of the ith iteration.

In order to execute the ith iteration, we apply Algorithm from Theorem 2.6 to the current graph H,

with parameter ¢ remaining unchanged. Notice that, since € = W, and m is large enough,

€ > W holds. Since |V (G')| > %” > m, we are guaranteed that e >
of Theorem 2.6 holds.

Assume first that the output of the algorithm from Theorem 2.6 is a cut (A;, B;) in H with |A4;|, |B;| >
n'/4 and |Ey (A, B)| < n’/100. We treat this partition as the move of the Cut Player. Assume w.l.o.g.
that |A;| < |B;|. Next, we compute an arbitrary partition (A}, B}) of V(G') with |A}| = |B]| and
Al C A;. We apply Algorithm MATCHORCUT from Theorem 11.2 to graph G’, the sets A}, B! of
vertices, a sparsity parameter ¢’ = /¢, where ¢ is a large enough constant, and parameter z = 8p.
Next, we consider two cases. The first case happens if the algorithm returns a cut (X,Y) in G', with
(X[, [Y| > 2/2 > 4p, and |Eq(X,Y)| < ¢’ -min {|X|,[Y|} = £ - min {|X],[Y|}. Once we delete the
extra vertex vy (if it exists), we obtain a cut (X', Y”) in the original graph G’, with | X’|,|Y’| > 2p and
|Eq (X', Y")| < 27“0 -min {|X’|,|Y’|}. Next, we apply Algorithm MAKECANONICAL from Lemma 11.1,
to compute a canonical cut (X”,Y") in G', such that: |X"| > |X'|/2 > p, |[Y"| > |Y'|/2 > p, and:

W? so that condition

|Eq(X",Y")| < O(|Eg(X",Y")])
= O(|Ee (X", Y)])

<O (£ min{|X'],1v})
< ¢-min{|X"],|Y"|},

if ¢ is sufficiently large. We then terminate the algorithm and return the partition (X", Y") of V'.
From the above discussion, it has all required properties.

Consider now the second case, where the algorithm from Theorem 11.2 computes a matching M/ C
Al x Bl with |M]| > |A]| — z = |A}| — 8p, such that there exists a set P, = {P(a,b) | (a,b) € M/}
of paths in G’, where for each pair (a,b) € M/, path P(a,b) connects a to b, and the paths in P/

)

cause congestion at most O (10(%”). We let A C Al, B! C B! be the sets of vertices that do not

participate in the matching M/, and we let F; be an arbitrary perfect matching between these vertices.
Lastly, we set M; = M/ U F;. We view the matching M; as the response of the matching player in the
Cut-Matching Game. We add the edges of M; to H, and continue to the next iteration. Notice that
|F3| < 8p.

We perform the iterations as described above, until the algorithm from Theorem 2.6 returns a
subset S C V(G') of at least |V (G’)|/2 vertices, such that graph H[S] is ¢*-expander, for ¢* >

Q (W >0 (W). Recall that Theorem 3.6 guarantees that this must happen

after at most O(logn) iterations. We then perform one last iteration, whose index we denote by gq.

101

We let B, = S and A; = V(G) \ S, and apply Algorithm MATCHORCUT from Theorem 11.2 to the
sets Ay, B, of vertices, a sparsity parameter ¢’ = ¢/c and parameter z = 8p. As before, we consider
two cases. The first case happens 'if the algorithm returns a cut (X,Y) in G, with | X|,|Y| > z/2 > 4p
and |Eg/(X,Y)] < ¢’ -min{|X|,|Y|}. In this case, we compute a partition (X", Y") of V(G’) \ {vo}
exactly as before, so that both X”,Y” are canonical sets of vertices of cardinality at least p each,
and |E4(X",Y")| < ¢ - min {|X"|,[Y"|}. We return the cut (X", Y") and terminate the algorithm.
In the second case, the algorithm from Theorem 11.2 computes a matching M; C A; x B, with
|M]| > |Aq| — z = |Aq] — 8p, such that there exists a set P, = {P(a,b) | (a,b) € M/} of paths in &,
where for each pair (a,b) € M, path P(a,b) connects a to b, and the paths in P; cause congestion at

most O (10%) As before, we let Ay C A,, By C By be the sets of vertices that do not participate

in the matching Mé, and we let F, be an arbitrary matching that connects every vertex of A; to a
distinct vertex of B, (such a matching must exist since [Ay| < |By|). We then set M, = M;U M/, and
we add the edges of M, to graph H.

From now on we assume that the algorithm never terminated with a partition (X”,Y"”) of V(G’)\{vo},
where both X”,Y" are canonical sets of vertices of cardinality at least p each, and |[Ex(X",Y")| <
¢ - min{|X"|,|Y”|}. Note that, from Observation 3.2, the final graph H is a ¢*/2-expander, for

> Q (m). Let F' = |J, F;. Since, for all 4, |F;| < 8p, and since, from Theorem 3.6, the

number of iterations is bounded by O(logn), we get that |F| < O(plogn). Lastly, consider the set
P = J; Pi of paths in graph G’. It is immediately to verify that the paths in P embed graph H \ F into

G’. Since every set P; of paths causes congestion at most O <1°§) L

2
at most O (bg?") in G.

), the paths in P cause congestion

One remaining subtlety is that graph H, as well as current graph G’ may contain the extra vertex
vg, that needs to be removed from both graphs. Recall that the degree of vy in graph H is at most
O(logn). Let uq,...,u, denote the neighbor vertices of vy in H. Let H' be obtained from graph H
by deleting vertex vo from it, and adding, for every pair u;,u; of neighbor vertices of vy, and edge
(uj,u;r) connecting them. Each such new edge is added to the set F' of fake edges. It is easy to verify
that H' remains a ¢*/2-expander. Since p > logn, while the degree of vy in H is at most O(logn),
|F| < O(plogn) continues to hold, and all vertex degrees in H' are at most O(logn). Since vertex v
has degree 1 in G’, we can assume that it does not lie on any path in {P(e) | e € E(H') \ F'}, and so
vp can be safely deleted from G’ as well. The output of the algorithm in this case is graph H' and set
F of its edges.

Lastly, we bound the running time of the algorithm. The algorithm consists of O(logn) iterations. Ev-
ery iteration employs the algorithm from Theorem 2.6, whose running time is O (\E (H)|'H0(e) . AL) <
0 (nHO(G)), since Ay < O(logn), and log®n < n* (since, as we have observed, n? > m¢ > log*n).
Additionally, in every iteration we use Algorithm MATCHORCUT from Theorem 11.2, whose running
time is O (mHO(l)), and Algorithm MAKECANONICAL from Lemma 11.1, whose running time is O(m).
Therefore, the total running time is O (m!+0(+o(L),

References

[ACLO7] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using pagerank to locally partition
a graph. Internet Mathematics, 4(1):35-64, 2007.

[ADK22] Daniel Agassy, Dani Dorfman, and Haim Kaplan. Expander decomposition with fewer
inter-cluster edges using a spectral cut player. arXiv preprint arXiw:2205.10301, 2022.

102

[Alo86]
[ARV09)

[CGL*20]

[Chel8]

[Chu21]

[CK19]

[CS19]

[CS21]

[DHZ00]

[Din06]

[ES81]

[F1e00]

(GGS81]

[GKOS]

Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.

Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2), 2009.

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In 2020 IFEEE 61st Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 1158-1167. IEEE, 2020. Full version at
arXiv:1910.08025.

Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 170—
181. IEEE, 2018.

Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
626—639, 2021. Full version at arXiv:2109.05621.

Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source short-
est paths with applications to vertex-capacitated flow and cut problems. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 389—400,
2019.

Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 -
August 2, 2019., pages 66-73, 2019.

Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decremental
shortest paths via layered core decomposition. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2478-2496. SIAM, 2021.

Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM .J.
Comput., 29(5):1740-1759, 2000.

Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
computer science, pages 218-240. Springer, 2006.

Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the ACM
(JACM), 28(1):1-4, 1981.

Lisa Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM J. Discrete Math., 13(4):505-520, 2000.

Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. J.
Comput. Syst. Sci., 22(3):407-420, 1981. announced at FOCS’79.

Naveen Garg and Jochen Konemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In 39th Annual Symposium on Foundations
of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
300-309, 1998.

103

[GLN*19]

[GVY95]

[HK95]

[HKNS15]

[Kar0g)]

[KKOVO07]

[KMP12]

[KRV09]

[LR9Y]

[Mad10]

[Mar73]

[NS17]

[STO04]

[SW19]

Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse,
balanced, and k-vertex. arXiv preprint arXiv:1910.07950, 2019.

N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)-cut the-
orems and their applications. SIAM Journal on Computing, 25:235-251, 1995.

Monika Rauch Henzinger and Valerie King. Fully dynamic biconnectivity and transitive
closure. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on, pages 664—672. IEEE, 1995.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sympo-
stum on Theory of computing, pages 21-30, 2015.

George Karakostas. Faster approximation schemes for fractional multicommodity flow
problems. ACM Trans. Algorithms, 4(1):13:1-13:17, 2008.

Rohit Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K Vishnoi. On a cut-
matching game for the sparsest cut problem. Univ. California, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2007-177, 6(7):12, 2007.

Jonathan A. Kelner, Gary L. Miller, and Richard Peng. Faster approximate multicom-
modity flow using quadratically coupled flows. In Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 1-18, 2012.

Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single com-
modity flows. Journal of the ACM (JACM), 56(4):19, 2009.

F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46:787-832, 1999.

Aleksander Madry. Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010,
pages 121-130, 2010.

G. A. Margulis. Explicit construction of concentrators. Problemy Peredafi Iqfiwmacii,
9(4):71-80, 1973. (English translation in Problems Inform. Transmission (1975)).

Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-
case update time: adaptive, Las Vegas, and O(nl/z_e)—time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1122-1129, 2017.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In STOC, pages 81-90. ACM,
2004.

Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2616-2635, 2019.

104

[Wull7] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130-1143,
2017.

105

	Introduction
	Overview of Our Results and Techniques
	The Distanced Matching Game and Related Algorithmic Toolkit
	Decremental APSP in Expanders
	Advanced Path Peeling and Deterministic Algorithm for the Cut Player in the Cut-Matching Game
	Sparsest Cut and Lowest Conductance Cut
	Minimum Balanced Cut and Expander Decomposition

	Preliminaries
	Dynamic Algorithms
	Cuts, Flows, Sparsity, Conductance and Expanders.
	Embeddings with Fake Edges and Expansion
	The Cut-Matching Game
	Graph Cutting and Partitioning
	Procedure ProcCut
	Procedure ProcPartition
	Procedure ProcSeparate

	Basic Path Peeling

	The Distanced Matching Game
	Hierarchical Support Structure
	Algorithm for the Distancing Player – Proof of thm: construct HSS
	Phase 1: Construction of Smaller Well-Connected Graphs
	Description of Iteration q

	Phase 2: Distancing or Well-Connectedness
	Proof of lem: certificate

	APSP in Well-Connected Graphs – Proof of thm: APSP in HSS full
	Base Case: j8
	Step: j>8
	Data Structures and Initialization
	Maintaining the Data Structures
	Analysis of Total Update Time
	Response to Queries

	APSP in Expanders – Proof of thm: APSP on expanders main
	Proof of lem: APSP on expanders one phase
	Data Structures and Initialization
	Maintaining the Data Structures
	Responding to Short-Path Queries

	Advanced Path Peeling – Proof of thm: main main advanced path peeling
	Proof of lem: inner advanced path peeling
	Special Case: kn
	Stage 1: Embedding a Well-Connected Graph
	Stage 2: Computing the Routing

	An Algorithm for the Cut Player in the Cut-Matching Game – Proof of thm: new cut player
	Further Applications
	Main Technical Tools
	Degree Reduction
	Faster Basic Path Peeling

	Most-Balanced Sparse Cut
	Sparsest Cut and Lowest-Conductance Cut – Proof of thm: sparsest and lowest cond
	Minimum Balanced Cut – Proof of Theorems 2.8 and 2.9
	Proof of thm: balanced cut high cond
	Proof of thm: balanced cut low cond

	Expander Decomposition – Proof of thm:expander decomp

	Proof of lem: distancing to sparse cut
	Proof of lem: single stage new

