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Summary

! Heterogeneity in gene trees, morphological characters, and composition has been asso-
ciated with several major plant clades. Here, we examine heterogeneity in composition across
a large transcriptomic dataset of plants to better understand whether locations of shifts in
composition are shared across gene regions and whether directions of shifts within clades are
shared across gene regions.
! We estimate mixed models of composition for both nucleotide and amino acids across a
recent large-scale transcriptomic dataset for plants.
! We find shifts in composition across both nucleotide and amino acid datasets, with more
shifts detected in nucleotides. We find that Chlorophytes and lineages within experience the
most shifts. However, many shifts occur at the origins of land, vascular, and seed plants. While
genes in these clades do not typically share the same composition, they tend to shift in the
same direction. We discuss potential causes of these patterns.
! Compositional heterogeneity has been highlighted as a potential problem for phylogenetic
analysis, but the variation presented here highlights the need to further investigate these pat-
terns for the signal of biological processes.

Introduction

Heterogeneity in the patterns and processes of molecular evolu-
tion is common through time and between lineages. For example,
topological conflict between different gene regions has been
demonstrated to be common across the tree of life, reflecting, in
part, population processes including introgression and incomplete
lineage sorting (ILS; Maddison, 1997; Rokas et al., 2003; Smith
et al., 2015). High rates of morphological change have also been
associated with conflict at several major clades across the plant tree
of life (Parins-Fukuchi et al., 2021; Stull et al., 2021). An addi-
tional widely recognized form of heterogeneity is in composition:
changes in the proportion of different states, such as nucleotide
bases or Amino Acids (AA), between lineages and through time,
which emerges from the interplay between mutation, gene conver-
sion, drift, and selection (Eyre-Walker & Hurst, 2001;
Lynch, 2007). Compositional differences are also expressed at the
site level with different protein sites preferring different AAs (Lar-
tillot & Philippe, 2004; Le et al., 2008; Wang et al., 2008), and
genome wide with different composition between different
regions within the same genome (Lynch, 2007). Different lineages
are also known to favor different synonymous codons, leading to
compositional bias at the codon level (Chen et al., 2004; Plotkin
& Kudla, 2011). These differences are tree heterogeneous and
interactive, so that different sites and loci might experience differ-
ent compositions in different lineages at different times.

Research intersecting composition and phylogenetics has typi-
cally focused on the impact of heterogeneous composition on
error in phylogenetic inference, identifying how clade-specific
biases in nucleotide base composition can produce false group-
ings of evolutionarily distant but compositionally similar taxa
(Foster, 2004; Cox et al., 2014; Cox, 2018; Sousa et al., 2020).
Another less well-explored avenue is the ability for heterogeneity
in composition to provide a window into the molecular and
population processes impacting the genome. A separate body of
research has addressed the role and influence of these processes
on genomes in multiple clades (Duret & Galtier, 2009; Glémin
et al., 2014; Weber et al., 2014; Clément et al., 2015, 2017).
Mutation pressure is thought to explain some genomic patterns
(Lynch, 2007), such that changes in composition might reflect
important shifts between the balance of mutation and drift, and
hence effective population size. GC-Biased Gene Conversion
(gBGC), where GC alleles act as the donor more often than
expected during recombination-associated gene conversion
events, also influences genome-wide GC content. Furthermore,
due to gBGC, changes in recombination rate might therefore
change compositions across the tree (Marais et al., 2004; Duret
& Galtier, 2009; Muyle et al., 2011; Weber et al., 2014; Mugal
et al., 2015). Changes in effective population size might drive
changes in composition via an increase in the efficacy of gBGC
(Weber et al., 2014). Because gBGC occurs during meiosis,
increases or decreases in generation time could change
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composition both by changing mutation rate and changing the
number of meiotic, and hence the number of gBGC, events
(Romiguier et al., 2010; Weber et al., 2014).

While demographic processes may influence molecular com-
position, several non-demographic processes also potentially con-
tribute to compositional change (Hershberg & Petrov, 2008;
Clément et al., 2017). Selection on codon usage for translational
accuracy and efficiency could explain compositional changes
(Hershberg & Petrov, 2008; Qiu et al., 2011a). Compositional
bias itself may impact codon usage and eventually AA preference
(Foster et al., 1997; Singer & Hickey, 2000; Knight et al., 2001).
Bias in the selection for particular AAs can influence composition
(Błażej et al., 2017). Compositionally mediated changes in codon
usage might also influence gene expression (Zhou et al., 2016).
In addition to these microgenomic processes, macrogenomic
changes, such as Whole-Genome Duplication and biased reten-
tion or loss, could also create dramatic changes in composition
(McGrath et al., 2014; Veleba et al., 2014).

In plants, empirical patterns in various clades, such as the GC-
richness of Commelinid monocots, have been described and
explained by mutation, selection, and gBGC (Qiu et al., 2011b;
Serres-Giardi et al., 2012; Glémin et al., 2014; Clément
et al., 2015, 2017). Because shifts in base composition bias can
be linked with such crucial evolutionary parameters as generation
time and population size, they may also shed light on major evo-
lutionary transitions in the plant tree of life.

Models of molecular evolution typically consist of two compo-
nents: relative transition rates between states and the composition
of those states. State compositions of nucleotides or AAs are typi-
cally modeled at equilibrium, assuming a process that does not
vary between sites or across time (Yang, 2014). These assump-
tions can be relaxed in several ways including partitioned models
(Lanfear et al., 2012), models that allow the equilibrium compo-
sition to vary across sites (Lartillot & Philippe, 2004; Le
et al., 2008), models that vary across the tree (Yang &
Roberts, 1995; Galtier & Gouy, 1998; Foster, 2004), or methods
that vary substitution models and compositions across branches
(Jayaswal et al., 2011, 2014; Zou et al., 2012). Phylogenetic
inference can be sensitive to composition biases across clades,
with conflicting resolutions drawn from homogeneous vs hetero-
geneous models. As a result, methods relaxing these assumptions
have been a major focus for phylogenetic inference of ancient
nodes across the tree of life (Sousa et al., 2020; Li et al., 2021;
Redmond & McLysaght, 2021). However, if molecular and
population processes are driving the patterns accounted for by
heterogeneous phylogenetic models, these models could be used
to detect the signal of changing evolutionary processes across the
tree.

Instead of focusing on the resolution of relationships within
plants, we concentrate on examining the extent to which there
are compositional shifts across nodes and gene regions. One
shortcoming to the application of phylogenetic methods to the
detection of compositional shifts is that tree-heterogeneous meth-
ods typically require the branches of interest to be specified
a priori. Consequently, several efforts have been made to relax
this restriction, such as testing all branches in the tree or by

investigating summary statistics of the substitution process, or
other methods (Blanquart & Lartillot, 2006, 2008; Dutheil
et al., 2012). Alternatively, Bayesian Markov chain Monte Carlo
jump methods have been developed that allow for uncertainty in
the number and placement of shifts in composition (Foster, 2004;
Gowri-Shankar & Rattray, 2007). However, computational
methods that allow for integrating over the uncertainty of their
placement are too burdensome for large genomic datasets with
hundreds of taxa and hundreds of gene regions. In parallel,
research has focused on detecting shifts in the rate of diversifica-
tion or phenotypic evolution across the tree (Alfaro et al., 2009;
Uyeda & Harmon, 2014; Mitov et al., 2019). One such class of
method uses stepwise model selection with information criteria
to automatically partition the tree into different regimes (Alfaro
et al., 2009; Mitov et al., 2019), but such approaches are not
commonly applied to molecular data (but see Dutheil
et al., 2012).

Here, we extend methods that allow composition to vary
across the tree by implementing an algorithm that detects com-
positional shifts by comparing models of different dimensions
using information criteria. We apply our method to a large col-
lection of orthologs of coding regions from across the Viridiplan-
tae clade (Leebens-Mack et al., 2019) and, instead of targeting
the impacts of composition on topological resolution, we focus
on identifying compositional shifts on individual gene regions.

Materials and Methods

Dataset

We analyzed the nucleotide and AA data from the 1KP transcrip-
tome project data release available at https://github.com/
smirarab/1kp (Leebens-Mack et al., 2019) to identify patterns in
compositional heterogeneity across plants. For nucleotide data,
we used the ‘unmasked and FNA2AA’ data and filtered for col-
umns containing at least 10% of data using pxclsq from phyx (-p
0.1, Brown et al., 2017). We chose these alignments instead of
those for which trees were already inferred in order to include
third codon positions for composition analyses. We ran an analy-
sis to detect compositional shifts in both the nucleotide (the
cleaned alignments of all three codon positions and our inferred
trees) and AA data (using the available alignments and trees). For
these alignments, we conducted phylogenetic analyses using IQ-
TREE v.1.6.6 (Nguyen et al., 2015) under the GTR+G model of
evolution. For AAs, we used the ‘masked FAA’ data and the cor-
responding trees inferred as part of the original study. We ana-
lyzed the AA using the JTT model of evolution. We used a
GTR+G model and so there could be phylogenetic error intro-
duced from violations of compositional homogeneity. While this
may impact some edges, we have also demonstrated that our
method for identifying model shifts is robust to this (Supporting
Information Fig. S1).

Because of the non-homogeneity of the compositional model,
our analysis required rooted trees. Perfect rooting was not
required and was impossible due to the variation and non-
monophyly of many taxonomic groups in each gene tree
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(Fig. S2). To accommodate this, we rooted using pxrr from phyx,
applying the ranked option (-r) with the following taxa in order
(taxon codes from https://github.com/smirarab/1kp/blob/
master/misc/annotations.csv): UNBZ, TZJQ, JGGD, HFIK,
YRMA, FOMH, RWXW, FIKG, VYER, LDRY, VRGZ, ULXR,
ASZK, JCXF, QLMZ, FSQE, DBYD, VKVG, BOGT, JQFK,
EBWI, FIDQ, QDTV, OGZM, SRSQ, RAPY, LLEN, RFAD,
NMAK, VJED, LXRN, APTP, BAJW, IAYV, IRZA, MJMQ,
ROZZ, and BAKF. This procedure searches the tree for taxa
present in the specified outgroup(s), and roots on the first one
present.

Detection of compositional heterogeneity

We developed an algorithm to detect locations of shifts in sta-
tionary frequencies in state composition that we describe later
(Fig. 1). The method is generalized to any state model, and so
proceeds in the same way for nucleotides or AAs. It requires a
rooted tree and matching alignment as input. First, the method
estimates a maximum likelihood root composition for the entire
dataset. Next, the tree is traversed in a post-order fashion (from
the tips to the root), and a maximum likelihood composition is
estimated for the subtree subtending each node, if that subtree
contains more than a user-specified minimum number of tips,
using only the data descended from that node. In this work, we
considered any subtree containing at least 10 tips. Using this
composition for the focal node and subtree, and the root com-
position for the remainder of the tree, we calculate a likelihood
and the Bayesian Information Criterion (BIC; Schwarz, 1978),
under a two-composition model. Once a model for every eligible
subtree has been estimated, we order subtree models by their
BIC (i.e. by their relative improvement in fit over the base

model), add subtree models one at a time to the model config-
uration, calculate a new likelihood and BIC for the whole tree
with the newly added subtree model, and keep the subtree
model if the new BIC is lower (i.e. the model provides a better
fit). To improve computational efficiency, we discard models if
their BIC score is greater than the current model by an arbitrary
cutoff (we assigned a cutoff of 35). Our method has been imple-
mented in both Golang (for flexibility) and C (for speed), and
the source code is available at https://git.sr.ht/~hms/janus and
https://git.sr.ht/~hms/hringhorni, respectively. A diagram is pre-
sented in Fig. 1 and an empirical example is presented in
Fig. S3.

Accommodating model uncertainty

One common challenge in information criterion (IC)-based
approaches to model comparison is their tendency to overfit,
sometimes favoring models of higher complexity than the gener-
ating model. Our solution to this tendency was to assess statistical
uncertainty in each model shift by estimating the relative support
for the model that includes the shift vs the model without the
shift. We performed these tests using BIC weights (wBIC), com-
paring, for each putative shift, the BIC of the full model contain-
ing all inferred shifts to one dropping each individual model
shift. The strength of support for each inferred shift was thus cal-
culated by calculating the relative BIC of each candidate model i
(in this case, shift vs no shift):

relBICshift ¼ e BICshift # BICnoshiftð Þ & 0:5:

And assessing support for the shift as the ratio of the ratio of
that model over the sum of all i candidate models:

Significance of shift
HighLow

(a) (b) (c) (d)

Fig. 1 A demonstration of the procedure introduced here used on each gene tree. (a) Tree and the sequences to the right represented as their composition
of nucleotides. (b) The same tree with node colors corresponding to the information criterion values sorted with red being the highest and yellow being the
lowest. (c) Identifies the two orange clades as having potential shifts with only one supported after uncertainty analyses (the blue cladein d).
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wBIC ¼ relBICnoshift

relBICnoshift þ relBICshiftð Þ :

This calculation yields an index between 0 and 1, where values
closer to 0 indicate weaker support for the shift, and values closer
to 1 indicate stronger support. Using the reasoning that spurious
shifts will likely typically be poorly supported, we removed shifts
with wBIC support values below 0.95.

Simulations

We conducted several simulations to validate the performance of
our algorithm in detecting model heterogeneity. Phylogenies
were simulated under a birth–death model with phyx using the
pxbdsim command with defaults, except varying the size of the
tree between 100 and 250 tips, and root height set to 0.75 with
pxtscale (-r 0.75) from phyx. Nucleotide and AA alignments were
simulated using a simulator STONE (https://git.sr.ht/~hms/stone)
that allows for shifts in composition across the tree. For nucleo-
tides, we conducted two simulations: one under JC+G and
another GTR+G (both with α= 1 for rate heterogeneity). For
AAs, we conducted one simulation under JTT with no rate varia-
tion. Each of these simulations had a single randomly positioned
compositional shift per tree. Phylogenies were then reconstructed
with IQ-TREE under the GTR+G model of evolution for
nucleotide alignments and the JTT+G model for AA align-
ments. For each simulation set, we simulated 100 replicates.
Alignment lengths were 1000 for nucleotides and 300 and 1000
for AAs.

Summarizing compositional heterogeneity

We summarized the results from the empirical analyses in several
ways. Directly comparing model shifts across genes was compli-
cated by extensive gene tree conflict. We compared the distribu-
tion of model shifts by pairwise comparison of tips on the species
tree inferred in the original paper (Leebens-Mack et al., 2019),
recording the number of times that two tips were descended from
a node with a shared model, and plotted this in a heatmap on the
species tree (Fig. S4). Second, we defined major clades in the spe-
cies tree, and recorded to which groups each tip descending a
model shift in each gene tree belonged. We counted the number
of tips from each taxonomic group, and further counted the
number of tips within those taxonomic groups which were not
included in the model shift (i.e. either the model shift occurred
nested within that group, or those tips were placed polyphyleti-
cally in the tree due to conflict). We manually assessed these mis-
matches and the position of the model shift on the gene tree and
assigned the shift on the species tree to occur either (1) at the
node defining a major clade (assuming mismatching tips are
errors), which we summarize as occurring at the origin of the
clade or (2) descending a node defining a major clade, which we
summarize as occurring within the clade. For individual genes,
we plotted model shifts on the tree and changes in parameter

estimates between models. To characterize the direction and size
of parameter shifts, we used a principal components analysis
where each row was a single sequence and each column was the
frequency of one state for that sequence (i.e. 4 columns for
nucleotides and 20 for AAs). We projected every gene tree onto
the same set of axes for the first two PCs and colored each point
(representing a single tip), by the model from which it was des-
cended. We characterized shift direction and size by projecting
fitted model parameters onto the same PC space and calculating
the vector direction and magnitude between the two sets of coor-
dinates representing the parent and descendant model.

Results

Simulations

Our simulations demonstrate that, given sufficient data (i.e.
alignments of sufficient length), our method has acceptable false-
positive and false-negative rates (Table 1). False-positive rates
were negligible after removing shifts that were poorly supported
by BIC. In general, we consider the false-positive rates to be of
more concern than false-negatives rates, but the latter were also
negligible in our simulations. The highest rates of false positives
were observed in short (300 site) AA alignments, which were
diminished but not entirely alleviated by taking uncertainty of
shift existence into account, using the approach described in the
methods. False-positive rates were generally elevated when topol-
ogy reconstruction error existed in the simulated data. Our simu-
lations also demonstrate that topology reconstruction error, as
measured by average RF between the simulated and reconstructed
trees, occurred under each condition, including with 0 shifts.
The RF distance of phylogenies that have one shift with 100 tips
and zero shifts with 100 tips are not significantly different.
Therefore, instead of corresponding to the number of shifts or
the presence of compositional bias, these errors seem to corre-
spond to tree size. We also demonstrate that shifts can be identi-
fied correctly even when the phylogeny was reconstructed
incorrectly (Fig. S2).

Phylogenetic patterns of compositional shifts

We applied our method to a large dataset of orthologs derived
from genomes and transcriptomes across Archaeplastida. As
noted in the original study (Leebens-Mack et al., 2019), the
inferred gene trees contained high levels of conflict. For example,
38% of nucleotide and 32% of AA gene trees contained non-
monophyletic seed plants. We searched for compositional shifts
in inferred gene trees from nucleotide and AA data. We detected
multiple shifts in both datasets, with many more shifts detected
for nucleotide data (Fig. 2). The phylogenetic location of these
shifts differed between different trees, and we observed a great
deal of gene tree conflict between the individual orthologs and
the species tree, complicating the localization of shifts. Neverthe-
less, general patterns did emerge when comparing shift locations
to the species tree (Figs 2, 3). Many nucleotide shifts were
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detected at the Embryophyta node, corresponding to the origin
of land plants, at the Tracheophyta node corresponding to the
evolution of vascularity, at the node uniting ferns and the rest of
Spermatophyta, at ferns, at the Spermatophyta node correspond-
ing to the evolution of seeds, and at the Angiosperm node corre-
sponding to the evolution of flowers. Many nucleotide shifts
were also detected at the base of and within Chlorophytes. By
contrast, AA shifts were enriched at the Spermatophyta and
Angiosperm nodes and were similarly common at and within
Chlorophytes. Several shifts were identified within the named
clades, such as at or within Eudicots, could not be explored
further because our sampling or the conflict in the gene tree pre-
cluded further localization.

Direction of compositional shifts

The direction of compositional shifts (i.e. which state frequencies
increased or decreased between a parent and child model) dif-
fered both within and between genes. While specific composi-
tional values may not be shared by many genes, we noticed a
tendency for shifts at comparable nodes to occur in similar direc-
tions (Fig. 4). The root nodes of angiosperms, chlorophytes, and
embryophytes each displayed many nucleotide composition shifts
that were, for angiosperms and embryophytes, heavily direction-
ally biased toward higher AT (Fig. 2). Several nodes displayed
similarly biased amino acid compositional shifts. These biased
shifts were highly evident at the origin of Tracheophyta, angios-
perms, Zygnematophyceae, Spermatophyta, Embryophyta, and
chlorophytes (Figs S5, S6).

To determine whether patterns in the direction of nucleotide
compositional shifts were related to codon usage bias, we exam-
ined codon usage for each model within each gene. We noted
several patterns. First, codon usage was strongly biased within
each residue, and there is a tendency for land plants to feature

more AT-rich codons. In addition, clades nested within land
plants (e.g. Embryophyta, Tracheophyta) tend to be more AT-
rich than other clades (e.g. Bryophytes). Gymnosperms showed
the highest degree of codon usage bias, favoring AT-rich codons.

Discussion

The results of the analyses of the direction of the compositional
shifts and the phylogenetic position of the shifts suggest common
or related causes for these biases for major clades of land plants.
The most notable pattern in this dataset is the tendency for com-
positional shifts of Embryophytes, Tracheophytes, and Sperma-
tophytes to be shifted to be more AT enriched. Many of these
compositional shifts occur at the origins of these major named
clades. The primary goal of this study is to demonstrate notable
patterns of compositional shifts across vascular plants across gene
trees, where previously research has focused on the accuracy of
phylogenetic reconstructions using heterogeneous composition.
We discuss potential causes of this heterogeneity and where cer-
tain causes seem plausible based on the analyses here as well as
previous studies. However, additional lines of evidence will be
necessary to further narrow these causes. Nevertheless, the pat-
terns presented here are substantial enough to warrant further
investigation.

Life history

In our analyses, Chlorophytes tend to have shifts in composi-
tional vectors that vary widely, some shifts toward elevated GC
and some toward elevated AT (Fig. 2). By contrast, land plants,
vascular plants, seed plants, and flowering plants tend to show,
when there are shifts in composition, a tendency toward stronger
AT bias. Furthermore, while these genes show trends toward

Table 1 Results of simulations for both nucleotide (JC/GTR) and amino acid data.

No.
sh

No.
tips

Nuc/
AA Len False +

False +
unc

False +
(rec)

False + (rec)
unc False #

False #
unc

False#
(rec)

False # (rec)
unc Avg. RF

0 100 Nuc 1000 0/0.02 0/0 0/0.01 0/0 – – – – 9.96/10.88
1 100 Nuc 1000 0/0.04 0/0 0/0.04 0/0.01 0/0 0/0 0/0 0/0 8.76/10.16
2 150 Nuc 1000 0.14/

0.13
0.03/
0.01

0.09/
0.14

0/0.04 0/0.04 0.02/
0.04

0/0.05 0.02/0.05 15.0/16.84

2 250 Nuc 1000 0.1/
0.14

0.01/
0.01

0.1/0.12 0.02/0.03 0.01/
0.04

0.03/
0.05

0.04/0.06 0.07/0.08 24.8/26.34

0 100 AA 300 0 0 0 0 0 0 0 0 14.32
1 100 AA 300 0.02 0.01 0.11 0.07 0 0 0.02 0.02 15.9
2 150 AA 300 0.03 0 0.18 0.07 0.01 0.01 0.01 0.01 21.34
2 250 AA 300 0.02 0 0.19 0.10 0.02 0.03 0.03 0.01 35.6
0 100 AA 1000 0 0 0 0 0 0 0 0 4.84
1 100 AA 1000 0.01 0 0.03 0.01 0 0 0 0 4.76
2 150 AA 1000 0.18 0 0.19 0 0 0 0.01 0.01 6.82
2 250 AA 1000 0.22 0 0.22 0.01 0 0 0 0 12.0

Shown are false positive (False +) with and without considering uncertainty (unc) for both nucleotide (Nuc) and amino acid (AA) alignments. We also show
results considering the correct tree and the tree based on reconstructions (rec). Finally, we present the average RF distance between the reconstructed trees
and the true tree.
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more AT, there is not a clear lineage-specific optimal AT. In
other words, each gene increases in AT but not to the same AT
across genes, which reflects documented intragenomic variation

in base compositions (Glémin et al., 2014; Clément et al., 2017).
There may be many potential causes for these patterns; however,
one notable difference between those lineages with shifting AT
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Fig. 2 Summarized results for Amino Acids (AA) and nucleotides. Inset plots denote vectors of composition shifts for both AA (left) and nucleotides (right)
for Angiosperms, Embryophyta, and Chlorophytes. For the complete set, see Supporting Information Figs S5 and S6. The black lines in each plot represent
a single shift within a single gene. The direction shows the composition shift (e.g. most of the shifts in Embryophyta nucleotide plots shift to more A and T)
and the length of the line shows the strength of the shift. The phylogeny on the right shows shifts detected by clade. There are four boxes at each major
clade that correspond to, from top left to bottom right, shifts in AA data at that node, shifts in AA data within that node (e.g. because the clade was not
monophyletic or because the shift is missing one or more taxa within the clade), shifts in nucleotide data at that node, and shifts in nucleotide data within
that node. Colors correspond to the number of shifts. For example, at Embryophyta, there are 196 nucleotide shifts at that node and 113 shifts that occur
within that node (missing one or more Embryophyta but not so many as to be considered Tracheophyta or Bryophytes). PhyloPics include Chondrus crispus
by Jonathan Wells (CC0 1.0), Chlamydomonas by Sergio A. Muñoz-Gómez (CC BY-NC-SA 3.0), Funaria hygrometrica by Alexander Schmidt-Lebuhn (CC
BY-NC-SA 3.0), Pteridium aquilinum by Olegivvit (CC BY-SA 3.0), Amborella trichopoda by T. Michael Keesey (CC0 1.0),Magnolia grandiflora by Luna L
Sanchez-Reyes (CC0 1.0), andWahlenbergia by Alexander Schmidt-Lebuhn (CC BY-NC-SA 3.0).
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lines represent the proportion of the composition in each amino acid or base. For example, in comparing Tracheophytes and Embryophytes to the base
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bias are dramatic changes to life history. Life history has been
demonstrated to have an impact on genome composition. For
example, biased gene conversion can favor the proliferation of
GC alleles during meiotic recombination, such that short genera-
tion time could lead to increased GC-richness (Duret & Gal-
tier, 2009; Weber et al., 2014). On the other hand, mutation
tends to be AT biased and lineages with longer generation times
are expected to have higher mutation rates due to more cell divi-
sions and accumulated DNA damage (Lynch, 2007; Bergeron
et al., 2023). Population size also plays a compounding role.
Large effective population sizes tend to make natural selection
more effective, and in the case of composition bias this may
translate into composition reflecting advantageous selection more
than bias. On the other hand, smaller effective population sizes
increase the probability that mutations will be fixed by drift.
Large population sizes and increased generation times are asso-
ciated with higher equilibrium GC and faster increases of GC
content (Romiguier et al., 2010), suggesting that reductions in
equilibrium GC might reflect shrinking effective population sizes
or increased generation times. Our demographic model suggests
that changes at land plants, vascular plants, seed plants, and
angiosperms moved lineages closer to mutation-drift equilibrium
and away from strong natural selection and BGC (Clément
et al., 2017). For Chlorophytes with short generation times and
larger population sizes, this may reflect the variable gene compo-
sition. Of note, are the gymnosperms which tend to have higher

composition bias but fewer phylogenetic shifts. Our failure to
detect shifts, however, may be due to lower taxon sampling of the
gymnosperms. Alternatively, the slower generation time of gym-
nosperms may also play a role, which may have prevented them
from reaching compositional consistency between lineages (Lan-
fear et al., 2013). This would yield weaker signals for our meth-
ods to detect shifts.

Our expectations under a model of mutation bias are that
populations with slower generation time and smaller effective
population sizes will have lower GC-richness and higher AT-
richness at equilibrium because of AT-biased mutations and a
lower rate and a lower efficiency of gBGC. Our results are consis-
tent with many major changes in traits and life history across the
Viridiplantae being associated with longer generation times and/
or reductions in effective population size. This pattern seems
likely to be true of gymnosperms, which are large, long-lived trees
with slow generation times (De La Torre et al., 2017) and our
results suggest that it is true of angiosperms and other lineages.

Selection

In contrast to the demographic explanation mentioned earlier,
selection might also drive the evolution of base composition (Qiu
et al., 2011a; Clément et al., 2017). Selection on codon usage
could lead to preferred codons for given amino acids which are
more GC rich or AT rich, leading to genome-wide patterns
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Fig. 4 Principal component (PC) analyses of four nucleotide datasets (a) and four AA datasets (b) with each point representing one taxon and colors
denote shared shifts within the dataset. PC loadings are based on the entire nucleotide and AA datasets, respectively, to allow for easier interpretation. For
5949, vascular plants and embryophytes have more AT bias than tips sharing the base model. The same pattern is seen for 6068 for Spermatophytes and
Embryophytes, Angiosperms and Spermatophytes in 6227, and Embryophytes in 7241. While each is shifting to more AT, given that these are plotted with
the same PC loadings, they are also not converging on the same space. ang, Angiosperms; chl, Chlorophytes; emb, Embryophytes; spe, Spermatophytes;
vas, vascular plants; zyg, Zygonematophyceae.
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(Hershberg & Petrov, 2008). Because of the bias in codon com-
position for certain amino acids, shifts in amino acid preference
at particular sites could also produce a compositional impact
(Jobson & Qiu, 2011; but see Wang et al., 2004). In an analysis
of extant plant genomes, Clément et al. (2017) found that the
role of selection on codon usage in driving composition was small
relative to BGC. However, we cannot rule out that selection
played a role in generating the patterns we observe here. More-
over, these two explanations are not mutually exclusive. Selection
is expected to be more efficacious in larger populations, so the
possible demographic changes we suggest might interact with
selection to produce changes in equilibrium composition.
Further population genetic analysis of extant populations will be
necessary to inform the degree to which these processes interact
to shape natural variation in base composition, including in
response to changing population size, generation times, or major
modes of life history (Qiu et al., 2011b). Due to the necessarily
coarse nature of our investigation, it is difficult to comment on
how different processes might contribute to the patterns we
observe. Such a distinction is a goal of further modeling efforts
(Kostka et al., 2012), and will undoubtedly be important in more
focused studies of single organisms or loci.

Population processes, base composition, and gene tree
discordance

Base compositional biases have been hypothesized to be linked to
numerous explicit population processes, including those outlined
earlier. We suggest that patterns in base composition shifts that
occur at key nodes in plant phylogeny are likely the result of
some combination or subset of these, and perhaps other, popula-
tion processes. For example, while we expect life-history shifts,
such as lengthening of generation time, to correspond to increases
in AT-content, it is important to note that this pattern may also
be consistent with myriad other lower-level processes. Empiri-
cally demonstrating a robust link between such broad-scale pat-
terns as those explored here to specific population processes is
notoriously challenging in macroevolutionary studies. In this
study, we were focused on harnessing our new approach on pat-
tern discovery first while also considering some possible explana-
tions for these patterns at the population level. Future work will
be needed to more explicitly distinguish between these candidate
processes and understand how each map to broadly observable
phylogenetic patterns, such as those reconstructed here. For now,
we lack a rigorous understanding of how specific population pro-
cesses scale up to phylogenetic patterns and so the first step is to
consider as many candidate processes as possible. A first step may
be to identify whether life-history shifts are statistically linked
with differential patterns in AT-richness. Moving forward, it will
become important to better understand how and whether popu-
lation processes can be statistically identified from one another
from phylogenetic patterns. Nevertheless, the timing of base
composition shifts that we identify here suggests that major plant
clades are reflective of fundamental biological revolutions, with
effects spanning organismal scales from the genome, through life
history, and morphology (Donoghue, 2005).

One increasingly common avenue through which to explore
population dynamics such as ILS and introgression is to explore
patterns in gene–tree conflict (Smith et al., 2015, 2020). We
observed substantial topological discordance between the gene
trees analyzed. It has been previously suggested that biases in base
composition may drive error in species tree reconstruction (Fos-
ter, 2004; Cox, 2018). In principle, it is possible that some pro-
portion of the extensive topological conflict we found in the
present dataset was caused by differential base composition bias
across the loci. However, Robinson–Foulds distances between
each gene tree and the species tree were primarily correlated with
tree size with a weak correlation to the number of inferred com-
position shifts in nucleotides, but a weak negative relationship for
AAs, and a great deal of variance unexplained (Table 1; Figs S7,
S8). Here, at most of the major nodes we explored, we found
base composition evolution to be highly biased in its direction,
with most loci shifting in a similar direction. As a result, any
topology reconstruction error caused by base composition issues
would likely affect reconstruction at these nodes roughly uni-
formly. While we tended to observe a distribution of alternative
tree topologies at each node, previous analyses have found that
some of these patterns follow expectations under population pro-
cesses such as ILS and introgression (Smith et al., 2020). This
suggests that gene-tree discordance in this dataset is likely caused
by a combination of population processes, such as ILS, and sys-
tematic error, perhaps including erroneous ortholog identifica-
tion, assembly, and/or contamination. In addition, we would
expect compositionally driven discordance to manifest by unit-
ing, in the gene tree, disparate clades with similar compositions
that our method would then tend to infer as a single, unidirec-
tional shift as opposed to the multiple separate shifts we observe
here. Therefore, if compositionally driven discordance is a major
factor in our dataset, it should tend to make our findings conser-
vative by reconstructing fewer shifts.

Phylogenetic resolution

The simulations conducted here demonstrated that our method
can correctly identify the location of phylogenetic shifts even in
the face of reconstruction error. Nevertheless, the impact of com-
positional bias on phylogenetic reconstruction has been well
demonstrated. The phylogenetic resolution of several deep nodes
differs between genes in the nucleotide and amino acid datasets,
and some shifts associated with deep nodes are associated with
those alternative resolutions of major clades. For example, in
many genes, the Bryophytes are non-monophyletic and shifts are
associated with the nodes surrounding this conflicting relation-
ship. This has been found previously by Cox et al. (2014). In
gene region 6401, the Bryophytes form a grade with a shift
shared by a clade of liverworts and the rest of vascular plants. The
amino acid phylogeny of the same gene has no significant shift in
the molecular composition. Other examples include lycopods sis-
ter to ferns vs ferns sister to seed plants – the latter is associated
with shifts in molecular evolution 29 times in amino acids and
68 times in nucleotides. While the analyses presented here are
not focused on the phylogenetic resolution of these major clades,
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other studies have demonstrated that heterogeneity can alter phy-
logenetic reconstruction (Foster & Hickey, 1999; Jermiin
et al., 2004). The analyses here underscore the importance of that
consideration in future studies.

Data quality

The datasets we used here present several challenges that may
stem from quality-control issues that are common among large
and complex genomic datasets. We note this problem primarily
because as many new genomic and transcriptomic datasets
become available, as in this study, researchers will be tempted to
address large-scale questions taking advantage of these enormous
datasets. However, caution should continue to be exercised,
because errors in homology or contamination are likely still pre-
valent, despite researchers’ best efforts. For example, 38% of the
nucleotide gene trees and 32% of amino acid gene trees have
non-monophyletic seed plants. This presents several challenges,
but primarily, in summarizing the phylogenetic placement
results, we had to accept that there may be outlying taxa that
make strict monophyly difficult to enforce. This conflict, along-
side biased per gene taxon sampling, is probably responsible for
our difficulty in recovering some documented patterns of compo-
sitional evolution within angiosperms, such as increases in GC
content in Poaceae (Serres-Giardi et al., 2012). Alternatively, the
loci which most strongly express this and analogous patterns may
not have been sampled in this dataset.

We highlight this problem not to single out these data or the
original analyses as we recognize that many large-scale datasets
inevitably face challenges when cleaning data. Instead, we want
to underscore the importance of homology and orthology ana-
lyses in the construction of single gene alignments and gene trees.
While errors like this may not greatly impact species-tree ana-
lyses, especially if they are mostly random between gene trees,
they can dramatically limit the utility of these data for other ana-
lyses.
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