
A New Deterministic Algorithm for Fully Dynamic All-Pairs
Shortest Paths

Julia Chuzhoy

Toyota Technological Institute at Chicago

Chicago, USA

cjulia@ttic.edu

Ruimin Zhang

University of Chicago

Chicago, USA

ruimin@uchicago.edu

ABSTRACT
We study the fully dynamic All-Pairs Shortest Paths (APSP) problem

in undirected edge-weighted graphs. Given an 𝑛-vertex graph 𝐺

with non-negative edge lengths, that undergoes an online sequence

of edge insertions and deletions, the goal is to support approximate

distance queries and shortest-path queries.We provide a determinis-

tic algorithm for this problem, that, for a given precision parameter

𝜖 , achieves approximation factor (log log𝑛)2𝑂 (1/𝜖3)
, and has amor-

tized update time𝑂 (𝑛𝜖 log𝐿) per operation, where 𝐿 is the ratio of

longest to shortest edge length. Query time for distance-query is

𝑂 (2𝑂 (1/𝜖) · log𝑛 · log log𝐿), and query time for shortest-path query

is 𝑂 (|𝐸 (𝑃) | + 2
𝑂 (1/𝜖) · log𝑛 · log log𝐿), where 𝑃 is the path that

the algorithm returns. To the best of our knowledge, even allow-

ing any 𝑜 (𝑛)-approximation factor, no adaptive-update algorithms

with better than Θ(𝑚) amortized update time and better than Θ(𝑛)
query time were known prior to this work. We also note that our

guarantees are stronger than the best current guarantees for APSP

in decremental graphs in the adaptive-adversary setting.

In order to obtain these results, we consider an intermediate prob-

lem, called Recursive Dynamic Neighborhood Cover (RecDynNC),

that was formally introduced in [Chuzhoy, STOC ’21]. At a high

level, given an undirected edge-weighted graph𝐺 undergoing an on-

line sequence of edge deletions, together with a distance parameter

𝐷 , the goal is to maintain a sparse𝐷-neighborhood cover of𝐺 , with

some additional technical requirements. Our main technical con-

tribution is twofolds. First, we provide a black-box reduction from

APSP in fully dynamic graphs to the RecDynNC problem. Second,

we provide a new deterministic algorithm for the RecDynNC prob-

lem, that, for a given precision parameter 𝜖 , achieves approximation

factor (log log𝑚)2𝑂 (1/𝜖2)
, with total update time 𝑂 (𝑚1+𝜖), where

𝑚 is the total number of edges ever present in 𝐺 . This improves

the previous algorithm of [Chuzhoy, STOC ’21], that achieved ap-

proximation factor (log𝑚)2𝑂 (1/𝜖)
with similar total update time.

Combining these two results immediately leads to the determinis-

tic algorithm for fully-dynamic APSP with the guarantees stated

above.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585196

CCS CONCEPTS
•Theory of computation→Dynamic graph algorithms; Short-
est paths.

KEYWORDS
all-pairs shortest path; fully dynamic algorithm.

ACM Reference Format:
Julia Chuzhoy and Ruimin Zhang. 2023. A New Deterministic Algorithm for

Fully Dynamic All-Pairs Shortest Paths. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing (STOC ’23), June 20–23, 2023,
Orlando, FL, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.

1145/3564246.3585196

1 INTRODUCTION
We study the fully dynamic All-Pairs Shortest-Paths (APSP) prob-
lem in weighted undirected graphs. In this problem, the input is

an undirected 𝑛-vertex graph 𝐺 with lengths ℓ (𝑒) ≥ 1 on its edges,

that undergoes an online sequence of edge insertions and dele-

tions. The goal is to support (approximate) shortest-path queries

shortest-path-query(𝑥,𝑦): given a pair 𝑥,𝑦 of vertices of 𝐺 , return

a path connecting 𝑥 to 𝑦, whose length is within factor 𝛼 of the

length of the shortest 𝑥-𝑦 path in 𝐺 , where 𝛼 is the approxima-
tion factor of the algorithm. We also consider approximate distance

queries, dist-query(𝑥,𝑦): given a pair 𝑥,𝑦 of vertices of𝐺 , return an

estimate dist′ (𝑥,𝑦) on the distance dist𝐺 (𝑥,𝑦) between 𝑥 and 𝑦 in

𝐺 , such that dist𝐺 (𝑥,𝑦) ≤ dist′ (𝑥,𝑦) ≤ 𝛼 ·dist𝐺 (𝑥,𝑦). Throughout,
we denote |𝑉 (𝐺) | = 𝑛, and we denote by 𝑚 the total number of

edges that are ever present in 𝐺 ; if an edge is deleted from 𝐺 and

then inserted into 𝐺 multiple times, we count these as different

edges. We also denote by Λ the ratio of longest to shortest edge

length.

APSP is one of the most fundamental problems in graph algo-

rithms, both in the dynamic and the static settings. Algorithms for

this problem often serve as building blocks for designing algorithms

for a range of other graph problems and beyond. Interestingly, al-

gorithms for dynamic APSP turned out to be extremely useful in

the design of fast algorithms for classical cut, flow, and other graph

problems in the static setting. Not surprisingly, this problem has

been the subject of extensive study, from many different angles and

in various regimes.

A central goal in this area is to obtain algorithms with the

strongest possible guarantees for the problem. Specifically, we

would like the approximation factor 𝛼 that the algorithm achieves

to be low, and its total update time
1
– the time required to maintain

1
In the context of fully dynamic algorithms, it is customary to focus on amortized up-

date time per operation, which, in our case, is simply the total update time divided by𝑚.

We will use total update time and amortized update time per operation interchangeably,

but we will try to clearly distinguish between them to avoid confusion.

1159

https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1145/3564246.3585196
https://doi.org/10.1145/3564246.3585196
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585196&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

its data structures – as close as possible to linear in𝑚. In addition

to the approximation factor and the total update time, another im-

portant parameter is query time – the time it takes to process a

single query. Ideally, we would like the query time for dist-query to
be 𝑂 (poly log(𝑛 · Λ)), and the query time for shortest-path-query
to be close to 𝑂 (|𝐸 (𝑃) |), where 𝑃 is the path that the algorithm re-

turns, which is close to the best query time we can hope for. Lastly,

we distinguish between the oblivious-adversary setting, where the

sequence of updates to graph 𝐺 is constructed in advance and may

not depend on the algorithm’s behavior, and the adaptive-adversary
setting, where each update to graph 𝐺 may depend arbitrarily on

the algorithm’s inner state and past behavior, such as responses to

queries. While the oblivious-adversary setting appears significantly

easier to handle algorithmically, many applications that rely on

algorithms for dynamic APSP require that the algorithm works in

the adaptive-adversary setting. It is well known that deterministic

algorithms always work against an adaptive adversary. Seeing that

the APSP problem itself is used as a building block in many different

other setting, designing a deterministic algorithm for the problem

is especially desirable.

A straightforward algorithm for the fully-dynamic APSP prob-

lem is the following: every time a query shortest-path-query(𝑥,𝑦)
arrives, compute the shortest 𝑥-𝑦 path in 𝐺 from scratch. This al-

gorithm solves the problem exactly, but it has query time Θ(𝑚).
Another approach is to rely on spanners. A spanner of a dynamic

graph 𝐺 is another dynamic graph 𝐻 ⊆ 𝐺 , with 𝑉 (𝐻) = 𝑉 (𝐺),
such that the distances between the vertices of 𝐺 are approxi-

mately preserved in 𝐻 ; ideally a spanner 𝐻 should be very sparse.

For example, a work of [6] provides a randomized algorithm that

maintains a spanner of a fully dynamic 𝑛-vertex graph 𝐺 , that,

for any parameter 𝑘 ≤ 𝑂 (log𝑛), achieves approximation factor

(2𝑘 − 1), has expected amortized update time 𝑂 (𝑘2 log2 𝑛) per up-
date operation, and expected spanner size 𝑂 (𝑘𝑛1+1/𝑘 log𝑛). Un-
fortunately, this algorithm only works against an oblivious adver-

sary. A recent work of [10] provides a randomized algorithm for

maintaining a spanner of a fully dynamic 𝑛-vertex graph 𝐺 that

can withstand an adaptive adversary. The algorithm achieves ap-

proximation factor 𝑂 (poly log𝑛) and total update time 𝑂 (𝑚), and
it ensures that the number of edges in the spanner 𝐻 is always

bounded by 𝑂 (𝑛 poly log𝑛). An algorithm for the APSP problem

can naturally build on such constructions of spanners: given a query

shortest-path-query(𝑥,𝑦) or dist-query(𝑥,𝑦), we simply compute

the shortest 𝑥-𝑦 path in the spanner 𝐻 . For example, the algo-

rithm for graph spanners of [10] implies a randomized poly log𝑛-

approximation algorithm for APSP that has 𝑂 (𝑚 poly log𝑛) total
update time. A recent work of [7] provides additional spanner-based

algorithms for APSP. Unfortunately, it seems inevitable that this

straightforward spanner-based approach to APSP must have query

time Ω(𝑛) for both shortest-path-query and dist-query, and, with
current state of the art algorithms, cannot lead to a better than

logarithmic approximation.

In this paper, our focus is on developing algorithms for the

APSP problem, whose query time is 𝑂 (|𝐸 (𝑃) | · poly log(𝑛 · Λ))
for shortest-path-query, where 𝑃 is the path that the query returns,

and 𝑂 (poly log(𝑛 · Λ)) for dist-query. There are several reasons

to strive for these faster query times. First, we typically want re-

sponses to the queries to be computed as fast as possible, and

the above query times are close to the fastest possible. Second,

ensuring that query time for shortest-path-query is bounded by

𝑂 (|𝐸 (𝑃) | · poly log(𝑛 · Λ)) is often crucial to obtaining fast algo-

rithms for other static graph problems, that use algorithms forAPSP
as a subroutine.

As mentioned already, there are several parameters of interest

that we would like to optimize in algorithms for APSP: namely,

query time, total update time, and the approximation factor. Addi-

tionally, we would like the algorithm to withstand an adaptive ad-

versary, and ideally to be deterministic. There is a huge body of work

that studies the APSP problem, in both the dynamic and the static

settings, that tries to optimize or achieve various tradeoffs among

these different parameters. Some of this work also only focuses on

supporting dist-query queries, and not shortest-path-query. We do

not attempt to survey all of this work here, partially because this

seems impossible, and partially because it may lead to confusion

due to the large number of different settings considered. Instead, we

will restrict our attention to the adaptive-adversary setting, where

the query time for shortest-path-query is𝑂 (|𝐸 (𝑃) | ·poly log(𝑛 ·Λ)),
where 𝑃 is the returned path, and query time for dist-query(𝑥,𝑦) is
𝑂 (poly log(𝑛 · Λ)). We will try to survey the most relevant results

for this setting, in order to put our results in context with previous

work. We will also include some results for APSP in decremental
graphs, where only edge-deletion updates are allowed.

Low-approximation regime. One major direction of study

is to obtain algorithms for APSP whose approximation factor is

very close to 1. The classical data structure of Even and Shiloach

[23, 25, 32], that we refer to as ES-Tree throughout the paper, im-

plies an exact deterministic algorithm for decremental unweighted

APSP with 𝑂 (𝑚𝑛2) total update time, and the desired 𝑂 (|𝐸 (𝑃) |)
query time for shortest-path-query, where 𝑃 is the returned path.

Short of obtaining an exact algorithm for APSP, the best possible
approximation factor one may hope for is (1 + 𝜖), for any 𝜖 . A

long line of work is dedicated to this direction in the decremental

setting [5, 8, 30, 39] and in the fully dynamic setting [14, 22, 40].

In the decremental setting, the fastest algorithms in this line of

work, due to [30] and [8], achieve total update time 𝑂̃ (𝑚𝑛/𝜖); the
former algorithm is deterministic but only works in unweighted

undirected graphs, while the latter algorithm works in directed

weighted graphs, with an overhead of logΛ in the total update time,

but can only handle an oblivious adversary. In the fully-dynamic

setting, all algorithms cited above have amortized update time per

operation at least Ω(𝑛2). A very recent result of [12] obtained a

(2 + 𝜖)-approximation for fully-dynamic APSP, with amortized up-

date time𝑂 (𝑚1+𝑜 (1)) per operation. The high running times of the

above mentioned algorithms are perhaps not surprising in view of

strong lower bounds that are known for the low-approximation

setting.

Lower Bounds. A number of lower bounds are known for dy-

namic APSP with low approximation factor. For example, Dor,

Halperin and Zwick [24], and Roddity and Zwick [38] showed

1160

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

that, assuming the Boolean Matrix Multiplication (BMM) conjec-

ture
2
, for any 𝛼, 𝛽 ≥ 1 with 2𝛼 + 𝛽 < 4, no combinatorial algorithm

for APSP achieves a multiplicative 𝛼 and additive 𝛽 approxima-

tion, with total update time 𝑂 (𝑛3−𝛿) and query time 𝑂 (𝑛1−𝛿) for
dist-query, for any constant 0 < 𝛿 < 1. This result was generalized

by [31], who showed the same lower bounds for all algorithms and

not just combinatorial ones, assuming the Online Boolean Matrix-

Vector Multiplication (OMV) conjecture
3
. The work of Vassilevska

Williams andWilliams [42], combined with the work of Roddity and

Zwick [38], implies that obtaining such an algorithm would lead to

subcubic-time algorithms for a number of important static problems

on graphs and matrices. A very recent result of [1] provides new

lower bounds for the dynamic APSP problem, in the regime where

only dist-query queries need to be supported, under either the 3-

SUM conjecture or the APSP conjecture. Let 𝑘 ≥ 4 be an integer,

let 𝜖, 𝛿 > 0 be parameters, and let 𝑐 = 4

3−𝜔 and 𝑑 = 2𝜔−2
3−𝜔 , where

𝜔 is the exponent of matrix multiplication. Then [1] show that,

assuming either the 3-SUM Conjecture or the APSP Conjecture,

there is no (𝑘 − 𝛿)-approximation algorithm for decremental APSP
with total update time𝑂 (𝑚1+ 1

𝑐𝑘−𝑑 −𝜖) and query time for dist-query
bounded by 𝑂 (𝑚

1

𝑐𝑘−𝑑 −𝜖). They also show that there is no (𝑘 − 𝛿)-
approximation algorithm for fully dynamic APSP that has 𝑂 (𝑛3)
preprocessing time, and then supports (fully dynamic) updates and

dist-query queries in𝑂 (𝑚
1

𝑐𝑘−𝑑 −𝜖) time. Due to these lower bounds,

it is natural to focus on somewhat higher approximation factors.

Higher approximation factor. In the regime of higher approx-

imation factors, a long line of work [2, 13, 28, 30] focused on the

decremental setting with an oblivious adversary. This direction

recently culminated with an algorithm of Chechik [15], that, for

any integer 𝑘 ≥ 1 and parameter 0 < 𝜖 < 1, obtains a ((2+𝜖)𝑘 − 1)-
approximation, with total update time𝑂 (𝑚𝑛1/𝑘+𝑜 (1) · logΛ), when
the input graph is weighted and undirected. This result is near-

optimal, as all its parameters almost match the best static algorithm

of [41]. This result was recently slightly improved by [36], who

obtain total update time 𝑂 (𝑚𝑛1/𝑘 · logΛ), and improve query time

for dist-query.
The best currently known results for the fully dynamic set-

ting with an oblivious adversary are significantly weaker. For un-

weighted graphs, the algorithm of [26] achieves approximation

factor 𝑛𝑜 (1) , with amortized update time 𝑛1/2+𝑜 (1) per operation
on unweighted graphs, while the algorithm of [2] achieves a con-

stant approximation factor with expected 𝑜 (𝑚) amortized update

time per operation. In fact the latter paper provides a more gen-

eral tradeoff between the approximation factor and update time,

but in all regimes the expected amortized update time is at least

Θ(
√
𝑚) per operation. Lastly, the the algorithm of [27], based on

low-stretch trees, achieves 𝑂 (𝑚𝜖) update time per operation, with

a factor (log𝑛)𝑂 (1/𝜖)
-approximation in weighted graphs. All of the

above mentioned algorithms for fully-dynamic APSPwith oblivious

2
The conjecture states that there is no “combinatorial” algorithm for multiplying two

Boolean matrices of size 𝑛 × 𝑛 in time 𝑛3−𝛿
for any constant 𝛿 > 0.

3
The conjecture assumes that there is no 𝑛3−𝛿

-time algorithm, for any constant

0 < 𝛿 < 1, for the OMV problem, in which the input is a Bollean (𝑛 × 𝑛) matrix,

with 𝑛 Boolean dimension-𝑛 vectors 𝑣1, . . . , 𝑣𝑛 arriving online. The algorithm needs

to output𝑀𝑣𝑖 immediately after 𝑣𝑖 arrives.

adversary only support dist-query. We are not aware of algorithms

that can additionally support shortest-path-query.
In contrast, progress in the adaptive-update setting has been

much slower. Until very recently, the fastest algorithm for decre-

mental unweighted graphs [29, 30] only achieved an 𝑂̃ (𝑚𝑛/𝜖) total
update time (for approximation factor (1+𝜖)), and the work of [21],
for any parameter 1 ≤ 𝑘 ≤ 𝑜 (log1/8 𝑛), achieved a multiplicative

3 · 2𝑘 and additive 2
(𝑂 (𝑘 log

3/4 𝑛)
approximation, with query time

𝑂 (|𝐸 (𝑃) | · 𝑛𝑜 (1)) for shortest-path-query, and total update time

𝑛2.5+2/𝑘+𝑜 (1) . Until very recently, the fastest adaptive-update algo-

rithms for weighted graphs had total update time 𝑂

(
𝑛3

logΛ
𝜖

)
and

approximation factor (1 + 𝜖) (see [34]), even in the decremental
setting.

To summarize, to the best of our knowledge, until very recently,

even if we allowed an 𝑜 (𝑛)-approximation factor, no adaptive-

update algorithms with better than Θ(𝑛3) total update time and

better thanΘ(𝑛) query time for shortest-path-query and dist-query
were known for weighted undirected graphs, and no adaptive-

update algorithms with better than Θ(𝑛2.5) total update time and

better thanΘ(𝑛) query timewere known for unweighted undirected

graphs, even in the decremental setting.
Two very recent results

4
provided significantly stronger algo-

rithms for decremental APSP in weighted graphs: [17] designed

a deterministic algorithm, that, for any Ω(1/log log𝑚) < 𝜖 <

1, achieves approximation factor (log𝑚)2𝑂 (1/𝜖)
, and has total up-

date time 𝑂

(
𝑚1+𝑂 (𝜖) · (log𝑚)𝑂 (1/𝜖2) · logΛ

)
. The query time is

𝑂 (log𝑚 log logΛ) for dist-query, and 𝑂 (|𝐸 (𝑃) | + log𝑚 log logΛ)
for shortest-path-query, where 𝑃 is the returned path. The main

focus of [12] was mostly on a special case of APSP called Single

Source Shortest Paths (SSSP), but they also obtained a determin-

istic algorithm for decremental APSP with approximation factor

𝑚𝑜 (1)
and total update time 𝑂 (𝑚1+𝑜 (1)); unfortunately, the trade-

off between the approximation factor and the total update time is

not stated explicitly, though they mention that the approximation

factor is super-logarithmic. As mentioned already, they also obtain

new results in the low-approximation regime for the fully dynamic

setting of APSP: a (2 + 𝜖)-approximation with amortized update

time 𝑂 (𝑚1+𝑜 (1)) per operation.
In this paper we improve the results of [17] in two ways. First,

we extend the algorithm to the fully-dynamic setting, and second,

we improve the approximation factor to (log log𝑚)2𝑂 (1/𝜖3)
. Alto-

gether, we obtain a deterministic algorithm for fully-dynamic APSP,
that, given a precision parameter

2

(log𝑛)1/200 < 𝜖 < 1/400, achieves

approximation factor 𝛼 = (log log𝑛)2𝑂 (1/𝜖2)
, and has amortized up-

date time𝑂

(
𝑛𝑂 (𝜖) · logΛ

)
per operation (if starting from an empty

graph). Query time for dist-query is 𝑂

(
2
𝑂 (1/𝜖) · log𝑛 · log logΛ

)
,

and query time for shortest-path-query is:

𝑂

(
|𝐸 (𝑃) | + 2

𝑂 (1/𝜖) · log𝑛 · log logΛ
)
,

where 𝑃 is the path that the algorithm returns (note that, if we

choose 𝜖 ≥ 1/log log𝑛, then query time for dist-query becomes

4
To the best of our knowledge, the two results are independent.

1161

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

𝑂 (poly log(𝑛 ·Λ), and query time for shortest-path-query becomes

𝑂 (|𝐸 (𝑃) | + poly log(𝑛 · Λ)). An important intermediate problem

that we study is Sparse Neighborhood Cover, and its generalization

called Recursive Dynamic Neighborhood Cover (RecDynNC) that
we discuss next.

Sparse Neighborhood Cover and RecDynNC problem.Given
a graph𝐺 with lengths on edges, a vertex 𝑣 ∈ 𝑉 (𝐺), and a distance

parameter 𝐷 , we denote by 𝐵𝐺 (𝑣, 𝐷) the ball of radius 𝐷 around
𝑣 , that is, the set of all vertices 𝑢 with dist𝐺 (𝑣,𝑢) ≤ 𝐷 . Suppose

we are given a static graph 𝐺 with non-negative edge lengths, a

distance parameter 𝐷 , and a desired approximation factor 𝛼 . A

(𝐷, 𝛼 · 𝐷)-neighborhood cover for 𝐺 is a collection C of vertex-

induced subgraphs of 𝐺 (that we call clusters), such that, for every

vertex 𝑣 ∈ 𝑉 (𝐺), there is some cluster𝐶 ∈ C with 𝐵𝐺 (𝑣, 𝐷) ⊆ 𝑉 (𝐶).
Additionally, we require that, for every cluster 𝐶 ∈ C, for every
pair 𝑥,𝑦 ∈ 𝑉 (𝐶) of its vertices, dist𝐺 (𝑥,𝑦) ≤ 𝛼 · 𝐷 ; if this property

holds, then we say that C is a weak (𝐷, 𝛼 · 𝐷)-neighborhood cover

of𝐺 . If, additionally, the diameter of every cluster𝐶 ∈ C is bounded

by 𝛼 · 𝐷 , then we say that C is a strong (𝐷, 𝛼 · 𝐷)-neighborhood
cover of 𝐺 . Ideally, it is also desirable that the neighborhood cover

is sparse, that is, every edge (or every vertex) of 𝐺 only lies in a

small number of clusters of C. For this static setting of the problem,

the work of [3, 4] provides a deterministic algorithm that produces

a strong (𝐷,𝑂 (𝐷 log𝑛))-neighborhood cover of graph 𝐺 , where

every edge lies in at most 𝑂 (log𝑛) clusters, with running time

𝑂 (|𝐸 (𝐺) | + |𝑉 (𝐺) |).
In [17] a new problem, called Recursive Dynamic Neighborhood

Cover (RecDynNC) was introduced. The problem can be viewed

as an adaptation of Sparse Neighborhood Covers to the dynamic

(decremental) setting, but with additional constraints that make it

easy to use as a building block in other dynamic algorithms. The

input to this problem is a bipartite graph 𝐻 = (𝑉 ,𝑈 , 𝐸), with non-

negative lengths ℓ (𝑒) on edges 𝑒 ∈ 𝐸, and a distance parameter 𝐷 .

Vertices in set 𝑉 are called regular vertices, while vertices in set 𝑈

are called supernodes. Graph 𝐻 undergoes an online sequence Σ of

updates, each of which must be of one of the following three kinds:

(i) edge deletion; or (ii) isolated vertex deletion; or (iii) supernode

splitting. In the latter kind of update, we are given a supernode

𝑢 ∈ 𝑈 , and a collection 𝐸′ ⊆ 𝛿𝐻 (𝑢) of its incident edges. We need to

insert a new supernode𝑢′ into𝐻 , and, for every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸′,
insert an edge (𝑢′, 𝑣) into 𝐻 . We note that, while, in general, graph

𝐻 is decremental, the supernode-splitting update allows us to insert

edges into it, in a limited fashion. For conciseness, we will refer to

an input J = (𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 , 𝐷) as described above, as

valid input structure, and to edge-deletion, isolated vertex-deletion,

and supernode-splitting updates as valid update operations. Since
edges may be inserted into graph𝐻 via supernode-splitting updates,

in order to control the size of the resulting graph, another parameter

called dynamic degree bound is used.We say that the dynamic degree

bound of valid input structure J that undergoes a sequence Σ of

valid update operations is 𝜇 if, for every regular vertex 𝑣 , the total

number of edges that are ever present in 𝐻 and are incident to 𝑣 , is

bounded by 𝜇.

The goal in the RecDynNC problem is to maintain a weak (𝐷, 𝛼 ·
𝐷)-neighborhood cover C of the graph 𝐻 . However, we require

that the clusters in C are only updated in a specific fashion: once

an initial neighborhood cover C of 𝐻 is computed, we can only

update clusters via allowed changes: for each cluster 𝐶 , we can

delete edges or vertices from 𝐶 , and, additionally, if some supern-

ode 𝑢 ∈ 𝑉 (𝐶) just underwent a supernode-splitting update, we can
insert the resulting new supernode 𝑢′ and all edges connecting it

to other vertices of 𝐶 , into cluster 𝐶 . A new cluster 𝐶′
may only

be added to C, if there is a cluster 𝐶 ∈ C with 𝐶′ ⊆ 𝐶 . In this

case, we say that cluster 𝐶 underwent a cluster-splitting update.

The algorithm must also maintain, for every regular vertex 𝑣 of𝐻 , a

cluster 𝐶 = CoveringCluster(𝑣) ∈ C, with 𝐵𝐻 (𝑣, 𝐷) ⊆ 𝑉 (𝐶). Addi-
tionally, we require that the neighborhood cover is sparse, namely,

for every regular vertex 𝑣 of 𝐻 , the total number of clusters of

C to which 𝑣 may ever belong over the course of the algorithm

is small. Lastly, we require that the algorithm supports queries

short-path-query(𝐶, 𝑣, 𝑣 ′): given two vertices 𝑣, 𝑣 ′ ∈ 𝑉 , and a clus-

ter 𝐶 ∈ C with 𝑣, 𝑣 ′ ∈ 𝐶 , return a path 𝑃 in the current graph 𝐻 ,

of length at most 𝛼 · 𝐷 connecting 𝑣 to 𝑣 ′ in 𝐺 , in time 𝑂 (|𝐸 (𝑃) |),
where 𝛼 is the approximation factor of the algorithm.

Given any edge-weighted decremental graph 𝐺 and a distance

bound 𝐷 , it is easy to transform 𝐺 into a valid input structure: we

simply view the vertices of 𝐺 as supernodes, and we subdivide its

edges with new vertices, that become regular vertices in the re-

sulting bipartite graph 𝐻 . An algorithm for solving the RecDynNC
problem on the resulting valid input structure J (that only under-

goes edge-deletion updates) then naturally allows us to maintain

a sparse neighborhood cover in the original graph 𝐺 . However,

the specific definition of the RecDynNC problem makes it more

versatile, and more specifically, we can naturally compose instances

of the problem recursively with one another.

A typical way to exploit this composability property is the fol-

lowing. Suppose we solve the RecDynNC problem on a bipartite

graph 𝐻 , with some distance bound 𝐷 . Let C be the collection of

clusters that the resulting algorithm maintains. Assume now that

we would like to solve the same problem on graph 𝐻 , with a larger

distance bound 𝐷′ > 𝐷 . We can then construct another graph 𝐻 ′
,

whose set of regular vertices is the same as that in 𝐻 , and the set

of supernodes is {𝑢 (𝐶) | 𝐶 ∈ C}. We add an edge (𝑣,𝑢 (𝐶)) to the

graph if and only if regular vertex 𝑣 lies in cluster 𝐶 ∈ C, and we

set the lengths of the resulting edges to be 𝐷 . As the clusters in

C evolve, we can maintain graph 𝐻 ′
via valid update operations:

when some cluster 𝐶 ∈ C undergoes cluster-splitting, and a new

cluster 𝐶′ ⊆ 𝐶 is created, we can apply supernode-splitting to su-

pernode 𝑢 (𝐶) in order to update graph 𝐻 ′
accordingly. It is not

hard to verify that the resulting graph𝐻 ′
is an emulator for𝐻 , with

respect to distances that are greater than 𝐷 . We can then scale all

edge lengths down by factor 𝐷 , and solve the problem on graph

𝐻 ′
, with a new, significantly smaller, distance parameter 𝐷′/𝐷 . If

neighborhood cover C is sparse, and every regular vertex of 𝐻 ever

belongs to at most Δ clusters of C, then the dynamic degree bound

for graph 𝐻 ′
is bounded by Δ, so graph 𝐻 ′

itself is sparse.

We note that, while the RecDynNC problem was first formally

defined in [17], the idea of using clustering of a dynamic graph

𝐺 in order to construct an emulator was exploited before numer-

ous times (see e.g. the constructions of [16, 26, 27] of dynamic

low-stretch spanning trees). In several of these works, a family

of clusters of a dynamic graph 𝐺 is constructed and maintained,

and the restrictions on the allowed updates to the cluster family

1162

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

are similar to the ones that we impose; it is also observed in sev-

eral of these works that with such restrictions one can naturally

compose the resulting emulators recursively – an approach that

we follow here as well. While neither of these algorithms provide

neighborhood covers (as can be observed from the fact that one can

view the sets of clusters that are maintained for each distance scale

as disjoint, something that cannot be achieved in neighborhood

covers), a connection between low-diameter decompositions (that

often serve as the basis of low-stretch spanning trees) and neigh-

borhood covers has been noticed in prior work. For example, [37],

provide a construction of neighborhood covers from low-diameter

decompositions. Additionally, all the above-mentioned algorithms

are randomized and assume an oblivious adversary. On the other

hand, [29, 30] implicitly provide a deterministic algorithm for main-

taining a neighborhood cover of a dynamic graph. However, these

algorithms have a number of drawbacks: first, the running time for

maintaining the neighborhood cover is too prohibitive (the total

update time is𝑂 (𝑚𝑛)). Second, the neighborhood cover maintained

is not necessarily sparse; in fact a vertex may lie in a very large num-

ber of resulting clusters. Lastly, clusters that join the neighborhood

cover as the algorithm progresses may be arbitrary. The restriction

that, for every cluster 𝐶 added to the neighborhood cover C, there
must be a cluster 𝐶′

containing 𝐶 that already belongs to C, seems

crucial in order to allow an easy recursive composition of emulators

obtained from the neighborhood covers, and the requirement that

the neighborhood cover is sparse is essential for bounding the sizes

of the graphs that arise as the result of such recursive compositions.

We also note that a similar approach of recursive composition of

emulators was used in numerous algorithms for APSP (see, e.g.

[15]), and a similar approach to handling cluster-splitting in an

emulator that is based on clustering was used before in numerous

works, including, e.g., [9, 11, 16, 20].

It is not hard to verify that an algorithm for the RecDynNC
problem immediately implies an algorithm for decremental APSP
with the same approximation factor, and the same total update time

(to within 𝑂 (logΛ)-factor). In [17], a deterministic algorithm for

the RecDynNC problem was provided, with approximation factor

𝛼 = 𝑂

(
(log𝑚)2𝑂 (1/𝜖)

)
, and total update time:

𝑂

(
𝑚1+𝑂 (𝜖) · (log𝑚)𝑂 (1/𝜖2)

)
.

The algorithm ensured that, for every regular vertex 𝑣 ∈ 𝑉 (𝐻), the
total number of clusters of C that 𝑣 ever belongs to is bounded by

𝑚𝑂 (1/log log𝑚)
.

In this work, we improve the results of [17] in two ways. First,

we provide a black-box reduction from fully dynamic APSP to the

RecDynNC problem. Second, we provide an improved algorithm for

the RecDynNC problem. The algorithm, given a valid input struc-

ture J =

(
𝐻, {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
undergoing a sequence of valid

update operations, with dynamic degree bound 𝜇, together with

parameters 𝑊̂ and 1/(log𝑊̂)1/100 ≤ 𝜖 < 1/400, such that, if we de-

note by𝑁 the number of regular vertices in𝐻 at the beginning of the

algorithm, then 𝑁 · 𝜇 = 𝑊̂ holds, achieves approximation factor 𝛼 =

(log log𝑊̂)2𝑂 (1/𝜖2)
, with total update time 𝑂 (𝑁 1+𝑂 (𝜖) · 𝜇𝑂 (1/𝜖)).

The algorithm also ensures that, for every regular vertex 𝑣 , the

total number of clusters in the weak neighborhood cover C that

the algorithm maintains, to which 𝑣 ever belongs over the course of

the algorithm, is bounded by 𝑊̂ 4𝜖3
. By combining these two results,

we obtain a deterministic algorithm for the fully dynamic APSP
problem, that, given a precision parameter

2

(log𝑛)1/200 < 𝜖 < 1/400,

achieves approximation factor 𝛼 = (log log𝑛)2𝑂 (1/𝜖2)
, and has amor-

tized update time 𝑂

(
𝑛𝑂 (𝜖) · logΛ

)
per operation (if starting from

an empty graph), with query time𝑂

(
2
𝑂 (1/𝜖) · log𝑛 · log logΛ

)
for

dist-query and query time 𝑂

(
|𝐸 (𝑃) | + 2

𝑂 (1/𝜖) · log𝑛 · log logΛ
)

for shortest-path-query, where 𝑃 is the path that the algorithm

returns. We now state our results more formally, and discuss the

techniques that we employ, while pointing out specific remaining

bottlenecks for obtaining a better tradeoff between the approxima-

tion factor and the update time of the algorithm.

1.1 Our Results
As mentioned already, a problem that plays a central role in this

work is RecDynNC. We do not repeat the definition of the problem

from above; a formal (and equivalent) definition can be found in

Section 3. However, the definition that we provided above omitted

one technical detail: the Consistent Covering requirement.

Let J = (𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 , 𝐷) be a given valid input

structure that undergoes an online sequence Σ of valid update

operations. Let T be the time horizon associated with Σ. In order to

define the Consistent Covering property, we first need to define the

notion of ancestor-clusters. This notion is defined in a natural way. If
𝐶 is a cluster that is present in C at the beginning of the algorithm,

then for all 𝜏 ∈ T , Ancestor
(𝜏) (𝐶) = 𝐶 , so 𝐶 is its own ancestor.

Assume now that𝐶′
is a cluster that was added to set C at some time

𝜏 ′ > 0, by applying a cluster-splitting update to a cluster 𝐶 ∈ C.
Then for all 𝜏 ∈ T , if 𝜏 < 𝜏 ′, Ancestor(𝜏) (𝐶′) = Ancestor

(𝜏) (𝐶),
and otherwise Ancestor

(𝜏) (𝐶′) = 𝐶′
.

We are now ready to define the Consistent Covering property.

Consider an algorithm for the RecDynNC problem on input (J , Σ),
and let C be the collection of cluster that it maintains. We say that

the algorithm obeys the Consistent Covering property, if, for every

regular vertex 𝑣 ∈ 𝑉 (𝐻), for every pair 𝜏 ′ < 𝜏 ∈ T of time points, if

𝐶 = CoveringCluster(𝑣) at time 𝜏 , and Ancestor(𝜏
′) (𝐶) = 𝐶′

, then,

at time 𝜏 ′, 𝐵𝐻 (𝑣, 𝐷) ⊆ 𝑉 (𝐶′) held. We require that algorithms for

the RecDynNC problem obey the Consistent Covering property.

Our first result is a reduction from a variant of fully-dynamic APSP
to RecDynNC.

1.1.1 Reduction from Fully-Dynamic APSP to RecDynNC. We pro-

vide a black-box reduction from fully-dynamic APSP to RecDynNC.
Our reduction shows that, if there exists an algorithm for the

RecDynNC problem with some general set of parameters, then

we can convert it into an algorithm for the fully-dynamic APSP
problem. The assumption on the existence of an algorithm for

RecDynNC, that serves as the starting point of the reduction, is the
following.

Assumption 1.1. There is a deterministic algorithm forRecDynNC,
that, given a valid input structureJ = (𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 , 𝐷)
undergoing a sequence of valid update operations, with dynamic de-
gree bound 𝜇, together with parameters 𝑊̂ and 1/(log𝑊̂)1/100 ≤

1163

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

𝜖 < 1/400, such that, if we denote by 𝑁 the number of regular
vertices in 𝐻 at the beginning of the algorithm, then 𝑁 · 𝜇 ≤ 𝑊̂

holds, achieves approximation factor 𝛼 (𝑊̂), with total update time
𝑂 (𝑁 1+𝑂 (𝜖) · 𝜇𝑂 (1/𝜖)). Moreover, the algorithm ensures that, for ev-
ery regular vertex 𝑣 ∈ 𝑉 , the total number of clusters in the weak
neighborhood cover C that the algorithm maintains, to which vertex
𝑣 ever belongs over the course of the algorithm, is bounded by 𝑊̂ 4𝜖3 .
Here, 𝛼 (·) is a non-decreasing function.

If Assumption 1.1 holds, then it is quite easy to obtain an algo-

rithm for decremental APSP (see Section 3.4.2 in the full version of

[17]), that, on an input graph𝐺 that initially has𝑚 edges, has total

update time 𝑂 (𝑚1+𝑂 (𝜖)+𝑜 (1) (log𝑚)𝑂 (1/𝜖)
logΛ), and achieves an

approximation factor roughly 𝛼 (𝑚). One of the main contributions

of this work is showing that an algorithm for the RecDynNC prob-

lem implies an algorithm for fully-dynamic APSP. Specifically,
we show that, if Assumption 1.1 holds, then there is an algorithm

for a problem that is very similar to, but is slightly different from

fully-dynamic APSP. We call this problem 𝐷∗
-restricted APSP, and

define it next. For a dynamic graph 𝐺 and time 𝜏 , we denote by

𝐺 (𝜏)
the graph 𝐺 at time 𝜏 .

Definition 1.1 (𝐷∗-restricted APSP problem). The input to the

𝐷∗
-restricted APSP problem is an 𝑛-vertex graph 𝐺 with integral

lengths ℓ (𝑒) ≥ 1 on its edges 𝑒 ∈ 𝐸 (𝐺), that undergoes an online

sequence Σ of edge deletions and insertions, together with a preci-

sion parameter
1

(log𝑛)1/200 < 𝜖 < 1/400, and a distance parameter

𝐷∗ > 0. The goal is to support approximate short-path queries:

given a pair 𝑥,𝑦 ∈ 𝑉 (𝐺) of vertices, the algorithm needs to respond

“YES” or ”NO”, in time 𝑂

(
2
𝑂 (1/𝜖) · log𝑛

)
. If the response is “NO”,

then dist𝐺 (𝑥,𝑦) > 𝐷∗
must hold. If the response is “YES”, then the

algorithm should be able, additionally, to compute a path 𝑃 in the

current graph𝐺 , connecting 𝑥 to𝑦, of length at most 𝛼 ′ ·𝐷∗
, in time

𝑂 (|𝐸 (𝑃) |), where 𝛼 ′ is the approximation factor of the algorithm.

The following theorem summarizes our reduction from

𝐷∗
-restricted APSP to RecDynNC.

Theorem 1.2. Suppose Assumption 1.1 holds. Then there is a deter-
ministic algorithm for the 𝐷∗-restricted APSP problem, that achieves
approximation factor 𝛼 ′ = (𝛼 (𝑛3))𝑂 (1/𝜖) , and has amortized update
time at most 𝑛𝑂 (𝜖) per operation, if starting from an empty graph.

1.1.2 New Algorithm for RecDynNC. Our next result is an im-

proved algorithm for the RecDynNC problem, that is summarized

in the following theorem.

Theorem 1.3. There is a deterministic algorithm for theRecDynNC

problem, that, given a valid input structureJ =

(
𝐻, {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
undergoing a sequence of valid update operations, with dynamic de-
gree bound 𝜇, together with parameters 𝑊̂ and 1/(log𝑊̂)1/100 ≤
𝜖 < 1/400, such that, if we denote by 𝑁 the number of regular ver-
tices in 𝐻 (0) , then 𝑁 · 𝜇 ≤ 𝑊̂ holds, achieves approximation factor

𝛼 = (log log𝑊̂)2𝑂 (1/𝜖2)
, with total update time𝑂 (𝑁 1+𝑂 (𝜖) ·𝜇𝑂 (1/𝜖)).

The algorithm ensures that, for every regular vertex 𝑣 ∈ 𝑉 (𝐻), the
total number of clusters in the weak neighborhood cover C that the
algorithm maintains, to which vertex 𝑣 ever belongs over the course
of the algorithm, is bounded by 𝑊̂ 4𝜖3 .

By combining Theorem 1.2 and Theorem 1.3, we immediately

obtain the following corollary. We defer its proof to the full version

of the paper.

Corollary 1.4. There is a deterministic algorithm for fully dy-
namic APSP, that, given an 𝑛-vertex graph 𝐺 undergoing an online
sequence of edge insertions and deletions, and a precision parame-
ter 1

(log𝑛)1/200 < 𝜖 < 1/400, achieves approximation factor 𝛼 ′ =

(log log𝑛)2𝑂 (1/𝜖2)
, and has amortized update time 𝑂

(
𝑛𝑂 (𝜖) · logΛ

)
per operation if starting from an empty graph, where Λ is the ra-
tio of longest to shortest edge length. Query time for dist-query is

𝑂

(
2
𝑂 (1/𝜖) · log𝑛 · log logΛ

)
and for shortest-path-query it is

𝑂

(
|𝐸 (𝑃) | + 2

𝑂 (1/𝜖) · log𝑛 · log logΛ
)
, where 𝑃 is the path that the

algorithm returns.

1.2 Our Techniques
We provide a brief overview of our techniques, starting with the

proof of Theorem 1.2.

Reduction from 𝐷∗-restricted APSP to RecDynNC. The de-
scription that we provide here is somewhat over-simplified, and is

intended for intuition only. We assume that we are given a fully

dynamic graph 𝐺 , that undergoes an online sequence Σ of edge-

insertions and deletions, such that |𝐸 (𝐺 (0)) | + |𝑉 (𝐺) | + |Σ| = 𝑚,

together with a distance parameter 𝐷∗
, and a precision parameter 𝜖 .

At a high level, we use a rather natural approach. This high-level ap-

proach was used before in multiple reductions from fully-dynamic

to decremental algorithms (see e.g. [2, 26, 27, 32, 33]), but due to

the specific setting of the problem that we consider, the use of this

approach in our setting gives rise to a number of new technical chal-

lenges that we highlight below. We also provide a brief comparison

with previous results where a similar approach was used. Assume

for simplicity that 𝑞 = 1/𝜖 is an integer, and that so is 𝑀 = 𝑚𝜖
.

Assume further that the distance parameter 𝐷∗
is an integral power

of 2. The data structures that we maintain are partitioned into 𝑞 + 1

levels. We also define a hierarchical partition of the time horizon T
into phases.

For level 𝐿 = 0, there is a single level-0 phase, that spans the

entire time horizon T . We maintain a level-0 graph 𝐻0
, that is

constructed as follows. Let𝐺 ′
be the dynamic graph that is obtained

from the input graph 𝐺 , by ignoring all edge insertions, and only

executing edge-deletion updates. Graph 𝐻0
is a bipartite graph,

that has a regular vertex 𝑣 (𝑥) for every vertex 𝑥 ∈ 𝑉 (𝐺), and a

regular vertex 𝑣 (𝑒) for every edge 𝑒 ∈ 𝐸 (𝐺 ′). Additionally, it has a
supernode 𝑢 (𝑥) for every vertex 𝑥 ∈ 𝑉 (𝐺), that connects, with an

edge of length 1, to the corresponding regular vertex 𝑣 (𝑥). For every
edge 𝑒 = (𝑥,𝑦) ∈ 𝐸 (𝐺 ′), we also connect 𝑣 (𝑒) to 𝑢 (𝑥) and 𝑢 (𝑦),
with edges of length ℓ (𝑒). As graph 𝐺 ′

undergoes edge-deletions,

the corresponding bipartite graph 𝐻0
undergoes edge-deletions as

well. For every integer 0 ≤ 𝑖 ≤ log𝐷∗
, we can view graph 𝐻0

as an

instance of the RecDynNC problem, with distance bound 𝐷𝑖 = 2
𝑖
.

We apply the algorithm for RecDynNC from Assumption 1.1 to this

instance, and we denote by C0

𝑖
the resulting collection of clusters

that it maintains. For every cluster 𝐶 ∈ C0

𝑖
, we say that the scale

of 𝐶 is 𝑖 , and we denote scale(𝐶) = 𝑖 . Let C0 =
⋃log𝐷∗

𝑖=0
be the

collection of all level-0 clusters.

1164

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

Consider now some level 0 < 𝐿 ≤ 𝑞. We partition the time

horizon T into at most 𝑀𝐿 level-𝐿 phases. Each level-𝐿 phase Φ𝐿
𝑘

spans exactly𝑀𝑞−𝐿
consecutive edge-insertion updates from the

update sequence Σ for graph 𝐺 , except for possibly the last phase

that may contain fewer edge insertions. We define this hierarchical

partition of the time horizon so that, for all 0 < 𝐿 ≤ 𝑞, every level-𝐿

phase is contained in some level-(𝐿 − 1) phase.
Consider now some level 0 < 𝐿 ≤ 𝑞 and a level-𝐿 phase Φ𝐿

𝑘
.

Let Φ
(𝐿−1)
𝑘 ′ be the unique level-(𝐿 − 1) phase that contains Φ𝐿

𝑘
. We

associate, with phase Φ𝐿
𝑘
, a collection 𝐴𝐿

𝑘
of edges of 𝐺 , that the

level-𝐿 data structure will be “responsible” for during phase Φ𝐿
𝑘
.

These are all the edges that were inserted into𝐺 since the beginning

of level-(𝐿 − 1) phase Φ(𝐿−1)
𝑘 ′ , but before the beginning of level-𝐿

phase Φ𝐿
𝑘
. It is easy to see that the number of such edges must be

bounded by𝑀𝑞−𝐿+1
. We also denote by 𝑆𝐿

𝑘
the collection of vertices

of 𝐺 that serve as endpoints of the edges of 𝐴𝐿
𝑘
.

We are now guaranteed that, at all times 𝜏 ∈ T , for every edge

𝑒 ∈ 𝐸 (𝐺), either 𝑒 ∈ 𝐸 (𝐺 (0)) (in which we say that it lies at level 0);

or there is some level 0 < 𝐿 ≤ 𝑞, such that 𝑒 ∈ 𝐴𝐿
𝑘
currently holds,

where 𝑘 is the index of the current level-𝐿 phase (in which case we

say that the level of 𝑒 is 𝐿). For every path 𝑃 in graph 𝐺 , we also

define the level of path 𝑃 to be the largest level of any of its edges.

Consider now some level 0 < 𝐿 ≤ 𝑞, and recall that there are at

most𝑀𝐿
level-𝐿 phases. At the beginning of every level-𝐿 phase, we

construct level-𝐿 data structures from scratch. These data structures

consist of a dynamic level-𝐿 bipartite graph𝐻𝐿
, that is viewed as an

input to the RecDynNC problem. The set of regular vertices of 𝐻𝐿

is 𝑆𝐿
𝑘
, where 𝑘 is the index of the current level-𝐿 phase. Intuitively,

graph 𝐻𝐿
will be “responsible” for all level-𝐿 paths in graph 𝐺 . We

describe the sets of supernodes and of edges of𝐻𝐿
below. For all 0 ≤

𝑖 ≤ log𝐷∗
, we view graph 𝐻𝐿

, together with distance parameter

𝐷𝑖 = 2
𝑖
, as an instance of the RecDynNC problem, and we apply

the algorithm from Assumption 1.1 to this instance, denoting the

resulting collection of clusters by C𝐿
𝑖
. We say that all clusters in C𝐿

𝑖

have scale 𝑖 , andwe denote C𝐿 =
⋃𝐷∗

𝑖=0 C𝐿
𝑖
. The supernodes of graph

𝐻𝐿
are vertices 𝑢 (𝐶) corresponding to some of the clusters 𝐶 ∈⋃

𝐿′<𝐿 C𝐿′
. As the clusters in set

⋃
𝐿′<𝐿 C𝐿′

evolve, we maintain

the corresponding dynamic graph 𝐻𝐿
via valid update operations,

where, for example, a cluster-splitting update of a cluster 𝐶 ∈⋃
𝐿′<𝐿 C𝐿′

can be implemented via a supernode-splitting update

applied to supernode 𝑢 (𝐶).
Notice that, while the number of level-𝐿 phase may be as large

as 𝑀𝐿
, the number of regular vertices in the level-𝐿 graph 𝐻𝐿

is

bounded by 2𝑀𝑞−𝐿+1
. Therefore, even though we need to recom-

pute a level-𝐿 data structure from scratch at the beginning of each

level-𝐿 phase, the size of the corresponding graph is sufficiently

small that we can afford it. The level-𝑞 data structure is computed

from scratch after every edge-insertion update, though the number

of regular vertices in the corresponding graph 𝐻𝑞
is bounded by

𝑀 ≤ 𝑚𝜖
.

While the high-level idea described above is quite natural, and

was used multiple times in the past (see e.g. [2, 26, 27, 32, 33]), it

poses a number of challenges. The main challenge is the coordina-

tion between the different levels that is needed in order to support

short-path queries. Consider, for example, a short-path query be-

tween a pair 𝑥,𝑦 of vertices of 𝐺 , and assume that there is a path 𝑃

in 𝐺 connecting 𝑥 to 𝑦, whose length is 𝐷 < 𝐷∗
. Notice, however,

that the edges of 𝑃 may belong to different levels, and there may

not be a single level 𝐿, such that all vertices of 𝑃 lie in the graph

𝐻𝐿
. Assume that the level of path 𝑃 is 𝐿. Then we would like the

level-𝐿 data structure to be “responsible” for this query. In other

words, we would like some path 𝑃 ′, whose length is comparable

to 𝐷 , to represent path 𝑃 in graph 𝐻𝐿
. But it is possible that the

endpoints 𝑥 and 𝑦 of 𝑃 do not even lie in graph 𝐻𝐿
, so it is not clear

which path in 𝐻𝐿
we should use as a representative of path 𝑃 .

This issue seems especially challenging in the setting of APSP
with adaptive adversary, where it is required that approximate

short-path-query queries are supported. For comparison, [2] and

[27] use a very similar high-level idea of a hierarchical partition of

the time horizon and the set of edges. In [27], the algorithm is only

required to maintain a low-stretch probabilistic tree embedding of

the graph. This allows them to combine the trees maintained at

different levels into a single tree that has a relatively low height,

thereby circumventing the problem of coordinating between graphs

from different levels. In order to respond to dist-query between a

pair of vertices, they simply compute the length of the path between

the two vertices in the tree that they maintain. Their data structure

however cannot support approximate shortest-path-query. If we
tried to similarly combine graphs from different levels in order to

overcome the challenge of coordinating between them, we would

obtain another fully dynamic (non-tree) graph, and it is not clear

how to support approximate shortest-path-query in this graph.

A different approach was taken by [2], whose algorithm exploits

specific properties of the distance oracles of [39, 41]. The latter

constructions however are randomized and can only withstand an

oblivious adversary.

In order to resolve this issue of coordination between levels, we

associate, to every cluster 𝐶 ∈ ⋃𝑞

𝐿=0
C𝐿

, a set 𝑉 𝐹 (𝐶) ⊆ 𝑉 (𝐺) of
vertices, and we think of cluster 𝐶 as representing this collection

of vertices of 𝐺 . For a level 0 ≤ 𝐿 ≤ 𝑞, we include in graph 𝐻𝐿

supernodes 𝑢 (𝐶) for all clusters𝐶 ∈ ⋃
𝐿′<𝐿 C𝐿′

with 𝑆𝐿
𝑘
∩𝑉 𝐹 (𝐶) ≠

∅, where 𝑘 is the index of the current level-𝐿 phase. For every

vertex 𝑥 ∈ 𝑆𝐿
𝑘
, and supernode 𝑢 (𝐶) with 𝑥 ∈ 𝑉 𝐹 (𝐶), we add an

edge (𝑣 (𝑥), 𝑢 (𝐶)) to graph 𝐻𝐿
, whose length is 2

scale(𝐶)
. The main

challenge in this construction is to define the sets𝑉 𝐹 (𝐶) of vertices
for clusters𝐶 ∈ ⋃𝑞

𝐿=0
C𝐿

. On the one hand, we would like to make

these sets broad enough, so that the resulting graphs 𝐻𝐿
are rich

enough in order to allow us to support approximate short-path
queries. On the other hand, in order to ensure that the algorithm is

efficient, these sets cannot be too large.

In order to support short-path queries between pairs of vertices

𝑥,𝑦 ∈ 𝑉 (𝐺), we employ a notion of “covering chains” – structures

that span multiple levels. Suppose the shortest path 𝑃 connecting

𝑥 to 𝑦 in 𝐺 has length 𝐷 ≤ 𝐷∗
, and belongs to level 𝐿. Using the

covering chains, we compute small collections 𝑅(𝑥), 𝑅(𝑦) ⊆ 𝑆𝐿
𝑘

of vertices associated with 𝑥 and 𝑦 respectively, such that there

exists a vertex 𝑥 ′ ∈ 𝑅(𝑥) and a vertex 𝑦′ ∈ 𝑅(𝑦), together with
a path 𝑃 ′ in graph 𝐻𝐿

connecting 𝑣 (𝑥 ′) to 𝑣 (𝑦′), whose length is

comparable to 𝐷 . Conversely, we show that any such path in 𝐻𝐿

1165

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

can be transformed into a path in graph𝐺 that connects 𝑥 to 𝑦, and

has length that is not much larger than 𝐷 .

Next, we provide a high-level overview of the proof of The-

orem 1.3. We also point out the main remaining bottlenecks to

obtaining a better approximation.

Improved algorithm for RecDynNC. The RecDynNC prob-

lem can be effectively partitioned into two subproblems. The first

subproblem, called MaintainCluster problem, is responsible for

maintaining a single cluster. Suppose we are given any such clus-

ter 𝐶 ⊆ 𝐻 , where 𝐻 is the current graph, and a distance param-

eter 𝐷∗ > 𝐷 . Cluster 𝐶 will undergo a sequence Σ𝐶 of valid

update operations that correspond to the updates applied to 𝐻 ,

possibly with some additional edge-deletions and isolated vertex-

deletions. The goal of the MaintainCluster problem is to support

short-path-query queries: given a pair 𝑥,𝑦 of regular vertices of 𝐶 ,

compute a path 𝑃 of length at most 𝛼 ·𝐷∗
connecting them in graph

𝐶 , in time 𝑂 (|𝐸 (𝑃) |), where 𝛼 is the approximation factor that the

algorithm achieves. Whenever the diameter of cluster 𝐶 becomes

too large, the algorithm may raise a flag 𝐹𝐶 , and to provide a pair

𝑥,𝑦 of regular vertices of 𝐶 (that we call a witness pair), such that

dist𝐶 (𝑥,𝑦) > 𝐷∗
. After that, the algorithm will receive, as part of

the update sequence Σ𝐶 , a sequence of edge-deletions and isolated

vertex-deletions (that we call a flag-lowering sequence), following
which at least one of the vertices 𝑥,𝑦 is deleted from𝐶 , and flag 𝐹𝐶
is lowered. If the diameter of𝐶 remains too large, the algorithm can

raise the flag again immediately. Queries short-path-querymay not

be asked when flag 𝐹𝐶 is up.MaintainCluster problem was defined

in [17], and we employ the same definition here.

The second problem is MaintainNC problem. This problem is

responsible for managing the neighborhood cover C itself. Ini-

tially, we start with C containing a single cluster - cluster 𝐻 . The

clusters in C may only undergo allowed operations that are de-

fined exactly like in the RecDynNC problem. The algorithm also

needs to maintain, for every regular vertex 𝑣 ∈ 𝑉 (𝐻), a cluster

CoveringCluster(𝑣) ∈ C, that contains all vertices of 𝐵𝐻 (𝑣, 𝐷), so
that the Consistent Covering property holds. The algorithm does

not need to support any queries. But, at any time, it may receive a

cluster𝐶 and a pair 𝑥,𝑦 of vertices of𝐶 , such that dist𝐶 (𝑥,𝑦) > 𝐷∗

holds (for a parameter 𝐷∗
that we specify below). It must then

produce a flag-lowering sequence Σ′ for 𝐶 (that is, a sequence of

edge- and isolated vertex-deletions, after which at least one of 𝑥,𝑦 is

deleted from𝐶). All updates from Σ′ must be then applied to cluster

𝐶 , but they may be interspersed with cluster-splitting operations,

when new clusters 𝐶′ ⊆ 𝐶 are added to C. The algorithm must

also ensure that every regular vertex of 𝐻 only belongs to a small

number of clusters over the course of the time horizon.

By combining the algorithms for the MaintainCluster and the

MaintainNC problems, it is easy to obtain an algorithm for the

RecDynNC problem, whose approximation factor is𝛼 ·𝐷∗/𝐷 , where

𝛼 is the approximation factor of the algorithm forMaintainCluster,
and 𝐷∗

is the threshold parameter for raising the flags {𝐹𝐶 }𝐶∈C .
While [17] did not explicitly define the MaintainNC problem,

they effectively provided a simple algorithm for it, that relies on

a variation of the standard ball-growing technique, and uses pa-

rameter 𝐷∗ = Ω(𝐷 · log𝑁), where 𝑁 is the number of regular

vertices in graph 𝐻 . This overhead of 𝑂 (log𝑁) factor is one of

the reasons for the (log𝑁)2𝑂 (1/𝜖)
-approximation factor that their

algorithm achieves, and it is one of the barriers to obtaining a

better approximation. We provide a different algorithm for the

MaintainNC problem, that allows us to set 𝐷∗ = 𝑂 (𝐷 · log log𝑁).
The overhead of factor 𝑂 (log log𝑁) in this algorithm is the only

remaining barrier to obtaining an improved algorithm for the

RecDynNC problem, and for APSP. For example, if we could en-

sure that𝐷∗ = 𝑂

(
2
2
𝑂 (1/poly(𝜖)) · 𝐷

)
is sufficient, we would obtain an

algorithm for RecDynNC and for fully dynamic APSP with approx-

imation factor 2
2
𝑂 (1/poly(𝜖))

and the same update time immediately.

In the remainder of this overview,we focus on theMaintainCluster
problem. We first provide a brief overview of the algorithm from

[17], and then describe our improvements.

The central concept that [17] use in designing an algorithm for

theMaintainCluster problem is that of a balanced pseudocut, which
they also introduced. Let 𝑁 be the number of regular vertices in

𝐻 (0)
, and let 𝜇 be the dynamic degree bound. Recall that, as input

to the MaintainCluster problem, we are given a cluster 𝐶 of 𝐻 ,

that undergoes a sequence Σ𝐶 of valid update operations with

dynamic degree bound 𝜇, and a distance parameter 𝐷∗
. We use an

additional parameter 𝜌 ; it may be convenient to think of 𝜌 = 𝑁 𝜖
.

Let 𝐷̂ > 𝐷∗
be another distance parameter; its specific value is

not important for this technical overview, but it is close to 𝐷∗
. A

(𝐷̂, 𝜌)-pseudocut in graph 𝐶 is a collection 𝑇 of regular vertices

of 𝐶 , such that, for every regular vertex 𝑣 ∈ 𝑉 (𝐶) \𝑇 , 𝐵𝐶\𝑇 (𝑣, 𝐷̂)
contains at most 𝑁 /𝜌 regular vertices. This notion can be viewed

as a generalization of the balanced vertex multicut, that can be

defined as a collection 𝑇 of vertices, such that every connected

component of𝐶 \𝑇 contains at most 𝑁 /𝜌 vertices. Intuitively, once

the vertices of the pseudocut (or of a balanced multicut) are deleted

from𝐶 , we can break it into significantly smaller clusters, while still

maintaining the covering properties of the neighborhood cover C.
However, balanced pseudocuts have one additional crucial property:

[17] provided an algorithm, that, given a (𝐷̂, 𝜌)-pseudocut 𝑇 in

cluster𝐶 , either (i) computes an expander graph 𝑋 , with𝑉 (𝑋) ⊆ 𝑇 ,

such that |𝑉 (𝑋) | is comparable to |𝑇 |, together with an embedding

of 𝑋 into 𝐶 via short paths that cause a relatively low congestion;

or (ii) computes another (𝐷̂, 𝜌)-pseudocut 𝑇 ′
in 𝐶 , with |𝑇 ′ | ≪ |𝑇 |.

We denote this algorithm Alg. This algorithm is the core technical

part in the algorithm of [17] for the MaintainCluster problem, and

our main technical contribution to the MaintainCluster problem
essentially replaces algorithm Alg with a different algorithm. We

now provide a very brief description of algorithm Alg.
Algorithm Alg. A central observation that is needed for the

algorithm is the following: let 𝑇 be a (𝐷̂, 𝜌)-pseudocut in graph

𝐶 , and suppose we have computed a relatively small subset 𝐸′ of
edges of 𝐶 , and a collection 𝑇1,𝑇2, . . . ,𝑇𝜌+1 of subsets of vertices
of 𝑇 , such that each such subset 𝑇𝑖 is sufficiently large, and, for all

1 ≤ 𝑖 < 𝑗 ≤ 𝜌 + 1, dist𝐶\𝐸′ (𝑇𝑖 ,𝑇𝑗) > 4𝐷̂ . Then we can compute a

pseudocut 𝑇 ′
for graph 𝐶 with |𝑇 ′ | ≪ |𝑇 |. The idea is that there

must be some index 1 ≤ 𝑖 ≤ 𝜌 + 1, such that 𝐵𝐶\𝐸′ (𝑇𝑖 , 2𝐷̂) contains
at most 𝑁 /𝜌 regular vertices. By replacing set 𝑇𝑖 in the pseudocut

𝑇 with the endpoints of the edges in 𝐸′, we obtain a significantly

smaller pseudocut 𝑇 ′
. Algorithm Alg starts with the given pseudo-

cut 𝑇 , and then attempts to compute an expander 𝑋 over a large

subset of vertices of𝑇 , and to embed it into𝐶 via the Cut-Matching

1166

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

Game of [35] (in fact, they need to use a weaker variant of the

game from [19], who provide a deterministic algorithm for the cut

player, but unfortunately only ensure a rather weak expansion in

the resulting graph 𝑋 , which also contributes to the relatively high

approximation factor of [17]). If the Cut-Matching Game fails to

construct the expander 𝑋 and embed it into 𝐶 as required, then

it produces two large subsets 𝑇 ′,𝑇 ′′ ⊆ 𝑇 of vertices, and a rela-

tively small subset 𝐸′ of edges, such that dist𝐶\𝐸′ (𝑇 ′,𝑇 ′′) > 4𝐷̂ .

Then they recursively apply the same algorithm to 𝑇 ′
and to 𝑇 ′′

.

After 𝜌 such iterations, if the algorithm failed to construct the de-

sired expander 𝑋 and its embedding, we obtain large vertex subsets

𝑇1, . . . ,𝑇𝜌+1 ⊆ 𝑇 , and a subset 𝐸′ of edges of𝐶 , that allow us to com-

pute a much smaller pseudocut, as described above. Even though

they perform 𝜌 iterations of the algorithm for the Cut-Matching

Game, since, in case of a failure, the subsets 𝑇 ′,𝑇 ′′ ⊆ 𝑇 of vertices

that it produces are very large compared to |𝑇 |, the resulting subsets
𝑇1, . . . ,𝑇𝜌+1 of vertices are still sufficiently large to make progress.

We now complete the description of the algorithm of [17] for the

MaintainCluster problem.

The algorithm is partitioned into phases. Initially, we construct a

pseudocut𝑇 that contains all regular vertices of𝐶 . At the beginning

of each phase, we use Algorithm Alg (possibly iteratively), in order

to compute a pseudocut𝑇 ′
, and an expander 𝑋 defined over a large

subset of vertices of 𝑇 ′
, together with an embedding of 𝑋 into

𝐶 via short path that cause a low congestion. Assume first that

|𝑇 ′ | > 𝑁 1−Θ(𝜖)
. The algorithm of [17] employs an algorithm for

APSP in expanders on graph𝑋 . This algorithm can maintain a large

“core” 𝑆 ⊆ 𝑉 (𝑋), over the course of a large number of edge-deletions

from 𝐶 (the number that is roughly comparable to |𝑇 ′ |). It can also

support queries in which, given a pair 𝑥,𝑦 ∈ 𝑉 (𝑆) of vertices,
a path of length at most roughly (log𝑁)𝑂 (1/poly(𝜖))

connecting

𝑥 to 𝑦 in 𝑋 is returned. This path can then be transformed into

a path of comparable length connecting 𝑥 to 𝑦 in 𝐶 , using the

embedding of 𝑋 into 𝐶 . Additionally, they maintain an ES-Tree in
graph 𝐶 , that is rooted at the vertices of 𝑆 . This tree can be used

in order to ensure that all regular vertices of 𝐶 are sufficiently

close to the core 𝑆 , and, whenever this is not the case, flag 𝐹𝐶 is

raised. Once the algorithm for APSP in expanders can no longer

maintain the core 𝑆 (after roughly |𝑇 ′ | deletions of edges from
𝐶), the phase terminates. It is easy to verify that, as long as the

cardinality of the pseudocut 𝑇 ′
is sufficiently large (say at least

𝑁 1−Θ(𝜖)
), the number of phases remains relatively small, and the

algorithm can be executed efficiently. Once the cardinality of the

pseudocut 𝑇 ′
becomes too small, the last phase begins, during

which the pseudocut 𝑇 ′
remains unchanged. We omit here the

description of this phase, since our implementation of this part is

essentially identical to that of [17]. We only note that this phase

solves the RecDynNC problem recursively on two instances, whose

sizes are significantly smaller than that of 𝐻 . The two instances

are then composed in a natural way, which eventually leads to the

doubly-exponential dependence of the approximation factor on

1/poly(𝜖).
The algorithm of [17] for the MaintainCluster problem loses

a super-logarithmic in 𝑁 approximation factor via this approach,

that contributes to the final (log𝑁)21/poly(𝜖) -approximation factor

for the RecDynNC problem. This loss is largely due to the use of

expander graphs. In addition to the issues that we have mentioned

with the implementation of the Cut-Matching game via a deter-

ministic algorithm, all currently known algorithms for APSP in

expanders only achieve a superlogarithmic approximation factor,

and even if they are improved, the loss of at least a polylogarithmic

approximation factor seems inevitable. It is typical for this issue

to arise when relying on expander graphs for distance-based prob-

lems, such as APSP. A recent work of [18] suggested a method to

overcome this difficulty, by replacing expander graphs with well-
connected graphs. Intuitively, if 𝐺 is a graph, and 𝑆 is large subset

of its vertices, we say that 𝐺 is well-connected with respect to

𝑆 (or just well-connected) if, for every pair 𝐴, 𝐵 ⊆ 𝑆 of disjoint

equal-cardinality subsets of vertices of 𝑆 , there is a collection P
of paths in 𝐺 , that connects every vertex of 𝐴 to a distinct ver-

tex of 𝐵, such that the paths in P are short, and they cause a low

congestion. In a typical setting, if 𝐺 is an 𝑛-vertex graph, then the

lengths of the paths in P are bounded by 2
poly(1/𝜖)

, and the con-

gestion that they cause is bounded by 𝑛𝑂 (𝜖)
. [18] also developed

a toolkit of algorithmic techniques around well-connected graphs,

that mirror those known for expanders. For example, they provide

an analogue of the Cut-Matching Game, that, given a graph 𝐶 and

a set 𝑇 of its vertices, either computes a large set 𝑆 ⊆ 𝑇 of ver-

tices, and a graph 𝑋 with 𝑉 (𝑋) ⊆ 𝑇 , that is well-connected with

respect to 𝑆 , together with an embedding of𝑋 into𝐶 via short paths

that cause a low congestion; or it computes two relatively large

sets 𝑇 ′,𝑇 ′′ ⊆ 𝑇 of vertices, and a small set 𝐸′ of edges, such that

dist𝐶\𝐸′ (𝑇 ′,𝑇 ′′) is large. Additionally, they provide an algorithm

for APSP in well-connected graphs, that has similar properties to

the above mentioned algorithm for APSP in expanders, but achieves

a much better approximation factor of 2
1/poly(𝜖)

. By replacing ex-

pander graphs with well-connected graphs in the algorithm for

MaintainCluster problem of [17], we avoid the superlogarithmic

loss in the approximation factor that their algorithm incurred. We

note however that replacing expanders with well-connected graphs

in algorithm Alg is quite challenging technically, for the following

reason. Recall that, in the approach that used the Cut-Matching

Game, if the algorithm fails to compute an expander 𝑋 containing

a large number of vertices from the given set𝑇 and embed it into𝐶 ,

it provides two very large subsets 𝑇 ′,𝑇 ′′ ⊆ 𝑇 of vertices, together

with a small set 𝐸′ of edges, such that dist𝐶\𝐸′ (𝑇 ′,𝑇 ′′) > 4𝐷̂ . Un-

fortunately, the analogous algorithm of [18], in case of a failure to

embed a well-connected graph, provides vertex sets 𝑇 ′,𝑇 ′′
, whose

cardinalities are significantly smaller than that of 𝑇 . Specifically, it

only ensures that |𝑇 ′ |, |𝑇 ′′ | ≥ |𝑇 |1−4𝜖3/4. Since we need to continue
applying this algorithm recursively, until 𝜌 + 1 subsets 𝑇1, . . . ,𝑇𝜌+1
of vertices of 𝑇 are constructed, we can no longer guarantee that,

for all 𝑖 , |𝑇𝑖 | is sufficiently large. As a result, if our algorithm fails

to compute a well-connected graph 𝑋 and its embedding into 𝐶 ,

we can no longer compute a new pseudocut whose cardinality is

significantly lower than that of𝑇 . Since the time required to execute

this algorithm is super-linear in |𝐸 (𝐶) |, we cannot afford to execute
it many times, so it is critical for us that the cardinality of the pseu-

docut 𝑇 decreases significantly with every execution. Our main

technical contribution to the algorithm for the MaintainCluster
problem is overcoming this hurdle, and designing an analogue of

1167

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

Algorithm Alg that works with well-connected graphs instead of

expanders.

Organization. We start with preliminaries in Section 2. In Sec-

tion 3, we formally define valid input structure, valid update op-

erations, and the RecDynNC problem. We also provide the state-

ment our main technical result for the RecDynNC problem – an

algorithm whose guarantees are somewhat weaker than those in

Theorem 1.3, which however allows us to prove Theorem 1.3. Sec-

tion 4 is dedicated to the reduction from fully dynamic APSP to

RecDynNC, and the proof of Theorem 1.2. Due to lack of space,

most technical details and formal proofs are deferred to the full

version of the paper.

2 PRELIMINARIES
All graphs in this paper are simple, so they may not contain loops

or parallel edges. Given a graph𝐺 , we say that a graph𝐶 is a cluster
of 𝐺 , if 𝐶 is a connected vertex-induced subgraph of 𝐺 .

Distances, Balls, and Neighborhood Cover. Suppose we are given
a graph 𝐺 with lengths ℓ (𝑒) > 0 on its edges 𝑒 ∈ 𝐸 (𝐺). For a
path 𝑃 in 𝐺 , we denote its length by ℓ𝐺 (𝑃) = ∑

𝑒∈𝐸 (𝑃) ℓ (𝑒). For a
pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we denote by dist𝐺 (𝑢, 𝑣) the distance
between 𝑢 and 𝑣 in 𝐺 : the smallest length ℓ𝐺 (𝑃) of any path 𝑃

connecting 𝑢 to 𝑣 in 𝐺 . The diameter of the graph 𝐺 , denoted by

diam(𝐺), is the maximum distance between any pair of vertices in

𝐺 . Consider now some vertex 𝑣 ∈ 𝑉 (𝐺), and a distance parameter

𝐷 ≥ 0. The ball of radius 𝐷 around 𝑣 is defines as: 𝐵𝐺 (𝑣, 𝐷) =

{𝑢 ∈ 𝑉 (𝐺) | dist𝐺 (𝑢, 𝑣) ≤ 𝐷}.

Neighborhood Covers. Neighborhood Cover is a central notion

that we use throughout the paper. We use both a strong and a weak

notion of neighborhood covers, that are defined as follows.

Definition 2.1 (Neighborhood Cover). Let𝐺 be a graphwith lengths

ℓ (𝑒) > 0 on edges 𝑒 ∈ 𝐸 (𝐺), let 𝑆 ⊆ 𝑉 (𝐺) be a subset of its ver-
tices, and let 𝐷 ≤ 𝐷′

be two distance parameters. A weak (𝐷,𝐷′)-
neighborhood cover for the set 𝑆 of vertices in 𝐺 is a collection

C = {𝐶1, . . . ,𝐶𝑟 } of clusters of 𝐺 , such that:

• for every vertex 𝑣 ∈ 𝑆 , there is some index 1 ≤ 𝑖 ≤ 𝑟 with

𝐵𝐺 (𝑣, 𝐷) ⊆ 𝑉 (𝐶𝑖); and
• for all 1 ≤ 𝑖 ≤ 𝑟 , for every pair 𝑠, 𝑠′ ∈ 𝑆 ∩𝑉 (𝐶𝑖) of vertices,
dist𝐺 (𝑠, 𝑠′) ≤ 𝐷′

.

A set C of clusters of 𝐺 is a strong (𝐷, 𝐷′)-neighborhood cover for
vertex set 𝑆 if it is a weak (𝐷,𝐷′)-neighborhood cover for 𝑆 , and,
additionally, for every cluster𝐶 ∈ C, for every pair 𝑠, 𝑠′ ∈ 𝑆 ∩𝑉 (𝐶)
of vertices, dist𝐶 (𝑠, 𝑠′) ≤ 𝐷′

. If the set 𝑆 of vertices is not specified,

then we assume that 𝑆 = 𝑉 (𝐺).

3 VALID INPUT STRUCTURE, VALID UPDATE
OPERATIONS, AND THE RECURSIVE
DYNAMIC RECURSIVE NEIGHBORHOOD
COVER PROBLEM

Throughout this paper, we will work with inputs that have a spe-

cific structure. This structure is identical to the one defined in [17],

and it is designed in a way that will allow us to naturally com-

pose different instances recursively, by exploiting the notion of

neighborhood covers. In order to avoid repeatedly defining such

inputs, we provide a definition here, and then refer to it throughout

the paper. We also define the types of update operations that we

allow for such inputs. After that, we formally define the Recursive

Dynamic Neighborhood Cover problem (RecDynNC). In this sec-

tion we also state our algorithm for the RecDynNC problem with

slightly weaker guarantees, that allows us to prove Theorem 1.3.

3.1 Valid Input Structure and Valid Update
Operations

We start by defining a valid input structure; the definition is identi-

cal to the one from [17].

Definition 3.1 (Valid Input Structure). A valid input structure

consists of a bipartite graph 𝐻 = (𝑉 ,𝑈 , 𝐸), a distance threshold

𝐷 > 0 and integral lengths 1 ≤ ℓ (𝑒) ≤ 𝐷 for edges 𝑒 ∈ 𝐸. The

vertices in set 𝑉 are called regular vertices and the vertices in set

𝑈 are called supernodes. We denote a valid input structure by J =(
𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
. If the distance threshold𝐷 is not

explicitly defined, then we set it to ∞.

Intuitively, supernodes in set𝑈 may represent clusters in a Neigh-

borhood Cover C of the vertices in 𝑉 with some (smaller) distance

threshold, that is computed and maintained recursively. Given a

valid input structure J =

(
𝐻, {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
, we allow the fol-

lowing types of update operations:

• Edge Deletion. Given an edge 𝑒 ∈ 𝐸 (𝐻), delete 𝑒 from 𝐻 .

• Isolated Vertex Deletion. Given a vertex 𝑥 ∈ 𝑉 (𝐻) that is
an isolated vertex, delete 𝑥 from 𝐻 ; and

• Supernode Splitting. The input to this update operation

is a supernode 𝑢 ∈ 𝑈 and a non-empty subset 𝐸′ ⊆ 𝛿𝐻 (𝑢)
of edges incident to 𝑢. The update operation creates a new

supernode 𝑢′, and, for every edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸′, it adds a
new edge 𝑒′ = (𝑢′, 𝑣) of length ℓ (𝑒) to the graph 𝐻 . We will

sometimes refer to 𝑒′ as a copy of edge 𝑒 .

For brevity of notation, we will refer to edge-deletion, isolated

vertex-deletion, and supernode-splitting operations as valid update
operations. Notice that valid update operations may not create new

regular vertices. A supernode splitting operation, however, adds a

new supernode to graph 𝐻 , and also inserts edges into 𝐻 . Unfortu-

nately, this means that the number of edges in 𝐻 may grow as the

result of the update operations, making it challenging to analyze

the running times of various algorithms that we run on subgraphs

𝐶 ⊆ 𝐻 in terms of |𝐸 (𝐶) |. In order to overcome this difficulty, we

use the notion of the dynamic degree bound, which was also defined

in [17].

Definition 3.2 (Dynamic Degree Bound). We say that a valid in-

put structure J =

(
𝐻, {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
, undergoing an online

sequence Σ of valid update operations has dynamic degree bound
𝜇 if, for every regular vertex 𝑣 ∈ 𝑉 (𝐻), the total number of edges

incident to 𝑣 that are ever present in 𝐻 over the course of the time

horizon T is at most 𝜇.

We will usually denote by 𝑁 0 (𝐻) the number of regular vertices

in the initial graph 𝐻 . If (J , Σ) have dynamic degree bound 𝜇, then

1168

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

we are guaranteed that the number of edges that are ever present in

𝐻 over the course of the update sequence Σ is bounded by 𝑁 0 (𝐻) ·𝜇.
In general, we will always ensure that the dynamic degree bound

𝜇 is quite low. It may be convenient to think of it as𝑚poly(𝜖)
, where

𝑚 is the initial number of edges in the input graph 𝐺 for the APSP
problem, and 𝜖 is a precision parameter. Intuitively, every supernode

of graph 𝐻 represents some cluster 𝐶 in a (𝐷̂, 𝐷̂′)-neighborhood
cover C of 𝐺 , for some parameters 𝐷̂, 𝐷̂′ ≪ 𝐷 . Typically, each

regular vertex of 𝐻 represents some actual vertex of graph 𝐺 , and

an edge (𝑣,𝑢) is present in 𝐻 iff vertex 𝑣 belongs to the cluster 𝐶

that supernode 𝑢 represents. Intuitively, we will ensure that the

neighborhood cover C of𝐺 is constructed and maintained in such a

way that the total number of clusters of C to which a given regular

vertex 𝑣 ever belongs over the course of the algorithm is small. This,

in turn, will ensure that the dynamic degree bound for graph 𝐻 is

small as well.

3.2 The Recursive Dynamic Neighborhood
Cover (RecDynNC) Problem

In this subsection we provide a formal definition of the Recursive

Dynamic Neighborhood Cover problem from [17].

Problem Definition. The input to the Recursive Dynamic Neigh-

borhood Cover (RecDynNC) problem is a valid input structure

J = (𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 , 𝐷), where graph 𝐻 undergoes an

online sequence Σ of valid update operations with some given dy-

namic degree bound 𝜇. Additionally, we are given a desired approx-

imation factor 𝛼 . We assume that we are also given some arbitrary

fixed ordering O of the vertices of 𝐻 , and that any new vertex that

is inserted into 𝐻 as the result of supernode-splitting updates is

added at the end of the current ordering. The goal is to maintain

the following data structures:

• a collection U of subsets of vertices of graph 𝐻 , together

with a collection C = {𝐻 [𝑆] | 𝑆 ∈ U} of clusters in 𝐻 , such

that C is a weak (𝐷, 𝛼 · 𝐷) neighborhood cover for the set

𝑉 of regular vertices in graph 𝐻 . For every set 𝑆 ∈ U, the

vertices of 𝑆 must be maintained in a list, sorted according

to the ordering O;

• for every regular vertex 𝑣 ∈ 𝑉 , a cluster

𝐶 = CoveringCluster(𝑣), with 𝐵𝐻 (𝑣, 𝐷) ⊆ 𝑉 (𝐶);
• for every vertex 𝑥 ∈ 𝑉 (𝐻), a list ClusterList(𝑥) ⊆ C of all

clusters containing 𝑥 , and for every edge 𝑒 ∈ 𝐸 (𝐻), a list

ClusterList(𝑒) ⊆ C of all clusters containing 𝑒 .

The setU of vertex subsets must be maintained as follows. Ini-

tially, U =

{
𝑉 (𝐻 (0))

}
, where 𝐻 (0)

is the initial input graph 𝐻 .

After that, the only allowed changes to vertex sets in U are:

• DeleteVertex(𝑆, 𝑥): given a vertex set 𝑆 ∈ U, and a vertex

𝑥 ∈ 𝑆 , delete 𝑥 from 𝑆 ;

• AddSuperNode(𝑆,𝑢): if 𝑢 is a supernode that is lying in 𝑆 ,

that just underwent a supernode splitting update, add the

newly created supernode 𝑢′ to 𝑆 ; and
• ClusterSplit(𝑆, 𝑆 ′): given a vertex set 𝑆 ∈ U, and a subset

𝑆 ′ ⊆ 𝑆 of its vertices, add 𝑆 ′ to U.

We refer to the above operations as allowed changes to U. In

other words, if we consider the sequence of changes that clusters

in C undergo over the course of the algorithm, the corresponding

sequence of changes to vertex sets in {𝑈 (𝐶) | 𝐶 ∈ C} must obey

the above rules.

We note that, while we require that, at the beginning of the

algorithm, U =

{
𝑉 (𝐻 (0))

}
holds, we allow the data structure to

update this initial collection of vertex subsets via allowed opera-

tions, before processing any updates to graph 𝐻 . We sometimes

refer to the resulting collection C of clusters, that is obtained before

any update from Σ is processed, as initial collection of clusters, or
collection of clusters at time 0.

Ancestor Clusters. It will be convenient for us to define the notion
of ancestors of clusters in C. Let T be the time horizon of the update

sequence Σ, and let 𝐶 be a cluster that ever belonged to C over the

course of the algorithm. For every time 𝜏 ∈ T , we will define an

ancestor of cluster 𝐶 at time 𝜏 , denoted by Ancestor
(𝜏) (𝐶). The

definition is inductive over the time when cluster𝐶 was first added

to C.
Consider first the initial set C of clusters, that the algorithm

constructs prior to processing the first update in Σ. For every cluster

𝐶 ∈ C, for every time 𝜏 ∈ T , we set Ancestor
(𝜏) (𝐶) = 𝐶 . Consider

now some time 𝜏 ′ ∈ T with 𝜏 ′ > 0, when a new cluster𝐶′
is added

to set C. Then there is some cluster 𝐶 ∈ C, so that cluster 𝐶′
was

split off from cluster 𝐶 at time 𝜏 ′. For every time 𝜏 ∈ T , if 𝜏 < 𝜏 ′,
we set Ancestor

(𝜏) (𝐶′) = Ancestor
(𝜏) (𝐶), and otherwise we set

Ancestor
(𝜏) (𝐶′) = 𝐶′

.

Consistent Covering Property. We require that the data structure

for the RecDynNC problem obeys the Consistent Covering property,
that is defined as follows.

Definition 3.3 (Consistent Covering Property). We say that a data

structure for the RecDynNC problem maintains the Consistent Cov-
ering property, if the following holds. Consider any times 𝜏 ′ <

𝜏 during the time horizon, and a regular vertex 𝑥 ∈ 𝑉 (𝐻 (𝜏)).
Assume that, at time 𝜏 , CoveringCluster(𝑥) = 𝐶 held, and that

Ancestor
(𝜏 ′) (𝐶) = 𝐶′

. Then, at time 𝜏 ′, 𝐵𝐻 (𝑥, 𝐷) ⊆ 𝑉 (𝐶′) held.

The Consistent Covering property was not explicitly defined in

[17], but the data structures for the RecDynNC problem provided

in that work obey this property. We need this property in order to

reduce fully-dynamic APSP to RecDynNC.
In addition to maintaining these data structures, an algorithm

for the RecDynNC problem needs to support short-path-query:
given two regular vertices 𝑣, 𝑣 ′ ∈ 𝑉 , and a cluster 𝐶 ∈ C with

𝑣, 𝑣 ′ ∈ 𝐶 , return a path 𝑃 in the current graph 𝐻 , of length at most

𝛼 ·𝐷 connecting 𝑣 to 𝑣 ′ in 𝐻 , in time𝑂 (|𝐸 (𝑃) |). This completes the

definition of the RecDynNC problem. The size of an instance J =

(𝐻 = (𝑉 ,𝑈 , 𝐸), {ℓ (𝑒)}𝑒∈𝐸 , 𝐷) of the RecDynNC instance, that we

denote by 𝑁 0 (𝐻), is the number of regular vertices in the original

graph 𝐻 . In the remainder of the paper, we will always assume

that a data structure that an algorithm for the RecDynNC problem

maintains must obey the Consistent Covering property.

3.3 Main Technical Result for the RecDynNC
Problem and Proof of Theorem 1.3

As one of our main technical results, we prove the following theo-

rem; the proof is deferred to the full version of the paper.

1169

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

Theorem 3.4. There is a deterministic algorithm for theRecDynNC

problem, that, given a valid input structureJ =

(
𝐻, {ℓ (𝑒)}𝑒∈𝐸 (𝐻) , 𝐷

)
undergoing a sequence of valid update operations, with dynamic de-
gree bound 𝜇, together with parameters 𝑊̂ and 1/(log𝑊̂)1/100 ≤
𝜖 < 1/400, such that, if we denote by 𝑁 0 (𝐻) the number of regular
vertices in 𝐻 at the beginning of the algorithm, then 𝑁 0 (𝐻) · 𝜇 ≤ 𝑊̂

holds, achieves approximation factor 𝛼 = (log log𝑊̂)2𝑂 (1/𝜖2)
, with

total update time𝑂 ((𝑁 0 (𝐻))1+𝑂 (𝜖) · 𝜇𝑂 (1/𝜖) ·𝐷3). Moreover, the al-
gorithm ensures that for every regular vertex 𝑣 ∈ 𝑉 , the total number
of clusters in the weak neighborhood cover C that the algorithm main-
tains, to which vertex 𝑣 ever belongs over the course of the algorithm,
is bounded by 𝑊̂ 4𝜖4 .

Note that the guarantees provided by Theorem 3.4 are somewhat

weaker than those required by Theorem 1.3, in that the total update

time of the algorithm depends polynomially on 𝐷 . We can remove

this polynomial dependence on 𝐷 using standard techniques; a

similar idea was used in [17]. We provide the proof of Theorem 1.3

from Theorem 3.4 in the full version of the paper.

4 FROM RecDynNC TO FULLY DYNAMIC APSP
This section is dedicated to the proof of Theorem 1.2. We provide a

high level description of the proof here. A detailed proof is deferred

to the full version of the paper. We assume that Assumption 1.1

holds, and we denote the algorithm for RecDynNC problem from

Assumption 1.1 by A.

We assume that we are given an instance of the 𝐷∗
-restricted

APSP problem, that consists of an 𝑛-vertex graph 𝐺 with integral

lengths ℓ (𝑒) ≥ 1 on its edges 𝑒 ∈ 𝐸 (𝐺), together with a precision

parameter
1

(log𝑛)1/200 < 𝜖 < 1/400, and a distance parameter 𝐷∗ >

0, where graph𝐺 undergoes an online sequence of edge insertions

and deletions. For convenience, we denote 𝛼 = 𝛼 (𝑛3), where 𝛼 (·)
is the approximation factor from Assumption 1.1.

As we show in the full version of the paper, by using standard

transformations, we can assume that |𝑉 (𝐺) | + |𝐸 (𝐺 (0)) | + |Σ| ≤ 4𝑚,

where𝑚 is the initial number of edges in graph 𝐺 .

Throughout, we use the parameters 𝑞 = ⌈1/𝜖⌉ and 𝑀 = ⌈𝑚𝜖 ⌉.
Notice that𝑚 ≤ 𝑀𝑞 ≤ 𝑚1+2𝜖

. We also use a parameter 𝐷̂ = 𝐷∗ ·
2
10𝑞+10 = 𝐷∗ · 2𝑂 (1/𝜖)

. For all 0 ≤ 𝑖 ≤ log 𝐷̂ , we define a distance

scale 𝐷𝑖 = 2
𝑖
.

Let T be the time horizon associated with the update sequence Σ.

Consider now graph𝐺 at some time 𝜏 ∈ T , that we denote by𝐺 (𝜏)
,

and let 𝑒 ∈ 𝐸 (𝐺 (𝜏)) be any edge. We say that an edge 𝑒 ∈ 𝐸 (𝐺) is
original, if it was present in 𝐺 at the beginning of the algorithm,

and was never deleted or inserted. If edge 𝑒 is not an original edge,

then we say that it is an inserted edge.

The data structure that our algorithm maintains is partitioned

into (𝑞 + 1) levels. In order to describe the purpose of each level,

we first need to define a partition of the time horizon into phases.

Hierarchical Partition the Time Horizon into Phases. For every
level 0 ≤ 𝐿 ≤ 𝑞, we define a partition of the time horizon T
into level-𝐿 phases. There is a single level-0 phase, that spans the
whole time horizon T . For all 0 < 𝐿 ≤ 𝑞, we partition the time

horizon into at most 𝑀𝐿
level-𝐿 phases, each of which spans a

consecutive sequence Σ′ ⊆ Σ of updates, that contains exactly

𝑀𝑞−𝐿
edge insertions (except for the last phase, that may contain

fewer insertions). In other words, if the 𝑘th level-𝐿 phase ends at

time 𝜏 , then the 𝜏th update operation in Σ is edge-insertion, and,

since the beginning of the current level-𝐿 phase, exactly𝑀𝑞−𝐿
edges

have been inserted into 𝐺 via sequence Σ. It will be convenient for
us to ensure that the number of level-𝐿 phases is exactly𝑀𝐿

. If this

is not the case, then we add empty phases at the end of the last

phase.

For 1 ≤ 𝑘 ≤ 𝑀𝐿
, we denote the 𝑘th level-𝐿 phase by Φ𝐿

𝑘
, and

the subsequence of Σ containing all update operations that occur

during Phase Φ𝐿
𝑘
by Σ𝐿

𝑘
. We also associate the time interval T𝐿

𝑘
,

corresponding to the update sequence Σ𝐿
𝑘
, with the level-𝐿 phase

Φ𝐿
𝑘
. For all 0 ≤ 𝐿 ≤ 𝑞, we will initialize the level-𝐿 data structure

from scratch at the beginning of each level-𝐿 phase. Note that each

level-𝑞 phase only spans a single edge insertion. In other words,

every time a new edge is inserted into 𝐺 , we start a new level-𝑞

phase, and recompute the level-𝑞 data structure from scratch. Notice

that our definition of phases ensures that, for all 0 ≤ 𝐿′ < 𝐿 ≤ 𝑞,

every level-𝐿 phase is completely contained in some level-𝐿′ phase.
Intuitively, for all 1 ≤ 𝐿 ≤ 𝑞, during each level-𝐿 phase Φ𝐿

𝑘
, the

level-𝐿 data structure will be “responsible” for all edges that were

inserted into 𝐺 before the beginning of Phase Φ𝐿
𝑘
, but after the

beginning of the current level-(𝐿− 1) phase. We now formalize this

intuition.

Edge and Path Classification. Consider a level 0 < 𝐿 ≤ 𝑞, and

some level-𝐿 phase Φ𝐿
𝑘
. Let Φ𝐿−1

𝑘 ′ be the unique level-(𝐿 − 1) phase
that contains Phase Φ𝐿

𝑘
. Let 𝜏 ∈ T be the beginning of Phase Φ𝐿

𝑘
,

and let 𝜏 ′ ∈ T be the beginning of Phase Φ𝐿−1
𝑘 ′ (note that it is

possible that 𝜏 = 𝜏 ′). We define the set 𝐴𝐿
𝑘
of edges of graph 𝐺 that

is associated with Phase Φ𝐿
𝑘
. An edge 𝑒 belongs to set𝐴𝐿

𝑘
if and only

if it was inserted into𝐺 between time 𝜏 ′ and time 𝜏 (including time

𝜏 ′ and excluding time 𝜏). Notice that the cardinality of set 𝐴𝐿
𝑘
is

bounded by the number of edges that may be inserted into𝐺 during

a single level-(𝐿 − 1) phase, so |𝐴𝐿
𝑘
| ≤ 𝑀𝑞−𝐿+1

. The set𝐴𝐿
𝑘
of edges

does not change over the course of Phase Φ𝐿
𝑘
. We also denote by 𝑆𝐿

𝑘
the collection of vertices of 𝐺 that serve as endpoints to the edges

of 𝐴𝐿
𝑘
. Intuitively, level-𝐿 data structure is responsible for keeping

track of the edges in set𝐴𝐿
𝑘
, over the course of each level-𝐿 phaseΦ𝐿

𝑘
.

Wewill construct andmaintain a level-𝐿 graph𝐻𝐿
, that is initialized

from scratch at the beginning of each level-𝐿 phase Φ𝐿
𝑘
, whose set

of regular vertices contains a vertex representing every edge in

𝐴𝐿
𝑘
, and a vertex representing every vertex in 𝑆𝐿

𝑘
. Observe that, as

the level 𝐿 increases, the cardinalities of the corresponding sets

𝐴𝐿
𝑘
of edges decrease, so the graphs that we maintain are smaller.

At the same time, as 𝐿 grows, the number of level-𝐿 phases also

grows. We will ensure that the time that is required to maintain

a level-𝐿 data structure over a course of each level-𝐿 phase Φ𝐿
𝑘
is

almost linear in |𝐴𝐿
𝑘
|, allowing us to bound the total update time

of the data structure maintained at each level by a function that is

almost linear in𝑚. For cosistency of notation, we let Φ0

1
denote the

single level-0 phase, we let 𝐴0

1
be the set of all edges that belonged

to 𝐺 at the beginning of the algorithm.

1170

A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths STOC ’23, June 20–23, 2023, Orlando, FL, USA

Consider again some time 𝜏 ∈ T . For all 0 ≤ 𝐿 ≤ 𝑞, we let 𝑘𝐿 be

the integer, such that 𝜏 ∈ T𝐿
𝑘𝐿

holds. We partition all edges of the

current graph 𝐺 (𝜏)
into 𝑞 + 1 levels. For 0 ≤ 𝐿 ≤ 𝑞, edge 𝑒 belongs

to level 𝐿, if and only if 𝑒 ∈ 𝐴𝐿
𝑘𝐿
. It is easy to see that, for every

edge 𝑒 that lies in graph 𝐺 at time 𝜏 , there is precisely one level in

{0, . . . , 𝑞}, to which edge 𝑒 belongs. We denote the level of edge 𝑒

by Level(𝑒). Note that, as the algorithm progresses, the level of a

given edge may only decrease.

Consider again graph 𝐺 at time 𝜏 , and let 𝑃 be any path that is

contained in 𝐺 (𝜏)
, with |𝐸 (𝑃) | ≥ 1. The level of path 𝑃 , denoted

by Level(𝑃), is the largest level of any of its edges, Level(𝑃) =

max𝑒∈𝐸 (𝑃) {Level(𝑒)}.
For all 0 ≤ 𝐿 ≤ 𝑞, the purpose of the level-𝐿 data structure

is to support short-path queries between pairs of vertices 𝑥,𝑦 ∈
𝑉 (𝐺), such that there exists a level-𝐿 path in the current graph 𝐺

connecting 𝑥 to 𝑦, whose length is at most 𝐷∗
. Since every path

connecting 𝑥 to 𝑦 in 𝐺 belongs to one of the levels in {0, . . . , 𝑞},
this will allow us to support short-path queries as required from

the definition of 𝐷∗
-restricted APSP.

High-Level Description of the Construction. Consider some level

0 ≤ 𝐿 ≤ 𝑞, and some level-𝐿 phase Φ𝐿
𝑘
. As noted already, at the

beginning of Phase Φ𝐿
𝑘
, we initialize the level-𝐿 data structure from

scratch. Let 𝜏 ∈ T denote the time when Phase Φ𝐿
𝑘
begins. Note

that 𝜏 may also be a starting time of phases from other levels. In

such cases, we assume that, when we execute the algorithm for

initializing the level-𝐿 data structure, then for all 0 ≤ 𝐿′ < 𝐿, the

level-𝐿′ data structure is already initialized.

Over the course of the level-𝐿 phase Φ𝐿
𝑘
, we will maintain a dy-

namic graph 𝐻𝐿
. We will also initialize the corresponding valid

input structure J𝐿
, associated with graph 𝐻𝐿

, that will undergo

a sequence of valid update operations. The set of regular vertices

of graph 𝐻𝐿
consists of two subsets: set

{
𝑣𝐿 (𝑥) | 𝑥 ∈ 𝑆𝐿

𝑘

}
of ver-

tices, that represent the endpoints of the edges of 𝐴𝐿
𝑘
, and set{

𝑣𝐿 (𝑒) | 𝑒 ∈ 𝐴𝐿
𝑘

}
of vertices, representing the edges of𝐴𝐿

𝑘
. We refer

to the former as type-1 regular vertices and to the latter as type-2
regular vertices. We describe the collection of supernodes of 𝐻𝐿

later.

For all 0 ≤ 𝑖 ≤ log 𝐷̂ , we will define and maintain a subgraph

𝐻𝐿
𝑖
, which is identical to 𝐻𝐿

, but it excludes all edges whose length

is above 𝐷𝑖 . We will also define the corresponding valid input

structure J𝐿
𝑖
. We will view J𝐿

𝑖
as the input to the RecDynNC

problem, with distance scale 𝐷𝑖 , and we will apply Algorithm A
fromAssumption 1.1 to it.We denote byC𝐿

𝑖
the collection of clusters

that this algorithm maintains. For every cluster 𝐶 ∈ C𝐿
𝑖
, we say

that the scale of cluster 𝐶 is 𝑖 , and we denote scale(𝐶) = 𝑖 . We also

denote C𝐿 =
⋃log 𝐷̂

𝑖=0
C𝐿
𝑖
and C<𝐿 =

⋃
𝐿′<𝐿 C𝐿′

.

We now provide additional details on the structure of the graph

𝐻𝐿
, and specifically its supernodes and its edges. The collection

of the supernodes of 𝐻𝐿
consists of two subsets. The first subset

contains, for every vertex 𝑥 ∈ 𝑆𝐿
𝑘
, the corresponding supernode

𝑢𝐿 (𝑥), that connects, with an edge of length 1, to the type-1 regular

vertex 𝑣𝐿 (𝑥). Additionally, for every edge 𝑒 ∈ 𝐴𝐿
𝑘
, such that 𝑥 is an

endpoint of 𝑒 , we add an edge (𝑣𝐿 (𝑒), 𝑢𝐿 (𝑥)) of length ℓ (𝑒) to graph

𝐻𝐿
. We refer to all supernodes we have defined so far as type-1

supernodes. The second set of supernodes, called type-2 supernodes,
contains, for some clusters𝐶 ∈ C<𝐿

, the corresponding supernode

𝑢𝐿 (𝐶).
In order to decide which clusters of C<𝐿

have the corresponding

supernode included in graph 𝐻𝐿
, and in order to define the edges

that are incident to such supernodes, we will define, for every

cluster 𝐶 ∈ C<𝑞
, a decremental set 𝑉 𝐹 (𝐶) of vertices of 𝐺 , which

we call a flattened set of vertices. The specific definition of this set

of vertices is somewhat technical and is deferred for later. For a

cluster 𝐶 ∈ C<𝐿
, we add a supernode 𝑢𝐿 (𝐶) to graph 𝐻𝐿

if and

only if𝑉 𝐹 (𝐶) contains at least one vertex of 𝑆𝐿
𝑘
. If supernode𝑢𝐿 (𝐶)

is included in graph 𝐻𝐿
, then we connect it with an edge to every

type-1 regular vertex 𝑣𝐿 (𝑥), for which 𝑥 ∈ 𝑉 𝐹 (𝐶) holds. The length
of the edge is 2

scale(𝐶)
. We now proceed to provide intuition on the

flattened sets of vertices.

Flattened Sets of Vertices. Consider some level 0 ≤ 𝐿 ≤ 𝑞, and

some cluster 𝐶 ∈ C𝐿
. Intuitively, our layered constructions has

created a hierarchical containment structures for the clusters: if,

for some cluster 𝐶′ ∈ C<𝐿
, the correspoinding supernode 𝑢𝐿 (𝐶′)

belongs to cluster 𝐶 , then we can think of cluster 𝐶 as “containing”

cluster 𝐶′
, in some sense. A natural and intuitive way to define the

flattened sets 𝑉 𝐹 (𝐶) of vertices, would then be the following.

If 𝐶 ∈ C0
is a cluster from level 0, then we let 𝑉 𝐹 (𝐶) contain

every vertex 𝑥 ∈ 𝑉 (𝐺), whose corresponding type-1 regular vertex

𝑣0 (𝑥) lies in𝐶 . Consider now some level 0 < 𝐿 ≤ 𝑞, and let𝐶 ∈ C𝐿

be any cluster. As before, for every vertex 𝑥 ∈ 𝑉 (𝐺) with 𝑣𝐿 (𝑥) ∈
𝑉 (𝐶), we add vertex 𝑥 to set 𝑉 𝐹 (𝐶). But additionally, for every
supernode 𝑢𝐿 (𝐶′) that belongs to cluster 𝐶 , we add all vertices of

𝑉 𝐹 (𝐶′) to set 𝑉 𝐹 (𝐶), provided that scale(𝐶′) ≤ scale(𝐶).
This simple intuitive definition of the flattened sets of vertices

would serve our purpose in the sense that it would allow us to

support the short-path queries as required. But unfortunately, due

to the specifics of how the RecDynNC data structure is defined,

we cannot control the cardinalities of the resulting flattened sets

𝑉 𝐹 (𝐶) of vertices, which could in turn lead to a running time that

is too high.

In order to overcome this difficulty, we slightly modify the above

definition of the flattened set of vertices. Specifically, for every level

0 ≤ 𝐿 ≤ 𝑞, and every cluster𝐶 ∈ C𝐿
, we will mark every supernode

𝑢𝐿 (𝐶′) ∈ 𝑉 (𝐶) as either important or unimportant for cluster 𝐶 .
We only include the vertices of 𝑉 𝐹 (𝐶′) in set 𝑉 𝐹 (𝐶) if supernode
𝑢𝐿 (𝐶′) is marked as important for𝐶 . A status of a supernode𝑢𝐿 (𝐶′)
with respect to a cluster 𝐶 may switch from important to unim-

portant over the course of the algorithm, but it may never switch

in the opposite direction. This allows us to guarantee that the set

𝑉 𝐹 (𝐶) of vertices remains decremental, which is crucial since the

RecDynNC data structure does not support edge insertions, except

in the case of supernode splitting. We defer the specific definition of

important supernodes to the full version of the paper, but they are

defined so that, on the one hand, we can control the cardinalities of

the sets𝑉 𝐹 (𝐶) ∩𝑆𝐿
𝑘
of vertices (which is sufficient in order to make

our construction efficient), while, on the other hand, still allowing

us to support short-path queries.

1171

STOC ’23, June 20–23, 2023, Orlando, FL, USA Julia Chuzhoy and Ruimin Zhang

Due to lack of space, the remainder of the proof of Theorem 1.2

is deferred to the full version of the paper.

ACKNOWLEDGMENTS
The first author was supported in part by NSF grants CCF-1616584

and CCF-2006464.

REFERENCES
[1] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. 2022. Hardness of

Approximation in P via Short Cycle Removal: Cycle Detection, Distance Oracles,

and Beyond. arXiv preprint arXiv:2204.10465 (2022).
[2] Ittai Abraham, Shiri Chechik, and Kunal Talwar. 2014. Fully dynamic all-pairs

shortest paths: Breaking the O (n) barrier. In LIPIcs-Leibniz International Proceed-
ings in Informatics, Vol. 28. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[3] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. 1998. Near-

linear time construction of sparse neighborhood covers. SIAM J. Comput. 28, 1
(1998), 263–277.

[4] Baruch Awerbuch and David Peleg. 1990. Sparse partitions. In Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science. IEEE, 503–513.

[5] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. 2007. Improved decre-

mental algorithms for maintaining transitive closure and all-pairs shortest paths.

J. Algorithms 62, 2 (2007), 74–92. https://doi.org/10.1016/j.jalgor.2004.08.004

[6] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. 2012. Fully dynamic

randomized algorithms for graph spanners. ACM Trans. Algorithms 8, 4 (2012),
35:1–35:51. https://doi.org/10.1145/2344422.2344425

[7] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Vir-

ginia Vassilevska Williams, and Nicole Wein. 2020. New Techniques and

Fine-Grained Hardness for Dynamic Near-Additive Spanners. arXiv preprint
arXiv:2010.10134 (2020).

[8] Aaron Bernstein. 2016. Maintaining shortest paths under deletions in weighted

directed graphs. SIAM J. Comput. 45, 2 (2016), 548–574.
[9] Aaron Bernstein. 2017. Deterministic Partially Dynamic Single Source Shortest

Paths in Weighted Graphs. In LIPIcs-Leibniz International Proceedings in Infor-
matics, Vol. 80. Schloss Dagstuhl-Leibniz-Center for Computer Science.

[10] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon

Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. 2020. Fully-

dynamic graph sparsifiers against an adaptive adversary. arXiv preprint
arXiv:2004.08432 (2020).

[11] Aaron Bernstein and Shiri Chechik. 2016. Deterministic decremental single

source shortest paths: beyond the O(mn) bound. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing. ACM, 389–397.

[12] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.

2022. Deterministic decremental sssp and approximate min-cost flow in almost-

linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 1000–1008.

[13] Aaron Bernstein and Liam Roditty. 2011. Improved Dynamic Algorithms for

Maintaining Approximate Shortest Paths Under Deletions. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011,
San Francisco, California, USA, January 23-25, 2011. 1355–1365.

[14] Jan van den Brand, Sebastian Forster, and Yasamin Nazari. 2021. Fast Determin-

istic Fully Dynamic Distance Approximation. arXiv preprint arXiv:2111.03361
(2021).

[15] Shiri Chechik. 2018. Near-optimal approximate decremental all pairs shortest

paths. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 170–181.

[16] Shiri Chechik and Tianyi Zhang. 2020. Dynamic low-stretch spanning trees in

subpolynomial time. In Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. SIAM, 463–475.

[17] Julia Chuzhoy. 2021. Decremental all-pairs shortest paths in deterministic near-

linear time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing. 626–639. Full version at arXiv:2109.05621.

[18] Julia Chuzhoy. 2022. A Distanced Matching Game, Decremental APSP in Ex-

panders, and Faster Deterministic Algorithms for Graph Cut Problems. SODA

2023, to appear. Full version available at https://home.ttic.edu/~cjulia/papers/

APSP-expanders.pdf and on arxiv.

[19] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and

Thatchaphol Saranurak. 2019. A Deterministic Algorithm for Balanced Cut with

Applications to Dynamic Connectivity, Flows, and Beyond. CoRR abs/1910.08025

(2019). arXiv:1910.08025 http://arxiv.org/abs/1910.08025

[20] Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental

single-source shortest paths with applications to vertex-capacitated flow and cut

problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing. 389–400.

[21] Julia Chuzhoy and Thatchaphol Saranurak. 2021. Deterministic algorithms for

decremental shortest paths via layered core decomposition. In Proceedings of the
2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2478–2496.

[22] Camil Demetrescu and Giuseppe F Italiano. 2004. A new approach to dynamic

all pairs shortest paths. Journal of the ACM (JACM) 51, 6 (2004), 968–992.
[23] Yefim Dinitz. 2006. Dinitz’ algorithm: The original version and Even’s version.

In Theoretical computer science. Springer, 218–240.
[24] Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-Pairs Almost Shortest

Paths. SIAM J. Comput. 29, 5 (2000), 1740–1759. https://doi.org/10.1137/

S0097539797327908

[25] Shimon Even and Yossi Shiloach. 1981. An on-line edge-deletion problem. Journal
of the ACM (JACM) 28, 1 (1981), 1–4.

[26] Sebastian Forster and Gramoz Goranci. 2019. Dynamic low-stretch trees via

dynamic low-diameter decompositions. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June
23-26, 2019. 377–388. https://doi.org/10.1145/3313276.3316381

[27] Sebastian Forster, Gramoz Goranci, and Monika Henzinger. 2020. Dynamic

Maintenance of Low-Stretch Probabilistic Tree Embeddings with Applications.

CoRR abs/2004.10319 (2020). arXiv:2004.10319 https://arxiv.org/abs/2004.10319

[28] Sebastian Forster, Monika Henzinger, and Danupon Nanongkai. 2014. Decre-

mental Single-Source Shortest Paths on Undirected Graphs in Near-Linear Total

Update Time. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. 146–155.

[29] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. 2020. Deterministic

algorithms for decremental approximate shortest paths: Faster and simpler. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2522–2541.

[30] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. Dy-

namic approximate all-pairs shortest paths: Breaking the o(mn) barrier and

derandomization. SIAM J. Comput. 45, 3 (2016), 947–1006.
[31] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via

the online matrix-vector multiplication conjecture. In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. 21–30.

[32] Monika Rauch Henzinger and Valerie King. 1995. Fully dynamic biconnectivity

and transitive closure. In Foundations of Computer Science, 1995. Proceedings., 36th
Annual Symposium on. IEEE, 664–672.

[33] Monika R Henzinger and Valerie King. 2001. Maintaining minimum spanning

forests in dynamic graphs. SIAM J. Comput. 31, 2 (2001), 364–374.
[34] Adam Karczmarz and Jakub Łacki. 2019. Reliable Hubs for Partially-Dynamic

All-Pairs Shortest Paths in Directed Graphs. arXiv preprint arXiv:1907.02266
(2019).

[35] Rohit Khandekar, Satish Rao, and Umesh Vazirani. 2009. Graph partitioning

using single commodity flows. Journal of the ACM (JACM) 56, 4 (2009), 19.
[36] Jakub Łacki and Yasamin Nazari. 2020. Near-Optimal Decremental Approximate

Multi-Source Shortest Paths. arXiv preprint arXiv:2009.08416 (2020).
[37] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved

parallel algorithms for spanners and hopsets. In Proceedings of the 27th ACM
Symposium on Parallelism in Algorithms and Architectures. 192–201.

[38] Liam Roditty and Uri Zwick. 2011. On Dynamic Shortest Paths Problems. Algo-
rithmica 61, 2 (2011), 389–401. https://doi.org/10.1007/s00453-010-9401-5

[39] Liam Roditty and Uri Zwick. 2012. Dynamic approximate all-pairs shortest paths

in undirected graphs. SIAM J. Comput. 41, 3 (2012), 670–683.
[40] Mikkel Thorup. 2004. Fully-dynamic all-pairs shortest paths: Faster and allowing

negative cycles. In Scandinavian Workshop on Algorithm Theory. Springer, 384–
396.

[41] M. Thorup and U. Zwick. 2001. Approximate distance oracles. Annual ACM
Symposium on Theory of Computing (2001).

[42] Virginia Vassilevska Williams and R Ryan Williams. 2018. Subcubic equivalences

between path, matrix, and triangle problems. Journal of the ACM (JACM) 65, 5
(2018), 1–38.

Received 2022-11-07; accepted 2023-02-06

1172

https://doi.org/10.1016/j.jalgor.2004.08.004
https://doi.org/10.1145/2344422.2344425
https://home.ttic.edu/~cjulia/papers/APSP-expanders.pdf
https://home.ttic.edu/~cjulia/papers/APSP-expanders.pdf
https://arxiv.org/abs/1910.08025
http://arxiv.org/abs/1910.08025
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1145/3313276.3316381
https://arxiv.org/abs/2004.10319
https://arxiv.org/abs/2004.10319
https://doi.org/10.1007/s00453-010-9401-5

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Valid Input Structure, Valid Update Operations, and the Recursive Dynamic Recursive Neighborhood Cover Problem
	3.1 Valid Input Structure and Valid Update Operations
	3.2 The Recursive Dynamic Neighborhood Cover (RecDynNC) Problem
	3.3 Main Technical Result for the RecDynNC Problem and Proof of thm: main final dynamic NC algorithm

	4 From RecDynNC to Fully Dynamic APSP
	Acknowledgments
	References

