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Inspired by the log Gromov–Witten (or GW) theory of Gross–Siebert/Abramovich–
Chen, we introduce a geometric notion of log J–holomorphic curve relative to a simple
normal crossings symplectic divisor defined by Tehrani–McLean–Zinger (2018).
Every such moduli space is characterized by a second homology class, genus and
contact data. For certain almost complex structures, we show that the moduli space of
stable log J–holomorphic curves of any fixed type is compact and metrizable with
respect to an enhancement of the Gromov topology. In the case of smooth symplectic
divisors, our compactification is often smaller than the relative compactification and
there is a projection map from the latter onto the former. The latter is constructed via
expanded degenerations of the target. Our construction does not need any modification of
(or any extra structure on) the target. Unlike the classical moduli spaces of stable
maps, these log moduli spaces are often virtually singular. We describe an explicit
toric model for the normal cone (ie the space of gluing parameters) to each stratum in
terms of the defining combinatorial data of that stratum. In an earlier preprint, we
introduced a natural set up for studying the deformation theory of log (and
relative) curves and obtained a logarithmic analogue of the space of Ruan–Tian
perturbations for these moduli spaces. In a forthcoming paper, we will prove a gluing
theorem for smoothing log curves in the normal direction to each stratum. With some
modifications to the theory of Kuranishi spaces, the latter will allow us to construct a
virtual fundamental class for every such log moduli space, and define relative GW
invariants without any restriction.
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1 Introduction

Studying pairs of a smooth variety X  and a normal crossings (or NC) divisor1 D   X  has a
rich history in complex algebraic geometry. For example, studying such pairs is
central to the minimal model program and to the construction of moduli spaces in
algebraic geometry. By a celebrated theorem of Hironaka (1964), given a singular
variety Y, there is a smooth “blowup” X  of Y such that the preimage of the singular
locus of Y is an NC divisor D   X.  Therefore, the study of such pairs is also important
toward the study of singularities. Curves are (Poincaré) dual objects to divisors. Moduli
spaces of curves in X  that intersect D  in some particular ways are fundamental tools
for understanding the geometry of .X ; D /.

In the last 40 years, analogues of these notions have been defined in the symplectic
category and have led to significant advances in our understanding of symplectic
manifolds. In the 1980s, Gromov combined the rigidity of algebraic geometry with the
flexibility of the smooth category and initiated the use of J–holomorphic curves as a gen-
eralization of holomorphic curves in symplectic geometry. The use of J–holomorphic
curve techniques has led to numerous connections with algebraic geometry, string
theory, and to the appearance of symplectic divisors (as the dual objects) in various
contexts. The latter includes relations with complex line bundles (see Donaldson [8]),
relative Gromov–Witten (or GW) theory (see Ionel and T  Parker [21], A  L i  and
Ruan [23] and B  Parker [40]), degeneration formulas for GW invariants (see Ionel
and T  Parker [22], A  L i  and Ruan [23], B  Parker [37] and Tehrani and Zinger [48]),
topological study of singularities (see McLean [31]), symplectic cohomology and mirror
symmetry of complements X n D  (see Auroux [6] and Ganatra and Pomerleano [15]),
and classification of symplectic log Calabi–Yau 4–manifolds (see T  Li  and Mak [26]). A
smooth symplectic divisor is simply a symplectic submanifold of real codimension two.
Topological notions of NC symplectic divisors and varieties were recently introduced
by McLean, Zinger and the author in [45; 46; 47].

While most applications of J–holomorphic curves in symplectic topology have so far
concerned smooth symplectic manifolds, or pairs .X ; D /  of a smooth manifold and a
smooth symplectic divisor, recent developments in symplectic topology and the existing
rich structures in algebraic geometry (some of which are listed above) suggest the
need for constructing and studying moduli spaces of J–holomorphic curves relative to

1Curves and divisors are, respectively, subvarieties of dimension 1 and codimension 1 over the ground
field.
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an arbitrary NC symplectic divisor from the analytical perspective. In this paper we
introduce an explicit and efficient compactification of moduli spaces of J–holomorphic
curves relative to an arbitrary simple normal crossings (SNC) symplectic divisor. In
upcoming papers [11; 12], we will set up the analytic framework needed for constructing a
(virtual) fundamental class, and define relative GW invariants. In particular, in [11], we
will define a notion of semipositive pair that allows a direct construction of relative GW
invariants via perturbed J–holomorphic maps as in Ruan and Tian [42]. In [43], based
on these log moduli spaces, we outline an explicit degeneration formula that relates
the GW invariants of smooth fibers to the GW invariants of central fiber, in a
semistable degeneration with an SNC central fiber. It is worth mentioning that even in
the case of smooth divisors, our compactification is different and smaller than the well-
known relative compactification in Ionel and Parker [21], J L i  [24] and A  L i  and Ruan
[23].

We begin by setting up the most commonly used notation and recalling some of the
known facts about the classical and relative moduli spaces of closed J–holomorphic
curves. Therefore, experts may skip to Section 1.3, where the main question is explained.

1.1 Classical stable maps and GW invariants

For X  a smooth manifold, g; k 2  N , A  2  H2 .X ; Z/ ,  and an almost complex structure J
on X ,2 a (nodal) k–marked genus-g degree-A J–holomorphic map into X  is a tuple
.u; †; j; z1; : : : ; zk /, where

     .† ; j/ is a connected nodal Riemann surface of arithmetic genus g with k distinct
ordered marked points z1; : : : ; zk away from the nodes,

     uW .† ; j/ !  .X ; J /  is a continuous and componentwise smooth map satisfying
the Cauchy–Riemann equation

(1-1) @u D  2 .du C J du ı j/  D  0

on each smooth component, and

     the map u represents the homology class A.

Two such tuples

.u; †; j; z1; : : : ; zk / and .u0; †0; j0; w1; : : : ; wk/

are equivalent if there exists a biholomorphic isomorphism hW .† ; j/ !  .†0; j0/ such

2That is, J  is a real-linear endomorphism of T X  lifting the identity map satisfying J 2  D   idT X .
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that h.za / D  wa for all a D  1; : : : ; k and u D  u0 ı  h. Such a tuple is called stable if
the group of self-automorphisms is finite. Let M g ; k . X ; A ; J /  (or simply M g ; k . X ; A /
when J  is fixed in the discussion) denote the space of equivalence classes of stable
k–marked genus-g degree-A J–holomorphic maps into X .  Such an equivalence class
is called a marked J–holomorphic curve.

By a celebrated theorem3 of Gromov [16, Theorem 1.5.B], for every smooth closed (ie
compact and without boundary) symplectic manifold .X ; ! / ,  g; k; A as above, and an
almost complex structure J  compatible4 with !  (or taming ! ) ,  the moduli space
M g ; k . X ; A ; J /  has a natural sequential convergence topology, called the Gromov
topology, which is compact, Hausdorff, and furthermore metrizable. The symplectic
structure only gives an energy bound which is needed for establishing the compactness,
and the precise choice of that, up to deformation, is not important. If M g ; k . X ; A /  has an
oriented orbifold structure of expected real dimension
(1-2) 2

 
c T X . A / C .n  3/.1  g/ C k;

GW invariants are obtained by the integration of appropriate cohomology classes
against its fundamental class. These numbers are independent of J  and only depend on
the deformation equivalence class of ! .  These allow the formulation of symplectic
analogues of enumerative questions from algebraic geometry, as well-defined invariants
of symplectic manifolds. However, in general, such moduli spaces can be highly
singular. This issue is known as the transversality problem. Fortunately, it has been
shown (see5 eg [25; 14; 27; 18; 30; 33]) that M g ; k . X ; A /  still carries a rational
homology class, called virtual fundamental class (or VFC); integration of cohomology
classes against the V F C  gives rise to GW invariants.

1.2 Relative stable maps

Given a symplectic manifold . X ; ! /  and a closed submanifold D  X ,  we say D  X  is a
symplectic submanifold if ! j D  is a symplectic structure. A  (smooth) symplectic divi-

sor is a symplectic submanifold of real codimension 2. For such D  (or a smooth divisor
in complex algebraic geometry), relative GW theory (virtually) counts J–holomorphic
curves in X  with a fixed contact order s  .s1; : : : ; sk / 2  N k  with D .  In this theory, we

3And its subsequent refinements; see the remarks before Theorem 3.3.
4That is, ! . ; J  / is a metric.
5It is beyond the scope of this paper to list all the related literature.
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require J  to be also compatible with D  in the following sense. First, we require D  to be J–
holomorphic, ie J .T D / D T D .  This implies, for example, that every J–holomorphic
map to X  from a smooth domain is either mapped into D  or intersects D  positively in a
finite set of points. Furthermore, we need to at least require J  to be integrable to the first
order in the normal direction to D ,  in the sense that

(1-3) N J  .v1; v2/ 2  T x D for all x  2  D ;  v1; v2 2  Tx X ;

where N J  2  € .X ; •X  ˝ T X /  is the Nijenhuis tensor of J ,  satisfying

N J  .u; v/  Œu; v• C J Œu; J v• C J ŒJ u; v•  ŒJ u; J v• for all u; v 2  T X:

This ensures that certain operators are complex linear (see (4-7)), and certain sequences of
almost complex structures on the normal bundle N X D  converge to a standard one (see
Lemma 3.5). The space J  . X ; D ; ! /  of !–tame and D–compatible almost complex
structures J  on X  is again nonempty and contractible. For every J  2  J  . X ; D ; ! /  and s
.s1; : : : ; sk / 2  N  , with

(1-4)  
X  

sa D  A D ;
a D 1

let M g ; s .X ; D ; A /   M g ; k . X ; A /  (in the stable range) be the subspace of k–marked
degree-A genus-g J–holomorphic curves Œu;†; j; z1; : : : ; zk • s uch that †  is smooth
and u has a tangency of order sa at za with D .  In particular, by (1-4),

u 1 .D /  fz1; : : : ; zk g:

The subset of marked points za with sa D  0 corresponds to the classical marked
points of the classical GW theory with image away from D .  The relative compacti-
fication M g ; s .X ; D ; A /  of M g ; s .X ; D; A/,  constructed in [24] in the algebraic case,
and in [21; 23] in the symplectic case, includes stable nodal curves with components
mapped into X  or an expanded degeneration6 of that, so that the contact order s still
makes sense; we will review this construction in Section 4.1.

1.3 J–holomorphic maps relative to SNC divisors

In [45; 46], with McLean and Zinger, we defined topological notions of symplectic
normal crossings divisor and variety and showed that they are equivalent, in a suitable

6A normal crossings variety made of X  and finite copies of the P 1–bundle P X D  D  P . N X D  ˚  OD /
over D .
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sense, to the desired rigid notions. For N 2  N , let

ŒN• D  f 1; : : : ; N g:

In particular, Œ0• D  �. A  simple normal crossings (or SNC) symplectic divisor
D D i2ŒN • D i  in . X ; ! /  is a transverse union of smooth symplectic divisors fDi gi 2ŒN •

in X  such that all the strata

D I   
\  

D i for all I   ŒN•
i 2 I

are symplectic, and the symplectic orientation of D I  coincides with its “intersection”
orientation for all I   ŒN• ; see [45, Definition 2.1]. For

J  2  J  . X ; D ; ! /  D  
\  

J  .X ; D i ; ! / ;
i2ŒN •

we similarly define M g ; s .X ; D ; A/  (in the stable range) to be the space of equivalence
classes of degree-A J–holomorphic maps from a k–marked genus-g connected smooth
domain †  into X  of contact order s with D ,  for which

s  
 
sa .sai /i 2ŒN • a2Œk• 2  . N N  /k ;

each vector sa records the intersection numbers of the ath marked point za with the
divisors fDi gi 2ŒN • , and

(1-5) u 1.D/ fz1; : : : ; zk g; or equivalently A D i  D  
X  

sa i for all i  2ŒN•:
a D 1

Because of the tangency conditions, it follows from (1-2) that the expected real dimen-
sion of M g ; s .X ; D ; A/  is equal to

(1-6) 2
 
c T X. A / C . n  3/.1 g/ Ck  A D D 2

 
c T X .  l o g D / .A/ C .n  3/.1 g/Ck;

where T X .  log D/ is the log tangent bundle associated to the deformation equivalence
class of .X ; D ; ! / ,  defined in [46, (8)]. In the holomorphic case, the log tangent sheaf is
the sheaf of holomorphic tangent vector fields in T X  whose restriction to each D i  is
tangent to D i .  The definition in the symplectic case is similar but depends7 on some
auxiliary data. The similarity between the left-hand sides of (1-6) and (1-2) shows the
importance of considering the log tangent bundle in the study of relative moduli spaces.

7The deformation equivalence class of complex vector bundle T X .  log D/ is independent of the auxiliary
data.
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The main goal is:

(?) To construct a natural geometric compactification M g ; s .X ; D ; A /  of
M g ; s .X ; D ; A/  so that the definition of the contact vector s naturally ex-
tends to every element of M g ; s .X ; D; A/ ,  and M g ; s .X ; D ; A /  is (virtually)
smooth enough to admit a natural class of cobordant Kuranishi structures
of the expected real dimension (1-6).

We refer to [44; 30] for the technical terms in (?). If D  is smooth, the well-known
relative compactification M r e l s .X ; D; A/ has (or is expected8 to have) these nice prop-
erties.

In the algebraic category, every (algebraic) NC variety D   X  defines a natural “fine
saturated log structure” on X ;  see [2] for a review of log geometry and log moduli spaces
associated to NC pairs .X ; D /.  Then the log GW theory of [1] and [17] constructs a
good compactification with a perfect obstruction theory for every fine saturated log
variety X .  Unlike in [24], the algebraic log compactification does not require any
expanded degeneration of the target. Instead, it uses the extra log structure on X  (and
various log structures on the domains) to keep track of the contact data for the curves
that have image inside the support of the log structure (ie D ).

Since the classical GW invariants are invariants of the deformation equivalence class
of the underlying symplectic structure, it is interesting and important to generalize the
results of [1; 17] to (or find an analogue of them for) the symplectic category, ie to
construct log GW invariants as invariants of the symplectic deformation equivalence
class of .X ; D /.  With such a construction, the flexibility of symplectic topology can
be used in certain situations to define log GW invariants as an actual count of J–
holomorphic curves with tangency conditions, at the expense of deforming J  or the
Cauchy–Riemann equation (to avoid working with VFC); see [42; 11]. Moreover,
in the case of moduli spaces of holomorphic curves with boundary on Lagrangian
submanifolds, it is sometimes easier to work with an analytical construction of moduli
spaces of J–holomorphic maps.

On the analytical side, in [36; 40; 39] and several other related papers, Brett Parker
uses his enriched almost Kähler category of “exploded manifolds”, defined in [34], to
construct such a compactification relative to an almost Kähler NC divisor and
address (?). His approach can be considered as a direct translation/generalization of
the algebraic log GW theory involving some non-Hausdorff spaces, analytical sheaves,

8See [48] for an overview of the analytical approaches of [21; 23].
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and a richer cohomology theory [38]. His approach has close ties to tropical geom-
etry. In [20], Eleny Ionel approaches (?), by considering expanded degenerations
similar to [21]. Nevertheless, the main motivation behind the log GW theory of Gross–
Siebert–Abramovich–Chen, the exploded theory of Parker, and the current paper is that
considering spaces and maps enriched with certain log structures is a better idea for
addressing (?) in the general case. In particular, all these logarithmic approaches lead
to similar “degeneration formulas” (the authors of [4] call it an “invariance property”)
relating the moduli spaces in smooth fibers and the SNC central fiber of an arbitrary
semistable degeneration; see [4; 37; 11].

1.4 Log compactification and the main result

In this paper, for an arbitrary SNC symplectic divisor D   . X ; ! /  and certain J  2  J
.X ; D ; ! / ,  we construct a “minimal geometric compactification”

(1-8) M g ; s .X ; D ; A/

that does not require any modification of the target (or the nodal domains). For its
connection to the algebraic log maps, and the appearance of various log structures9

throughout the construction, we call our maps/curves log J–holomorphic maps/curves.

For J  2  J  .X ; D ; ! / ,  a (nodal) log J–holomorphic map into 
 
X ; D  D  

S
i 2ŒN •  D i

 
of

contact type
s  sa .sai /i 2ŒN • a D 1  2  . Z N  /k ;

with the marked nodal domain .† ; j; zE/ D v 2 V  .†v ; jv ; zEv /, is a collection of tuples

ulog  .uv W † v  !  D I v  ; zEv/; .Œv;i • /i 2Iv     v 2 V

over smooth components of †  such that

     u  .uv /v 2V W .† ; j; zE/ !  .X ; J /  is a k–marked J–holomorphic nodal map in the
classical sense,

     for each v 2  V, I v   ŒN• i s the maximal subset such that Im.uv /  D I v  ,
     for each v 2 V and any i 2 I v ,  Œv;i • is the C–equivalence class10 of a nontrivial

meromorphic section v ; i  of the holomorphic11 line bundle u NX D i ,
     the contact order vectors in Z N ,  defined in (2-14) and (2-15), are the opposite of

each other at the nodal points,

9Such as the use of log tangent bundle in the deformation theory of log J–holomorphic curves.
10 C  acts by multiplication on the set of meromorphic sections.
11Since dimC † v  D  1, the pullback line bundle u NX D i  is holomorphic.
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     every point in †  with a nontrivial contact vector is either a marked point or a
nodal point, and the contact order vector at za is the predetermined vector sa 2
Z N ,

     there exists a vector-valued function sW V !  R N  such that for all v 2  V , sv D
s.v/ 2  R C  f0gŒN • I v  , and for all v; v0 2  V , sv  sv0 is a positive multiple of the
contact order vector of any nodal point on † v  connected to †v 0 , and

     a certain group (a complex torus) element associated to ulog, defined in (2-32),
is equal to 1.

See Definition 2.8 for more details. Two marked log maps are equivalent if one is a
“reparametrization” of the other. A  marked log map is stable if it has a finite
“automorphism group”. For g; k 2  N , A  2  H2 .X ; Z/ ,  and s 2  . Z N  /k , we denote
the space of equivalence classes of stable k–marked degree-A genus-g log maps of
contact type s by

M g ; s .X ; D; A/:

Such an equivalence class is called a log curve. There is a natural forgetful map

M g ; s .X ; D ; A/  !  M g ; k .X ; A/ ;

.uv W † v  !  D I v  ; zEv/; .Œv;i • /i 2Iv     v 2 V  !  .uv W † v  !  X; zEv /v 2V :

Given s 2  . Z N  / , it turns out that for every k–marked stable nodal curve f  in
M g ; k .X ; A / ,  there exist at most finitely many log curves flog 2  M g ; s .X ; D ; A/  (with
distinct decorations on the dual graph) lifting f  ; see Lemma 2.15. Furthermore, f log is
stable if and only if f  is stable (and the automorphism groups are often the same).

In the integrable case and in comparison with the algebraic approach, we conjecture
the following statement:

Conjecture 1.1 In the complex algebraic setting, for any choice of combinatorial
data ˇ  D  .g; s; A/ and the natural log structure on X  associated to D ,  there is a
stratified finite-to-one surjective map from the underlying space of the log moduli
space M.X =p t ; ˇ /  in [4] to M g ; s .X ; D ; A/,  which is one-to-one over the main stratum
M g ; s .X ; D; A/.

In particular, this conjecture says that the group element (2-32), mentioned in the final
bulleted condition above, is the only noncombinatorial obstruction for liftability of a
nodal map (with correct combinatorial properties) to a log map (with the canonical
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log structures on X  corresponding to D). It is likely that we need to allow certain
“nonsaturated” curves in M.X =p t ; ˇ /  for the conjecture to be true, or the projection
map will not be surjective. The projection map conjectured above behaves like a
normalization map between varieties (eg unfolding self-intersections). Based on a
comparison of the coefficients of the degeneration formula in [4] with our degeneration
formula outlined in [43], we think that the degree of the projection map on each stratum
should be the multiplicity m€ in (5-14).

Similarly, in comparison with the Brett Parker approach in [36], under certain assump-
tions on the almost complex structure J ,  we expect the following statement.

Conjecture 1.2 With respect to the exploded structure associated to an almost Käh-
ler SNC divisor D   X ,  for any choice of combinatorial data ˇ  D  .g; s; A/, the
“smooth part” map gives a finite-to-one surjective map from the moduli stack in [36] to
M g ; s .X ; D; A/.

We postpone a careful comparison of the moduli spaces constructed in this paper and
those arising from [1; 17] and [36] to a future paper.

Approaching (?), we face some new challenges that are not present in the case of the
classical and relative stable maps. Unlike the smooth case, it is not a priori clear
whether every SNC symplectic divisor D  . X ; ! /  admits a compatible almost complex
structure. Furthermore, even if J  . X ; D ; ! / ¤ �,  it is not clear whether it is contractible
(or even connected). In order to address this issue, in [45], we consider the space12

Symp.X; D / of all symplectic forms on X  such that a given transverse configuration
D  D       i2ŒN • D i  is an SNC symplectic divisor in .X ; ! / .  Consequently, instead of
focusing on a particular ! ,  we consider the connected component of symplectic forms
in Symp.X; D / which are deformation equivalent to ! .  With J  . X ; D ; ! /  as before, let

J  .X ; D /  D
[

J  . X ; D ; ! /
! 2 S y m p . X ; D /

be the space of all D–compatible pairs . ! ; J / .  We then define a space of almost
Kähler auxiliary data A K . X ; D /  consisting of tuples . ! ; R ; J /  where !  2 Symp.X; D /,
R  is an “!–regularization” for D  in X ,  and J  is !–tame and R–compatible (which we
will simply call .R; ! /–compatible) almost complex structure on X ;  see Section 3.2
or [45, page 8]. Roughly speaking, a regularization is a compatible set of symplectic

12In [45], this space is denoted by SympC .X ; D /.
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identifications of neighborhoods of f D I  gIŒN • in their normal bundles with neighbor-
hoods of them in X ;  see [45, Definition 2.12]. A  regularization serves as a replacement
for holomorphic defining equations in holomorphic manifolds. These regularizations
are also the auxiliary data that we need to define the log tangent bundle T X .  log D/.
For every . ! ; R ; J /  2  AK .X ; D / ,  we have . ! ; J /  2  J  .X ; D /.  Therefore, A K . X ; D /
is essentially a nice subset of J  .X ; D /  consisting of those almost complex structures
that are of some specified type in a sufficiently small neighborhood of D .  These special
almost complex structures are similar to the almost complex structures with translational
symmetry considered in [23] and in SFT [10]. By [45, Theorem 2.13], the forgetful map

(1-9) A K . X ; D /  !  Symp.X; D/; . ! ; R ; J /  !  ! ;

is a weak homotopy equivalence. This implies that any invariant of the deformation
equivalence classes in A K . X ; D /  is an invariant of the symplectic deformation equiv-
alence class of .X ; D ; ! / .  In particular, by restricting to the subclass AK.X ; D / ,  the
last statement in (?) follows from constructing Kuranishi structures for families.

The main goal of this paper is to prove the following compactness result, addressing
the first part of (?). We will address the rest in subsequent papers. We will briefly
outline our approach to the deformation theory and gluing in Sections 5.1 and 5.2.

Definition 1.3 A  continuous function f  W M !  N between two topological spaces is a
local embedding if for all x  2  M there is an open neighborhood U of x  such that f
jU W U !  N is an embedding.

By Smirnov’s theorem, every paracompact, Hausdorff, and locally metrizable space is
metrizable. Therefore, if f  W M !  N is a local embedding from a compact Hausdorff
space M to a compact metrizable space N , then M is metrizable.

Theorem 1.4 Assume X  is a compact symplectic manifold and D D
S

i 2ŒN •  D i  X  is an
SNC symplectic divisor. If . ! ; R ; J / 2 A K . X ; D /  or if . X ; D ; ! ; J /  is Kähler , then for
every A  2  H2 .X ; Z/ ,  g; k 2  N  and s 2  . Z N  / , the Gromov sequential convergence
topology on M g ; k . X ; A /  lifts to a compact Hausdorff sequential convergence topology
on M g ; s .X ; D ; A /  so that the natural forgetful map

(1-10) W M g ; s .X ; D ; A/  !  M g ; k . X ; A /

is a local embedding. In particular, M g ; s .X ; D ; A /  is metrizable. If g D  0, then (1-10)
is a global embedding.
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In other words, the open sets of M g ; s .X ; D ; A/  are the components of the intersection
of open sets in M g ; k . X ; A /  with the image of M g ; s .X ; D; A/ .

Remark 1.5 Except for the proof of Proposition 3.15, every other statement in the
proof of Theorem 1.4 is stated and proved for arbitrary . ! ; J /  2  J  .X ; D /.  We expect
the local statement of Proposition 3.15, and thus Theorem 1.4, to be true for a larger
class of almost Kähler structures that are weakly homotopy equivalent to Symp.X; D /,
which includes both AK(X,D) and the space of Kähler structures. If D  is smooth, a
sig-nificantly simpler version of Proposition 3.15 is sufficient for proving Proposition
3.14, and thus Theorem 1.4 for arbitrary . ! ; J /  2  J  .X ; D /;  see Remark 3.16.
Nevertheless, by the argument around (1-9), the subclass A K . X ; D /  is ideal for
defining GW-type invariants and the holomorphic case is sufficient for most of the
interesting examples and calculations.

Remark 1.6 While M g ; s .X ; D ; A /  is defined for arbitrary s 2  . Z N  /k satisfying the
second identity in (1-5), and the compactness result holds for every such s, the resulting
moduli spaces do not have some of the nice properties unless s 2  . N N  /k ; eg the
(virtual) main stratum M g ; s .X ; D ; A/  would be empty if any of the sa i were
negative. For s 2  . N N  /k , by Lemma 5.5, the expected dimension of M g ; s .X ; D ; A /
is equal to (1-6), and the only stratum with the top expected dimension is
M g ; s .X ; D; A/.  As pointed out to the author by M Gross, the case where sa i could
be negative is called “punctured curves” in the work-in-progress [3]. One feature of
these punctured curves is that the moduli spaces may not carry a VFC,  as even in the
unobstructed case the moduli space may have irreducible components of different
dimension.

If D  is smooth, we show in Proposition 4.5 that there is a surjective projection map

M g ; s .X ; D ; A/  !  M g ; s .X ; D; A/:

This is as expected, since our notion of log J–holomorphic curve involves more C –
quotients on the set of meromorphic sections than in the relative case. In the algebraic
case, [5, Theorem 1.1] shows that an algebraic analogue of this projection map induces
an equivalence of the virtual fundamental classes. We expect the same to hold for
invariants/VFCs arising from our log moduli spaces.

Approaching the rest of (?), the transversality issue aside, log moduli spaces constructed
in this paper are often virtually singular in the sense that the (virtual) normal cone of
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each stratum is not necessarily an orbibundle. More precisely, M g ; s .X ; D ; A /  admits
a stratification

M g ; s .X ; D ; A/  D Mg ; s .X ; D; A/ € ;
€

where € runs over all the possible “decorated dual graphs”; see Definition 2.12. For
any f  in Mg ; s .X ; D; A/ € ,  the natural process of describing a neighborhood of f  in
M g ; s .X ; D ; A/  is by first describing a neighborhood U of f  in Mg ; s .X ; D; A/€ ,  and
then extending that, by a “gluing” theorem of smoothing the nodes, to a neighborhood of
the form U N 0 for f  in M l o g  .X ; D; A/,  where N 0 is a neighborhood of the origin in an
affine subvariety N€   C m  for some m 2  N . In this situation, we say that N€  is the
normal cone to Mg ; s .X ; D; A/ € ,  or it is the space of gluing parameters. In the case of
classical stable maps, N€  is isomorphic to C E ,  where E  is the set of edges of € (or nodes
of the nodal domain). Unlike in the classical case, for the log (or relative)
moduli spaces, N €  could be reducible, and the normalization of N€  might be singular as
well; see Example 5.6. Nevertheless, we show that N€  is (isomorphic to some finite copy
of) an affine toric variety that can be explicitly described in terms of €. More
precisely, let V and E  be the set of vertices and edges of €, respectively. For each v 2
V , I v   ŒN• is the maximal subset such that the image of the vth component of f

lies in D I v  . Similarly, for each e 2  E ,  I e   ŒN• is the maximal subset such that the
image of the eth node lies in D I e  . In (2-26), associated to every such €, we construct a

Z–linear map

(1-11) %W D.€ / D  Z E  ˚  
M  

Z I v  !  T .€ / D  
M

Z I e

v 2 V e 2 E

so that N€  is isomorphic to (some finite copy of) the toric variety associated to a
maximal convex rational polyhedral cone in Ker.%/ ˝ R. Moreover, the group element
mentioned in the final bulleted condition on page 997 (ie in the definition of a log
map) is an element of the Lie group G.€/ with the Lie algebra Coker.%/ ˝ C. In other
words, Ker.%/ gives the deformation space in the normal direction and Coker.%/ gives
an obstruction for the smoothability of such maps.

1.5 Outline

In Section 2.1, we review the definition and properties of @–operators. The @–operator
@NX D  on the normal bundle N X D  described in Lemma 2.1 plays a key role in defining
the basic building blocks of relative and log maps. In Section 2.2, we set up our notation
for the decorated dual graph of nodal maps. The Z–linear map (1-11) is defined in
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terms of such decorated dual graphs. In Section 2.3, we define the moduli spaces of
log J–holomorphic curves and provide several examples to highlight their features.
This is done in two steps: first, in Definition 2.4, we define a straightforward notion
of prelog map. Then in Definition 2.8, we impose two nontrivial conditions on such
a prelog map to define a log map. The proof of Theorem 1.4 relies on Gromov’s
compactness result for the underlying stable maps. In Section 3.1, we review the
Gromov compactness theorem and set up the notation for the proof of Theorem 1.4. In
Section 3.2, we state a log enhancement of the Gromov compactness theorem. Proof
of the main result is done in multiple steps in Sections 3.3 and 3.4. The main step of
the proof is Proposition 3.15, which compares the limiting behavior of the rescaling
and gluing parameters. In the case of smooth divisors, we compare the relative and the
log compactifications of the same combinatorial type in Section 4.2. We review the
construction of relative compactification in Section 4.1. In Section 5.1, we outline a
Fredholm setup for studying the deformation theory of log J–holomorphic maps, and
draw some conclusions. This setup is extended to perturbed log maps and discussed in
detail in [11]. In Section 5.2, we explicitly describe the space of gluing parameters of
any fixed type €, and identify it with an explicit affine toric variety.

Acknowledgements I am indebted to A  Zinger for many years of related collaborations
that sorted out my thoughts toward this paper. I  would like to thank K  Fukaya and
J Morgan for supporting my research at the Simons Center and for many fruitful
conversations about the details of Kuranishi structures. I  am thankful to G Tian for
supporting my research and for many related conversations about virtual fundamental
class. Finally, I  am also thankful to Q Chen, D A Cox, M Gross, H-J Hein, M Liu,
D McDuff, M McLean, B Parker, D Pomerleano, D Ranganathan, H Ruddat, B Siebert,
J Starr and the referees for answering my questions and for their helpful comments.
My research on this subject is supported by the NSF grant DMS-2003340.

2 Log pseudoholomorphic maps

In this section, we construct the moduli spaces of log J–holomorphic curves relative to
an arbitrary SNC symplectic divisor defined in [45]. This is done by first introducing
a notion of prelog J–holomorphic map, which only involves a matching condition
of contact orders at the nodes. We then define a Z–linear map between certain Z–
modules associated to the dual graph of such a prelog map, which encodes the essential
deformation/obstruction data for defining and studying log maps.
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Let us start with some well-known facts about almost complex structures. Let . X ; ! /
be a smooth symplectic manifold and J  be an !–tame almost complex structure on X .
Let r  be the Levi-Civita connection of the metric hu; vi D  2 . ! .u; J v / C ! .v ; J u//
and let

(2-1) r v  D r v  2 J . r v J /  D  2 . r v  J r v . J / / for all v 2 T X;  2 € .X; T X /

be the associated Hermitian connection. The Hermitian connection r  coincides with r  if
and only if . X ; ! ; J /  is Kähler, ie r J   0. The torsion T of the modified C–linear
connection

(2-2) r v  D  r v   A./v; A./ D  4 . r J J  C J r J /

for all v 2  T X  and  2  € .X; T X /, is related to the Nijenhuis tensor (1-3) by

(2-3) Tr .v; w/ D   4 NJ .v; w/ for all v; w 2  T X:

If J  is !–compatible, r  coincides with r .  See [29, Chapter 3.1 and Appendix C] for
details.

2.1 Almost complex structures and @–operators

Suppose M is a smooth manifold, iM  is an almost complex structure on M, and
. L ; i L /  !  M is a complex vector bundle. Let

(2-4)
•M ; iM  

 f  2  T M ˝ R  C  W ı i M  D  i ı g; •M ; iM  
 f

2  T M ˝ R  C  W ı i M  D   i ı g

be the bundles of C–linear and C–antilinear 1–forms on M, where i is the unit imaginary
number in C .  Given a smooth function f  W M !  C ,  (2-4) gives a decomposition of d f
into C–linear and C–antilinear parts @f and @f , respectively. A  @–operator on
. L ; i L /  is a complex linear operator

(2-5) @W € .M; L/ !  € .M; •M;iM  
˝ C  L /

such that

@.f / D  @f ˝  C f  @ for all f  2  C 1 .M ; C / ;   2  € .M; L/:

Given a complex linear connection r  on . L ; iL /  !  .M; iM /, the .0; 1/–part

(2-6) r .0 ;1/  D  2 . r  C i L r  ı i M  /
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of r  is a @–operator, which we denote by @r. Every @–operator is the associated
@–operator of some C–linear connection r  as above. The connection, however, is
not uniquely determined. Every two connections r  and r 0  differ by a global End.L/–
valued 1–form ˛ ,  ie r 0  D r C ˛ .  If r  and r 0  are complex linear connections on . L ; i L /
with r 0  D  r  C ˛ ,  then

@r0 D  @r C ˛ . 0 ;1 / ;

where ˛ .0;1/ is the .0; 1/–part of ˛  in the decomposition (2-4). In particular, @r0 D  @r

whenever ˛  is of .1; 0/–type.

By [50, Lemma 2.2], corresponding to every @–operator (2-5) there exists a unique
almost complex structure J  D  J@

 on the total space of L ,  such that

(1) the projection W L  !  M is an . iM  ; J /–holomorphic map (ie d C i d J  D  0), (2)

the restriction of J  to the vertical tangent bundle T Lver Š  L   T L  agrees
with iL ,  and

(3) the map W M !  L  corresponding to a section  2  € .M; L/ is . J ; iM  /–
holomorphic if and only if @ D  0.

Suppose . X ; ! /  is a symplectic manifold, D  is a symplectic submanifold, and J  is an !–
tame almost complex structure on X  such that J .T D /  D  T D . The last condition
implies that J  induces a complex structure i N X  D  on (the fibers of) the normal bundle

(2-7) W N X D   T X jD = T D !  D:

Under the isomorphism

N X D  Š  T D ?  D  fu 2  T X jD  W hu; vi D 0 for all v 2  TD g;

i N X  D  is the same as the restriction to T D ?  of J .  Let J D  denote the restriction of J
to T D .

Lemma 2.1 Suppose . X ; ! /  is a symplectic manifold , D  is a symplectic submanifold , J
is an !–tame almost complex structure on X  such that J .T D /  D  T D , and r  is the C–
linear connection associated to . ! ; J /  in (2-2). Then the @–operator

@r  r
.0;1/ W € .X; T X / !  € .X ; •X

; J  ˝ C  T X / in

(2-6) descends to a @–operator

(2-8) @NX D  W € . D ; NX D /  !  € . D ; •D ; J D  
˝ C  NX D /

on . NX D ; i N X  D /  !  .D ; JD / .
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Proof We need to show that @r maps € .D; T D / to € .D; •D ; J      ˝ C  T D/. Let r  and
r D  be the Levi-Civita connections of the metrics associated to . ! ; J /  and . ! j T D ; J D /
on X  and D ,  respectively. Then

r  D  r D  C r N  for all  2  € .D; T D /;

with
r N   2  € .D; •1 ˝ T D ? / :

Similarly, let r  and r D  be the Chern connections on T X  and T D associated to r
and r  , respectively, as in (2-1). It follows from (2-1) that

(2-9) r  D  r D  C r N  for all  2  € .D; T D /;

where
r N   D  2 . r N    J r N  .J //  2  € .D; •1 ˝ C  T D ? / :

Let r  and r D  be the modifications of r  and r D  as in (2-2), respectively. By (2-2)
and (2-9), we also have

(2-10) r  D  r   C r  for all ;  2  € .D; T D /;

where
r N   D  r N    A N  ./ 2  € .D; •1 ˝ C  T D ? /;  A N

./ D  4 . r J J  C J r  J /;

. r  J /  WD r  . J /  J r  : From

(2-3), (2-10), and

N J  .; / D  N J D  .; / 2  T D for all ;  2  € .D; T D /;

we conclude that

r    r   D  . r   r /  . r    r  /

D  . r   r   Œ;• / . r    r    Œ;• /
D  Tr .; /  T r D  .; / D  0I in

other words,

r   D  r  for all ;  2  € .D; T D /:

From the last identity we get

r   C J r J  D  r   C J r  J  D  r    r   D  0 for all ;  2  € .D; T D /:
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Therefore,

r .0 ;1/  D  2 . r  C J r J /

D  2 . r   C J r J / C  2 . r   C J r J /

D  2 . r   C J r J /

D  r D ; . 0 ; 1 /  2  € .D; T D / for all ;  2  € .D; T D /:

Remark 2.2 The term A./v in (2-2) is C–linear in  and C–antilinear in v. It
vanishes if J  is !–compatible. Therefore,

r 0 ; 1  D  r 0 ; 1   A./:

2.2 Decorated dual graphs

Let € D  € .V ; E; L/ be a graph with set of vertices V, edges E ,  and legs L ;  the latter,
also called flags or roots, are half-edges that have a vertex at one end and are open at
the other end. Let E  be the set of edges with an orientation. Given an oriented edge eE
e 2  E ,  let e denote the same edge e with the opposite orientation. For each e 2  E ,  let
v1. e / and v2. e / in V denote the starting and ending points of the arrow, respectively.
For v; v0 2  V , let Ev ;v 0  denote the subset of edges between the two vertices and Ev ;v 0

denote the subset of oriented edges from v to v . For every v 2  V, let E v  denote the
subset of oriented edges starting from v.

A  genus labeling of € is a function gW V !  N . An ordering of the legs of € is a
bijection aW L  !  f1; : : : ; jLjg. If a decorated graph € is connected, the arithmetic
genus of € is

(2-11) g D  g€ D  
X  

gv C rank H1 .€; Z/;
v 2 V

where H1 .€; Z/ is the first homology group of the underlying topological space of €.
Figure 1, left, illustrates a labeled graph with 2 legs.

Such decorated graphs € characterize different topological types of nodal marked
surfaces

.† ; zE D  .z1; : : : ; zk //

in the following way. Each vertex v 2 V corresponds to a smooth13 component † v  of †
with genus gv . Each edge e 2  E  corresponds to a node qe obtained by connecting † v

13We mean a smooth closed oriented surface.
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g1

1 2 1
2 .g1; A1/ .g2; A2/

g3

2

.g3; A3/

g4 g5 .g4; A4/ .g5; A5/

Figure 1: Left, a labeled graph € representing elements of M g ; 2 .  Right, a
labeled graph € representing elements of M g ; 2 .X ; A/ .

and †v 0  at the points qe 2 † v  and qe 2 †v 0 ,  where e 2 Ev ;v 0  and e is an orientation on e
with v1. e / D  v. The last condition uniquely specifies e unless e is a loop connecting v
to itself. Finally, each leg l  2  L  connected to the vertex vl corresponds to a marked point
zal  2  † v l  disjoint from the connecting nodes. If †  is connected, then g€ is the
arithmetic genus of † .  Thus we have

(2-12) .† ; zE/ D  
a

.† v ; zEv ; q v /=; qe  qe for all e 2  E ;
v 2 V

where
zEv D  zE \ † v and qv D  fqe W e 2  Ev g for all v 2  V :

In this situation, we say € is the dual graph of .† ; zE/. We treat qv as an unordered set of
marked points on † v .  If we fix an ordering on the set qv , we denote the ordered set by
qEv.

A  complex structure j on †  is a set of complex structures .jv /v 2V on its components. By a
(complex) marked nodal curve, we mean a marked nodal real surface together with a
complex structure .† ; j; zE/. Figure 2 illustrates a nodal curve with .g1; g2; g3; g4; g5/ D
.0; 2; 0; 1; 0/ corresponding to Figure 1, left.

Similarly, for nodal marked surfaces mapping into a topological space X,  we consider
similar decorated graphs where the vertices carry an additional degree labeling

AW V !  H2 .X ; Z/; v !  Av ;

recording the homology class of the image of the corresponding component. Figure 1,
right, illustrates a dual graph associated to a marked nodal map over the graph on the left.

Assume D  D  
S

i 2ŒN •  D i   X  is an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,
and .† ; j/ is a connected smooth complex curve. Then every J–holomorphic map

uW .† ; j/ !  .X ; J /  has a well-defined depth I   ŒN• , which is the maximal subset of
ŒN• such that Image.u/  D I  . In particular, any map u intersecting D  in a discrete set is
of depth I  D  �. We say a point x  2  †  is of depth I  if D I  is the minimal stratum
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z1

z2

Figure 2: A  nodal curve in M4 ;2 .

containing u.x/. Let P .N / be the set of subsets of ŒN•. T he dual graph of .u; †/
carries additional labelings

(2-13) I  W V ; E !  P .N /; v !  I v  for all v 2  V ; e !  I e  for all e 2  E ;

recording the depths of smooth components and nodes of † .

2.3 Log moduli spaces

Assume D  D  
S

i 2ŒN •  D i   X  is an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,  and
uW .† ; j/ !  .X ; J /  is a J–holomorphic map of depth I   ŒN• with smooth domain.
Then, for every i  2  ŒN• I ,  the function

(2-14) orduW †  !  N ; ordu.x/ D  ordx .u; Di /;

recording the contact order of u with D i  at x  is well-defined. For every i 2  I ,  let
u@NX D i  be the pullback of the @–operator @NX D i  associated to . J ; D i /  in (2-8). Since
every @–operator over a complex curve is integrable, u@NX D i  defines a holomorphic
structure on u NX D i ;  see [29, Remark C.1.1]. The holomorphic line bundles

.uNX Di ; u@NX  D i  / for all i  2  I

play a key role in the definition of the log moduli space below. Let •m e r o .† ; uNX Di /
be the space of nontrivial meromorphic sections of u NX D i  with respect to u x NX  D i  ; C
acts on •m e r o .† ; uNX Di / by multiplication. We denote the C–equivalence class of a
section

 2  •m e r o .† ; uNX Di /
by Œ• . The function

(2-15) ordŒ• W †  !  Z ; ordŒ• .x/ D  ordx ./;

recording the vanishing order of  at x  (which is negative if  has a pole at x ) is
well-defined.
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A  log J–holomorphic tuple .u;Œ• ; †; j; w/ consists of a smooth (closed) connected
curve .† ; j/, `  distinct points w D  fw1; : : : ; w`g on † ,  a .J ; j/–holomorphic map
uW .† ; j/ !  .X ; J /  of depth I   ŒN• , and

(2-16) Œ•  . Œi • /i2I 2  
Y

. • m e r o .† ; u NX D i / = C /

such that

(2-17)

i 2 I

ordu;Œ• .x/ ¤  0 D)  x  2  w for all x  2  † ;

where the vector-valued order function
ordu;Œ• .x/ D  

 
.ordi .x//i 2ŒN • I  ; .ordŒi • .x // i 2 I  

 
2  Z N for all x  2  †

is defined via (2-14) and (2-15).

In particular, if u is of degree A  2  H2 .X ; Z/ ,  then (2-17) implies

(2-18) .A Di /i 2ŒN • D  
X  

ordu;Œ• .wa/ 2  Z N  :
w a 2w

Remark 2.3 For every J–holomorphic map uW .† ; j/ !  .X ; J /  with smooth domain, `
distinct points w1; : : : ; w` in † ,  and s1; : : : ; s` 2  Z ,  if Im.u/  D i ,  then up to C –  action
there exists at most one meromorphic section i  2  •m e r o .† ; uNX Di / with zeros/poles
of order sa at wa (and nowhere else).

Definition 2.4 Let D  D  
S

i 2ŒN •  D i   X  be an SNC symplectic divisor, let . ! ; J /  2
J  .X ; D /,  and let

.
C   .† ; j; zE/ D C v   .†v ; jv ; zEv ; qv / ; qe  qe for all e 2  E ;

v 2 V

be a k–marked connected nodal curve with smooth components C v  and dual graph
€ D  € .V ; E; L/ as in (2-12). A  prelog J–holomorphic map of contact type s D
.sa /a D1 2  . Z N  /k from C  to X  is a collection

(2-19) f   . f v  .uv; Œv • ; Cv//v2V

such that

(1) for each v 2  V, .uv;Œv• D  . Œv;i • /i 2Iv ; †v ; jv ; zv [ q v /  is a log J–holomorphic
tuple,

(2) uv .qe / D  uv0 .qe/ 2  X  for all e 2  Ev ;v 0 ,
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(3) se  orduv ;v .qe / D   orduv0 ;v0 .qe /   se for all v; v0 2  V and e 2  Ev;v 0 , (4)

orduv ;v .z a / D  sa for all v 2  V and za 2  zv .

In other words, a prelog map is a nodal J–holomorphic map with a bunch of meromor-
phic sections on each smooth component, opposite contact orders at the nodes, and
prescribed contact orders at the marked points.

Remark 2.5 For every v 2  V and e 2  Ev ,  let
(2-20) se D  .se;i /i 2ŒN • D  

 
.ordi 

v  
.qe//i2ŒN • I v  ; .ordŒv;i • .qe //i 2Iv  

 
2  Z N

be the contact order data at the nodal point qe 2  † v .  For e 2  Ev;v 0 , if uv and uv0 have
image in D I v  and DI v 0  , respectively, by condition (2) above, we have

u.qe/ D  uv .qe / D  uv0 .qe/ 2  D I v  \ D I v 0  D  D I v [ I v 0  ;

ie I e   I v  [ I v 0 .  If i  2  ŒN• n Iv [ I v 0 ,  by (2-14) we have

se;i ; se;i  0:

Therefore, by condition (3) above, they are both zero, ie

(2-21) I e  D  I v  [ I v 0 and s
!  

2  Z I e  f0gŒN • I e   Z N for all e 2  Ev ;v 0 :

The dual graph € of every prelog map in Definition 2.8 carries an additional decoration se

2  Z N  for all e 2  E ,  which records the contact order of .uv;Œv• / at the nodal point qe 2
† v  for every e 2  Ev ;  see Figure 3. The set L  of legs of € is also decorated with the
vector-valued contact order function

ordW L  !  Z N  ; l  !  sl ;

recording the contact vector at the marked point zal  corresponding to l .

Two prelog maps .u;Œ• ; C /  .uv; Œv • ; Cv /v2V and .uz;Œ• ; C /  .uzv ; Œv • ; Cv /v2V with
isomorphic decorated dual graphs € as in Definition 2.4 are equivalent if there exists
a biholomorphic identification
(2-22) .hW C  !  C /  

 
hv W .†v ; jv / !  .†h.v / ; jh.v / /v 2V

such that                              
h.za / D  za

u ı h D  uz;

Œhvh.v/;i • D  Œv;i •

for all a D  1; : : : ; k;

for all v 2  V ; i 2  I v :
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A  prelog map f  is stable if the group of self-equivalences Aut . f  / is finite. By
Remark 2.3, a prelog map is stable if and only if the underlying nodal marked J–
holomorphic map is stable. Clearly, the automorphism group of a prelog map is a
subgroup of the automorphism group of the underlying nodal marked J–holomorphic
map. Example 2.18 below illustrates some rare cases when the two groups are different.
The equivalence class of a prelog map is called a prelog curve. For every such €,
we denote the space of k–marked degree-A prelog J–holomorphic curves with dual
graph € and contact pattern s by

(2-23) Mplog .X; D; A/€ :

If € has only one vertex v with I  D  I v ,  then

M g ; s . X ; D ; A /I   Mp l o g .X; D; A/€

is simply the space of equivalence classes of genus-g degree-A k–marked log J–
holomorphic tuples with an ordering on the marked points and contact type s.

In g D  0, the forgetful map

(2-24) M 0 ; s .X ; D ; A/I  !  M 0 ; k . D I  ; A/; Œu;Œ• ;†; j;zE• !  Œu;†; j; zE• ;

into the (virtual) main stratum of moduli space of k–marked degree-A J–holomorphic
curves into D I  gives an identification of two sets. That is because for every degree
d 2  Z  holomorphic line bundle L  !  P  , every set of distinct points z1; : : : ; zk 2  P  ,
and every set of integers m1; : : : ; mk such that m1 C   C  mk D  d, up to the action of
C  , there always exists exactly one meromorphic section of L  with poles/zeros of order
mi at zi . In the higher genus case, however, the (virtual) normal bundle of this
embedding is the direct sum of I  copies of the dual of the Hodge bundle (ie tangent
space of Pic0 .†/ at the trivial line bundle); see Lemma 5.2.

Example 2.6 If D  is smooth, ie N D 1, a (pre)log map with smooth domain of depth �
is just a J–holomorphic map u with image not into D ,  u 1 .D /  zE, and

s D  .ordz a .u; D//a2Œk • 2  N k

as in the definition of the relative moduli spaces in (4-4). Thus there exists a one-to-
one correspondence between the virtual main stratum of the moduli space of relative
J–holomorphic curves of contact order s, and the space of depth � (pre)log curves
of the same contact pattern. Also, a depth-f1g (pre)log J–holomorphic curve with
smooth domain is represented by a J–holomorphic map uW .† ; j/ !  .D ; J j T D /  and a

Geometry & Topology, Volume 26 (2022)
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meromorphic section  of u NX D  such that zE includes the set of zeros and poles of ,
and

s D  .ordz a .//a2Œk• 2  Z k

as in the definition of the relative moduli spaces. The definitions, however, become
different if we consider maps with nodal domain.

For some decorated dual graphs €, the expected dimension of Mplo g .X ; D; A/€ ,  calcu-
lated via (5-4) and the matching conditions at the nodes, could be bigger than or equal
to the expected dimension of the (virtual) main stratum M g ; s .X ; D ; A/  (something that
we do not want to happen); see the following example. In order for a nodal prelog
curve to be in the limit of the (virtual) main stratum, there are other global
combinatorial and noncombinatorial obstructions that we are going to describe next.
Of course, as in the classical case, we might get prelog curves satisfying these
conditions that do not belong to the closure of the main stratum.

Example 2.7 Let X  D  P 2 with projective coordinates Œx1; x2; x3• and D  D  D 1  [ D 2

(thus N D  2) be a transverse union of two hyperplanes (lines). For

g D  0; s D  ..3; 2/; .0; 1// 2  .N 2/2 and A  D  Œ3• 2  H 2 . X ; Z /  Š  Z ;

we have that M0;s.X; D; Œ3• / is a manifold of complex dimension 4. If D 1  D  .x1 D 0/
and D 2  D  .x2 D 0/, every element in M0;s.X; D; Œ3• / is equivalent to a holomorphic
map of the form

(2-25) Œz;w• !  Œz3;z2w;a3z3 C a2z2w C a1zw2 C a0w3 •:

Let € be the dual graph with three vertices v1; v2; v3, and two edges e1; e2 connecting v1

to v3 and v2 to v3, respectively. Furthermore, choose the orientations e1 and e2 to end
at v3, and assume

I v 1  D I v 2  D �; I v 3  D f1; 2g; s
! 1  D .2; 1/; s

! 2  D .1; 1/; A v 1  DŒ2• ; A v 2  DŒ1•:

See Figure 3. Note that uv3 is map of degree 0 from a sphere with three special points,
two of which are the nodes connecting † v 3  to † v 1  and † v 2 ,  and the other one is the
first marked point z1 with contact order .3; 2/. The second marked point with contact
order .0; 1/ lies on † v 1 .  A  simple calculation shows that Mplog.X; D; Œ3• /€ is also a
manifold of complex dimension 4. The image of u2 (dashed curve) could be any line
different from D 1  and D 2  passing through D12, and every such u1 is equivalent to a
holomorphic map of the form

Œz;w• !  Œz2;zw;a2z2 C a1zw C a0w2 •:

Geometry & Topology, Volume 26 (2022)
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D 2

Im.uv1 /

X

Im.uv2 /

.0; 1/
v1

! 1

v3

D 1
.3; 2/

! 2       

v2

Figure 3: A  2–marked genus-0 nodal degree-3 prelog map in P 3 relative to
two lines. The dashed curve is a line. The dotted curve is a conic. They are
connected by a ghost bubble that maps to D12 .

Corresponding to the decorated dual graph € D  € .V ; E; L/ of a prelog map as in
Definition 2.4 and an arbitrary orientation O  fe ge 2E  E  on the edges, we define a

homomorphism of Z–modules

(2-26) D  D  D.€ /  Z E  ˚  
M  

Z I v  !  T  D  T .€ /  
M

Z I e

v 2 V e 2 E

in the following way. For every e 2  E ,  let

(2-27) %.1e/ D  se 2  Z I e  ;

where 1e is the generator of Z e  in Z E  and e is the chosen orientation on e in O. In
particular, %.1e/ D  0 for any e with I e  D  �. Similarly, for every v 2  V and i  2  I v ,  let

1v;i be the generator of the i th factor in Z I  , and define

(2-28) %.1v;i / D  v ; i  2  
M

Z I e

e 2 E

to be the vector which has 1e;i 2  Z I e   Z N  in the eth factor if v D  v1. e / and e is not a
loop, which has  1eIi 2  Z I e  in the eth factor if v D  v2. e / and e is not a loop, and
which is zero otherwise. This is well-defined by the first equality in (2-21). Let

(2-29)
ƒ  D  ƒ . € /  D  image.%/; K  D  K.€ /  D  Ker.%/;

C K  D  C K . € /  D  T = ƒ  D  coker.%/:

By Definition 2.4(3), the Z–modules ƒ ,  K ,  and C K  are independent of the choice of
orientation O on E  and are invariants of the decorated graph €. In particular,

(2-30) K  D  ..e /e 2E ; .sv /v 2V / 2  Z E  ˚ Z I v  W sv  sv0 D  ese
v 2 V

for all v; v0 2  V ; e 2  Ev 0 ;v     :
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Here, via the first identity in (2-21) and the inclusion Z I v  Š  Z I v  f0gI e  I v   Z I e  , we
think of sv as a vector also in Z I e  for all e 2  E v .  For any field F  of characteristic zero,
let

(2-31)
D F  D  D  ˝ Z  F ; T F  D  T  ˝ Z  F ; ƒ F  D  ƒ ˝ Z  F ;

K F  D  K ˝ Z  F and C K F  D  C K ˝ Z  F

be the corresponding F –vector spaces and %F W D F  !  T F  be the corresponding
F –linear map. Via the exponentiation map, let

ex p . ƒC /   
Y

. C / I e

e 2 E

be the subgroup corresponding to the sub-Lie algebra ƒ C  T C ,  and denote the quotient
group by

G D  G . ƒ /  D  
e 2 E

. C / I e
 

.
e x p . ƒ C /  D  

exp.%C /
 
. C / E

 

 
/ I

2 V  . C / I
 :

In the following, we will construct a map

(2-32) Mp l o g .X; D; A/€   !  G.€/;

which will be used in the definition of log moduli spaces.
Given a prelog map f   

 
f v  .uv; Œv • ; Cv /v2V as in Definition 2.4, fix an arbitrary set of

representatives

(2-33) v  D  .v ; i / i 2 I v  2  •m e r o .†v ; uv NX DI v  / for all v 2  V :

For each v 2 V and e 2 Ev ,  let z
!  

be an arbitrary holomorphic coordinate in a sufficiently
small disk •e around the nodal point .ze D  0/ D  qe 2  † v .  By (2-15), for every v 2  V ,

e 2  E v  and i  2  I v ,  in a local holomorphic trivialization

we have

(2-34)

such that

u NX D i j •
!  

 NX D i ju . q e /  •e;

v ; i .z
!
/  D  z

! e
; i

 v ; i .z
!
/

0 ¤  v;i .0/  e;i 2  NX D i ju . q e /

is independent of the choice of the trivialization. Similarly, by [48, (6.1)], for every
v 2  V, e 2  E v  and i  2  I e   I v ,  the map uv has a well-defined se

;i
 derivative

(2-35) e;i 2  NX D i ju . q e /

Geometry & Topology, Volume 26 (2022)
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(with respect to the coordinate z
!
)  in the normal direction to D i  at the nodal marked

point q
!
.

With the choice of orientation O  fe ge 2E  E  on the edges as before, since e;i ¤  0 for
all e 2  E  and i  2  Ie , the tuples

(2-36) e D  .e ;i =e ;i /i 2Ie  2  . C / I e for all e 2  O

give rise to an element

(2-37)   .e /e 2E 2  
Y

. C / I e  :
e 2 E

The action of the subgroup ex p . ƒC /  on  corresponds to rescalings of (2-33) and
change of coordinates in (2-34); ie the class ob . f  / D  Œ• of  in

G D C I e ex p . ƒC /
e 2 E

is independent of the choice of representatives in (2-33) and local coordinates in (2-34).
If f  and f  0

 are equivalent with respect to a reparametrization hW †0 !  †  as in (2-22),

the respective associated group elements  and 0
 would be the same with respect to

any h–symmetric choice of holomorphic coordinates fze ge 2E . Therefore,

(2-38) ob€.Œf • / WD Œ• 2  G

is well-defined. By definition, ob€.Œf • / D  1 if and only if there exists a choice of
representatives fv ; i g i 2 I v ; v 2 V  and local coordinates fz

!
g e 2 E  such that

e D  e for all e 2  E :

Definition 2.8 Let D  D  
S

i 2ŒN •  D i   X  be an SNC symplectic divisor and . ! ; J /  2  J
.X ; D /.  A  log J–holomorphic map is a prelog J–holomorphic map f  with the

decorated dual graph € such that

(1) there exist functions

sW V !  R N  ; v !  sv ; and W E  !  R C ; e !  e;

such that
(a) sv 2  R C  f0gŒN • I v  for all v 2  V ,
(b) sv2 . e /  sv1 . e / D  ese for every e 2  E ;

(2) ob€ .f / D  1 2  G.€/.

Geometry & Topology, Volume 26 (2022)
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Condition (1)(b) is well-defined because of Definition 2.4(3). If (2) holds, we say that
the prelog map f  is G–unobstructed. Condition (2) is independent of the choice of
orientation O on E  used to define ob€ .

Remark 2.9 A  nodal map in the relative compactification (when D  is smooth) with
image in an expanded degeneration XŒm• comes with a partial ordering of the smooth
components of the domain, such that the components mapped into X  have order 0
and those mapped into the r th copy of P X D  are of order r; see Section 4.1. In the
compactification process, a component sinking faster into D  results in a component
with higher order. From our perspective, the vector-valued function sW V !  R N  in
condition (1) is a generalization of this partial ordering to the SNC case with R N  instead of
Z ;  see Lemma 4.3. From the tropical perspective of [4, Definition 2.5.3], condition (1)

is equal to the existence of a tropical map from a tropical curve associated to € into R0 .
This condition puts a big restriction on the set of contact vectors se. For example, if
Iv ; Iv 0  D  �, then for any other v0 0

 2  V and oriented edges e 2  Ev;v00 and e0 2  Ev0;v00 ,
the contact vectors s

!  
and s

!
0  should be positively proportional. Condition (2) has no

explicit equivalent in [1; 17; 36; 20], but it is related to the slope condition at each
node in [20].

Remark 2.10 The discussion above includes R N  –valued functions, all of them denoted
by s, on the set of vertices, oriented edges and legs of a decorated dual graph €, which
play different roles and should not be confused. The contact orders s D  .s1; : : : ; sk / at
the legs (marked points) are fixed for a moduli space (they are independent of €) and
define a function sW L  !  Z N .  The contact orders .se /e 2E at nodal points define a
function sW E  !  Z N  and are part of the decoration of €. Finally the function sW
V !  R N  (and W E  !  R C )  is not part of the defining data of a log map. We only require
the latter to exist in order for a prelog map to define a log map.

Example 2.11 Example 2.7 does not satisfy Definition 2.8(1). Since I v 1  D  I v 2  D  �,
we should have sv1 D  sv2 D  .0; 0/. Then condition (1)(b) requires se1 D  .2; 1/ and
se1 D  .1; 1/ to be positive multiples of sv3 , which is impossible. A  straightforward cal-
culation shows that the line component uv2 in any limit of (2-25) with a component uv1 as
in Figure 3 should lie in D1 . Then the function sW V !  R 2  given by sv1 D  .0; 0/, sv2

D  .1; 0/ and sv3 D  .2; 1/ satisfies Definition 2.8(1).

The following definition lists the combinatorial properties of an admissible decorated
dual graph.

Geometry & Topology, Volume 26 (2022)
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Definition 2.12 For a fixed SNC symplectic divisor D  D  
S

i 2ŒN •  D i  in X ,  given
g; k 2  N , A  2  H 2 .X ; Z /  and s 2  . Z N  /k , we denote by DG.g; s; A/ the set of (stable)
connected dual graphs € D  € .V ; E; L/ with k legs and

(a) a genus decoration of total genus g,

(b) a degree decoration of total degree A,

(c) an ordering aW L  !  f1; : : : ; kg,

(d) set decorations I  W V ; E !  P .N / satisfying I e  D  I v  [ I v 0  for all v; v0 2  V and
e 2  Ev;v 0 , and

(e) a vector decoration on the set E  of oriented edges, e ! s
!  

2 Z I e  Z N  , satisfying se

C s e  D  0 for all e 2  E ;

such that condition (1) of Definition 2.8 holds and

(2-39) .A v  Di /i 2ŒN • D  
X  

s
!  

C  
X  

sl for all v 2  V :
e 2 E

v l D v

DG.g; s; A/ is the set of possible combinatorial types of stable connected genus-g
k–marked degree-A log curves of contact type s. Note that the defining conditions of
DG.g; s; A/ do not capture Definition 2.8(2); the latter is a noncombinatorial condition.
Example 2.13 below illustrates a legitimate € such that the moduli space of prelog
curves of type € has an expected dimension larger than the expected dimension of the
(virtual) main stratum. Then, imposing condition (2) of Definition 2.8 would reduce
the dimension to less than the expected dimension of the (virtual) main stratum.

For every € 2  DG.g; s; A/, define

(2-40) M g ; s .X ; D; A/ €  D  ob€
1.1/  Mp l o g .X ; D; A/€

to be the stratum of log J–holomorphic curves of type €. We then define the moduli
space of genus-g degree-A stable nodal log J–holomorphic curves of contact type s to
be the union

(2-41) M g ; s .X ; D ; A/  
[

Mg ; s .X ; D; A/ € :
€ 2DG.g ;s;A/

Example 2.13 Let

X  D  P 3; D 1  [ D 2  D  P 2 [ P 2 ; A  D  Œ2d• 2  H 2 . X ; Z /  Š  Z ; g D  .d  1/2;

s D  .1; 0/; : : : ; .1; 0/; .0; 1/; : : : ; .0; 1/ 2  .Z2 /4d ;

Geometry & Topology, Volume 26 (2022)



!

1 1

1 2

g ;s

g ;s

!

e e

e e

g ;s

!  ! !log

! !

!  ! !

1018 Mohammad Farajzadeh-Tehrani

2d points of
contact order .1; 0/ :

se D  .  1; 1/

v1
: d edges 

v2

2d points of
: contact order .0; 1/

I v 1  D  f1g
gv1 D  2 d.d  1/
A v 1  D  Œd•

I v 2  D  f2g
gv2 D  2 d.d  1/
A v 2  D  Œd•

Figure 4: A  decorated graph in DG.g D .d  1/2; s; A DŒ2d • /, corresponding
to two generic degree-d curves in D 1  and D2 , intersecting at d points
along D12 .

and let € 2  DG.g; s; A/ be the decorated dual graph illustrated in Figure 4. Note that
the function sWV ! R 2  given by sv D .1; 0/ and sv D .0; 1/ satisfies Definition 2.8(1).
Every element of Mp l o g .X ; D; A/€  is supported on two generic degree-d plane curves
in D 1  and D 2  intersecting at d points along D12. By (5-4) and Definition 2.4(2), the
expected C–dimensions of M g ; s .X ; D ; A /  and Mp l o g .X; D; A/€ are 8d and 9d  2,
respectively.

Orient each edge so that v1.ei / D  v1 for all i  D  1; : : : ; d . Then ƒ  D  %.D/ in (2-29)
is generated by the vectors s

! 1 ; : : : ; s
! d  , v 1  D  v1 ;1 and v 2  D  v2 ;2, so that the only

relation is

v 1  C v 2  C . s
! 1  C : : : C s

! d  / D  0:

We conclude that the obstruction group G.€/ is complex .d  1/–dimensional. There-
fore, the subset of log curves

M g ; s .X ; D; A/ €   M
p l o g .X ; D; A/€

is of the expected C–dimension .9d  2/  .d  1/ D  8d  1 <  8d .

Remark 2.14 By Remark 2.3, for every k–marked stable nodal curve f  2 M g ; k . X ; A /
with dual graph €, fixing s 2  . Z N  /k and the vector decoration fse ge 2E as in Definition
2.12(e), there exists at most one log curve flog 2  M g ; s .X ; D ; A/  with orders si at z i and
se at qe lifting f  . Furthermore, flog is stable if and only if f  is stable.

Lemma 2.15 Given f  2  M g ; k . X ; A /  with the dual graph € and s 2  . Z N  /k , the set of
possible vector decorations fse ge 2E as in Definition 2.12 satisfying (2-39), and thus the
set of possible log lifts of f  , is finite.

Geometry & Topology, Volume 26 (2022)



!

! ! !

!

!  ! !

! !

!

!

!

!

! ! ! ! X

! !

!

X

! ! !

!

!  ! !

log

0
!!  ! !! !

! ! !
0
! !

!

!
0
! 0 0

! ! !

! !! ! ! !

!

l 2 L l 2 L

00 0

J –holomorphic curves relative to an NC symplectic divisor: compactification 1019

Proof Since se;i D   se;i for all e 2  E  and i 2  Ie , it is sufficient to show that the set
of possible values for fse ; i ge 2E; i 2 I e  is bounded from above. Fix i  2  ŒN•. I f v 2  V
and e 2  E v  such that i  2  I e  I v ,  then se;i and se;i are uniquely determined by the
tangency order of uv with D i .  Therefore, we can restrict to the subset Vi  V of all
vertices v such that i  2  I v ,  and the edges between them. Given a decoration fse ge 2E

as in Definition 2.12 satisfying (2-39), let E i  be the subset of oriented edges e such
that e 2  Ev ;v 0  for some v; v0 2  Vi and se;i >  0. Let €i be the oriented graph made of
Vi and the oriented edges in E i .  By condition (1)(b) in Definition 2.8, €i does not
have any oriented loop. Therefore, E i  defines a partial order on Vi . Let v 2  Vi be a
maximal vertex. There is no oriented edge in E i  pointing toward v. Therefore, for
every e 2  E v ,  either se;i D  0 or se;i >  0. The identity

A v  D i  D se;i C sl ;i
e 2 E v                        l 2 L ; v l D v

puts an upper bound on fse ; i ge 2Ev  . Moving down in the partial order on Vi we get
upper bounds on other se;i .

Lemma 2.16 For every genus-0 k–marked stable nodal map f  in M 0 ; k .X ; A/  with
dual graph € and a fixed s, there exists at most one vector decoration fse ge 2E as in
Definition 2.12(e) satisfying (2-39). In particular, the forgetful map

M 0 ; s .X ; D; A/  !  M 0 ; k .X ; A/

is an embedding (of sets).

Proof Assume that there are two different decorations fse ge 2E and fse ge 2E as in
Definition 2.12 satisfying (2-39). There is some i 2  ŒN• s uch that fse ;i ge 2E and
fse;i ge 2E are different. Since g D  0, € is a tree and the subset of edges •  E  where se;i

¤  se
;i
 determines a subtree of that. In particular, there exists a vertex v 2  V that is

connected to only one edge e 2  •. Orient e so that v is the starting point. Then,
by (2-39),

A v  D i  D se0 ;i C
X

se;i C  
X  

sl ;i ¤ se 0 ;i  C
X

se;i C  
X  

sl ;i D A v  D i ;

e 2 E v  f e0g                
v l D v                                  

e 2 E v  f e0g                
v l D v

a contradiction.

Example 2.17 below describes a situation where f  has different lifts but the automor-
phism groups of f  and its lifts are the same. Example 2.18 describes a situation where
f  has different lifts and some of them have smaller automorphism groups.
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Example 2.17 Let X  D  P 2, let D  D  P 1 be a hyperplane (line), and p1; p2; p3; p4

be four distinct points in D .  Let uv1 W † v 1   !  D  be a degree-one map and v 1  be a
meromorphic section of uv N X D  with two poles of orders 1 and 2 at qe1 D  uv 

1.p1/
and qe 2 D  u 1.p2/, respectively, and a zero of order 4 at z1 D  u 1.p3/. Similarly, let uv2

W † v 2   !  D  be a degree-one map and v 2  be a meromorphic section of u v 2
NX D  with

two zeros of orders 1 and 2 at qe1 D  uv2 
.p1/ and qe 2 D  uv2 

.p2/, respectively, and
a pole of order 2 at qe 3 D  uv2 

.p4/. Finally, let uv3 W † v 3  !  X  be a smooth conic with
a tangency of order 2 with D  at qe 3 D  uv3 

.p4/. The tuple

ulog  .uv3 ; .uv2 ; v2 /; .uv1 ; v1 //

with the nodal 1–marked domain

.† ; z 1 / D  .†v1 ; z1 ; qe 1 ; qe 2 / t .†v2 ; qe 1 ; qe 2 ; qe 3 / t .†v3 ; qe 3 /= ;

qe  qe for all e 2  fe1; e2; e3g;

defines an element of M1;.4/.X; D; Œ4• /. Let ulog be a similar tuple with the roles of
p1 and p2 reversed, ie u D  .uv1 ; uv2 ; uv3 / remains the same but v 1  and v 2  exchange

their orders at the preimages of p1 and p2. Therefore, Œulog;†; z1• and Œulog;†; z1• are
different lifts of the same 1–marked stable curve Œu;†; z1• in M1;1.X;Œ4• /. Note that
e1 and e2 form a loop in €. In this example, the two vector decorations corresponding to
.ulog; †; z1/ and .ulog; †; z1/ yield isomorphic decorated dual graphs €. In other
words, the forgetful map

M1;.4/.X; D; Œ4• /€ !  M1;1.X; Œ4• /

is a double-covering of its image.

Example 2.18 Assume uW †  !  D   X  is a stable map, where †  is the genus-1
nodal curve made of two copies of P  , say P1 and P2 , attached at 0 and 1 ,  and

ui D  ujP 1 W P 1 !  D  for i  D  1; 2 is a double-covering of some rational curve C i   D ,
with ui .z  1/ D  ui .z/; ie

ui .0/ D  u i . 1 /  D  x  2  C1 \ C 2   D:

Further, assume NX D j C 1  D  O.2/ and NX D j C 2  D  O .  2/. The automorphism group
of the stable map f  D  .u; †/ is Z2 .  Since u NX D  D  O.4/ and u NX D  D  O .  4/,
there are two possible ways to lift f  to a log map flog 2 M l o g  .X ; D; 2 .C1  C C2 //. The
holomorphic section 1 of u 1 NX D  can be chosen to have zeros of orders .3; 1/, .2; 2/ or
.1; 3/ at .0 ; 1/ .  In the middle case, the automorphism group of flog is Z2 .  In the
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remaining two cases, the two lifts are equivalent with respect to the reparametrization
map

hW †  !  † ; hj 1 .z/ D  z 1 for i  D  1; 2;
i

and their equivalence class defines a single element of M1 ;�.X ; D; 2 .C1  C C2 // with
the trivial automorphism group.

In Section 3, for J  as in the statement of Theorem 1.4, we will lift the Gromov
convergence topology to a compact sequential convergence topology on (2-41) such
that the forgetful map (1-10) is a continuous local embedding. It follows that the lifted
topology is also metrizable. If g >  0, globally, (1-10) behaves like an immersion. If s
2  . N N  /k then by Lemma 5.5 below, M g ; s .X ; D ; A/  is a compact space of expected real
dimension

(2-42) 2
 
c T X .  l o g D / .A/ C .dimC  X   3/.1  g/ C k:

In subsequent papers we will construct Kuranishi-type charts of dimension (2-42)
around every point of M g ; s .X ; D; A/.

The following example describes the log compactification of the moduli space of lines in
P 2 relative to a transverse union of two hyperplanes (lines). The same example is
studied in [35], where Parker uses tropical geometry to describe Ionel’s compactification
in [20] and compare it with his construction.

Example 2.19 Suppose that X  D  P 2 with projective coordinates Œx1; x2; x3• , and
let D 1  D  .x1 D 0/, D 2  D  .x2 D 0/, D  D  D 1  [  D2 , A  D  Œ1• 2  H 2 .P 2 ; Z/ Š  Z  and s
D  ..1; 0/; .0; 1//. Then, as we show below, the moduli space

(2-43) M0;s.X; D; Œ1• /

can be identified14 with Bpt1 ;pt2 Pdual (two-point blowup of P 2), where Pdual is the dual
space of lines in X  D  P  , pt1 is the point corresponding to the line D1 , and pt2 is
the point corresponding to the line D2 . Let E 1  and E 2  be the exceptional curves of
Bpt1 ;pt2 Pdual and let L  be the proper transform of the line connecting pt1 and pt2. Any
line in X  not passing through D12 intersects D 1  and D 2  at two disjoint points z
and z2, respectively. By (2-14),

ord.z1/ D  .1; 0/ and ord.z2/ D  .0; 1/:

14The identification is a homeomorphism with respect to the topology that we describe in Section 3.
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This gives an identification of

M0;s.X; D; Œ1• /  M0;s.X; D; Œ1• /

with Bpt1 ;pt2 P 2  . E 1  [ E 2  [ L / .  Every other log map .u;Œ• / with smooth domain in (2-
43) is either of depth f1g or of depth f2g with two marked points z and z of the
corresponding orders. Those of depth f1g are given by an isomorphism uW P 1  !  D 1

and a holomorphic section  of NX D 1  Š  OP 1 .1/ such that  has a simple zero at the
marked point z1 and z1 ¤  z2 D  u 1 .D2 /. Such Œ• is uniquely determined by u.z1/ 2
D 1  Š  P  . Therefore, via the identification

E 1  Š  P
 
H 0 . NX D 1 /

 
Š  P  ;

such maps correspond to E 1   fE 1   L g  Š  C .  Similarly, the maps of depth f2g with
smooth domain correspond to E 2  fE 2   L g  Š  C .  For other log maps f  in (2-43), z1

and z2 are mapped to the point D12 and thus live on a “ghost bubble” u2W P 1 !  X ,  with
Im.u2/ D12. This ghost bubble and the nontrivial map u1WP1 ! X  are attached to each
other at nodal points z3 2  Dom.u2/ and z0 2  Dom.u1/. By definition, the
meromorphic section  D  .1; 2/ defining the log map .u2;Œ•  . Œ1• ;Œ2• // is a
meromorphic section of the trivial bundle uNX D 1 2  Š  P 1 C 2  such that

ordz 1 ./ D  .1; 0/ and ordz 2 ./ D  .0; 1/:

Since u2 NX D12  is trivial, we should have ordz 3 ./ D  .  1;  1/, and these restrictions
specify a unique .C/2–class Œ• . There are thus three possibilities for f  :

(1) u1 is of depth ¿  In this case, by Definition 2.4(3), u1 specifies an element of
M0;..1;1//.X; D; Œ1• / and we get an identification of such curves f  D  Œu1;.u2;Œ• /• in
(2-43) with the points of L  f L   E 1 ; L   E2 g. The associated decorated dual graph €
is made of two vertices v1 and v2 corresponding to u1 and u2, with I v 1  D  � and I v 2

D  f1; 2g, connected by an edge e with I e  D  f1; 2g and se D  ˙ . 1 ; 1 /  (depending on the
choice of orientation). The group G.€/ in this case is trivial and the function sW V !
R 2  in Definition 2.8(1) can be taken to be sv1 D  .0; 0/ and sv2 D  .1; 1/.

(2) u1 is of depth f1g In this case u1 comes with a holomorphic section 0
 of OP 1 .1/ as

before. Since ord.z0/ D  .1; 1/, by Definition 2.4(3), 0 should be zero at z0 and this
uniquely determines Œ0•. T his unique element f  D  Œ.u1;Œ0• /;.u2;Œ• /• corresponds
to the point E 1   L .  The associated decorated dual graph € is made of two vertices v1

and v2 corresponding to u1 and u2, with I v 1  D  f1g and I v 2  D  f1; 2g, connected by an
edge e with I e  D  f1; 2g and s

!  
D  ˙ . 1 ; 1 /  (depending on the choice of orientation).
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The group G.€/ in this case is trivial and the function sW V !  R 2  in Definition 2.8(1)
can be taken to be sv1 D  .1; 0/ and sv2 D  .2; 1/.

(3) u1 is of depth f2g Similarly, there is a unique such map which corresponds to
the point E 2  L .

2.4 Forgetful maps

In this section, we show that the process of forgetting some of the smooth components
of an SNC divisor D  D      i2ŒN • D i  gives us a forgetful map between the corresponding
log moduli spaces. The results are not used in the rest of the paper. While (1-10) is not

always an embedding, the map (2-47) below is an embedding. This embedding can be
used to reduce certain arguments to the case of smooth divisors.

Let D  D  
S

i 2ŒN •  D i   X  be an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,  g; k 2  N ,

(2-44) s D  .sa D .sa i /i 2ŒN • /aD1 2  . Z N  /k

and € 2  DG.g; s; A/. Given I   ŒN• , let

sj I  D  .sa D  .sa i / i 2 I /a D1 2  . Z I / k ; D j I  D  
[  

D i ;
i 2 I

and let € j I  2  DG.g; sjI ; A/ be the decorated dual graph with the same set of vertices
and edges, but with the reduced set of decorations

I v  D  I v  \ I

I e  D  I v  \ I

Define
s

!  
D  .se ; i / i 2 I  2  Z I

for all v 2  V ;

for all e 2  E ;

for all e 2  E :

(2-45) ŒN •; I W M
p l o g .X ; D; A/€  !  M g ; s j I  

.X ; D j I ; A/ € j I

to be the (well-defined) forgetful map obtained by removing the meromorphic sections

.v ; i / i 2 I v  IvŒN • I  in

(2-19) for all v 2  V .

Lemma 2.20 The map ŒN •; I defined in (2-45) above sends M g ; s .X ; D; A/ €

Mp l o g .X; D; A/€  to M g ; s j I  .X ; D j I ; A/ € j I   M g ; s j I  
.X ; D j I ; A/ € j I  .

Geometry & Topology, Volume 26 (2022)
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Proof Fix an orientation O on E .  With notation as in (2-26), the commutative diagram

Z E  ̊
L

v 2 V  Z I v
%

prD

Z E  ̊
L

v 2 V  Z I v
%0

L
e 2 E  Z I e

pr T

L
e 2 E  Z I e

where prD and prT are the obvious projection maps and % and %0 are defined via O,
induces a group homomorphism prŒN •; I W G.€/ !  G .€ jI / such that

prŒN •; I .ob€ .f // D  ob€ jI  .ŒN •; I .f // for all f  2  Mplo g .X; D; A/€ :

Therefore, ob€ .f / D  1 implies ob€ jI  .ŒN • ; I .f // D  1.

Taking the union over all €, we obtain the stratified forgetful map

ŒN •; I W M
l o g  .X ; D; A/  !  M l o g  

j I  
.X ; D j I ; A/:

For example, the I  D  � case of (2-45) is the map (1-10) into the underlying moduli
space of stable maps; moreover,

(2-46) ŒN •; I0 D  I ; I 0  ı ŒN •; I  W M
l o g  .X ; D; A/  !  M l o g  

j I 0  
.X ; D j I 0 ; A/

for all I 0  I   ŒN• . For s as in (2-44), let si D  sjfi g D  .sa i /a D
1

 2  . Z / k  for all i  2  ŒN• ,
and define

(2-47) ŒN•; 1 D  
Y  

ŒN•;fi gW M l o g  .X ; D; A/  !   M l o g  
i  .X ; Di ; A/;

i2ŒN •

where the right-hand side is the fiber product of

ffig;�W M g ; s i  .X ; D i ; A/  !  Mg ;k .X; A/gi 2ŒN • :

The map ŒN•; 1 is well-defined by (2-46) and it is an embedding15 by Remark 2.14. As
the following example shows, this embedding can be proper (ie not an equality).

Example 2.21 In Example 2.13, the obstruction groups G.€jf1g/ and G.€jf2g/ as-
sociated to €jf1g and €jf2g are trivial. Therefore, for an element of the right-hand
side in (2-47), the corresponding sections v1 ;1 and v2 ;2 can be arbitrary (modulo the

combinatorial conditions imposed by Definitions 2.4 and 2.8). On the other hand, for

15By the results of Section 3, the maps ŒN •; I and thus ŒN•; 1 are continuous.
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such a pair .v1 ;1 ; v2 ;2/ to define an element of the left-hand side, the corresponding
group element in the nontrivial group G has to be the identity. Therefore, the restriction

f1;2g;1W M g ; s .X ; D; A/ €  !  
i D1;2 

M g ; s i  .X ; Di ; A/€ j f i g

of (2-47) to M g ; s .X ; D; A/ €  is not an isomorphism.

3 Compactness

In this section, after a quick review of the convergence problem for the Deligne–
Mumford space and for the classical moduli spaces of J–holomorphic curves, we
slightly rephrase and prove Theorem 1.4 in several steps. The main step of the proof is
Proposition 3.15, which relates the sequence of “gluing” and “rescaling” parameters,
when a sequence of J–holomorphic curves breaks into two pieces with at least one
of them mapped into D .

3.1 Classical Gromov convergence

Definition 3.1 Given a k–marked genus g (possibly not stable) nodal surface C
.† ; zE/ with dual graph €, a cutting configuration with dual graph €0

 is a set of disjoint

embedded circles
  fe ge2E.€ 0 = € /  † ;

away from the nodes and marked points, such that the nodal marked surface .†0; zE 0/
obtained by pinching every e into a node qe has dual graph €0.

Thus, a cutting configuration corresponds to a continuous map

'  W C  !  C 0;

called a –degeneration16 in what follows, onto a k–marked genus-g nodal surface C 0

with dual graph €0
 such that zE 0

 D  '.zE/, the preimage of every node of †  is either a
node in †0 or a circle in , and the restriction

'  W † n  !  †0 n . ' . /   fqe ge2E.€ 0 = € // is a

diffeomorphism. Let

(3-1) W €0 !  €

be the map corresponding to '  between the dual graphs. We have

E.€ 0/  E.€ / [ E.€ 0 = € / and L.€ 0 /  L .€ /

16It is called a deformation in [41].
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1 2 0     1 1

Figure 5: Left: a 1–nodal curve of genus 3 and a cutting set made of two
circles. Right: the resulting pinched curve.

such that jE.€ /E.€ 0 / and jL.€ 0 / are isomorphisms and W

E.€ 0= €/ !  V .€/

sends the edge e corresponding to e to v if e  † v .  For every v0 2  V .€0/ there exists a
unique v 2  V .€/ and a connected component Uv0 of † v  n fe ge2E.€ 0 = € / such that

†v
0   †0 is obtained by collapsing the boundaries of cl.Uv0 / (here cl means closure).

This identification determines the surjective map

(3-2) W V .€0/ !  V .€/; v0 !  v:

From another perspective, a cutting configuration corresponds to expanding each vertex v
2  V .€/ into a subgraph €v  €0 (sometimes, this involves just adding more loops to the
existing graph) with the set of vertices and edges

V .€0 / D  ./ 1.v/ and E.€ 0 / D  ./ 1 .v/ \ E.€ 0= € /:

Moreover, gv D  g€0 , the ordering of marked points is as before, and

(3-3) A v  D
X

Av0 :
v 0 2V .€v /

Figure 5 illustrates a cutting configuration over a 1–nodal curve of genus 3, and the
corresponding dual graphs.

A  sequence f ' a  W C a  !  C 0ga2N of degenerations of marked nodal curves is called
monotonic if € .Ca / Š  € for some fixed € and the induced maps W €0 !  € are all the
same. In this situation, the underlying marked nodal surfaces are isomorphic, ie

(3-4) .Ca ; a / Š  ..† ; ja ; zE/; / for all a 2  N ;

for some fixed marked surface .† ; zE/ with dual graph € and cutting configuration . In
the following, we let †  denote the complement of the set of nodes

fqe ge2E.€ 0 = € /  †0:

Geometry & Topology, Volume 26 (2022)
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Definition 3.2 [41, Definition 13.3] A  sequence fC a   .†a ; ja ; zEa /ga 2N of genus-g k–
marked nodal curves monotonically converges to C 0  .†0; j0; zE 0/ if there exist a
sequence of cutting configurations a  on C a  of type €0, and a monotonic sequence ' a  W
C a  !  C 0 of a–degenerations, such that the sequence . ' a  j† a n a  / ja converges to j0j†0     in
the C 1–topology.17

By [41, Section 13], the topology underlying the holomorphic orbifold structure of
M g ; k  is equivalent to the sequential DM–convergence topology: a sequence fC a g a 2 N  of
genus-g k–marked stable nodal curves DM–converges to C 0 if a subsequence
monotonically converges to C 0. The following result, known as Gromov’s compactness
theorem [16, Theorem 1.5.B], describes a convergence topology on M g ; k . X ; A ; J /
which is compact and metrizable; see [32], [19, Theorem 1.2], [49, Theorem 0.1] and
[29, Chapter 5] for further details. In the special case of Deligne–Mumford space,
Gromov convergence is equivalent to the DM–convergence discussed above.

Theorem 3.3 Let . X ; ! /  be a compact symplectic manifold , f J a g a 2 N  be a sequence
of !–tame almost complex structures on X  converging in the C 1–topology to J ,  and

f f a   .ua ; Ca .†a ; ja ; zEa //ga2N

be a sequence of stable Ja–holomorphic maps of bounded (symplectic) area into X .
After passing to a subsequence, still denoted by f f a g a 2 N ,  there exists a unique (up to
automorphism) stable J–holomorphic map

f  0  .u0; C 0 .†0; j0; zE 0//

such that fC a g a 2 N  monotonically converges to C 0, and such that

(1) we can choose the a–degeneration maps ' a  W † a  !  †0 of the monotonic
convergence so that the restriction

ua j† a n a  ı '
a  

j †

converges uniformly with all derivatives to uj†  
over compact sets;

(2) with the dual graphs € Š € . C a /  and €0 D € .C 0/ as in the definition of monotonic
sequences,

a
lim ua .a;e / D  u0.qe/ for all e 2  E.€0= €/I

(3) the symplectic area of f  0
 coincides with the symplectic area of f a  for all a 2  N .

17Uniform convergence on compact sets with all derivatives.
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It follows from the properties (1) and (3) that for every v0 2  €0, with Ua;v0  † a  as in
the definition of .v0/,

Z Z
lim u a !  D .u0 /! : cl.Ua Iv 0 /

† v 0

Moreover, the stronger identity (3-3) holds. With respect to the identification of the
domains and degeneration maps

. ' a  W † a  !  †0/ Š  . '  W †  !  †0/

as in (3-4), property (2) implies that the sequence .ua W †  !  X / a 2 N  C 0–converges
to u ı ' .

Assume D   X  is an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,  and

(3-5) f f a   .ua;Œa• ; Ca .†a ; ja ; zEa //ga2N

is a sequence of stable log maps in M g ; s .X ; D; A/ .  After passing to a subsequence, we
may assume that all the maps in (3-5) have the same decorated dual graph € .V ; E; L/,
and that the underlying sequence of stable maps

(3-6) fha  .ua ; Ca .†a ; ja ; zEa //ga2N

in M g ; k . X ; A /  (with the same domain) Gromov converges to the stable map

h  .u; C .† ; j; zE// 2  M g ; k . X ; A /

as in Theorem 3.3. Then, in order to prove Theorem 1.4, (for J  as in the statement of
the theorem) after passing to a further subsequence, we prove that h lifts to a unique
log map f  2  M g ; s .X ; D; A/.  The meromorphic sections that lift h to the log map f
are specified in Section 3.2. We first prove that f  is a prelog map in Lemma 3.13; the
proof works for arbitrary . ! ; J /  2  J  .X ; D /.  Then, in Proposition 3.14, we prove that
f  satisfies the conditions of Definition 2.8. Since there are only finitely many possible
log lifts of a stable map f  with different decorations on the dual graph, it follows with
little effort that (1-10) is a continuous local embedding.

3.2 Log-Gromov convergence

In this section, first, we recall some basic structures associated to smooth/SNC symplec-
tic divisors. Then we state the definition of log-Gromov convergence and a convergence
result from which Theorem 1.4 will be deduced.
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Let D   . X ; ! /  be a smooth symplectic divisor, J  2  J  .X ; D ; ! / ,  and let i N X  D  be the
induced complex structure on NX D .  Let J X ; D  be the almost complex structure on
N X D  induced by the @–operator @NX D  associated to . NX D ; i N X  D /  as in the end of
Section 2.1. Fix a compatible pair of Hermitian metric  and Hermitian connection r
on NX D .  Such a connection r  defines a 1–form ˛ r  on N X D   D ,  whose restriction to
each fiber NX D j   fpg Š  C  is the 1–form d with respect to the polar coordinates .r; /
determined by  D  r2 and the complex structure i N X  D .  Recall from Section 2.1 that the
connection r  gives a splitting

(3-7) T N X D  Š  T D  ˚ N X D

such that J X ; D  is equal to J D  on the first summand and to i N X  D  on the second one. By
the symplectic neighborhood theorem [28, Theorem 3.30], for N X D  sufficiently
small there exists a diffeomorphism

(3-8) ‰W N X D  !  X

from a neighborhood of D  in N X D  onto a neighborhood of D  in X  such that ‰.x/ D x,
the isomorphism

(3-9) NX D j x  D  T v e r NX D , !  T x NX D  !  T x X  !  
T x X  

 NX D j x

is the identity map for every x  2  D ,  and

(3-10) ‰! D  ! X ; D  D  . ! j D / C  2 d. ˛ r / :

The last property is not needed for many of the arguments in Section 3.2. In the
language of [45, Definition 2.9], the tuple R  D  .; r ; ‰/ is called an !–regularization. If
‰J D JX ; D ,  then the tuple . ! ; R ; J /  is an element of A K . X ; D /  mentioned in (1-9).

In general, if D  D i2ŒN • D i  is an SNC symplectic divisor in .X ; ! / ,  a system of
regularizations for D  in X  is a collection of smooth embeddings

‰I W N X D I  !  X ; I   ŒN• ;

from open neighborhoods N X D I   N X D I  of D I  such that

     ‰I j D I  D  i dD I  ,

     d‰I induces the identity map on N X D I  Š i 2 I  NX D i j D I  , and

‰I . NI I I 0  \ Dom.‰I // D  DI 0  \ Im.‰I  / for all I 0  I   ŒN• .
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Here,

I I I 0  W NI I I 0  Š
M  

N
X

D
i

j
D

I  !  D I
i 2 I  I 0

is the normal bundle of D I  in DI 0 .  The last identity implies that the derivative d‰I

induces an isomorphism of split vector bundles

(3-11) D‰I II 0 W I I I 0 N I I I  I 0
ˇ

NI I I 0 \D o m .‰ I  / !  NX DI 0
ˇ

D I 0 \ I m . ‰ I  /
:

See [46, Section 2.2]. A  regularization for D  in X  is a system of regularizations for D
in X  as above satisfying the compatibility conditions

Dom.‰I / D  D‰I II 0 .Dom.‰I 0 //;

‰I D  ‰I0 ı D‰I I I 0 jDom.‰I  / for all I 0  I   ŒN•:

Definition 3.4 [46, Definition 2.9] An !–regularization for D  in X  consists of a
choice of Hermitian structure . iI I i ; I I i ; r . I I i / /  on NX D i j D I  for all i  2  I   ŒN• ,
together with a regularization for D  in X  as above so that

‰I !  D  . ! j D I  / C  1 X d . I I i ˛ r . I I i / / for all I   ŒN• ;
i 2 I

and (3-11) is an isomorphism of split Hermitian vector bundles for all I 0  I   ŒN• .

Finally, an element of A K . X ; D /  is a tuple . ! ; R ; J / ,  where R  is an !–regularization
as in Definition 3.4, and

‰I J  D  I  . J j T D I  / ˚
M

I  iI I i
i 2 I

with respect to the decomposition (3-7). The main reason for restricting to A K . X ; D /
or the integrable almost complex structures in Theorem 1.4 is that in the proof of
Proposition 3.15, for any p 2 D I  , we need J  to be . C / I  –equivariant in a neighborhood
of p with respect to a (local) . C / I  –action that preserves D  and fixes D I  .

For any c 2  R > 0 ,  define

NX D . c /  D  fv 2  N X D  W .v/ <  cg:

For any t 2  C ,  define

(3-12)
R t  W N X D  !  NX D ;

‰t D  ‰ ı R t  W R t  
1 . NX D /  !  X ;

R t .v/ D  tv for all v 2  NX D ;

J t  D  ‰t J :

Geometry & Topology, Volume 26 (2022)
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Note that if ‰J D  JX ; D ,  then J t   J X ; D  is independent of t . The following lemma is
an expansion of the sentence after [21, equation (6.5)].

Lemma 3.5 For J  satisfying (1-3), we have

lim J t j N X  D . c /  D  J 0  WD JX ; D j N X  D . c / for all c 2  R > 0 ;

uniformly with all derivatives.

Proof In order to simplify the notation, let us forget about ‰ and think of J  as an
almost complex structure on N 0 D  itself; then J j D  D JX ; D j D ,  and J t  D R t  J  for every
t 2  C .  Via (3-7), we decompose J  into four components

J v . ˛ /  D  . J 1 1 . ˛1 / C J 2 1 . ˛2 / / ˚ . J 1 2 . ˛1 / C J 2 2 . ˛2 / /

for all x  2  D ;  v 2  NX D j x  and ˛  D  ˛1  ˚ ˛ 2  2  .T D  ˚ NX D / j v ;

where, for example, J 11 is the component which maps the horizontal subspace T D to
itself. Identifying ˛ 1  and ˛ 2  with the corresponding vectors in T x D  and NX D j x ,
respectively, we get

. J t / v . ˛ /  D  . J t v  . ˛1 / C J t v  . t ˛ 2 / / ˚
 

t
 J t v  . ˛1 / C J t v  .˛2 /:

On each compact set N X D.c / ,  the first summand uniformly converges to JD . ˛1 / ,  and
J t v  .˛2 /  uniformly converges to i N X  D . ˛2 /  (with all derivatives). Finally, the term

t J t v  .˛1 /

C 1–converges to the normal part of (a multiple of) N J  .v ; J ˛1 /, which is zero by (1-3);
see Remark 4.2.

For any (continuous) map uW †  !  NX D ,  let

ux D   ıuW †  !  D

denote its projection to D .  Then u is equivalent to a section  2  € .† ; uxNX D /  in the
sense that

(3-13) u.x/ D  .x / 2  NX D j ux . x / for all x  2  † :

We will use this correspondence repeatedly in the following arguments. In particular,
by (1)–(3) on page 1004, u is JX;D–holomorphic if and only if ux is JD–holomorphic
and @NX D  D  0.

Geometry & Topology, Volume 26 (2022)
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Definition 3.6

Mohammad Farajzadeh-Tehrani

With .X; D; ! ; J ; ‰ / as above (ie D  is smooth), let 
f a   .ua ; Ca .†a ; ja ; zEa //a 2N

be a sequence of stable maps with smooth domain in M g ; s .X ; D ; A/  that Gromov
converges, considered as a sequence in M g ; k .X ; A / ,  to the marked nodal map

f   .uv ; Cv .†v ; jv ; zEv //v 2V 2  M g ; k . X ; A /

with dual graph € D  € .V ; E; L/ and nodal domain †  D  
S

v 2 V  † v .  With notation as
in (2-12), (4-8) and Theorem 3.3, for each v 2  V1 we say .ua /a 2 N  is asymptotic to

v  2  •m e r o .†v ; uv NX D /

on † v  in the normal direction to D  if there exists a sequence of nonzero complex
numbers .ta ;v /a 2N satisfying

(3-14) (uniformly)
a
lim ‰ta;v 

ı u a  ı '
a  

j K  D  v jK  in

the sense of (3-13), for every compact set K   † v   qv .

Proposition 3.10 below shows that, after passing to a subsequence, the limiting J–
holomorphic map f  always admits such meromorphic sections v , and that they are
unique up to multiplication by a constant in C .  Since d‰ in (3-9) is supposed to
be the identity map on NX D ,  (3-14) does not depend on the particular choice of ‰
in (3-8).

Definition 3.7 Let D   X  be an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,  and 
f a   

 
ua;v;Œa;v • D  . Œa;v;i • /i 2Iv ; Ca ;v  D  .†v ; ja ;v ; zEv /v 2V a 2 N  2  M g ; s .X ; D ; A/

be a sequence of stable log maps in Mg ; s .X ; D; A/1 8  with a fixed decorated dual graph €
D  € .V ; E; L/. We say this sequence log-Gromov converges to the log (resp. prelog) map

f  0 D  
 
uv0;Œv0 •D. Œv0;i • /i2Iv0 ; Cv0 v0 2V 0

in M l o g  .X ; D; A/  (resp. in Mplog .X; D; A/€ 0 ) with the decorated dual graph €0
 D

€.V 0; E0; L0/ if the underlying sequence of stable maps in M g ; k . X ; A /  Gromov con-
verges to the underlying marked nodal map

(3-15) . f  0/ D  .uv0 ; Cv0 /v0 2V 0 2  M g ; k . X ; A /

with nodal domain †0 D  
S

v 02 V 0  †v 0 , and the following hold. With W V0
 !  V

18More precisely, they represent equivalence classes of elements in M g ; s . X ; D ; A / .
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as in (3-2) and notation as in Theorem 3.3, for each v 2  V and v0 2  V0
 with .v0/ D  v,

     if i  2  Iv 0    I v ,  then .ua ;v /a 2N is asymptotic to v0 ;i on †v 0  in the normal
direction to D i  in the sense of Definition 3.6;

     if i  2  I v ,  there exists a sequence .ta ;v 0 ; i /a2N 2  C  such that for every compact set
K  2 †v 0   .zv0 [ qv 0 /, the sequence ta;v0 ;i a ;v ; i  ı '

a  
j K  uniformly converges to

v 0 ;i jK .

Theorem 3.8 Assume that D   X  is an SNC symplectic divisor, that . ! ; R ; J /  2
A K . X ; D /  for some regularization R  or J  is integrable, and that
(3-16)

 
f a   

 
ua;v ; Œa;v •D . Œa;v;i • /i 2Iv ; Ca ;v  D .†v ; ja ;v ; zEv / v 2 V  a 2 N

is a sequence of log maps in M g ; s .X ; D; A/.  After passing to a subsequence, there
exists a unique (up to reparametrization) log map
(3-17) f  0 D  

 
uv0;Œv0 •D. Œv0;i • /i2Iv0 ; Cv0 v0 2V 0

such that (3-16) log-Gromov converges to (3-17) in the sense of Definition 3.7.

We break the proof of Theorem 3.8 into smaller steps. The main steps are proved in
the subsequent sections.

For two sequences of nonzero complex numbers . ta /a 2 N  and .ta /a 2N , we write

(3-18) .ta /a 2 N   . ta /a 2 N if 
a
lim 

ta 
D  1:

The right-hand side of (3-18) defines an equivalence relation on the set of such sequences
and we denote the equivalence class of a sequence .ta /a 2 N  by Œ.ta/a2N •. F or an
equivalence class Œ.ta/a2N • and t 2  C ,  the equation

tŒ.ta/a2N • WD Œ.t ta/a2N •

is well-defined and defines an action of C  on the set of equivalence classes. Moreover,
the operation of pointwise multiplication/division between such sequences

.ta /a 2 N  . ta /a 2 N  D  .ta ta /a 2N

descends to a well-defined multiplication/division operation between the equivalence
classes.

Geometry & Topology, Volume 26 (2022)
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The next proposition corresponds to [21, Proposition 6.6].

Remark 3.9 There is a minor issue in the proof of [21, Proposition 6.6]. In [21,
equation (6.13)], the authors use the intermediate value theorem to find the right
rescaling parameter t D  tm. However, the energy function used there is not necessarily
continuous in t . For example, applying their argument to the example where X  D  C1

C2 is the product of two curves, the divisor V is fpg C2 for some point p 2  C1, and the
sequence of curves is fpi C2 gi D1 , with l i m i ! 1  pi D  p.

Proposition 3.10

(3-19)

As in Definition 3.6 (ie D  is smooth), let

f f a   .ua ; Ca .†a ; ja ; zEa //ga2N

be a sequence of stable maps with smooth domain in M g ; s .X ; D ; A/  that Gromov
converges, considered as a sequence in M g ; k .X ; A / ,  to the marked nodal map

f   .uv ; Cv .†v ; jv ; zEv //v 2V 2  M g ; k .X ; A / :

After passing to a subsequence (which we still denote by N ), for each v 2  V1 there
exists a unique

Œv• 2  • m e r o .†v ; uNX D /=C

such that .ua /a 2 N  is asymptotic to v  on † v  in the normal direction to D  in the sense of
Definition 3.6. Furthermore, v  has no pole/zero in † v   .qv [ zv / ,  and it has a zero of
order si at z i for all z i 2  zEv.

Proof For every fixed K  2  † v   qv , by Theorem 3.3, the sequence

uxa ; K  D ı u a ; K  WK ! D with ua ; K  ‰ 1 ıua  ı '  1 jK  WK ! N 0  D  for all a 1

converges uniformly with all derivatives to uv jK , and we have that

ua ;K .z / D  a ; K .z /

for some nontrivial smooth section a ; K  2  € . K ; ux a
; K NX D /  in the sense of (3-13), so

that the sequence a ; K  converges uniformly with all derivatives (with respect to a
connection r )  to 0. Choose .ta ;v ;K /a 1 so that

(3-20) k t a ; v ; K a ; K kL 1 . K /  D  cK for all a  1

for some arbitrary nonzero constant cK .  Then, by [29, Theorem 4.1.1] (after passing to
a subsequence), the sequence

.‰ ta ; v ; K  
ı u v  ı '

a  
jK /a1

Geometry & Topology, Volume 26 (2022)
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of J t a ; v ; K
 –holomorphic maps in NX D . c K /  converges uniformly with all derivatives to

a unique JX;D–holomorphic map

u 1 ; K  W K  !  NX D . cK / :

By (3-20), property (3) on page 1004, and since uxa;v converges to uv jK , we have

ux 1 ; K  D  uv jK and u 1 ; K  D  v ; K

for some unique nontrivial @NX D–holomorphic section v ; K  of u v NX D jK .  Since a ; K  is
nonzero away from zEa \ '

a  
.K / ,  v ; K  is nonzero away from zEv \ K .

Let
K 1   K 2

be a sequence exhausting † v   qv . For each K i ,  let v ; K i

 
and cK i

 
respectively be the

section and constant corresponding to K i  in the argument above. Choose a reference
point p 2  K 1  and fix a nonzero vector vp 2  NX D j u v . p / .  For each i , we can equally
rescale cK i

 

and . t a ; v ; K i  /a1 by a constant number in C  so that v ; K i  .p/ becomes equal
to vp . Then, by the uniqueness of the limiting section, we get

v ; K i  D  v ; K i C 1 j K i for all i  2  N :

Therefore, the equation

v .x / WD v ; K i  .x / for all x  2  † v   qv ; i  2  N  such that x  2  K i

defines a holomorphic section of u v NX D j † v  qv such that (3-14) holds. Moreover,

. t a ; v ; K i  / a 2 N   . t a ; v ; Kj  / a 2 N for all i ; j  2  N :

It remains to show that v  has at most finite-order poles at the nodes and ordz i .v / D  si for
all z i 2  zEv.

For any marked point z i 2  zEv, let •i  † v  be a sufficiently small disk around z i that
contains no other marked point or nodal point. For a sufficiently large, the order of
vanishing of ua at za is equal to the winding number of

‰ta;v;@•i 
ı u a  ı '  1j@•

i
for all a  1

around D .  With K  D  •i in (3-14), these numbers are the same for a  1 and they are
equal to the winding number of u 1 ; •  j@ •

 around D .  The latter is equal to the order
of v  at z . We conclude that the contact orders stay the same at the marked points.

Similarly, for any nodal point qe 2  † v ,  with e 2  E  and v1. e / D  v, let •  † v  be a
sufficiently small disk around q

!  
that contains no other marked point or nodal point.
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Choose a compact set K   † v    qv so that one of its boundary circles coincides
with @•. Since the convergence in (3-14) is uniform, the winding numbers of

‰ ta ;v ;K  
ı u a  ı '  

1j@• for all a  1

around D  are the same as the winding number of u1;K j@• around D .  The latter is
equal to the order of v  at qe. We conclude that v  extends to a meromorphic section at
q

!
.

Remark 3.11 The sections v  and the equivalence class of the rescaling sequence
Œ.ta;v/a2N • are independent of the choice of ‰. It is also clear from (3-14) that if
.tv ;a /a 2N is a rescaling sequence associated to v  and .tv ;a /a 2N is a rescaling sequence
associated to cv for any c 2  C ,  then

(3-21) Œ.tv;a/a2N • D  c 1Œ.tv;a/a2N •:

The following is the analogue of Proposition 3.10 for a sequence of stable log maps
with smooth domain and image in D .

Corollary 3.12

(3-22)

If D  is smooth , consider a sequence

f f a   .ua ; a ; Ca .†a ; ja ; zEa //ga2N

of representatives of stable log maps with smooth domain in Mg ; s .X ; D; A/ f 1 g  such
that the underlying sequence of stable JD–holomorphic maps

(3-23) f f a   .ua ; Ca .†a ; ja ; zEa //ga2N Gromov

converges, as a sequence in M g ; k .D ; A / ,  to the nodal map

f   .uv ; Cv .†v ; jv ; zEv //v 2V 2  M g ; k .D ; A/ :

With notation as in (2-12), (4-8) and Theorem 3.3, after passing to a subsequence
(whose index we still denote by N ), for every v 2  V there exists a unique

Œv• 2  • m e r o .†v ; uNX D /=C

and a unique equivalence class of sequences of nonzero complex numbers Œ.ta;v/a2N •
such that

(3-24)
a
lim ta;v a  ı '  

1 jK  D  v jK

for any compact set K   † v       qv . Furthermore, Œv• only depends on the sequence of
equivalence classes .Œa • /a2N , it has no pole/zero in † v  .qv [  zv/, and it has a
zero/pole of the same order si at z i for all z i 2  zEv.
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Proof If (3-24) holds for a sequence .a ; ta ;v /a2N , then it also holds for any other
simultaneous reparametrization .ta a ; ta ta ;v /a2N . Therefore, (3-24) only depends on
the sequence of equivalence classes .Œa • /a2N . Every map in the sequence (3-22)
corresponds to a JX;D–holomorphic map in

M g ; s . NX D ; D ; A / :

Choose the representatives a  so that their image in N X D  lie in an arbitrarily small
compact neighborhood19 of D .  Replacing . X ; D ; ! ; J /  with . NX D ; D ; !X ; D ; JX ; D /
and ‰ with the identity map in Proposition 3.10, we get the desired result.

From Proposition 3.10 and Corollary 3.12 we derive the following conclusion.

Lemma 3.13 Let D   X  be an SNC symplectic divisor, . ! ; J /  2  J  .X ; D /,  and
(3-25)

 
f a   

 
ua;v ; Œa;v •D . Œa;v;i • /i 2Iv ; Ca ;v  D .†v ; ja ;v ; zEv /v 2V a 2 N

be a sequence of stable log maps in M g ; s .X ; D; A/ .  After passing to a subsequence,
there exists a unique prelog map

(3-26) f  0 D  .uv0;Œv0 •D. Œv0;i • /i2Iv0 ; Cv0 /v0 2V 0

such that (3-25) log-Gromov converges to (3-26) in the sense of Definition 3.7.

Proof First, we apply Gromov convergence to the underlying sequence of stable maps.
Then, running through all D i  and v 2  V one at a time, applying Proposition 3.10 (with
D  D  D i )  to the sequence

.ua ;v ; Ca ;v /a 2N

whenever i  … I v ,  and Corollary 3.12 to the sequence

.ua ;v ; a ;v ; i ; Ca ;v /a 2N

whenever i  2  I v ,  we obtain f  0. We need to show that f  0
 satisfies the conditions

of Definition 2.4. The first condition is obviously satisfied.

Continuity The matching condition (2) of Definition 2.4 is about the continuity of
the underlying stable map f  0 and already holds by Gromov compactness.
19So we can still apply the Gromov convergence theorem. We can also use the compact manifold P  D  in
(4-2) instead of N X D  with the symplectic form ! X ; D  D  . ! j D / C d . ˛ r = . 1 C / / ,  where  >  0 is a
sufficiently small constant. Then, for t sufficiently small, by interpolating between J t j R      1 .N 0  D /  and
JX ; D j P X  D ,  we can construct a family of almost complex structures J t  on P X D  so that J t  converges to
JX ; D ;  see [21, Proposition 6.6].
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Contact orders at the nodes

Mohammad Farajzadeh-Tehrani

In order to show that the condition (3) of Definition 2.4
is satisfied, let us first fix some notation. Since

se D   se ( ) se;i D   se;i 2  Z  for all i  2  ŒN• ;

it is enough to show that condition (3) is satisfied relative to each smooth component D i ;
ie we may assume D  is smooth. In the context/notation20 of Proposition 3.10, for
every v; v0 2  V and any node qe D  .qe  qe/, e 2  Ev ;v 0 , connecting † v  and †v 0 , let
•e  † v  be a sufficiently small disk around qe (not containing any other marked point or
nodal point), •e  †v 0  be a sufficiently small disk around qe, and Ae D  •e [ • e  be the
resulting neighborhood of qe in † .  We orient each circle @•e in the direction of the
counterclockwise rotation in •e  C .  For each e 2  E ,  Aa;e D  '

a  
.Ae / is a cylinder in

† a  with two (oppositely oriented) boundaries

(3-27) @Aa;e D  '
a  

.@•e/ and @Aa;e D  '
a  

.@•e/

such that uaj a ; e  does not intersect D  for a  1. Since uaj a ; e  is continuous and does not
intersect D ,  the winding numbers of ua around D  on the two boundary circles of the
annulus Aa;e (if oriented compatibly) are the same. But @Aa;e and @Aa;e are the
boundary circles of the annulus Aa;e with opposite orientations, therefore the winding
numbers of

uaj@Aa;e and uaj@Aa;e

are opposites of each other. If v 2  V1, by the proof of Proposition 3.10

se WD ordq
!  
v  D  winding number of .uaj@A

a
;e / for all a  1:

Similarly, if v 2  V0, then

se WD ordq
!  
.uv ; D / D  winding number of .ua j@A

a
;e / for all a  1:

Therefore,

(3-28) se D   se for all v; v0 2  V ; e 2  Ev;v 0 :

The same conclusion holds in the case of Corollary 3.12 (since it is a corollary of
Proposition 3.10).

The contact-order condition (3) in Definition 2.4 follows, for every e 2  E.€0= €/, from
equation (3-28). For each e 2  E  D  E.€ /  E0 D  E.€0/, with v D  v1.e / 2  V , the

20Note that the notation used for the limiting map in Proposition 3.10 is different than that in the statement
of Lemma 3.13.
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nodal point q
!  

is a marked point for .uv ; Cv /. For such e, by the last statements in
Proposition 3.10 and Corollary 3.12, the contact order s

!  
remains unchanged in the

limiting process. Therefore, the contact-order condition (3) in Definition 2.4 follows,
for every e 2  E   E0, from the corresponding condition on . f a / a 2 N .

Contact orders at the marked points. Finally, condition (4) in Definition 2.4 follows
from the corresponding statements in Proposition 3.10 and Corollary 3.12.

In order to prove Theorem 3.8 (and thus Theorem 1.4), it just remains to prove the
following proposition.

Proposition 3.14 If , further, . ! ; R ; J /  2  A K . X ; D /  for some regularization R  or if
J  is integrable, then the prelog J–holomorphic map f  0 in (3-26) satisfies conditions
(1) and (2) of Definition 2.8.

We prove Proposition 3.14 in Section 3.4. The proof uses a fine comparison result
between the rescaling parameters .ta ;v 0 ; i /a2N corresponding to the sections v0 ;i for all v0

2V 0 and i 2 Iv 0 , and the “gluing parameters” of the nodes. We expect Proposition 3.15 and
thus Proposition 3.14 to be true for a larger class of almost Kähler structures
containing A K . X ; D /  and the space of Kähler structures.

3.3 Local behavior of convergence

Proposition 3.14 is essentially a consequence of Proposition 3.15 below, which re-
lates the sequence of rescaling parameters .ta ;v 0 ; i /a2N corresponding to the sections
fv 0 ;i gi 2Iv 0 ;v 0 2V 0 in Lemma 3.13 to the “gluing parameters” at the nodes and the ratios of
leading-order coefficients 0 ¤  e0;i 2  NX Di ju0 .qe 0 / in (2-36). We use the natural log of
these parameters to cook up the map required in condition (1) of Definition 2.8.

Let us start with a local picture of what is happening in Lemma 3.13 with respect to
any smooth component of D .  Suppose D  is a smooth symplectic divisor in . X ; ! /  and
J  2  J  .X ; D ; ! / .  Fix a regularization ‰W N X D  !  X  as in (3-8). Let •1 and •2 be
compact discs of some fixed sufficiently small radius ı  around 0 2  C  with coordinates z1

and z2. For i  D  1; 2, let fzi ;a ga 2N be a sequence of complex coordinates21 on •i

converging to zi uniformly with all derivatives.

21More precisely, zi ;a W •i !  C  is a sequence of smooth functions converging to the function zi W •i !  C
in C 1–topology.
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Local case 1 For a sequence of complex numbers ."a /a 2 N  converging to zero, suppose
ua W A a  !  Im.‰/  X ,  where

(3-29) A a  D  f.z1;a ; z2;a / j z1;az2;a D  "a; z1;a 2  •1; z2;a 2  •2g  •1 •2

with a 2  N  is a sequence of J–holomorphic maps that Gromov converges to the nodal
map  

u1.z1/W •1 !  X ;  u2.z2/W •2 !  D ; x  D  u1.0/ D  u2.0/ 2  D:

In other words, for any  >  0,

(a) the sequence of J–holomorphic maps

ua .z1;a /  ua.z1;a; "a=z1;a/W A a   fz1;a 2  C  j "a = ı   jz1;aj  ı g  !  X

converges uniformly with all derivatives on the compact set

f.z1;a ; z2;a / 2  A a  j   jz1;ajg  fz1;a 2  C  j   jz1;aj  ı g

to u1 jfz 1 2C j jz 1 j ı g , (b)

the reparametrization

ua .z2;a /  ua."a=z2;a; z2;a/W A a   fz2;a 2  C  j "a = ı   jz2;aj  ı g  !  X

converges uniformly with all derivatives on the compact set

f.z1;a ; z2;a / 2  A a  j   jz2;ajg  fz2;a 2  C  j   jz2;aj  ı g

to u2 jfz 2 2C j jz 2 j ı g , and

(c) we do not get any bubbling in between the two maps (ie the energy in between
shrinks to zero with ).

Furthermore, suppose that

(1) u1 has a tangency order of s >  0 with D  at z1 D  0, and

(2) there exists a meromorphic section  of u 2 NX D  with (only) a pole of order s at
the origin, and a sequence of complex numbers . ta /a 2 N  converging to zero such
that t  1‰ 1 .ua .z2;a // converges to .z2/ uniformly with all derivatives on any
compact set fz2 2  C  j   jz2j  ı g   •2.

Let 0 ¤  2 2  NX D j x  be the leading coefficient of  with respect to the coordinate z2 as
in (2-34), and 0 ¤  1 2  NX D j x  be the sth derivative of u1 in the normal direction to D
at 0 with respect to the coordinate z1 as in (2-35). Proposition 3.15 below shows that
there is an explicit relation between the sequence of gluing parameters ."a /a 2 N  , the
sequence of rescaling parameters .ta /a 2N , and the ratio 2=1 2  C .
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Local case 2 Similarly, consider the situation where the sequence of J–holomorphic
maps fua ga 2 N  in (3-29) Gromov converges to the nodal map

.u1W •1 !  D;u2W •2 !  D /; x  D  u1.0/ D  u2.0/ 2  D ;

with the following property: there exist meromorphic sections 1.z1/ and 2.z2/ of
u 1 NX D  and u2 NX D ,  respectively, such that

ord0.1/ D  s; ord0.2/ D   s

and, for i  D  1; 2, there exists a sequence of complex numbers .t i ;a /a 2N converging
to zero such that ti ;a ‰ 1 .ua .zi ;a // converges to i .zi / uniformly with all derivatives on
any compact set fzi j   jzi j  ı g   •i . With 1 and 2 as before, the following proposition also
shows that there is a similar relation between the sequence of gluing parameters
."a /a 2N , rescaling parameters .t i ;a /a 2N , and the ratio 2=1 2  C .

Proposition 3.15 With notation as above, if in addition . ! ; R ; J /  2  A K . X ; D /  for
some regularization R  or if J  is integrable, in local case 1 we have

(3-30)

in local case 2 we have

(3-31)

s

a ! 1  ta 
D

 1 
I

lim 
t1

; a
 "a D  2 :

2;a 1

Note that the situation in (3-31) reduces to the situation in (3-30) after a rescaling of
the sequence fua ga 2 N  via .t1;a /a 2N . For the rescaled sequence we will have .ta

D  t2;a =t1;a /a2N . We prove Proposition 3.15 in the next section. The proof of this
proposition is the only place where we use the extra assumption on J  in the statement of
Theorem 1.4, but we expect this proposition, and thus Theorem 1.4, to be true for a
larger class of almost complex structures that contains J  .X ; D /  and holomorphic
structures.

Remark 3.16 It is easy to see that the limit conditions in (3-30) and (3-31) are
independent of ‰, the representatives 1 and 2, and the local coordinates z1 and z2.
For example, in (3-31), substituting z2 with ˛z2 and 2 with ˇ 2  for some ˛ ; ˇ  2  C
changes 2 on the right-hand side of (3-31) to ˛ s ˇ 2 ,  changes "a and t2;a on the
left-hand side of (3-31) to ˛" a  and ˇ  1t2;a, respectively, and has no effect on the
other terms. Thus it affects both sides of (3-31) equally. It is also clear that (3-30) and
(3-31) only depend on the equivalence classes Œ."a/a2N • , Œ.ta/a2N • , Œ.t1;a/a2N •
and Œ.t2;a/a2N • .

Geometry & Topology, Volume 26 (2022)



a ! 1 t

2

x

0

"s

t

! 1

! 1

1042

Remark 3.17

Mohammad Farajzadeh-Tehrani

In the case of smooth divisors, a significantly simpler version of (3-31)
suffices for proving Proposition 3.14. Instead of (3-31), in order to get the partial order
in Lemma 4.3 we only need to prove that

(

(3-32)                                         lim 
t1

; a
 D      1

2;a              1

if s D  0;

if s >  0:

The equalities in (3-32) can be proved without the extra restriction on J .  Thus, if D  is
smooth, Theorem 1.4 holds for arbitrary . ! ; J /  2  J  .X ; D /.

Proof of Proposition 3.15 The proof below is by constructing a modified sequence of
J–holomorphic maps in NX D .

Let . R  D  .; r ; ‰/; iNX  D ; @NX D ; JX ; D /  be as in the beginning of Section 3.2. If
. ! ; R ; J /  2  AK .X ; D / ,  then ‰J D  JX ; D .  If J  is holomorphic, we consider a

holomorphic chart .z1; : : : ; zn/ around x  D  u1.0/ D  u2.0/ 2  D  such that D  D  .z1 D 0/.
Then, replacing the rescaling procedure in the proof below with holomorphic rescaling
of z1, the same proof works for the holomorphic case.

Assume ‰J D  JX ; D .  Note that J X ; D  is C–invariant. Since the argument is local, in order
to simplify the notation let us forget about ‰ and think of fua ga 2 N  as a sequence of JX;D–
holomorphic maps into N X D  itself.

Assume that we are in the situation of local case 1. For each a 2  N , let

a  D   a  :
a

Claim 1 There is no subsequence .a1; a2; : : :/ of N  such that

i
lim a  D  0 or 1 :

Thus, we conclude that there is M >  0 such that M  1 <  jaj <  M for all a 2  N .

Claim 2 For any subsequence .a1; a2; : : :/ such that the limit

i
lim a  D

exists,  D  2=1.

This implies that (3-30) holds over all of N .
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In order to prove these claims, we first construct two new sequences of J–holomorphic
maps. For a 2  N , define

(3-33) u1;a W A a  !  NX D ;

(3-34) u2;a W A a  !  NX D ;

u1;a .z1;a ; z2;a / D  z1;a ua .z1;a ; z2;a/;

u2;a .z1;a ; z2;a / D  z1;a a  ua .z1;a ; z2;a/;

where the multiplications on the right-hand sides are with respect to the complex
structure i N X  D  on NX D .  By (1)–(3) on page 1004, both (3-33) and (3-34) are sequences of
JX;D–holomorphic maps in NX D .

We will also use the following fact. For any c >  0, there exists a sufficiently small
c >  0 such that

! c  D  . ! j D / C  2 c d . ˛ r /

tames J X ; D  on N X D.c / .  For any compact 2–dimensional domain †  and smooth map
uW †  !  N X D .c / ,  let Z

! c  .u/ D  
†  

u ! c

denote the symplectic area of u.

In order to prove Claim 1, we separate the problem into two cases. In the first and
second parts below, we consider the cases where the limit is 1  or zero, respectively.
In each case, we apply Gromov convergence to the auxiliary sequences in (3-33) and
(3-34) to get a contradiction if the limit is 1  or 0.

Proof of Claim 1, part 1

(3-35)

After passing to a subsequence, suppose

a
lim a  D  1 :

By (a) on page 1040 and the previous paragraph, for any 0 <  r <  ı ,  the sequence
fu1;a .z1;a /ga2N restricted to r jz1j ı (and its preimages in Aa ) converges uniformly with
all derivatives to the JX;D–holomorphic map

u1;1;1 .z1 / D  z1 
s u1.z1/:

By definition of 1, the function u1;1;1 .z1 / extends to z1 D  0 with u1;1;1 .0/ D  1 2
NX D j x ,  where x  D  u1.0/ D  u2.0/ 2  D .  By assumptions (b) and (2) on page 1040,
equation (3-35), and since

z1;a D  "a z2;a ;
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the sequence fu1;a .z2;a /ga2N restricted to r  jz2j  ı  (and its preimages in Aa )
converges uniformly with all derivatives to the JX;D–holomorphic map

u1;1;2 .z2 / D  u2.z2/  D:

This obviously extends to the entire •2 with u1;1;2 .0/ D  x . The following subclaim
shows that the sequence fu1;a ga2N is bounded in between, so that Gromov convergence
applies.

Subclaim There exists a sufficiently large c >  0 such that

(3-36) Im.u1;a /  N X D . c / and ! c  .u1;a /  c for all a 2  N :

Proof of subclaim Suppose (3-36) does not hold. Then (after passing to a subse-
quence), by assumptions (a)–(c) on page 1040, for any c >  1 there exists a sequence
fra ga 2 N  with

(3-37)
a
lim ra D  1

and
(3-38) 

. z 1 ; a ; z 2 ; a / 2 A a

 
jra 

1z1;a ua.z1;a ; z2;a/j; ! c  .z1;a ; ra 
1z1;a ua.z1;a ; z2;a //

 
D  c

for all a  1. Let

uz1;a W A a  !  Z ; u1;a .z1;a ; z2;a / D  ra 
1z1;a ua .z1;a ; z2;a/:

Then:

     By (a) on page 1040 and equation (3-37), for any 0 <  r <  ı ,  the rescaled
sequence fuz1;a .z1;a /ga2N restricted to r  jz1j  ı  converges uniformly with all
derivatives to the JX;D–holomorphic map

uz1;1;1 .z1 / D  ux1.z1/  D ;

where ux1 is the image of u1 in D .

     By assumptions (b) and (2) on page 1040, the sequence fuz1;a .z2 ;a /ga2N re-
stricted to r  jz2j  ı  still converges uniformly with all derivatives to the
JX;D–holomorphic map

uz1;1;2 .z2 / D  u2.z2/  D:
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     By (3-38), (the proof of) the Gromov convergence theorem in [29] applies22 to the
sequence fuz1;a ga2N . In the limit we get a bubble domain † 1  with •1 and •2 at
the two ends and at least one closed bubble in between (because of (3-38)), and a
continuous JX;D–holomorphic map

uz1;1 W † 1  !  Z

such that

uz1; 1 j• 1  D  uz1 ; 1 ; 1 and uz1; 1 j• 2  D  uz1;1 ;2 :

Any nontrivial bubble would have trivial image in D ,  thus its image lives in N X D.c /j x .
This is impossible since the latter is open and there are no marked points to stabilize
such a bubble.

Going back to the proof of Claim 1, part 1, by (3-36), (the proof of) the Gromov
convergence theorem in [29] applies to the sequence fu1;a ga2N . In the limit we get a
bubble domain † 1  with •1 and •2 at the two ends and possibly some closed bubbles in
between, and a continuous JX;D–holomorphic map

u1;1W † 1  !  Z

such that

u1;1 j• 1  D  u1; 1 ;1 and u1;1 j• 2  D  u1;1;2 :

Since
u1;1;1 .0/ ¤  u1;1;2 .0/;

† 1  should include at least one nontrivial bubble. Such a nontrivial bubble would have
trivial image in D ,  thus its image lives in N X D.c /j x .  This is impossible since the
latter is a domain in C  and there are no marked points to stabilize such a bubble.

Proof of Claim 1, part 2

(3-39)

After passing to a subsequence, suppose

a
lim a  D  0:

By assumptions (b) and (2) on page 1040, since

u2;a .z1;a ; z2;a / D  z1;a a  ua .z1;a ; z2;a / D  z2;a ta 
1 ua .z1;a ; z2;a /;

22Gromov convergence applies because on the open ends of A a  we already know that fuz1;a ga 2N
uniformly converges to uz1 ; 1 ; 1  and uz1;1;2 ,  and in the middle the sequence is bounded with bounded
energy.
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for any 0 <  r <  ı  the sequence fu2 ;a .z2 ;a /ga2N restricted to r  jz2j  ı  (and its
preimages in Aa ) converges uniformly with all derivatives to the JX;D–holomorphic
map

u2 ;1;2 .z2 / D  z2 .z2/:

By definition of 2, the function u2 ;1;2 .z2 / extends to z2 D 0  with u2 ;1;2 .0/ D 2 . On the
other hand, by (a) on page 1040 and (3-39), the sequence fu2 ;a .z1;a /ga2N restricted to r
jz1j  ı  (and its preimages in Aa ) converges uniformly with all derivatives to the JX;D–
holomorphic map

u2 ;1;1 .z1 / D  ux1.z1/  D:

This obviously extends to the entire •1 with u2 ;1;1 .0/ D  x . By a similar argument as
in the previous case, the inequality

u2 ;1;1 .0/ ¤  u2 ;1;2 .0/

leads to a contradiction. This finishes the proof of Claim 1.

Proof of Claim 2 After passing to a subsequence, suppose

a
lim a  D   ¤  0: Then,

going back to the proof of Claim 1, part 1, since

z1;a D  "a z2;a for all a 2  N ;

the sequence fu1;a .z2;a /ga2N restricted to r  jz2j  ı  converges uniformly with all
derivatives to the JX;D–holomorphic map

u1;1;2 .z2 / D   1 zs 
2.z2/:

This extends to the entire •2 with u1;1;2 .0/ D  2. By a similar argument as in the
proof of Claim 1, part 1, if

u1;1;1 .0/ ¤  u1;1;2 .0/;

we get a contradiction. Therefore,

1 D  u1;1;1 .0/ D  u1;1;2 .0/ D   1
2I

in other words,  D  2=1.

This finishes the proof of Proposition 3.15 in the local case 1.
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For the local case 2, repeat the exact same proof with

u1;a W A a  !  NX D ;

u2;a W A a  !  NX D ;

u1;a .z1;a ; z2;a / D  z1;a t1;a ua .z1;a ; z2;a /;

u2;a .z1;a ; z2;a / D  z1;a a  ua .z1;a /;

in place of (3-33) and (3-34), respectively, where

a  D  
t1

; a
 "a for all a 2  N :

2;a

This finishes the proof of Proposition 3.15 under the assumption ‰J D  JX ; D .

Remark 3.18 For arbitrary J  on NX D ,  define

Z  D  f.t ; v/ 2  C  N X D  j t sv 2  N 0 D g; Z  D  f.t ; v/ 2  Z  j t 2  C g;

and
F  W Z  !  C  NX D ; F .t ; v/ D  .t; t sv/:

Let J Z  D  F . i J / ,  where i is the standard almost complex structure on C  and i J  is the
product almost complex structure on the target. By an argument similar to
Lemma 3.5, the almost complex structure J Z  on Z  extends to a (similarly denoted)
almost complex structure on all of Z  satisfying

(3-40) J Z j f 0 g NX  D  [ C D  Š  i JX ; D :

Similarly, for every a 2  N , let

Z a  D  f.t ; v/ 2  C  N X D  j t s  1v 2  N 0 D g; z a ;  D  f.t ; v/ 2  z a  j t 2  C g;

and define

(3-41) F a  W Z a ;  !  C  NX D ; Fa .t ; v/ D  .t ;  1t sv/:

For each a 2  N , let J a  D  F a  . i J /. By Lemma 3.5 and the previous paragraph, for each
a 2  N , the almost complex structure J a  on Z a ;  extends to a (similarly denoted) almost
complex structure on the entire Z a  satisfying (3-40).

For a 2  N , define

(3-42) u1;a W A a  !  Z ;

(3-43) u2;a W A a  !  Z a ;

u1;a .z1;a ; z2;a / D  .z1;a ; z1;a ua.z1;a ; z2;a//;

u2;a .z1;a ; z2;a / D  .z1;a ; z1;a a  ua.z1;a ; z2;a//:

By definition, (3-33) is a sequence of JZ–holomorphic maps in Z  and (3-34) is
a sequence of Ja–holomorphic maps in Z a .  In principle, one may try the proof
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above by replacing (3-33) and (3-34) with (3-42) and (3-43), respectively. However,
multiplication by a  

1 in (3-41) and by ra 
1 in (3-38) have adverse effects on the almost

complex structure, making it hard to apply Gromov convergence.

3.4 Proof of Proposition 3.14 and Theorem 1.4

Going back to the setup of Proposition 3.14, first assume that the dual graph € of f a  in (3-
25) is made of only one vertex V D fvg — in other words, restrict to the vth component of
the sequence . f a / a 2 N  in (3-25)— and fix a set of representatives

.a ; v ; i / i 2 I v

for Œa;v• . For each v0 2  V0
 and i  2  Iv 0  fix a representative v0;i of the C–equivalence

class Œv0;i • i n Lemma 3.13, and a sequence of rescaling parameters .ta ;v 0 ; i /a2N sat-
isfying Proposition 3.10 or Corollary 3.12, depending on whether i  … I v  or i  2  I v ,
respectively.

By the surjectivity of the classical gluing theorem of J–holomorphic maps (see for
instance [13, Section 7]), for a sufficiently large, the domain † a  Š  †  of (the stable
map underlying) f a  can be obtained from the nodal domain †0 of (the stable map
underlying) f  in the following way. There exist

     a sequence of complex structures j0 D  .jv0 ;a /v0 2V 0 on the nodal domain †0 D
.†v 0 /v 0 2V 0 of the stable nodal map . f  / in (3-15),

     a sequence of local jv0;a–holomorphic coordinates ze0;a W •e0     !  C  around
qe0 2  †v 0  for all v0 2  V0

 and e0 2  Ev
0 , and

     a sequence of nonzero complex numbers ."e0 ;a/e0 2E0 converging to zero

such that

(1) .†a ; ja ; zE / is isomorphic to the smoothing of .†0; j0 D  .jv0 ;a/v0 2V 0 / defined by

(3-44) ze0;aze0;a D  "e0;a for all e0 2  E0;

(2) the sequence .jv 0 ;a /a2N C 1–converges to jv0 for all v0 2  V0, and

(3) the sequence .ze 0 ;a /a2N C 1–converges to ze0, where ze0 W •e0 !  C  is some
fixed local jv0–holomorphic coordinate around qe0 2  †v 0  for all v0 2  V0

 and
e0 2  E0 

0.

We will use this standard presentation of .†a ; ja / in the proof of Proposition 3.14 and
Theorem 1.4.
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Remark 3.19 For ı  >  0 sufficiently small, let

•e0 ;a .ı/ D  fx  2  •e0 j jze0 ;a .x/j <  ı g for all e0 2  E0; a  1
and

Ae0 ;a D  fze0;aze0;a D"e0 ;a j ze0;a 2  •e0 .2"e0;a/; ze0;a 2  •e0 .2"e0;a/g  † a

for all e0 2  E0, a  1. Then, with respect to the identification of the domains in (1),
the a–degeneration maps

' a  W † a  !  †0

can be taken to be the identity on the complement of [e 0 2E 0 Ae 0 ;a  and some “nice”
degeneration map

Ae0 ;a !  •e0 .2"e0;a/ [ •e0 .2"e0;a/

on the neck region.

For each e0 2  E0 and i  2  Ie0 , let

0 ¤  e0;i 2  NX Di ju 0 .qe 0 /

be the leading coefficient term in (2-36) with respect to ze0 (and v0 ;i if i  2  Iv 0 ). By
Proposition 3.15, for every v0 ;v0

 2  V0
 and e0 2  E0 

1 ;v 2  
we have

(3-45)

(3-46)

ta;v0 ; i  "e
e
;a e0

;i

a ! 1 ta;v0 ; i e0;i

a
lim ta;v0 ;i  "e

e
;

;i  D  e0;i 
!

for all i  2  I v 1  
\ I v 2

;

for all i  2  I v 1  
 I v 2

:

The following proposition shows that, for a sufficiently large, we can adjust the choices
involved to get equality at each a.

Proposition 3.20 There exists a choice of coordinates fze0 ge02E0 and fze 0 ;a ge0 2E0 ;a2N

satisfying (3-44) and item (3) after that , and a choice of representatives v0 ;i and
.ta;v 0 ; i /a2N for Œv0;i • and Œ.ta;v0;i /a2N • , respectively, such that

(3-47) ta;v0 ; i  "e
e
;

;i  D  ta;v0 ;i

(3-48) ta;v1 ;i  "e
e
;a D  1

for all i  2  I v 1  
\ I v 2

;  a  1;

for all i  2  I v 1  
 I v 2

;  a  1:

The proof of Proposition 3.20 uses the following lemma with the linear map

%C W C E 0  
˚  

M  
C I v 0  !  

M  
C I e 0

v0 2V 0 e0 2E0
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defined in (2-26). We will use Proposition 3.20 to construct maps

sW V0 !  R N  ; v0 !  sv0 and W E0 !  R C ; e0 !  e0

satisfying condition (1), and also to show that the limit satisfies condition (2) of
Definition 2.8.

Lemma 3.21 Assume f  W C n  !  C m  is a complex-linear map and . a / a 2 N   C n  is a
sequence such that

(3-49)
a
lim f . a /  D  :

Then there exists a convergent sequence .0 / a 2 N   C n  (ie there exists a 0
 2  C n  such that

l i m a ! 1  a  D  0) such that f . a   0
 / D  0 for all a 2  N .

Proof Since Im. f  /  C m  is closed, (3-49) implies that  2  Im. f  /. Let  D  f ./ .  Fix an affine
subspace23 H   C n  passing through  and transverse24 to the hyperplane f   1 ./ C n. By
(3-49), there exists M 2 N  such that H  is transverse to f   1 .f .a // for all a >  M . Then
the sequence given by 0

 D  f   1 .f .a // \  H  if a >  M , and a  D  a  if a  M , has the
desired properties.

Proof of Proposition 3.20 Throughout the proof we assume I v  D  �; for I v  ¤  �, the
argument reduces to I v  D  � by considering the associated sequence of maps in
N X D I v  . We modify a given set of representatives to another set satisfying (3-47) and
(3-48). Assuming I v  D  �, fix an orientation O on E0, and choose some branch

 D  
M  

e0 2  
M  

C I e 0  ; e0 D   log e0;i 2  C I e 0 for all e0 2  O

!
0 2 O e0 2E0 e ; i     

 
i 2 I e 0

of the multivalued function log. By (3-45)–(3-46) and the definition of %C in (2-26)
(via the chosen orientation O), for all a 2  N  we can choose the branches

a  D  
 
.  log "e0 ;a/e02E0 ; . log ta;v 0 ;i /v0 2V 0 ;i 2Iv 0 

 
2  C E 0  

˚  
M  

C I v 0  so

that
v0 2V 0

a
lim %C .a / D  :

By Lemma 3.21 applied to % , there exists a sequence

.0 / a 2 N   C E 0  
˚  

M  
C I v 0

v0 2V 0

23A shifted linear subspace.
24Assuming f  is not trivial; otherwise, the lemma is obvious.
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such that %C .a  0  / D  0 for all a 2  N  and l i m a ! 1  0
 D  0. Taking the exponential

of a  and 0, we conclude that there exist 
.˛e 0 /e 0 2E0 ; .˛v 0 ;i /v 0 2V 0 ;i 2Iv 0  and

 
.˛e 0 ;a /e 0 2E0 .˛a;v 0 ; i /v 0 2V 0 ;i 2Iv 0  a 2 N

in .C / E 0  

v 02V 0 .C /Iv 0  such that

a
lim .˛e 0 ;a /e 0 2E0 ; .˛a;v 0 ;i /v 0 2V 0 ;i 2Iv 0        D  .˛e 0 /e 0 2E0 ; .˛v 0 ;i /v 0 2V 0 ;i 2Iv 0

and

(3-50)

(3-51)

.˛v 0  ;i ta;v0 ;i / .˛e0 ;a"e0 ;a /se0 ;i

.˛v 2 ; i ta ;v 0  ;i /

.˛v 0  ;i ta;v1 ;i / .˛e0;a"e0 ;a /se0 ;i D  1

for all i  2  I v 1  
\ I v 2

;  a 2  N ;

for all i  2  I v 1  
 I v 2

;  a 2  N :

By (3-50) and (3-51), for a sufficiently large, replacing

     fz
!
0 ge 0 2O with f˛e 0

1z
!
0 ge 0 2O ,

     fze0 ;age0 2O with f˛e0 ;aze0 ;a ge0 2O ,

f"e0 ;age0 2E0 with f˛e0 ;a"e0 ;a ge0 2E0 ,

     .ta;v 0 ;i /v 0 2V 0 ;i 2Iv 0 with .˛a;v 0 ;i ta;v 0 ;i /v 0 2V 0 ;i 2Iv 0 , and

.v 0 ;i /v 0 2V 0 ;i 2Iv 0 with .˛v 0 ;i v 0 ;i /v 0 2V 0 ;i 2Iv 0  ,

we get a new set of representatives satisfying (3-47) and (3-48). In particular, the limits
in (3-45) and (3-46) can be set to be equal to 1.

Proof of Proposition 3.14 First, assume that the dual graph € of f a  in (3-25) is made
of only one vertex V D  fvg and fix a set of representatives

.a ; v ; i / i 2 I v

for Œa;v•. B y Propositions 3.15 and 3.20, we can choose the coordinates fze0 ge02E0

and fze0 ;a ge0 2E0 ;a2N , and the representatives v0 ;i and .ta;v 0 ; i /a2N so that (3-47) and
(3-48) hold. For each v0 2  V0

 and i 2  Iv 0  I v ,  note that .ta ;v 0 ; i /a2N converges to 0;
therefore,

 log jta;v0;i j >  0 for all v0 2  V ; i  2  Iv 0   I v ;  a  1;

and it converges to infinity. Choose a sequence of positive vectors sv D .s v
; i / i 2 I v  2 R C

such that

(3-52) sv;i  log jta;v0;i j >  1 for all v0 2  V0; i  2  I v :
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With these choices, for a  1 the functions sa W V0
 !  R N  defined by

(3-53) sv0 D
 
.sv ;i   log jta;v 0 ;i j/i 2Iv ; . log jta;v0 ;i j/i 2Iv 0  I v  2 R C

0 for all v0 2 V 0;

and a  W E0 !  R C  defined by

e0 D   log j"e0;aj for all e0 2  E0;

satisfy condition (1) of Definition 2.8. By (3-45)–(3-46), f  0 also satisfies condition (2)
of Definition 2.8.

For general €, by the definition of  in (2-37), we can choose a set of representatives

.a ; v ; i / a 2 N ; v 2 V ; i 2 I v

and coordinates .ze;a D  ıa ;e ze /a 2N ;e 2E  such that the leading coefficients e;i ;a in
(2-36) satisfy

(3-54) e;i ;a D  e;i ;a for all e 2  E ;  i 2  Ie ; a 2  N :

Let ıa ;e  D  ıa ;e ıa ;e , for all e 2  E .  For each v 2  V , choose representatives

.v 0 ;i /v 0 2.v /;i 2Iv 0 and .ta;v 0 ; i /v 0 2.v /; i 2Iv 0 ;a2N

so that (3-47) and (3-48) hold. By (3-54), we have

(3-55)

(3-56)

ta;v0 ; i  ıe e ; i

a ! 1 ta;v2 ;i

a
lim ta;v0 ;i  ıe e ; i  D  1

for all i  2  I v 1  
\ I v 2

;

for all i  2  I v 1  
 I v 2

:

With an argument similar to the proof of Proposition 3.20, we can choose these
representatives so that further,

(3-57) ta;v0 ; i  ıe e ; i  D  ta;v0 ;i

(3-58) ta;v1 ;i  ıe ;a  D  1

for all i  2  I v 1  
\ I v 2

;  a 2  N ;

for all i  2  I v 1  
 I v 2

;  a 2  N :

Also choose the functions sa W V !  R N  and a  W V !  R C  satisfying condition (1) of
Definition 2.8 so that (3-52) holds and

e  log ıe ;a >  1 for all e 2  E ;  a  1:

Then, similarly to (3-53), for a  1, the extended functions sa 
wW V0

 !  R N  given by

(3-59) snew;v0 D  
 
.sv ;i   log jta;v 0 ;i j/i 2Iv ; . log jta;v 0 ;i j/i 2Iv0  I v  

 
2  R I

v
0
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for all v0 2  V0; v D  .v0/, and a  
wW E0 !  R C  given by

e D   log.ıe ;a /

e0 D   log j"e0;aj

if e 2  E   E0;

if e0 2  E0 =E;

satisfy condition (1) of Definition 2.8. By (3-45)–(3-46) applied to E0=E, the assumption
(3-54), and (3-57)–(3-58), f  also satisfies condition (2) of Definition 2.8.

Proof of Theorem 1.4 As in the classical case, consider the sequential convergence
topology on M g ; s .X ; D ; A/  given by Definition 3.7: a subset W of M g ; s .X ; D ; A/
is closed if every sequence in W has a subsequence with a log-Gromov limit in W.
Note that as in [29, Section 5.1], we must show that convergence with respect to the

topology defined above is equivalent to log-Gromov convergence. Since the forgetful
map M l o g  .X ; D; A/  !  M g ; k . X ; A /  is finite-to-one and log-Gromov convergence is a
lift of the classical Gromov convergence, this property follows from the corresponding
statement for the Gromov convergence topology on M g ; k .X ; A/ .  In other words, the
five axioms25 in [29, Lemma 5.6.4] lift to sequences in M g ; s .X ; D; A/.

Suppose that W 2  M g ; k . X ; A /  is closed and let W 0  D   1.W /. Let . f a / a 2 N  be any
sequence in W . Its image .ha D  . f a / / a 2 N  in W has a subsequence, still denoted by
.ha /a 2N , that Gromov converges to some h 2  W. On the other hand, by Theorem 3.8,
. f a / a 2 N  has a subsequence that log-Gromov converges to some f  2  M g ; s .X ; D; A/.
By Definition 3.7, we have . f  / D  h, ie f  2  W . Therefore, W 0  is closed. We conclude

that  is continuous.

Let f  be an arbitrary log map in M g ; s .X ; D ; A/  with the decorated dual graph € and let
h D  . f  / be the underlying stable map in M g ; k .X ; A / .  Let .Ua /a 2 N  be a shrinking basis
for the (metrizable) topology of M g ; k . X ; A /  around h. Recall from Lemma 2.15 that
every stable map h admits at most finitely many log lifts f  , each of which is
uniquely specified by the vector decorations on the nodes of its dual graph (ie the
contact data s

!  
at the nodes q

!
).  Furthermore, by Lemma 2.16, such a lift is unique if

the genus is zero. As we explained before Remark 3.19, for a sufficiently large, by the
classical gluing theorem the domain of every map h0 in Ua is obtained from the nodal
domain †  of h by gluing the nodes in a standard way. Furthermore, the image of h0 is
C 0–close to the image of h. The dual graph €0

 of h0 is a contraction of € in the sense26

25Even though [29, Section 5.1] is about the genus-0 moduli spaces, the statements used here are valid in
all genera.
26Their roles are reversed here.
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of (3-1). With these identifications, if f  0 is a log lift of h0 in Ua, by its decoration type we
mean (1) the vector decorations se at its nodes qe, together with (2) the winding
number27 of h0 around D i  along the circles @Ae (see (3-27)) on every neck Ae obtained
from gluing the node qe of the domain of h; see the proof of Lemma 3.13. Thus, f  0

 has
the same decoration type as f  if (1) at every node of the domain of f  0

 the vector
decoration se is the same as the vector decoration at the corresponding node of f  , and (2)
on every neck Ae the winding number of h0 around D i  along the circle @Ae is the same
as the tangency order se;i for f  .

For a sufficiently large, define U0
 to be the set of elements f  0

 in M g ; s .X ; D ; A/  whose
image h0 under  lies in Ua and such that f  0

 has the same decoration type as f  . By
Remark 2.14, the restriction of  to Ua is one-to-one. We show that Ua is open. Let

. fb /b 2 N  be a sequence in the complement of U0 that log-Gromov converges to f  0.
After possibly passing to a subsequence, we can assume that the underlying sequence
of stable maps .hb /b 2N lies either in Ua or its complement U c . In the latter case, by
Definition 3.7, f  0 belongs to the complement of U 0. In the former case, the decoration
type of f  0

 (with respect to f  ) will be the same as the decoration type of f b  which is,
by definition, different from the decoration type of f  . Therefore, f  0 belongs to the
complement of U 0. We conclude that U0 is open. Furthermore, it is easy to see that
.Ua /a 2 N  is a shrinking basis for the topology of M g ; s .X ; D ; A/  at f  . Therefore, the
log-Gromov topology of M g ; s .X ; D ; A/  is first-countable.

Hausdorffness is the consequence of uniqueness of the limit in Theorem 3.8. If Y is a
first-countable topological space and has the property that every convergent sequence
has a unique limit, then Y is Hausdorff. Finally, compactness of M g ; s .X ; D ; A/  is the
consequence of the existence of the limit in Theorem 3.8.

4 Log vs relative compactification

In Section 4.1, following the description in [48], we review the construction of the
relative moduli spaces for smooth symplectic divisors in [23; 21]. In Section 4.2, we
show that the natural forgetful map from the relative compactification to our log
compactification is onto.

First, let us recall some relevant facts from Section 2.1. Suppose D   . X ; ! /  is a
smooth symplectic divisor, J  is an !–tame almost complex structure on X  such

27Contact points with D i  are among the marked/nodal points and are away from the neck region.
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that J .T D /  D  T D , and @NX D  is the @–operator in Lemma 2.1. With notation as in
Section 2.1, choose a Hermitian connection r N  on . NX D ; i N X  D /  so that @NX D  D  @r N  .
The connection r N  gives a splitting of the exact sequence

(4-1) 0 !  N X D  !  T . NX D /   !  T D  !  0

of vector bundles over NX D ,  which restricts to the canonical splitting over the zero
section and is preserved by the multiplication by C ;  see [48, Section 4.1]. Let

(4-2)
P X D  D  P . N X D  ˚ D  C /;

D 0  D  P . 0 ˚ D  C / and D 1  D  P . N X D  ˚ 0 /   PX D :

The splitting of (4-1) extends to a splitting of the exact sequence

0 !  T vr t .PX D / !  T .PX D /   !  T D  !  0;

where W PX D ! D  is the bundle projection map induced by (2-7); this splitting restricts to
the canonical splittings over D 0  Š  D 1  Š  D  and is preserved by the multiplication by
C  . Via this splitting, the almost complex structure J D  and the complex structure i N X  D

in the fibers of  induce an almost complex structure J X ; D  on PX D ,  which restricts
to J D  on D 0  and D 1 ,  and is preserved by the C–action. In fact, JX ; D j N X  D  is the almost
complex structure J x N       D  associated to @NX D  described in items (1)–(3) of page 1004
and is independent of the choice of r N .  By property (1), the projection
W P X D  !  D  is .JD ; JX;D /–holomorphic. By (3), there is a one-to-one correspon-
dence between the space of JX;D–holomorphic maps uW .† ; j/ !  . PX D ; JX ; D /  (not
mapped into DX ; 0  and D X ; 1 )  and tuples .uD ; / where uD  W .† ; j/ !  . D ; JD /  is a
JD–holomorphic map into D  and  is a nontrivial meromorphic section of u N X D
with respect to the holomorphic structure defined by u@NX D .

4.1 Relative compactification

Let . X ; ! /  be a smooth symplectic manifold, D   X  be a smooth symplectic divisor,
and J  2  J  .X ; D ; ! / .  With notation as in (4-2), for each m 2  N  let

XŒm• D  . X  t f 1 g PX D  t t f m g PX D / = ;  where

D   f 1 g D 1 and fr g D0  fr C 1 g P 1 D for all r D  1; : : : ; m  1I

see Figure 6. This is a basic (ie there are no triple or higher intersections) SNC variety,
which is smoothable to (a symplectic manifold deformation equivalent to) X  itself.
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1 P X D
D 1

z1

D 0

D 1

2 P X D
D 0

z2 z3

Figure 6: A  relative map with k D  3 and s D  .0; 2; 2/ into the expanded
degeneration XŒ2• .

There exists a continuous projection map mW XŒm• !  X  w hich is the identity on X  and
on each PX D .  We denote by J m  the almost complex structure on XŒm• s uch that

Jm j D  J X and Jm j f r g PX  D  D  J X ; D for all r D  1; : : : ; m:

For each .c1; : : : ; cm/ 2  C  , define ‚ c 1 ; : : : ; c m  W XŒm• !  X Œm• by

.r;Œc v; w• / if x  D  .r;Œv;w• / 2  fr g P D ;
c1 ;:::;cm x if x  2  X :

This diffeomorphism is biholomorphic with respect to J m  and preserves the fibers of
the projection P X D  !  D  and the sections D 0  and D 1 .

The moduli space of relative stable curves for .X ; D /  in [21, Section 7] is defined in
the following way. With slight modification, we follow the description in [48]. Suppose
that k 2  N , A  2  H 2 . X ; Z /  and s D  .s1; : : : ; sk / 2  N k  is a tuple satisfying

(4-3)  
X  

sa D  A D:
a D 1

A  level-zero genus-g k–marked degree A  relative J–holomorphic map into X  of contact
type s with D  is simply a stable J–holomorphic map in M g ; k . X ; A /  such that

(4-4) u 1 .D /  fz1; : : : ; zk g and ordz a .u; D / D  sa for all a D  1; : : : ; k:

For m 2 Z C ,  a level m k–marked relative J–holomorphic map of contact type s is a con-
tinuous map uW† ! XŒm• from a marked connected nodal curve .† ; j; zED.z ; : : : ; zk//
such that

     u 1 .fmg D0 /  fz1; : : : ; zk g,

Geometry & Topology, Volume 26 (2022)
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     ordz a .u; fmg D0/ D  sa for all za 2  u 1.fmg D0/,      sa

D  0 if and only if za … u 1 .fmg D0/,

and the restriction of u to each irreducible component †  of †  is either

(1) a J–holomorphic map to X  such that the set uj†
1 .D / consists of the nodes

joining †  to irreducible components of †  mapped to f1g PX D ,  or

(2) a JX;D–holomorphic map to f r g PX D for some r D  1; : : : ; m such that
(a) the set uj†1 . fr g D 1 /  consists of the nodes q ;i  joining †  to irreducible

components of †  mapped to fr  1g P D  if r >  1 and to X  if r D  1 and
ordqi ; j  .u; D0 / if r >  1;

j ; i ordqi ; j  .u; D / if r D  1;

where qi ; j  2  † i ; j  is the point identified with q ;i ,
(b) if r <  m, the set uj†

1 .fr g  D0 / consists of the nodes joining †  to irre-
ducible components of †  mapped to fr C 1 g PX D .

See Figure 6. The genus and the degree of such a map uW †  !  XŒm• are the arithmetic
genus of †  and the homology class

A  D  Œm ı u •  2  H 2 .X ; Z/ :

Two tuples .u ˛ ; †˛ ; j ˛ ; zE˛ /  and .u ˇ  ; † ˇ  ; jˇ  ; zEˇ / as above are equivalent if there exist
a biholomorphic map 'W .† ˛ ; j ˛ /  !  . † ˇ  ; jˇ  / and c1; : : : ; cm 2  C  such that

' . z a /  D  za for all a D  1; : : : ; k and uˇ  D  ‚ c 1 ; : : : ; c m  ı u ˛  ı ' :

A  tuple as above is stable if it has finitely many automorphisms (self-equivalences).

If A  2  H2 .X ; Z/ ,  g; k 2  N , and s D  .s1; : : : ; sk / 2  N k  is a tuple satisfying (4-3), then
the relative moduli space

(4-5) M g ; s .X ; D ; A/

is the set of equivalence classes of such connected stable k–marked genus-g degree-A
J–holomorphic maps into XŒm• for any m 2  N . If X  is compact, the latter space has a
natural compact Hausdorff topology.

Remark 4.1 In (4-3), we are allowing sa to be zero for some a 2 f1; : : : ; kg. A  marked
point z with contact order 0 has image away from D  (or D0 , D 1 ) .  Therefore, such
points are ordinary marked points as in the classical moduli spaces of J–holomorphic
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curves. In the literature, marked points are usually divided into the classical part
.z1; : : : ; zk / and the relative part .z k C1 ; : : : ; z k C`/ so that sa D  ord z k C a  .u; D / >  0
and      a D

1
 sa D A D .  Then the moduli space (4-5) is denoted by M g ; k ; s .X ; D; A/  with

s 2 . Z C /  . This sort of separation works fine in the relative case, because there are only
two types of points: in D  or away from D .  In the general SNC case D  D       i2ŒN • D i ,
however, there are 2N types of points and it is notationally cumbersome (and useless)

to divide points into separate groups based on their type.

Remark 4.2 Let . X ; ! /  be a smooth symplectic manifold, D   X  be a smooth
symplectic divisor, and J  be an !–tame almost complex structure on X  such that
J .T D /  D  T D . If uW .† ; j/ !  .X ; J /  is J–holomorphic, the linearization of the
Cauchy–Riemann operator (1-1) at u is given by

(4-6) Du @ W € .†I uT X / ! € .† ; •†;
j ˝C uT X /; Du@./ D u@r C 4 N J  .; du/;

where r  is the C–linear connection in (2-2) and @r is the associated @–operator on
€ .X; T X / in Lemma 2.1; see [29, Chapter 3.1]. The kernel of Du@ corresponds to
infinitesimal deformations of u (over the fixed domain .† ; j/) and the cokernel of that is
the obstruction space for integrating infinitesimal deformations to actual deformations.

If, furthermore, Im.u/  D ,  then the linearization map Du@, defined in (4-6), satisfies

Du@.€ .† ; uTD//  € .† ; •†
; j  ˝ C  uTD/;

because the restriction of Du@ to € .† ; uT D / is the linearization28 of the @–operator at
u for the space of maps into D .  Thus, Du@ descends to a first-order differential
operator

(4-7) D u
X

 
D@W € .† ; u NX D /  !  € .† ; •† ; j  ˝ C  uNX D / :

If J  2  J  .X ; D ; ! / ,  ie (1-3) holds, then the normal part of N J  .; du/ vanishes. From
(4-6) and Lemma 2.1 we conclude that

D u
X

 
D@ D  u@NX D

is a complex linear operator. From another point of view, we can use (1-3) to show that a
certain sequence of almost complex structures on the normal bundle N X D  converges to
JX ; D ;  see Lemma 3.5.

28The linearization of (1-1) is independent of the choice of the connection at every J–holomorphic map.
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4.2 Comparison

In this section, for the case where D  is smooth (ie N D 1  in Definition 2.8), we compare
M g ; s .X ; D ; A/  and M g ; s .X ; D; A/ .  Proposition 4.5 shows that the latter is smaller and
there is a projection map from the relative compactification onto the log compactification.
This is expected, since the notion of nodal log curve involves more C–quotients on

the set of meromorphic sections. In the algebraic case, [5, Theorem 1.1] shows that an
algebraic analogue of the projection map (4-13) induces an equivalence of virtual
fundamental classes. We expect the same to hold for the invariants/VFC arising from
our log compactification.

First, we start with a simple lemma that highlights the relation between Definition 2.8(1)
and the layer structure in the relative compactification. In the following, when D  is
smooth (N D  1), for a (pre)log map with the decorated dual graph € .V ; E; L/ we
define

(4-8)
Vi D  fv 2  V j jIv j D  i g and E i  D  fe 2  E  j jIe j D  i g with i  D  0; 1;

E1;0 D  fe 2  E  j jIe j D  1; se D  0g; E1 ; ?  D  fe 2  E  j jIe j D  1; se ¤  0g:

Lemma 4.3 Let D   . X ; ! /  be a smooth symplectic divisor, J  2  J  .X ; D ; ! / ,  and

(4-9) Œf  ..uv ; Œv • ; Cv /v2V1 ; .uv ; Cv /v2V0 /• 2  Mp l o g .X; D; A/€

be a prelog J–holomorphic curve with dual graph € .V ; E; L/. Then there exists a
function sW V !  R 0  satisfying Definition 2.8(1) if and only if the relations

(a) v1 € v2 if v1 and v2 are connected and s
!  

D  0 for any e 2  Ev 1 ; v 2 ,  and

(b) v1 € v2 if v1 and v2 are connected and s
!  

>  0 for any e 2  Ev 1 ; v 2

are independent of the choice of e 2  Ev 1 ; v 2  (ie they are well-defined), and generate a
partial order € on V .

Note that for a classical edge e connecting v1; v2 2  V0, since I e  D  � by (2-21), we
always have

s
!  

D  0 2  f0g D  R�  R N D 1  D  R:

Proof If (a) and (b) define a partial order .V ; € /, we construct sW V !  R  satisfying
Definition 2.8(1) in the following way. For every v 2  V0 define sv D  0. Let Vmin be the
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subset of minimal vertices in V1. For every v 2  V .1/ define sv D  1. Having constructed
Vmin; : : : ; Vmin, let V . ` C 1 /  be the subset of minimal vertices in

V1  .Vmin [ [ V m i n / :

For every v 2 V . ` C 1 /  define sv D ` C 1 .  This function clearly satisfies Definition 2.8(1).
Conversely, given such a function sWV ! R  satisfying Definition 2.8(1), define v1 € v2

(resp. v1 € v2) if they are connected by a path and sv1 D  sv2 (resp. sv1 <  sv2 ). This
is a partial order whose defining conditions match with (a) and (b).

Lemma 4.4 With notation as in Lemma 4.3, the prelog curve f  satisfies the properties of
Definition 2.8(2) if and only if there exists a set of representatives fv gv 2 V 1  such that

(4-10) v .qe / D  v0 .qe/ for all v; v0 2  V1 and e 2  Ev ;v 0      such that se D  0:

Proof The last equation is well-defined by Definition 2.4(3). Then the homomorphism
(2-26) (corresponding to some fixed orientation O on E)  takes the form

(4-11) Z E 0  ˚ Z E 1  ˚ Z V 1   !  Z E 1 ;

where %jZ E 0   0, %.1e/ D  se 2  Z  for all e 2  E1 , and

<  1e if v1. e / D  v;
%.1v  1v;1/e D  1e if v2. e / D  v;

0 if e is a loop or otherwise.

Therefore, tensoring (4-11) with C ,  the cokernel C K C  of %C is equal to the cokernel
of the induced map

C V 1  !  C E 1 ; 0 :

Fix an arbitrary set of representatives

(4-12) . v  2  •m e ro .†v ; uv NX D //v 2V 1 :

By (2-34) and (2-36), for every e 2  E1;0 with v D  v1. e / and v0 D  v2.e /, we have

e D  v .qe /=v0 .qe / 2  C :

Therefore,
x  .e /e 2E 1 ; 0  2

Y

 
.C / E 1 ; 0

e 2 E 1 ; 0
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is equal to .1/e 2E 1 ; 0  if and only if (4-10) holds. Since the cokernel of %xC coincides
with the cokernel of %C, the element

Œ• 2  .C /E =exp.im.%C //

in (2-38) is the identity element if and only if

Œx• 2  .C /E 1 ; 0 =exp.%xC .C V 1 //

is the identity element. The latter holds if and only if is there exists a rescaling of the
sections .v /v 2 V 1  for which (4-10) holds.

Proposition 4.5 Let D   . X ; ! /  be a smooth symplectic divisor, J  2  J  .X ; D ; ! / ,
and s 2  N k . Then there exists a natural surjective map

(4-13) W M g ; s .X ; D ; A/  !  M g ; s .X ; D; A/:

Proof For each relative curve f  , . f  / is the log curve obtained by forgetting those
unstable P 1–components of the domain which are isomorphically mapped to the trivial
fibers of PX D ,  and restricting the equivalence class of each section defining a map
into a P X D  to the equivalence classes of its restrictions to each connected component.
The required function sW V .€/ !  R 0  in Definition 2.8(1) can be taken to be the one
given by the layer structure of the relative moduli space. Moreover, by Lemma 4.4,
. f  / satisfies (2-40) because a set of sections representing f  have equal values at the
nodes qe with I e  D  f1g and se D  0.

Conversely, let f  be any log map with dual graph €. By Corollary 5.4, we can assume
that the function sW V .€/ !  R 0  in Definition 2.8(1) is integral. Furthermore, we take s so
that max.s/ is the smallest among all such s. For each connected component † v  of †
in f  with I v  D  f1g, choose an arbitrary section v  representing the equivalence class Œv•
in f  . By Lemma 4.4, we can choose these sections to have equal values at the nodes qe

with I e  D f1g and se D 0. Define a relative map f  whose restriction to † v

is the map corresponding to v  into the sth P X D  and such that disconnected nodes are
connected by adding extra P 1–components to the domain and by mapping them
bijectively to the P 1–fibers of PX D .  Since max.s/ is the smallest among all such s,
there is at least one nontrivial component in each P X D  of the expanded degeneration
XŒmax.s/• ; ie f  defines a stable map into XŒmax.s/• . It is clear from the construction
that . f  / D  f  .
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Next, we give an example where the projection map (4-13) is nontrivial and both the
relative and the log moduli spaces are smooth. The relative moduli space in this
example is some blowup of the log moduli space.

Example 4.6 Let X  D  P 1 and let D  D  D 1  D  pt1 t pt2  (so N D  1) be the disjoint
union of two points. Let g D  0, k D  4 and A  D  Œ1• 2  H 2 .P 1 ; Z/ Š  Z .  Therefore
s D  .0; 0; 1; 1/ 2  N 4 (or a permutation of this) is the only option for the contact pattern.
Then the relative moduli space M0;s.X; D; Œ1• / can be identified with a blowup of
P 1 P 1 at 4 points, while Mlog .X; D; Œ1• / can be identified with a blowup of P 1 P 1 at 2
(of those) points. The projection map in (4-13) corresponds to the blowdown of the
two extra exceptional curves.

5 Comments on deformation theory and gluing

5.1 Deformation theory and the expected dimension

In this section, we outline a Fredholm setup for studying the deformation theory of
log J–holomorphic maps and draw some conclusions. This setup is discussed in detail
in [11], where it is also extended to log .J ; /–holomorphic maps.

In the case of the classical moduli space of stable J–holomorphic curves M g ; k .X ; A/ ,
for a J–holomorphic map u W .† ; j/ ! .X; J / with smooth domain, the linearization Du@
of the Cauchy–Riemann equation in (4-6) is Fredholm. Therefore, the real vector spaces

Def.u/ D  ker.Du@/ and Obs.u/ D  coker.Du@/

are finite-dimensional. The first space corresponds to infinitesimal deformations of u
(over the fixed domain C ) and the second one is the obstruction space for integrating the
elements of Def.u/ to actual deformations. In the nodal case, the kernel Def.u/ of the
similarly defined linearization map in [44, Section 6.3] corresponds to infinitesi-

mal deformations of u in the stratum M g ; k.X ; A/ € .  Deformations into M g ; k . X ; A /
correspond to gluing the nodes of the domain with gluing parameters from C E  and
the gluing is virtually unobstructed, ie if Obs.u/ D  0, then for every sufficiently small
smoothing .†0; j0/ of the nodes of the domain .† ; j/, there exists a J–holomorphic map
u0 W .†0; j0/ !  .X ; J /  close to u; see [44, Theorem 6.3.5] for Obs.u/ ¤  0. In other
words, moduli spaces M g ; k . X ; A /  are virtually smooth (orbifolds) and the “virtual
normal cone” of the stratum M g ; k .X ; A / €  is an (orbi)bundle of rank jEj. For the log
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moduli spaces defined in this paper, as (2-40) indicates, there are new obstructions for
smoothability of nodal prelog curves. The claim is that, in addition to a logarithmic
version of Du@, the deformation/obstruction is encoded in the combinatorial linear
map (2-26).

In the setting of Theorem 1.4, suppose .u; †; z1; : : : ; zk / is an element of
M g ; s .X ; D ; A/   M g ; k . X ; A / for some s D  

 
saD.sai /i 2ŒN • a2Œk • 2  . N N  /k I

ie †  is smooth, u 1 .D /  fz1; : : : ; zk g and ordz a .u; Di / D  sa i for all i  2  ŒN• and a 2
Œk•. I f . ! ; R ; J /  2  AK.X ; D / ,  let T X .  log D/ be the log tangent bundle in [46,
(8)], and if J  is integrable, let T X .  log D/ be the usual holomorphic logarithmic tangent
bundle. There is a natural complex linear homomorphism

W T X .  log D/ !  T X

(covering idX ) that is an isomorphism away from D .  This homomorphism induces
similarly denoted maps

1W € .† ; uT X.  log D// !  € .† ; uT X /;

2W € .† ; •†
; j  ˝ C  uT X. log D// !  € .† ; •† ; j  ˝ C  uT X /:

The following is one of the key steps in understanding the deformation theory of
J–holomorphic maps relative to an SNC divisor; see [11, Section 5.1].

Theorem 5.1 [11] With notation as above, the linearization Du@ naturally lifts to a
Fredholm linear map

(5-1) Dlog@W W ` ; p .† ; uT X .  log D// !  W `  1 ; p .† ; •† ; j  ˝ C  uT X. log D//

such that 2 ı  Dlog@ D  Du@ ı  1 over the space of smooth sections. Furthermore, if
coker.Dlog@/ D  0, the set of J–holomorphic maps (the marked domain is fixed ) of
contact type s close to u (in a suitable Banach manifold ) forms an oriented smooth
manifold of real dimension
(5-2) 2

 
deg.uT X. log D // C dimC X . 1  g/:

Note that (5-2) follows from Riemann–Roch and (5-1). Considering the deformations of
the marked domain .†; j; z1; : : : ; zk /, it follows from (5-2) that the expected dimension
of M g ; s .X ; D ; A /  is equal to the naive dimension count (1-6).
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Next, consider a log map f  D .u; Œi • i 2I ; † ; z ; : : : ; zk / in the stratum M g ; s . X ; D ; A /I  ,
ie †  is smooth, u .† / D I  for a nontrivial maximal subset I  ŒN• , ordz a .u; Di / D sa i  for
all i  … I ,  and ordz a . i / D  sa i for all i  2  I .  Forgetting the meromorphic sections, by
Remark 2.3, we get an inclusion map

M g ; s . X ; D ; A /I  , !  M g ; s . D I  ; D; A/;

.u;Œi • i 2I ; †; z1; : : : ; zk / !  .u; †; z1; : : : ; zk /;

where

D  D  
[  

D I [ i   D I and s D  
 
sa D .sai /i 2ŒN • I  a D 1  2  .NŒN • I  /k :

i 2 S  I

With . D I  ; D / in place of .X ; D /  in (5-1), deformation theory of M g ; s . D I  ; D ; A/ is
given by the restriction of Dlog@ to T D I  .  log D/. It is worth mentioning that restricted
to D I  , there is a natural isomorphism

(5-3)

Lemma 5.2
that

T X .  log D /jDI  Š  T D I  .  l o g D / ˚ D I  C I  :

There exists a map P I  D . PI ; i / i 2 I  W Mg ;s .DI ; D ; A / ! .P ic 0 .† / / I  such

M g ; s . X ; D ; A /I  D  P I  
1 . O I  /:

In particular,

M 0 ; s .X ; D ; A/I  D  M 0 ; s . D I  ; D; A/:

Here Pic0 .†/ is the group of degree-0 holomorphic lines bundles on .† ; j/ and O  2
Pic0 .†/ is the trivial holomorphic line bundle.

Proof For each i  2  I ,  define

PI;i .Œu; †; z1; : : : ; zk • / D  u NX D i  ˝ O  
X  

sa i za
 
2  Pic0 .†/; a D 1

where O
 
 

P
a D 1  sa i za

 
is the line bundle corresponding to the divisor  

P
a D 1  sai za.

Therefore,

PI;i .Œu; †; z1; : : : ; zk • / D  O

if and only if there exists a meromorphic section I ; i  of u NX D i  with zeros/poles of
order sa and za (and nowhere else).
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We conclude that the deformation/obstruction theory of the stratum M g ; s . X ; D ; A /I

is given by Dlog@ on M g ; s . D I  ; D ; A/ and the linearization of P I  . By (1-6) and
Lemma 5.2, the expected real dimension of M g ; s . X ; D ; A /I  is

(5-4) 2 c T X .  l o g D / .A/ C .dimC  X   3/.1  g/ C k  jI j :

Via the identification (5-3), the maps Dlog@ on M g ; s . D I  ; D ; A/ and P I  can be com-
bined into a single Fredholm operator as in (5-1); see [11, Section 5.2].

Moving to the nodal case, with notation as in (2-31), let

(5-5)  D  .€ / D  K R  \  R 0  ˚  
M  

R 0  K R
v 2 V

be the cone of nonnegative elements in the kernel of %RW D R  !  T R .  This cone is
independent of the choice of the orientation O used to define (2-26); in fact, by (2-30),

ˇ

(5-6)  D .e /e 2E ; .sv /v 2V     2 R E
0 ˚ R 0  ˇ sv  sv0 D e se for all v; v0 2 V  

v 2 V

and e 2  Ev 0 ;v     :

The integral lattice underlying  coincides with the monoid Q _  in [4, Section 2.3.9].

Lemma 5.3 For every € 2  DG.g; s; A/, .€ / is a top-dimensional strictly convex
rational polyhedral cone in K R .€ / .

Proof The functions s and  in Definition 2.8(1) define an element m C  of

(5-7) K R  \  R C  ˚  
M  

R C      
 :

v 2 V

Since all of the coefficients in m C  are positive, for any arbitrary m 2  K R  there exists a
sufficiently large r >  0 such that m C r m C  2  . We conclude that  is top-dimensional.

Since R 0  ˚       v 2 V  R 0  is a strictly convex rational polyhedral cone and K R  is an
integrally defined subvector space, the intersection (5-7) is a strictly convex rational
polyhedral cone.

Corollary 5.4 By Lemma 5.3, the functions s and  in Definition 2.8(1) can be chosen
to be integral-valued.

In conclusion, with a setup similar to [44, Section 6.3], the deformation/obstruction
theory of any stratum

M g ; s .X ; D; A/ €

around f  D  .u;Œ• ; †; z1; : : : ; zk/ is given by (1) Dlog@ and P I  for each smooth
component † v  of † ,  and (2) the obstruction map (2-32).
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For any decorated dual graph € 2  DG.g; s; A/, the expected complex
dimension of M g ; s .X ; D; A/ €  is

(5-8) c T X .  l o g D / .A/ C .n  3/.1  g/ C k  dimR K R .€ / :

The only stratum with dim KR .€ / D  0 is M g ; s .X ; D; A/.

Proof The expected complex dimension of each component M g v ; s v  .X ; D ; A v /I v  is,
by (5-4), equal to

c T X .  l o g D / .Av / C .n  3/.1  gv / C kv C ` v   jIv j;

where kv D jzEv j, ` v  D jqv j and sv is the set of contact order vectors at zEv [qv .  The prelog
space Mp l og .X; D; A/€ in (2-32) is the fiber product of f M g v ; s v  .X ; D ; A v /I v  gv 2 V

over the evaluation maps at the nodal points,
Y  

M g v ; s v  .X ; D ; A v /I v  !  
Y

. D I e  D I e  /:
v 2 V e 2 E

Therefore, using (2-11), the expected complex dimension of Mp l o g .X ; D; A/€  is

(5-9)
X  

c T X .  l o g D / .Av / C .n  3/.1  gv / C kv C ` v   jIv j
X

. n  jIe j/
v 2 V e 2 E

D  c T X .  l o g D / .A/ C .n  3/.1  g/ C k  jEj  j I v j C jIe j:
v 2 V e 2 E

By (2-26),
dimR K R . € /  dimC .G / D  j E j C jIv j  jIe j:

v 2 V                   e 2 E

By (2-32), the stratum M g ; s .X ; D; A/ €  is the preimage of the identity element under
the map

ob€ W M
p l o g .X ; D; A/€  !  G:

Therefore, the expected complex dimension of M g ; s .X ; D; A/ €  is equal to the differ-
ence of (5-9) and

dimC .G / D  dimR K R . € /   j E j C  
X  

jIv j
X  

jIe j ;
v 2 V e 2 E

which is equal to (5-8).

By Definition 2.8(1) and (2-30), a function .s; / as in Definition 2.8(1) gives us an
element of K R .€ / .  This element is trivial only if € D  fvg is a one-vertex graph with no
edge and I v  D  �. This establishes the last claim.
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5.2 Gluing parameters

The last step in describing the deformation theory and establishing (?) is to prove a
gluing theorem for smoothing the nodes (ie deformations normal to each stratum). In
this section, we describe the space of gluing parameters for each € 2  DG.g; s; A/ and
show that it is essentially an affine toric variety. We sketch our idea for the construction of
gluing map and defer to a future work [12] for the details.

For a classical nodal J–holomorphic map with jEj nodes, the space of gluing parameters
is a neighborhood of the zero in C E .  For a log map f  as in (2-19), the gluing procedure
involves a simultaneous smoothing of the nodes, together with pushing uv out in
the direction of v ; i  for some v 2  V and i 2  I v .  Thus, a priori, the space of gluing
parameters could be quite complicated and the log moduli spaces (2-41) are not always
virtually smooth. For example, the log moduli space of Example 5.6 below has an
A1–singularity along some stratum. For the log moduli spaces, the space of gluing
parameters along M g ; s .X ; D; A/ €  belongs to (a neighborhood of the origin in finitely
many copies of) the affine toric variety Y.€/ constructed from the toric fan .€ / K R .  In
other words, the kernel of (2-26) gives the gluing deformation and, by (2-40), its
cokernel gives the obstruction space for smoothability of such prelog maps.

In the following example, we describe a tuple .X; D; g; s; A; € / where M g ; s .X ; D; A/ €  is
a point and Y has an A1–singularity at its center. In this example, the relative moduli space
M g ; s .X ; D ; A/  replaces the A1–singularity with a small resolution of it.

Example 5.6 Suppose X  D  P 3, D  Š  P 1  P 1 is a smooth degree-2 hypersurface,
and let

g D  1; A  D  Œ2• 2  H 2 .P 3 ; Z/ Š  Z ; s D  .0; 0; 4/:

By [21, Lemma 4.2] and (5-8), both M r e l s .X ; D; A/ and M g ; s .X ; D ; A /  are of the
expected complex dimension 7. Let Mr e l s .X; D; A/€  be the stratum of maps in the
expanded degeneration XŒ2• wi th connected components:

     a degree-1 map u0W P 1 !  X  (a line) that intersects D  at two distinct points
(with multiplicity 1),

     a map u3W P 1 !  P X D  in the second layer f2 g PX D of XŒ2• which is made of a
degree-1 map ux3WP1 ! D  and a meromorphic section  of ux NX D  Š O P 1 . 2 /  with
a zero of order 4 and 2 poles of order one, and
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X e1 W se1 D  .1/
v0

e2 W se2 D  .1/

P X D

P X D

order 4 contact

v1
e W s D  .1/

! v3

order D  .4/

v2
e W s D  .1/

!

Figure 7: Left: a nodal 2–marked g D  1 relative map in XŒ2•.  Right: the

decorated dual graph of the image log map.

     two maps u1;u2W P 1 !  P X D  in the first layer f1 g PX D  of XŒ2• carrying the first
and the second marked point, respectively, which are degree-1 covers of fibers
of P X D  connecting u0 and u4.

See the left-hand side of Figure 7. While the stratum M g ; s .X ; D ; A/ €  is of virtual
C–codimension 2, by (5-8), its image

M g ; s .X ; D; A/ €  D  .M g ; s .X ; D; A/ € /

in the log moduli space, given by the projection map  of Proposition 4.5 below, is of
virtual C–codimension 3.

In fact, with the labeling and the choice of orientation on the edges of the associated
decorated dual graph € in Figure 7, right, we have

%W Z E  ˚  
M  

Z I v i  Š  Zfe1 ;e2 ;e3 ;e4 g ˚ Z f v 1 ; v 2 ; v 3 g  !  
M  

Z I e i  Š  Zfe1 ;e2 ;e3 ;e4 g

i2Œ3• i2Œ4•

%.1ei
 / D  1ei for all i  2  Œ4• ;

%.1v1 / D   1e1 C 1e3 ; %.1v2 / D   1e2 C 1e4 ; %.1v3 / D   1e3  1e4 :
Therefore,

 D  ker.%R / \ .Rfe1 ;e2 ;e3 ;e4 g ˚ R f v 1 ; v 2 ; v 3 g /

is the cone generated by the set of 4 vectors

˛ 1  D  1v3 C 1e 3  C 1e 4 ;

˛ 3  D  1v2 C 1 v 3  C 1e 2  C 1e3 ;

˛ 2  D  1v1 C 1 v 3  C 1e 1  C 1e4 ;

˛ 4  D  1v1 C 1 v 2  C 1 v 3  C 1e 1  C 1e2 :

Since the only relation among ˛ i  is ˛ 1  C ˛ 4  D  ˛ 2  C ˛ 3 ,  the associated toric variety Y is
isomorphic to the 3–dimensional affine subvariety

.x1 x4  x2x3 D  0/  C 4 :
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For every log curve f  2  M g ; s .X ; D; A/ €  choose a representative
(5-10)

 
uv ; fv ; i g i 2 I v  ; Cv .†v ; jv ; zEv /v 2V

and a set of local coordinates fze ge 2E around the nodes. Since f  is G–unobstructed, by
the definition or  in (2-37), we can choose v ; i  and ze such that the leading coefficient
vectors 

!  
in (2-36) satisfy

(5-11) e D  e for all e 2  E :

For every v 2  V and i 2  ŒN•      I v ,  let tv ;i D  1 in (5-12). Then the space of gluing
parameters for f  is a sufficiently small neighborhood of the origin in the complex
subvariety

ˇ
(5-12) N€  D ."e /e 2E ; .tv ; i /v 2V ; i 2 I v       2  C E C I v  ˇ "e

e ;i  tv ;i D  tv0;i
v 2 V

for all v; v0 2  V ; e 2  Ev ;v 0 ; i  2  I e  and e such that se;i  0

 C E
Y  

C I v
 : v 2 V

The complex numbers "e are the gluing parameters for the nodes of †  and tv ;i are the
parameters for pushing uv out in the direction of v;i . In the gluing construction outlined
below, given a set of representatives .fze ge 2E ; fv ; i gv 2V ; i 2 I v  / satisfying (5-11) and a
sufficiently small

."; t /  ."e /e 2E ; .tv ; i /v 2V ; i 2 I v       2  N€ ;

we will construct a pregluing log map f";t .  Then we must show that there is an actual
log J–holomorphic map “close” to it.

Let
T _

 

Š  
M

Z
I

e  !  D
_  

Š  Z E
 

˚  
M

Z
I

v  

e 2 E                                                           v 2 V

be the dual of the Z–linear map % associated to € in (2-26) (for a fixed choice of
orientation O on E). With the kernel subspace K  D  ker.%/  D  as in (2-29), let

K ?  D  fm 2  D _  j hm; ˛ i D 0 for all ˛  2  K g   D _ :

Then Im.%_/  K ? ,  with the finite quotient

K? =image.%_ /:
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Proposition 5.7 The space of gluing parameters N€  in (5-12) is a possibly reducible
and nonreduced affine toric subvariety of C E  

v 2 V  C I v     
 that is isomorphic to

jK?=Im.%_ /j copies of the irreducible reduced affine toric variety Y.€/ (with toric fan
), counting with multiplicities.29 Replacing fze ge 2E and fv ; i g v 2 V ; i 2 I v  with another
choice satisfying (5-11) corresponds to a torus action on N€ .

Proof Let us start with some general facts about toric varieties. For n 2  Z C ,  every
vector m 2  Z n  has a unique presentation m D  m C   m  such that mC ; m  2  .Z0 /n.
Every m D  .a1; : : : ; an/ 2  .Z0 /n  corresponds to the monomial

xm  x1
1 x n

n  2  CŒx1; : : : ; xn•:

For every arbitrary m 2  Z n,  the binomial corresponding to m is the expression

x m ; ˙   x m C   x m    
 
 2  CŒx1; : : : ; xn•:

For example, if m D  0, then x m ; ˙  D  1  1 D  0. A  binomial ideal30 I  in CŒx1; : : : ; xn•
is an ideal generated by a finite set of binomials x m 1 ; ˙; : : : ; x m ` ; ˙.

Suppose K _  Š Z `  is a lattice and Z n  ! K _  is a surjective Z–linear map. Let R n  ! K R  be
the corresponding R–linear projection map and let be the image of the cone R 0  in
K _ .  Then the dual map W K  , !  Z n  is an embedding and the dual of _  is the
toric fan

 D  K R  \  1 .R0 /:

In this situation, by [7, Proposition 1.1.9], the toric variety Y associated to the toric
fan  is the zero set of the binomial ideal

(5-13) I  D  f x m ; ˙  j m 2  K ?   Zn g:

With Z n  D  Z E  ˚
L

v 2 V  Z I v  , K  as in (2-30) and  D  .€ / as in (5-5), the previous
argument implies that Y.€/ is the zero set of the binomial ideal (5-13).

Let I 0  I  be the binomial subideal generated by the elements of Im.%_/  K ? .  By
definition of % and (5-12), the space of gluing parameters N€  is the zero set (scheme) of
I 0. Therefore Y.€/  N€ . Note that Y.€/ is the Zariski closure of the irreducible subgroup

ft 2  .C / n  j t m D  1 for all m 2  K ? g   .C / n

29We do not know of any example, arising from such dual graphs, for which the multiplicities are bigger
than 1.
30For more general binomial ideals, see [9].
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and N€  is the Zariski closure of possibly nonirreducible subgroup

(5-14) ft 2  .C / n  j t m D  1 for all m 2  Im.%_/g  .C /n :

See [7, Definition 1.1.7]. Therefore, all the irreducible components of N€  are isomor-
phic to Y.€/. Since

(5-15) jI =I 0j D  m€ WD jK? =Im.%_ /j;

N€  is isomorphic to m€ copies of Y.€/, counting with multiplicities. The last statement in
Proposition 5.7 follows from the way subgroup (5-14) acts on (5-12).

Example 5.8 Suppose N D  2 and € is the decorated dual graph with two vertices V
D  fv1; v2g and two edges e1 and e2 connecting them. Choose e1 and e2 to be the
orientations starting at v1. Suppose

I v 1  D  f1g; I v 2  D  f2g; s
! 1  D  s

! 2  D  .  2; 2/:

Then the linear map

%W Z E  ˚ Z I v 1  ˚ Z I v 2   Z e 1  ˚ Z e 2  ˚ Z v 1  ˚ Z v 2  !  Zf1;2g ˚ Z f 1 ; 2 g

is given by

%.1e1 / D  . .  2; 2/e
1

; .0; 0/e2 /;

%.1v1 / D  ..1; 0/e1 ; .1; 0/e2 /;

%.1e2 / D  ..0; 0/e1 ; . 2; 2/e2 /;

%.1v2 / D  ..0;  1/e1 ; .0;  1/e
2

/:

It is straightforward to check that Ker.%/ is one-dimensional and is generated by

1e1 C 1e 2  C 2 1v 1  C 2 1v 2 ;

ie Y.€/ Š  C .  On the other hand, N€  is the subvariety cut out by "1

D  tv2 ;      "2 D  tv2 ;      "1 D  tv1 ;      "2 D  tv1 :

This is isomorphic to 2 copies of C ,  the component Y.€/ is the image of t ! .t ; t ; t 2 ; t 2 /
and the other one is the image of t !  .t ;  t; t 2; t 2/. It is straightforward to see that

Ker.%/?=Im.%_/

is isomorphic to Z 2  and is generated by the class of Œ1e1 
 1e2

• .

Given a log J–holomorphic map f  D  .u;Œ• ; †; z1; : : : ; zk/ in M g ; s .X ; D ; A/  with
nodal domain (2-12), a set of local coordinates fze ge 2E around the nodes such that
(5-11) holds, and a gluing parameter ."; t /  ."e /e 2E ; .tv ; i /v 2V ; i 2 I v       

 in (5-12), the
gluing construction can/will be done in the following way.
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Consider for example a node qe connecting † v  and †v 0  with ordqe .u; Di / D  se;i >  0.
Then the log tuple on †v 0  includes a section v0 ;i of u 0 NX D i  with a pole of order se;i at
the nodal point qe 2  †v 0 . Near qe, the map uv has the product form

uv .ze / D  .e ; i z
! e

; i
 ; uxv / 2  C  D i :

On the other hand, v0 ;i has a local expansion v0;i .ze / D  e;i ze 
se ; i  C .  By (5-11) and

(5-12), we have

(5-16) "e
e ;i tv ;i e ;i D  tv0 ;i e;i

at all the nodes, simultaneously. The smoothing of †  is given by smoothing the
nodes qe via the equation zeze D  "e. The identity (5-16) means that the expression

(5-17) e;i tv;i ze e
; i  D  e;i tv0;i ze e

; i

defines a function from the neck region into NX D i .  We then construct the approximate-
gluing log map f" ; t  in the following way. On each neck region— unlike in the classical
gluing construction where the approximate-gluing map is defined to be constant —we
define the approximate-gluing map to be (5-17) in the i th direction. Away from the
nodes, f" ; t  is defined to be the pushout31 of uv via the section      i 2 I  tv ;i v ;i  on the

vth component. The latter is J–holomorphic due to some properties of AK .X ; D / .  In
between the two regions, f" ; t  interpolates between the two maps. Then, with Dl

og@ in

place of D@ in [29, Chapter 10], an argument similar to the classical argument allows us
to find a log J–holomorphic map close to f  .
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