Check for
Updates

A New Deterministic Algorithm for Fully Dynamic All-Pairs
Shortest Paths

Julia Chuzhoy
Toyota Technological Institute at Chicago
Chicago, USA
cjulia@ttic.edu

ABSTRACT

We study the fully dynamic All-Pairs Shortest Paths (APSP) problem
in undirected edge-weighted graphs. Given an n-vertex graph G
with non-negative edge lengths, that undergoes an online sequence
of edge insertions and deletions, the goal is to support approximate
distance queries and shortest-path queries. We provide a determinis-

tic algorithm for this problem, that, for a given precision parameter

o(1/€
€, achieves approximation factor (loglog n)? e), and has amor-

tized update time O(n€ log L) per operation, where L is the ratio of
longest to shortest edge length. Query time for distance-query is
0(2001/e). log n-loglog L), and query time for shortest-path query
is O(|E(P)| + 20(1/e) . logn - loglog L), where P is the path that
the algorithm returns. To the best of our knowledge, even allow-
ing any o(n)-approximation factor, no adaptive-update algorithms
with better than ©(m) amortized update time and better than ©(n)
query time were known prior to this work. We also note that our
guarantees are stronger than the best current guarantees for APSP
in decremental graphs in the adaptive-adversary setting.

In order to obtain these results, we consider an intermediate prob-
lem, called Recursive Dynamic Neighborhood Cover (RecDynNC),
that was formally introduced in [Chuzhoy, STOC ’21]. At a high
level, given an undirected edge-weighted graph G undergoing an on-
line sequence of edge deletions, together with a distance parameter
D, the goal is to maintain a sparse D-neighborhood cover of G, with
some additional technical requirements. Our main technical con-
tribution is twofolds. First, we provide a black-box reduction from
APSP in fully dynamic graphs to the RecDynNC problem. Second,
we provide a new deterministic algorithm for the RecDynNC prob-

lem, that, for a given precision parameter €, achieves approximation

2
factor (loglog m)20<1/), with total update time O(m!*€), where

m is the total number of edges ever present in G. This improves
the previous algorithm of [Chuzhoy, STOC ’21], that achieved ap-
proximation factor (log m)zo(l/e) with similar total update time.
Combining these two results immediately leads to the determinis-
tic algorithm for fully-dynamic APSP with the guarantees stated

above.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °23, June 20-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9913-5/23/06...$15.00
https://doi.org/10.1145/3564246.3585196

1159

Ruimin Zhang
University of Chicago
Chicago, USA
ruimin@uchicago.edu

CCS CONCEPTS

« Theory of computation — Dynamic graph algorithms; Short-
est paths.

KEYWORDS

all-pairs shortest path; fully dynamic algorithm.

ACM Reference Format:

Julia Chuzhoy and Ruimin Zhang. 2023. A New Deterministic Algorithm for
Fully Dynamic All-Pairs Shortest Paths. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing (STOC ’23), June 20-23, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3564246.3585196

1 INTRODUCTION

We study the fully dynamic All-Pairs Shortest-Paths (APSP) prob-
lem in weighted undirected graphs. In this problem, the input is
an undirected n-vertex graph G with lengths £(e) > 1 on its edges,
that undergoes an online sequence of edge insertions and dele-
tions. The goal is to support (approximate) shortest-path queries
shortest-path-query(x, y): given a pair x, y of vertices of G, return
a path connecting x to y, whose length is within factor « of the
length of the shortest x-y path in G, where « is the approxima-
tion factor of the algorithm. We also consider approximate distance
queries, dist-query(x, y): given a pair x, y of vertices of G, return an
estimate dist’ (x, y) on the distance distg(x, y) between x and y in
G, such that distg (x,y) < dist’(x,y) < a-distg(x,y). Throughout,
we denote |V(G)| = n, and we denote by m the total number of
edges that are ever present in G; if an edge is deleted from G and
then inserted into G multiple times, we count these as different
edges. We also denote by A the ratio of longest to shortest edge
length.

APSP is one of the most fundamental problems in graph algo-
rithms, both in the dynamic and the static settings. Algorithms for
this problem often serve as building blocks for designing algorithms
for a range of other graph problems and beyond. Interestingly, al-
gorithms for dynamic APSP turned out to be extremely useful in
the design of fast algorithms for classical cut, flow, and other graph
problems in the static setting. Not surprisingly, this problem has
been the subject of extensive study, from many different angles and
in various regimes.

A central goal in this area is to obtain algorithms with the
strongest possible guarantees for the problem. Specifically, we
would like the approximation factor « that the algorithm achieves
to be low, and its total update time' — the time required to maintain

!In the context of fully dynamic algorithms, it is customary to focus on amortized up-
date time per operation, which, in our case, is simply the total update time divided by m.
We will use total update time and amortized update time per operation interchangeably,
but we will try to clearly distinguish between them to avoid confusion.

https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1145/3564246.3585196
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585196&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

its data structures — as close as possible to linear in m. In addition
to the approximation factor and the total update time, another im-
portant parameter is query time — the time it takes to process a
single query. Ideally, we would like the query time for dist-query to
be O(polylog(n - A)), and the query time for shortest-path-query
to be close to O(|E(P)|), where P is the path that the algorithm re-
turns, which is close to the best query time we can hope for. Lastly,
we distinguish between the oblivious-adversary setting, where the
sequence of updates to graph G is constructed in advance and may
not depend on the algorithm’s behavior, and the adaptive-adversary
setting, where each update to graph G may depend arbitrarily on
the algorithm’s inner state and past behavior, such as responses to
queries. While the oblivious-adversary setting appears significantly
easier to handle algorithmically, many applications that rely on
algorithms for dynamic APSP require that the algorithm works in
the adaptive-adversary setting. It is well known that deterministic
algorithms always work against an adaptive adversary. Seeing that
the APSP problem itself is used as a building block in many different
other setting, designing a deterministic algorithm for the problem
is especially desirable.

A straightforward algorithm for the fully-dynamic APSP prob-
lem is the following: every time a query shortest-path-query(x, y)
arrives, compute the shortest x-y path in G from scratch. This al-
gorithm solves the problem exactly, but it has query time ©(m).
Another approach is to rely on spanners. A spanner of a dynamic
graph G is another dynamic graph H C G, with V(H) = V(G),
such that the distances between the vertices of G are approxi-
mately preserved in H; ideally a spanner H should be very sparse.
For example, a work of [6] provides a randomized algorithm that
maintains a spanner of a fully dynamic n-vertex graph G, that,
for any parameter k < O(logn), achieves approximation factor
(2k — 1), has expected amortized update time O(k? log? n) per up-
date operation, and expected spanner size O(kn'*1/k logn). Un-
fortunately, this algorithm only works against an oblivious adver-
sary. A recent work of [10] provides a randomized algorithm for
maintaining a spanner of a fully dynamic n-vertex graph G that
can withstand an adaptive adversary. The algorithm achieves ap-
proximation factor O(poly log n) and total update time O(m), and
it ensures that the number of edges in the spanner H is always
bounded by O(npolylogn). An algorithm for the APSP problem
can naturally build on such constructions of spanners: given a query
shortest-path-query(x, y) or dist-query(x, y), we simply compute
the shortest x-y path in the spanner H. For example, the algo-
rithm for graph spanners of [10] implies a randomized poly log n-
approximation algorithm for APSP that has O(m poly log n) total
update time. A recent work of [7] provides additional spanner-based
algorithms for APSP. Unfortunately, it seems inevitable that this
straightforward spanner-based approach to APSP must have query
time Q(n) for both shortest-path-query and dist-query, and, with
current state of the art algorithms, cannot lead to a better than
logarithmic approximation.

In this paper, our focus is on developing algorithms for the
APSP problem, whose query time is O(|E(P)| - polylog(n - A))
for shortest-path-query, where P is the path that the query returns,
and O(polylog(n - A)) for dist-query. There are several reasons

1160

Julia Chuzhoy and Ruimin Zhang

to strive for these faster query times. First, we typically want re-
sponses to the queries to be computed as fast as possible, and
the above query times are close to the fastest possible. Second,
ensuring that query time for shortest-path-query is bounded by
O(|E(P)| - polylog(n - A)) is often crucial to obtaining fast algo-
rithms for other static graph problems, that use algorithms for APSP
as a subroutine.

As mentioned already, there are several parameters of interest
that we would like to optimize in algorithms for APSP: namely,
query time, total update time, and the approximation factor. Addi-
tionally, we would like the algorithm to withstand an adaptive ad-
versary, and ideally to be deterministic. There is a huge body of work
that studies the APSP problem, in both the dynamic and the static
settings, that tries to optimize or achieve various tradeoffs among
these different parameters. Some of this work also only focuses on
supporting dist-query queries, and not shortest-path-query. We do
not attempt to survey all of this work here, partially because this
seems impossible, and partially because it may lead to confusion
due to the large number of different settings considered. Instead, we
will restrict our attention to the adaptive-adversary setting, where
the query time for shortest-path-query is O(|E(P)|-poly log(n-A)),
where P is the returned path, and query time for dist-query(x, y) is
O(polylog(n - A)). We will try to survey the most relevant results
for this setting, in order to put our results in context with previous
work. We will also include some results for APSP in decremental
graphs, where only edge-deletion updates are allowed.

Low-approximation regime. One major direction of study
is to obtain algorithms for APSP whose approximation factor is
very close to 1. The classical data structure of Even and Shiloach
[23, 25, 32], that we refer to as ES-Tree throughout the paper, im-
plies an exact deterministic algorithm for decremental unweighted
APSP with O(mn?) total update time, and the desired O(|E(P)|)
query time for shortest-path-query, where P is the returned path.
Short of obtaining an exact algorithm for APSP, the best possible
approximation factor one may hope for is (1 + ¢€), for any €. A
long line of work is dedicated to this direction in the decremental
setting [5, 8, 30, 39] and in the fully dynamic setting [14, 22, 40].
In the decremental setting, the fastest algorithms in this line of
work, due to [30] and [8], achieve total update time O(mn/e); the
former algorithm is deterministic but only works in unweighted
undirected graphs, while the latter algorithm works in directed
weighted graphs, with an overhead of log A in the total update time,
but can only handle an oblivious adversary. In the fully-dynamic
setting, all algorithms cited above have amortized update time per
operation at least Q(n?). A very recent result of [12] obtained a
(2 + €)-approximation for fully-dynamic APSP, with amortized up-
date time O(m!*°(1)) per operation. The high running times of the
above mentioned algorithms are perhaps not surprising in view of
strong lower bounds that are known for the low-approximation
setting.

Lower Bounds. A number of lower bounds are known for dy-
namic APSP with low approximation factor. For example, Dor,
Halperin and Zwick [24], and Roddity and Zwick [38] showed

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

that, assuming the Boolean Matrix Multiplication (BMM) conjec-
ture?, for any a, f > 1 with 2a + 8 < 4, no combinatorial algorithm
for APSP achieves a multiplicative a and additive f approxima-
tion, with total update time O(n*%) and query time 0(n'~9%) for
dist-query, for any constant 0 < § < 1. This result was generalized
by [31], who showed the same lower bounds for all algorithms and
not just combinatorial ones, assuming the Online Boolean Matrix-
Vector Multiplication (OMV) conjecture®. The work of Vassilevska
Williams and Williams [42], combined with the work of Roddity and
Zwick [38], implies that obtaining such an algorithm would lead to
subcubic-time algorithms for a number of important static problems
on graphs and matrices. A very recent result of [1] provides new
lower bounds for the dynamic APSP problem, in the regime where
only dist-query queries need to be supported, under either the 3-
SUM conjecture or the APSP conjecture. Let k > 4 be an integer,

let €, > 0 be parameters, and let ¢ = ﬁ and d = 23“1;2,

w is the exponent of matrix multiplication. Then [1] show that,
assuming either the 3-SUM Conjecture or the APSP Conjecture,
there is no (k — §)-approximation algorithm for decremental APSP

where

with total update time O(m”ﬁ ~€) and query time for dist-query

bounded by O(mﬁ_e), They also show that there is no (k —)-
approximation algorithm for fully dynamic APSP that has O(n®)
preprocessing time, and then supports (fully dynamic) updates and

dist-query queries in O(m<k-d ~€) time. Due to these lower bounds,
it is natural to focus on somewhat higher approximation factors.

Higher approximation factor. In the regime of higher approx-
imation factors, a long line of work [2, 13, 28, 30] focused on the
decremental setting with an oblivious adversary. This direction
recently culminated with an algorithm of Chechik [15], that, for
any integer k > 1 and parameter 0 < € < 1, obtainsa ((2+¢€)k —1)-
approximation, with total update time O(mn'/k*°(1) .1og A), when
the input graph is weighted and undirected. This result is near-
optimal, as all its parameters almost match the best static algorithm
of [41]. This result was recently slightly improved by [36], who
obtain total update time O(mn!/¥ - log A), and improve query time
for dist-query.

The best currently known results for the fully dynamic set-
ting with an oblivious adversary are significantly weaker. For un-
weighted graphs, the algorithm of [26] achieves approximation
factor n°()), with amortized update time n'/2+°(1) per operation
on unweighted graphs, while the algorithm of [2] achieves a con-
stant approximation factor with expected o(m) amortized update
time per operation. In fact the latter paper provides a more gen-
eral tradeoff between the approximation factor and update time,
but in all regimes the expected amortized update time is at least
©(+/m) per operation. Lastly, the the algorithm of [27], based on
low-stretch trees, achieves O(m€) update time per operation, with
a factor (log n)©1/€) -approximation in weighted graphs. All of the
above mentioned algorithms for fully-dynamic APSP with oblivious

The conjecture states that there is no “combinatorial” algorithm for multiplying two
Boolean matrices of size n X n in time n~ for any constant § > 0.

3The conjecture assumes that there is no n3~-time algorithm, for any constant
0 < 8 < 1, for the OMV problem, in which the input is a Bollean (n X n) matrix,
with n Boolean dimension-n vectors v, . . ., v, arriving online. The algorithm needs
to output Mo; immediately after v; arrives.

1161

STOC ’23, June 20-23, 2023, Orlando, FL, USA

adversary only support dist-query. We are not aware of algorithms
that can additionally support shortest-path-query.

In contrast, progress in the adaptive-update setting has been
much slower. Until very recently, the fastest algorithm for decre-
mental unweighted graphs [29, 30] only achieved an O(mn/e) total
update time (for approximation factor (1+¢)), and the work of [21],

for any parameter 1 < k < o(logl/ 8 n), achieved a multiplicative

3. 2 and additive 2(O(klog”* n) approximation, with query time
O(|E(P)| - n°M) for shortest-path-query, and total update time
n%5+2/k+o(1) Until very recently, the fastest adaptive-update algo-
n®log A

-) and
approximation factor (1 + €) (see [34]), even in the decremental
setting.

To summarize, to the best of our knowledge, until very recently,
even if we allowed an o(n)-approximation factor, no adaptive-
update algorithms with better than ©(n®) total update time and
better than ©(n) query time for shortest-path-query and dist-query
were known for weighted undirected graphs, and no adaptive-
update algorithms with better than ©(n?-) total update time and
better than ®(n) query time were known for unweighted undirected
graphs, even in the decremental setting.

Two very recent results® provided significantly stronger algo-
rithms for decremental APSP in weighted graphs: [17] designed

a deterministic algorithm, that, for any Q(1/loglogm) < € <
O(1/e)
)2

rithms for weighted graphs had total update time O (

1, achieves approximation factor (logm , and has total up-

date time O (m“o(e) - (log m)o<1/€2) -log A). The query time is
O(log mloglog A) for dist-query, and O(|E(P)| + log mloglog A)
for shortest-path-query, where P is the returned path. The main
focus of [12] was mostly on a special case of APSP called Single
Source Shortest Paths (SSSP), but they also obtained a determin-
istic algorithm for decremental APSP with approximation factor
m°1) and total update time O(m1+o(1)); unfortunately, the trade-
off between the approximation factor and the total update time is
not stated explicitly, though they mention that the approximation
factor is super-logarithmic. As mentioned already, they also obtain
new results in the low-approximation regime for the fully dynamic
setting of APSP: a (2 + €)-approximation with amortized update
time O(m!*°(1)) per operation.

In this paper we improve the results of [17] in two ways. First,
we extend the algorithm to the fully-dynamic setting, and second,
we improve the approximation factor to (loglogm) 20(1/53). Alto-
gether, we obtain a deterministic algorithm for fully-dynamic APSP,
that, given a precision parameter W < € < 1/400, achieves

)20(1/62)

approximation factor a = (loglogn , and has amortized up-

date time O (no<€) -log A) per operation (if starting from an empty
graph). Query time for dist-query is O (20(1/5) -logn - loglog A),
and query time for shortest-path-query is:

0] (|E(P)| +200/€) Ljogn - log logA) ,

where P is the path that the algorithm returns (note that, if we
choose € > 1/loglogn, then query time for dist-query becomes

4To the best of our knowledge, the two results are independent.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

O(poly log(n-A), and query time for shortest-path-query becomes
O(|E(P)| + polylog(n - A)). An important intermediate problem
that we study is Sparse Neighborhood Cover, and its generalization
called Recursive Dynamic Neighborhood Cover (RecDynNC) that
we discuss next.

Sparse Neighborhood Cover and RecDynNC problem. Given
a graph G with lengths on edges, a vertex v € V(G), and a distance
parameter D, we denote by B (v, D) the ball of radius D around
v, that is, the set of all vertices u with distg(v,u) < D. Suppose
we are given a static graph G with non-negative edge lengths, a
distance parameter D, and a desired approximation factor a. A
(D, a - D)-neighborhood cover for G is a collection C of vertex-
induced subgraphs of G (that we call clusters), such that, for every
vertex v € V(G), there is some cluster C € C with B (v, D) C V(C).
Additionally, we require that, for every cluster C € C, for every
pair x,y € V(C) of its vertices, distg(x,y) < a - D; if this property
holds, then we say that C is a weak (D, & - D)-neighborhood cover
of G.If, additionally, the diameter of every cluster C € C is bounded
by a - D, then we say that C is a strong (D, « - D)-neighborhood
cover of G. Ideally, it is also desirable that the neighborhood cover
is sparse, that is, every edge (or every vertex) of G only lies in a
small number of clusters of C. For this static setting of the problem,
the work of [3, 4] provides a deterministic algorithm that produces
a strong (D, O(D log n))-neighborhood cover of graph G, where
every edge lies in at most O(logn) clusters, with running time
O(IE(G)| +V(G)D).

In [17] a new problem, called Recursive Dynamic Neighborhood
Cover (RecDynNC) was introduced. The problem can be viewed
as an adaptation of Sparse Neighborhood Covers to the dynamic
(decremental) setting, but with additional constraints that make it
easy to use as a building block in other dynamic algorithms. The
input to this problem is a bipartite graph H = (V, U, E), with non-
negative lengths £(e) on edges e € E, and a distance parameter D.
Vertices in set V are called regular vertices, while vertices in set U
are called supernodes. Graph H undergoes an online sequence % of
updates, each of which must be of one of the following three kinds:
(i) edge deletion; or (ii) isolated vertex deletion; or (iii) supernode
splitting. In the latter kind of update, we are given a supernode
u € U, and a collection E’ C g (u) of its incident edges. We need to
insert a new supernode v’ into H, and, for every edge e = (u,v) € E’,
insert an edge (v, v) into H. We note that, while, in general, graph
H is decremental, the supernode-splitting update allows us to insert
edges into it, in a limited fashion. For conciseness, we will refer to
an input J = (H = (V, U, E),{(e)}eck D) as described above, as
valid input structure, and to edge-deletion, isolated vertex-deletion,
and supernode-splitting updates as valid update operations. Since
edges may be inserted into graph H via supernode-splitting updates,
in order to control the size of the resulting graph, another parameter
called dynamic degree bound is used. We say that the dynamic degree
bound of valid input structure J that undergoes a sequence % of
valid update operations is y if, for every regular vertex v, the total
number of edges that are ever present in H and are incident to v, is
bounded by p.

The goal in the RecDynNC problem is to maintain a weak (D, a -
D)-neighborhood cover C of the graph H. However, we require
that the clusters in C are only updated in a specific fashion: once

1162

Julia Chuzhoy and Ruimin Zhang

an initial neighborhood cover C of H is computed, we can only
update clusters via allowed changes: for each cluster C, we can
delete edges or vertices from C, and, additionally, if some supern-
ode u € V(C) just underwent a supernode-splitting update, we can
insert the resulting new supernode u’ and all edges connecting it
to other vertices of C, into cluster C. A new cluster C’ may only
be added to C, if there is a cluster C € C with C’ C C. In this
case, we say that cluster C underwent a cluster-splitting update.
The algorithm must also maintain, for every regular vertex v of H, a
cluster C = CoveringCluster(v) € C, with By (v, D) € V(C). Addi-
tionally, we require that the neighborhood cover is sparse, namely,
for every regular vertex v of H, the total number of clusters of
C to which v may ever belong over the course of the algorithm
is small. Lastly, we require that the algorithm supports queries
short-path-query(C, v,0”): given two vertices v,0” € V, and a clus-
ter C € C with v,0” € C, return a path P in the current graph H,
of length at most « - D connecting v to o’ in G, in time O(|E(P)|),
where « is the approximation factor of the algorithm.

Given any edge-weighted decremental graph G and a distance
bound D, it is easy to transform G into a valid input structure: we
simply view the vertices of G as supernodes, and we subdivide its
edges with new vertices, that become regular vertices in the re-
sulting bipartite graph H. An algorithm for solving the RecDynNC
problem on the resulting valid input structure J (that only under-
goes edge-deletion updates) then naturally allows us to maintain
a sparse neighborhood cover in the original graph G. However,
the specific definition of the RecDynNC problem makes it more
versatile, and more specifically, we can naturally compose instances
of the problem recursively with one another.

A typical way to exploit this composability property is the fol-
lowing. Suppose we solve the RecDynNC problem on a bipartite
graph H, with some distance bound D. Let C be the collection of
clusters that the resulting algorithm maintains. Assume now that
we would like to solve the same problem on graph H, with a larger
distance bound D’ > D. We can then construct another graph H’,
whose set of regular vertices is the same as that in H, and the set
of supernodes is {u(C) | C € C}. We add an edge (v, u(C)) to the
graph if and only if regular vertex v lies in cluster C € C, and we
set the lengths of the resulting edges to be D. As the clusters in
C evolve, we can maintain graph H’ via valid update operations:
when some cluster C € C undergoes cluster-splitting, and a new
cluster C’ C C is created, we can apply supernode-splitting to su-
pernode u(C) in order to update graph H’ accordingly. It is not
hard to verify that the resulting graph H’ is an emulator for H, with
respect to distances that are greater than D. We can then scale all
edge lengths down by factor D, and solve the problem on graph
H’, with a new, significantly smaller, distance parameter D’ /D. If
neighborhood cover C is sparse, and every regular vertex of H ever
belongs to at most A clusters of C, then the dynamic degree bound
for graph H’ is bounded by A, so graph H’ itself is sparse.

We note that, while the RecDynNC problem was first formally
defined in [17], the idea of using clustering of a dynamic graph
G in order to construct an emulator was exploited before numer-
ous times (see e.g. the constructions of [16, 26, 27] of dynamic
low-stretch spanning trees). In several of these works, a family
of clusters of a dynamic graph G is constructed and maintained,
and the restrictions on the allowed updates to the cluster family

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

are similar to the ones that we impose; it is also observed in sev-
eral of these works that with such restrictions one can naturally
compose the resulting emulators recursively — an approach that
we follow here as well. While neither of these algorithms provide
neighborhood covers (as can be observed from the fact that one can
view the sets of clusters that are maintained for each distance scale
as disjoint, something that cannot be achieved in neighborhood
covers), a connection between low-diameter decompositions (that
often serve as the basis of low-stretch spanning trees) and neigh-
borhood covers has been noticed in prior work. For example, [37],
provide a construction of neighborhood covers from low-diameter
decompositions. Additionally, all the above-mentioned algorithms
are randomized and assume an oblivious adversary. On the other
hand, [29, 30] implicitly provide a deterministic algorithm for main-
taining a neighborhood cover of a dynamic graph. However, these
algorithms have a number of drawbacks: first, the running time for
maintaining the neighborhood cover is too prohibitive (the total
update time is O(mn)). Second, the neighborhood cover maintained
is not necessarily sparse; in fact a vertex may lie in a very large num-
ber of resulting clusters. Lastly, clusters that join the neighborhood
cover as the algorithm progresses may be arbitrary. The restriction
that, for every cluster C added to the neighborhood cover C, there
must be a cluster C’ containing C that already belongs to C, seems
crucial in order to allow an easy recursive composition of emulators
obtained from the neighborhood covers, and the requirement that
the neighborhood cover is sparse is essential for bounding the sizes
of the graphs that arise as the result of such recursive compositions.
We also note that a similar approach of recursive composition of
emulators was used in numerous algorithms for APSP (see, e.g.
[15]), and a similar approach to handling cluster-splitting in an
emulator that is based on clustering was used before in numerous
works, including, e.g., [9, 11, 16, 20].

It is not hard to verify that an algorithm for the RecDynNC
problem immediately implies an algorithm for decremental APSP
with the same approximation factor, and the same total update time
(to within O(log A)-factor). In [17], a deterministic algorithm for
the RecDynNC problem was provided, with approximation factor

a=0 ((log m)zo(lls)) and total update time:

le) (m1+0(6) . (log m)O(l/EZ)))

The algorithm ensured that, for every regular vertex v € V(H), the
total number of clusters of C that v ever belongs to is bounded by
mO(l/loglog m).

In this work, we improve the results of [17] in two ways. First,
we provide a black-box reduction from fully dynamic APSP to the
RecDynNC problem. Second, we provide an improved algorithm for
the RecDynNC problem. The algorithm, given a valid input struc-
ture J = (H {t(&}ecrm) ,D) undergoing a sequence of valid
update operations, with dynamic degree bound p, together with
parameters W and 1/ (log W)l/loo < € < 1/400, such that, if we de-
note by N the number of regular vertices in H at the beginning of the
algorithm, then N - 1 = W holds, achieves approximation factor a =
(loglog VAV)ZO(I/EZ), with total update time O(N+O(e) . ,uo(l/s)).
The algorithm also ensures that, for every regular vertex v, the
total number of clusters in the weak neighborhood cover C that

1163

STOC ’23, June 20-23, 2023, Orlando, FL, USA

the algorithm maintains, to which v ever belongs over the course of
the algorithm, is bounded by wie', By combining these two results,
we obtain a deterministic algorithm for the fully dynamic APSP

problem, that, given a precision parameter W < € < 1/400,

. - 0(1/€?)
achieves approximation factor « = (loglogn)®~ "~ , and has amor-

tized update time O (no(e) -log A) per operation (if starting from
an empty graph), with query time O (20(1/5) -logn -loglog A) for

dist-query and query time O (lE(P)| +200/€) logn - loglogA)
for shortest-path-query, where P is the path that the algorithm
returns. We now state our results more formally, and discuss the
techniques that we employ, while pointing out specific remaining
bottlenecks for obtaining a better tradeoff between the approxima-
tion factor and the update time of the algorithm.

1.1 Our Results

As mentioned already, a problem that plays a central role in this
work is RecDynNC. We do not repeat the definition of the problem
from above; a formal (and equivalent) definition can be found in
Section 3. However, the definition that we provided above omitted
one technical detail: the Consistent Covering requirement.

Let J = (H=(V,U,E),{t(e)}ccg,D) be a given valid input
structure that undergoes an online sequence ¥ of valid update
operations. Let 7~ be the time horizon associated with . In order to
define the Consistent Covering property, we first need to define the
notion of ancestor-clusters. This notion is defined in a natural way. If
C is a cluster that is present in C at the beginning of the algorithm,
then for all 7 € 7", Ancestor(?) (C) = C, so C is its own ancestor.
Assume now that C’ is a cluster that was added to set C at some time
7/ > 0, by applying a cluster-splitting update to a cluster C € C.
Then forallt € 7, if r < 7/, Ancestor(f)(C’) = Ancestor(?) (©),
and otherwise Ancestor(?) (C’) = C’.

We are now ready to define the Consistent Covering property.
Consider an algorithm for the RecDynNC problem on input (7,),
and let C be the collection of cluster that it maintains. We say that
the algorithm obeys the Consistent Covering property, if, for every
regular vertex v € V(H), for every pair 7’ < r € 7 of time points, if
C = CoveringCluster(v) at time 7, and Ancestor(") (C) = C’, then,
at time 7/, By (v, D) € V(C’) held. We require that algorithms for
the RecDynNC problem obey the Consistent Covering property.
Our first result is a reduction from a variant of fully-dynamic APSP
to RecDynNC.

1.1.1 Reduction from Fully-Dynamic APSP to RecDynNC. We pro-
vide a black-box reduction from fully-dynamic APSP to RecDynNC.
Our reduction shows that, if there exists an algorithm for the
RecDynNC problem with some general set of parameters, then
we can convert it into an algorithm for the fully-dynamic APSP
problem. The assumption on the existence of an algorithm for
RecDynNC, that serves as the starting point of the reduction, is the
following.

AsSUMPTION 1.1. There is a deterministic algorithm for RecDynNC,
that, given a valid input structure § = (H = (V,U, E), {¢(€)}ocE, D)
undergoing a sequence of valid update operations, with dynamic de-
gree bound pu, together with parameters W and 1/ (log W)1/100 <

STOC ’23, June 20-23, 2023, Orlando, FL, USA

€ < 1/400, such that, if we denote by N the number of regular
vertices in H at the beginning of the algorithm, then N - i < W
holds, achieves approximation factor a(W), with total update time
O(N™O(e) . po<1/6)). Moreover, the algorithm ensures that, for ev-
ery regular vertex v € V, the total number of clusters in the weak
neighborhood cover C that the algorithm maintains, to which vertex
v ever belongs over the course of the algorithm, is bounded by wie'.
Here, a(+) is a non-decreasing function.

If Assumption 1.1 holds, then it is quite easy to obtain an algo-
rithm for decremental APSP (see Section 3.4.2 in the full version of
[17]), that, on an input graph G that initially has m edges, has total
update time O(m!+O(€)+0(1) (Jog m)©O(1/€) Jog A), and achieves an
approximation factor roughly a(m). One of the main contributions
of this work is showing that an algorithm for the RecDynNC prob-
lem implies an algorithm for fully-dynamic APSP. Specifically,
we show that, if Assumption 1.1 holds, then there is an algorithm
for a problem that is very similar to, but is slightly different from
fully-dynamic APSP. We call this problem D*-restricted APSP, and
define it next. For a dynamic graph G and time 7, we denote by
G(7) the graph G at time 7.

Definition 1.1 (D*-restricted APSP problem). The input to the
D*-restricted APSP problem is an n-vertex graph G with integral
lengths £(e) > 1 on its edges e € E(G), that undergoes an online
sequence ¥ of edge deletions and insertions, together with a preci-
sion parameter W < € < 1/400, and a distance parameter
D* > 0. The goal is to support approximate short-path queries:
given a pair x, y € V(G) of vertices, the algorithm needs to respond
“YES” or "NO”, in time O (20(1/5) -log n) If the response is “NO”,
then distg (x,y) > D* must hold. If the response is “YES”, then the
algorithm should be able, additionally, to compute a path P in the

current graph G, connecting x to y, of length at most a” - D*, in time
O(|E(P)|), where a’ is the approximation factor of the algorithm.

The following theorem summarizes our reduction from
D*-restricted APSP to RecDynNC.

THEOREM 1.2. Suppose Assumption 1.1 holds. Then there is a deter-
ministic algorithm for the D* -restricted APSP problem, that achieves
approximation factor &’ = (a(n?))°1/€) and has amortized update
time at most n©(€) per operation, if starting from an empty graph.

1.1.2 New Algorithm for RecDynNC. Our next result is an im-
proved algorithm for the RecDynNC problem, that is summarized
in the following theorem.

THEOREM 1.3. There is a deterministic algorithm for the RecDynNC
problem, that, given a valid input structure J = (H {t’(e)}eeE(H) , D)
undergoing a sequence of valid update operations, with dynamic de-
gree bound i, together with parameters W and 1/(log W)1/100 <
€ < 1/400, such that, if we denote by N the number of regular ver-
tices in H®), then N - y < W holds, achieves approximation factor
a = (loglog W)ZO(I/EZ), with total update time O(N*O(e) -,uo(l/e)).
The algorithm ensures that, for every regular vertexv € V(H), the
total number of clusters in the weak neighborhood cover C that the
algorithm maintains, to which vertex v ever belongs over the course
of the algorithm, is bounded by wie’,

1164

Julia Chuzhoy and Ruimin Zhang

By combining Theorem 1.2 and Theorem 1.3, we immediately
obtain the following corollary. We defer its proof to the full version
of the paper.

COROLLARY 1.4. There is a deterministic algorithm for fully dy-
namic APSP, that, given an n-vertex graph G undergoing an online
sequence of edge insertions and deletions, and a precision parame-

1 : : : A
ter Togn) /o0 < € < 1/400, achieves approximation factor &’ =

&2
(loglog n)zo(ll), and has amortized update time O (no(e) -log A)
per operation if starting from an empty graph, where A is the ra-

tio of longest to shortest edge length. Query time for dist-query is
o (20(1/5) -logn - log logA) and for shortest-path-query it is

o (|E(P)| +200/€) 1ogn - loglog A), where P is the path that the

algorithm returns.

1.2 Our Techniques

We provide a brief overview of our techniques, starting with the
proof of Theorem 1.2.

Reduction from D*-restricted APSP to RecDynNC. The de-
scription that we provide here is somewhat over-simplified, and is
intended for intuition only. We assume that we are given a fully
dynamic graph G, that undergoes an online sequence X of edge-
insertions and deletions, such that |[E(G(©))| + |[V(G)| + |Z| = m,
together with a distance parameter D*, and a precision parameter €.
At a high level, we use a rather natural approach. This high-level ap-
proach was used before in multiple reductions from fully-dynamic
to decremental algorithms (see e.g. [2, 26, 27, 32, 33]), but due to
the specific setting of the problem that we consider, the use of this
approach in our setting gives rise to a number of new technical chal-
lenges that we highlight below. We also provide a brief comparison
with previous results where a similar approach was used. Assume
for simplicity that ¢ = 1/e€ is an integer, and that so is M = m°®.
Assume further that the distance parameter D* is an integral power
of 2. The data structures that we maintain are partitioned into q + 1
levels. We also define a hierarchical partition of the time horizon 7~
into phases.

For level L = 0, there is a single level-0 phase, that spans the
entire time horizon 7". We maintain a level-0 graph H?, that is
constructed as follows. Let G’ be the dynamic graph that is obtained
from the input graph G, by ignoring all edge insertions, and only
executing edge-deletion updates. Graph H° is a bipartite graph,
that has a regular vertex v(x) for every vertex x € V(G), and a
regular vertex v(e) for every edge e € E(G’). Additionally, it has a
supernode u(x) for every vertex x € V(G), that connects, with an
edge of length 1, to the corresponding regular vertex v(x). For every
edge e = (x,y) € E(G’), we also connect v(e) to u(x) and u(y),
with edges of length £(e). As graph G’ undergoes edge-deletions,
the corresponding bipartite graph H? undergoes edge-deletions as
well. For every integer 0 < i < log D, we can view graph H° as an
instance of the RecDynNC problem, with distance bound D; = 2.
We apply the algorithm for RecDynNC from Assumption 1.1 to this
instance, and we denote by Cl.0 the resulting collection of clusters
that it maintains. For every cluster C € Cf , we say that the scale

of C is i, and we denote scale(C) = i. Let C* = Uz.igoD* be the
collection of all level-0 clusters.

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

Consider now some level 0 < L < q. We partition the time
horizon 7~ into at most M level-L phases. Each level-L phase <I>]];

spans exactly M9~ consecutive edge-insertion updates from the
update sequence ¥ for graph G, except for possibly the last phase
that may contain fewer edge insertions. We define this hierarchical
partition of the time horizon so that, forall 0 < L < g, every level-L
phase is contained in some level-(L — 1) phase.

Consider now some level 0 < L < g and a level-L phase (Di.

Let (-~

associate, with phase <I>£, a collection AII; of edges of G, that the

be the unique level-(L — 1) phase that contains CD% . We

level-L data structure will be “responsible” for during phase CI>I];.

These are all the edges that were inserted into G since the beginning
of level-(L — 1) phase <I>](<I,‘7
phase CIDII;. It is easy to see that the number of such edges must be

bounded by M3~ L+1 We also denote by Slé the collection of vertices

1), but before the beginning of level-L

of G that serve as endpoints of the edges of Ai.

We are now guaranteed that, at all times 7 € 7, for every edge
e € E(G), either e € E(G) (in which we say that it lies at level 0);
or there is some level 0 < L < g, such thate € AIE currently holds,
where k is the index of the current level-L phase (in which case we
say that the level of e is L). For every path P in graph G, we also
define the level of path P to be the largest level of any of its edges.

Consider now some level 0 < L < g, and recall that there are at
most ML level-L phases. At the beginning of every level-L phase, we
construct level-L data structures from scratch. These data structures
consist of a dynamic level-L bipartite graph HL, that is viewed as an
input to the RecDynNC problem. The set of regular vertices of H-
is SI% , where k is the index of the current level-L phase. Intuitively,

graph HE will be “responsible” for all level-L paths in graph G. We
describe the sets of supernodes and of edges of H- below. For all 0 <
i < log D¥, we view graph HL, together with distance parameter
D; = 2!, as an instance of the RecDynNC problem, and we apply
the algorithm from Assumption 1.1 to this instance, denoting the
resulting collection of clusters by CiL. We say that all clusters in C lL

i.:o CI.L . The supernodes of graph
HEL are vertices u(C) corresponding to some of the clusters C €
Urr <L CL'. As the clusters in set Ur <L CL evolve, we maintain
the corresponding dynamic graph H” via valid update operations,
where, for example, a cluster-splitting update of a cluster C €
Urr <t CL canbe implemented via a supernode-splitting update
applied to supernode u(C).

Notice that, while the number of level-L phase may be as large
as ML, the number of regular vertices in the level-L graph HT is
bounded by oMa-L+1 Therefore, even though we need to recom-
pute a level-L data structure from scratch at the beginning of each
level-L phase, the size of the corresponding graph is sufficiently
small that we can afford it. The level-q data structure is computed
from scratch after every edge-insertion update, though the number
of regular vertices in the corresponding graph HY is bounded by
M < mé.

While the high-level idea described above is quite natural, and
was used multiple times in the past (see e.g. [2, 26, 27, 32, 33]), it
poses a number of challenges. The main challenge is the coordina-
tion between the different levels that is needed in order to support

have scale i, and we denote CL =

1165

STOC ’23, June 20-23, 2023, Orlando, FL, USA

short-path queries. Consider, for example, a short-path query be-
tween a pair x, y of vertices of G, and assume that there is a path P
in G connecting x to y, whose length is D < D*. Notice, however,
that the edges of P may belong to different levels, and there may
not be a single level L, such that all vertices of P lie in the graph
HEL. Assume that the level of path P is L. Then we would like the
level-L data structure to be “responsible” for this query. In other
words, we would like some path P’, whose length is comparable
to D, to represent path P in graph HL. But it is possible that the
endpoints x and y of P do not even lie in graph H, so it is not clear
which path in H- we should use as a representative of path P.

This issue seems especially challenging in the setting of APSP
with adaptive adversary, where it is required that approximate
short-path-query queries are supported. For comparison, [2] and
[27] use a very similar high-level idea of a hierarchical partition of
the time horizon and the set of edges. In [27], the algorithm is only
required to maintain a low-stretch probabilistic tree embedding of
the graph. This allows them to combine the trees maintained at
different levels into a single tree that has a relatively low height,
thereby circumventing the problem of coordinating between graphs
from different levels. In order to respond to dist-query between a
pair of vertices, they simply compute the length of the path between
the two vertices in the tree that they maintain. Their data structure
however cannot support approximate shortest-path-query. If we
tried to similarly combine graphs from different levels in order to
overcome the challenge of coordinating between them, we would
obtain another fully dynamic (non-tree) graph, and it is not clear
how to support approximate shortest-path-query in this graph.
A different approach was taken by [2], whose algorithm exploits
specific properties of the distance oracles of [39, 41]. The latter
constructions however are randomized and can only withstand an
oblivious adversary.

In order to resolve this issue of coordination between levels, we
associate, to every cluster C € Uzzo CL, aset VE(C) € V(G) of
vertices, and we think of cluster C as representing this collection
of vertices of G. For a level 0 < L < g, we include in graph H*
supernodes u(C) for all clusters C € /.. ¢l with S]E NVFE(C) #
0, where k is the index of the current level-L phase. For every
vertex x € Si, and supernode u(C) with x € VF(C), we add an
edge (v(x),u(C)) to graph HX, whose length is 25¢ale(C) The main
challenge in this construction is to define the sets VE(C) of vertices
for clusters C € Uzzo CL. On the one hand, we would like to make
these sets broad enough, so that the resulting graphs H are rich
enough in order to allow us to support approximate short-path
queries. On the other hand, in order to ensure that the algorithm is
efficient, these sets cannot be too large.

In order to support short-path queries between pairs of vertices
x,y € V(G), we employ a notion of “covering chains” - structures
that span multiple levels. Suppose the shortest path P connecting
x to y in G has length D < D*, and belongs to level L. Using the
covering chains, we compute small collections R(x), R(y) € S]I;
of vertices associated with x and y respectively, such that there
exists a vertex x’ € R(x) and a vertex y’ € R(y), together with
a path P’ in graph HL connecting o(x’) to v(y’), whose length is
comparable to D. Conversely, we show that any such path in H.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

can be transformed into a path in graph G that connects x to y, and
has length that is not much larger than D.

Next, we provide a high-level overview of the proof of The-
orem 1.3. We also point out the main remaining bottlenecks to
obtaining a better approximation.

Improved algorithm for RecDynNC. The RecDynNC prob-
lem can be effectively partitioned into two subproblems. The first
subproblem, called MaintainCluster problem, is responsible for
maintaining a single cluster. Suppose we are given any such clus-
ter C C H, where H is the current graph, and a distance param-
eter D* > D. Cluster C will undergo a sequence 3¢ of valid
update operations that correspond to the updates applied to H,
possibly with some additional edge-deletions and isolated vertex-
deletions. The goal of the MaintainCluster problem is to support
short-path-query queries: given a pair x, y of regular vertices of C,
compute a path P of length at most & - D* connecting them in graph
C, in time O(|E(P)|), where «a is the approximation factor that the
algorithm achieves. Whenever the diameter of cluster C becomes
too large, the algorithm may raise a flag Fc, and to provide a pair
x,y of regular vertices of C (that we call a witness pair), such that
distc(x,y) > D*. After that, the algorithm will receive, as part of
the update sequence 2 ¢, a sequence of edge-deletions and isolated
vertex-deletions (that we call a flag-lowering sequence), following
which at least one of the vertices x, y is deleted from C, and flag Fe
is lowered. If the diameter of C remains too large, the algorithm can
raise the flag again immediately. Queries short-path-query may not
be asked when flag F¢ is up. MaintainCluster problem was defined
in [17], and we employ the same definition here.

The second problem is MaintainNC problem. This problem is
responsible for managing the neighborhood cover C itself. Ini-
tially, we start with C containing a single cluster - cluster H. The
clusters in C may only undergo allowed operations that are de-
fined exactly like in the RecDynNC problem. The algorithm also
needs to maintain, for every regular vertex v € V(H), a cluster
CoveringCluster(v) € C, that contains all vertices of By (v, D), so
that the Consistent Covering property holds. The algorithm does
not need to support any queries. But, at any time, it may receive a
cluster C and a pair x, y of vertices of C, such that distc(x,y) > D*
holds (for a parameter D* that we specify below). It must then
produce a flag-lowering sequence 3’ for C (that is, a sequence of
edge- and isolated vertex-deletions, after which at least one of x, y is
deleted from C). All updates from %’ must be then applied to cluster
C, but they may be interspersed with cluster-splitting operations,
when new clusters C’ C C are added to C. The algorithm must
also ensure that every regular vertex of H only belongs to a small
number of clusters over the course of the time horizon.

By combining the algorithms for the MaintainCluster and the
MaintainNC problems, it is easy to obtain an algorithm for the
RecDynNC problem, whose approximation factor is @-D* /D, where
a is the approximation factor of the algorithm for MaintainCluster,
and D* is the threshold parameter for raising the flags {Fc}cec-

While [17] did not explicitly define the MaintainNC problem,
they effectively provided a simple algorithm for it, that relies on
a variation of the standard ball-growing technique, and uses pa-
rameter D* = Q(D - log N), where N is the number of regular
vertices in graph H. This overhead of O(log N) factor is one of

1166

Julia Chuzhoy and Ruimin Zhang

o(1/e) o .
the reasons for the (log N)? e -approximation factor that their

algorithm achieves, and it is one of the barriers to obtaining a
better approximation. We provide a different algorithm for the
MaintainNC problem, that allows us to set D* = O(D - loglog N).
The overhead of factor O(loglog N) in this algorithm is the only
remaining barrier to obtaining an improved algorithm for the
RecDynNC problem, and for APSP. For example, if we could en-

O(1/poly(€))
sure that D* = O (227 *7°°

algorithm for RecDynNC and for fully dynamic APSP with approx-
220(1/p01y(6))

. D) is sufficient, we would obtain an

imation factor and the same update time immediately.

In the remainder of this overview, we focus on the MaintainCluster
problem. We first provide a brief overview of the algorithm from
[17], and then describe our improvements.

The central concept that [17] use in designing an algorithm for
the MaintainCluster problem is that of a balanced pseudocut, which
they also introduced. Let N be the number of regular vertices in
H© and let 1 be the dynamic degree bound. Recall that, as input
to the MaintainCluster problem, we are given a cluster C of H,
that undergoes a sequence X¢ of valid update operations with
dynamic degree bound p, and a distance parameter D*. We use an
additional parameter p; it may be convenient to think of p = N€.
Let D > D* be another distance parameter; its specific value is
not important for this technical overview, but it is close to D*. A
(D, p)-pseudocut in graph C is a collection T of regular vertices
of C, such that, for every regular vertex v € V(C) \ T, BC\T(Z), ﬁ)
contains at most N/p regular vertices. This notion can be viewed
as a generalization of the balanced vertex multicut, that can be
defined as a collection T of vertices, such that every connected
component of C \ T contains at most N /p vertices. Intuitively, once
the vertices of the pseudocut (or of a balanced multicut) are deleted
from C, we can break it into significantly smaller clusters, while still
maintaining the covering properties of the neighborhood cover C.
However, balanced pseudocuts have one additional crucial property:
[17] provided an algorithm, that, given a (D, p)-pseudocut T in
cluster C, either (i) computes an expander graph X, with V(X) C T,
such that [V (X)| is comparable to |T|, together with an embedding
of X into C via short paths that cause a relatively low congestion;
or (ii) computes another (D, p)-pseudocut T’ in C, with |T"| < |T]|.
We denote this algorithm Alg. This algorithm is the core technical
part in the algorithm of [17] for the MaintainCluster problem, and
our main technical contribution to the MaintainCluster problem
essentially replaces algorithm Alg with a different algorithm. We
now provide a very brief description of algorithm Alg.

Algorithm Alg. A central observation that is needed for the
algorithm is the following: let T be a (D, p)-pseudocut in graph
C, and suppose we have computed a relatively small subset E” of
edges of C, and a collection T, T, . . ., Tp+1 of subsets of vertices
of T, such that each such subset T; is sufficiently large, and, for all
1<i<j<p+1distevg (T, 1)) > 4D. Then we can compute a
pseudocut T’ for graph C with |T”| < |T|. The idea is that there
must be some index 1 < i < p +1, such that Be\g/ (T3, 2D) contains
at most N /p regular vertices. By replacing set T; in the pseudocut
T with the endpoints of the edges in E’, we obtain a significantly
smaller pseudocut T’. Algorithm Alg starts with the given pseudo-
cut T, and then attempts to compute an expander X over a large
subset of vertices of T, and to embed it into C via the Cut-Matching

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

Game of [35] (in fact, they need to use a weaker variant of the
game from [19], who provide a deterministic algorithm for the cut
player, but unfortunately only ensure a rather weak expansion in
the resulting graph X, which also contributes to the relatively high
approximation factor of [17]). If the Cut-Matching Game fails to
construct the expander X and embed it into C as required, then
it produces two large subsets T/, "/ C T of vertices, and a rela-
tively small subset E’ of edges, such that distcyg (T, T”) > 4D.
Then they recursively apply the same algorithm to T’ and to T”.
After p such iterations, if the algorithm failed to construct the de-
sired expander X and its embedding, we obtain large vertex subsets
T,...,Tp+1 € T, and a subset E’ of edges of C, that allow us to com-
pute a much smaller pseudocut, as described above. Even though
they perform p iterations of the algorithm for the Cut-Matching
Game, since, in case of a failure, the subsets T”, T’ C T of vertices
that it produces are very large compared to |T|, the resulting subsets
Ti,..., Tp+1 of vertices are still sufficiently large to make progress.
We now complete the description of the algorithm of [17] for the
MaintainCluster problem.

The algorithm is partitioned into phases. Initially, we construct a
pseudocut T that contains all regular vertices of C. At the beginning
of each phase, we use Algorithm Alg (possibly iteratively), in order
to compute a pseudocut T/, and an expander X defined over a large
subset of vertices of T/, together with an embedding of X into
C via short path that cause a low congestion. Assume first that
IT’| > N1=©(€) The algorithm of [17] employs an algorithm for
APSP in expanders on graph X. This algorithm can maintain a large
“core”S C V(X), over the course of a large number of edge-deletions
from C (the number that is roughly comparable to |T’]). It can also
support queries in which, given a pair x,y € V(S) of vertices,
a path of length at most roughly (log N)©(1/Poly(€)) connecting
x to y in X is returned. This path can then be transformed into
a path of comparable length connecting x to y in C, using the
embedding of X into C. Additionally, they maintain an ES-Tree in
graph C, that is rooted at the vertices of S. This tree can be used
in order to ensure that all regular vertices of C are sufficiently
close to the core S, and, whenever this is not the case, flag Fc is
raised. Once the algorithm for APSP in expanders can no longer
maintain the core S (after roughly |T’| deletions of edges from
C), the phase terminates. It is easy to verify that, as long as the
cardinality of the pseudocut T’ is sufficiently large (say at least
N1-©(e)), the number of phases remains relatively small, and the
algorithm can be executed efficiently. Once the cardinality of the
pseudocut T’ becomes too small, the last phase begins, during
which the pseudocut T’ remains unchanged. We omit here the
description of this phase, since our implementation of this part is
essentially identical to that of [17]. We only note that this phase
solves the RecDynNC problem recursively on two instances, whose
sizes are significantly smaller than that of H. The two instances
are then composed in a natural way, which eventually leads to the
doubly-exponential dependence of the approximation factor on
1/poly(e).

The algorithm of [17] for the MaintainCluster problem loses
a super-logarithmic in N approximation factor via this approach,

that contributes to the final (log N)21/P01y<€) -approximation factor
for the RecDynNC problem. This loss is largely due to the use of

1167

STOC ’23, June 20-23, 2023, Orlando, FL, USA

expander graphs. In addition to the issues that we have mentioned
with the implementation of the Cut-Matching game via a deter-
ministic algorithm, all currently known algorithms for APSP in
expanders only achieve a superlogarithmic approximation factor,
and even if they are improved, the loss of at least a polylogarithmic
approximation factor seems inevitable. It is typical for this issue
to arise when relying on expander graphs for distance-based prob-
lems, such as APSP. A recent work of [18] suggested a method to
overcome this difficulty, by replacing expander graphs with well-
connected graphs. Intuitively, if G is a graph, and S is large subset
of its vertices, we say that G is well-connected with respect to
S (or just well-connected) if, for every pair A,B C S of disjoint
equal-cardinality subsets of vertices of S, there is a collection P
of paths in G, that connects every vertex of A to a distinct ver-
tex of B, such that the paths in P are short, and they cause a low
congestion. In a typical setting, if G is an n-vertex graph, then the
lengths of the paths in # are bounded by 2P°Y(1/€) "and the con-
gestion that they cause is bounded by nO(€) [18] also developed
a toolkit of algorithmic techniques around well-connected graphs,
that mirror those known for expanders. For example, they provide
an analogue of the Cut-Matching Game, that, given a graph C and
a set T of its vertices, either computes a large set S C T of ver-
tices, and a graph X with V(X) C T, that is well-connected with
respect to S, together with an embedding of X into C via short paths
that cause a low congestion; or it computes two relatively large
sets T/, T C T of vertices, and a small set E’ of edges, such that
disteygr (T7, T”) is large. Additionally, they provide an algorithm
for APSP in well-connected graphs, that has similar properties to
the above mentioned algorithm for APSP in expanders, but achieves
a much better approximation factor of 2!/P¥(€) By replacing ex-
pander graphs with well-connected graphs in the algorithm for
MaintainCluster problem of [17], we avoid the superlogarithmic
loss in the approximation factor that their algorithm incurred. We
note however that replacing expanders with well-connected graphs
in algorithm Alg is quite challenging technically, for the following
reason. Recall that, in the approach that used the Cut-Matching
Game, if the algorithm fails to compute an expander X containing
a large number of vertices from the given set T and embed it into C,
it provides two very large subsets T, T”” C T of vertices, together
with a small set E of edges, such that distcyg/ (T, T”) > 4D. Un-
fortunately, the analogous algorithm of [18], in case of a failure to
embed a well-connected graph, provides vertex sets T’, T”’, whose
cardinalities are significantly smaller than that of T. Specifically, it
only ensures that |T|, |T”"| > |T| 1-4¢’ /4. Since we need to continue
applying this algorithm recursively, until p + 1 subsets Ty, ..., Tp+1
of vertices of T are constructed, we can no longer guarantee that,
for all i, |T;| is sufficiently large. As a result, if our algorithm fails
to compute a well-connected graph X and its embedding into C,
we can no longer compute a new pseudocut whose cardinality is
significantly lower than that of T Since the time required to execute
this algorithm is super-linear in |E(C)|, we cannot afford to execute
it many times, so it is critical for us that the cardinality of the pseu-
docut T decreases significantly with every execution. Our main
technical contribution to the algorithm for the MaintainCluster
problem is overcoming this hurdle, and designing an analogue of

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Algorithm Alg that works with well-connected graphs instead of
expanders.

Organization. We start with preliminaries in Section 2. In Sec-
tion 3, we formally define valid input structure, valid update op-
erations, and the RecDynNC problem. We also provide the state-
ment our main technical result for the RecDynNC problem — an
algorithm whose guarantees are somewhat weaker than those in
Theorem 1.3, which however allows us to prove Theorem 1.3. Sec-
tion 4 is dedicated to the reduction from fully dynamic APSP to
RecDynNC, and the proof of Theorem 1.2. Due to lack of space,
most technical details and formal proofs are deferred to the full
version of the paper.

2 PRELIMINARIES

All graphs in this paper are simple, so they may not contain loops
or parallel edges. Given a graph G, we say that a graph C is a cluster
of G, if C is a connected vertex-induced subgraph of G.

Distances, Balls, and Neighborhood Cover. Suppose we are given
a graph G with lengths £(e) > 0 on its edges e € E(G). For a
path P in G, we denote its length by £ (P) = Yccg(p) £(e). For a
pair of vertices u,v € V(G), we denote by distg (u,v) the distance
between u and v in G: the smallest length {5(P) of any path P
connecting u to v in G. The diameter of the graph G, denoted by
diam(G), is the maximum distance between any pair of vertices in
G. Consider now some vertex v € V(G), and a distance parameter
D > 0. The ball of radius D around v is defines as: Bg(v,D) =
{u e V(G) | distg(u,v) < D}.

Neighborhood Covers. Neighborhood Cover is a central notion
that we use throughout the paper. We use both a strong and a weak
notion of neighborhood covers, that are defined as follows.

Definition 2.1 (Neighborhood Cover). Let G be a graph with lengths
t(e) > 0 on edges e € E(G), let S € V(G) be a subset of its ver-
tices, and let D < D’ be two distance parameters. A weak (D, D’)-
neighborhood cover for the set S of vertices in G is a collection
C ={Cy,...,Cy} of clusters of G, such that:

o for every vertex v € S, there is some index 1 < i < r with
Bg(v,D) € V(Cj); and
e forall 1 <i < r,forevery pairs,s’ € SN V(C;) of vertices,
distg(s,s”) < D’.
A set C of clusters of G is a strong (D, D”)-neighborhood cover for
vertex set S if it is a weak (D, D’)-neighborhood cover for S, and,
additionally, for every cluster C € C, for every pair s,s’ € SNV(C)
of vertices, distc (s, s”) < D’.If the set S of vertices is not specified,
then we assume that S = V(G).

3 VALID INPUT STRUCTURE, VALID UPDATE

OPERATIONS, AND THE RECURSIVE
DYNAMIC RECURSIVE NEIGHBORHOOD
COVER PROBLEM
Throughout this paper, we will work with inputs that have a spe-
cific structure. This structure is identical to the one defined in [17],

and it is designed in a way that will allow us to naturally com-
pose different instances recursively, by exploiting the notion of

1168

Julia Chuzhoy and Ruimin Zhang

neighborhood covers. In order to avoid repeatedly defining such
inputs, we provide a definition here, and then refer to it throughout
the paper. We also define the types of update operations that we
allow for such inputs. After that, we formally define the Recursive
Dynamic Neighborhood Cover problem (RecDynNC). In this sec-
tion we also state our algorithm for the RecDynNC problem with
slightly weaker guarantees, that allows us to prove Theorem 1.3.

3.1 Valid Input Structure and Valid Update
Operations

We start by defining a valid input structure; the definition is identi-
cal to the one from [17].

Definition 3.1 (Valid Input Structure). A valid input structure
consists of a bipartite graph H = (V, U, E), a distance threshold
D > 0 and integral lengths 1 < £(e) < D for edges e € E. The
vertices in set V are called regular vertices and the vertices in set
U are called supernodes. We denote a valid input structure by J =

(H = (V,U,E), {¢t()}ecE(H) > D). If the distance threshold D is not
explicitly defined, then we set it to co.

Intuitively, supernodes in set U may represent clusters in a Neigh-
borhood Cover C of the vertices in V with some (smaller) distance
threshold, that is computed and maintained recursively. Given a

valid input structure J = (H {t(&)}eerm) ,D), we allow the fol-
lowing types of update operations:

o Edge Deletion. Given an edge e € E(H), delete e from H.
e Isolated Vertex Deletion. Given a vertex x € V(H) that is
an isolated vertex, delete x from H; and

Supernode Splitting. The input to this update operation
is a supernode u € U and a non-empty subset E C 6p(u)
of edges incident to u. The update operation creates a new
supernode u’, and, for every edge e = (u,v) € E’, itadds a
new edge e/ = (u’,v) of length ¢(e) to the graph H. We will
sometimes refer to e’ as a copy of edge e.

For brevity of notation, we will refer to edge-deletion, isolated
vertex-deletion, and supernode-splitting operations as valid update
operations. Notice that valid update operations may not create new
regular vertices. A supernode splitting operation, however, adds a
new supernode to graph H, and also inserts edges into H. Unfortu-
nately, this means that the number of edges in H may grow as the
result of the update operations, making it challenging to analyze
the running times of various algorithms that we run on subgraphs
C C H in terms of |[E(C)|. In order to overcome this difficulty, we
use the notion of the dynamic degree bound, which was also defined
in [17].

Definition 3.2 (Dynamic Degree Bound). We say that a valid in-
put structure J = (H, {t(e)}eceH) ,D), undergoing an online
sequence X of valid update operations has dynamic degree bound
u if, for every regular vertex v € V(H), the total number of edges

incident to v that are ever present in H over the course of the time
horizon 7 is at most .

We will usually denote by N°(H) the number of regular vertices
in the initial graph H. If (7, £) have dynamic degree bound y, then

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

we are guaranteed that the number of edges that are ever present in
H over the course of the update sequence X is bounded by N°(H) - pi.

In general, we will always ensure that the dynamic degree bound
41 is quite low. It may be convenient to think of it as mP°Y(€) where
m is the initial number of edges in the input graph G for the APSP
problem, and € is a precision parameter. Intuitively, every supernode
of graph H represents some cluster C in a (D, D’)-neighborhood
cover C of G, for some parameters D,D’ < D. Typically, each
regular vertex of H represents some actual vertex of graph G, and
an edge (v, u) is present in H iff vertex v belongs to the cluster C
that supernode u represents. Intuitively, we will ensure that the
neighborhood cover C of G is constructed and maintained in such a
way that the total number of clusters of C to which a given regular
vertex v ever belongs over the course of the algorithm is small. This,
in turn, will ensure that the dynamic degree bound for graph H is
small as well.

3.2 The Recursive Dynamic Neighborhood
Cover (RecDynNC) Problem

In this subsection we provide a formal definition of the Recursive
Dynamic Neighborhood Cover problem from [17].

Problem Definition. The input to the Recursive Dynamic Neigh-
borhood Cover (RecDynNC) problem is a valid input structure
J =(H=(V,U,E),{t(e)}ocE, D), where graph H undergoes an
online sequence ¥ of valid update operations with some given dy-
namic degree bound . Additionally, we are given a desired approx-
imation factor . We assume that we are also given some arbitrary
fixed ordering O of the vertices of H, and that any new vertex that
is inserted into H as the result of supernode-splitting updates is
added at the end of the current ordering. The goal is to maintain
the following data structures:

e a collection U of subsets of vertices of graph H, together
with a collection C = {H[S] | S € U} of clusters in H, such
that C is a weak (D, « - D) neighborhood cover for the set
V of regular vertices in graph H. For every set S € U, the
vertices of S must be maintained in a list, sorted according
to the ordering O;

for every regular vertex v € V, a cluster

C = CoveringCluster(v), with By (v, D) € V(C);

for every vertex x € V(H), a list ClusterList(x) C C of all
clusters containing x, and for every edge e € E(H), a list
ClusterList(e) € C of all clusters containing e.

The set U of vertex subsets must be maintained as follows. Ini-
tially, U = {V(H (0))}, where H®) is the initial input graph H.
After that, the only allowed changes to vertex sets in U are:

o DeleteVertex(S, x): given a vertex set S € U, and a vertex
x € S, delete x from S;

o AddSuperNode(S, u): if u is a supernode that is lying in S,
that just underwent a supernode splitting update, add the
newly created supernode u’ to S; and

e ClusterSplit(S, S’): given a vertex set S € U, and a subset
S’ C S of its vertices, add S’ to U.

We refer to the above operations as allowed changes to U. In
other words, if we consider the sequence of changes that clusters
in C undergo over the course of the algorithm, the corresponding

1169

STOC ’23, June 20-23, 2023, Orlando, FL, USA

sequence of changes to vertex sets in {U(C) | C € C} must obey
the above rules.
We note that, while we require that, at the beginning of the

algorithm, U = {V(H (0))} holds, we allow the data structure to

update this initial collection of vertex subsets via allowed opera-
tions, before processing any updates to graph H. We sometimes
refer to the resulting collection C of clusters, that is obtained before
any update from ¥ is processed, as initial collection of clusters, or
collection of clusters at time 0.

Ancestor Clusters. It will be convenient for us to define the notion
of ancestors of clusters in C. Let 7~ be the time horizon of the update
sequence %, and let C be a cluster that ever belonged to C over the
course of the algorithm. For every time 7 € 7, we will define an
ancestor of cluster C at time 7, denoted by Ancestor(?) (C). The
definition is inductive over the time when cluster C was first added
to C.

Consider first the initial set C of clusters, that the algorithm
constructs prior to processing the first update in 3. For every cluster
C € C, for every time 7 € T, we set Ancestor(?) (C) = C. Consider
now some time 7’ € 7~ with 7’ > 0, when a new cluster C’ is added
to set C. Then there is some cluster C € C, so that cluster C’ was
split off from cluster C at time 7’. For every time 7 € 7, if 7 < 7/,
we set Ancestor(?) (C7) = Ancestor(?) (C), and otherwise we set
Ancestor(?) (") = C'.

Consistent Covering Property. We require that the data structure
for the RecDynNC problem obeys the Consistent Covering property,
that is defined as follows.

Definition 3.3 (Consistent Covering Property). We say that a data
structure for the RecDynNC problem maintains the Consistent Cov-
ering property, if the following holds. Consider any times 7/ <
7 during the time horizon, and a regular vertex x € V(H (7).
Assume that, at time 7, CoveringCluster(x) = C held, and that
Ancestor(¥) (C) = C’. Then, at time 7/, By (x, D) € V(C’) held.

The Consistent Covering property was not explicitly defined in
[17], but the data structures for the RecDynNC problem provided
in that work obey this property. We need this property in order to
reduce fully-dynamic APSP to RecDynNC.

In addition to maintaining these data structures, an algorithm
for the RecDynNC problem needs to support short-path-query:
given two regular vertices v,0” € V, and a cluster C € C with
0,0" € C, return a path P in the current graph H, of length at most
a - D connecting v to v’ in H, in time O(|E(P)|). This completes the
definition of the RecDynNC problem. The size of an instance J =
(H=(V,U,E),{t(e)}ecE D) of the RecDynNC instance, that we
denote by N°(H), is the number of regular vertices in the original
graph H. In the remainder of the paper, we will always assume
that a data structure that an algorithm for the RecDynNC problem
maintains must obey the Consistent Covering property.

3.3 Main Technical Result for the RecDynNC
Problem and Proof of Theorem 1.3

As one of our main technical results, we prove the following theo-
rem; the proof is deferred to the full version of the paper.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

THEOREM 3.4. There is a deterministic algorithm for the RecDynNC
problem, that, given a valid input structure J = (H {¢(e)}ecE(m) D)
undergoing a sequence of valid update operations, with dynamic de-
gree bound i, together with parameters W and 1/ (log W)1/100 <
€ < 1/400, such that, if we denote by N°(H) the number of regular
vertices in H at the beginning of the algorithm, then N°(H) -y < W

holds, achieves approximation factor a = (loglog W)Zo(l/ez), with
total update time O((N° (H))+0(e) . /,10(1/5) - D3). Moreover, the al-
gorithm ensures that for every regular vertexv € V, the total number
of clusters in the weak neighborhood cover C that the algorithm main-
tains, to which vertex v ever belongs over the course of the algorithm,

is bounded by wie',

Note that the guarantees provided by Theorem 3.4 are somewhat
weaker than those required by Theorem 1.3, in that the total update
time of the algorithm depends polynomially on D. We can remove
this polynomial dependence on D using standard techniques; a
similar idea was used in [17]. We provide the proof of Theorem 1.3
from Theorem 3.4 in the full version of the paper.

4 FROM RecDynNC TO FULLY DYNAMIC APSP

This section is dedicated to the proof of Theorem 1.2. We provide a
high level description of the proof here. A detailed proof is deferred
to the full version of the paper. We assume that Assumption 1.1
holds, and we denote the algorithm for RecDynNC problem from
Assumption 1.1 by A.

We assume that we are given an instance of the D*-restricted
APSP problem, that consists of an n-vertex graph G with integral
lengths £(e) > 1 on its edges e € E(G), together with a precision
parameter W < € < 1/400, and a distance parameter D* >
0, where graph G undergoes an online sequence of edge insertions
and deletions. For convenience, we denote a = a(n®), where a(-)
is the approximation factor from Assumption 1.1.

As we show in the full version of the paper, by using standard
transformations, we can assume that |V (G)| + |E(G(°))| +|2| < 4m,
where m is the initial number of edges in graph G.

Throughout, we use the parameters g = [1/€] and M = [m€].
Notice that m < M9 < m'*2€. We also use a parameter D = D* -
210g+10 _ . 90(1/€) Forallo < i < logf), we define a distance
scale D; = 2.

Let 7 be the time horizon associated with the update sequence .
Consider now graph G at some time 7 € 7, that we denote by G,
and let e € E(G(7)) be any edge. We say that an edge e € E(G) is
original, if it was present in G at the beginning of the algorithm,
and was never deleted or inserted. If edge e is not an original edge,
then we say that it is an inserted edge.

The data structure that our algorithm maintains is partitioned
into (q + 1) levels. In order to describe the purpose of each level,
we first need to define a partition of the time horizon into phases.

Hierarchical Partition the Time Horizon into Phases. For every
level 0 < L < g, we define a partition of the time horizon 7~
into level-L phases. There is a single level-0 phase, that spans the
whole time horizon 7. For all 0 < L < g, we partition the time
horizon into at most ML level-L phases, each of which spans a
consecutive sequence 3’ C ¥ of updates, that contains exactly

1170

Julia Chuzhoy and Ruimin Zhang

MI7L edge insertions (except for the last phase, that may contain
fewer insertions). In other words, if the kth level-L phase ends at
time 7, then the rth update operation in ¥ is edge-insertion, and,
since the beginning of the current level-L phase, exactly M~ edges
have been inserted into G via sequence X. It will be convenient for
us to ensure that the number of level-L phases is exactly M. If this
is not the case, then we add empty phases at the end of the last
phase.

For 1 < k < ML, we denote the kth level-L phase by fD]];, and
the subsequence of ¥ containing all update operations that occur
during Phase CDI]; by Zi. We also associate the time interval ’7;L,
corresponding to the update sequence Zi, with the level-L phase
CD]];. For all 0 < L < g, we will initialize the level-L data structure
from scratch at the beginning of each level-L phase. Note that each
level-q phase only spans a single edge insertion. In other words,
every time a new edge is inserted into G, we start a new level-¢g
phase, and recompute the level-q data structure from scratch. Notice
that our definition of phases ensures that, forall0 < L’ < L < g,
every level-L phase is completely contained in some level-L” phase.
Intuitively, for all 1 < L < g, during each level-L phase @i, the
level-L data structure will be “responsible” for all edges that were
inserted into G before the beginning of Phase %, but after the
beginning of the current level-(L — 1) phase. We now formalize this
intuition.

Edge and Path Classification. Consider a level 0 < L < g, and
some level-L phase @i . Let CIJI];,_ ! be the unique level-(L — 1) phase

that contains Phase <I>I];. Let 7 € 7 be the beginning of Phase &L,
and let 7 € 7 be the beginning of Phase <I>£,_1 (note that it is
possible that 7 = 7). We define the set Ai of edges of graph G that

is associated with Phase KI’]];. An edge e belongs to set Ai if and only
if it was inserted into G between time 7’ and time 7 (including time
7’ and excluding time 7). Notice that the cardinality of set Ai is
bounded by the number of edges that may be inserted into G during
a single level-(L — 1) phase, so |A£| < M9~ The set AI]; of edges
does not change over the course of Phase @i. We also denote by S]I;
the collection of vertices of G that serve as endpoints to the edges
of A]];. Intuitively, level-L data structure is responsible for keeping

track of the edges in set AL, over the course of each level-L phase <I>/€,

We will construct and maintain a level-L graph HY, that is initialized
from scratch at the beginning of each level-L phase ®L, whose set
of regular vertices contains a vertex representing every edge in
Ai, and a vertex representing every vertex in S,% . Observe that, as
the level L increases, the cardinalities of the corresponding sets
Ai of edges decrease, so the graphs that we maintain are smaller.
At the same time, as L grows, the number of level-L phases also
grows. We will ensure that the time that is required to maintain

a level-L data structure over a course of each level-L phase @i is

almost linear in |A£ |, allowing us to bound the total update time
of the data structure maintained at each level by a function that is
almost linear in m. For cosistency of notation, we let dJ‘l) denote the
single level-0 phase, we let A(l) be the set of all edges that belonged

to G at the beginning of the algorithm.

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths

Consider again some time 7 € 7. For all 0 < L < g, we let kg be
the integer, such that 7 € ‘7;]; holds. We partition all edges of the

current graph G into q+ 1 levels. For 0 < L < g, edge e belongs
tolevel L, if and only if e € AéL. It is easy to see that, for every
edge e that lies in graph G at time 7, there is precisely one level in
{0, ..., q}, to which edge e belongs. We denote the level of edge e
by Level(e). Note that, as the algorithm progresses, the level of a
given edge may only decrease.

Consider again graph G at time 7, and let P be any path that is
contained in G(7), with |E(P)| > 1. The level of path P, denoted
by Level(P), is the largest level of any of its edges, Level(P) =
max,cg(p) {Level(e)}.

For all 0 < L < g, the purpose of the level-L data structure
is to support short-path queries between pairs of vertices x,y €
V(G), such that there exists a level-L path in the current graph G
connecting x to y, whose length is at most D*. Since every path
connecting x to y in G belongs to one of the levels in {0,...,q},
this will allow us to support short-path queries as required from
the definition of D*-restricted APSP.

High-Level Description of the Construction. Consider some level
0 < L < g, and some level-L phase <I>I];. As noted already, at the

beginning of Phase ®L, we initialize the level-L data structure from

scratch. Let 7 € 7~ denote the time when Phase <I>£ begins. Note
that 7 may also be a starting time of phases from other levels. In
such cases, we assume that, when we execute the algorithm for
initializing the level-L data structure, then for all 0 < L’ < L, the
level-L’ data structure is already initialized.

Over the course of the level-L phase ®L, we will maintain a dy-

namic graph HY. We will also initialize the corresponding valid
input structure L, associated with graph HL, that will undergo
a sequence of valid update operations. The set of regular vertices

of graph HL consists of two subsets: set {UL (x)|xe Sﬁ} of ver-
tices, that represent the endpoints of the edges of AL, and set

{UL(E) |ee AI];} of vertices, representing the edges of A]]; . We refer

to the former as type-1 regular vertices and to the latter as type-2
regular vertices. We describe the collection of supernodes of HY
later.

For all 0 < i < log D, we will define and maintain a subgraph
H lL which is identical to HE, but it excludes all edges whose length
is above D;. We will also define the corresponding valid input
structure jl.L. We will view j;L as the input to the RecDynNC
problem, with distance scale D;, and we will apply Algorithm A
from Assumption 1.1 to it. We denote by Cl.L the collection of clusters
that this algorithm maintains. For every cluster C € CiL, we say
that the scale of cluster C is i, and we denote scale(C) = i. We also

denote C = Ui%D CiL and C<F = U CV.

We now provide additional details on the structure of the graph
HE, and specifically its supernodes and its edges. The collection
of the supernodes of H. consists of two subsets. The first subset

contains, for every vertex x € SL, the corresponding supernode

ul (x), that connects, with an edge of length 1, to the type-1 regular
vertex ol (x). Additionally, for every edge e € Ai, such that x is an

endpoint of e, we add an edge (0 (e), uL (x)) of length £(e) to graph

1171

STOC ’23, June 20-23, 2023, Orlando, FL, USA

HE. We refer to all supernodes we have defined so far as type-1
supernodes. The second set of supernodes, called type-2 supernodes,
contains, for some clusters C € C<L, the corresponding supernode
ul(0).

In order to decide which clusters of C<! have the corresponding
supernode included in graph H, and in order to define the edges
that are incident to such supernodes, we will define, for every
cluster C € C<9, a decremental set VF(C) of vertices of G, which
we call a flattened set of vertices. The specific definition of this set
of vertices is somewhat technical and is deferred for later. For a
cluster C € C<F, we add a supernode u’(C) to graph H if and
only if VF(C) contains at least one vertex of S]IC‘ .If supernode u® (C)

is included in graph HY, then we connect it with an edge to every
type-1 regular vertex o’ (x), for which x € V¥ (C) holds. The length
of the edge is 2°°¢(C) We now proceed to provide intuition on the
flattened sets of vertices.

Flattened Sets of Vertices. Consider some level 0 < L < g, and
some cluster C € CL. Intuitively, our layered constructions has
created a hierarchical containment structures for the clusters: if,
for some cluster C’ € C<L, the correspoinding supernode ul (C")
belongs to cluster C, then we can think of cluster C as “containing”
cluster C’, in some sense. A natural and intuitive way to define the
flattened sets VI (C) of vertices, would then be the following.

If C € CY is a cluster from level 0, then we let VF(C) contain
every vertex x € V(G), whose corresponding type-1 regular vertex
%(x) lies in C. Consider now some level 0 < L < ¢, and let C € CL
be any cluster. As before, for every vertex x € V(G) with oL (x) €
V(C), we add vertex x to set VF(C). But additionally, for every
supernode uL (C’) that belongs to cluster C, we add all vertices of
VF(C) to set VF(C), provided that scale(C’) < scale(C).

This simple intuitive definition of the flattened sets of vertices
would serve our purpose in the sense that it would allow us to
support the short-path queries as required. But unfortunately, due
to the specifics of how the RecDynNC data structure is defined,
we cannot control the cardinalities of the resulting flattened sets
VF(C) of vertices, which could in turn lead to a running time that
is too high.

In order to overcome this difficulty, we slightly modify the above
definition of the flattened set of vertices. Specifically, for every level
0 < L < g,and every cluster C € CL, we will mark every supernode
ul (C") € V(C) as either important or unimportant for cluster C.
We only include the vertices of VI (C’) in set VF(C) if supernode
ul (C") is marked as important for C. A status of a supernode ul' (C")
with respect to a cluster C may switch from important to unim-
portant over the course of the algorithm, but it may never switch
in the opposite direction. This allows us to guarantee that the set
vF (C) of vertices remains decremental, which is crucial since the
RecDynNC data structure does not support edge insertions, except
in the case of supernode splitting. We defer the specific definition of
important supernodes to the full version of the paper, but they are
defined so that, on the one hand, we can control the cardinalities of
the sets VF(C)n S]I; of vertices (which is sufficient in order to make
our construction efficient), while, on the other hand, still allowing
us to support short-path queries.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Due to lack of space, the remainder of the proof of Theorem 1.2
is deferred to the full version of the paper.

ACKNOWLEDGMENTS

The first author was supported in part by NSF grants CCF-1616584
and CCF-2006464.

REFERENCES

(1]

[2

=

[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. 2022. Hardness of
Approximation in P via Short Cycle Removal: Cycle Detection, Distance Oracles,
and Beyond. arXiv preprint arXiv:2204.10465 (2022).

Ittai Abraham, Shiri Chechik, and Kunal Talwar. 2014. Fully dynamic all-pairs
shortest paths: Breaking the O (n) barrier. In LIPIcs-Leibniz International Proceed-
ings in Informatics, Vol. 28. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1998. Near-
linear time construction of sparse neighborhood covers. SIAM J. Comput. 28, 1
(1998), 263-277.

Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science. IEEE, 503-513.
Surender Baswana, Ramesh Hariharan, and Sandeep Sen. 2007. Improved decre-
mental algorithms for maintaining transitive closure and all-pairs shortest paths.
7. Algorithms 62, 2 (2007), 74-92. https://doi.org/10.1016/j.jalgor.2004.08.004
Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. 2012. Fully dynamic
randomized algorithms for graph spanners. ACM Trans. Algorithms 8, 4 (2012),
35:1-35:51. https://doi.org/10.1145/2344422.2344425

Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Vir-
ginia Vassilevska Williams, and Nicole Wein. 2020. New Techniques and
Fine-Grained Hardness for Dynamic Near-Additive Spanners. arXiv preprint
arXiv:2010.10134 (2020).

Aaron Bernstein. 2016. Maintaining shortest paths under deletions in weighted
directed graphs. SIAM J. Comput. 45, 2 (2016), 548-574.

Aaron Bernstein. 2017. Deterministic Partially Dynamic Single Source Shortest
Paths in Weighted Graphs. In LIPIcs-Leibniz International Proceedings in Infor-
matics, Vol. 80. Schloss Dagstuhl-Leibniz-Center for Computer Science.

Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon
Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. 2020. Fully-
dynamic graph sparsifiers against an adaptive adversary. arXiv preprint
arXiv:2004.08432 (2020).

Aaron Bernstein and Shiri Chechik. 2016. Deterministic decremental single
source shortest paths: beyond the O(mn) bound. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. ACM, 389-397.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
2022. Deterministic decremental sssp and approximate min-cost flow in almost-
linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 1000-1008.

Aaron Bernstein and Liam Roditty. 2011. Improved Dynamic Algorithms for
Maintaining Approximate Shortest Paths Under Deletions. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
San Francisco, California, USA, January 23-25, 2011. 1355-1365.

Jan van den Brand, Sebastian Forster, and Yasamin Nazari. 2021. Fast Determin-
istic Fully Dynamic Distance Approximation. arXiv preprint arXiv:2111.03361
(2021).

Shiri Chechik. 2018. Near-optimal approximate decremental all pairs shortest
paths. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 170-181.

Shiri Chechik and Tianyi Zhang. 2020. Dynamic low-stretch spanning trees in
subpolynomial time. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 463-475.

Julia Chuzhoy. 2021. Decremental all-pairs shortest paths in deterministic near-
linear time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing. 626-639. Full version at arXiv:2109.05621.

Julia Chuzhoy. 2022. A Distanced Matching Game, Decremental APSP in Ex-
panders, and Faster Deterministic Algorithms for Graph Cut Problems. SODA
2023, to appear. Full version available at https://home.ttic.edu/~cjulia/papers/
APSP-expanders.pdf and on arxiv.

Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. 2019. A Deterministic Algorithm for Balanced Cut with

1172

[20]

[21]

[22]
(23]

[24]

[25

[26

[27

[28

[30

[31

S
=

=
)

Julia Chuzhoy and Ruimin Zhang

Applications to Dynamic Connectivity, Flows, and Beyond. CoRR abs/1910.08025
(2019). arXiv:1910.08025 http://arxiv.org/abs/1910.08025

Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental
single-source shortest paths with applications to vertex-capacitated flow and cut
problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory

of Computing. 389-400.
Julia Chuzhoy and Thatchaphol Saranurak. 2021. Deterministic algorithms for

decremental shortest paths via layered core decomposition. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2478-2496.
Camil Demetrescu and Giuseppe F Italiano. 2004. A new approach to dynamic
all pairs shortest paths. Journal of the ACM (JACM) 51, 6 (2004), 968-992.
Yefim Dinitz. 2006. Dinitz’ algorithm: The original version and Even’s version.
In Theoretical computer science. Springer, 218-240.

Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-Pairs Almost Shortest
Paths. SIAM J. Comput. 29, 5 (2000), 1740-1759. https://doi.org/10.1137/
S0097539797327908

Shimon Even and Yossi Shiloach. 1981. An on-line edge-deletion problem. Journal
of the ACM (JACM) 28, 1 (1981), 1-4.

Sebastian Forster and Gramoz Goranci. 2019. Dynamic low-stretch trees via
dynamic low-diameter decompositions. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019. 377-388. https://doi.org/10.1145/3313276.3316381

Sebastian Forster, Gramoz Goranci, and Monika Henzinger. 2020. Dynamic
Maintenance of Low-Stretch Probabilistic Tree Embeddings with Applications.
CoRR abs/2004.10319 (2020). arXiv:2004.10319 https://arxiv.org/abs/2004.10319
Sebastian Forster, Monika Henzinger, and Danupon Nanongkai. 2014. Decre-
mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total
Update Time. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. 146-155.

Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Deterministic
algorithms for decremental approximate shortest paths: Faster and simpler. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2522-2541.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. Dy-
namic approximate all-pairs shortest paths: Breaking the o(mn) barrier and
derandomization. SIAM J. Comput. 45, 3 (2016), 947-1006.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via
the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. 21-30.

Monika Rauch Henzinger and Valerie King. 1995. Fully dynamic biconnectivity
and transitive closure. In Foundations of Computer Science, 1995. Proceedings., 36th
Annual Symposium on. IEEE, 664-672.

Monika R Henzinger and Valerie King. 2001. Maintaining minimum spanning
forests in dynamic graphs. SIAM J. Comput. 31, 2 (2001), 364-374.

Adam Karczmarz and Jakub Lacki. 2019. Reliable Hubs for Partially-Dynamic
All-Pairs Shortest Paths in Directed Graphs. arXiv preprint arXiv:1907.02266
(2019).

Rohit Khandekar, Satish Rao, and Umesh Vazirani. 2009. Graph partitioning
using single commodity flows. Journal of the ACM (JACM) 56, 4 (2009), 19.
Jakub Lacki and Yasamin Nazari. 2020. Near-Optimal Decremental Approximate
Multi-Source Shortest Paths. arXiv preprint arXiv:2009.08416 (2020).

Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved
parallel algorithms for spanners and hopsets. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures. 192-201.

Liam Roditty and Uri Zwick. 2011. On Dynamic Shortest Paths Problems. Algo-
rithmica 61, 2 (2011), 389-401. https://doi.org/10.1007/s00453-010-9401-5

Liam Roditty and Uri Zwick. 2012. Dynamic approximate all-pairs shortest paths
in undirected graphs. SIAM J. Comput. 41, 3 (2012), 670-683.

Mikkel Thorup. 2004. Fully-dynamic all-pairs shortest paths: Faster and allowing
negative cycles. In Scandinavian Workshop on Algorithm Theory. Springer, 384~
396.

M. Thorup and U. Zwick. 2001. Approximate distance oracles. Annual ACM
Symposium on Theory of Computing (2001).

Virginia Vassilevska Williams and R Ryan Williams. 2018. Subcubic equivalences
between path, matrix, and triangle problems. Journal of the ACM (JACM) 65, 5
(2018), 1-38.

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1016/j.jalgor.2004.08.004
https://doi.org/10.1145/2344422.2344425
https://home.ttic.edu/~cjulia/papers/APSP-expanders.pdf
https://home.ttic.edu/~cjulia/papers/APSP-expanders.pdf
https://arxiv.org/abs/1910.08025
http://arxiv.org/abs/1910.08025
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1145/3313276.3316381
https://arxiv.org/abs/2004.10319
https://arxiv.org/abs/2004.10319
https://doi.org/10.1007/s00453-010-9401-5

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Valid Input Structure, Valid Update Operations, and the Recursive Dynamic Recursive Neighborhood Cover Problem
	3.1 Valid Input Structure and Valid Update Operations
	3.2 The Recursive Dynamic Neighborhood Cover (RecDynNC) Problem
	3.3 Main Technical Result for the RecDynNC Problem and Proof of thm: main final dynamic NC algorithm

	4 From RecDynNC to Fully Dynamic APSP
	Acknowledgments
	References

