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Abstract 
 
Kerfing which is also known as relief cutting is a technique used to create flexible freeform 

surfaces out of rigid planar surfaces. Due to their pleasing aesthetics, flexibility, and ability 

to be molded into desired freeform shapes, they have several potential applications in 

engineering and architecture. The flexibility and reconfigurability of kerf structures depend 

on several kerf parameters such as cut density, size of the unit cell, cut thickness, cut 

pattern, etc. This study focuses on using kerf structures to create freeform surfaces and 

understanding their dynamic response in terms of mode shapes, resonance frequencies, and 

stress wave propagation of reconfigurable large-scale kerf structures. The effect of kerf cut 

density and unit cell size on the unit-cell modal behaviors is first investigated using both 

mathematical modeling and experiments. A beam element model is used to capture 

deformations of kerf structures. Next, the shape reconfigurable behaviors of two kerf panels 

with uniform cut density and transitioning cut density are presented. The dynamic response 

of these two kerf panels is then examined. The analysis of large-scale kerf panels 

demonstrated the capability of the beam element model to capture the modal response of 

kerf panels. The flexibility of the kerf panels enables local and global shape 

reconfigurations, which can alter the dynamic response (i.e., modal response and stress 

wave propagation) of the kerf panels. We perform a comparative study on the effect of 

shape reconfiguration (local and global) on the modal response and stress propagation 

behavior of the kerf panel. Overall, these findings would help design kerf structures for 

indoor and outdoor architectures with desired performance requirements.  
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1. Introduction 
 

Complex freeform structures have been widely used in many engineering structures from 

aerospace, civil, mechanical, and biomedical engineering. In addition to their aesthetic 

requirements, architectural and civil structures need to meet both functional and performance 

requirements [1]. For instance, the design of the freeform architecture for facades of buildings 

involves counteracting the wind pressure acting on the structures [2]. Similarly, freeform 

structures designed for indoor architecture affect the room acoustic characteristics [3-5].  

This study focuses on the use of kerf panels in creating complex freeform surfaces and 

the understanding of the dynamic response- of kerf structures of freeform shapes. Kerfing is a 

method, which involves cutting or removing material to create locally flexible structures from 

relatively stiff planar mass-produced materials such as composite woods, metals, and alloys. 

With the kerfing technique, the structures can be morphed into any desired shape with 

controlled anisotropy and flexibility [6], [7, 8]. The kerf structures enable reconfigurability in 

terms of bending and twisting about multiple axes [9, 10]. Due to their flexibility, the kerf 

structures are easily molded into various complex geometries (see Fig. 1). These large-scale 

kerf structures are made of repeatable kerf unit cells cut with a specific kerf pattern and kerf 

cut density, which determines the flexibility behavior of kerf structures. 

 

 

 Fig 1. Large-scale kerf structures made up of repeatable kerf unit cells 
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Chen et al. recently studied the static deformation behaviors such as stretching, 

bending, and twisting in the segments of kerf unit cells cut with different kerf densities and 

kerf patterns [11]. The desired freeform flexible geometry can be achieved by varying kerf cut 

patterns and densities. Shahid et al. investigated the dynamic response (mode shapes, 

frequencies, stress wave propagation) of stand-alone single kerf unit-cell of a fixed size made 

of two materials, which are elastic steel and viscoelastic wood. They presented a viscoelastic 

beam element to model the kerf unit-cell, comprising of segmental straight beams. They 

concluded that the cross-sectional geometry of beams in the kerf unit cell controls the mode 

shapes and magnitude of resonant frequencies, while the mechanical properties of the materials 

affect only the resonant frequencies [12]. The combination of kerf unit cells forms large-scale 

kerf structures. By understanding the effect of kerf parameters (cut pattern, cut density, cell 

size, and arrangement) on the dynamic response of kerf panels, it is possible to create freeform 

shapes whose corresponding dynamics response can be controlled, which is the focus of the 

present study.  

More common techniques to create complex geometries from planar materials are 

origami and kirigami [13]. The origami and kirigami structures rely on the principle of creating 

folds to morph them into different shapes, which work well for very thin (often referred to as 

zero-thickness) surfaces, and hence limit their applications. Origami and kirigami on finite 

thickness materials often lead to intricate hinge design and compromised shape of fold regions 

[14, 15], and are labor-intensive and cumbersome processes [16]. Whereas, the shape 

configuration in kerf structures depends on fundamental kerf parameters such as kerf cut 

density, kerf pattern, size of the unit cell, etc., which are relatively easier to manipulate to 

achieve desired complex shapes. The kerf structures can be formed out of stiff planar materials 

of finite thickness. The continuous flow of solid elements enables these structures to go into 

both microscopic (within a cell) and macroscopic (surface) shape changes [12]. The practicality 
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and ease of manufacturability of kerf structures can potentially lead to wider applications for 

indoor and outdoor architectures, adaptive structures, biomedical devices, etc. 

Two-dimensional lattice structures are also known for their ability to achieve desired 

freeform shapes from planar surfaces. Similar to kerf structures they are used for their shape-

morphing capability [17]. Despite both lattice and kerf structures being formed based on 

arrangements of unit cells, there is a notable difference between the lattice and kerf structures. 

The lattice structures are typically formed by closed single cells [12, 18, 19], whereas the kerf 

structures have unit cells comprising a continuous flow of slender elements [6]. The lattice 

structures are difficult to fabricate using single planar construction materials (e.g., metal, wood, 

and polymer sheets) without generating lots of waste. A 3D printing or mold casting is needed 

to form lattice structures of various customized cell shapes and sizes. The kerf structures are 

more flexible to manufacture: they can be cut out of planar construction materials or 3D 

printed. However, lattice structures offer a significant weight reduction than kerf structures. 

There have been numerous studies on comprehending the dynamic response in origami, 

kirigami, and lattice structures. The local characteristics such as facet’s elasticity and fold 

properties are considered important in predicting the dynamics response of origami and 

kirigami structures. Based on their importance, structural models have been developed to 

investigate the effect of the geometry of facets, angles of the fold, and material properties of 

the facets on the modal response of origami and kirigami structures [20, 21]. On the other hand, 

the lattice structures made up of individual segments of beam elements are commonly used to 

model their dynamics response, e.g., [22], [23], and [24]. In the case of experiments, Popescu 

[25] and Bilal et al. [26] used laser vibrometry to study the modal response of lattice structures, 

which will be used for experiments on kerf structures in our study.  

This paper investigates the dynamic response (mode shapes, resonance frequencies, and 

stress wave propagation) of moldable large-scale kerf panels with varying cut densities and 
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arrangements and the implications of reconfiguring kerf panels on their dynamic responses. 

The kerf panels consist of hexagon domains of triangular kerf patterns. The beam element 

model from Shahid et al. [12] is used to model the cells in the kerf structures. The kerf panels 

are cut from medium density fiberboard (MDF) which is modeled as a linear viscoelastic 

material. We first study the effect of two kerf parameters, i.e. kerf cut density and unit cell size, 

on the unit-cell modal behaviors. The response from the beam element model is validated using 

scanning laser vibrometry experiments on unit cells with different kerf densities. With an 

understanding of the effect of unit-cell density and size on the cell deformation and dynamics 

behaviors, large-scale kerf panels are designed and their corresponding dynamics responses are 

studied. Two kerf panels are considered, i.e., uniform cut density kerf panel and transitioning 

cut density kerf panel. The uniform cut density kerf panel is made up of hexagon cells of 

uniform cell size and cut density across the panel, whereas, the transitioning kerf panel is made 

up of a hexagon unit cell of uniform size with kerf cut density gradually varying across the kerf 

panel. The modal response of these kerf panels from the beam element model is validated using 

scanning vibrometer experiments. Moreover, we studied the effect of both local and global 

shape reconfiguration of kerf panels on their dynamic response. We also present the stress wave 

propagation of the reconfigurable kerf panels when exposed to dynamic loading.  

The article is organized as follows. The beam element model is discussed in Section 2 

and Section 3 explains the kerf patterns being studied. Section 4 presents the modal response 

of kerf unit cells based on the kerf cut density and unit cell size. Section 5 discusses the 

moldability of kerf panels and their corresponding dynamics response in terms of modal 

response, followed by the dynamic response (modal behavior and stress wave propagation) of 

reconfigurable kerf panels in Section 6. Section 7 discusses the conclusions of this study. 

 

2. Modeling of kerf structures using beam element model 
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To study the dynamics response of kerf structures, we use a beam element with a rectangular 

cross-section, which can undergo bending, axial stretching, transverse shearing, and twisting 

(see Fig. 2). The in-plane and out-of-plane large deformations in the beam elements are due to 

rotations while the axial stretch remains small compared to lateral deflections. 

 

 

Fig 2. Modeling kerf panels: a. Kinematic representation of continuous three-

dimensional beam; b. Folded beam at θ=60°; c. Kerf structure 

 

 The beam considered in this study can undergo both normal and shear strains (see Fig. 

2(a)). The deformation in the straight continuous beam is given as: 

𝜖𝜖11 =  
𝑑𝑑𝑢𝑢1
𝑑𝑑𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) + 𝑥𝑥3
𝜕𝜕𝜑𝜑2
𝜕𝜕𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) − 𝑥𝑥2
𝜕𝜕𝜑𝜑3
𝜕𝜕𝑥𝑥1

(𝑥𝑥1, 𝑡𝑡) + 𝜔𝜔(𝑥𝑥2, 𝑥𝑥3)
𝑑𝑑2𝛽𝛽
𝑑𝑑𝑥𝑥12

 

𝛾𝛾12 = −𝜑𝜑3 + 𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥1

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

− 𝑥𝑥3�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

  𝛾𝛾13 = 𝜑𝜑2 + 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥1

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

+ 𝑥𝑥2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

                    (1) 

where 𝜖𝜖11 and 𝑢𝑢1 are the strain and displacement in the axial direction, respectively, 𝛾𝛾12 and 

𝛾𝛾13 are the transverse shear strains, 𝑢𝑢2 and 𝑢𝑢3 are the lateral displacements along 𝑥𝑥2 and 𝑥𝑥3 

axes, respectively, 𝜑𝜑2 and 𝜑𝜑3 are the rotations due to bending about 𝑥𝑥2 and 𝑥𝑥3 axes, 

respectively, 𝜔𝜔 is the warping function, and 𝛽𝛽 is the angle of twist. As the MDF shows a 

viscoelastic response, it is modeled as an isotropic viscoelastic material in this study [27]. The 

equations of motion for the beam made up of MDF is summarized below: 
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𝐴𝐴𝐴𝐴 ∗ 𝑑𝑑 �
𝑑𝑑2𝑢𝑢1
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢1 

𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �−
𝑑𝑑𝜑𝜑3
𝑑𝑑𝑥𝑥1

+
𝑑𝑑2𝑢𝑢2
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢2 

𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �
𝑑𝑑𝜑𝜑2
𝑑𝑑𝑥𝑥1

+
𝑑𝑑2𝑢𝑢3
𝑑𝑑𝑥𝑥12

� = 𝜌𝜌𝜌𝜌𝑢̈𝑢3 

−𝐼𝐼22𝐸𝐸 ∗ 𝑑𝑑 �
𝑑𝑑2𝜑𝜑2
𝑑𝑑𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �𝜑𝜑2 +
𝑑𝑑𝑢𝑢3
𝑑𝑑𝑥𝑥1

� = 𝜌𝜌𝐼𝐼22𝜑̈𝜑2 

𝐼𝐼33𝐸𝐸 ∗ 𝑑𝑑 �
𝑑𝑑2𝜑𝜑3
𝑑𝑑𝑥𝑥12

� − 𝑘𝑘𝑘𝑘𝑘𝑘 ∗ 𝑑𝑑 �−𝜑𝜑3 +
𝑑𝑑𝑢𝑢2
𝑑𝑑𝑥𝑥1

� = 𝜌𝜌𝐼𝐼33𝜑̈𝜑3 

                                 𝐽𝐽𝐽𝐽 ∗ 𝑑𝑑 �𝑑𝑑
2𝛽𝛽

𝑑𝑑𝑥𝑥12
� = 𝜌𝜌𝐼𝐼𝑝𝑝𝛽̈𝛽        (2) 

where 𝜌𝜌 is the mass density of the material, A is the cross-sectional area, 𝐼𝐼22 and 𝐼𝐼33 are the 

second moments of an area about 𝑥𝑥2 and 𝑥𝑥3 axes, respectively, 𝐼𝐼𝑝𝑝 is the polar moment of an 

area, and 𝐽𝐽 is the torsional constant. The correction factor, 𝑘𝑘 is used to enforce uniform shear 

stress and shear strain distributions. The convolution operator in Eq. (2) means

0

( )( ) (0) ( )
t dG sF dG F t G F t s ds

ds
∗ = + −∫ . The relaxation modulus is given as ( ) ( ) ( )E t E E t= ∞ + ∆ .  

The shear relaxation modulus can be determined from the extensional relaxation modulus using 

this relation: ( )( )
2(1 )

E tG t
ν

=
+

. In this study, Poisson’s ratio is assumed time-independent ν. The 

storage and the loss extensional moduli are expressed in terms of the relaxation modulus as: 

( ) ( )

( ) ( )

( )
'( ) (0) cos

( )
"( ) sin

o

o

d E s
E E s ds

ds

d E s
E s ds

ds

ω ω

ω ω

∞

∞

∆
= +

∆
= −

∫

∫
     (3) 

The storage and loss shear moduli are expressed as '( ) "( )'( ) ;      "( )
2(1 ) 2(1 )
E EG Gω ωω ω

ν ν
= =

+ +
. 
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The system of equations presented earlier are separable in time and space, and the 

vibration is harmonic in time, so the deformation solutions 𝐪𝐪 = [𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜑𝜑2,𝜑𝜑3,𝛽𝛽]𝑇𝑇 have 

the following forms: 

1 1 1( , ) ( ) ( ) ( ) ir t
i i i iq x t x y t x eφ φ= =     (4) 

The equations formed after substituting Equation (4) to Equation (2), and imposing boundary 

and initial conditions lead to the characteristic equations, which are solved numerically to 

determine the resonance frequencies and corresponding mode shapes. The beam element is 

used to study the motion of kerf panels consisting of several folded beams with an arbitrary 

subtended angle, 𝜃𝜃 (see Fig. 2(b)) (discussed in Appendix A) [12]. As discussed in our 

previous study [12] the responses from the beam and continuum elements agree well in 

capturing the mode shapes and frequencies of kerf cells, while the beam element is 

computationally cost-effective when compared to the three-dimensional continuum element. 

 

3. Kerf patterns 

The kerf patterns considered are of a hexagon domain with a triangular spiral pattern, see Fig. 

3 [6, 9, 10], which are laser cut from an MDF board with a thickness (t) of 0.125 in. During 

laser cutting, the kerf gap width is kept at 0.015 in. There are various factors such as kerf gap 

width, kerf pattern, kerf cut density and size of the unit cell, etc. that affect the flexibility, load-

bearing capacity, and dynamics response of the kerf structures [11]. In this study, we focus on 

two factors, i.e., kerf cut density and size of the unit cell by keeping the other factors constant. 

We consider unit cells (side length = 1 in.) cut with a triangular spiral pattern but different kerf 

cut densities. These kerf densities are referred to as HD (high density), MD (medium density), 

and LD (low density) as shown in Fig. 3. The HD unit cell has the highest number of cutlines 

with an edge length of the unit cell (1 in.) to width (𝑤𝑤) ratio of 22. Whereas the MD unit cell 

has a relatively smaller number of cutlines compared to the HD unit cell with an edge length 
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of the unit cell (1 in.) to width (𝑤𝑤) ratio of 16. The LD unit cell has the least number of cutlines 

with the edge length of the unit cell (1 in.) to width (𝑤𝑤) ratio of 10. Therefore, the segments in 

the HD unit cell are relatively slenderer, have a lower second moment and polar moment, and 

lower torsional rigidity compared to MD and LD unit cell segments, which results in higher 

flexibility.  

As mentioned earlier, the size of the unit cell can affect both modal response and 

frequency of the unit cell, so we considered four different sizes of kerf unit cells in this study, 

keeping the triangular cut pattern and number of cut lines the same for all the unit cells (see 

Fig. 3). All the unit cells are scaled with respect to the reference unit cell as shown in Fig. 3. 

In this study, the scaling factor is used to refer to different sizes of the unit cells. The scaling 

factor is calculated by the ratio of distances between two opposite corners of the respective 

hexagon and the reference unit cell. The ratio of width (𝑤𝑤) to length (𝑙𝑙) of the segments in the 

unit cell remains constant across different sizes of unit cells. Whereas, the thickness (𝑡𝑡) of the 

segments, which is the thickness of the MDF board, is constant for all the sizes of the unit cell, 

which leads to decreasing ratio of the thickness (𝑡𝑡) to length (𝑙𝑙) of the segments as we go from 

the smaller to larger unit cell (see Fig. 3). The segments in the larger unit cells are slenderer 

compared to those of smaller unit cells, which makes larger unit cells overall more flexible. 

Due to relatively slenderer segments in the larger unit cells, we expect the modal response to 

show more out-of-plane mode shapes and lower resonance frequencies compared to smaller 

unit cells.  
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Fig 3. Hexagon domain with triangular spiral pattern (left); unit-cells with different 

kerf densities (HD, MD, LD) and sizes (scaling factor: 0.5, 0.7, 1, 2) (right) 

 

4. Modal response of kerf unit cells 

The segments in the unit cell were represented with beam elements of a solid cross-section. 

The mode shapes and modal frequencies depend on the geometric properties of the beams. For 

example, the HD unit cell has relatively slender beams so the beams mostly undergo in-plane 

bending (𝑥𝑥1 − 𝑥𝑥3 plane), out-of-plane bending (𝑥𝑥1 − 𝑥𝑥2 plane), and twisting (in-depth 

discussion in Appendix B). The LD region has relatively thick beams so they mostly undergo 

a combination of deformations such as axial stretching, transverse shearing, and out-of-plane 

bending. As the size of the unit cell is increased, the beams become slenderer which increases 

flexibility. 

The clamped boundary conditions are imposed on the six handles of the kerf unit cell 

to simulate the unit-cell experiments. The relaxation modulus /

1
( ) ( ) i

N t
i

i
E t E E e τ−

=
= ∞ + ∑  of 

MDF is obtained from creep experiments on MDF dog-bone specimens [27]. The material 

parameters are given in Table 1.  
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Table 1. Prony series parameters for MDF  
 

𝑖𝑖 𝜏𝜏𝑖𝑖 (s) 𝐸𝐸𝑖𝑖 (𝑘𝑘𝑘𝑘𝑘𝑘) 
1 1000 96.3 
2 3000 90.9 
3 7000 87.4 

 

4.1 Effect of kerf density on the modal response 

All the unit cells (HD, MD, and LD) are generated using beam elements as shown in Fig. 4. 

Each beam in the unit cell has a thickness of 0.125 in., while the width of the beam depends on 

the kerf density. As the LD unit cell has a smaller number of cut lines compared to HD, the 

width of the beam element would be higher in the LD unit cell. The geometrical properties of 

the beam in each of the unit cells are shown in Table 2.  

 

Fig 4. Models for different kerf densities of unit-cells using beam elements 

 

Table 2. Geometrical properties of beams in HD, MD, and LD 

Unit 
cell Area (𝑖𝑖𝑛𝑛2) 

Second 
Moment of 
area 𝐼𝐼22 (×
10−5𝑖𝑖𝑛𝑛4) 

Second 
Moment of 
area 𝐼𝐼33 (×
10−5𝑖𝑖𝑛𝑛4) 

Ratio 
of second 
moment 

of area 𝐼𝐼22
𝐼𝐼33

 

Torsional 
constant 𝐽𝐽 
(×
10−5𝑖𝑖𝑛𝑛4) 

Ratio of 
second 
moment 

of area to 
torsion 

constant
𝐼𝐼33
𝐽𝐽

 
HD 0.125  × 0.0450 0.0949 0.7324 0.1296 1.1210 0.6533 
MD 0.125  × 0.0633 0.2642 1.0303 0.2564 2.0160 0.5111 
LD 0.125  × 0.1000 1.0417 1.6276 0.6400 4.8076 0.3385 
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 To conduct modal experiments, custom-built fixtures are designed and fabricated to 

clamp the handles of the kerf unit cell specimens. The scanning laser vibrometry (PSV-500-

3D, Polytec, Irvine, CA) is used to determine the modal response of these kerf unit cell 

specimens. More details about the experiments are given in [12].  

The comparison of resonance frequencies and mode shapes from the model and 

experiment is shown in Fig. 5 and Fig. 6, respectively. The model predicts the modal response 

of HD, MD, and LD unit cells. The LD unit cell, being the least flexible has the highest 

resonance frequencies compared to MD and HD unit cells. The low density of cut lines in the 

LD unit cell leads to higher width of the beam segments between the cut lines which increases 

the second moments and torsional constants, hence, making it stiffer as compared to HD and 

MD unit cells. The first mode of the LD, MD, and HD cells shows the same out-of-plane 

(dome-like) shape, which is governed by the flapping displacements (along 𝑥𝑥2 axis) of the six 

triangular kerf cells. The higher modes are governed by the geometrical characteristics of the 

beam segments in the unit cells. The beam segments in the LD unit cell have a significantly 

higher ratio 𝐼𝐼22
𝐼𝐼33

 compared to beam segments in the MD and HD unit cell (see Table 2), making 

it easier for out-of-plane bending (along 𝑥𝑥2 axis) than in-plane bending (𝑥𝑥1 − 𝑥𝑥3 axis), and 

hence the out-of-plane bending dominates the response for the second and third modes of the 

LD unit-cell. Whereas the HD and MD unit cells have significantly low 𝐼𝐼22
𝐼𝐼33

 relative to the LD 

unit cell causes easier in-plane bending than out of plane bending. The beam element model 

can predict the modal response of the kerf unit cells. The kerf cut density influences the 

resonance frequencies and mode shapes of the kerf unit cells, which can have an impact on the 

dynamic response of kerf panels.  
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Fig 5. Comparison of resonance frequencies for HD (RMSE (root mean square 

error): 58.15 Hz), MD (RMSE: 93.65 Hz), and LD (RMSE: 254.58 Hz) unit cell 
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Fig 6. Comparison of modal response showing normalized displacements for HD, MD, 

and LD unit cells 
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4.2 Effect of unit-cell size on modal response 

We examine the effect of the size of the unit cell on the dynamics of kerf unit cells using the 

beam element model. The beam element models of scaled unit cells are shown in Fig. 7 and 

their geometrical properties of the beam in each of the unit cells are shown in Table 3. As 

mentioned earlier, the scaling factor is determined by taking the ratio of distance, 𝑑𝑑 for the 

respective unit cell and reference unit cell. 

 

Fig 7. Models for different sizes of unit-cells using beam elements; Scaling factor: 

0.5, 0.7, 1, 2 (left to right) 

 

Table 3. Geometrical properties of beams in different sizes of unit cells 

Unit 
cell 

scaling 
factor 

Area (𝑖𝑖𝑛𝑛2) 

Second 
Moment 
of area 
𝐼𝐼22 (×
10−5𝑖𝑖𝑛𝑛4) 

Second 
Moment of 
area 𝐼𝐼33 (×
10−5𝑖𝑖𝑛𝑛4) 

Ratio 𝐼𝐼22
𝐼𝐼33

 

Torsional 
constant 𝐽𝐽 
(×
10−5𝑖𝑖𝑛𝑛4) 

Ratio 𝐼𝐼33
𝐽𝐽

 

0.5 0.125 × 0.0225 0.0119 0.3662 0.0324 0.4202 0.8716 
0.7 0.125 × 0.0315 0.0326 0.5127 0.0635 0.6548 0.7830 
1 0.125 × 0.0450 0.0949 0.7324 0.1296 1.1210 0.6533 
2 0.125 × 0.0900 0.7594 1.4648 0.5184 3.9148 0.3742 

 

It is evident from the results shown in Fig. 8 that the size of the unit cell influences the 

modal behavior of the kerf unit cells. The smaller unit cells are stiffer compared to large unit 
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cells as shown by their relatively high natural frequencies. The first mode in all sizes is out of 

plane (dome-like) shape, which is governed by the flapping displacements of the six triangular 

kerf cells. The beams in smaller unit cells are thicker, shorter in length, and have a lower ratio 

of 𝐼𝐼22
𝐼𝐼33

 compared to beams in larger unit cells (see Table 3). Therefore, smaller unit cells can 

undergo in-plane bending motion (𝑥𝑥1 − 𝑥𝑥3 plane). In the largest unit cell, the out-of-plane 

bending (𝑥𝑥1 − 𝑥𝑥2 plane) is easier to achieve as  𝐼𝐼22
𝐼𝐼33

 are significantly high compared to the 

smaller size of unit cells. The beams in large unit cells are slenderer relative to beams in small 

unit cells which contributes to flexibility and mode shapes showing out-of-pane motion. The 

beams in larger unit cells have higher torsional constant and lower 𝐼𝐼33
𝐽𝐽

 compared to small unit 

cells so they undergo more out-of-plane bending relative to twisting as shown in Table 3. 

Additionally, different sizes of unit cells show paired modes. For example, 2nd mode in all the 

chosen sizes of unit cells has a paired mode shape but it is not shown. The paired mode shape 

is omitted to show higher mode shapes which helps understand the influence of kerf unit cell 

sizes on the dynamics behavior. The size of the unit cell can significantly influence the modal 

behaviors due to changes in the geometrical properties of the beam segments in the unit cells.  
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Scale factor Modes 
1 2 3 4 5 

0.5 
      

752.32 Hz 982.36 Hz 1225.30 Hz 1578.50  Hz 1832.30 Hz 

0.7 
      

512.69 Hz 701.68 Hz 840.61 Hz 1127.50  Hz 1275.50 Hz 

1 (reference) 

     
331.25 Hz 491.21 Hz 549.54 Hz 764.69 Hz 844.22 Hz 

2 
 

     
123.46 Hz 211.96 Hz 260.76 Hz 329.87 Hz 360.79 Hz 

 

 
 

Fig 8. Modal behavior showing normalized displacements for different sizes of kerf unit cells
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5. Moldability of Kerf Panels and their Modal Behaviors 

Based on our understanding of the effect of the kerf densities and sizes on the modal 

response of the unit cell, we study the moldability of the kerf panels into freeform shapes and 

their corresponding dynamic response. The kerf panels in this study are cut from the MDF 

board have a side length of 17 in. and thickness of 0.125 in. The kerf panels are also modeled 

using the beam element model to analyze the deformed shapes and predict the modal behavior 

of kerf panels.  

 We consider a case study to create freeform shapes with multiple high gradients of local 

curvatures in the neighboring areas (see several examples in Fig. 9). Two different large-scale 

kerf panels (uniform density kerf panel and transitioning density kerf panel) are generated to 

demonstrate the idea of local flexibility, which can be obtained from varying kerf parameters 

of the unit cells. The uniform density kerf panel has a similar repeatable kerf pattern across the 

panel (see Fig. 10), whereas, the transitioning density kerf panel has varying kerf cut density 

across the panel (see Fig. 11).  

 

 

Fig 9. Example of freeform macroscopic shapes with multiple high gradients of local 

curvatures 

 



19 
 

 

 

Fig 10. Uniform kerf panel made up of HD kerf unit cells (left); Model for uniform 

kerf panel made using beam elements (right) 

 

 

Fig 11. Transitioning kerf panel (left); Model for transitioning kerf panel made up 

of small kerf unit cells (scaling factor: 0.7) using beam elements (right) 

 

The similar cut density across the panel in the uniform density kerf panel leads to 

uniform stiffness across the panel which inhibits local flexibility. Therefore, it becomes 

impossible for the uniform density kerf panel to be molded into a shape with multiple high 

curvature regions in proximity with a minimal actuation, i.e., three contact points of 

deformation. Instead, the uniform kerf panel shows a global out-of-plane shape with rather 

indistinguishable high local curvatures as shown in Fig. 12 (top). By varying cut density across 

the transitioning kerf panel, the stiffness varies across the panel and more complex shapes can 
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be easily achieved. This leads to greater local flexibility in regions with a high density of 

cutlines relative to other regions in the panels. Thus, the transitioning kerf density panel can be 

molded into complex freeform shapes with multiple local curvatures with minimal actuation 

(see Fig. 12 (bottom)). While the uniform kerf density kerf pattern can be molded into 

macroscopic shapes with low gradients of local curvatures. 

 

          

 

 

 

Fig 12. Uniform (top) and transitioning (bottom) kerf panels can mold into complex 

macroscopic shapes (color contour defines out of plane displacements)  

 

 

 

 0.40 in                0.20 in                0 in       
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5.1 Modal Response of Uniform Density Flat Kerf Panel 

We first studied a kerf panel made up of uniform HD unit cells of size (scaling factor: 1) across 

the panel as shown in Fig. 10. To determine the modal response, the Lanczos method is used 

to determine the natural frequencies and modal response of the system [28]. The edges of the 

kerf panel are not constrained so free-free boundaries are implemented on the edges. 

The experiments are also performed on the uniform kerf panel to validate the mode 

shapes and corresponding modal frequencies determined from the beam model. The 

experimental details are discussed in Appendix C. The comparison of modal behavior is shown 

in Fig. 13. The beam element model simulation can capture the modal response determined 

from the experimental tests. However, there are discrepancies in the model predictions and 

experimental results in the higher modes (>11) which are discussed in Appendix C. The lower 

order mode shapes are governed by global modes of plates, which are out of plane (𝑥𝑥1 − 𝑥𝑥2 

plane) mode shapes. Local in-plane and out-of-plane deformations in the individual cells are 

much more difficult to obtain. When unit cells are combined to form a panel, the ratio of overall 

length to thickness (slenderness ratio) of the panel increases compared to a single unit cell. The 

high slenderness ratio of the kerf panel compared to a single unit cell leads to an out-of-plane 

motion being dominant in the earlier modes. Whereas, in-plane (𝑥𝑥1 − 𝑥𝑥3 plane) mode shapes 

(local displacements of the individual cells) are observed after the 35th mode in which the 

beams of the panels undergo bending about 𝑥𝑥2 axis as determined from the beam element 

model.  

 



22 
 

 

 

 Mode shapes 

Experime
nt 

  
  

Model  

  
 

 

 

 

Fig 13. Comparison of modal response showing normalized out-of-plane 

displacement for uniform kerf panel (RMSE: 1.97 Hz) 

 

5.2 Modal Response of Transitioning Density Flat Kerf Panel 

We now explore the influence of variable kerf densities and the size of the unit cells on the 

dynamic response of the kerf panels. Unlike the uniform kerf density panel, the transitioning 

kerf density panel has a gradually varying kerf density (see Fig. 11). The size of the unit cell 

(scaling factor: 0.7) is smaller compared to the reference unit cell in the uniform kerf panel.  

The density of the cut lines is varying gradually over the surface which leads to a 

variable cross-section of the beams in the transitioning kerf panel. We used the average cross-
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section of the beams in different regions of the transitioning kerf panel. The region in blue is 

modeled with high density (HD), a region in red is modeled with medium density (MD), and 

the region in yellow is modeled with low density (LD) (see Fig. 11). Each beam has a thickness 

of 0.125 in. and the width of the beam depends on the kerf density and size of the unit cell. 

The modal response from the beam element model and experiments is determined 

similarly as it was done for the uniform kerf panel. More details specifically about the 

experimental method for the transitioning kerf pattern are discussed in Appendix C. Overall, 

the modal response from the simulation and experiment match very well except for greater 

disagreements in the higher-order modes (>11) (see Appendix C for an in-depth discussion). 

From Fig. 14 it is seen the transitioning kerf panel shows different mode shapes compared to 

the uniform kerf panels. By varying the kerf density across the panel, paired modes are not 

observed in the modal analysis. In the transitioning panel, the HD cut region is more compliant 

relative to LD and MD cut region [29]. Whereas in the LD and MD cut regions, the beams have 

a higher second moment and torsional constants compared to the HD region, which restricts 

bending and twisting in these regions. Due to the MD and LD cut region in the transitioning 

kerf panel, the transitioning kerf panel has higher modal frequencies compared to the uniform 

kerf panel (see Fig. 13 and Fig. 14). The contrast of different kerf densities in the transitioning 

kerf panel leads to a variety of deformation behaviors across the panel. For example, the LD 

cut regions at the bottom of transitioning kerf panel in earlier mode shapes undergo less 

bending due to high second moment of area, 𝐼𝐼33 relative to other cut regions in the panel. In 

addition to different kerf densities in the panel, the small size (scaling factor: 0.7) of the unit 

cell also influences the modal frequency of the transitioning kerf panel. As mentioned earlier 

the smaller unit cells are stiffer relative to large unit cells, this also leads to higher stiffness of 

transitioning panel compared to uniform kerf panel.  
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Fig 14. Comparison of modal response showing normalized out-of-plane 
displacement for transitioning kerf panel (RMSE: 2.68 Hz) 

 

Overall, the analysis on large-scale kerf panels demonstrated the capability of the beam 

element model to capture the modal response of kerf panels. Modal response of large-scale 

kerf structures can be altered by varying kerf density and size of the unit cell.  

 

6.  Dynamics Analyses of Freeform Kerf Panels 

The idea of using kerf panels is to achieve freeform shapes, and at the same time, the kerf cells 

can be easily deformed to alter the dynamics response of the structures. We study the dynamics 

behavior of the kerf panels that are molded into different shapes. Global reconfigurations of 

the kerf panel can induce pronounced stresses in the multiple unit cells, which significantly 

influences the panel dynamic behavior. Conversely, local perturbation of the kerf panel can 
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induce stresses in a small region of a unit cell which has an insignificant effect on the dynamic 

behavior of the panels (see Appendix D). The stresses due to shaping the kerf panels are taken 

into consideration when determining the modal behavior of freeform kerf panels. 

  

6.1 Modal Analyses of Moldable Kerf Panels into Freeform Shapes 

We first explore the dynamics response of a uniform kerf panel with clamped edges. We shaped 

the panel into a dome shape by inducing an out-of-plane displacement of 1 in. at the center, as 

shown in Fig. 15. We also presented an analysis on tuning the dynamic response of a flat kerf 

panel by inducing a small out-of-plane displacement of 0.04 in at a small segment of one 

triangular unit cell at the center (see Fig. 15), which we refer to as a local perturbation. This 

analysis is run in two steps. In the first step, the kerf panel is deformed into the corresponding 

shape by applying a displacement loading. Whereas, in the second step, modal analysis is run 

on the shaped kerf panel. During the modal analysis step, all nodes in the shaped kerf panel are 

free to move to study the effect of shape reconfiguration on the modal behavior accurately.  

With a dome shape in the uniform kerf panel, the modal response of the kerf panel is 

considerably altered from the corresponding flat kerf panel as shown in Fig. 15. The shape of 

the dome kerf panel remains symmetric, so the corresponding mode shapes show symmetric 

or antisymmetric shapes, and paired modes are also observed. The dome-shaped kerf panel is 

stiffer compared to a flat panel as shown by relatively higher resonance frequencies. The mode 

shapes and frequencies of the flat kerf panel involved in the dome shape deformation 

experience the highest changes. For example, mode 1 of flat uniform kerf panel experiences 

the highest rise in the modal frequencies and we no longer see a dome-like mode shape in the 

dome-shaped kerf structures (see Fig. 15). Thus, we can alter certain mode shapes in the flat 

kerf panel by inducing proper shape changes to the kerf panel. The flexibility of kerf panels 

enables easy shape reconfigurations. 
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Fig 15. Uniform density kerf panel microscopically and macroscopically deformed 
(top); Modal frequency comparison (middle); Mode shape comparison showing 

normalized displacements (bottom) 
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Additionally, by only marginally varying the local shape of the kerf panel, the modal 

response can be significantly altered. The local perturbation as shown in Fig. 15 breaks the 

symmetric mode shapes and eliminates paired modes.  Even with a small local perturbation in 

the panel, several mode shapes of the flat panel can be avoided. During the local perturbation, 

only one region of a triangular unit cell is deformed, so the resonance frequencies of the locally 

perturbed kerf panel are less affected, except for the ones that are directly involved with the 

local perturbation deformation, e.g., modes 1 and 6.  

Similar studies are also performed on a transitioning density kerf panel. The 

transitioning density kerf panel can be easily actuated to achieve high curvature regions in 

neighboring areas as previously shown in Fig. 10. To achieve the multiple high curvature shape 

change, the edges of the transitioning density kerf panel are clamped and three high density cut 

regions in the panel are actuated with an out-of-plane by 0.4 in. as shown in Fig. 16. We also 

consider local perturbation in the transitioning density kerf panel by actuating three triangular 

unit cells in three high dense regions by 0.04 in. as shown in Fig. 16.   

With multiple high curvatures in the kerf panel, the modal response is significantly 

altered compared to the flat panel. The deformed panel is stiffer compared to the flat kerf panel 

as shown by higher resonance frequencies. Although both deformed and flat kerf panels show 

out-of-plane mode shapes, there is a substantial difference in the mode shapes. The mode 

shapes of the multiple high curvature deformed panel only show out-of-plane motion around 

the high curvature regions. In the local perturbation, only small regions i.e. three triangular unit 

cells of hexagon domains undergo stresses, which leads to less change in resonance frequencies 

compared to the multiple high curvature deformed panel. The mode shapes for the locally 

perturbed kerf panel are however altered considerably compared to the flat kerf panel. This 

once again shows that kerf panels enable easy manipulation of dynamics response of the 

structures by macroscopic shape changes and/or local perturbation. 
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Fig 16. Deformed transitioning kerf panel and displacement contour (top); Modal 

frequency comparison (middle); Mode shape comparison showing normalized 

displacements (bottom) 
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It can be concluded that by reconfiguring the kerf panels into different macroscopic 

and/or microscopic shapes we can alter the resonance frequencies and mode shapes. This merit 

of large-scale kerf panels is useful for structural applications exposed to dynamics loading, i.e. 

avoiding resonance in building facades, mitigating vibrations in morphing structures, etc.  

 

6.2 Wave Propagation in Reconfigurable Kerf Panels 
 
We now examine the stress propagation behavior of large-scale kerf structures. We first 

determine the stress wave propagation in flat kerf panels cut with uniform and transitioning cut 

densities. The stress wave propagation in these kerf panels is compared against a flat solid 

panel. The panels are clamped at the edges and perturbed with an impact force at the center as 

𝑓𝑓(𝑡𝑡) = �
𝑓𝑓𝑜𝑜 �1 − 𝑡𝑡

𝑡𝑡𝑠𝑠
�         0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑠𝑠

0              𝑡𝑡 < 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 > 𝑡𝑡𝑠𝑠
              (5) 

where 𝑓𝑓𝑜𝑜 = 1𝑙𝑙𝑏𝑏𝑓𝑓 and 𝑡𝑡𝑠𝑠 = 0.005𝑠𝑠 = 5𝑚𝑚𝑚𝑚. From the analysis, we calculated von Mises stress 

at two locations, i.e., in the center and on the left corner as shown in Fig. 17 and Fig. 18. In 

addition to this, we determined stress decay percentage ( 𝜎𝜎𝑡𝑡
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

× 100%) at the center and the 

left corner as shown in Fig. 19, where 𝜎𝜎𝑡𝑡 is the von Mises stress magnitude at a time, 𝑡𝑡 and 

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum von Mises stress magnitude experienced by the panel during the impact. 

The scale of the ordinate axis is limited to 50% to better compare the stress decay in the panels.  

 

Fig 17. Stresses determined at two locations; center and top left corner 
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During excitation, the stress wave propagates from the center towards the edges. As 

solid panel does not have any gaps, the stress propagates faster towards the edges compared to 

kerf panels [12]. When the loading is stopped, the kerf panels retain stress and keep vibrating 

due to their flexible nature for a relatively long time compared to the solid panel as shown in 

Fig. 18. Due to a concentrated loading at the center, the center region of the kerf panels 

undergoes high localized out-of-plane deformation which leads to overall higher stress 

amplitudes in the kerf panels compared to the solid panel. Among all the panels, the uniform 

density kerf panel experiences the highest von Mises stresses at the center of 2000 psi. This 

stress is sufficiently lower than the tensile strength of MDF (3500 psi). The ordinate axis scale 

in Fig. 18 is shown only up to 1000 psi to better compare the stress-time history in all the 

panels.  

 

 

Fig 18. Comparison of stress wave propagation (Von Mises stress) in flat kerf panels 

and flat solid panel at the center (top) and top left corner (bottom) 
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The kerf cut density affects the stress propagation response of the kerf panels. The stress 

decay is approximately similar at the center in both uniform and transitioning kerf panels (see 

Fig. 19 (top)). However, away from the impacted region at the corner, the uniform density kerf 

panel not only slows down wave propagation but also leads to a more significant decay in stress 

magnitude compared to transitioning kerf panel (see Fig. 19 (bottom)). In the corner, the decay 

in stress in the uniform density kerf panel is similar to the one in the solid panel (seem to cease 

after 0.3 sec) (see Fig. 19 (bottom)). The uniform kerf panel is more flexible compared to the 

transitioning panel (see a discussion in Section 5) which causes easy vibrations around the 

impacted region and consumes most of the kinetic energy from the impact.  

 

 

 

Fig 19. Comparison of stress decay in flat kerf panels and flat solid panel at the center 

(top) and top left corner (bottom) 
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The idea of cutting kerf panels with transitioning kerf patterns is to configure them into 

desired shapes as explained earlier. Reconfiguring kerf panels leads to a significant change in 

the modal behavior (resonance frequency and mode shapes) as shown in Section 6.1. Now, we 

further investigate how the shape change affects the stress wave propagation in the kerf panels. 

In this analysis, the transitioning kerf panel is clamped at the edges and deformed into a shape 

with multiple high curvatures as shown in Fig. 16. Subsequently, it is subjected to impact force 

load the center with the loading condition mentioned in Equation (5), where 𝑓𝑓𝑜𝑜 = 1 𝑙𝑙𝑏𝑏𝑓𝑓 and 

𝑡𝑡𝑠𝑠 = 0.005 𝑠𝑠. For comparison, the MDF solid panels are also deformed into the shape with 

multiple high curvatures and subjected to similar loading conditions.   

 Due to the transitioning kerf pattern, the kerf panel can be easily reconfigured into a 

shape with multiple high curvatures. Whereas chopped MDF fibers and resin need to be 

processed in a mold with high curvatures to construct the desired deformed shapes out of a 

solid panel. The shape reconfiguration alters the stress propagation behavior of both solid and 

kerf panels. The deformed panels, both solid and kerf panels, can delay the propagation of the 

stress waves towards the edges compared to the flat panels (see Fig. 20). As the stress is being 

attenuated during the propagation, the delay in wave propagation can further reduce the 

amplitude of stress when it reached the edges. During force loading, the stress wave in the solid 

panel takes 0.7 ms to travel towards the edges compared to transitioning kerf panel, which 

takes 4.0 ms (see Fig. 20). It is seen that the flexible and compliant nature of the kerf panels 

makes it easy to reconfigure their shapes to alter the stress wave propagation behaviors. In this 

case, the reconfigured panels with multiple high curvatures slow down the wave propagation, 

leading to significantly reduced stress amplitude as the wave propagates.  

  We demonstrated that the geometrical patterns and shapes of kerf panels influence the 

stress wave propagations of MDF kerf panels. We further examine the effect of delayed 

responses of viscoelastic materials on the stress wave propagation in Appendix E. 
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Fig 20. Stress wave propagation (maximum principal stresses) in solid panel (top) and 

transitioning density kerf (bottom)  
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7. Conclusion 

This research focuses on studying the dynamic response of reconfigurable kerf structures in 

terms of mode shapes, modal frequencies, and stress wave propagation. We have investigated 

kerf unit cells of a hexagon domain out of MDF of a fixed thickness of 0.125 inches to 

understand the influence of kerf cut density and unit-cell sizes on the modal response of the 

kerf unit cells. Experimental tests using scanning laser vibrometry have been conducted and a 

mathematical model has been used to understand the modal response of the kerf unit cells. A 

beam element model with a viscoelastic material was used to describe the deformations of each 

segment in the kerf unit cell. We have shown that geometrical parameters, i.e. second moments 

of an area, torsional rigidity, and slenderness ratio, of the beam segments in the kerf unit-cell 

control the mode shapes and frequencies. Slenderer beam segments lead to more compliant and 

flexible unit cells, hence lowering the modal frequencies and promoting more out-of-plane 

mode shapes in lower-order modes.  

 Based on our understanding of kerf parameters on the dynamic response of kerf unit 

cells, we have explored two large-scale kerf panels with different kerf cut patterns, i.e. uniform 

density and transitioning density kerf panels. We have demonstrated the need to introduce local 

flexibility through varying kerf cut density such as in the transitioning density kerf panel to 

reconfigure the kerf panels into a shape with high curvature regions in proximity. We used both 

beam element model and scanning laser vibrometry experiments to study the dynamic response 

of kerf panels. Both kerf panels show global out-of-plane motions in the earlier mode shapes. 

Whereas global in-plane motions are observed in the higher-order modes (>35). Due to varying 

kerf cut density across the panel, the transitioning kerf panel does not show paired modes. We 

have also studied the modal response of kerf structures reconfigured into local and global 

shapes. Both local and global reconfigurations of kerf panels with both uniform and 
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transitioning cut patterns influence the mode shapes significantly when compared to the mode 

shapes of flat panels. In the local perturbation, only a small region of the kerf panel is deformed, 

which leads to less change in the resonance frequencies compared to the globally reconfigured 

kerf panel.  

We have explored the stress wave propagation in both flat and reconfigured (deformed) 

kerf panels under a localized impact loading. The kerf structures delay the propagation of 

stresses and vibrate for a longer time compared to the solid panel. The local vibration consumes 

the kinetic energy from the impact. As the stress is being attenuated during the propagation, 

the delay in wave propagation can further reduce the amplitude of stress when it propagates 

away from the impacted region. Due to the flexibility of kerf structures, the kerf panels can be 

easily reconfigured into a desired shape with low pre-deformation stresses and alter the stress 

wave propagation due to dynamic loading.  

 As kerf structures can be easily reconfigured into desirable shapes, they have the 

potential for tuning dynamic response and wave propagations in structures exposed to dynamic 

loading. These findings would lead to the designing of kerf structures with desired performance 

requirements; for example, in tuning the indoor acoustics, altering the wind response of the 

buildings in the outdoors, avoiding resonance in building facades, mitigating vibrations in 

morphing structures, and dissipating energy in structures exposed to impact loadings.  
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Appendix A 

Beam Model Formulation 

In this study, 𝜃𝜃 = 60° creates a kerf panel with a triangular spiral pattern to form a hexagon 

kerf pattern (see Fig. 2). The folded beams are a combination of identical straight beams where 

𝑖𝑖 = 1, 2, . .𝑁𝑁 + 1, with 𝑁𝑁 folds connecting the beams at an arbitrary angle. The displacements 

for each beam segment (i) are: 

𝑢𝑢1
(𝑖𝑖)�𝑥𝑥1

(𝑖𝑖), 𝑡𝑡�,𝑢𝑢2
(𝑖𝑖)�𝑥𝑥1

(𝑖𝑖), 𝑡𝑡� ,𝑢𝑢3
(𝑖𝑖)�𝑥𝑥1

(𝑖𝑖), 𝑡𝑡�       0 ≤ 𝑥𝑥1
(𝑖𝑖) ≤ 𝑙𝑙(𝑖𝑖)               (A1) 

To derive the equations of motion for the folded beams, continuity conditions at 𝑥𝑥1
(𝑖𝑖) =

𝑙𝑙(𝑖𝑖) and 𝑥𝑥1
(𝑖𝑖+1) = 0 are used (l(i) is the length of each beam segment). The continuity conditions 

imply that the resultants of internal moments and forces are equal and the displacements are 

continuous at 𝑥𝑥1
(𝑖𝑖) = 𝑙𝑙 and 𝑥𝑥1

(𝑖𝑖+1) = 0. The displacement transformation and continuity 

condition used in the analysis are: 

�
𝑢𝑢1

(𝑖𝑖)(𝑙𝑙(𝑖𝑖), 𝑡𝑡)
𝑢𝑢3

(𝑖𝑖)(𝑙𝑙(𝑖𝑖), 𝑡𝑡)
� = �−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �
𝑢𝑢1

(𝑖𝑖+1)(0, 𝑡𝑡)

𝑢𝑢3
(𝑖𝑖+1)(0, 𝑡𝑡)

�  

𝑢𝑢2
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡� =  𝑢𝑢2

(𝑖𝑖+1)(0, 𝑡𝑡)              (A2) 

The slope continuity condition is: 

𝜕𝜕𝑢𝑢2
(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖) (𝑙𝑙(𝑖𝑖), 𝑡𝑡) = 𝜕𝜕𝑢𝑢2

(𝑖𝑖+1) 

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) (0, 𝑡𝑡);      

𝜕𝜕𝑢𝑢3
(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖) �𝑙𝑙(𝑖𝑖), 𝑡𝑡� = 𝜕𝜕𝑢𝑢3

(𝑖𝑖+1)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) (0, 𝑡𝑡)               (A3) 

The continuity conditions for bending moments are: 

𝐸𝐸(𝑖𝑖)𝐼𝐼22
(𝑖𝑖) �𝜕𝜕𝜑𝜑2

(𝑖𝑖)�𝑙𝑙(𝑖𝑖),𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � =  𝐸𝐸(𝑖𝑖+1)𝐼𝐼22

(𝑖𝑖+1) �𝜕𝜕𝜑𝜑2
(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) �;      

 𝐸𝐸(𝑖𝑖)𝐼𝐼33
(𝑖𝑖) �𝜕𝜕𝜑𝜑3

(𝑖𝑖)�𝑙𝑙(𝑖𝑖),𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � =  𝐸𝐸(𝑖𝑖+1)𝐼𝐼33

(𝑖𝑖+1) �𝜕𝜕𝜑𝜑3
(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) �            (A4) 

The continuity conditions for shear and normal forces are: 
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𝑘𝑘𝐺𝐺(𝑖𝑖)𝐴𝐴(𝑖𝑖) �−𝜑𝜑3
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡� +

𝜕𝜕𝑢𝑢2
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡�
𝜕𝜕𝑥𝑥1

(𝑖𝑖) � =  𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �−𝜑𝜑3
(𝑖𝑖+1)(0, 𝑡𝑡) +

𝜕𝜕𝑢𝑢2
(𝑖𝑖+1)(0, 𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � ; 

𝑘𝑘𝐺𝐺(𝑖𝑖)𝐴𝐴(𝑖𝑖) �𝜑𝜑2
(𝑖𝑖)�𝑙𝑙(𝑖𝑖), 𝑡𝑡� + 𝜕𝜕𝑢𝑢3

(𝑖𝑖)�𝑙𝑙(𝑖𝑖),𝑡𝑡�

𝜕𝜕𝑥𝑥1
(𝑖𝑖) � = 𝐸𝐸(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) 𝑑𝑑𝑢𝑢1

(𝑖𝑖+1)(0,𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖+1) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −

𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �𝜑𝜑2
(𝑖𝑖+1)(0, 𝑡𝑡) + 𝜕𝜕𝑢𝑢3

(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  

𝐸𝐸(𝑖𝑖)𝐴𝐴(𝑖𝑖) 𝑑𝑑𝑢𝑢1
(𝑖𝑖)(𝑙𝑙(𝑖𝑖),𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖) =  𝐸𝐸(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) 𝑑𝑑𝑢𝑢1

(𝑖𝑖+1)(0,𝑡𝑡)

𝑑𝑑𝑥𝑥1
(𝑖𝑖+1) 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘𝐺𝐺(𝑖𝑖+1)𝐴𝐴(𝑖𝑖+1) �𝜑𝜑2

(𝑖𝑖+1)(0, 𝑡𝑡) +

𝜕𝜕𝑢𝑢3
(𝑖𝑖+1)(0,𝑡𝑡)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1) � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;                    (A6) 

The continuity condition for twisting is: 

𝐺𝐺(𝑖𝑖)𝐽𝐽(𝑖𝑖) 𝜕𝜕
2𝛽𝛽(𝑖𝑖)

𝜕𝜕𝑥𝑥1
(𝑖𝑖)2

= 𝐺𝐺(𝑖𝑖+1)𝐽𝐽(𝑖𝑖+1) 𝜕𝜕
2𝛽𝛽(𝑖𝑖+1)

𝜕𝜕𝑥𝑥1
(𝑖𝑖+1)2

            (A7) 

For the folded beams, these conditions Equation (A2-A6) are substituted in Equation (2) to 

determine the equations of motion. These are further solved numerically to determine the 

modal response of large-scale kerf structures (see Fig. 2(c)).  
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Appendix B 

Torsional constant of beam segments of the unit cells 

During torsion, the ability of the beam to undergo twisting depends on the torsional constant 

of the beam, 𝐽𝐽 which is the sum of polar moment of area, 𝐼𝐼𝑝𝑝 and torsional constant due to 

warping, 𝐼𝐼𝑤𝑤. The torsional constant is determined using these equations: 

𝐼𝐼𝑝𝑝 = � ((𝑥𝑥2)2 +  (𝑥𝑥3)2)𝑑𝑑𝑑𝑑
 

𝐴𝐴
 

𝐼𝐼𝑤𝑤 = � (−𝑥𝑥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥3

+ 𝑥𝑥3
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

 )𝑑𝑑𝑑𝑑
 

𝐴𝐴
 

     𝐽𝐽 = 𝐼𝐼𝑝𝑝 + 𝐼𝐼𝑤𝑤     (B1) 

where, 𝜙𝜙(𝑥𝑥2, 𝑥𝑥3) is the warping function of the cross-section. We determined the torsional 

constant for beams in LD, MD, and HD unit cells as shown in Table 2. It is evident from the 

results that the beams in the LD unit cell have a higher torsional constant, 𝐽𝐽 compared to the 

HD unit cell beams which lead to the conclusion that the LD unit cell undergoes less twisting. 

During out-of-plane bending in the unit cells, the beams in the unit cell undergo both bending 

and twisting. The capability of the beams to undergo bending and twisting depends on the 

geometrical parameters of the beam. It can be noticed that in the out-of-plane bending, the 

beams in the HD unit cell majorly undergo twisting compared to bending as shown by the high 

ratio of 𝐼𝐼33
𝐽𝐽

 relative to MD and LD unit cells. Whereas, the beams in LD unit cells are relatively 

thick so they dominantly undergo bending relative to twisting as shown by the low ratio of 𝐼𝐼33
𝐽𝐽

. 

Additionally, we also calculated torsional constants for beams in different sizes of unit 

cells (see Table 3). The larger unit cells have a higher torsional constant compared to smaller 

unit cells which lead to relatively less twisting in larger unit cells. In out-of-plane bending, the 

beams in larger unit cells dominantly undergo out-of-plane bending compared to twisting as 

shown by the low ratio of 𝐼𝐼33
𝐽𝐽

 relative to smaller unit cells. 
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Appendix C 

Modal experiments on kerf panels 

In the modal experiments, the kerf panel is suspended from an aluminum frame using fishing 

lines. The free-free boundary conditions are chosen for the kerf panel specimens because it is 

relatively easier to implement free-free boundary conditions compared to other types of 

boundary conditions. The edges of the specimen are not constrained as shown in Fig. C1 and 

it is ensured that the edges are free to move.   

To experimentally determine the mode shapes and frequencies of the kerf panels, 

scanning laser vibrometry is chosen as it is a non-contact measurement technique [30]. The 

scanning vibrometer (PSV-500, Polytec, Irvine, CA) is used to measure the modal frequencies 

and shapes as shown in Fig. C1. The Automatic Modal Hammer (SAM1, Polytec, Irvine, CA) 

is used to actuate the specimen as it allows precise excitation without mass loading. The 

excitation point is carefully chosen near the bottom edge of the kerf panel and it is kept the 

same for all the tests. The scanning vibrometer is used to perform the modal analysis with the 

force input of 50 N from the modal hammer. 

In the case of a uniform kerf panel, the velocity output range for the vibrometer is kept 

at 125 mm/s with a sampling rate of 2.5 kHz. A Fast Fourier Transform (FFT) is performed 

within a selected bandwidth of 156 mHz – 1000 Hz. It is necessary to choose sufficient 

measurement points to capture the motion of all the segments in the kerf structures so based on 

experience from previous tests [12], 1401 measurement points are chosen on the surface of 

uniform kerf panel. Whereas, for the transitioning kerf specimen, the velocity output range for 

scanning laser vibrometer is kept at 250 mm/s. The sampling rate is 2.5 kHz and the bandwidth 

for FFT is kept 78.125 mHz - 1000 Hz. A total of 1025 points on the surface of the transitioning 

kerf specimen are used as measurement locations, each scanning point and FFT is averaged 3 

times. The Frequency Response Function (FRF) for each data point is obtained and stored in a 
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file that is post-processed in the PSV software (Polytec, Irvine, CA) to extract mode shapes 

and resonance frequencies.      

 

Fig. C1 Experimental test set-up for modal testing of kerf panels 

 

The discrepancy between model and experimental results at higher frequencies 

At higher modes (>11) of the kerf panels, there is a discrepancy between model and 

experimental results. During the measurements at higher frequencies (>200 Hz), we observe 

several local regions on the kerf panel undergoing microscopic deformations as opposed to 

macroscopic deformations observed in earlier modes shapes (<10). For example, Fig. C2 

shows a higher order mode extracted from the laser vibrometry experiment performed on a 

uniform density kerf panel in which numerous regions of the panel are undergoing microscopic 

deformations. With the finite number of measurement points on the kerf surface chosen as 

mentioned above, it becomes difficult for the laser vibrometer to capture all the deformations 

in the higher mode shapes. Whereas the beam element model can capture all the deformations 

during both in-plane and out-of-plane motion in the higher order modes. Another reason for 

the discrepancies is due to possible slight imperfections in the cuts around the corners, 
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especially in the regions which have high density cut lines. The beam element model of the 

panel disregards any kind of imperfections caused by cutting. 

 

 

 

Fig. C2 Higher order mode extracted from laser vibrometry experiment on uniform 

density kerfing panel, at frequency 220 Hz 

 

Similarly, in the kerf unit cells at higher order modes (>8), the discrepancy between model and 

experimental results increases. At higher frequencies (>4000 Hz), the noise becomes dominant 

in the experimental results which makes it intricate to determine distinct natural frequencies 

and mode shapes (see Fig. C3). 

 

Fig. C3 Results from laser vibrometry experiment on LD unit cell showing dominant 

noise in the data above 4000 Hz 
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Appendix D 
 

Influences of pre-deformation stresses  

To understand the influence of stresses due to local and global shape reconfiguration of the 

kerf panels, we compared the modal response of the kerf panel with and without taking stresses 

due to the pre-deformation into consideration. 

In the first case, the transitioning density kerf panel is globally deformed by prescribing 

a 0.4 out-of-plane displacement at three high density cut regions to form a shape with multiple 

high curvatures. It can be noticed from the results in Fig. D1 that the modal behavior is 

significantly influenced by pre-deformation stresses in this case. The root mean square error 

(RMSE) between resonance frequencies for the deformed kerf panel with and without pre-

deformation stresses is 10.79 Hz, which is high compared to the magnitude of natural 

frequencies. Reconfiguring the kerf panel with multiple high curvatures induces stresses in 

multiple neighboring unit cells around the actuated region as shown in Fig. D1. These pre-

existing stresses have a significant effect on the dynamics response of large-scale kerf 

structures.  

 

    
 

 

Fig.D1 Comparison of modal frequencies of molded transitioning kerf panel 
(multiple high curvatures) with and without pre-deformation stresses (left); von-Mises 

stresses in molded transitioning kerf panel (right) 
 

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Fr
eq

ue
nc

y 
(H

z)

Modes

Deform with pre-
deformation stress
Deform without pre-
deformation stress
Flat

  3400 psi         1680 psi         0 psi   



45 
 

In the second case, the uniform density kerf panel is locally perturbed at the center by 

prescribing 0.04 in. out-of-plane displacement. It can be noticed from the results in Fig. D2 

that the effect of pre-deformation stresses on the modal response is negligible. The root mean 

square error (RMSE) between resonance frequencies for the deformed kerf panel with and 

without pre-deformation stresses is 0.0006 Hz, which is negligible compared to natural 

frequencies. Locally perturbing the kerf panel induces stresses in a small region of the kerf 

panel as shown in Fig. D2, which leads to an insignificant effect of pre-deformation stresses 

on the dynamics response of large-scale kerf structures.  

 

      

 

Fig.D2 Comparison of modal frequencies of molded uniform kerf panel (local 

perturbation) with and without pre-deformation stresses (left); von-Mises stresses in 

molded uniform kerf panel (right) 
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Appendix E 
 

Influences of material behaviors  

To understand the influence of the delayed responses (viscoelastic dissipation) of the materials 

on the stress wave propagation in a kerf panel, we consider an impact loading in Eq. (6) with 

different rates, i.e., 0.005 sec and 0.05 sec. An MDF panel with a uniform cut density is 

considered in the analyses. It is seen in Fig. E1 that the rate of stress decay changes when the 

kerf panel is exposed to different impact rates. A slower loading yields a more pronounced 

effect of the delayed responses of the materials (viscoelastic effect). Faster loadings will 

minimize the viscoelastic effect as the responses are more dominated by the instantaneous 

elastic behavior of the materials.   

 

 
Fig. E.1 Comparison of stress decay in a kerf panel in the center (top) and top 

left corner (bottom) exposed to different rates of impact loading 
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To further examine the effect of material behaviors, a uniform cut density kerf panel made of 

stainless steel (SS) material is subjected to an impact loading, following Eq. (6). The metallic 

panels when loaded below the yield limit of the material can be considered as made up of an 

elastic material. The elastic properties of the SS were obtained from our previous study [12]. 

The stress decay rate in the SS kerf panel is comparable to the MDF kerf panel, indicating that 

the kerf geometries contribute to the delayed stress wave propagation (Fig. E2). It is also seen 

that the elastic SS kerf panel experiences a faster stress decay compared to the viscoelastic 

MDF kerf panel because there is no delayed response of the materials. 

 

 

 
 

 
Fig. E.2 Comparison of stress decay in a kerf panel made up of SS and MDF in 

the center (top) and top left corner (bottom) exposed to an impact loading with a rate of 
0.005 sec 
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