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Inspired by the log Gromov—Witten (or GW) theory of Gross—Siebert/Abramovich—
Chen, we introduce a geometric notion of log J-holomorphic curve relative to a simple
normal crossings symplectic divisor defined by Tehrani—-MclLean—Zinger (2018).
Every such moduli space is characterized by a second homology class, genus and
contact data. For certain almost complex structures, we show that the moduli space of
stable log J-holomorphic curves of any fixed type is compact and metrizable with
respect to an enhancement of the Gromov topology. In the case of smooth symplectic
divisors, our compactification is often smaller than the relative compactification and
there is a projection map from the latter onto the former. The latter is constructed via
expanded degenerations of the target. Our construction does not need any modification of
(or any extra structure on) the target. Unlike the classical moduli spaces of stable
maps, these log moduli spaces are often virtually singular. We describe an explicit
toric model for the normal cone (ie the space of gluing parameters) to each stratumin
terms of the defining combinatorial data of that stratum. In an earlier preprint, we
introduced a natural set up for studying the deformation theory of log (and
relative) curves and obtained a logarithmic analogue of the space of Ruan-Tian
perturbations for these moduli spaces. In a forthcoming paper, we will prove a gluing
theorem for smoothing log curves in the normal direction to each stratum. With some
modifications to the theory of Kuranishi spaces, the latter will allow us to construct a
virtual fundamental class for every such log moduli space, and define relative GW
invariants without any restriction.
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1 Introduction

Studying pairs of a smooth variety X and a normal crossings (or NC) divisor! D X hasa
rich history in complex algebraic geometry. For example, studying such pairs is
central to the minimal model program and to the construction of moduli spaces in
algebraic geometry. By a celebrated theorem of Hironaka (1964), given a singular
variety Y, there is a smooth “blowup” X of Y such that the preimage of the singular
locus of Y is an NC divisor D X. Therefore, the study of such pairs is also important
toward the study of singularities. Curves are (Poincaré) dual objects to divisors. Moduli
spaces of curves in X that intersect D in some particular ways are fundamental tools
for understanding the geometry of .X; D/.

In the last 40 years, analogues of these notions have been defined in the symplectic
category and have led to significant advances in our understanding of symplectic
manifolds. In the 1980s, Gromov combined the rigidity of algebraic geometry with the
flexibility of the smooth category and initiated the use of J-holomorphic curves as a gen-
eralization of holomorphic curves in symplectic geometry. The use of J-holomorphic
curve techniques has led to numerous connections with algebraic geometry, string
theory, and to the appearance of symplectic divisors (as the dual objects) in various
contexts. The latter includes relations with complex line bundles (see Donaldson [8]),
relative Gromov—Witten (or GW) theory (see lonel and T Parker [21], A Li and
Ruan [23] and B Parker [40]), degeneration formulas for GW invariants (see lonel
and T Parker [22], A Li and Ruan [23], B Parker [37] and Tehrani and Zinger [48]),
topological study of singularities (see McLean [31]), symplectic cohomology and mirror
symmetry of complements X nD (see Auroux [6] and Ganatra and Pomerleano [15]),
and classification of symplectic log Calabi—Yau 4—manifolds (see T Li and Mak [26]). A
smooth symplectic divisor is simply a symplectic submanifold of real codimension two.
Topological notions of NC symplectic divisors and varieties were recently introduced
by McLean, Zinger and the author in [45; 46; 47].

While most applications of J-holomorphic curves in symplectic topology have so far
concerned smooth symplectic manifolds, or pairs .X; D/ of a smooth manifold and a
smooth symplectic divisor, recent developments in symplectic topology and the existing
rich structures in algebraic geometry (some of which are listed above) suggest the
need for constructing and studying moduli spaces of J-holomorphic curves relative to

1curves and divisors are, respectively, subvarieties of dimension 1 and codimension 1 over the ground
field.
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J—holomorphic curves relative to an NC symplectic divisor: compactification 991

an arbitrary NC symplectic divisor from the analytical perspective. In this paper we
introduce an explicit and efficient compactification of moduli spaces of J-holomorphic
curves relative to an arbitrary simple normal crossings (SNC) symplectic divisor. In
upcoming papers [11; 12], we will set up the analytic framework needed for constructing a
(virtual) fundamental class, and define relative GW invariants. In particular, in [11], we
will define a notion of semipositive pair that allows a direct construction of relative GW
invariants via perturbed J-holomorphic maps as in Ruan and Tian [42]. In [43], based
on these log moduli spaces, we outline an explicit degeneration formula that relates
the GW invariants of smooth fibers to the GW invariants of central fiber, in a
semistable degeneration with an SNC central fiber. It is worth mentioning that evenin
the case of smooth divisors, our compactification is different and smaller than the well-
known relative compactification in lonel and Parker [21], J Li [24] and A Li and Ruan
[23].

We begin by setting up the most commonly used notation and recalling some of the
known facts about the classical and relative moduli spaces of closed J-holomorphic
curves. Therefore, experts may skip to Section 1.3, where the main question is explained.

1.1 Classical stable maps and GW invariants

For X asmooth manifold, g; k2 N, A2 H,.X; Z/, and an almost complex structure J
on X,2 a (nodal) k—marked genus-g degree-A J—holomorphic map into X is a tuple

uW.T;j/ ! .X; ]/ is acontinuous and componentwise smooth map satisfying
the Cauchy—Riemann equation

(1-1) ®uD 1.ducClduij/DoO

on each smooth component, and

the map u represents the homology class A.
Two such tuples
utsjzt i 2% and W00 0wl wky
are equivalent if there exists a biholomorphic isomorphism WN.1;j/ | .t0; jo/ such

2That is, J is a real-linear endomorphism of T X lifting the identity map satisfyingJ 2 D idrx.
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the group of self-automorphisms is finite. Let Mg, .X; A; J / (or simply Mg, .X; A/
when J is fixed in the discussion) denote the space of equivalence classes of stable
k—marked genus-g degree-A J-holomorphic maps into X. Such an equivalence class
is called a marked J-holomorphic curve.

By a celebrated theorem3 of Gromov [16, Theorem 1.5.B], for every smooth closed (ie
compact and without boundary) symplectic manifold .X; !/, g; k; A as above, and an
almost complex structure J compatible* with | (or taming !), the moduli space
I\/I_g;k.X; A;J/ has a natural sequential convergence topology, called the Gromov
topology, which is compact, Hausdorff, and furthermore metrizable. The symplectic
structure only gives an energy bound which is needed for establishing the compactness,
and the precise choice of that, up to deformation, is not important. If M .X; A/ hasan
oriented orbifold structure of expected real dimension

(1-2) 2c™.A/C.n 3/1 g/Ck;
1

GW invariants are obtained by the integration of appropriate cohomology classes
against its fundamental class. These numbers are independent of J and only depend on
the deformation equivalence class of !. These allow the formulation of symplectic
analogues of enumerative questions from algebraic geometry, as well-defined invariants
of symplectic manifolds. However, in general, such moduli spaces can be highly
singular. This issue is known as the transversality problem. Fortunately, it has been
shown (see® eg [25; 14; 27; 18; 30; 33]) that Mg;k.x; A/ still carries a rational
homology class, called virtual fundamental class (or VFC); integration of cohomology
classes against the VFC gives rise to GW invariants.

1.2 Relative stable maps

Given a symplectic manifold . X; ! / and a closed submanifold D X, wesayD X isa
symplectic submanifold if | jp is a symplectic structure. A (smooth) symplectic divi-
sor is a symplectic submanifold of real codimension 2. For such D (or a smooth divisor
in complex algebraic geometry), relative GW theory (virtually) counts J-holomorphic

i&nd-ltséubsequent refinements; see the remarks before Theorem 3.3.
4Thatis, !. ; J /is a metric.
51t is beyond the scope of this paper to list all the related literature.
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J—holomorphic curves relative to an NC symplectic divisor: compactification 993

require) to be also compatible with D in the following sense. First, we require D to be J—
holomorphic, ie J.TD/ D TD. This implies, for example, that every J-holomorphic
map to X from a smooth domain is either mapped into D or intersects D positively in a
finite set of points. Furthermore, we need to at least require J to be integrable to the first
order in the normal direction to D, in the sense that

(1-3) N;.vi;va/2T,D forall x 2 D; vi;va2 TyX;
where N; 2 €.X; .XZ” T X/ is the Nijenhuis tensor of J, satisfying
N;.u;v/ CGu;v€) CEu;lv€) Elu;ve EJu;lve forall u;v2 TX:

This ensures that certain operators are complex linear (see (4-7)), and certain sequences of
almost complex structures on the normal bundle Nx D converge to a standard one (see
Lemma 3.5). The space J .X; D; !/ of !|-tame and D—compatible almost complex
structures J on X is again nonempty and contractible. ForeveryJ 2J .X; D; !/ ands

Xk
(1-4) saD AD;

aD1
let Mg.s.X; D; A/ Mg..X; A/ (in the stable range) be the subspace of k—marked
degree-A genus-g J—holomorphic curves CEu; t;j; z1;:::; zKes uch that t is smooth

The subset of marked points z? with s, D 0 corresponds to the classical marked
points of the classical GW theory with image away from D. The relative compacti-
fication Ivl_grj?'s.x; D; A/ of Mg;s.X; D; A/, constructed in [24] in the algebraic case,
and in [21; 23] in the symplectic case, includes stable nodal curves with components
mapped into X or an expanded degeneration® of that, so that the contact order s still
makes sense; we will review this construction in Section 4.1.

1.3 J-holomorphic maps relative to SNC divisors

In [45; 46], with McLean and Zinger, we defined topological notions of symplectic
normal crossings divisor and variety and showed that they are equivalent, in a suitable

SA normal crossings variety made of X and finite copies of the P1—-bundle Px D D P.NxD ° Op/
overD.
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sense, to the desired rigid notions. For N 2 N, let

In p:grticular, @D [. A simple normal crossings (or SNC) symplectic divisor
DD  ,gn.Di in.X; !/ isatransverse union of smooth symplectic divisors fDigi2gn »
in X such that all the strata

\
D, D; forall | (BNe
i21
are symplectic, and the symplectic orientation of D, coincides with its “intersection”
orientation for all | (ENe; see [45, Definition 2.1]. For

\
J 21 .X;D;!/D 1 .X;Di; 1 /;
i2CEN »

we similarly define Mg.s.X; D; A/ (in the stable range) to be the space of equivalence
classes of degree-A J-holomorphic maps from a k—marked genus-g connected smooth
domain t into X of contact order s with D, for which

N k.
S Sa-Sai/i2@ENeyqye 2 N /5

each vector s, records the intersection numbers of the ath marked point za with the
divisors fDigi»En ., and

X k
(1-5) u 1.D/f21;:::;zkg; or equivalently AD; D sai  forall i 2CEN:»

aD1
Because of the tangency conditions, it follows from (1-2) that the expected real dimen-
sion of Mg;s.X; D; A/ is equal to

(1-6) 2 ¢"*.A/C.n 3/.1 g/Ck ADD2 c'* '8P/ aA/c.n 3/.1 g/Ck;

1 1

where TX. log D/ is the log tangent bundle associated to the deformation equivalence
class of .X; D; !/, defined in [46, (8)]. In the holomorphic case, the log tangent sheaf is
the sheaf of holomorphic tangent vector fields in TX whose restriction to each D; is
tangent to D;. The definition in the symplectic case is similar but depends’ on some
auxiliary data. The similarity between the left-hand sides of (1-6) and (1-2) shows the
importance of considering the log tangent bundle in the study of relative moduli spaces.

7The deformation equivalence class of complex vector bundle T X. log D/ is independent of the auxiliary
dafta.
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The main goal is:

(?) To construct a natural geometric compactification I\/I_g,.S X; D; A/ of
Mg;s.X; D; A/ so that the definition of the contact vector s naturally ex-
tends to every element of M_g;s.x; D; A/, and I\/I_g;s.x; D; A/ is (virtually)
smooth enough to admit a natural class of cobordant Kuranishi structures
of the expected real dimension (1-6).

We refer to [44; 30] for the technical terms in (?). If D is smooth, the well-known
relative compactification IW;[S.X; D; A/ has (or is expected® to have) these nice prop-
erties.

In the algebraic category, every (algebraic) NC variety D X defines a natural “fine
saturated log structure” on X ; see [2] for a review of log geometry and log moduli spaces
associated to NC pairs .X; D/. Then the log GW theory of [1] and [17] constructs a
good compactification with a perfect obstruction theory for every fine saturated log
variety X. Unlike in [24], the algebraic log compactification does not require any
expanded degeneration of the target. Instead, it uses the extra log structure on X (and
various log structures on the domains) to keep track of the contact data for the curves
that have image inside the support of the log structure (ie D).

Since the classical GW invariants are invariants of the deformation equivalence class
of the underlying symplectic structure, it is interesting and important to generalize the
results of [1; 17] to (or find an analogue of them for) the symplectic category, ie to
construct log GW invariants as invariants of the symplectic deformation equivalence
class of .X; D/. With such a construction, the flexibility of symplectic topology can
be used in certain situations to define log GW invariants as an actual count of J—
holomorphic curves with tangency conditions, at the expense of deforming J or the
Cauchy—Riemann equation (to avoid working with VFC); see [42; 11]. Moreover,
in the case of moduli spaces of holomorphic curves with boundary on Lagrangian
submanifolds, it is sometimes easier to work with an analytical construction of moduli
spaces of J-holomorphic maps.

On the analytical side, in [36; 40; 39] and several other related papers, Brett Parker
uses his enriched almost Kdhler category of “exploded manifolds”, defined in [34], to
construct such a compactification relative to an almost Kdhler NC divisor and
address (?). His approach can be considered as a direct translation/generalization of
the algebraic log GW theory involving some non-Hausdorff spaces, analytical sheaves,

85ee [48] for an overview of the analytical approaches of [21; 23].
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and a richer cohomology theory [38]. His approach has close ties to tropical geom-
etry. In [20], Eleny lonel approaches (?), by considering expanded degenerations
similar to [21]. Nevertheless, the main motivation behind the log GW theory of Gross—
Siebert—Abramovich—Chen, the exploded theory of Parker, and the current paper is that
considering spaces and maps enriched with certain log structures is a better idea for
addressing (?) in the general case. In particular, all these logarithmic approaches lead
to similar “degeneration formulas” (the authors of [4] call it an “invariance property”)
relating the moduli spaces in smooth fibers and the SNC central fiber of an arbitrary
semistable degeneration; see [4; 37; 11].

1.4 Log compactification and the main result

In this paper, for an arbitrary SNC symplectic divisor D .X; !/ and certain ] 2 J
.X; D; !/, we construct a “minimal geometric compactification”
(1-8) Mgo.X; D; A/

that does not require any modification of the target (or the nodal domains). For its

connection to the algebraic log maps, and the appearance of various log structures®
throughout the construction, we call our maps/curves log J-holomorphic maps/curves.

S
ForJ 21 .X;D; !/, a(nodal) log J-holomorphic map into X; D D ;,gN.Di of
contact type
s Sa-Sailizene 5pq 22"/
S
with the marked nodal domain .t;j; £/ D |,y .ty;jv; £/, is a collection of tuples
Ulog Suy Wy | Di,; £/, -CEv;i°/iZIV V2V
over smooth components of T such that
u .uy/vov Wt;j; £/ 1 . X; 1/ is a k—-marked J-holomorphic nodal map in the
classical sense,
for eachv 2 V, |, @N# s the maximal subset such that Im.uy/ D, ,
foreachv2V andanyi 2 1,, E;e is the C—equivalence class9 of a nontrivial
meromorphic section ;i of the holomorphicl? line bundle uNy D,
the contact order vectors in ZN, defined in (2-14) and (2-15), are the opposite of
each other at the nodal points,
9Such as the use of log tangent bundle in the deformation theory of log J-holomorphic curves.

10 acts by multiplication on the set of meromorphic sections.
Hsince dimc ty D 1, the pullback line bundle ulNx D; is holomorphic.
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every point in T with a nontrivial contact vector is either a marked point or a
nodal point, and the contact order vector at za is the predetermined vector s, 2
zZN,

there exists a vector-valued function WV | RN such that forallv2 V,s,D
s.w/2 R, fogEN*' v, and forall v;v0 2 V,s, sy is a positive multiple of the
contact order vector of any nodal point on T connected to Tyo, and

a certain group (a complex torus) element associated to ujeg, defined in (2-32),
is equal to 1.

See Definition 2.8 for more details. Two marked log maps are equivalent if oneis a
“reparametrization” of the other. A marked log map is stable if it has a finite
“automorphism group”. For g;k 2 N, A 2 H>.X;Z/, and s 2 .ZN /%, we denote
the space of equivalence classes of stable k—marked degree-A genus-g log maps of
contact type s by
I\/I_gI?E.X; D;A/:
Such an equivalence class is called a log curve. There is a natural forgetful map
Mgo€.X; D; A/ | Mg, .X; A/;
uy Wy | D|V;£V/; -CEv;i'/iZIV V2V Foouy Wy D XS E vy

Given s 2 .ZN /%, it turns out that for every k—marked stable nodal curve f in
I\/I_g;k.X; A/, there exist at most finitely many log curves f|og 2 I\Wg"’;%.x; D; A/ (with
distinct decorations on the dual graph) lifting f ; see Lemma 2.15. Furthermore, f|og is

stable if and only if f is stable (and the automorphism groups are often the same).

In the integrable case and in comparison with the algebraic approach, we conjecture
the following statement:

Conjecture 1.1 In the complex algebraic setting, for any choice of combinatorial
data © D .g;s; A/ and the natural log structure on X associated to D, there is a
stratified finite-to-one surjective map from the underlying space of the log moduli
space M.X=pt; “/ in [4] to I\/I_g'?§.x; D; A/, which is one-to-one over the main stratum
Mg;s.X; D; A/.

In particular, this conjecture says that the group element (2-32), mentioned in the final

bulleted condition above, is the only noncombinatorial obstruction for liftability of a
nodal map (with correct combinatorial properties) to a log map (with the canonical
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log structures on X corresponding to D). It is likely that we need to allow certain
“nonsaturated” curves in M.X=pt; */ for the conjecture to be true, or the projection
map will not be surjective. The projection map conjectured above behaves like a
normalization map between varieties (eg unfolding self-intersections). Based on a
comparison of the coefficients of the degeneration formula in [4] with our degeneration
formula outlined in [43], we think that the degree of the projection map on each stratum
should be the multiplicity me in (5-14).

Similarly, in comparison with the Brett Parker approach in [36], under certain assump-
tions on the almost complex structure J , we expect the following statement.

Conjecture 1.2 With respect to the exploded structure associated to an almost Kah-
ler SNC divisor D X, for any choice of combinatorial data © D .g;s; A/, the
“smooth part” map gives a finite-to-one surjective map from the moduli stack in [36] to

Mgg.X; D; A/.

We postpone a careful comparison of the moduli spaces constructed in this paper and
those arising from [1; 17] and [36] to a future paper.

Approaching (?), we face some new challenges that are not present in the case of the
classical and relative stable maps. Unlike the smooth case, it is not a priori clear
whether every SNC symplectic divisor D .X; !/ admits a compatible almost complex
structure. Furthermore, even if J .X; D; !/ " @, it is not clear whether it is contractible
(or even connected). In order to address this issue, in [45], we consider the spacel?
Symp.X; D/ of all symplectic forms on X such that a given transverse configuration
D D~ ,,gn.Di is an SNC symplectic divisor in .X; ! /. Consequently, instead of
focusing on a particular |, we consider the connected component of symplectic forms
in Symp.X; D/ which are deformation equivalentto !. WithJ .X; D; !/ as before, let

[
J.X;D/D J .X;D; !/
12Symp.X;D/
be the space of all D—compatible pairs .!;J /. We then define a space of almost
Kahler auxiliary data AK.X; D/ consisting of tuples.!; R; J / where! 2Symp.X; D/,
R is an “!-regularization” for D in X, andJ is !-tame and R—compatible (which we

will simply call .R; |/—compatible) almost complex structure on X; see Section 3.2
or [45, page 8]. Roughly speaking, a regularization is a compatible set of symplectic

12|y [45], this space is denoted by Symp©.X; D/.

Geometry & Topology, Volume 26 (2022)



J—holomorphic curves relative to an NC symplectic divisor: compactification 999

identifications of neighborhoods of fD| gign. in their normal bundles with neighbor-

hoods of them in X ; see [45, Definition 2.12]. A regularization serves as a replacement
for holomorphic defining equations in holomorphic manifolds. These regularizations
are also the auxiliary data that we need to define the log tangent bundle TX. logD/.
Forevery.!;R;J/ 2 AK.X; D/, wehave.!;J/21J .X;D/. Therefore, AK.X; D/
is essentially a nice subset of J .X; D/ consisting of those almost complex structures
that are of some specified type in a sufficiently small neighborhood of D. These special
almost complex structures are similar to the almost complex structures with translational
symmetry considered in [23] and in SFT [10]. By [45, Theorem 2.13], the forgetful map

(1-9) AK.X;D/! Symp.X;D/; .I;R;J/1 1;

is a weak homotopy equivalence. This implies that any invariant of the deformation
equivalence classes in AK.X; D/ is an invariant of the symplectic deformation equiv-
alence class of .X; D; !/. In particular, by restricting to the subclass AK.X; D/, the
last statement in (?) follows from constructing Kuranishi structures for families.

The main goal of this paper is to prove the following compactness result, addressing
the first part of (?). We will address the rest in subsequent papers. We will briefly
outline our approach to the deformation theory and gluing in Sections 5.1 and 5.2.

Definition 1.3 A continuous functionf WM ! N between two topological spaces is a
local embedding if for all x 2 M there is an open neighborhood U of x such that f
juWJ ! N is an embedding.

By Smirnov’s theorem, every paracompact, Hausdorff, and locally metrizable space is
metrizable. Therefore, if f WM | N is a local embedding from a compact Hausdorff
space M to a compact metrizable space N, then M is metrizable.

Theorem 1.4 Assume X is a compact symplectic manifold and D D Si »EN. Di X isan
SNC symplectic divisor. If .1; R;J /2 AK.X; D/ orif .X; D; !; )/ isKahler, then for
every A 2 Hy.X;Z/, g;k 2 N and s 2 .ZN /X the Gromov sequential convergence
topology on I\/I_g;k .X; A/ lifts to a compact Hausdorff sequential convergence topology
on M_g'?g.x,- D; A/ so that the natural forgetful map

(1-10) Wi /28X, D; A/ 1 Mg X; A/

is a local embedding. In particular, l\/I_gI?’Sg.X; D; A/ is metrizable. If g D 0, then (1-10)
is a global embedding.

Geometry & Topology, Volume 26 (2022)
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In other words, the open sets of M_glff.x; D; A/ are the components of the intersection
of open sets in M. .X; A/ with the image of I\/I_g'f’sg.x; D:A/.

Remark 1.5 Except for the proof of Proposition 3.15, every other statement in the
proof of Theorem 1.4 is stated and proved for arbitrary .!;J /21 .X; D/. We expect
the local statement of Proposition 3.15, and thus Theorem 1.4, to be true for a larger
class of almost Kéhler structures that are weakly homotopy equivalent to Symp.X; D/,
which includes both AK(X,D) and the space of Kahler structures. If D is smooth, a
sig-nificantly simpler version of Proposition 3.15 is sufficient for proving Proposition
3.14, and thus Theorem 1.4 for arbitrary .!;J/ 2 ) .X; D/; see Remark 3.16.
Nevertheless, by the argument around (1-9), the subclass AK.X; D/ is ideal for
defining GW-type invariants and the holomorphic case is sufficient for most of the
interesting examples and calculations.

Remark 1.6 While I\/I_g'?E.X; D; A/ is defined for arbitrary s 2 .ZN /k satisfying the
second identity in (1-5), and the compactness result holds for every such s, the resulting
moduli spaces do not have some of the nice properties unless s 2 .NN /%; eg the
(virtual) main stratum Mg.s.X; D; A/ would be empty if any of the s,; were
negative. For s 2 .NN /X, by Lemma 5.5, the expected dimensiSh of Mg;s.X; D; A/
is equal to (1-6), and the only stratum with the top expected dimension is

Mg;s.X; D; A/. As pointed out to the author by M Gross, the case where s,; could
be negative is called “punctured curves” in the work-in-progress [3]. One feature of
these punctured curves is that the moduli spaces may not carry a VFC, as even in the
unobstructed case the moduli space may have irreducible components of different
dimension.

If D is smooth, we show in Proposition 4.5 that there is a surjective projection map
— —I
Mg”f's.X;D;A/! Mg?g.X;D;A/:

This is as expected, since our notion of log J-holomorphic curve involves more C—
quotients on the set of meromorphic sections than in the relative case. In the algebraic
case, [5, Theorem 1.1] shows that an algebraic analogue of this projection map induces
an equivalence of the virtual fundamental classes. We expect the same to hold for
invariants/VFCs arising from our log moduli spaces.

Approaching the rest of (?), the transversality issue aside, log moduli spaces constructed
in this paper are often virtually singular in the sense that the (virtual) normal cone of
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each stratum is not necessarily an orbibundle. More precisely, I\/I_gl?f.x; D; A/ admits
a stratification [
Mg5.X; D; A/ D Mg;s.X; D; Ale;
€

where € runs over all the possible “decorated dual graphs”; see Definition 2.12. For
any f in Mg;s.X; D; A/, the natural process of describing a neighborhood of f in
I\/I_Q?E.X; D; A/ is by first describing a neighborhood U of f in Mg.s.X; D; A/¢, and
then extending that, by a “gluing” theorem of smoothing the nodes, to a neighborhood of
the form U N© forf in m'°8 j(g;D; A/, where N0 is aneighborhood of the origin in an
affine subvariety N¢ C™ for some m 2 N. In this situation, we say that N¢ is the
normal cone to Mg.s.X; D; A/¢, or it is the space of gluing parameters. In the case of
classical stable maps, N¢ is isomorphicto CE, where E is the set of edges of € (or nodes
of the nodal domain). Unlike in the classical case, for the log (or relative)
moduli spaces, N¢ could be reducible, and the normalization of N¢ might be singular as
well; see Example 5.6. Nevertheless, we show that N¢ is (isomorphic to some finite copy
of) an affine toric variety that can be explicitly described in terms of €. More
precisely, let V and E be the set of vertices and edges of €, respectively. For eachv 2
V, |, @Neisthe maximal subset such that the image of the vth component of f

lies in Dy, . Similarly, for each e 2 E, I (N#s the maximal subset such that the

image of the e node lies in D . In (2-26), associated to every such €, we construct a
Z—linear map

M M
(1-11) WD.€/D ZF ° Z'v1 T.€/D 7'e

V2V e2E
so that N¢ is isomorphic to (some finite copy of) the toric variety associated to a
maximal convex rational polyhedral cone in Ker.%/“ R. Moreover, the group element
mentioned in the final bulleted condition on page 997 (ie in the definition of a log
map) is an element of the Lie group G.€/ with the Lie algebra Coker.%/” C. In other
words, Ker.%/ gives the deformation space in the normal direction and Coker.%/ gives
an obstruction for the smoothability of such maps.

1.5 Outline

In Section 2.1, we review the definition and properties of ¥@—operators. The X@—operator
®n,p on the normal bundle Nx D described in Lemma 2.1 plays a key role in defining
the basic building blocks of relative and log maps. In Section 2.2, we set up our notation
for the decorated dual graph of nodal maps. The Z-linear map (1-11) is defined in
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terms of such decorated dual graphs. In Section 2.3, we define the moduli spaces of

log J-holomorphic curves and provide several examples to highlight their features.
This is done in two steps: first, in Definition 2.4, we define a straightforward notion
of prelog map. Then in Definition 2.8, we impose two nontrivial conditions on such

a prelog map to define a log map. The proof of Theorem 1.4 relies on Gromov’s

compactness result for the underlying stable maps. In Section 3.1, we review the

Gromov compactness theorem and set up the notation for the proof of Theorem 1.4. In

Section 3.2, we state a log enhancement of the Gromov compactness theorem. Proof

of the main result is done in multiple steps in Sections 3.3 and 3.4. The main step of
the proof is Proposition 3.15, which compares the limiting behavior of the rescaling

and gluing parameters. In the case of smooth divisors, we compare the relative and the

log compactifications of the same combinatorial type in Section 4.2. We review the

construction of relative compactification in Section 4.1. In Section 5.1, we outline a

Fredholm setup for studying the deformation theory of log J-holomorphic maps, and

draw some conclusions. This setup is extended to perturbed log maps and discussed in

detail in [11]. In Section 5.2, we explicitly describe the space of gluing parameters of

any fixed type €, and identify it with an explicit affine toric variety.

Acknowledgements | am indebted to A Zinger for many years of related collaborations

that sorted out my thoughts toward this paper. | would like to thank K Fukaya and

J Morgan for supporting my research at the Simons Center and for many fruitful
conversations about the details of Kuranishi structures. | am thankful to G Tian for

supporting my research and for many related conversations about virtual fundamental

class. Finally, I am also thankful to Q Chen, D A Cox, M Gross, H-J Hein, M Liu,

D McDuff, M McLean, B Parker, D Pomerleano, D Ranganathan, H Ruddat, B Siebert,

J Starr and the referees for answering my questions and for their helpful comments.
My research on this subject is supported by the NSF grant DMS-2003340.

2 Log pseudoholomorphic maps

In this section, we construct the moduli spaces of log J-holomorphic curves relative to
an arbitrary SN C symplectic divisor defined in [45]. This is done by first introducing
a notion of prelog J-holomorphic map, which only involves a matching condition
of contact orders at the nodes. We then define a Z—linear map between certain Z—
modules associated to the dual graph of such a prelog map, which encodes the essential
deformation/obstruction data for defining and studying log maps.
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Let us start with some well-known facts about almost complex structures. Let .X; !/
be a smooth symplectic manifold and J be an !-tame almost complex structure on X.
Let r be the Levi-Civita connection of the metric hu;viD 1.!.u;Jv/Cl.v;Ju//
and let

(1) &, Dry L,HBryJ/D .1y Jryd// forall v2TX; 2€.X; TX/

be the associated Hermitian connection. The Hermitian connection r Zcoincides with r if
and only if .X; !;J/ is Kahler, ie rJ 0. The torsion T of the modified C-linear
connection

(2-2) ¥ Drg A./v; A./D ,2Arjicird/

forallv2 TX and 2 €.X; TX/, is related to the Nijenhuis tensor (1-3) by

(2-3) T,v;w/D zNj.v;w/ forall v;w2 TX:

If J is l-compatible, Z coincides with 1. See [29, Chapter 3.1 and Appendix C] for

details.

2.1 Almost complex structures and ®—operators

Suppose M is a smooth manifold, iy is an almost complex structure on M, and

.L;i./ ! M is a complex vector bundle. Let

M@ f2TM g CWiw Diig; ey, f
2-4 ' '
(2-4) 28M "R C Wiy D g

be the bundles of C—linear and C—antilinear 1-forms on M, where i is the unit imaginary
number in C. Given a smooth functionf WM ! C, (2-4) gives a decomposition of d f
into C—linear and C—antilinear parts @ and @f , respectively. A ®—operator on
.L; i_/ is a complex linear operator

(2-5) WEM; L/ €M oML e L/
such that

®f/D @ Cf@X forallf2Ct.M;C/; 2€.M;L/:
Given a complex linear connectionr on .L;i /! .M;in/, the .0; 1/-part

(2-6) r%YplrcCiiriim/
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of r is a ®—operator, which we denote by ®,. Every ®—operator is the associated
¥@W—operator of some C—linear connection r as above. The connection, however, is
not uniquely determined. Every two connections r and r© differ by a global End.L/-
valued 1-form _, ier®D r C .. If r and r© are complex linear connections on .L; i,/
with r® D r C _, then

@D @, C,%Y,;

where _-9:1/ is the .0; 1/-part of _ in the decomposition (2-4). In particular, &0 D &
whenever _ is of .1; 0/-type.

By [50, Lemma 2.2], corresponding to every ®—operator (2-5) there exists a unique
almost complex structure J D J& on the total space of L, such that

(1) the projection W ! M isan .ip ;J/-holomorphic map (ied CidJ D 0),(2)
the restriction of J to the vertical tangent bundle TLYe"'S L T L agrees
with i, and

(3) the map WM | L corresponding to a section 2 €.M;L/ is .J;im /-
holomorphic if and only if ®D O.

Suppose . X; !/ is a symplectic manifold, D is a symplectic submanifold, andJ isan!—
tame almost complex structure on X such that J.TD/ D TD. The last condition
implies that J induces a complex structure iy, p on (the fibers of) the normal bundle

(2-7) Wy D TXjp=TD! D:
Under the isomorphism
Ny D S TD’° D fu2 TXjD Whu;viDO forall v2 TDg;

ing D IS the same as the restrictionto T D? of J. Let Jp denote the restriction of J
to TD.

Lemma 2.1 Suppose.X; !/ isasymplectic manifold, D is a symplectic submanifold, J
is an !—tame almost complex structure on X suchthat).TD/ D TD, andr i¥the C—
linear connection associated to .!; J / in (2-2). Then the @-%perator

®, rOWEX; TX/ ! €.X; o % TX/in
(2-6) descends to a @-%perator
(2-8) @NXD VW .D;NyD/! €'D;.DO,‘;11|) “c NxD/

on .NxD; iNXD/! .D;Jp/.
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Proof We need to show thax @, maps €.D; TD/ to €.D; 00[5'.1J “ ¢ TD/. Letr and
’°D
r O be the Levi-Civita connections of the metrics associatedto.!; J / and.!jtp; Jp/
on X and D, respectively. Then

rbrPcrN forall 2 €.D;TD/;

with
rN 2€.D;e1 2TD?/:
Similarly, let 2 and ZP be the Chern connections on TX and TD associated to r
and r P, respectively, as in (2-1). It follows from (2-1) that
(2-9) ZDr? Ccr'e forall 2 €.D;TD/;
where
N D ArN arN//2€D;et " TDY/:

Let ¥ and WP be the modifications of Z and 2P as in (2-2), respectively. By (2-2)
and (2-9), we also have
(2-10) ¥Dr Y®r YN forall ; 2€.D;TD/;

where
yN Dr¥ AN /2€.D;0r " TD?/; AN

JD ,.ryACNr J/; N
rNJ/WDE Y/ e Fridm
(2-3), (2-10), and

Ny.;/DNy,.;/2TD forall ; 2 €.D; TD/;

we conclude that
yN ryB.r ¥/, ¥V r yP yD
D.V r Y& .r rY° &yP
DTV.;/ TrDy.;/D Olin
other words,
¥NDr YN  forall ; 2€.D;TD/:

From the last identity we get

yNc rybr o¥r s ¥ rvBo YN forall ; 2€.D; TD/:
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Therefore,
¥y D Ly, /Y
D z.¥°cir, Y ,.rtovfr,/ WM
D 2.¥Pciur,yP
D #-%1 2€.D;TD/ forall ; 2€.D;TD/: O

Remark 2.2 The term A./v in (2-2) is C—linear in and C-antilinear in v. It
vanishes if J is l-compatible. Therefore,

¥t D r2t A
2.2 Decorated dual graphs

Let €D €.V E; L/ be a graph with set of vertices V, edges E, and legs L; the latter,
also called flags or roots, are half-edges that have a vertex at one end and are open at
the other end. Let E be the set of edges with an orientation. Given an oriented edge &
e2E, let e denote the same edge e with the opposite orientation. For each e2E, let
Vl.lté/ and vz.'e/ in V denote the starting and ending points of the arrow, res'pect'ively.
For'v; vO 2 V,' let Ey.vo denote the subset of edges between the two vertices and Ev;vo
denote the subset of oriented edges from v to v¢ For every v 2 V, let Ev denote the
subset of oriented edges starting from v. '

A genus labeling of € is a function g¥V | N. An ordering of the legs of € is a
bijection aWL | f1;:::;jLjg. If a decorated graph € is connected, the arithmetic

genus of € is
X
(2-11) gD geD gvCrankH,.€;2/;

v2V

where H1.€; Z/ is the first homology group of the underlying topological space of €.
Figure 1, left, illustrates a labeled graph with 2 legs.

Such decorated graphs € characterize different topological types of nodal marked
surfaces

in the following way. Each vertex v 2 V corresponds to a smooth13 component T, of t
with genus g,. Each edge e 2 E corresponds to a node ge obtained by connecting t,

13\We mean a smooth closed oriented surface.
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1 2 1 2
g1 82 .81; A1/ .82; A2
83 .g3; Az/

84 g5 .84;Asa/ .8s; As/

Figure 1: Left, a labeled graph € representing elements of Mg,>. Right, a
labeled graph € representing elements of Mg.2.X; A/.

and t,0 at the points Qe 2 ty and ge 2 tyo, where e 2 Ey;y0 and e is an orientation on e
with vl.g/ D v. The last condition uniquely specifies e unless eisa loop connecting v
to itself. Finally, each leg| 2 L connected to the vertex v| corresponds to a marked point
za' 2 T, disjoint from the connecting nodes. If t is connected, then ge is the
arithmetic genus of t. Thus we have

(2-12) T, £/D a.+v;iv;qv/=; Je Qe foralle2 E;
v2V !
where
E,DE\Tt, and qyD fae W2 Evg forall v2 V:

In this situation, we say € is the dual graph of .T; £/. We treat g, as an unordered set of
marked points on t,. If we fix an ordering on the set q,, we denote the ordered set by

Gy.

A complex structure jon t is a set of complex structures .j,/y2v on its components. By a
(complex) marked nodal curve, we mean a marked nodal real surface together with a
complex structure .¥; j; £/. Figure 2 illustrates a nodal curve with .g1; g2; 83; 84, 85/D
.0; 2;0;1; 0/ corresponding to Figure 1, left.

Similarly, for nodal marked surfaces mapping into a topological space X, we consider
similar decorated graphs where the vertices carry an additional degree labeling

AWV ! Ho.X;Z/; v! Ay

recording the homology class of the image of the corresponding component. Figure 1,
right, illustrates a dual graph associated to a marked nodal map over the graph on the left.

Assume D D SiZCEN, D; X is an SNC symplectic divisor, .!;J/ 2 1 .X; D/,
and .T; j/ is a connected smooth complex curve. Then every J-holomorphic map
wW.t;j/ ! .X; 1/ has a well-defined depth | (ENs, which is the maximal subset of
(Nesuch that Image.u/ D, . In particular, any map u intersecting D in a discrete set is
of depth | D . We say a point x 2 T is of depth | if D is the minimal stratum
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Figure 2: A nodal curve in Mg.>.

containing u.x/. Let P.N/ be the set of subsets of GEN.*T he dual graph of .u; t/
carries additional labelings

(2-13) | W;E! P.N/; wv! |, forallv2V; e! 1. foralle2E;

recording the depths of smooth components and nodes of t.

2.3 Log moduli spaces

S
Assume D D ,gn. Di X isan SNC symplectic divisor, .!;J/ 21 .X; D/, and
UW.T;j/ ! .X;J/ is al-holomorphic map of depth | (Newith smooth domain.
Then, for every i 2 (BNe | , the function

(2-14) orduWT I N; ordiu.x/D ordy.u; Di/;

recording the contact order of u with D; at x is well-defined. For every i 2 I, let
U@n, p, be the pullback of the @-operator @y, p, associated to .J; D;/ in (2-8). Since
every y@—operator over a complex curve is integrable, u@y, p, defines a holomorphic
structure on uNy D;; see [29, Remark C.1.1]. The holomorphic line bundles

.UNxDi,'U@p)&Di/ forall i 21

play a key role in the definition of the log moduli space below. Let ® yer0.1; UNx D;/
be the space of nontrivial meromorphic sections of uNx D; with respect to uX\gp, ; C
acts on ® ero.T; UNy D;/ by multiplication. We denote the C—equivalence class of a
section

2 ®qero.T; UNKD;/

by CEe. The function
(2-15) aeWT | Z;  ordg..x/D ordy./;

recording the vanishing order of at x (which is negative if has a pole at x) is
well-defined.
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A log J-holomorphic tuple .u; (Ee; 1; j; w/ consists of a smooth (closed) connected

UW.T;j/ 1 .X;J)/ of depth| (ENeand

Y
(2-16) e GEi*/i2i2 .®mero-T; uNxD;/=C/
P21
such that
(2-17) ordyg..x/® 0 D) x2w forall x 2 t;

where the vector-valued order function

ordyg.x/D .ord' X//i@ne1 ;-0rdee.x//i2 22" forall x 2 t
u

is defined via (2-14) and (2-15).
In particular, if u is of degree A 2 H,.X; Z/, then (2-17) implies

X
(2-18) A Di/iZCEN' D ordu;CE..wa/Z ZN .

wa2w

Remark 2.3 For every J-holomorphic map uN.T;j/ ! .X;J/ with smooth domain, *

there exists at most one meromorphic section ; 2 ®ero.1; UNx D;/ with zeros/poles
of order s, at wa (and nowhere else).

S
Definition 2.4 LetD D ,,gn. Di X bean SNC symplectic divisor, let .!; )/ 2
J .X; D/, and let

c .tiE/D % ¢ AuivEsa/ 5 dede  forall g2 E;
v2v

be a k—marked connected nodal curve with smooth components C, and dual graph
€D €.V;E; L/ as in (2-12). A prelog J-holomorphic map of contact type s D
.sa/k op 2 .ZN /¥ from C to X is a collection

(2'19) fo.fy.uy; GEye; Cv//vav
such that

(1) foreachv2V,.u;E® . Eyi*/ia; Tv;iv;zy [ v/ is alog J-holomorphic
tuple,

(2) uv.qg/ D uyo.qe/ 2 X for all e2 Eyvo,
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(3) se ordy,;,-de/D ordy,;0-Ge/ se forall v;v02 V ande 2 Eyypo, (4)

ord, . .z?/ D s; forallv2 V and za 2 z,.

Uv,v

In other words, a prelog map is a nodal J-holomorphic map with a bunch of meromor-
phic sections on each smooth component, opposite contact orders at the nodes, and
prescribed contact orders at the marked points.

Remark 2.5 For everyv 2 V and e2Ey, let
(2-20) Se D .se;i/i2en. D .ord' V-qe//iZCEN-I V}-OrdCE\,;io-qe//iZI‘, 2zN

| | u | |
be the contact order data at the nodal point Qe 2 +,. For e 2 Ev;vo, if u, and uyo have

image in Dy, and Dy ,, respectively, by condition (2) above, we have
u.de/ D uy.Ge/ D uyo.de/2 Dy, \ Di,0 D Dy, (1,05
iele Iy [lyo. Ifi 2 ENenl,[I,0, by (2-14) we have
Se;is Seji O:
Therefore, by condition (3) above, they are both zero, ie

(2-21) le DIy [lyo and se2 Z'e fogEN*! e zN forall e2 Ey.yo:
¢ ! Fv;

The dual graph € of every prelog map in Definition 2.8 carries an additional decoration se
% ZN foralle 2 E, which records the contact order of .uy; (E, ¢/ at the nodal point ge 2
T!\, for every e 2 Ey; see Figure 3. The set L of legs of € is also decorated with the
vector-valued contact order function

adWL ! zN; 11 s
recording the contact vector at the marked point za' corresponding to |.
Two prelog maps .u; Ee;C/ .uy; GEye; Cy/vov and .z (Ee; C/ Z,; (E,e; CZ/ 2 2With
isomorphic decorated dual graphs € as in Definition 2.4 are equivalent if there exists
a biholomorphic identification
(2-22) hwe t C/ hyWty jubt thvsiinag/ oy

such that
h.z?/D z?° forall aD 1;:::;k;

urhD g
GEhyhyi D @Bye  forall v2 V;i2ly:
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A prelog map f is stable if the group of self-equivalences Aut.f / is finite. By

Remark 2.3, a prelog map is stable if and only if the underlying nodal marked J—
holomorphic map is stable. Clearly, the automorphism group of a prelog map is a

subgroup of the automorphism group of the underlying nodal marked J-holomorphic

map. Example 2.18 below illustrates some rare cases when the two groups are different.
The equivalence class of a prelog map is called a prelog curve. For every such €,
we denote the space of k—marked degree-A prelog J-holomorphic curves with dual
graph € and contact pattern s by

(2-23) MP308 X; D; Afe:
If € has only one vertex v with | D |, then
[
Mg;s.X; D; A/ MP°5.X; D; A/e

is simply the space of equivalence classes of genus-g degree-A k—marked log J—
holomorphic tuples with an ordering on the marked points and contact type s.

In g D 0, the forgetful map
(2-24) Mo;s.X; D; A/y 1 Mg.«.Dy; A/, Gu;CEe; T B4 CEu; T;j; Ee;

into the (virtual) main stratum of moduli space of k—marked degree-A J-holomorphic
curves into D| gives an identification of two sets. That is because for every degree
d 2 Z holomorphic line bundle L | P 3 every set of distinct points z1;:::;z¢2 P 3

C , there always exists exactly one meromorphic section of L with poles/zeros of order
m; at z'. In the higher genus case, however, the (virtual) normal bundle of this
embedding is the direct sum of | copies of the dual of the Hodge bundle (ie tangent
space of Pic?.t/ at the trivial line bundle); see Lemma 5.2.

Example 2.6 If D is smooth, ie N D 1, a (pre)log map with smooth domain of depth
is just a J-holomorphic map u with image notinto D, u 1.D/ E, and

sD .ordya.u; D//arcks 2 NX

as in the definition of the relative moduli spaces in (4-4). Thus there exists a one-to-
one correspondence between the virtual main stratum of the moduli space of relative
J—-holomorphic curves of contact order s, and the space of depth & (pre)log curves
of the same contact pattern. Also, a depth-flg (pre)log J-holomorphic curve with
smooth domain is represented by a J-holomorphic map uW.T;j/! .D;Jjtp/ anda
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meromorphic section of uNyx D such that £ includes the set of zeros and poles of ,
and
sD .Ordza -//aZ(Ik' 2 Zk

as in the definition of the relative moduli spaces. The definitions, however, become
different if we consider maps with nodal domain.

For some decorated dual graphs €, the expected dimension of Mp'g‘);gs.x; D; A/e, calcu-
lated via (5-4) and the matching conditions at the nodes, could be bigger than or equal
to the expected dimension of the (virtual) main stratum Mg,s.X; D; A/ (something that
we do not want to happen); see the following example. In order for a nodal prelog
curve to be in the limit of the (virtual) main stratum, there are other global
combinatorial and noncombinatorial obstructions that we are going to describe next.
Of course, as in the classical case, we might get prelog curves satisfying these
conditions that do not belong to the closure of the main stratum.

Example 2.7 Let X D P2 with projective coordinates (Ex1;X2;x3®and D D D1 [ D>
(thus N D 2) be a transverse union of two hyperplanes (lines). For

gD 0; sD.3;2/;.0;1//2.N2/> and AD B H ,.X;2/5 Z;

we have that Mg;s.X; D; CE3¢/ is a manifold of complex dimension 4. If D; D .x1 D0/
and D, D .x; D0/, every element in Mg;s.X; D; (E3¢/ is equivalent to a holomorphic
map of the form

(2-25) Ezwé  Ez3;72°w;a3z3Casrz?w Cajzw? Cagwis

Let € be the dual graph with three vertices v1; v3; v3, and two edges e1; e> connecting v,
to vz and v» to vs, respectively. Furthermore, choose the orientations e a!nd e to end
at vz, and assume

lv, DIy, DB; 1y, Df1;2g; s, D.2;1/; s, D.1;1/; Ay, D@E2e; A, Dl
See Figure 3. Note that u,, is map of degree O from a sphere with three special points,
two of which are the nodes connecting t,, to t,, and t,,, and the other one is the

first marked point z1 with contact order .3; 2/. The second marked point with contact
order .0; 1/ lies on t,,. A simple calculation shows that M"(;?f.x; D; (E3¢/¢ is also a
manifold of complex dimension 4. The image of u, (dashed curve) could be any line

different from D1 and D, passing through D15, and every such uj is equivalent to a

holomorphic map of the form

Ez; wé GEzz;zw;aZZZCalszaowz.- O
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Im.uy, /
Im.uy,/

D1

Figure 3: A 2-marked genus-0 nodal degree-3 prelog map in P 3 relative to
two lines. The dashed curve is a line. The dotted curve is a conic. They are
connected by a ghost bubble that maps to D1>.

Corresponding to the decorated dual graph € D €.V ; E; L/ of a prelog map as in
Definition 2.4 and an arbitrary orientation O, fegeor E on the edges, we define a
homomorphism of Z-modules

M %D% M
(2-26) DDD.€/ 2~ z'v P%q TDT.€/ z'e
v2V e2E

in the following way. For every e 2 E, let
(2-27) %.1e/D se22'e;

where 1. is the generator of Z¢ in ZF and e is the chosen orientation on e in O. In
particular, %.1¢/ D O for any e with I D B. Similarly, foreveryv2 V andi 2 I, let
1,.i be the generator of the ith factor in Z'v, and define

M
(2-28) %.1yi/D ;2 Z'e
eE

to be the vector which has 1.,; 2 Z'e ZN in the eth factor if v D vl.e/ and e is not a
loop, which has 1eji 2 Z'e in the et factor if v D vz.g/ and e is not a loop, and
which is zero otherwise. This is well-defined by the first equality in (2-21). Let

(2-29) f Df.€/D image%/; K D K.€/D Ker.%/;
CK D CK.€/D T=f D coker.%/:

By Definition 2.4(3), the Z—modules f, K, and C K are independent of the choice of
orientation O on E and are invariants of the decorated graph €. In particular,
(2'30) KD --e/eZE;-Sv/VZV/2 ZE ° M ZIV Wv Sv°D eSe,

v2V 0
forall v;v'2 V; e2 Eyo,y
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Here, via the first identity in (2-21) and the inclusion Z'v § Z'v fogle 'v Z'e  we
think of s, as a vector also in Z'e forall e 2 E,. For any field F of characteristic zero,

let
DeDD"zF;, TeDT"zF, fe Df” 2z F;
(2-31)
KF DK”zF and CKF DCK”zF
be the corresponding F—vector spaces and % WD¢ ! T¢ be the corresponding

F—linear map. Via the exponentiation map, let

Y |
exp.fc/ .C/'¢
e2E

be the subgroup corresponding to the sub-Lie algebraf ¢ T, and denote the quotient
group by

GDG.f/D Y.C/Ie exp.fc/ D - ,._'geZE'Cﬂ—Ze
o2k exp.%c/ . C/5 ,,.C~ y
\

In the following, we will construct a map
(2-32) MPoE.X; D; Ale ¥ G.€/;

which will be used in the definition of log moduli spaces.
Given a prelogmapf fy .uy; GEye; C"/VZV as in Definition 2.4, fix an arbitrary set of

representatives
(2-33) v D ~v;i/i2|v 2 *nero-ty; u, Nx DIV/ forall v2 V:

Foreachv2V ande 2 Ey, letz, be an arbitrary holomorphic coordinate in a sufficiently
small disk . around the nodal point .ze D 0/D ge 2 t,. By (2-15), for everyv2 V,
e 2 !EV andi 2 |y, in alocal holomorphic trivialization

U Ny Dij.‘ Ny Diju.qe/ LN

we have . ,

(2-34) v;i-Z kD z!gjiv;z,.z!/e

such that
ox \;;i.O/ e 2!NXDiju_qe/

is independent of the choice of the trivialization. Similarly, by [48, (6.1)], for every
v2V,e2Eyandi2le Iy, the map uy has a well-defined sg’i derivative

(2-35) e;i 2 NXDiju.qe/
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(with respect to the coordinate Ze) in the normal direction to D; at the nodal marked
point e

With the choice of orientation O fegezg E on the edges as before, since ¢.i X 0 for
alle2 E andi 2 I, the tuples

(2-36) e D 'e;i|=e;i/i2le 2 .C/Ie for all le 20
give rise to an element
Y
(2'37) -e/eZE 2 . C/Ie :
e2E

The action of the subgroup exp.fc/ on corresponds to rescalings of (2-33) and
change of coordinates in (2-34); ie the class ob€.f /D of in

Y | .
GD Cce exp.fc/

e2E

is independent of the choice of representatives in (2-33) and local coordinates in (2-34).
If f and f , are equivalent with respect to a reparametrization WWt0! t asin (2-22),

the respective associated group elements and , would be the same with respect to

any h—symmetric choice of holomorphic coordinates fz¢ge2¢. Therefore,
(2-38) obe.CEf o/ WD G

is well-defined. By definition, obe.CEf o/ D 1 if and only if there exists a choice of
representatives fy;igi2i, ;v2v and local coordinates fZ‘%eVZE such that

eD e forall e2 E:

S
Definition 2.8 Let D D ,gy. Di X bean SNC symplectic divisorand .!;J/ 2
.X; D/. A log J-holomorphic map is a prelog J-holomorphic map f with the
decorated dual graph € such that

(1) there exist functions
wWwW ! RN vl and W ! Rg¢; el o

such that
(a) sy2 Ry fog&EN*! v forallv2 Vv,
(b) sv,.e/ Sui.e/D eSe !for everye?2 E;

(2) obe.f/D 12 G.€/.
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Condition (1)(b) is well-defined because of Definition 2.4(3). If (2) holds, we say that
the prelog map f is G—unobstructed. Condition (2) is independent of the choice of
orientation O on E used to define obe.

Remark 2.9 A nodal map in the relative compactification (when D is smooth) with
image in an expanded degeneration XCEme comes with a partial ordering of the smooth
components of the domain, such that the components mapped into X have order 0
and those mapped into the rt" copy of Px D are of order r; see Section 4.1. In the
compactification process, a component sinking faster into D results in a component
with higher order. From our perspective, the vector-valued function SWV ! RN in
condition (1) is a generalization of this partial ordering to the SNC case with RN instead of
Z; see Lemma 4.3. From the tropical perspective of [4, Definition 2.5.3], condition (1)
is equal to the existence of a tropical map from a tropical curve associated to € into RY.

This condition puts a big restriction on the set of contact vectors s.. For example, if
lv; lvo D B, then for any other v, 2 V and oriented edgesle 2 lEv;\ioo and'eO 2 |E\,o;\,oo,
the contact vectors s, and s should be positively proportic'mal.' Condition (2) has no
explicit equivalent in [1; 17; 36; 20], but it is related to the slope condition at each
node in [20].

Remark 2.10 The discussion above includes RN —valued functions, all of them denoted
by s, on the set of vertices, oriented edges and legs of a decorated dual graph €, which

the legs (marked points) are fixed for a moduli space (they are mdependent of €) and
define a function WL ! ZN. The contact orders se/ezg at nodal points define a
function SWE ' ZN and are part of the decoration of € " Finally the function swW
v! RN (and V!Z I R¢) is not part of the defining data of a log map. We only require
the latter to exist in order for a prelog map to define a log map.

Example 2.11 Example 2.7 does not satisfy Definition 2.8(1). Since l,, D I, D [,
we should have s, D sy, D .0;0/. Then condition (1)(b) requires Se, D .2;1/ and
Se, D .1; 1/ to be positive multiples of s,,, which is impossible. A straightforward cal-
clulation shows that the line component uy, in any limit of (2-25) with a component uy, as
in Figure 3 should lie in D1. Then the function $W ! R? given by s,, D .0;0/, sy,
D .1;0/ and sy, D .2; 1/ satisfies Definition 2.8(1).

The following definition lists the combinatorial properties of an admissible decorated
dual graph.
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S
Definition 2.12 For a fixed SNC symplectic divisor D D ;,&y. Di in X, given
g; k2N, A2H.X;Z/ ands2 .ZN /%, we denote by DG.g; s; A/ the set of (stable)
connected dual graphs € D €.V ; E; L/ with k legs and

(a) a genus decoration of total genus g,

(b) a degree decoration of total degree A,

(c) anorderingaM ! f1;:::; kg,

(d) set decorations| W/; E! P.N/ satisfyingle D I, [ 1,0 forall v;v0 2 V and
e2 Ey,yo, and

(e) avector decoration on the set E of oriented edges, e I's e2Z le ZN | satisfying se
QSeDO for all e2E;

such that condition (1) of Definition 2.8 holds and
X X
(2-39) .Ay Di/i2e&ne D s C s; forall v2V:

e2k, 2L
’ viDv

DG.g; s; A/ is the set of possible combinatorial types of stable connected genus-g
k—marked degree-A log curves of contact type s. Note that the defining conditions of
DG.g; s; A/ do not capture Definition 2.8(2); the latter is a noncombinatorial condition.
Example 2.13 below illustrates a legitimate € such that the moduli space of prelog
curves of type € has an expected dimension larger than the expected dimension of the
(virtual) main stratum. Then, imposing condition (2) of Definition 2.8 would reduce
the dimension to less than the expected dimension of the (virtual) main stratum.

For every € 2 DG.g; s; A/, define
(2-40) Mg;s.X; D; A/e D obet.1/ MP'°8.X; D; A/e

to be the stratum of log J-holomorphic curves of type €. We then define the moduli

space of genus-g degree-A stable nodal log J-holomorphic curves of contact type s to
be the union

_ [
(2-41) M¢%.X; D; A/ Mg.s.X; D; A/e:
€2DG.g;s;A/

Example 2.13 Let
X DP3 D;[D,DP2[P?% AD@®d2H ,.X;2/52Z; gb.d 1/%
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seD. 1;1/

2d points of
contact order .1; 0/ :

2d points of
: contact order .0; 1/

l,, D flg l,, D f2g
gy, D idd 1/ gv, D idd 1/
Ay, D Gde Ay, D Gde

Figure 4: A decorated graphinDG.gD.d 1/2;s;AD2d e/, corresponding
to two generic degree-d curves in D1 and D3, intersecting at d points
along D13>.

and let € 2 DG.g; s; A/ be the decorated dual graph illustrated in Figure 4. Note that

the function sWV! R 2 given by sv,D .1; 0/ and sv,D .0; 1/ satisfies Definition 2.8(1).

plo

gyv.n- ; ;
Every element of M os X5 D; A/¢ is supported on two generic degree-d plane curves

in D1 and D5 intersecting at d points along D12. By (5-4) and Definition 2.4(2), the
expected C—dimensions of Mg.s.X; D; A/ and Mpg'fjsg.x; D;A/e are 8d and 9d 2,
respectively.

relation is
viCyv, C.s  £:::Cs {D O

We conclude that the obstruction group G.€/ is complex .d 1/—dimensional. There-
fore, the subset of log curves

Mg;s.X; D; A/e MP°% X;D; A/

is of the expected C—dimension .9d 2/ .d 1/D 8d 1< 8d. O

Remark 2.14 By Remark 2.3, for every k—marked stable nodal curve f 2 I\Wg;k X5 A/
with dual graph €, fixing s 2 .ZN /¥ and the vector decoration fslegezlg as in Definition
2.12(e), there exists at most one log curve fog 2 Mg:'.o?(; D; A/ with orders s; at z' and
Se at Ge Iift‘ingf . Furthermore, f|og is stable if and only if f is stable.

Lemma 2.15 Givenf 2 Mg, .X; A/ with the dual graph € and s 2 .ZN /¥, the set of

possible vector decorations fse ge 2¢ asin Definition 2.12 satisfying (2-39), and thus the
set of possible log lifts of f , is finite.
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Proof Since Se;i D Se;i foralle2 E andi 2 le, it is sufficient to show that the set
of possible values for fS,e;iEez,E;iZIe is bounded from above. Fix i 2 (GENel fv2 V
and e 2 E, such that i 2 Ie' AI\,, then se;i and se;i are uniquely determined by the
tangency order of u, with D;. Therefore; we can restrict to the subset V; V of all

vertices v such that i 2 I, and the edges between them. Given a decoration f§egelzg
as in Definition 2.12 satisfying (2-39), let E; be the subset of oriented edges e such
that e 2 Ey.yo for some v;v02 V; and Se;i > 0. Let €; be the oriented graph made of
V; and the oriented edges in E;. By condition (1)(b) in Definition 2.8, €; does not
have any oriented loop. Theréfore, E; defines a partial order on V;. Let v 2 V; be a
maximal vertex. There is no orientéd edge in E; pointing toward v. Therefore, for

everye2 Ey, either Se;i D Oor Seji > 0. The idéntity

X
A,D; D s&iC‘ St

pZFv 12L; viDv
puts an upper bound on fs‘e;igezlgv. Moving down in the partial order on V; we get
upper bounds on other sg;;. ' a

Lemma 2.16 For every genus-0 k—marked stable nodal map f in I\Wo;k .X; A/ with
dual graph € and a fixed s, there exists at most one vector decoration fs!egegg as in
Definition 2.12(e) satisfying (2-39). In particular, the forgetful map

I —
Mo.e.X; D; A/ 1 Mo.X; A/

is an embedding (of sets).

Proof Assume that there are two different decorations fsegezg and fsc gezg as in
Definition 2.12 satisfying (2-39). There is some i 2 (Ns uch that fse iBe2E and
fs( gezg are different. Since g D 0, € is a tree and the subset of edges E where Sesi
31 Se i determines a subtree of that. In particular, there exists a vertex v 2 V that is

connected to only one edge e 20e. Orient e sdthat v is the starting point. Then,
by (2-39),

X X X X
AyDi Dseo;i C SeiC s;HsS,C se;C s’ DAyD;;

feog 2L e 2, feog 2L

e2Ey
v Dv viDv

a contradiction. O

Example 2.17 below describes a situation where f has different lifts but the automor-
phism groups of f and its lifts are the same. Example 2.18 describes a situation where
f has different lifts and some of them have smaller automorphism groups.
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Example 2.17 Let X D P2, let D D P1 be a hyperplane (line), and p1; p2; p3; Pa
be four distinct points in D. Let u,, W, >1 D be a degree-one map and v, bea
meromorphic section of uy Nx D with two poles of orders 1 and 2 at Jes D u\ﬁl.pl/

andge, D u Vll.pz/, respectively, and a zero of order4atz1 D u 1vE’3/- Similarly, let uy,
W, | D be adegree-one map and,, be a meromorphic section of u,,NxD with
two zeros of orders 1 and 2 at qe, D uy, .p1¥ and ge, D uy, .p3/, respectively, and
a pole of order 2 at e, D Uy, .p4¥. Finally, let uy, W, ! X be a smooth conic with
a tangency of order 2 with D at de; D Uy, .pay. The tuple

Ulog -Uvs; 'uvz;vz/; -le;vl//

with the nodal 1-marked domain

F32Y/ D Fy5 2 der; Qes/ tty, deys eys Ges/ tTus s Ges/=;

de Qe forall e 2 feq;ey;esg;

defines an element of hﬂ_l'_‘?i/.x; D; (E4e/. Let Uog be a similar tuple with the roles of
p1 and pz reversed, ie u D .uy,; Uy,; Uy,/ remains the same but ,, and ,, exchange

their orders at the preimages of p1 and py. Therefore, CEujog; T; zle and CE(uk,g; t:z%e are
different lifts of the same 1-marked stable curve (Eu;t;z%e in My.1.X; (E4e/. Note that
e1 and e; form a loop in €. In this example, the two vector decorations corresponding to
Ujog; T; z1/ and Mo t; 21/ yield isomorphic decorated dual graphs €. In other

words, the forgetful map
My.4/.X; D; Ede/e | My;1.X; Ede/

is a double-covering of its image. a

Example 2.18 Assume Wt | D X is a stable map, where T is the genus-1
nodal curve made of two copies of P 1 say Pl and P}, attached at 0 and 1, and

ui D ujp1 W11 D fori D 1;2 is a double-covering of some rational curve C; D,
with u;.z 1/ D u;.z/; ie

ui.0/Du;.1/Dx2Cs\C, D:

Further, assume Nx Djc, D 0.2/ and Nx Djc, D 0. 2/. The automorphism group
of the stable mapf D .u; ¥/ is Z,. Since upNxD D 0.4/ and UNxD D O. 4/,
there are two possible ways to lift f to a log map fjog 2 I\Tf X;D;2.C1CCy//. The
holomorphic section 1 of ul Ny D can be chosen to have zeros of orders .3; 1/, .2; 2/ or
.1;3/at.0; 1/. In the middle case, the automorphism group of fjog is Z,. In the
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remaining two cases, the two lifts are equivalent with respect to the reparametrization
map
Wt | T hj,1.z/Dz * foriD 1;2;

and their equivalence class defines a single element of IVI_l'f’.X; D;2.Cq CCy// with
the trivial automorphism group.

In Section 3, for J as in the statement of Theorem 1.4, we will lift the Gromov
convergence topology to a compact sequential convergence topology on (2-41) such
that the forgetful map (1-10) is a continuous local embedding. It follows that the lifted
topology is also metrizable. If g > 0, globally, (1-10) behaves like an immersion. If s
2 .NN /K then by Lemma 5.5 below, Mg;?."?@; D; A/ is a compact space of expected real
dimension

(2-42) 2¢%

106D/ A/cC.dimc X 3/.1 g/Ck:

In subsequent papers we will construct Kuranishi-type charts of dimension (2-42)
around every point of I\/I_gl?sg.x; D; A/.

The following example describes the log compactification of the moduli space of lines in
P2 relative to a transverse union of two hyperplanes (lines). The same example is
studied in [35], where Parker uses tropical geometry to describe lonel’s compactification
in [20] and compare it with his construction.

Example 2.19 Suppose that X D P2 with projective coordinates (Exq;X2; x3®, and
letD; D .x1D0/, D2 D .xD0/,D DD1[ D, AD (FI2 H 2.P2;Z/§ Z ands
D ..1;0/;.0;1//. Then, as we show below, the moduli space

(2-43) Mo EX; D; E1e/

can be identified* with By, ;pt, P42, (two-point blowup of P2), where P2, is the dual
space of lines in X D P 2, pt; is the point corresponding to the line D1, and pt, is

the point corresponding to the line D,. Let E; and E> be the exceptional curves of
Bpt,;pt, PRar and let L be the proper transform of the line connecting pt; and pt,. Any

line in X not passing through D15 intersects D1 and D, at two disjoint points z1
and z2, respectively. By (2-14),

ord.z'/D .1;0/ and ord.z?/D .0;1/:

14The identification is a homeomorphism with respect to the topology that we describe in Section 3.
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This gives an identification of
Mo;s.X; D; E1e/ Mg . X; D; Ele/

with Bpt,;pt, P 2 Eq[ E, [L/. Every other log map .u; CEe/ with smooth domain in (2-
43) is either of depth flg or of depth f2g with two marked points z! and z2 of the
corresponding orders. Those of depth f1g are given by an isomorphism uAP 1 ® D,

and a holomorphic section of Ny D1 S Op1.1/ such that has a simple zero at the

marked point zt and z1 % z2D u 1.D,/. Such (s uniquely determined by u.z1/2
D1 S P . Therefore, via the identification
E1S P Ho.NxD1/S P

such maps correspond to E;  fE; Lg S C. Similarly, the maps of depth f2g with
smooth domain correspond to E»  fE> Lg S C. For other log maps f in (2-43), z1
and z2 are mapped to the point D15 and thus live on a “ghost bubble” wWP 1! X, with
Im.uz/ D12. This ghost bubble and the nontrivial map uyWP1! X are attached to each
other at nodal points z3 2 Dom.uy/ and z° 2 Dom.u;/. By definition, the
meromorphic section D .;;5/ defining the log map .uy;(Ee . (Eyo;(Exe// is a
meromorphic section of the trivial bundle ulz\lx D12 S P1C2 such that

ord,»./D .1;0/ and ord,»./D .0;1/:

Since u, Nx D17 is trivial, we should have ord,s./ D . 1; 1/, and these restrictions
specify a unique .C/2—class (. There are thus three possibilities for f :

(1) uq is of depth ¢ In this case, by Definition 2.4(3), u; specifies an element of
Mo, 1;1//-X; D; (E1e/ and we get an identification of such curves f D CEuy;.up; (Ee/e in
(2-43) with the points of L fL E;; L E>g. The associated decorated dual graph €
is made of two vertices v1 and v, corresponding to u; and uy, with I,, D Bland |,
D f1; 2g, connected by an edge e with | D f1; 2g and se D '.Il; 1/ (depending on the
choice of orientation). The group G.€/ in this case is trivial and the function SWV !
R2 in Definition 2.8(1) can be taken to be sy, D .0; 0/ and sy, D .1;1/.

(2) uyisof depth flg In this case u; comes with a holomorphic section ; of Op1. 1/ as

before. Since ord.z%/ D .1;1/, by Definition 2.4(3), © should be zero at z° and this
uniquely determines G his unique element f D (Euy; (E0e/;.uy; (Ee/* corresponds

to the point E1 L. The associated decorated dual graph € is made of two vertices v,
and vy corresponding to u; and uy, with I, D flgand|,, D fl;2g, connected by an
edge e with le D f1;2gands De'.1; 1/ (depending on the choice of orientation).
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The group G.£€/ in this case is trivial and the function SWV | R?2 in Definition 2.8(1)
can be taken to be s, D .1;0/ and sy, D .2;1/.

(3) ugq is of depth f2g Similarly, there is a unique such map which corresponds to
the point E> L.

2.4 Forgetful maps

In this section, we show that the process of forgetting some of the smooth components
of an SNC divisorD D~ ,,¢n. Di gives us a forgetful map between the corresponding
log moduli spaces. The results are not used in the rest of the paper. While (1-10) is not
always an embedding, the map (2-47) below is an embedding. This embedding can be
used to reduce certain arguments to the case of smooth divisors.

S
LetD D ,,gn.Di X beanSNC symplectic divisor, .!;J/21J .X;D/, g;k2 N,
(2-44) sD .s3D.sai/izanefop1 2 .2N /X
and € 2 DG.g; s; A/. Given| (N, let

) [
sjiD .saD .sai/iai/kp12.2'/%; DjiD D
i21
and let €j, 2 DG.g; sji; A/ be the decorated dual graph with the same set of vertices
and edges, but with the reduced set of decorations

1ED Iy \ | forall v2 V;
I£D 1y \ 1 forall e2 E;
s; D .se;i/izi 2 z' forall g2 E:
Define
| | .
(2-45) CEN,-|VW|ng;§-X;D;A/€! Mg,.ps(;?-X;DJI;A/€h

to be the (well-defined) forgetful map obtained by removing the meromorphic sections

-v;i/iz|v I,ENe 1IN
(2-19) forallv2 V.

Lemma 2.20 The map gy, defined in (2-45) above sends Mg;s.X; D; A/¢

| . .
MP 0. X; D; Ale to Mg ), . X; Djis Al Mg;sjpll%(,‘D“;A/gjl.

Geometry & Topology, Volume 26 (2022)



1024 Mohammad Farajzadeh-Tehrani

Proof Fix an orientation O on E. With notation as in (2-26), the commutative diagram

EoL | % L le
v — 2

Z VZVZ EZEZ
Prp pry

L %0 L

E ° 1S Il
Z vav 2 e2e e

where prp and pry are the obvious projection maps and %and % are defined via O,
induces a group homomorphism prey,. V6.€/! G.€j,/ such that

Pren, -0be.f//D obej.an, 1-f// forall f 2 M°08.X; D; Afe:

Therefore, obe.f /D 1implies obgj .en, .f//D 1. O

Taking the union over all €, we obtain the stratified forgetful map

—tog

—o .
ans W EX; DA/ M ., -X;Dji; A/

g;9
For example, the | D B case of (2-45) is the map (1-10) into the underlying moduli
space of stable maps; moreover,

(2-46) @ns o D 110 TNy | WS, X; D; A/ | Mh’“ggm.x; Djio; A/

forall 10 | GENe. Fors asin (2-44), letsi D sjsig D .sai/apk2.2/% foralli 2 GENe,
and define

Y
+o |
(2-47) a@np1 D ans gWM g.sX; D; A/ | M 87X Di; A/;
i2GEN» 12GEN -

where the right-hand side is the fiber product of
fhiga W MZISF-X; Di; A/l Mg.X; A/gizEn.:
The map @ny 1 is well-defined by (2-46) and it is an embedding’® by Remark 2.14. As

the following example shows, this embedding can be proper (ie not an equality).

Example 2.21 In Example 2.13, the obstruction groups G.€j¢14/ and G.€js,e/ as-
sociated to €j¢14 and €jr,, are trivial. Therefore, for an element of the right-hand
side in (2-47), the corresponding sections y,;1 and y,.» can be arbitrary (modulo the

combinatorial conditions imposed by Definitions 2.4 and 2.8). On the other hand, for

T5By the results of Section 3, the maps ¢y s 1 and thus gy, 1 are continuous.
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such a pair .y;;1; v,;2/ to define an element of the left-hand side, the corresponding
group element in the nontrivial group G has to be the identity. Therefore, the restriction

1261 W Mg;s.X; D; Ale! D12 Mg;s; - X; DI;A/€jfig

of (2-47) to lvl_gl‘;’sg.x; D; A/e is not an isomorphism.

3 Compactness

In this section, after a quick review of the convergence problem for the Deligne—
Mumford space and for the classical moduli spaces of J-holomorphic curves, we
slightly rephrase and prove Theorem 1.4 in several steps. The main step of the proof is
Proposition 3.15, which relates the sequence of “gluing” and “rescaling” parameters,
when a sequence of J-holomorphic curves breaks into two pieces with at least one
of them mapped into D.

3.1 Classical Gromov convergence

Definition 3.1 Given a k—marked genus g (possibly not stable) nodal surface C
.T; &/ with dual graph €, a cutting configuration with dual graph €, is a set of disjoint
embedded circles

fegeop.co-¢/ T
away from the nodes and marked points, such that the nodal marked surface .t0; £ 0/
obtained by pinching every . into a node ge has dual graph €0.
Thus, a cutting configuration corresponds to a continuous map

'wloc

called a —degeneration1® in what follows, onto a k—marked genus-g nodal surface C°
with dual graph € such that £ ) D ".£/, the preimage of every node of T is either a

node in 70 or a circle in, and the restriction
"W ! t%n."./ fqeBese.co-¢// is a
diffeomorphism. Let
(3-1) Wl €
be the map corresponding to ' between the dual graphs. We have
E.€%/ E.€/[E.€°=€/ and L.€°/ L.€/

16|t is called a deformation in [41].
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1 2 0 1

e

Figure 5: Left: a 1-nodal curve of genus 3 and a cutting set made of two
circles. Right: the resulting pinched curve.

such that jg ¢/e €0/ and ji ¢o; are isomorphisms and W
E€0=€/1 V.€/

sends the edge e corresponding to ¢ to v if ¢ Ty . For every v02 V .€0/ there exists a
unique v 2 V.€/ and a connected component Uyo of T nfegeye c0-¢; such that

¥, t0 is obtained by collapsing the boundaries of cl.Uyo/ (here cl means closure).
This identification determines the surjective map

(3-2) W€/ V.€/; VR RVE

From another perspective, a cutting configuration corresponds to expanding each vertex v
2 V.€/ into a subgraph €, €0 (sometimes, this involves just adding more loops to the
existing graph) with the set of vertices and edges

vel/p./ tv/ and E€°/D ./ t.v/\E.£°=¢€/:

Moreover, g, D geo, the ordering of marked points is as before, and

X
(3-3) Ay D Ayo:

vo2v.€Y

Figure 5 illustrates a cutting configuration over a 1-nodal curve of genus 3, and the
corresponding dual graphs.

A sequence f', WC, | CO0g,an of degenerations of marked nodal curves is called
monotonic if €.C,/ S € for some fixed € and the induced maps V\talo I € are all the
same. In this situation, the underlying marked nodal surfaces are isomorphic, ie

(3-4) .Ca;alS . t;ia E/;/ forall a2 N;

for some fixed marked surface .T; £/ with dual graph € and cutting configuration . In
the following, we let T déhnote the complement of the set of nodes

fdegee.co-¢; O

Geometry & Topology, Volume 26 (2022)



J—holomorphic curves relative to an NC symplectic divisor: compactification 1027

Definition 3.2 [41, Definition 13.3] A sequence fC, .T4;ja; £a/8a2n Of genus-g k—
marked nodal curves monotonically converges to C% .t0;j% £ 0/ if there exist a
sequence of cutting configurations 5 on C, of type €0, and a monotonic sequence', W

Ca ! COof ,—degenerations, such that the sequence .' , j+,n,/ja CcOnverges to jojso in
the C 1-topology.1”

By [41, Section 13], the topology underlying the holomorphic orbifold structure of

Mg . is equivalent to the sequential DM—convergence topology: a sequence fC;ga2n Of

genus-g k—marked stable nodal curves DM-converges to CO if a subsequence
monotonically converges to C0. The following result, known as Gromov’s compactness

theorem [16, Theorem 1.5.B], describes a convergence topology on I\Wg;k XA/
which is compact and metrizable; see [32], [19, Theorem 1.2], [49, Theorem 0.1] and
[29, Chapter 5] for further details. In the special case of Deligne—Mumford space,
Gromov convergence is equivalent to the DM—convergence discussed above.

Theorem 3.3 Let .X; !/ be a compact symplectic manifold, fJ,ga2n be a sequence
of I-tame almost complex structures on X converging in the C 1-topology toJ, and

ffa .ua; Ca.tasjas £a//8a2n

be a sequence of stable J;—holomorphic maps of bounded (symplectic) area into X.
After passing to a subsequence, still denoted by ff,ga.2n, there exists a unique (up to
automorphism) stable J-holomorphic map

fO.u%co.40%% g%
such that fC,g42n monotonically converges to C0, and such that

(1) we can choose the ;—degeneration maps ', Wr, | 10 of the monotonic
convergence so that the restriction

Uajfana|la jg}: C
converges uniformly with all derivatives to uj+ cover compact sets;
(2) with the dual graphs €S €.C,/ and €°D €.C 0/ as in the definition of monotonic

sequences,
Ilirr11 Ua.ae/ D u.qe/ forall e2 E.€%=€/I
al
(3) the symplectic area of f ; coincides with the symplectic area of f, foralla2 N.

17Uniform convergence on compact sets with all derivatives.
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It follows from the properties (1) and (3) that for every v 2 €0, with Us,y0 T, asin

the definition of .v0/,
a Z Z

lim u,! D .u%/!:clu,o/
C

all
TVO

Moreover, the stronger identity (3-3) holds. With respect to the identification of the
domains and degeneration maps

oW, L 198 rw 19y

a

as in (3-4), property (2) implies that the sequence .u; W ! X /.on CO9—converges
toui1'.

Assume D X is an SNC symplectic divisor, .!;J/2J .X; D/, and
(3-5) ffa .Ua; Ea®;Ca.Tasjas £a//8a2n

is a sequence of stable log maps in l\7é°,.gs .X; D; A/. After passing to a subsequence, we
may assume that all the maps in (3-5) have the same decorated dual graph €.V ; E; L/,
and that the underlying sequence of stable maps

(3-6) fha .ua; Ca.Ta;ja; £a//8a2n
in I\/I_g;k .X; A/ (with the same domain) Gromov converges to the stable map
h .u;C.4;5;8//2 Mg,k . X; A/

as in Theorem 3.3. Then, in order to prove Theorem 1.4, (for J as in the statement of
the theorem) after passing to a further subsequence, we prove that h lifts to a unique
logmapf 2 M_g'?_é?.x,- D; A/. The meromorphic sections that lift h to the log map f

are specified in Section 3.2. We first prove that f is a prelog map in Lemma 3.13; the
proof works for arbitrary .!; J/ 21 .X; D/. Then, in Proposition 3.14, we prove that
f satisfies the conditions of Definition 2.8. Since there are only finitely many possible
log lifts of a stable map f with different decorations on the dual graph, it follows with

little effort that (1-10) is a continuous local embedding.

3.2 Log-Gromov convergence

In this section, first, we recall some basic structures associated to smooth/SNC symplec-
tic divisors. Then we state the definition of log-Gromov convergence and a convergence
result from which Theorem 1.4 will be deduced.
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Let D .X; !/ be a smooth symplectic divisor,J 2 J .X; D; !/, and letiy, p be the
induced complex structure on Nx D. Let Jx.p be the almost complex structure on
Nx D induced by the X@—operator @, p associated to .Nx D; in, p/ as in the end of
Section 2.1. Fix a compatible pair of Hermitian metric and Hermitian connection r
on Ny D. Such a connection r definesa 1-form , . onNx D D, whose restriction to
each fiber Nx D j pfpg§ C is the 1-form d with respect to the polar coordinates .r; /
determined by D r2 and the complex structure inyg 0. Recall from Section 2.1 that the
connection r gives a splitting

(3-7) TNxD S TD° Nx D

suchthatJy;p isequalto)p onthefirst summand andtoin, p onthe second one. By
the symplectic neighborhood theorem [28, Theorem 3.30], for N, D sufficiently
small there exists a diffeomorphism

(3-8) %MWNS D | X

from a neighborhood of D in Nx D onto a neighborhood of D in X such that %o0.x/ DX,
the isomorphism

TxX

(3-9)  NxDj( D TY'NxD,! T,NxD *% T,X! Ny D jx

X

is the identity map for every x 2 D, and
(3-10) %o!D!x;DD.!jD/CZd.}r/Z

The last property is not needed for many of the arguments in Section 3.2. In the
language of [45, Definition 2.9], the tuple R D .;r; %o/ is called an !-regularization. If
%o0) D Jx.p, thenthetuple.!; R; J/ isanelement of AK.X; D/ mentioned in (1-9).
In general, if D D ~ ,,gy. Di is an SNC symplectic divisor in .X; !/, a system of

regularizations for D in X is a collection of smooth embeddings

%0|VWX(D| I X; | (ENs;
from open neighborhoods NX( D, Nx D, of D| such that

%°|jD| D ile,
., L
d%o induces the identity mapon Nx D| S i21 NxDijp,,and

%0.Njjj0o \Dom.%o;//D Do \Im.%o;/forall 10 | CENe,
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Here, ) M .
o Wlppo S N Dj , ! D
i21 10
is the normal bundle of D| in Dyo. The last identity implies that the derivative d%o

induces an isomorphism of split vector bundles

v v

(3-11) D%0|||OW||0N||| K Nx Do

v | v .
N,jo\Dom.%o / * D;o\Im. % /*

See [46, Section 2.2]. A regularization for D in X is a system of regularizations for D
in X as above satisfying the compatibility conditions

Dom.%o;/ D D%o,,jo.Dom.%o0//;
%o D %001 D%ol110]pom. %, forall 121 CENe

Definition 3.4 [46, Definition 2.9] An !-regularization for D in X consists of a

choice of Hermitian structure .ijji; 11i;r''"// on NxDijp, for all i 2 1 (ENe,
together with a regularization for D in X as above so that
1X
%oll D.!jDI/C Ed.||i‘r,||i// for all | CEN';
P21

and (3-11) is an isomorphism of split Hermitian vector bundles for all |10 | ENe.

Finally, an element of AK.X; D/ isatuple.!; R;J/, where R is an !-regularization

as in Definition 3.4, and
M

%q) D, .Jjtp,/° TEE
i21
with respect to the decomposition (3-7). The main reason for restricting to AK.X; D/
or the integrable almost complex structures in Theorem 1.4 is that in the proof of
Proposition 3.15, forany p 2 D;, we need J to be.C/' —equivariant in a neighborhood
of p with respect to a (local) .C/' —action that preserves D and fixes D .

For any c 2 R, define
NxD.c/ D fv2 NxD Wv/< cg:
For any t 2 C, define

RiWyxD ! NxD; Ri.v/D tv forall v2 NxD;

(3-12) o 0 1 | . 0 .
%o D %o Rt Ry “.NyD/ ! X; Jt D %0oJ:
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Note that if %o D Jx.p, thenlJ; Jx,p is independent of t. The following lemma is
an expansion of the sentence after [21, equation (6.5)].

Lemma 3.5 ForJ satisfying (1-3), we have
tlilrg']tjﬂxD.c/DJO \ADJX}DJ-I\TXD.C/ forall c2 Rso;

uniformly with all derivatives.

Proof In order to simplify the notation, let us forget about %oand think of J as an
almost complex structure on N?( D itself; thenJ jp D Jx;pjo, andJt D R, J forevery
t 2 C. Via (3-7), we decompose J into four components

Jy.. /D S qyca2t 50t 0/ Ci2%2 5]
forall x 2 D; v2NxDjy and , D ,1° .2 2.TD° NxD/jy;

<

where, for example, J 11 is the component which maps the horizontal subspace T D to
itself. ldentifying .1 and ,> with the corresponding vectors in TyD and Nx Djy,
respectively, we get

-Jt/v-‘/ D -Jtl/l-‘l/CJtz!l't‘Z//u ljtgz-‘l/c-ltgz‘z/:

On each compact set Nx D.c/, the first summand uniformly converges to Jp..1/, and
Jtz\,z.‘z/ uniformly converges to in, p..2/ (with all derivatives). Finally, the term

Hva/
C 1-converges to the normal part of (a multiple of) Ny .v; J .1/, which is zero by (1-3);
see Remark 4.2. 0
For any (continuous) map uWt | Ny D, let
uD wwwt ! D

denote its projection to D. Then u is equivalent to a section 2 €.1; uNyx D/ in the
sense that

(3-13) u.x/D .x/2NxDjyy, forall x2t:

We will use this correspondence repeatedly in the following arguments. In particular,
by (1)—(3) on page 1004, u is Jx.p—holomorphic if and only if w is Jo—holomorphic
and ®yp D 0.
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Definition 3.6 With .X; D; !;J; %o/ as above (ie D is smooth), let
fa .ua; Ca.tasja; fa//aZN

be a sequence of stable maps with smooth domain in Mg.s.X; D; A/ that Gromov
converges, considered as a sequence in I\/I_g,.I< .X; A/, to the marked nodal map

fouy; Gty Ev//vav 2 Mg;k_-X; A/

S
with dual graph € D €.V ; E; L/ and nodal domain * D ,,, t,. With notation as
in (2-12), (4-8) and Theorem 3.3, for each v 2 V1 we say .u,/a2n is asymptotic to

v2®mero-Ty; u, Nx D/

on t, in the normal direction to D if there exists a sequence of nonzero complex
numbers .ta.y/a2n satisfying

(3-14) (uniformly) aIlirrl1 %otal;V luat ', fk D vjkin

the sense of (3-13), for every compact setK *, qy.

Proposition 3.10 below shows that, after passing to a subsequence, the limiting J—
holomorphic map f always admits such meromorphic sections , and that they are
unique up to multiplication by a constant in C. Since d%o in (3-9) is supposed to
be the identity map on Nx D, (3-14) does not depend on the particular choice of %o
in (3-8).

Definition 3.7 Let D X be an SNC symplectic divisor, .!;J/ 2 ) .X; D/, and
fa Uay; Ban® . gy '/iZIv; Ca;v D Tty ja;v; f"/vzv a2N 2 Mg;s-lfogD} A/
be a sequence of stable log maps in Mg, 2€X; D; A/18 with a fixed decorated dual graph €
D €.V; E; L/. We say this sequence log-Gromov converges to the log (resp. prelog) map

f OD Uvo;CEVOD. CEVO;i./iZIVo; CVOVOZVO
in W‘g’?s.x,- D; A/ (resp. in Mpgl?sg.x; D; A/eo) with the dec_orated dual graph €, D
€.V 0; EO; L0/ if the underlying sequence of stable maps in Mg . X; A/ Gromov con-
verges to the underlying marked nodal map

(3-15) £ %D .uyo; Cyolvoavo2 Mg . X; A/
S
with nodal domain 10 D o, 0 Tyo, and the following hold. With W, | V

18More precisely, they represent equivalence classes of elements in I\/Tglf)sg.x; D;A/.
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as in (3-2) and notation as in Theorem 3.3, for each v 2 V and V02 V, with Vvo/D v,

if i 2 1yo 1y, then .ua.y/a2n is asymptotic to yo.i on Tyo in the normal
direction to D; in the sense of Definition 3.6;

ifi 2 1,, there exists a sequence .t,.v0.i/a2n 2 C such that for every compact set
K 2ty0 .zyo[qyo/, the sequence t%vol; ajv;i ! ‘a jK uniformly converges to

vo;in-

Theorem 3.8 Assume that D X is an SNC symplectic divisor, that .!; R; J/ 2
AK.X; D/ for some regularization R orJ is integrable, and that

(3-16) fa Ug,v; Bay ®. CEa;v;i'/iZIV;Ca;vD-Tv;ja;v;iv/ v2V a2N

is a sequence of log maps in Ivl_g'f’sg.x; D; A/. After passing to a subsequence, there

exists a unique (up to reparametrization) log map
(3-17) f°D uyo; Eyo®. CEvo;i'/iZIvo,' Cvovozvo

such that (3-16) log-Gromov converges to (3-17) in the sense of Definition 3.7.

We break the proof of Theorem 3.8 into smaller steps. The main steps are proved in
the subsequent sections.

For two sequences of nonzero complex numbers .t,/52n and -ta(/aZN , We write

a

t
(3-18) ta/aan -ta/(aZN if lim —D 1:
al 1 tg

The right-hand side of (3-18) defines an equivalence relation on the set of such sequences
and we denote the equivalence class of a sequence .ta/22n by (E.ty/aon® F or an
equivalence class (E.ty/5on® and t 2 C, the equation

tE.ta/aan WD E.tty/aon®

is well-defined and defines an action of C on the set of equivalence classes. Moreover,
the operation of pointwise multiplication/division between such sequences

ta/azn -t3a2n D tat,Yann

descends to a well-defined multiplication/division operation between the equivalence
classes.
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The next proposition corresponds to [21, Proposition 6.6].

Remark 3.9 There is a minor issue in the proof of [21, Proposition 6.6]. In [21,
equation (6.13)], the authors use the intermediate value theorem to find the right
rescaling parameter t D t.,. However, the energy function used there is not necessarily
continuous in t. For example, applying their argument to the example where X D Cy
C, is the product of two curves, the divisor V is fpg C, for some point p 2 Cq, and the
sequence of curves is fp; C,g;D,, with Fimiig pi D p.

Proposition 3.10 As in Definition 3.6 (ie D is smooth), let

(3-19) ffa .ua; Ca.tasjas £a//8a2n

be a sequence of stable maps with smooth domain in Mg;s.X; D; A/ that Gromov
converges, considered as a sequence in I\/I_;o,;l< .X; A/, to the marked nodal map

fo.uy; Co.tysjv; &/ /vav 2 Mg;k-_x} Al

After passing to a subsequence (which we still denote by N), for each v 2 V; there
exists a unique
E2 * mero-Tv; u yx D/=C

such that .u,/a2n is asymptotictoy on T in the normal direction to D in the sense of
Definition 3.6. Furthermore, , has no pole/zeroin ¥, .qy [ zy/, and it has a zero of
orders; at z' forall z' 2 E,.

Proof For every fixed K 2 t, gy, by Theorem 3.3, the sequence
Ua.k Diug,x WKI D with ua.k %o Liugi! 1j4< WK! N © D forall al
converges uniformly with all derivatives to uy jk, and we have that

Ua:k.2/ D a:x.2/

for some nontrivial smooth section 5;¢ 2 €.K; u?,, Nx D/ in the sense of (3-13), so

that the sequence 5. converges uniformly with all derivatives (with respect to a
connection r ) to 0. Choose .ta,y:k/a1 SO that

(3-20) ktal;V;Ka;K kit xy Dcg forall al

for some arbitrary nonzero constant cx. Then, by [29, Theorem 4.1.1] (after passing to
a subsequence), the sequence

1
-%°ta;\,;,< Uy | 'a }K/al
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of J+,,,. —holomorphic maps in Nx D.ck/ converges uniformly with all derivatives to
a unique Jx.p—holomorphic map

upg.x W ! Nx D.ck/:
By (3-20), property (3) on page 1004, and since ™5,y converges to u,jK, we have
X1k DUVjK and Uik DV;K

for some unique nontrivial ®y,p—holomorphic section y;x of u, Nx Djk. Since 5. is
nonzero away from £, \ ' , .K¥, v.k is nonzero away from £, \ K .

Let
K1 Kz

be a sequence exhausting ¥,  qy. For each K;, let g, and c, respectively be the
section and constant corresponding to K; in the argument above. Choose a reference
point p 2 K1 and fix a nonzero vector v, 2 NxDj, ,/. For each i, we can equally
rescale cx, and .ta;v;k, /a1 by a constant number in C so that ;, .p/ becomes equal
to vp. Then, by the uniqueness of the limiting section, we get

viki D ov;Kicq K, forall i 2 N:
Therefore, the equation
v-x/ WDy, .x/ forall x 2 t, qy; i 2 N suchthat x 2 K;
defines a holomorphic section of u, Nx Dj+, g, such that (3-14) holds. Moreover,
tasviki fa2n -ta;vik /a2 forall i;j 2 N:

It remains to show that , has at most finite-order poles at the nodes and ord,i.,/ D s; for
all 2 2 E,.

For any marked point z' 2 £,, let »; t, be a sufficiently small disk around z' that
contains no other marked point or nodal point. For a sufficiently large, the order of
vanishing of u, at Z, is equal to the winding number of

%°ta1;v;@x. tua1 ' Yj@g forall a1

around D. With K D & in (3-14), these numbers are the same for a 1 and they are
equal to the winding number of u . 4 ij@;i around D. The latter is equal to the order
of y at z | We conclude that the contact orders stay the same at the marked points.

Similarly, for any nodal point Qe 2 ty, with e2F and vl.g/ Dv,lete t, bea
sufficiently small disk around q. that contains no other marked point or nodal point.
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Choose a compact set K T, gy so that one of its boundary circles coincides
with @, Since the convergence in (3-14) is uniform, the winding numbers of

v 1.

%°t:;v,-|< lua 1 ' j@% forall a 1

around D are the same as the winding number of ul;Kj@x'around D. The latter is
equal to the order of |, at Je. We conclude that , extends to a meromorphic section at

- e m|

Remark 3.11 The sections , and the equivalence class of the rescaling sequence
(E.ta;v/a2n e are independent of the choice of %.. It is also clear from (3-14) that if
.tv.a/a2n is arescaling sequence associated to , and -tv;(a/aZN is a rescaling sequence
associated to cy forany c 2 C, then

(3-21) G-(tv;a/aZND C l(E-tv;a/aZN"

The following is the analogue of Proposition 3.10 for a sequence of stable log maps
with smooth domain and image in D.

Corollary 3.12 If D is smooth, consider a sequence

(3-22) ffa .Ua;a;Ca.Tasjas £a//8a2n

of representatives of stable log maps with smooth domain in Mg;s.X; D; A/¢q4 such
that the underlying sequence of stable Jpb—holomorphic maps

(3-23) ffa ~ua;ca-+a;ja}£a//ga2N Gromov
converges, as a sequence in Mg..D; A/, to the nodal map
f .uy; Cv.tysjvs &/ vav 2Mg;k-_D;'A/:

With notation as in (2-12), (4-8) and Theorem 3.3, after passing to a subsequence
(whose index we still denote by N), for every v 2 V there exists a unique

E2 * mero-tv; U'},‘X D/=C

and a unique equivalence class of sequences of nonzero complex numbers CE.ta.y/a2n®
such that
(3-24) lim toyat ' ik D vik

al 1
for any compact set K t, qgy. Furthermore, (e only depends on the sequence of
equivalence classes .(Ez*/4on, it has no pole/zero in T, .Ov [ zv/, and it has a
zero/pole of the same order s; at z' forall z' 2 ,.
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Proof If (3-24) holds for a sequence .,; ta:v/a2n, then it also holds for any other
simultaneous reparametrization .taa; tata;,v/a2n. Therefore, (3-24) only depends on
the sequence of equivalence classes .(E;¢/5on. Every map in the sequence (3-22)
corresponds to a Jx;p—holomorphic map in

Mg.s.NxD; D; A/:

Choose the representatives 5 so that their image in Nx D lie in an arbitrarily small
compact neighborhood!® of D. Replacing .X; D; !;J/ with .NxD; D; !x.p; Jx:p/
and %owith the identity map in Proposition 3.10, we get the desired result. O

From Proposition 3.10 and Corollary 3.12 we derive the following conclusion.

Lemma 3.13 Let D X bean SNC symplectic divisor,.!;J/ 21 .X; D/, and
(3-25) fa Ua;v, CEa;vD- CEa;v;i ‘/iZIV; Ca;v D.ty; ja;v; iV/vZV a2N
be a sequence of stable log maps in I\/I_glf’sg.X; D; A/. After passing to a subsequence,
there exists a unique prelog map

(3-26) f oD Uyo; (o ®. CEVO,‘i./i2|V0; Cvo/voavo

such that (3-25) log-Gromov converges to (3-26) in the sense of Definition 3.7.

Proof First, we apply Gromov convergence to the underlying sequence of stable maps.
Then, running through all D; and v 2 V one at a time, applying Proposition 3.10 (with
D D D;) to the sequence

-Ua;v; Ca;v/aZN

whenever i ... 1y, and Corollary 3.12 to the sequence

Ua:v; a;v;is Ca;v/aZN
whenever i 2 1, we obtain f 0. We need to show that f  satisfies the conditions

of Definition 2.4. The first condition is obviously satisfied.

Continuity The matching condition (2) of Definition 2.4 is about the continuity of
the underlying stable map f %and already holds by Gromov compactness.

1950 we can still apply the Gromov convergence theorem. We can also use the compact manifold P R in
(4-2) instead of Nx D with the symplectic form !x.p D .!jD/Cd. r=.1C//, where > Ois a
sufficiently small constant. Then, for t sufficiently small, by interpolating between Jtjr 1.N 0 p; and
Jx;pipry b, We can construct a family of almost complex structures J¢ gn Px D so that J¢ gohverges to
Jx;p; see [21, Proposition 6.6].
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Contact orders at the nodes |n order to show that the condition (3) of Definition 2.4
is satisfied, let us first fix some notation. Since

seD  se () Se;i D se;i22 forall i 2 GENe;

it is enough to show that condition (3) is satisfied relative to each smooth component D; ;
ie we may assume D is smooth. In the context/notationZ® of Proposition 3.10, for
every v;v0 2 V and any node ge D de Qe/, e 2 Ey;vo, connecting ty and Tyo, let
o, T, be a sufficiently small disk around ge (not containing any other marked point or
nédal point), e Tyo be a sufficiently small dlisk around ge, and A D o, [ ® be the
resulting neighborhood of ge in T. We orient each circle @s. in the direction of the
counterclockwise rotation in ¢ C. Foreache 2 E, A;.e D 'a .A!e/ is atylinder in

t, with two (oppositely oriented) bou!ndaries
(3-27) @Aa;le D 'a k@'e/l and @A, D la k@'e/

such that uaja,,. does not intersect D for a 1. Since u,j ,.ais continuous and does not
intersect D, the winding numbers of u, around D on the two boundary circles of the
annulus A;;e (if oriented compatibly) are the same. But @A, and @Age are the
boundary circles of the annulus A,.. with opposite orientations, therefore the winding
numbers of

uaj@Aa;? and  Uaj@a,.
are opposites of each other. If v 2 V3, by the proof of Proposition 3.10
Se WDordq,v D winding number of .uaj@Aa;e/ forall a 1:
Similarly, if v 2 Vg, then
Se V\Dordq:.u\,; D/ D winding number of .uaj@Aa;le/ forall a 1:
Therefore,
(3-28) Se D se forall v;vP2V; e2 Ey.vo:

The same conclusion holds in the case of Corollary 3.12 (since it is a corollary of
Proposition 3.10).

The contact-order condition (3) in Definition 2.4 follows, for every e 2 E.€0=€/, from
equation (3-28). For eache 2 E D E.€/ IE0 D E.€0/, withv D vi.e/ 2V, the

20Note that the notation used for the limiting map in Proposition 3.10 is different than that in the statement
of Lemma 3.13.
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nodal point g, is a marked point for .uy; Cy/. For such e, by the last statements in
Proposition 3.10 and Corollary 3.12, the contact order S remains unchanged in the

limiting process. Therefore, the contact-order condition (3) in Definition 2.4 follows,
for every e 2 E EO, from the corresponding condition on .f3 /22N

Contact orders at the marked points. Finally, condition (4) in Definition 2.4 follows
from the corresponding statements in Proposition 3.10 and Corollary 3.12. O

In order to prove Theorem 3.8 (and thus Theorem 1.4), it just remains to prove the
following proposition.

Proposition 3.14 If, further,.!; R;J/ 2 AK.X; D/ for some regularization R or if
J is integrable, then the prelog J-holomorphic map f %in (3-26) satisfies conditions
(1) and (2) of Definition 2.8.

We prove Proposition 3.14 in Section 3.4. The proof uses a fine comparison result
between the rescaling parameters .t,.yv0.i /a2n corresponding to the sections yo.; for all VO
2V %andi 2 Iy0, and the “gluing parameters” of the nodes. We expect Proposition 3.15 and
thus Proposition 3.14 to be true for a larger class of almost Kahler structures
containing AK.X; D/ and the space of Kihler structures.

3.3 Local behavior of convergence

Proposition 3.14 is essentially a consequence of Proposition 3.15 below, which re-
lates the sequence of rescaling parameters .t5.v0.i/a2n corresponding to the sections
fyo;i8i21,0;v02vo in Lemma 3.13 to the “gluing parameters” at the nodes and the ratios of
leading-order coefficients O X co;i 2 NxDijyo.q.0/ in (2-36). We use the natural log of
these parameters to cook up the map required in condition (1) of Definition 2.8.

Let us start with a local picture of what is happening in Lemma 3.13 with respect to
any smooth component of D. Suppose D is a smooth symplectic divisor in .X; !/ and
J 21 .X;D;!/. Fix a regularization %MWN{ D ! X asin (3-8). Let ¢1 and e, be
compact discs of some fixed sufficiently small radius 1 around 02 C with coordinates z1

and zy. For i D 1;2, let fzj;a8a2n be a sequence of complex coordinates?! on e;
converging to z; uniformly with all derivatives.

2*viore precisely, zj., W; ! C is a sequence of smooth functions converging to the function z; W; | C
in C1-topology.
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Local case1 For asequence of complex numbers." /22N converging to zero, suppose
uzWA; ! Im.%o/ X, where

(3-29) A, D f.z1;a;22;a/ 121;a22;a D a5 21502 ®15 22,22 28 *1 %2

with a 2 N is a sequence of J-holomorphic maps that Gromov converges to the nodal

map
U1-21/W°1 ! X; Uz.Zz/W i) ! D; x D U]_.O/ D U2.0/2 D:

In other words, for any > 0,
(a) the sequence of J-holomorphic maps
Ua.Z1:a/ Ua.Z1a; "a=Z1,0/W A, 21,22 C j"a=1 jz.j 18! X
converges uniformly with all derivatives on the compact set
f.z1;0; 22,0/ 2 Aaj jz1;008 f21,a 2 Cj jz1aj 18
t0 U1jfz;2¢jjz1jigs (P)
the reparametrization
Ua.Z2;a/ Ua."a=2Z2:2;22.a/ WA, 22,52 C j"a=1 jzo.aj 18! X
converges uniformly with all derivatives on the compact set
f.z1,a;22;a/ 2 Aa ] 22008 T22,02 Cj jz2,a 18

to U2jtz,2¢jjz2jig, N
(c) we do not get any bubbling in between the two maps (ie the energy in between
shrinks to zero with ).

Furthermore, suppose that

(1) uj has atangency order of s > O with D atz; D 0, and

(2) there exists a meromorphic section of u2 Nx D with (only) a pole of order s at
the origin, and a sequence of complex numbers .t,/52n converging to zero such
that t 1%0 1.uy.22.a// converges to .z5/ uniformly with all derivatives on any
compact set fzo 2 C j jzaj 1g 2.

Let OX 2 Ny Djy be the leading coefficient of with respect to the coordinate z5 as
in (2-34),and 0% 1 2 Nx Dj, be the sth derivative of uq in the normal direction to D
at 0 with respect to the coordinate z1 as in (2-35). Proposition 3.15 below shows that
there is an explicit relation between the sequence of gluing parameters .",/22n, the
sequence of rescaling parameters .t5 /22N, and the ratio o= 2 C.
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Local case 2 Similarly, consider the situation where the sequence of J-holomorphic
maps fuagaan in (3-29) Gromov converges to the nodal map

.U1W°1 ! D;UZW'Z ! D/; x D Ul.O/D Uz.O/z D,'

with the following property: there exist meromorphic sections ;1.z1/ and ,.z,/ of
u, Nx D and u, Nx D, respectively, such that

ordg.1/ D s; ordp.2/D s
and, for i D 1;2, there exists a sequence of complex numbers .tj.a/a2n converging

to zero such that til,al%o 1.u;,.2i.a// converges to i.z;/ uniformly with all derivatives on

any compact set fz; j jzjj 1g ;. With 1 and ; as before, the following proposition also
shows that there is a similar relation between the sequence of gluing parameters
."a/a2n, rescaling parameters .ti.a/a2n, and the ratio =1 2 C.

Proposition 3.15 With notation as above, if in addition .!; R; J/ 2 AK.X; D/ for
some regularization R or if J is integrable, in local case 1 we have

ns

. _a 2
(3-30) aIlm t D 1—|—
in local case 2 we have
t 's
(3-31) lim 1. 2D 2%
all +t2:3 1

Note that the situation in (3-31) reduces to the situation in (3-30) after a rescaling of
the sequence fuagaan Via .t1.a/a2n. For the rescaled sequence we will have .t,
D t2.a=t1,a/a2n. We prove Proposition 3.15 in the next section. The proof of this
proposition is the only place where we use the extra assumption onJ in the statement of
Theorem 1.4, but we expect this proposition, and thus Theorem 1.4, to be true for a
larger class of almost complex structures that contains J .X; D/ and holomorphic
structures.

Remark 3.16 It is easy to see that the limit conditions in (3-30) and (3-31) are
independent of %e, the representatives 1 and 5, and the local coordinates z; and z;.
For example, in (3-31), substituting z, with ,z, and , with ", forsome ,; * 2 C
changes » on the right-hand side of (3-31) to ,",, changes ", and t2.5 on the
left-hand side of (3-31) to ,", and * t,.,, respectively, and has no effect on the
other terms. Thus it affects both sides of (3-31) equally. It is also clear that (3-30) and
(3-31) only depend on the equivalence classes CE."5/aon®, E.ta/aan®, E-t1.a/azn®
and (I-tz;a/aZN .,
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Remark 3.17 |n the case of smooth divisors, a significantly simpler version of (3-31)
suffices for proving Proposition 3.14. Instead of (3-31), in order to get the partial order
in Lemma 4.3 we only need to prove that

(

2 .
t — if sD O;
(3-32) lim 1. D 1
all b, 1 ifs>o0:

The equalities in (3-32) can be proved without the extra restriction on J . Thus, if D is
smooth, Theorem 1.4 holds for arbitrary .!;J/ 21 .X; D/.

Proof of Proposition 3.15 The proof below is by constructing a modified sequence of
J-holomorphic maps in Nx D .

Let .R D .;r;%o/;ingD; @nyp; IJx;p/ be as in the beginning of Section 3.2. If
3Ry / 2 AK.X; D/, then %ol D Jx.p. If J is holomorphic, we consider a

Then, replacing the rescaling procedure in the proof below with holomorphic rescaling
of z3, the same proof works for the holomorphic case.

Assume %o) D Jx.p. Notethat)x.p is C—invariant. Since the argument is local, in order
to simplify the notation let us forget about %eand think of fu,g42n as a sequence of Jx;p—
holomorphic maps into N, D itself.

Assume that we are in the situation of local case 1. For each a 2 N, let

ns
aD :

_a
ta

Claim 1 There is no subsequence .a1;ay;:::/ of N such that

lim D Oor1l:

i1
Thus, we conclude that there is M > Osuchthat M 1< j,j< M forall a2 N.
Claim 2 For any subsequence .as; a»;:::/ such that the limit

lim ;D

in1
exists, D 2=1.

This implies that (3-30) holds over all of N.
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In order to prove these claims, we first construct two new sequences of J-holomorphic
maps. For a 2 N, define

. . s . .
(3-33) ui,a WA, ! NxD; U1;a.Z21;a, ZZ;a/ D Z1.3Ua.Z15a; ZZ;a/;

. . s . .
(3-34) uz.a WA, I NxD; U2;a.-Z1;a; ZZ;a/ D Z1.3a Ua.Z1;a; ZZ;a/;

where the multiplications on the right-hand sides are with respect to the complex
structurein, p onNx D. By (1)—(3)onpage 1004, both (3-33) and (3-34) are sequences of
Jx;p—holomorphic mapsin Nx D.

We will also use the following fact. For any ¢ > 0, there exists a sufficiently small
¢ > O such that
!c D -!jD/C zcdl-‘r/

tames Jx.p on Ny D.c/. For any compact 2—dimensional domain T and smooth map
Ut I NyD.c/, let 7

l..u/D  ul,

¢ T
denote the symplectic area of u.

In order to prove Claim 1, we separate the problem into two cases. In the first and
second parts below, we consider the cases where the limit is 1 or zero, respectively.
In each case, we apply Gromov convergence to the auxiliary sequences in (3-33) and
(3-34) to get a contradiction if the limitis 1 or 0.

Proof of Claim 1, part 1 After passing to a subsequence, suppose
(3-35) lim oD 1:
al 1

By (a) on page 1040 and the previous paragraph, for any 0 < r < 1, the sequence
fui1,a.21.a/8a2n restrictedtor jz1j1 (and its preimages in A, ) converges uniformly with
all derivatives to the Jx;p—holomorphic map

U1;1;1.21/ D Zq s U1.21/!

By definition of 1, the function uj.1,1.z1/ extends to z3 D 0 with u3,1,1.0/ D 1 2
Nx Djx, where x D u;.0/ D uy.0/ 2 D. By assumptions (b) and (2) on page 1040,
equation (3-35), and since

s ns _s
zl;aD aZZ;ar
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the sequence fu1.,.22.a/8a2n restricted to r jzzj 1 (and its preimages in A;)
converges uniformly with all derivatives to the Jx;p—holomorphic map

ul;l;z.Zz/ D Uz.Zz/ D:

This obviously extends to the entire ¢, with u1,1;,2.0/ D x. The following subclaim
shows that the sequence fu1.5822n is bounded in between, so that Gromov convergence
applies.

Subclaim There exists a sufficiently large ¢ > 0 such that
(3-36) Im.ui.a/ NxD.c/ and !, .ui.a/ c forall a2 N:
Proof of subclaim Suppose (3-36) does not hold. Then (after passing to a subse-

quence), by assumptions (a)—(c) on page 1040, for any c > 1 there exists a sequence
fragaon with

(3-37) lim ryD 1
al 1
and
3-38 ir.Yz,oUs.21.2:22a/i; 1. .Z1:a; Fs 1Z4..Us.21:2; 22.2// D €
( ) -Zl;a;mz(/ZAa J a 1;¢ Ya-41;a Z,a/J c 1;a a 1;asYa-£41;a Z,a//

for all a 1. Let

. . 1, s . .
@1;0WAa ! Z;  U1;5.21;0522;0/ D 1y 293 Ua.Z1585 2250/¢

Then:

By (a) on page 1040 and equation (3-37), for any 0 < r < 1, the rescaled
sequence fa1,5.21.a/8a2n restricted to r jzij 1 converges uniformly with all
derivatives to the Jx.p—holomorphic map

@1;1;1.21/ D u1.21/ D;
where w1 is the image of ug in D.

By assumptions (b) and (2) on page 1040, the sequence fa1;2.22;2/8a2n Te-
stricted to r jzzj 1 still converges uniformly with all derivatives to the
Jx;p—holomorphic map

@1;1;2.22/ D uz.z2/ D:
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By (3-38), (the proof of) the Gromov convergence theorem in [29] applies?? to the
sequence f@q.38a2n. In the limit we get a bubble domain t 1 with 1 and e, at
the two ends and at least one closed bubble in between (because of (3-38)), and a
continuous Jx.p—holomorphic map

EI1;1WT 4
such that

lZl;lj.l D di;:1;1 and ul;ljoz D @3:1;2:

Any nontrivial bubble would have trivial image in D, thus its image lives in Nx D.c/jx.

This is impossible since the latter is open and there are no marked points to stabilize
such a bubble. O

Going back to the proof of Claim 1, part 1, by (3-36), (the proof of) the Gromov
convergence theorem in [29] applies to the sequence fu1.a28a2n. In the limit we get a
bubble domain t ; with 1 and e, at the two ends and possibly some closed bubbles in
between, and a continuous Jx.p—holomorphic map

up1 W t, 1 2z
such that
Ui;1je, D ug;1;1 and ui;1je, D ug 12
Since
u1;1;1.0/ ® uq;1,2.0/;
t 1 should include at least one nontrivial bubble. Such a nontrivial bubble would have
trivial image in D, thus its image lives in NxD.c/jx. This is impossible since the
latter is a domain in C and there are no marked points to stabilize such a bubble. O
Proof of Claim 1, part 2 After passing to a subsequence, suppose
(3-39) lim , D O:
al 1
By assumptions (b) and (2) on page 1040, since
U2;a-21;5 22;a/ D 215 a Ua-Z1;05 2250/ D 255 t, P Ua.21505 22;0/;

22Gromov convergence applies because on the open ends of A, we already know that fa1;aga2n
uniformly converges to @1;1;1 and @1;1;2, and in the middle the sequence is bounded with bounded
energy.
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for any 0 < r < 1 the sequence fuy.3.22.a/8a2n restricted to r jzaj 1 (and its
preimages in A,) converges uniformly with all derivatives to the Jx;p—holomorphic
map

U2;1;2.22/ D 23.22/:

By definition of ,, the function u.1,2.z>/ extendsto z; D 0 with uz.1.2.0/ D . Onthe
other hand, by (a) on page 1040 and (3-39), the sequence fuy.,.21.a/8a2N restricted to r
jz1j 1 (and its preimages in A;) converges uniformly with all derivatives to the Jx.p—
holomorphic map

uz;1;1.21/ D w1.z1/ D:

This obviously extends to the entire ®7 with uz.1.1.0/ D x. By a similar argument as
in the previous case, the inequality

uz.1,1.0/ % uz.1,2.0/

leads to a contradiction. This finishes the proof of Claim 1. a

Proof of Claim 2 After passing to a subsequence, suppose
lim o D ® 0:Then,
al 1
going back to the proof of Claim 1, part 1, since
z;5D "32z5, forall a2 N;

the sequence fu1.a.22.a/8a2n restricted to r jzoj 1 converges uniformly with all
derivatives to the Jx.p—holomorphic map

ui12.22/ D 12°3.25/:

This extends to the entire ¢, with u1;1,2.0/ D ,. By a similar argument as in the
proof of Claim 1, part 1, if

ui;1;1.0/ % uq;1;2.0/;
we get a contradiction. Therefore,
1D U1,1,1.0/ D u1,1,2.0/D 13l

in other words, D »=1. O

This finishes the proof of Proposition 3.15 in the local case 1.
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For the local case 2, repeat the exact same proof with
. . S 1 . .
U1.a WA, I NxD; U1:a.-Z21;a, Zz;a/ D Z1:, tl;a Ua.Z3;a; ZZ;a/,
. . S .
uz.a WA, I NxD; U2:a.21;a, ZZ;a/ D Ziaa Ua-zl;a/;

in place of (3-33) and (3-34), respectively, where

11 S
aD a2 ? forall a2 N:
t2;a
This finishes the proof of Proposition 3.15 under the assumption %oJ D Jx;p . 0

Remark 3.18 For arbitrary J on NX(D, define
Z Dft;v/2CNxD jtv2N®Dg; ZDft;v/22 jt2Cg;

and
FW ! CN,Df F.t;v/D .t;tov/:

LetJ; D F.iJ/, wherei is the standard almost complex structure on C and i J is the
product almost complex structure on the target. By an argument similar to
Lemma 3.5, the almost complex structure J ; on Z extends to a (similarly denoted)
almost complex structure on all of Z satisfying

(3-40) Jzifognxp [cp S ix;p:

Similarly, for every a 2 N, let

Z, D f.t;v/2C NxD jt° *v;2 N Dg; Z..Dft;v/2 2z jt2Cg;
and define
(3-41) FaW,, | CNyDf Fa.t;v/D .t; ltSv/:

Foreacha2 N, letJ, D F, .iJ/. By Lemma 3.5 and the previous paragraph, for each
a 2 N, the almost complex structure J 5 on Z,. extends to a (similarly denoted) almost
complex structure on the entire Z, satisfying (3-40).

For a2 N, define

(3-42) uaWAa ! Z; U1a.21505 2250/ D 221505213 Ua 21585 22,0/
(3-43) uz.a WA, I Za; u2;a-21;a,'22;a/ D -Zl;a;zl;;a Ua-zl;a;ZZ;a//5

By definition, (3-33) is a sequence of J;—holomorphic maps in Z and (3-34) is
a sequence of J;—holomorphic maps in Z,. In principle, one may try the proof
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above by replacing (3-33) and (3-34) with (3-42) and (3-43), respectively. However,
multiplication by , 1 in (3-41) and by r,  in (3-38) have adverse effects on the almost
complex structure, making it hard to apply Gromov convergence.

3.4 Proof of Proposition 3.14 and Theorem 1.4

Going back to the setup of Proposition 3.14, first assume that the dual graph € of f; in (3-

25) is made of only one vertex VV D fvg — in other words, restrict to the vt" component of
the sequence .f,/a2n in (3-25) — and fix a set of representatives

ca;v;i /i 21y
for G,y . For each 02 V, andi 2 lyo fix a representative yo;; of the C—equivalence

class (Epj¢ n Lemma 3.13, and a sequence of rescaling parameters .ta;y0.i/a2n Sat-
isfying Proposition 3.10 or Corollary 3.12, depending on whetheri .. I, ori 2 I,
respectively.

By the surjectivity of the classical gluing theorem of J—-holomorphic maps (see for
instance [13, Section 7]), for a sufficiently large, the domain T, S T of (the stable
map underlying) f, can be obtained from the nodal domain t0 of (the stable map
underlying) f in the following way. There exist

a sequence of complex structures jOaD .jvo:a/vo2vo on the nodal domain t0 D
.Tyo/yvoavo of the stable nodal map .f /in (3-15),

a sequence of local jyo.;—holomorphic coordinates Ze0ja Woeoll C around
geo 2 tyo forall v02 V and e°2 EY, and

a sequence of nonzero complex numbers ."c0.5/e02g0 CONVerging to zero
such that
(1) .*a;ija; &/ is isomorphic to the smoothing of .10; JO D .jvo;a/vo2vo/ defined by
(3-44) Ze0,aZe0;a D "eo,5 forall e¥2 EO;

(2) the sequence .jyo:a/a2n C1—converges to jyo for all v02 V0, and

(3) the sequence Zeo 0.a/a2n C1l—converges to Zeo, where Zeo Weo I C is some
fixed local jyo— hoIomorphlc coordinate around qeo 2 tyo for all V02 V, and
€2

We will use this standard presentation of .t,; j,/ in the proof of Proposition 3.14 and
Theorem 1.4.
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Remark 3.19 For 1 > 0 sufficiently small, let

'q0;a.l/ D fx 2 -eoljjzeg;a.x/j <1g for all ]e°2 E% a1
and

Aco.a D fZFO;aZeO;a D"co.aj Zeoj3 2 °q0.2"eo;a/,‘ Ze0,a 2 900.2"c0.0/8 T4

for all €22 EO, a 1. Then, with respect to the identification of the domains in (1),
the ,—degeneration maps
LW, L 10

can be taken to be the identity on the complement of [co2e0Ac0;5 and some “nice”
degeneration map
Acoy ! °q0.2"eo;a/ [0c0.2"c0.5/

on the neck region.

For each €22 E% and i 2 leo, let
Ox e%i 2 Ny Dijuo.qeo/

be the leading coefficient term in (2-36) with respect to zeo (and voji if i 2 Iy0). By
Proposition 3.15, for every vol; Vg 2 Vg and €02 .E?,c < We have
: : 1772

nslef; i Hi

tav0;i  ecn e0’
3-45 . T ’ forall i2 1,0\,
(3-45) Llim o D volly,
. ngec;i eo;'i
(3-46) a'{lﬂ;\ taposi "o, Do foralli2l,s Iy

eGi . .
The following proposition shows that, for a sufficiently large, we can adjust the choices
involved to get equality at each a.

Proposition 3.20 There exists a choice of coordinates leeogeozlgo and leeo;ageolzgo;az,\,
satisfying (3-44) and item (3) after that, and a choice of representatives Vb;i and
ta:vo.i/a2n for GEje and CE.t,0:i/a2n @, respectively, such that

(3-47) tan0i "D tane;i forall 21, \1y,; a1
(3-48) towii "% D 1 forall i 20,0 I, al:

The proof of Proposition 3.20 uses the following lemma with the linear map

M M
0,
%c W E chvol cleo
vo2y o0 e02E0
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defined in (2-26). We will use Proposition 3.20 to construct maps
WO RN VO e and  W°! R¢; €0l o

satisfying condition (1), and also to show that the limit satisfies condition (2) of
Definition 2.8.

Lemma 3.21 Assumef WC" | C™ isacomplex-linear map and .,/a2n C" isa
sequence such that

(3-49) lim f.,/ D :
al 1

Then there exists a convergent sequence -OéaZN C" (ie there existsa ; 2 C" such that
limai1 , D Ofsuchthatf., /D Ofgralla2N.

Proof Sincelm.f/ C™ isclosed, (3-49) impliesthat 2 Im.f /. Let D f./. Fixan affine
subspace?3 H C" passing through and transverse24 to the hyperplanef 1./Cn. By
(3-49), there exists M 2 N such thatH istransversetof 1.f.,//foralla> M. Then
the sequence given by , D f 1f..//\ H ifa> M,and, D, ifa M, has the

désired properties. ]

Proof of Proposition 3.20 Throughout the proof we assume |, D B&; for |, & [, the
argument reduces to |, D [ by considering the associated sequence of maps in
Nx D, . We modify a given set of representatives to another set satisfying (3-47) and

(3-48). Assuming |, D B, fix an orientation O on EO, and choose some branch

M M eO.i
D 0 2 C'eo; e D log "~ 2C'® forall 2 O

£20 e02E0 esi 210
of the multivalued function log. By (3-45)—(3-46) and the definition of %c in (2-26)
(via the chosen orientation O), for all a2 N we can choose the branches

M
n 0 °
aD . log eo;a/eOZEO; . IOgta;vo;i/VOZVO;iZIVo 2 CE Clvoso
that vave
lim %C-a/ D :
al 1
By Lemma 3.21 applied to %, there exists a sequence

0 CEO ° M CIVO
. éaZN
vo2vo

23 A shifted linear subspace.
24Assuming f is not trivial; otherwise, the lemma is obvious.
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such that %c.a /aD Oforalla2 N andlimai1 , D 0 Taking the exponential
of a(and 0, we conclude that there exist

-ce0/e02p0; . vosi/voavosizie  aAnd . e0;a/e02€0. a;v05i /vo2vosiale oy

in.C/E°  Q,0py0.C/" such that

alrinf cce0;a/e02€0; - a;v0;i /voavosizi,e D . e0/e02E0; - v0i/voavosial,o

and
-‘vol;ita;vci;i/ -‘eo;%\"eo,'a/s‘eo;i
(3-50) 1 I D1 foralli2l,o\l,q a2N;
"vzcl-ita;voz;i/ ! 2
(3-51) -‘Vfil;ita;vg;i/ -Leo;g;"eo;a/sﬁeo;i D1 foralli2 Ivf |V2c; a2 N:

By (3-50) and (3-51), for a sufficiently large, replacing
fZ oge020 With f, 01208020,
fzeo,age020 With f‘eo;alze?;agelozo,
f"e0;age02p0 With f‘eo,-a”élo;ageOZEOI
a5 /v0avojiale With ., aveitavo;i/voavojial,, and
i /vovosial,e With . yosivo;i/voavo;izie,

we get a new set of representatives satisfying (3-47) and (3-48). In particular, the limits
in (3-45) and (3-46) can be set to be equal to 1. m|

Proof of Proposition 3.14 First, assume that the dual graph € of f; in (3-25) is made
of only one vertex V D fvg and fix a set of representatives

-a;v;i/iZIV

for (E;y#B vy Propositions 3.15 and 3.20, we can choose the coordinates fZePge,OZEIO
and fZFO;agleozlEo;aZN, and the representatives yo.j and .ta.yo0.i/a2n SO that (3-47) and
(3—48)'hold. For each V02 Vg andi 2 lyo |y, note that .ts;y0;i/a2an converges to O;
therefore,

log jta,vo,ij> 0 forall V2V;i210 Iy;al;

and it converges to infinity. Choose a sequence of positive vectors s’ D .5, [i21, 2 R C'V
such that

(3-52) so..  logjtavoij> 1 forall V2 Vv0i2i,:

v;i
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With these choices, for a 1 the functions saW/, ! R N defined by

(3-53) s D .sy; logitayvoiij/ian; - 108 jtavo;ii/iane |V2R(;(|JV for all VP2V©9;
and 2WEC | R ¢ defined by
D logj"eo,aj  forall e92 EO;

satisfy condition (1) of Definition 2.8. By (3-45)—(3-46), f Calso satisfies condition (2)
of Definition 2.8.

For general €, by the definition of in (2-37), we can choose a set of representatives

-a;v;i/a2N;v2V;i2IV

and coordinates Zg;a D 'a;¢z.e/32NF.92,E such that the leading coefficients ejiza N
(2-36) satisfy '

(3-54) eiiza D eiia forall e2 E; i 21e; a2 N:

Let15.e D la;elase, forall e 2 E. For each v 2 V, choose representatives
w5 /voa.vsiizigo and  .ta;v0;i/vo2.v/5i21,0;a2N

so that (3-47) and (3-48) hold. By (3-54), we have

Se;i
e
ta,‘VO;I Ie;a

(3_55) alim —t;,VT D1

forall i 21,0\ 1y
(3-56) Jim o 1% D1 forall 21,0 Iyg

With an argument similar to the proof of Proposition 3.20, we can choose these
representatives so that further,

(3-57) tad;i 1ot D tayg;i  forall i 2 o, \lv,; a2N;
(3-58) taei letd D 1 forall i 21,0 I,c a2N:

Also choose the functions saW ! RN and2W ! R satisfying condition (1) of
Definition 2.8 so that (3-52) holds and

c? logle;a>1  forall e2 E; a 1:
Then, similarly to (3-53), for a 1, the extended functions sa )WV, ! R N given by

(3'59) saew;vo D -Sa;i IOgjta;vo;ij/iZIv; . IOgjta;vo;ij/iZIvo v 2 RIVO

C
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forall v®2 Vo; vD .v0/,and ® WE® ! R given by
eaD |Og.|e;a/ ife2 E EO;
D logj"eoaj if €92 EO=E;

satisfy condition (1) of Definition 2.8. By (3-45)—(3-46) applied to EO=E, the assumption
(3-54), and (3-57)—(3-58), f also satisfies condition (2) of Definition 2.8. O

Proof of Theorem 1.4 As in the classical case, consider the sequential convergence
topology on Mg M8 .X; D; A/ given by Definition 3.7: a subset W of Mg M8 . X; D; A/
is closed if every sequence in W has a subsequence with a Iog—Gromov limit in W.
Note that as in [29, Section 5.1], we must show that convergence with respect to the
topology defined above is equivalent to log-Gromov convergence. Since the forgetful
map ng.x; D; A/ ! Myg..X; A/ is finite-to-one and log-Gromov convergence is a
lift of the classical Gromov convergence, this property foIIows from the corresponding
statement for the Gromov convergence topology on M g .X; A/. In other words, the
five axioms2> in [29, Lemma 5.6.4] lift to sequences in MgIog X;D;A/.

Suppose that W 2 Mg..X; A/ is closed and let W, D 1.W /. Let .f;/2on be any
sequence in WE. Its image .h, D .fa//a2n in W has a subsequence, still denoted by
.ha/a2n, that Gromov converges to some h 2 W. On the other hand, by Theorem 3.8,
.fa/a2n has a subsequence that log-Gromov converges to some f 2 l\/l_g'?E.X; D;A/.
By Definition 3.7, we have .f /D h,ief 2 W (Therefore, W , is closed. We conclude

that is continuous.

Let f be an arbitrary log map in MZ'SO‘.gX; D; A/ with the decorated dual graph € and let
hD .f /be the underlying stable map in M. . X; A/. Let .U;/a2n be a shrinking basis
for the (metrizable) topology of Mg;kj(; A/ around h. Recall from Lemma 2.15 that
every stable map h admits at most finitely many log lifts f , each of which is
uniquely specified by the vector decorations on the nodes of its dual graph (ie the
contact data s, at the nodes q¢). Furthermore, by Lemma 2.16, such a lift is unique if
the genus is zero. As we explained before Remark 3.19, for a sufficiently large, by the
classical gluing theorem the domain of every map h° in U, is obtained from the nodal
domain t of h by gluing the nodes in a standard way. Furthermore, the image of h? is
CO—close to the image of h. The dual graph €, of h®is a contraction of € in the sense?®

25Even though [29, Section 5.1] is about the genus-0 moduli spaces, the statements used here are valid in
all genera.

26Their roles are reversed here.
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of (3-1). With these identifications, if f Cis a log lift of h%in U,, by its decoration type we
mean (1) the vector decorations se at its nodes e, together with (2) the winding
number2” of h0 around D; along the circles @A (see (3-27)) on every neck A. obtained
from gluing the node g of the domain of h; see!: the proof of Lemma 3.13. Thus, f ; has
the same decoration type as f if (1) at every node of the domain of f , the vector
decoration s, is the same as the vector decoration at the corresponding node of f , and (2)
on every neék Ac the winding number of h® around D; along the circle @A is the same
as the tangency order se i forlf . ‘

For a sufficiently large, define an to be the set of elements f  in I\/I_g'?é .X; D; A/ whose
image hO under lies in U, and such that f o has the same decoration type as f . By
Remark 2.14, the restriction of to UQis one-to-one. We show that Uis open. Let

.fu/p2n be a sequence in the complement of UZ? that log-Gromov converges to f 0.
After possibly passing to a subsequence, we can assume that the underlying sequence
of stable maps .hy,/y,,n lies either in U, or its complement U °. In the latter case, by
Definition 3.7, f ®belongs to the complement of Uao. In the former case, the decoration
type of f , (with respect to f ) will be the same as the decoration type of fi, which is,
by definition, different from the decoration type of f . Therefore, f ?belongs to the
complement of U;’. We conclude that Ug is open. Furthermore, it is easy to see that
.U{/a2n is a shrinking basis for the topology of I\/I_g;S.X; D; A/ atf . Therefore, the
log-Gromov topology of M_g;s.X; D; A/ is first-countable.

Hausdorffness is the consequence of uniqueness of the limit in Theorem 3.8. If Y is a
first-countable topological space and has the property that every convergent sequence
has a unique limit, then Y is Hausdorff. Finally, compactness of I\Tg'?gs.x; D; A/ is the
consequence of the existence of the limit in Theorem 3.8. a

4 Log vs relative compactification

In Section 4.1, following the description in [48], we review the construction of the
relative moduli spaces for smooth symplectic divisors in [23; 21]. In Section 4.2, we
show that the natural forgetful map from the relative compactification to our log
compactification is onto.

First, let us recall some relevant facts from Section 2.1. Suppose D .X; !/ isa
smooth symplectic divisor, J is an |-tame almost complex structure on X such

27 Contact points with D; are among the marked/nodal points and are away from the neck region.

Geometry & Topology, Volume 26 (2022)



J—holomorphic curves relative to an NC symplectic divisor: compactification 1055

that J.TD/ D TD, and ®y,p is the ¥@—operator in Lemma 2.1. With notation as in
Section 2.1, choose a Hermitian connectionr ¥ on.Nx D; in, p/ sothat @yp D @, .
The connection r N gives a splitting of the exact sequence

(4-1) 0! NxD! T.NxD/ !'9TD! 0

of vector bundles over Ny D, which restricts to the canonical splitting over the zero
section and is preserved by the multiplication by C; see [48, Section 4.1]. Let

PxDDP.NxD°® D C/;

(4-2)
DoDP.0°DC/ and D; DP.NyxD°0/ PyxD:

The splitting of (4-1) extends to a splitting of the exact sequence

dy

0! TV'.pyD/! T.PxD/ TD! O;

where W Py D ! D is the bundle projection map induced by (2-7); this splitting restricts to
the canonical splittings over Do S D 1 S D and is preserved by the multiplication by
C . Via this splitting, the almost complex structure J p and the complex structureiy, p
in the fibers of induce an almost complex structure Jx.p on Px D, which restricts
toJp onDg and D1, and is preserved by the C—action. In fact, Jx.p jn, p is the almost
complex structure J x, associageg to @n,p described in items (1)—(3) of page 1004
and is independent of the choice of rN. By property (1), the projection

Wy D ! D is.Jp;Jx;p/—holomorphic. By (3), there is a one-to-one correspon-
dence between the space of Jx.p—holomorphic maps uN.t;j/ ! .PxD; Jx.p/ (not
mapped into Dx;o and Dx.1) and tuples .up;/ where up Wt;j/ ! .D;Jp/ isa
Jp—holomorphic map into D and is a nontrivial meromorphic section of u NDX D
with respect to the holomorphic structure defined by u@n,p -

4.1 Relative compactification

Let .X; !/ be a smooth symplectic manifold, D X be a smooth symplectic divisor,
andJ 21J .X; D;!/. With notation as in (4-2), foreach m 2 N let

XEMm® X tf 1gPxDttfmgPxD/=; where
D filgD; and frgDg frC1gP;D forall rD 1;:::;m 1l

see Figure 6. This is a basic (ie there are no triple or higher intersections) SNC variety,
which is smoothable to (a symplectic manifold deformation equivalent to) X itself.
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0. AN
SRECIA
SR vIe

Figure 6: A relative map with k D 3 and s D .0;2;2/ into the expanded
degeneration XCE2,.

There exists a continuous projection map WXCEmM¢ X w hich is the identity on X and
on each Py D. We denote by J,, the almost complex structure on X(Ems uch that
Jmix DJx and Jmjfrgeen D Jx;p forall rD 1;:::;m

For each .c1;:::;¢cm/ 2 C , define ,¢,;:::;c,, WKEME X CEme by

L& v;we/ ifx D .r;GEv;we/2 frgP p;

X if x 2 X:

This diffeomorphism is biholomorphic with respect to J, and preserves the fibers of

the projection Px D | D and the sections Dg and D 1 .

The moduli space of relative stable curves for .X; D/ in [21, Section 7] is defined in
the following way. With slight modification, we follow the description in [48]. Suppose

Xk
(4-3) saD AD:
aD1

A level-zero genus-g k—marked degree A relative J-holomorphic map into X of contact
type s with D is simply a stable J-holomorphic map in I\/I_g,.k .X; A/ such that

(4-4) u .0/ le;:::;zkg and ord,a.u;D/D s, forall aD 1;:::;k:

u 1.fmgDo/ fz1;:::;z¥g,
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ord,a.u; fmgDo/ D s, forall za2 u 1.fmgDg/, sa

D Oifand only if z? ..u 1.fmgDo/,

and the restriction of u to each irreducible component t; of t is either

(1) a J-holomorphic map to X such that the set uj,1.D/ consists of the nodes

joining Tj to irreducible components of t mapped toflg Px D, or

(a) the set uj*.l.frg D1/ consists of the nodes q . J.joining T tp irreducible
components of t mapped to fr 1gP Q ifr> landtoX ifr D 1and
ordg,,; .u; Do/ ifr> 1;
ordd’'.u; D1 /D ordg,.u;D/ ifrD 1
where q;;j 2 t;; is the point identified with g,
(b) if r < m, the set uj,1.frg Do/ consists of the nodes joining t fo irre-
ducible components of t mapped to fr C 1g Px D.

See Figure 6. The genus and the degree of such a map UVt | XEme are the arithmetic
genus of T and the homology class

AD Guu®eH ,.X;2Z/:

Two tuples.u ;t ;j ;£ /and.u-; T~ ;j-; £/ as above are equivalent if there exist
a biholomorphic map 'W.t ;j /! .t ;j-/andcq;:::;¢m 2 C such that

'.z3/D z& forall aD 1;:::;k and u-D ,epines tu_1':

A tuple as above is stable if it has finitely many automorphisms (self-equivalences).

the relative moduli space
Trel yv. .
(4-5) Mgte.X; D; A/

is the set of equivalence classes of such connected stable k—marked genus-g degree-A
J-holomorphic maps into XCEme for any m 2 N. If X is compact, the latter space has a
natural compact Hausdorff topology.

Remark 4.1 In (4-3), we are allowing s, to be zero for some a 2f1;:::; kg. A marked

point z with contact order 0 has image away from D (or Dg, D1). Therefore, such
points are ordinary marked points as in the classical moduli spaces of J-holomorphic
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curves. In the literature, marked points are usually divided into the classical part
.z1;:::;z%/ and the relative part .zX¢1;:::; zk¢/ so that s, D ord,kca.u; D/ > 0
an ‘a o' saD AD. Then the moduli space (4-5) is denoted by I\/I_g'f:(;s .X; D; A/ with
s 2 .Zc/ . This sort of separation works fine in the relative case, because thgre are only
two types of points: in D or away from D. In the general SNCcase D D ~ ,,&y. Di,
however, there are 2N types of points and it is notationally cumbersome (and useless)

to divide points into separate groups based on their type.

Remark 4.2 Let .X;!/ be a smooth symplectic manifold, D X be a smooth
symplectic divisor, and J be an !-tame almost complex structure on X such that
J.TD/ D TD. If W.t;j/ ! .X;J/ is J=holomorphic, the linearization of the
Cauchy—Riemann operator (1-1) at u is given by

(4-6) Dy@WE.TIUTX/1€.1; o Hi%uTX/; Du@®./Du@)G,, Ny .; du/;

where ¥ is the C—linear connection in (2-2) and @r is the associated X@—operator on
€.X; TX/ in Lemma 2.1; see [29, Chapter 3.1]. The kernel of Dy@® corresponds to
infinitesimal deformations of u (over the fixed domain .*; j/) and the cokernel of that is
the obstruction space for integrating infinitesimal deformations to actual deformations.

If, furthermore, Im.u/ D, then the linearization map D @, ®efined in (4-6), satisfies
Dy®.€.t;uTD// €.%; " “¥'uTD/;

because the restriction of D,@ to €.1; uTD/ is the linearization28 of the @Xoperator at
u for the space of maps into D. Thus, Dy@X descends to a first-order differential
operator

(4-7) DNxD@wWe . t; uNxD/ ! €.+;-+;J.°*'1c uNy D/:

IfJ 21 .X;D; !/, ie (1-3) holds, then the normal part of N .; du/ vanishes. From
(4-6) and Lemma 2.1 we conclude that

DNxP@D u@y,p

is a complex linear operator. From another point of view, we can use (1-3) to show that a
certain sequence of almost complex structures on the normal bundle Nx D converges to
Jx.p; see Lemma 3.5.

Z8The linearization of (1-1) is independent of the choice of the connection at every J-holomorphic map.
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4.2 Comparison

In this section, for the case where D is smooth (ie N D 1 in Definition 2.8), we compare
Mgl .X; D; A/ and IWéo,-gs .X; D; A/. Proposition 4.5 shows that the latter is smaller and

there is a projection map from the relative compactification onto the log compactification.
This is expected, since the notion of nodal log curve involves more C—quotients on

the set of meromorphic sections. In the algebraic case, [5, Theorem 1.1] shows that an
algebraic analogue of the projection map (4-13) induces an equivalence of virtual
fundamental classes. We expect the same to hold for the invariants/VFC arising from
our log compactification.

First, we start with a simple lemma that highlights the relation between Definition 2.8(1)
and the layer structure in the relative compactification. In the following, when D is
smooth (N D 1), for a (pre)log map with the decorated dual graph €.V ; E; L/ we
define

VD fv2VijjlyjDig and E; D fe2E jjlejDig withiD 0;1;

(4-8)
E1;0D fe2 E jjlejD 1; 5. D Og; Eq1;2D fe2 E jjlejD 1;se 3 Og:

Lemma 4.3 LetD .X; !/ beasmooth symplectic divisor,) 2J .X; D; !/, and
(4-9) & ..uy; Eye; Cv/v2V1; Uy, Cv/vZVO/°2 Mplog;-sx; D;A/e

be a prelog J-holomorphic curve with dual graph €.V ; E; L/. Then there exists a
function WV | Rg satisfying Definition 2.8(1) if and only if the relations

(@) vievaif viandv;, areconnectedands Q. Oforanye 2 Evyivas and
(b) vievaifvyandv; are connectedands > Oforanye?2 Ey,;v,

are independent of the choice ofg 2 Evisv, (ie they are well-defined), and generate a
partial order ¢ on V.

Note that for a classical edge e connecting vi;Vv> 2 Vg, since |l D @ by (2-21), we
always have

seD 02 fogD R” RVP! D R:

Proof If (a) and (b) define a partial order .V ; ¢/, we construct WV | R satisfying
Definition 2.8(1) in the following way. For every v 2 Vg define s, D 0. Let VY be the

min
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subset of minimal vertices in V1. For every v 2 lelﬁ define sy D 1. Having constructed

Vvl et V - €1/ pe the subset of minimal vertices in
min

Vi Ve [[Viin/:!

For every v 2 Vr'n‘igl/ define sy D * C 1. This function clearly satisfies Definition 2.8(1).
Conversely, given such a function sWV! R satisfying Definition 2.8(1), define vi ¢ v
(resp. v1 ¢ v2) if they are connected by a path and sy, D sy, (resp. sy, < Sy,). This
is a partial order whose defining conditions match with (a) and (b). m|

Lemma 4.4 With notation as in Lemma 4.3, the prelog curve f satisfies the properties of
Definition 2.8(2) if and only if there exists a set of representatives f, gy2y, such that

(4-10) \,.qe_/ D yo.0e/ forall v;v®2 V; and e 2 Ev;vo suchthat se D O:

Proof The last equation is well-defined by Definition 2.4(3). Then the homomorphism
(2-26) (corresponding to some fixed orientation O on E) takes the form

(4-11) zBoc zE1 = zV1 % ZE4,

where %j,e, 0, %.1¢/ D se 2 Z foralle2 Eq, and

§ 1e ifvl.le/D V;
%.1y 1y;1/e D 1le if vz.;e/D V;

0 ifeisaloop or otherwise.

Therefore, tensoring (4-11) with C, the cokernel C K ¢ of %c is equal to the cokernel
of the induced map

cVe % cFuo;
Fix an arbitrary set of representatives
(4-12) w2 ®mero-Ty; u, Nx D//v2V1:

By (2-34) and (2-36), for every e 2 E1,0 with v D V1-$/ and VD vz.(!e/, we have

eD v-qe/?vo-qe/ 2C:
Therefore, y
X -e/eZEl;O 2 'C/El;o

e2E1;o
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is equal to .1/e2¢, , if and only if (4-10) holds. Since the cokernel of %c coincides
with the cokernel of %c, the element

@ .C /F=exp.im.%c//
in (2-38) is the identity element if and only if
®e .C /f10=exp.%c.CV1//

is the identity element. The latter holds if and only if is there exists a rescaling of the
sections ., /y2v, for which (4-10) holds. O

Proposition 4.5 Let D .X; !/ be a smooth symplectic divisor,)J 21 .X;D; !/,
and s 2 N¥. Then there exists a natural surjective map

(4-13) WA S D; A/ L Mg,oX; D A/:

Proof For each relative curve f , .f /is the log curve obtained by forgetting those
unstable P 1—components of the domain which are isomorphically mapped to the trivial
fibers of Px D, and restricting the equivalence class of each section defining a map
into a Px D to the equivalence classes of its restrictions to each connected component.
The required function WV .€/ ! Ry in Definition 2.8(1) can be taken to be the one
given by the layer structure of the relative moduli space. Moreover, by Lemma 4.4,
. T / satisfies (2-40) because a set of sections representing f have equal values at the
nodes ge with le D flg and Se D 0.

Conversely, let f be any log map with dual graph €. By Corollary 5.4, we can assume
that the function W .€/! Ry in Definition 2.8(1) is integral. Furthermore, we take s so
that max.s/ is the smallest among all such s. For each connected component t, of t

inf with 1, D flg, choose an arbitrary section , representing the equivalence class (g
inf . By Lemma 4.4, we can choose these sections to have equal values at the nodes ge
with e Dflg andse DO. Defing a relative map f whose restrfction to T,

is the map corresponding to , into the s™ Px D and such that disconnected nodes are
connected by adding extra P1—components to the domain and by mapping them
bijectively to the P 1—fibers of Px D. Since max.s/ is the smallest among all such s,
there is at least one nontrivial component in each Py D of the expanded degeneration

XEmax.s/e; ie £ defines a stable map into X(Emax.s/e. It is clear from the construction
that .f /2D f . m]
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Next, we give an example where the projection map (4-13) is nontrivial and both the
relative and the log moduli spaces are smooth. The relative moduli space in this
example is some blowup of the log moduli space.

Example 46 Let X D Pl andletD D D1 D pt; tpt, (so N D 1) be the disjoint
union of two points. Let gD 0, kD 4and AD CGEI® H ,.PY;Z/ S Z. Therefore
sD .0;0;1;1/2 N# (or a permutation of this) is the only option for the contact pattern.

Then the relative moduli space IVI_Or;";'.X; D; (E1le/ can be identified with a blowup of
P1P1 at4 points, while M'Ug-g,(g' D; (E1e¢/ can be identified with a blowup of P1 P 1 at 2
(of those) points. The projection map in (4-13) corresponds to the blowdown of the

two extra exceptional curves.

5 Comments on deformation theory and gluing

5.1 Deformation theory and the expected dimension

In this section, we outline a Fredholm setup for studying the deformation theory of
log J-holomorphic maps and draw some conclusions. This setup is discussed in detail
in [11], where it is also extended to log .J; /~holomorphic maps.

In the case of the classical moduli space of stable J-holomorphic curves I\Wg;k X; A/,
for a J-holomorphic map uW .t; j/!.X; J / with smooth domain, the linearization D, &
of the Cauchy—Riemann equation in (4-6) is Fredholm. Therefore, the real vector spaces

Def.u/ D ker.D,@/ and Obs.u/D coker.D @/

are finite-dimensional. The first space corresponds to infinitesimal deformations of u
(over the fixed domain C ) and the second one is the obstruction space for integrating the
elements of Def.u/ to actual deformations. In the nodal case, the kernel Def.u/ of the
similarly defined linearization map in [44, Section 6.3] corresponds to infinitesi-

mal deformations of u in the stratum Mg.k.X; A/¢. Deformations into My .X; A/
correspond to gluing the nodes of the domain with gluing parameters from C £ and
the gluing is virtually unobstructed, ie if Obs.u/ D 0, then for every sufficiently small
smoothing .10; jo/ of the nodes of the domain .T; j/, there exists a J-holomorphic map
yW.T0;jo/ I .X;J/ close to u; see [44, Theorem 6.3.5] for Obs.u/ ® 0. In other
words, moduli spaces IWg,.k .X; A/ are virtually smooth (orbifolds) and the “virtual
normal cone” of the stratum I\/I_g;k .X; A/¢ is an (orbi)bundle of rank jEj. For the log
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moduli spaces defined in this paper, as (2-40) indicates, there are new obstructions for
smoothability of nodal prelog curves. The claim is that, in addition to a logarithmic
version of D,®, the deformation/obstruction is encoded in the combinatorial linear
map (2-26).

Mg:s.X; D; A/ Mg . X; A/ for some sD saD.sai/iZCEN.az(Ik. 2 NN/

Gkel f.I;R;)J/ 2 AK.X; D/, let TX. logD/ be the log tangent bundle in [46,
(8)],and if J isintegrable, let TX. log D/ be the usual holomorphic logarithmic tangent
bundle. There is a natural complex linear homomorphism

W X. logD/! TX

(covering idy ) that is an isomorphism away from D. This homomorphism induces
similarly denoted maps

WE.T; uTX. logD//! €.7;uTX/;

2W€.+;-*;J9"1c uTX. logD//! €.%;et, V2 uTX/:

The following is one of the key steps in understanding the deformation theory of
J-holomorphic maps relative to an SNC divisor; see [11, Section 5.1].

Theorem 5.1 [11] With notation as above, the linearization D,@ naturally lifts to a
Fredholm linear map
(5-1) DI@WW *P.t;uTX. logD//! W' HP.t;et 9 c uTX. logD//

such that 5 1 [ak’g)@ D D@1 ; over the space of smooth sections. Furthermore, if
coker.DISg@/ D 0, the set of J-holomorphic maps (the marked domain is fixed) of
contact type s close to u (in a suitable Banach manifold) forms an oriented smooth

manifold of real dimension
(5-2) 2 deg.uTX. logD//Cdimc X.1 g/:

Note that (5-2) follows from Riemann—Roch and (5-1). Considering the deformations of

of Mg;s.X; D; A/ is equal to the naive dimension count (1-6).
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Next, consideralogmapf D.u; CE;®iy; t;z L:::; 2"/ inthe stratum Mg;s.X; D; A/,
ieT issmooth, u.T/ D, for a nontrivial maximal subset| (ENe,ord,=.u; D;j/ D s,; for
alli .1, and ord,a.;/ D s,; foralli 2 |. Forgetting the meromorphic sections, by

Remark 2.3, we get an inclusion map

Mg.s.X; D; A/y, ! Mg.5.Dy;D;A/;
UGtz 20 st 2t 2,

where

0 )
DD Dy (i D, and 5D saD.Saifizaner 5, 2 NEVTD /K

i25 |
With . D, ; D/ in place of .X; D/ in (5-1), deformation theory of Mg,s.D;; D; A/ is
given by the restriction of D':’g@ toTD,. logD/. It is worth mentioning that restricted
to D, there is a natural isomorphism

(5-3) TX. logD/jp, S TDy. logD/° D, C':

Lemma 5.2 ThereexistsamapP; D .P;.i/i21 WMgz.D;; D; A/ 1.Pic®.t//" such
that
Mg.s.X;D; A/, D P, *.0'/:
In particular,
Mo.s.X; D; A/; D Mg.5.D,;D;A/:

Here Pic0.1/ is the group of degree-0 holomorphic lines bundles on .t;j/ and O 2
Pic0.t/ is the trivial holomorphic line bundle.

Proof Foreachi 2 I, define

X
P|;i.CEu;+;zl;:::;zk-/D uNxD; “ O s,iz% 2 Pic®.t/; ap1

P P
where O &, 1 saiz? is the line bundle corresponding to the divisor ~ a X, saiza.
Therefore,

if and only if there exists a meromorphic section |.; of uNy D; with zeros/poles of
order s; and z? (and nowhere else). O
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We conclude that the deformation/obstruction theory of the stratum Mg,s.X; D; A/,
is given by D%@ on Mg.s.Dy; D; A/ and the linearization of P,. By (1-6) and
Lemma 5.2, the expected real dimension of Mg,s.X; D; A/ is

(5-4) 2 ¢/ 8% a/c.dimeX  3/.1 g/Ck jlj:

Via the identification (5-3), the maps D'ﬂg@ on Mg.s.Dy; D; A/ and P, can be com-
bined into a single Fredholm operator as in (5-1); see [11, Section 5.2].

Moving to the nodal case, with notation as in (2-31), let

M
(5-5) D.€DKg\ Rg°%F RO v kg
v2V
be the cone of nonnegative elements in the kernel of %gWDRr ! Tgr. This cone is
independent of the choice of the orientation O used to define (2-26); in fact, by (2-30),

M v

Iy
(5-6) D cele2e; Svlvav 2REG” Rp “Sv svwoDese forall v;vP2V
ande 2 Eyo.y

Vav
The integral lattice underlying coincides with the monoid Q- in [4, Section 2.3.9].

Lemma 5.3 For every € 2 DG.g;s; A/, .€/ is a top-dimensional strictly convex
rational polyhedral cone in Kg.€/.

Proof The functions s and in Definition 2.8(1) define an element m¢ of

M
(5-7) Ke\ RE® ~ Rb

v2V
Since all of the coefficients in m¢ are positive, for any arbitrary m 2 K g there exists a
sufficiently IarEe r > 0suchthatm Crmc¢ 2 . We conclude that is top-dimensional.

SincéR, °  ,y Ry is a strictly convex rational polyhedral cone and K g is an

integrally defined subvector space, the intersection (5-7) is a strictly convex rational
polyhedral cone. a

Corollary 5.4 By Lemma 5.3, the functions s and in Definition 2.8(1) can be chosen
to be integral-valued.

In conclusion, with a setup similar to [44, Section 6.3], the deformation/obstruction
theory of any stratum

component T of T, and (2) the obstruction map (2-32).
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Lemma 5.5 For any decorated dual graph € 2 DG.g;s; A/, the expected complex
dimension of Mg.s.X; D; A/e is

(5-8) c, X 8% a/c.n 3/1 g/Ck dimgKg.€/:

The only stratum with dim Kg.€/ D 0is Mg;s.X; D; A/.

Proof The expected complex dimension of each component Mg, .5, .X; D; Ay /), is,
by (5-4), equal to

c; X 8% A, /C.n 3/ gu/CkeC 'y jli;
where ky DjEj, v Djqyj and sy is the set of contact order vectors at £, [qy . The prelog
space Mpglf’sg.x; D; A/e in (2-32) is the fiber product of fMg, .s,.X; D; Ay/1, 8vav
over the evaluation maps at the nodal points,

Y Y
Mgvﬁv'x;D;Av/u ! .D, D|eﬁ
v2V e2E
Therefore, using (2-11), the expected complex dimension of Mp;f.x; D; A/¢ is
X TX. logD/ N . X L
(5-9) c, Ay/Con 3/1 gy/CkyC'y  jlyj .nojlej/
v2V e2E
TX. logD/ . X . X .
Dc, A/C.n 3/1 g/Ck jEj jlvj C jlej:
v2V e2E
By (2-26), X X
dimg Kr.€/ dimc.G/D JEjC  jlij ilej:
v2V e2E

By (2-32), the stratum Mg.s.X; D; A/¢ is the preimage of the identity element under
the map

Ob€W/Ip;|gc;)sg.X; D;A/e! G:

Therefore, the expected complex dimension of Mg;s.X; D; A/e is equal to the differ-
ence of (5-9) and

X X
dimc.G/ D dimg Kg.€/ jEjC jlvi jlej ;
v2Vv e2E
which is equal to (5-8).

By Definition 2.8(1) and (2-30), a function .s;/ as in Definition 2.8(1) gives us an
element of Kg.€/. This element is trivial only if € D fvg is a one-vertex graph with no
edge and I, D B. This establishes the last claim. O
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5.2 Gluing parameters

The last step in describing the deformation theory and establishing (?) is to prove a
gluing theorem for smoothing the nodes (ie deformations normal to each stratum). In
this section, we describe the space of gluing parameters for each € 2 DG.g;s; A/ and
show that it is essentially an affine toric variety. We sketch our idea for the construction of
gluing map and defer to a future work [12] for the details.

For a classical nodal J-holomorphic map with jEj nodes, the space of gluing parameters
is a neighborhood of the zero in CE. Foralog mapf asin (2-19), the gluing procedure
involves a simultaneous smoothing of the nodes, together with pushing u, out in
the direction of ;; for some v 2 V andi 2 I,. Thus, a priori, the space of gluing
parameters could be quite complicated and the log moduli spaces (2-41) are not always
virtually smooth. For example, the log moduli space of Example 5.6 below has an
A;-singularity along some stratum. For the log moduli spaces, the space of gluing
parameters along Mg.s.X; D; A/e belongs to (a neighborhood of the origin in finitely
many copies of) the affine toric variety Y ¢, constructed from the toric fan .€/ Kg. In
other words, the kernel of (2-26) gives the gluing deformation and, by (2-40), its
cokernel gives the obstruction space for smoothability of such prelog maps.

In the following example, we describe atuple .X; D; g; s; A; €/ where Mg;s.X; D; A/eis
apointandY has an Aj—singularity at its center. In this example, the relative moduli space
Mg;s.)C'Ei; A/ replaces the Aj—singularity with a small resolution of it.

Example 5.6 Suppose X D P3,D S P1 P1is a smooth degree-2 hypersurface,
and let

gDl AD H ,.P3;2/8 Z; sD .0;0;4/:
By [21, Lemma 4.2] and (5-8), both W;!S.X; D; A/ and I\Wg'cf%.x; D; A/ are of the

expected complex dimension 7. Let Mrge]S.X; D; A/e be the stratum of maps in the
expanded degeneration X(E2ewvi th connected components:

a degree-1 map wWWP1 ! X (aline) that intersects D at two distinct points
(with multiplicity 1),

amap WWP1 ! Py D inthe second layer f2g Px D of X(E2e which is made of a
degree-1 map xsWP1! D and a meromorphic section of xNx P S0p1.2/ with
a zero of order 4 and 2 poles of order one, and
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< ()
o () () 5
PxD M order D .4/

order 4 contact

Figure 7: Left: a nodal 2-marked g D 1 relative map in X2, Right: the

decorated dual graph of the image log map.

two maps u;;lbWP 1! Py D inthe first layer f1g Px D of X(E2e carrying the first
and the second marked point, respectively, which are degree-1 covers of fibers
of Px D connecting ug and ug.

See the left-hand side of Figure 7. While the stratum Mgr;esl.x,- D; A/¢ is of virtual
C—codimension 2, by (5-8), its image

Mg;s-X; D; A/e D .My, "X; D; A/e/

in the log moduli space, given by the projection map of Proposition 4.5 below, is of
virtual C—codimension 3.

In fact, with the labeling and the choice of orientation on the edges of the associated
decorated dual graph € in Figure 7, right, we have
oz E ° M 7lv; & zferieriesieng e 2fviiva;vsg | M 7le; & feiiesiesiesg
i2CE3e i2GE4e

%.1e'/ D 1e, forall i 2 (Eds;

%.1y,/D 1, Cley; %.1y,/D 1e,Cle,; %.1y,/D  leg ley:
Therefore,

D ker‘%R/\.Rfelo;ez;e3;e4g . Rfv16'V2;V3g/

is the cone generated by the set of 4 vectors
.1D1,;Cle; Cle,; 2D1,C1,,Cle, Clg,;
‘3D 1V2C1V3C1e2 C1e3; ‘4D 1V1C1V2C1V3C1€1C192:

Since the only relation among ., is .1 C .4 D > C, 3, the associated toric variety Y is
isomorphic to the 3—dimensional affine subvariety

.X1Xa Xzx3 D 0/ C42 O
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For every log curve f 2 Mg;s.X; D; A/¢ choose a representative
(5-10) Uv;fvﬁgiﬂv;cv-fv;jv;fv/vzv

and a set of local coordinates f;egezlg around the nodes. Since f is G—unobstructed, by
the definition or in (2-37), we can choose v;i and Ze such that the leading coefficient
vectors in (2-36) satisfy

(5-11) eD e forall e 2 E:

Foreveryv2 V andi 2 @Ne | , letty;; D 1in (5-12). Then the space of gluing
parameters for f is a sufficiently small neighborhood of the origin in the complex
subvariety

v

Y Y s
(512) NeD  ."e/e2e; -tvii/vaviizi, 2CF Clv "ty D tyoy
v2V
forall v;v®2 V; e 2 Ey.y0; i 2 I and e such that s¢;i 0
Y
cF Cc'vivay

The complex numbers "¢ are the gluing parameters for the nodes of t and t,;; are the
parameters for pushing u, out in the direction of ;. In the gluing construction outlined
below, given a set of representatives .f;egegg; fu;igvav;iai, / satisfying (5-11) and a
sufficiently small o

Mt) o Mele2es tvsifvaviian, 2 Ne;

we will construct a pregluing log map f%.. Then we must show that there is an actual
log J-holomorphic map “close” to it.

Let I

| e2E v2V

be the dual of the Z—linear map % associated to € in (2-26) (for a fixed choice of
orientation O on E). With the kernel subspace K D ker.%/ D as in (2-29), let

K?Dfm2D-jhm; . iDO forall, 2 Kg D-:
Then Im.%-/ K?, with the finite quotient

K?:image.%—/:
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Proposition 5.7 The space of gluing parameters N¢ in (5-12) is a possibly reducible
and nonreduced affine toric subvariety of CE vay C'v that is isomorphic to
jK?=Im.%-/j copies of the irreducible reduced affine toric variety Y ¢, (with toric fan
), counting with multiplicities.2® Replacing fzegezg and fv i8vav;i21, With another
choice satisfying (5-11) corresponds to a torus action on Ne.

Proof Let us start with some general facts about toric varieties. For n2 Z¢, every
vector m2 Z" has a unique presentation mD mc m suchthatmc; m 2 .Zg/n.
EverymD .a3;:::;an/2 .Zo/" corresponds to the monomial

x™o o x™Me  x™ 2 CEXq)::1;%,®

For example, if mD 0,thenx™: D 1 1D 0. A binomial |deal30 | in CEEXq;:::;Xn®
is an ideal generated by a finite set of binomials x™M2:7; 1 ; x™M*

Suppose K- $ Z " isalatticeandZ" | K - isasurjective Z-linear map. LetR" | K g be
the corresponding R—linear projection map and let _ be the image of the cone R yin
K-. RThen the dual map WK , ! Z" is an embedding and the dual of - is the
toric fan

DKgr\ 1.Ry/"

In this situation, by [7, Proposition 1.1.9], the toric variety Y associated to the toric
fan is the zero set of the binomial ideal

(5-13) I Dfx™ jm2K® Z"g:

L
Withz" D z8° ,,, Z'v,K asin (2-30) and D .€/ as in (5-5), the previous
argument implies that Y ¢, is the zero set of the binomial ideal (5-13).

Let 10 | be the binomial subideal generated by the elements of Im.%-/ K?. By

definition of %and (5-12), the space of gluing parameters N¢ is the zero set (scheme) of

10. Therefore Y ¢, Ne¢. Note that Y ¢, is the Zariski closure of the irreducible subgroup
ft2.C/"jt™D 1forallm2K’g .C/"

29We do not know of any example, arising from such dual graphs, for which the multiplicities are bigger

than 1.
30For more general binomial ideals, see [9].
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and N¢ is the Zariski closure of possibly nonirreducible subgroup
(5-14) ft2.C/"jt™D 1forallm2 Im.%-/g .C/":

See [7, Definition 1.1.7]. Therefore, all the irreducible components of N¢ are isomor-
phicto Y ¢;. Since

(5-15) j1=1% D me WDjK’=Im.%-/j;
N¢ is isomorphic to me copies of Y ¢/, counting with multiplicities. The last statement in

Proposition 5.7 follows from the way subgroup (5-14) acts on (5-12). a

Example 5.8 Suppose N D 2 and € is the decorated dual graph with two vertices V
D fvi;vag and two edges e; and e; connecting them. Choose e; and e to be the
orientations starting at v1. Suppose

lv, D flg; 1y, D f2g; s D s, D . 2;2/:
Then the linear map
MZE " Z'v1 Z'Ve 2o, 26, "2y, "2y, ) 2N 2128
is given by

1 %.1 D ..0;0/e;;. 2;2 ;
%.1e,/D .. 2;2/c ;.0;0/e,/; 6-1e,/ [ey [es/

%.1y,/ D ..1;0/e,;.1;0/c,/; %.1y,/D ..0; 1/e,;.0; l/ez/:
It is straightforward to check that Ker.%/ is one-dimensional and is generated by
1le;C1,,C21,,C21,,;
ieYg S C. On the other hand, N¢ is the subvariety cut out by ";
2p tv,; "D ty,; "Dty "Dty

This is isomorphic to 2 copies of C, the component Y ¢, isthe image of t ! .t; t; t2;t2/
and the other one is the image of t | .t; t;t2;t2/. It is straightforward to see that

Ker.%/ =1m.%-/
is isomorphic to Z> and is generated by the class of &y s a
Given a log J-holomorphic map f D .u; @Ee; t;22;:::;2%/ in Mg%%.X; D; A/ with
nodal domain (2-12), a set of local coordinates leeglezg around the nodes such that

(5-11) holds, and a gluing parameter ."; t/ Mo/ erEs -‘tv;i/VZV;iZIV in (5-12), the
gluing construction can/will be done in the following way.
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Consider for example a node ge connecting T and t,o with ordg,.u; Di/ D Se;i > 0.
Then the log tuple on T0 includes a section yo.; of uo\ll\lx D; with a pole of order se;;at
the nodal point ge 2 Tyo. Near ge, the map uy has the product form '

uv.zF/ D -e;izlé»’; M,/ 2 C D;:

On the other hand, yo;; has a local expansion yo.j.ze/ D ¢;iZe °¢ C . By (5-11) and
(5-12), we have

(5-16) '|Se'e;itv;ie;!i D tyvojie;i

at all the nodes, simultaneously. The smoothing of T is given by smoothing the
nodes ge Via the equation zeze D "e. The identity (5-16) means that the expression

(5-17) eiitv;ize;’ﬁ D e;itvo;ize e;iS

defines a function from the neck region into Nx D;. We then construct the approximate-
gluing log map #.; in the following way. On each neck region — unlike in the classical
gluing construction where the approximate-gluing map is defined to be constant — we
define the approximate-gluing map to be (5-17) in the it" direction. Away from the
nodes, f+.; is defined to be the pushout3! of u, via the section i2) tuiv;i onthe
vth component. The latter is J-holomorphic due to some properties of AK.X; D/. In

between the two regions, 4. interpolates between the two maps. Then, with D|°g@ in

place of D@in [29, Chapter 10], an argument similar to the classical argument allows us

to find a log J-holomorphic map close to f . z
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