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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS
SCATTERED BY PERIODIC LAYERED MEDIA*

MATTHEW KEHOE AND DAVID P. NICHOLLS f

Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many
branches of applied physics and engineering. In this paper we establish rigorous analytic results neces-
sary for the proper numerical analysis of a class of High—Order Perturbation of Surfaces/Asymptotic
Waveform Evaluation (HOPS/AWE) methods for numerically simulating scattering returns from
periodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of
solutions to a system of partial differential equations which model the interaction of linear waves with
a periodic two—layer structure. Furthermore, we establish joint analyticity of these solutions with
respect to both geometry and frequency perturbations. This result provides hypotheses under which
a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE algorithm.
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tering; Helmholtz equation; Diffraction gratings.
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1. Introduction. The scattering of linear waves by periodic structures is a cen-
tral model in many problems of scientific and engineering interest. Examples arise in
areas such as geophysics [67, 8], imaging [51], materials science [28], nanoplasmonics
[64, 47, 24], and oceanography [10]. In the case of nanoplasmonics there are many
such topics, for instance, extraordinary optical transmission [23], surface enhanced
spectroscopy [50], and surface plasmon resonance (SPR) biosensing [31, 33, 45, 35].
In all of these physical problems it is necessary to approximate scattering returns in
a fast, robust, and highly accurate fashion.

The most popular approaches to solving these problems numerically in the en-
gineering literature are volumetric methods. These include formulations based on
the Finite Difference [43], Finite Element [34], Discontinuous Galerkin [30], Spectral
Element [20], and Spectral Methods [29, 9, 66]. However, these methods suffer from
the requirement that they discretize the full volume of the problem domain which
results in an unnecessarily large number of degrees of freedom for a periodic layered
structure. There is also the additional difficulty of approximating far—field boundary
conditions explicitly [7].

For these reasons, surface methods are an appealing alternative, and we advocate
the use of Boundary Integral Methods (BIM) [17, 40, 65] or High—Order Perturbation
of Surfaces (HOPS) Methods [48, 49, 11, 12, 13, 57, 59]. Regarding the latter, we
mention the classical Methods of Operator Expansions [48, 49] and Field Expansions
[11, 12, 13], as well as the stabilized Method of Transformed Field Expansions [57, 59].
All of these surface methods are greatly advantaged over the volumetric algorithms
discussed above primarily due to the greatly reduced number of degrees of freedom
that they require. Additionally the exact enforcement of the far—field boundary condi-
tions is assured for both BIM and HOPS approaches. Consequently, these approaches
are a favorable alternative and are becoming more widely used by practitioners.

There has been a large amount of not only rigorous analysis of systems of partial
differential equations which model these scattering phenomena, but also careful design
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of numerical schemes to simulate solutions of these. Most of these results utilize either
Integral Equation techniques or weak formulations of the volumetric problem, each
of which lead to a variety of natural numerical implementations. We recommend
the Habilitationsschrift of T. Arens [3] as a definitive reference for periodic layered
media problems in two and three dimensions. In particular, we refer the interested
reader to Chapter 1 which discusses in great detail the state-of-the-art in uniqueness
and existence results for scattering problems on biperiodic structures. For the two
dimensional problem we further refer the reader to the work of Petit [62]; Bao, Cowsar,
and Masters [5]; and Wilcox [68]. In three dimensions, results on the Helmholtz
equation can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox
[6]; and Dobson [22]. In the context of Maxwell’s equations, we point out the work
of Chen and Friedman [16], and Dobson and Friedman [21]. Of course the field has
progressed from these classical contributions in a number of directions, and survey
volumes like [5] give further details.

The previous work most closely related to the current contribution is that of
Kirsch [38] on smoothness properties of the pressure field scattered by an acousti-
cally soft two—dimensional periodic surface. More specifically, it was demonstrated
that not only is this field continuous and differentiable with respect to a sufficiently
small boundary deformation, but it is also analytic with respect to illumination fre-
quency and angle of incidence, up to poles induced by the Rayleigh singularities
(Wood Anomalies) which does not violate our theory. We generalize these results
in a number of important ways. In addition, in contrast to their rather theoretical
operator—theoretic approach using results from Kato’s classical work [36], our method
of proof is quite explicit and results in a stable and highly accurate numerical scheme
which we discuss in [37].

Oftentimes in applications it is important to consider families of gratings interro-
gated over a range of illumination frequencies. An example of this is the computation
of the Reflectivity Map, R, which records the energy scattered by a layered structure
with interface shaped by z = g(z) and illuminated by radiation of frequency w (see,
e.g., [42]). Taking the point of view that this configuration is simply one in a family
with interface

illuminated by radiation of frequency

w=w+dw, 6€ER,

where w is a distinguished frequency of interest, our novel High-Order Perturbation
of Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) method [53, 37] is a
compelling numerical algorithm. In short, this scheme studies a joint Taylor expansion
of the solutions of the scattering problem in both € and §. Upon insertion of this
expansion into relevant governing equations, the resulting recursions can be solved
up to a prescribed number of Taylor orders once and then simply summed for (e, d)
many times. Clearly, this is a most efficient and accurate method for approximating
R = R(g,d), as we have demonstrated in our previous work [53, 37|, provided that this
joint expansion can be justified. The point of the current contribution is to provide
this justification in the language of rigorous analysis (see Theorem 4.7). Not only is
this of intrinsic interest, but it also provides hypotheses and estimates as the starting
point for a rigorous numerical analysis of our HOPS/AWE scheme (see, e.g., [60] for
a possible path) for this problem.
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JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 3

We begin this program by assuming that ¢ and ¢ are sufficiently small. However,
we have demonstrated in [58, 61] for a closely related problem concerning Laplace’s
equation, the domain of analyticity in € is not merely a small disk centered at the
origin in the complex plane, but rather a neighborhood of the entire real axis. We
suspect that an analogous analysis can be conducted in the current setting and we
intend to pursue this in future work. By contrast, as pointed out in [38], the domain
of analyticity in ¢ is bounded by the presence of the Rayleigh singularities. We believe
that a similar analysis may prove fruitful in verifying that the domain of analyticity
can be extended right up to this limit which is supported by our numerics [37].

The paper is organized as follows: In Section 2 we summarize the equations which
govern the propagation of linear waves in a two—dimensional periodic structure, and
in Section 2.1 we discuss how the outgoing wave conditions can be exactly enforced
through the use of Transparent Boundary Conditions. Then in Section 3 we restate
our governing equations in terms of interfacial quantities via a Non—Overlapping Do-
main Decomposition phrased in terms of Dirichlet-Neumann Operators (DNOs). In
Section 4 we discuss our analyticity result with a general theory in Section 4.1 and
our specific result in Section 4.2. This requires a study of analyticity of the data in
Section 4.3 and an investigation of the flat—interface situation in Section 4.4. We con-
clude with the final piece required for the general theory: The analyticity of Dirichlet—
Neumann Operators (Section 6). We accomplish this by first establishing analyticity
of the underlying fields (Section 5) requiring a special change of variables specified
in Section 5.1. With this we demonstrate the analyticity of the scattered field in
Sections 5.2 and 5.3. Given these theorems, we prove the analyticity of the DNOs in
Section 6.

2. The Governing Equations. An example of the geometry we consider is
displayed in Figure 1: a y—invariant, doubly layered structure with a periodic interface

Fig. 1: A two-layer structure with a periodic interface, z = g(z), separating two
material layers, S(*) and S(®), illuminated by plane-wave incidence.
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

separating the two materials. The interface is specified by the graph of the function
z = g(x) which is d—periodic so that g(z+d) = g(x). Dielectrics occupy both domains
where an insulator (with refractive index n*) fills the region above the graph z = g(z)

S = {z > g(2)},

and a second material (with index of refraction n") occupies

SW) = {7 < g(x)}.

The superscripts are chosen to conform to the notation of the authors in previous
work [52, 55]. The structure is illuminated from above by monochromatic plane—wave
incident radiation of frequency w and wavenumber k" = n"w/cy = w/c" (co is the
speed of light) aligned with the grooves

; . L u . . o
El(as,z,t) = Ae wttiar—1iy z, ﬂl(x,z,t) = Be wt+rar—1iy z7

a:=k"sin(d), ~":=k"cos(6).
We consider the reduced incident fields
E'(z,2) = ¢“'E'(2,2,1), H'(z,2)=¢e""H(z,21),

where the time dependence exp(—iwt) has been factored out. As shown in [62],
the reduced electric and magnetic fields, like the reduced scattered fields, are a—
quasiperiodic due to the incident radiation. To close the problem, we specify that
the scattered radiation is “outgoing,” upward propagating in S(*) and downward
propagating in S().

It is well known (see, e.g., Petit [62]) that in this two—dimensional setting, the
time—harmonic Maxwell equations decouple into two scalar Helmholtz problems which
govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.
We define the invariant (y) direction of the scattered (electric or magnetic) field by
@ =z, z) and © = w(z, z) in S™ and S, respectively. The incident radiation in
the upper field is denoted by @'(x, 2).

Following our previous work [53] we further factor out the phase exp (i) from
the fields @ and @

u(z,2) = ez, 2), w(r,z)=e T, z),
which, we note, are d—periodic. In light of all of this, we are led to seek outgoing,
d—periodic solutions of

2.1a) Au + 2icdu + (v*)*u =0, z > g(z),

(
2.1b) Aw + 2iad,w + (v*)?w = 0, z<g(x
(
(

)
)
2.1c) u—w=C(, z = g(z),
2.1d) Onu — i (0p9)u — T2 [Oyw — i (D, 9)w] = ¥, z = g(x),
where N := (—0,g,1)T. The Dirichlet and Neumann data are

(2.1e) C(2) = —e— "),

(2.1f) b(x) = (i7" + ic(D,g))e 79,

This manuscript is for review purposes only.



158

159

160

161

162

163

164

165

166

167

168

169

174
175

176

179

180

JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 5
and

, 1, TE,
T =
(k*/E?)? = (n*/n*)?, TM,
where k% = n"w/co = w/c¥ and v* = k" cos().

2.1. Transparent Boundary Conditions. The Rayleigh expansions, which
are derived through separation of variables [62], are the periodic, upward/downward
propagating solutions of (2.1a) and (2.1b). In order to truncate the bi-infinite problem
domain to one of finite size we use these to define Transparent Boundary Conditions.
For this we choose values a and b such that

a>|g‘oo7 _b<_|g‘oo7

and define the artificial boundaries {z = a} and {# = —b}. In {z > a} the Rayleigh
expansions tell us that upward propagating solutions of (2.1a) are

oo

(2.2) u(z,z) = Z dpei;ﬁm+i’y;fz7

p=—00
while downward propagating solutions of (2.1b) in {z < —b} can be expressed as
w(zx,z) = Z cipeim*”;z,
p=—00
where, for p € Z and q € {u,w},
_2n i V(E)? —af, pel,
(2.3) D= —p, api=a+p, 9p= P
d iJo3 — (k)2 pgu,
and

U= {pezlal < (),

which are the propagating modes in the upper and lower layers. With these we can
define the Transparent Boundary Conditions in the following way: we first rewrite
(2.2) as

u(z, z) = Z (dpe”;“) piPrtivy (z—a) _ Z £ eiPrting (z=a)
p=—o00 oo
and observe that,
uwa)= D, & =),
p=—00
and
e ~ .~
Ozulw,a) = 3 (i9)pe™ = T[g()],
p=—00

This manuscript is for review purposes only.
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6 MATTHEW KEHOE AND DAVID P. NICHOLLS

which defines the order—one Fourier multiplier 7%. From this we state that upward—
propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a

(2.4) d.u(z,a) — T [u(z,a)] =0, z=a.
A similar calculation leads to the Transparent Boundary Condition at z = —b
(2.5) d,w(x,—b) — TY[w(x,—b)] =0, z=-b,
where
TU[(@)] = Y (=iyy)pe™.
p=—00

We note that these conditions enforce the Upward and Downward Propagating Con-
ditions described by Arens [3].
With these we now state the full set of governing equations as

(2.6a) Au + 2iad,u + (v*)*u = 0, z > g(x),
(2.6b) Aw + 2iad,w + (v)?w = 0, z < g(x),
(2.6¢) u—w=_¢, z = g(z),
(2.6d) Inu — i (0p9)u — 12 [Oyw — ia(0,9)w] = ¥, z = g(x),
(2.6e) ou(z,a) — T"[u(z,a)] =0, z =a,
(2.6f) d,w(x,—b) — T [w(x,—b)] =0, z = —b,
(2.6g) u(z +d, z) = u(z, 2),

(2.6h) w(zx +d, z) = w(x, 2).

3. A Non—Overlapping Domain Decomposition Method. We now rewrite
our governing equations (2.6) in terms of surface quantities via a Non-Overlapping
Domain Decomposition Method [46, 19, 18]. For this we define

U(z) := u(z, g(x)), U(x) = —dnyu(x, g(x)),
W (x) :=w(z,g(x)), W(z):=dyw(z,g(z)),

where u is a d—periodic solution of (2.6a) and (2.6¢), and w is a d—periodic solution of
(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent
to the pair of boundary conditions, (2.6¢) and (2.6d),

(3.1a) U-W =¢,
(3.1b) ~ U — (ia)(8,9)U — 72 |[W — (ia) (8, )W] = 4.
This set of two equations and four unknowns can be closed by noting that the pairs

{U,U} and {W, W} are connected, e.g., by Dirichlet-Neumann Operators (DNOs),
which [59] showed are well-defined under the hypotheses presently listed.

DEFINITION 3.1. Given an integer s > 0, if g € C*T2 then the unique solution of

(3.2a) Au + 2iad,u + (v)?u = 0, z > g(x),
(3.2b) u="U, z = g(z),
(3.2¢) d.u(z,a) — T [u(x,a)] =0, z=a,
(3.2d) u(z +d, z) = u(x, 2),

This manuscript is for review purposes only.
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defines the upper layer DNO

(3.3) G:U—U.
DEFINITION 3.2. Given an integer s > 0, if g € C*T2 then the unique solution of
(3.4a) Aw + 2iad,w + (v*)?w = 0, z < g(x),
(3.4b) w=W, 2 = g(a),
(3.4¢) d,w(x,—b) — T [w(x,—b)] =0, z = —b,
(3.4d) w(z +d,z) = w(x, 2).

defines the lower layer DNO

(3.5) J:W — W.

The interfacial reformulation of our governing equations (3.1) now becomes
(3.6) AV =R,
where

B7) A= <G+ (aig)@’a) 2~ T;(gzg)aa)) V= <v(§> - R= <—C¢> '

4. Joint Analyticity of Solutions. There are many possible ways to analyze
(3.6) rigorously. Following our recent work [37], we select a jointly perturbative ap-
proach based on two assumptions:

1. Boundary Perturbation: g(x) =¢ef(z), ¢ € R,
2. Frequency Perturbation: w = (14 d)w = w + dw, 6 € R.

Remark 4.1. At inception one typically assumes that these perturbation parame-
ters, € and ¢, are quite small and we can certainly begin there. However, we will show
that these only need be sufficiently small (e.g., characterized by the C? norm of f for
the domain of analyticity in ) but not necessarily tiny. Furthermore, following the
methods devised in [58, 61] for the related problem of analytic continuation of DNOs
associated to Laplace’s equation, we fully expect that the neighborhood of analyticity
in € contains the entire real axis. Beyond this we note that the domain of analyticity
in ¢ is bounded by the Rayleigh singularities as discussed in [38]. However, it is possi-
ble that an extension of the approach in [58, 61] may deliver a rigorous justification of
our numerical observations in [37] that the region of analyticity in 0 extends right up
to the limit imposed by the Rayleigh singularities. Verifying each of these predictions
is a goal of current research by the authors.

The frequency perturbation has the following important consequences

El=w/c?=(14w/c? =: (14 §)k? = kT + 6k7, q € {u,w},
a=k"sin(f) = (14 0)k"sin(f) =: (14 d)a = a + da,
1 = kTcos(f) = (1 4+ 6)k? cos(f) =: (14 6)7? =7 + 077, q € {u,w}.

This, in turn, delivers

ap=a+p=a+da+p=aq,

This manuscript is for review purposes only.
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8 MATTHEW KEHOE AND DAVID P. NICHOLLS

We now pursue this perturbative approach to establish the existence, uniqueness,
and analyticity of solutions to (3.6). To accomplish this we will presently show the
joint analytic dependence of A = A(g,0) and R = R(g,d) upon € and §, and then
appeal to the regular perturbation theory for linear systems of equations outlined in
[54] to discover the analyticity of the unique solution V. = V(g,d). More precisely,
we view (3.6) as

A(g,0)V(g,d) = R(e,9),

establish the analyticity of A and R so that

oo 0

(4.1) {AR}(z,0) = > > {Apm Rum}e"d™,

n=0m=0
and seek a solution of the form
(4.2) V(e 6)=> Y Viume"s™,
n=0m=0

which we will show converges in a function space. To pursue this we insert (4.2) and
(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve

n—1 m—1
AO,OVn,m = Rn,m - Z Anff,OVZ,m - Z AO,mfrVn,r
n—1 m—elzo =
(43) - Z Z An—é,m—rvf,r-
=0 r=0

A brief inspection of the formulas for A and R, (3.7), reveals that

I -1
(44&) A()’O = (Go,o 7_2(]0,0) s

0 0
Anym - <Gn,m T2Jn,m)
0 0

(4.4b) + 61 {1+ G} (0uf) (i) (1 -

(4'4C) Rmm = (CQZ;Tm> 5

where 0,, ,, is the Kronecker delta function. Formulas for the terms {C,, m, ¥n,m} can
be found in [37] or by using the recursions described in Section 4.3. The terms Gy,
and J,, », are the (n, m)-th corrections of the DNOs G and J, respectively, in a Taylor
series expansion of each jointly in € and 4. This is explained in Section 6, together
with precise estimates of the coeflicients, G,, ,, and J, ,,, in the appropriate Sobolev
spaces. Finally, in Section 4.4 we utilize expressions for the flat-interface DNOs, Gy o
and Jy o, to investigate the mapping properties of the linearized operator, Ag o, and
its inverse.

2), n#0orm#D0,

4.1. A General Analyticity Theory. Given these estimates, existence, unique-Jj
ness, and analyticity of solutions can be deduced in a rather straightforward fashion

This manuscript is for review purposes only.
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295 using the following result from one of the authors’ previous papers [54] (Theorem 3.2).
296 This result uses multi-index notation [25], in particular

€1 niy
297 €= : , n:i= ,
EM Nar
298 and the convention
o0 oo oo
299 ZAﬁ g = Z Z ApyoommErt eyt
n=0 n1=0 ny=0
300
301 THEOREM 4.2. Given two Banach spaces, X and Y, suppose that: ~
302 1. Ry €Y foralln > 0, and there exist M -multi—indexed constants Cr > 0,
303 Br >0,
Cr By
304 Cr = : , Bh= :
Crm B
305 such that
306 IR:|ly < CrBE,
307 2. I}ﬁ ¢ — Y for all n > 0, and there exist M —multi—indexed constants
308 Ca >0, By >0 such that
300 1Az %y < CaBj,
310 3. Ayt :Y — X, and there exists a constant C. > 0 such that
o -1
311 1A Iy 5 < Ce.

312 Then the equation (3.6) has a unique solution,
313 (4.5) V(E) =) Vi,
=0
314 and there exist M —multi-indexed constants Cy > 0 and By > 0 such that
315 Vil < CvBY,
316 for alln >0 and any
317 C'V ZQCEC'R, BV ZmaX{BR,QBA,4CeCABA},

318 enforced componentwise. This implies that, for any M -multi-indezed constant 0 <
319 p <1, (4.5), converges for all € such that BE < p, i.e., € < p/B.

320 Remark 4.3. In the current context we will use this result in the case M = 2 and

= (5) =) - (2):

This manuscript is for review purposes only.
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10 MATTHEW KEHOE AND DAVID P. NICHOLLS

4.2. Analyticity of Solutions to the Two—Layer Problem. To state our
theorem precisely we briefly define and recall classical properties of the L?-based
Sobolev spaces, H®, of laterally periodic functions [40]. We know that any d—periodic
L? function can be expressed in a Fourier series as

- A~ _ipx ~ 1 ¢ —1ipx
p@) = 3 e =y [ e,
0

p=—00

[40]. We define the symbol (5)* := 1+ |p|? so that laterally periodic norms for surface
and volumetric functions are defined by

o0

2 28 |~ |2
lplFre == B il

p=—00
and
2 > > \2(s—4 “ ~ 2 > > ~\2(s—4 ~ 112
lulfe =" > 3)*Y / lip ()] dz=>" S B aplla g »
{=0 p=—0o0 {=0 p=—0o0

respectively. With these we define the laterally d—periodic Sobolev spaces H® as the
L? functions for which ||-|| ;. is finite. For our present use we define the vector—valued
spaces for s > 0

X = {V = (%) ‘ UW € H8+3/2([0,d])} :

and

Y* = {R = (—C«b) ‘ ¢ e HT3/2([0,d),v e H5+1/2([07d])} .

These have the norms

2

IS = | () .
I

In addition to these function spaces we also require the following three results from
the classical theory of Sobolev spaces [2, 44] and elliptic partial differential equations
[41, 26, 27, 25]. (See also [56, 32] in the context of HOPS methods.)

2 2
= Ul gessr2 + [Wllgorsra

2 2
= 1<l sare + 10N srase -
YS

IR

LEMMA 4.4. Given an integer s > 0 and any n > 0, there exists a constant
M = M(s) such that if f € C*([0,d]) and u € H*([0,d] x [0, a]) then

(4.6) Ifullgo < MIf

Cs UHHSv

and if f € C*H/241([0,d]) and @ € H*F'/2([0,d]) then

(4.7) | 73| <Mm|f

all grosa/2 -

Hs+1/2 C's+1/2+n

This manuscript is for review purposes only.
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THEOREM 4.5. Given an integer s > 0, if F € H*([0,d])x[0,a]), U € H**t3/2([0,d]) J}

P € H*TY/2([0,d)), then the unique solution of

Au(z, 2) + 2iad,u(z, 2) + (v*)u(z, 2) = F(z, 2), 0<z<a,
u(x,0) = U(x,0), z2=0,
Ou(x,a) — I [u(z,a)] = P(x), z=a,
u(z +d, 2) = u(z, 2),

satisfies

(4.8) ull grsve < Ce {1F s + U grorare + [Pl gesasa}

for some constant C., > 0

LEMMA 4.6. Given an integer s > 0, if F' € H*([0,d]) x [0,a]), then (a — 2)F €
H*(]0,d]) x [0,a]) and there exists a positive constant Z, = Z,(s) such that

(@ —2)Fllge < ZallFl g -
We now state our main result.

THEOREM 4.7. Given an integer s > 0, if f € C**2([0,d]) then the equation (3.6)
has a unique solution, (4.2). Furthermore, there exist constants B,C, D > 0 such that

[Vl x. <CB"D™,
for alln,m > 0. This implies that for any 0 < p,o < 1, (4.2) converges for all € such
that Be < p, i.e., € < p/B and all 6 such that D6 < o, i.e., 6 < o/D.

Proof. As mentioned above, our strategy is to invoke Theorem 4.2 and thus we
must verify its hypotheses. To begin, we consider the spaces

X=X Y=Y°

In Section 4.3 we will show that the vector R,, ,,, consisting of (, , and ¥y, o, is
bounded in Y* for any s > 0 provided that f € C**2([0,d]). (This implies that the
R, ., satisfies the estimates of Item 1 in Theorem 4.2.)

Then in Section 6 we show that the operators Gy, ., and J, ,, in the Taylor series
expansions of the DNOs satisfy appropriate bounds provided that f € C*72([0,d]).
With this, it is clear that the A,, ,, satisfy the estimates of Item 2 in Theorem 4.2.

Finally, in Section 4.4 we show that the estimates and mapping properties of Ag (1)
for Item 3 in Theorem 4.2 hold. ]

4.3. Analyticity of the Surface Data. To establish the analyticity of the
Dirichlet and Neumann data obeying suitable estimates, we begin by defining

E(w;e,0) = e IHILTET)

and note that we can write (2.1e) and (2.1f) as
C(ZL’) = C(x,g,d) = 78(1’;575)7
() = p(ase,8) = {i(1+8)y" +i(1+)a(ed. f)} E(x:e, ).

We will now demonstrate that the function £ is jointly analytic in € and d, and subject
to appropriate estimates, which clearly demonstrates the joint analytic dependence of
the data, ((z;¢,9) and ¥(x;e,0).
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12 MATTHEW KEHOE AND DAVID P. NICHOLLS

390 LEMMA 4.8. Given any integer s > 0, if f € C72(|0,d]) then the function
301 E(x;e,0) is jointly analytic in € and 6. Therefore
o0 oo
302 (4.9) E(xie,8) =Y Y Enmlx)e"d™,
n=0m=0
393 and, for constants Cg, Bg, Dg > 0,
304 (4.10) |En,ml gess/» < CeBg Dg',
395 for all n,m > 0.
396 Proof. We begin by observing the classical fact that the composition of jointly

397 (real) analytic functions is also jointly (real) analytic [39] so that (4.9) holds, and
398 move to expressions and estimates for the &, ,,. By evaluating at € = 0 we find that

399 E(x;0,0) =1,
400 so that

1, m=0
401 Eomx)=<" ’
om() {0, m > 0.

402 For € > 0 we use the straightforward computation

403 0:£ ={—i(1+0)V"f} €,

404 and the expansion (4.9) to learn that, for m = 0,

—iy"f
105 (4.11) Ent1,0 = ( —— ) En,0s

406 and, for m > 0,

, —in"f
407 (412) 5n+1,m = " _Tr 1 {(S}hm + gn,m—l} .
408 We work by induction in n and begin by establishing (4.10) at n = 0 for all m > 0.

409 This is immediate as

410 €00l gevsrz =1, |€0.mll gretss> = 0.

411 We now assume (4.10) for all n < 7 and all m > 0, and seek this estimate in the case
412 n =n and all m > 0. For this we conduct another induction on m, and for m = 0 we
13 use (4.11) (together with Lemma 4.4 with § = s 4 1) to discover

llu‘ | flostsrain
414 €50l fovss <M - 1€7—1,0ll frsta/2

~ |lu‘ |f Cs+2 n—1 n
415 <M [ =12 ) ¢ BEY < CeBE,
n
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117 provided that

418 BgZMh“Hf

n

’lu| f|c-§+2) '

C's+2 2 M (

119 Finally, we assume the estimate (4.10) for n = 2 and m < m, and use (4.12) to learn
120 that

o |f|cs+3/2+
||5ﬁ,mHHs+3/2 <M <|‘n?7 {Hgﬁ—l,m”HerS/z + Hgﬁ—l,m—1||Hs+3/2}

121
|lu“fcs+2 A—1pym A1 pym—1
422 <M — Ce {Bf7'D¢' + B¢~ 'Dg ™1}
433 < CeBEDE,

425 provided that

426 M <W{CC5+2> < &’ M <|’Yu} |{C Cs+2> < Bgl)g7

427  which can be accomplished, e.g., with

128 Be > 2M|7"] [ floess > 2M (W) , De>1,
429 and we are done. a
430 With Lemma 4.8 it is straightforward to prove the following analyticity result for
431  the Dirichlet and Neumann data.
132 LEMMA 4.9. Given any integer s > 0, if f € CT2([0,d]) then the functions
433 ((x;€,0) and Y(x;e,d) are jointly analytic in € and 6. Therefore

oo oo
134 (4.13) {Cv}@;6,0) =D ) {Coms Ynm Hw)e" 0™

n=0m=0

135 and, for constants C¢, B¢, D¢ > 0, and Cy, By, Dy > 0,
136 (4.14) [Gnomll grotsre < CCBELDznv [nmll gotase < CwBZD’lT/jn7

437 for all m,m > 0.

138 4.4. Invertibility of the Flat—Interface Operator. The final hypothesis to
439  be verified in order to invoke Theorem 4.2 is the existence and mapping properties
440 of the linearized (flat—interface) operator Ag . In our previous work [37] we showed
441 that

_ I -1

112 (4.15) Agpo = (Go,o T2J0,0> )
443 where
114 (4.16) Goo = —ivp, Joo = —iVp,
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14 MATTHEW KEHOE AND DAVID P. NICHOLLS

145  are order—one Fourier multipliers defined by

146 (4.17) GoolU] = D (i) Upe™,  JooW]= Y (—iny)Wpe'?”.
p=—00 p=—00
447 LEMMA 4.10. The linear operator Ay maps X° to Y* boundedly, is invertible,
448 and its inverse maps Y?® to X® boundedly.
449 Proof. We begin by defining the operator
450 A= Gog+712Jo0 = (—iv%) + T2 (—iv8),

451 which has Fourier symbol
452 Ay = (=ing) + T2 (=),
153 and noting that there exist positive constants Cg, Cy, and Ca such that

454 |—iny| < Ca (), |—ivy| < Cs(p),

Ap‘ <Ca (p)-

55 Importantly, provided that n" # n", it is not difficult to establish the crucial fact
156 that A, # 0. Finally, one can also find a positive constant Ca-1 such that

1 o
<Caa ()"

P

458  With this it is a simple matter to realize that A~! exists and that
459 A - Hs+3/2 N Hs+1/2 Afl . Hs+1/2 s Hs+3/2
5 : , : .

460  Next, we write generic elements of X® and Y* as

10 — U S _ C S
461 V_(W)GX’ R_(¢>EY'

462 Using the definitions of the norms of X* and Y*, and the facts

463 2ab < a® +0%, ||A+ B|* < (JA| + ||B])%

464  we find that

165 1A0oVIZ = U = W(2pssss + | GoolU + 72Jo0W|2yuss e

466 <2\ UFevos2 + 2 W | 3erss + CENU | 3paras

467 +72CaC(|U [3gessre + W ([ Frarasa) + CFTH W [5ars 2
168 < max{2, €%, 7°CaC, 7°C3} (0 essra + W oss2)
469 = max{2, C%, 7°CeCy, 71 C2} [V %

171 so that Ag o does indeed map X*° to Y* boundedly. We define the operator

2
- a1 (TP 1
472 B = A (—GQO I) s
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and note that
I 0
BAgo=ApoB = (0 I) )

so that the inverse of A exists and Ag ¢ = B. Furthermore, as above,

|AsoR . = 187 (o0 = ) [frerse + A7 (=GooC =) [0/
< CR17 CF ¢ 5pess72 + CR-1 72 CalllCFrovsre + 19 Frosas2)
+ CR1CE S rev0/2 + CRA CallICgovsa + e s2)
+2C3 1 19l Fross/2
< CRov max{(2, G, O, 7C, 7 €5} (ICHzpesare + Il 012
= C%_ 1 max{2,Cg, C%,72C, 7' C2}|R)5..,
and Aa(l] maps Y?® to X* boundedly. 0
5. Analyticity of the Scattered Fields. At this point we establish the ana-
lyticity of the fields which define the DNOs, G and J, though, for brevity, we restrict

our attention to the one in the upper layer, G, and note that the considerations for
the lower layer DNO, J, are largely the same.

5.1. Change of Variables and Formal Expansions. For our rigorous demon-
stration we appeal to the Method of Transformed Field Expansions (TFE) [56, 59]
which begins with a domain—flattening change of variables (the o—coordinates of
oceanography [63] and the C—method of the dynamical theory of gratings [15, 14]) to
the governing equations, (3.2),

(5.1) =z, Z=a (Z_g(f”)> .

a—g(z)

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field
_ /
w2, 2) i =u (x’, <az(x)) 2’ —|—g(x')) ,

as (upon dropping primes)

(5.2a) Au + 2iad,u + () *u = F(z, 2), 0<z<a,
(5.2b) u(z,0) = U(z), z=0,
(5.2¢) ou(z,a) — T u(zx,a)] = P(x), z = a,
(5.2d) u(x +d, z) = u(z, 2),
, and the DNO itself,
(3.3), as
(5.3) G(9)[U] = —0,u(z,0) + H(z).

The forms for {F, P, H} have been derived and reported in [59] and, for brevity, we
do not repeat them here.
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16 MATTHEW KEHOE AND DAVID P. NICHOLLS

507 Following our HOPS/AWE philosophy we assume the joint boundary /frequency
508 perturbation

509 g(2) = ef(2), w=w+ow=(1+0d)w,

510 and study the effect of this on (5.2) and (5.3). These become

511 (5.4a) Au + 2iad,u + (") *u = F(x, z), 0<z<a,
512 (5.4b) u(z,0) = U(z), z=0,

513 (5.4¢) d.u(z,a) — T¢u(x,a)] = P(z), z = a,

514 (5.4d) u(z +d, z) = u(z, 2),

516 and

517 (5.5) G(ef)[U] = —d.u(z,0) + H(z),

518 where F, P, H = O () + O (6). More specifically,

519 F = —ediv [A;(f)Vu] — 2div [As(f)Vu] — e By (f)Vu — 2By (f)Vu

520 — 2iad0,u — 6°(v"*)*u — 26(y"*)?u

521 — 2ieS1(f)adyu — 2ieS1 (f)addu — eS1(f)6* (1) u

522 —2e51(f)6(v*)*u — S (f)(v*)u

523 —2ie 8o (f)ad,u — 2ieSa(f)addyu — 252 ( )% (v*)*u

2 (5.6) —22255(1)3(0")u — 285(F) (1)

526 and

527 (5.7) P= f%(af(.r))T“ [u(z,a)] + (T" = T3 [u(z,a)],

28 and

520 (5.8) H = &(8,.f)0pu(x,0) + 5£G(6f)[U] —&? f(%f) Opu(z,0) — e%(9,f)*0.u(x, 0).

530 It is not difficult to see that the forms for the A;, B;, and S; are

531 (5.9a) A = <(1) (1)> ;
. _ (AT AT\ 1 —2f —(a—2)(0f)
wr (B90) A= (A% A%) =2 (—(a —2)(0.f) 0 ) ’
_ (AT AR 1 f? (a—2)f(0:f)
w39 A= (A A) ~ = (<a —D0uf) (a— z)?(asz) ’
535 and
536 (5.10)  Bi(f) = (gg) _ 2 <3Bf) . Bu(f) = (giﬁ) = al ((a_f(za)?gjf)Q) ,
537 and
B 2 1.,
558 (5.11) So=1, Si(f) = —/ S2(f) = =
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539 At this point we posit the expansions

540 u(z, z;€,0) Z Z Un,m(x, 2)e™6™,  G(e,0) = i i Grme™d™

n=0 m=0 n=0m=0

541 and, upon insertion into (5.4) and (5.5), we find

542 (5.12a) AUy, + 20005 Un m + (1“)2un,m =F, m(z,2), 0<z<a,
543 (5.12Db) Un,m (2,0) = Up m(2), z=0,

544 (5.12¢) Doty (2, 0) — Tty (2, 0)] = Py (), z=a,

34p  (5.12d) Un,m (T +d, 2) = Up m(z, 2),

547 and

Sis (5.13) G (f) = =0zt (,0) + Hy, ().

549 The formulas for ﬁ'nm“ Pn’m and ﬁnm can be readily derived from (5.6), (5.7), and
550 (5.8) giving

551 Frm = —div[A1(F)Vtn_1.m] — div [Ao(f) Viin_2.m]

552 - Bl (f)vun—l,m - BZ(f)vun—Zm

553 — 2600, Unm—1 — (1“)2un’m,2 - 2(1“)2un’m,1

554 - 2151 (f)aa Un—1,m — 27:S1(f)gazunfl,mfl - Sl (f)(lu)2un71,m72

555 - 251( )( ) Up—1,m—1 — Sl(f)(lu)Qunfl,m

556 — QiSQ( )Oéa Up—2,m Zng(f)gﬁwun_Zm_l — Sg(f)(lu)2un_27m_2

WG 25" gt — Sa(£) () 2

559 and
m m—1

560 (5.15) Pym=— Z T, [un—1,(x,a)] + Z Ty . (unr(x,a)],
r=0 r=0

561 and

~ 81
562 Hn,m - (amf)awunfl,m(xy 0) + anfl,m<f)[U] - f( a f) 8a:un72,m(xa 0)
364 (5.16) — (02f)?0:tn—2,m(,0).

5.2. Geometric Analyticity of the Upper Field. To prove our joint analyt-
icity result we begin by stating the single, geometric, analyticity result for the field
u under boundary perturbation, ¢, alone. This was essentially established in [56] but
we present it here for completeness.

[SLES IS B
N O Ot

(o))
oo

569 THEOREM 5.1. Given any integer s > 0, if f € C**2([0,d]) and U,, o € H**3/2((0,d))}]
570 such that

571 (5.17) Unoll gess2 < KuByp,

572 for constants Ky, By > 0, then u, o € H*72([0,d] x [0,a]) and

573 (5.18) Um0l gose < KB™,

574 for constants K, B > 0.
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575 To establish this we work by induction and the key estimate is the following Lemma.
576 LEMMA 5.2. Given an integer s > 0, if f € C*T2([0,d]) and

577 (5.19) tnoll gsre < KB™, Vn <n,

578 for constants I, B > (), then there exists a constant C > 0 such that

Fro

3

579 (5.20)  max { ‘

P e, n—1 2 -2
. |Bao] s b < KC{Iflcuss B 4 11 1e B2

580 Proof. [Lemma 5.2] We begin with Fj ¢ and note that from (5.14), (5.9), (5.10),
581 and (5.11) we have

582 150l Fre < AT Ontim—1 0l Frosr + AT Outiz1 0/ 7o 1 + AT Ontim—1 0] o
583 + ||Aizazuﬁfl,0”%{s+1 + ”Agwazu572,0“?-15+1 + IIA‘SZBzuﬁfz,oH?{m
584 + || A5 Optm—2,0l|77041 + 11457 Ozum—2.0l|Fo11 + | BY Oatizm—1,0]| 7+
585 + 1B 0z um-10llFrs + | B3 Ostum—2,0l| %+ + | B50:um—2,0 7

586 + 1281800, um—1,0|[ 5« + [|S1(v*) 2 um—1,0]| %= + [|252i005um—2,0[|F-
38% +1S2(v*)?un 2.0l -

589  We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with
590 AT Optum 1,0l o1 = || = (2/a) fOrum—1.0l[ o1

591 < (2/a)M|fles+rllum—1,0ll re+2

593 < (2/a)M|flesi KB,

594 and in a similar fashion

595 AT 0 um—10ll e+ = || = ((a — 2)/a) (02 f)Oztm—1,0l =1
96 < (Za/a) M0y foatr ||uﬁ71,0||H5+2
it < (Za/a)M|f|cs+2 KB 1.

599  Also,

600 14700l s = || = ((a = 2)/a)(Du f)Potimr,oll e
601 < (Za/a) M0y flost ||uﬁ71,0||H5+2
663 < (Zofa)M|f|cs+2 KB™ ™,

604 and we recall that A7 = 0. Moving to the second order

005 A5 Opum—a,0l| ot = [|(1/a®) f2Otm—2.0l| go+r

606 < (1/a®) M| f|Zer || um—2,0| o+
603 < (1/a®) MP|f|3oss KB™ 2.

609  Also,

610 145 0.2l 1 = (@ — 2)/a%) f(De)Dstim—2.0] s

611 < (Za)a®)MP|floo4110: floost [un—2z,0]l mo+e
813 < (Za)a®) MP|f|Eer2 KB 2,
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1457 Ostizr—2,0ll e+ = [|((a = 2)/a®) £ (92 f)Dzuz—2,0
< (Zo/a®)M?|f
< (Za/a®)M?|f

e

co+1]0z flost1 |lum—2,0 o+
2 KB,

|A52 0. um 2.0l ireer = [[((a = 2)%/a®) (00 f)?Oztim 2,0/ o
<(Z2/a®) M0y f|2oir ||um—2,0ll prov2
<(Z2)a®)MP|f|2er2 KB™ 2

%)
%)

Next for the B; terms

| BY Oxtum—1,0ll s = [|(1/a)(0x f)Ouxum—1,0| 1
S (1/(J)M‘01f|(“ ||uﬁfl.0||H‘*Jrl
< (1/a)M|f|css1 KB,

and B = 0. Moving to the second order

and

| BS Optuzm—2.0llzs = ||(f1/(12)f(0,;]“)85,/11@,2_0H,p
< (l/az)/\/lz\f\c|07f\( |um—2,0]| mra+
< (1/a®)M?|f|Z.1 KB™ 2,
1B50-um—2,0] e = [[(=1/a)(a = 2)(0: f)*Ozum—2,0| 1=
< (Za)a?) M0, f12 im0l 1o
< (Za)a*) MP|f|Zesi KB 2.

To address the Sy, S1,.52 terms we have

and

and

125100 um—10l|Hs = ||(—4/a)iafOun—1,0| H-
< (4/a)aM|flesl|um—1,0ll go+r
< (4/a)aM|f|cs KB™" 1,

151 (v*) 2 um—1,0ll e = [1(—2/a)(v*)? fum—1,0ll m=
< (2/a)(v“)* M| flcslum—1.0| e
< (2/a)(y")*M|f|c-KB" ™,

12S2iqd,um—o.0| s = ||(2/a*)iaf?Opun—2.0lme
< (2/a®)aM?| fI2s um—2,0ll e+
< (2/a®)aM?|f|& KB" 2,
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and

[1S2(v*) 2 um—2.0ll s = [1(1/a*)(7*)? Frum—2.0ll
1/a2)(lu)2M2|f\203 HuﬁfZ,O
1/a®)(y" ) M?|fle. KB 2.

IA

|ms

(
<

We satisfy the estimate for || Fy o]/ = provided that we choose

_ 3427, + da + 2(4)? 2437, + 7242 u)2
C>max{<+ +a+(7)>/\/t,<+ +”+a+(7)>/\42}.

a a?

The estimate for PEO follows from an elementary estimate on the order—one Fourier
multiplier 7

Paollgsriz = | = (1/a) fT3 [um—1,0] | gros1s2
< (M a)M|flgsr1/24n | T4 [uzm—1,0] | o+1/2
< (L/a)M| f|gs+1/240Cru ||um—1,0 gs+3/2
< (1/a)M|f|cst1/20nCru KB,

and provided that
6 > (]./(I)./\/l('jH s

we are done. ]
With this information, we can now prove Theorem 5.1.

Proof. [Theorem 5.1] We proceed by induction in n and at order n = 0 and m = 0
Theorem 4.5 guarantees a unique solution such that

ool =2 < Cel[Uojol| gro+sse-

So we choose K > C.||Up ol gs+3/2. We now assume the estimate (5.18) for all n <7
and study uz,0. From Theorem 4.5 we have a unique solution satisfying

lumollze+2 < Ce{llErollme + |1Unollmessr + | Proll gasrse}s
and appealing to the hypothesis (5.17) and Lemma 5.2 we find
||Uﬁ,0||HS+2 < Ce{[([fBﬁ +2KC [|f|Cs+2.Bﬁ71 + |f|%s+gBﬁ72]}.
We are done provided we choose K > 3C,. Ky and
B > max {B(;, 6036|f|cs+2, 6056|f|cs+2 } 0

Analogous results hold in the lower field which we record here for completeness.

THEOREM 5.3. Given any integer s > 0, if f € C*+2([0,d]) and W, o € H**3/2([0,d))}
such that

IWaoll gretsre < Kw By,
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for constants Ky, By > 0, then wy, o € H**2([0,d] x [-b,0]) and

w0l rs+2 < KB",
for constants K, B > 0.

5.3. Joint Analyticity of the Upper Field. We can now proceed to prove
our main result concerning joint analyticity of the transformed field.

THEOREM 5.4. Given any integer s > 0, if f € C5+2([0,d]) and U,, ,,, € H*+3/2([0,d))]
such that

(5.21) WUnml -2/ < K By DY,
for constants Ky, By, Dy > 0, then u,, ., € H"2([0,d] x [0,a]) and
(5.22) [tn,ml| sz < KB"D™,

for constants K, B, D > 0.

As before, we establish this result by induction.
LEMMA 5.5. Given an integer s > 0, if f € C*T2([0,d]) and

(5.23) ltn,mlrs+2 < KB"D™, ¥n>0,m <,

for constants K, B, D > 0 then there exists a constant C > 0 such that
max{ || F | s || Pom|| gresisz } < KC{B”D”"I + B"D" 2 + | fles+2B"ID™ +
‘f‘(psz”ileil + ‘f‘(j}:—QBnilei; + ‘j'|?’/¥5-jB”72Dm +

‘f‘%ﬁ#gB”iszil 4 fgw‘zB”Zsz}.

Proof. [Lemma 5.5] We begin with £, 7 and note that from (5.14), (5.9), (5.10),
and (5.11) we have

1 FnmllEre < AT Outin—1mll3err + AT 0cttn -1 mll3ress + AT Opttn—1 | Froa
+ ||Aizazun71,m”%15+l + ||A§xazunf2,ﬁ”%15+l + ||A§zazunf2,m”?{s+1
+ ||A§wazun—2,ﬁ”?qs+l + ”A;Zazun—lﬁn?qs%-l + HBfaﬂ:“n—l,ﬁ”%S
+ | Bf 0zt —1,mll7rs + || B3 Ontin—2,m | B« +
+ 12000 unm-1 e + 100" w2l Fe + 1200") 71 | s
+ 1281100, un—1 5w | Fs + 12818000 un—1m-111 7= + [191(¥*)*tn—1,m—2F-
+ 112810 un—1m—1 7+ + 151 (") wn—1,mll Fre + 112521005102,
+ 11282100, un—2m-1ll7- + 1S2(1*) *un—2,m—2l-

+ 11282 (1) *un—2m—1ll7rs + 1182(1") *tn—2,m 77+ -

|B§82un—2,ﬁ”%ls

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with
AT Optin 1l v = || = (2/0) fOutin -1 | ot
< 2/a)M|flcstrllun—1m re+e
< (2/a)M|f|cen KB D™,
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and in a similar fashion
AT 017w o+ = || — ((a@ = 2)/a)(0u f)Oett—1,7m [ 1o+

< (Za/a)M|0y flossr |[tn—1 7 pr+2
< (Za/a)M|f|Cs+zKB"71Dm.

Also,

AT Optin—1,m | s+ = || — (@ — 2)/a) (0 f)Ortin—1 7 rs+1
< (Za/a)M|Ox flost1 [|Un—1m mo+e
< (Zy)a)M|f|csr2 KB" D™,

and we recall that A7* = 0. Moving to the second order

145 O0tn 2| o1 = [[(1/a®) £ Opttn—2,ml| o
< (1/a®)M?|f
< (1/a®)M?|f

%s+1 [[thn—2. 7| rr-+2
2. KB " 2D™.

Also,
||A§zazunf2,ﬁ”HS+1 = |l((a - Z)/a2)f(8zf)amunf2,ﬁ”HS+1
< (Za)a®) MP| floerr |00 floss |[tin—o | prove
< (Za/a2)M2|f|%s+2KB"_2Dm,
and
A5 Optin 2l re+r = ||((a = 2)/a®) f (D2 f) Oz tin 2 | o1
< (Za)a?) M| floerr|0n flosst |[tin—2m | prese
< (ZaJa)MP|f 2 KB"2D,
and

1A% 0. un—2,mll mrovs = [|((@ = 2)*/a®) (00 f)*Dsttn—s,m | mron
< (23 )a) M|, f|Ees lun—2ml| o+
<(Z2)a®)M?|f|%er2 KB 2D™.

Next for the B; terms

Hle({).’I‘,“nfl.W”U”‘

- H(1/(1')(8;1:,f){):1‘unfl.mHU“‘
S (l/a)M‘é)lﬂ(J* H“rr,f'l .WHH*JH
< (1/a)M|f|cs+1 KB" D™,

and Bf = 0. Moving to the second order

“Bé;a,’l:?lTI,*QAmH][S = H(_1/(12)'/.(((){I;v[)(();,ﬂl”,zmH”,ﬁ
< (1/a*)M?|flos0s flos lun—2.mll o+
< (1/a®) M| f2s K B*2D,
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1B 0utn—zmll e = (=1/a%)(@ = 2)(D0 f) Ozt
< (Z(:/(IQ)J\/IZ ‘(),f‘é |t || Erosn
< (ZaJa®) M| f[urs KB 72D

To address the Sp, S1, S5 terms we have

and

and

and

and

and

and

and

Hzigaﬂvun’mfIHHs < 2Q||un’mfl||Hs+1
< 2aKB"D™

(v 2 upm—ollms < (v*)? || wn,m—2l e
S (lu)QKBan72a

1200") -1l e < 203" llun -1 [l 1+
< 2(1”)2KBan_1,

||251igamun—l,m”Hs - H(*4/04)ngacztun—l,m||Hé
< (4/a)aM| flc-
< (4/a)aM|f|c- KB""'D™,

Un—1 || o+

1251100 un—1 m-1llmr: = ||(—4/a)iafOrtn_1m—1| ms
< (4/a)aM|f
< (4/a)aM|f

(e Un—l,m—1||Hs+1
CSKBn—le—l’

[(=2/a)(v*)? fin—1m—2| s
Ja)(v*)*M|f|cs
/a)(y"*)*M|flc- KB"'D™2,

191 ()t —1 -2l 1=

< Un—1m—2| e
<

2
2

1291 (V) un—1m-1llms = [(=4/a)(v*)? fun—1,m—-1 s
< (4/a)( 2/\/”f Cs Un—l,ﬁ—l”Hs
< (4/a)(y"*)*M|f|cs KB D™,

1Y)
1Y)

11 (V) un—1,ml e = [|(=2/a)(v*)? fun—1.7 || m=
< (2/a)(v"*)2M|flcsl|wn—1,m 1
< (2/a)(y*)*M|f|c- KB" ' D™,
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and
1282100t —2 7 || e = [|(2/a®)iaf?Optin—2 7] 1o
< (2/a®)aM?|fIEs |[tn -2l o+
< (2/a®)aM?|f|&. KB ?D™,

and

12S2i0ptn 271 e = ||(2/a*)iaf?Optin—2m—1|
< (2/a®)aM?|f[?

Cs Un—z,m—1||Hs+1

< (2/a*)aM?|flE KB D™,

and

1S2(v*)? tn—2m—2ll e = (1/a*) (") f*tn -2 -2 s
< (1/a®) ()’ M| f|&s llttn—2.77—2 | o
< (1/a*)(y*)*M?|f|& KB 2D™ 2,

and

1282 (v*) *un—2m-1ll s = 1(2/a*) (") fun—2m-1l e
< (2/a®) ()P M| f e 21| e
< (2/a®) (") MP|fIE. KB"2D™ Y,

and

1S2(v*) 2 un—2mll e = 1(1/a*)(2*)? fPun—2.mll -
< (1/a*) (") M| f[&s lun—2.mll 12+
< (1/a*)(y")*M?|f [ KB"2D™.

We satisfy the estimate for || Fy, 7|+ provided that we choose

_ 3+27,+8 8(y%)?
C>max{<2g+3wz),< +22, +8a +8(1") )M,

a

<2+3Za + 72 +4g+4(1u)2> M2}'

a2

The estimate for Pn,m follows from the mapping properties of T,

D
H[n.ﬁ
Hs+

' m m—1

1,
*gf(il")zTﬁy r [Un—1,r] +ZT7LTIL r [Un,r]

r=0

Hs+1/2
m m—1

< (Ya)M|flgerrrzen Y || Tas 1)l jrosase + D [T
r=0 r=0

m m—1

S (l/(I,)M‘f|(}>+1/‘2‘”()7‘“ Z H’llrn—]mH”w:;/z + (/VT“ Z HUTLJ‘H[[-*+3/2

r=0 r=0

m—+1 _ 1
S (l/(l,)M‘f|(}>+l/‘ZAUCT“ ]{anl (Dl) + CVTu,I(B” <
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and provided that D > 2 and
C > max {(I/Q)MOTH D, Cru l)}

we are done. 0
With this information, we can now prove Theorem 5.4.

Proof. [Theorem 5.4] We proceed by induction in m and at order m = 0 Theo-
rem 5.1 guarantees a unique solution such that

lunollgs+z < KB™, ¥n >0.

We now assume the estimate (5.22) for all n, m < 7 and study u, m. From Theorem
4.5 we have a unique solution satisfying

lun mll mre+2 < Ce{ll Famllirs + 1Unmllggsvsrs + | Pall rossra}

and appealing to the hypothesis (5.21) and Lemma 5.5 we find

[t 77| o2 < Q{KU B D + 21(0(13” D" 4 B"D™? + | flcs2 B"TTD™ 4
|[fles+2B" 7' D™ 1 4 | floes2 BT D™ 2 4 | flEu 2 BMTPD™ +

|fler2B" 2D + |f%ﬁ*+2anDm2> }

We are done provided we choose K > 9C,. Ky and

B > max {BU, 18C.C|f|¢os2, \/ 18C.C| | 0ot }

D > max {1, Dy, 18C.C, \/18066}.

|

As before, a similar analysis will establish the joint analyticity of the lower field
which we now record.

THEOREM 5.6. Given any integer s > 0, if f € C5*2([0,d]) and Wy, ., € H*3/2(]0,d))}]
such that

Wl grevsre < Kw By Dy,
for constants Kw, By, Dy > 0, then wy, , € H*T2([0,d] x [—b,0]) and
||wn’m||Hs+2 < KB"D™,

for constants K, B, D > 0.

6. Analyticity of the Dirichlet—Neumann Operators. Now that we have
established the joint analyticity of the upper field u we move to establishing the
analyticity of the upper layer DNO, G(g) = G(ef). To begin we give a recursive
estimate of the H,, ,,, appearing in (5.16).
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LEMMA 6.1. Given an integer s > 0, if f € C*t2(]0,d]) and
(6.1) |t || rot2 < KB"D™, |Gl gesie < KB"D™, ¥ n<f,m >0,

for constants K,B,D,K,B,D >0 where K > K,B > B,D > D, then there exists a
constant C' > 0 such that

(6.2) |l gris < KC{|flcura B" 1 D™ 4| f

20S+2 Bn72Dm} )
Proof. [Lemma 6.1] From (5.16) we estimate
||.E[ﬁ’m||Hs+l/2 < M\@zf Cs+1/2+n ||81;u7771,m($, 0)||Hs+1/2

1
+  Miflesrizon |Gaorm (DU ovire

1
+ aMz‘f|Cs+1/2+n |81;f|c.§+1/2+77 6IU7L_2,m(JC, O)HHS+1/2

+ M?|0, f

2C'S+1/2+n ”azuﬁ—Q,m (.I, O) HHS‘H/2 .

This gives

- - R 1 I
|l gerz < K{M|flowes B 1D™ + M flcosa B D™

o2 BTTED™ + M| f

1 L~
+ - M2f 2oaBT2D"

and we are done provided
> <1 + 1) max{M, M?}. 0
a

We now have everything we need to prove the analyticity of the upper layer DNO.

THEOREM 6.2. Given any integer s > 0, if f € C*T2([0,d]) and U,,.., € H*+3/2([0,d))}
such that

||Un,m||Hs+3/2 < KUBE 517
for constants Ky, By, Dy > 0, then Gy € H*1/2([0,d]) and
(6.3) |Gl prss1s2 < KB"D™,

for constants K, B, D > 0.

Proof. [Theorem 6.2] As before, we work by induction in n. At n = 0 we have
from (5.13) that

GO,m = —3zuo,m($’ 0)7

and from Theorem 5.4 we have

1Gomllgres1/2 = [[0z00,m (2, 0) | resrr2 < [luo,mllger> < KD™.

So we choose K > K and D > D. We now assume B > B and the estimate (6.3) for
all n < m; from (5.13) we have

1G7m (AU o172 < 10z t7m (2, 0) | ros1r2 + | Hazn () | o172
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906 Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have

007 NG (AUl gesrss < KB*D™ + KC {| Floesa BT 1D™ + | f|205+2Bﬁ‘2Dm} .
908  We are done provided K > 2K and

a0
909 B > max { B,40/ flcee2,2V | flcrsn }
910 Finally, a similar approach will give the joint analyticity of the DNO in the lower
o11  field.
912 THEOREM 6.3. Given any integer s > 0, if f € C°12([0,d]) and W, , € H*3/2(]0,d))}}
913 such that
914 [Wo,ml rovs/2 < Kw By Dy,
915 for constants Ky, By, Dw > 0, then J,, ., € H*t1/2([0,d]) and
916 (6.4) | Tl o1z < KB"D™,
917  for constants K,B,D > 0.
918
919 Remark 6.4. For the parametric, (,d), analyticity we investigate in this paper,

920 the smoothness we assume of the interface, f(z) € C**2, s > 0, is sufficient to justify
921  the transformation (5.1) and all of the steps we have taken. We note that our TFE
922 approach equivalently states the DNO in terms of the transformed field, u’ (rather
923 than u), thereby delivering the analyticity result (Theorem 6.2). However, this is not
924 the only result one could ponder. For instance, an interesting query is the (joint)
925 smoothness of the DNO with respect to parameters and spatial variable, x. For
926  instance, based upon our results in [58], we expect that mandating that f be analytic
927 would deliver spatial analyticity of the DNO. Additionally, one could investigate the
928 smoothness of the untransformed field, v, which would require the inversion of (5.1)
929 and an accounting of its regularity. We leave these fascinating and important follow—
930 on questions for future work.
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