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Abstract. The scattering of linear waves by periodic structures is a crucial phenomena in many4
branches of applied physics and engineering. In this paper we establish rigorous analytic results neces-5
sary for the proper numerical analysis of a class of High–Order Perturbation of Surfaces/Asymptotic6
Waveform Evaluation (HOPS/AWE) methods for numerically simulating scattering returns from7
periodic diffraction gratings. More specifically, we prove a theorem on existence and uniqueness of8
solutions to a system of partial differential equations which model the interaction of linear waves with9
a periodic two–layer structure. Furthermore, we establish joint analyticity of these solutions with10
respect to both geometry and frequency perturbations. This result provides hypotheses under which11
a rigorous numerical analysis could be conducted on our recently developed HOPS/AWE algorithm.12
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1. Introduction. The scattering of linear waves by periodic structures is a cen-16

tral model in many problems of scientific and engineering interest. Examples arise in17

areas such as geophysics [67, 8], imaging [51], materials science [28], nanoplasmonics18

[64, 47, 24], and oceanography [10]. In the case of nanoplasmonics there are many19

such topics, for instance, extraordinary optical transmission [23], surface enhanced20

spectroscopy [50], and surface plasmon resonance (SPR) biosensing [31, 33, 45, 35].21

In all of these physical problems it is necessary to approximate scattering returns in22

a fast, robust, and highly accurate fashion.23

The most popular approaches to solving these problems numerically in the en-24

gineering literature are volumetric methods. These include formulations based on25

the Finite Difference [43], Finite Element [34], Discontinuous Galerkin [30], Spectral26

Element [20], and Spectral Methods [29, 9, 66]. However, these methods suffer from27

the requirement that they discretize the full volume of the problem domain which28

results in an unnecessarily large number of degrees of freedom for a periodic layered29

structure. There is also the additional difficulty of approximating far–field boundary30

conditions explicitly [7].31

For these reasons, surface methods are an appealing alternative, and we advocate32

the use of Boundary Integral Methods (BIM) [17, 40, 65] or High–Order Perturbation33

of Surfaces (HOPS) Methods [48, 49, 11, 12, 13, 57, 59]. Regarding the latter, we34

mention the classical Methods of Operator Expansions [48, 49] and Field Expansions35

[11, 12, 13], as well as the stabilized Method of Transformed Field Expansions [57, 59].36

All of these surface methods are greatly advantaged over the volumetric algorithms37

discussed above primarily due to the greatly reduced number of degrees of freedom38

that they require. Additionally the exact enforcement of the far–field boundary condi-39

tions is assured for both BIM and HOPS approaches. Consequently, these approaches40

are a favorable alternative and are becoming more widely used by practitioners.41

There has been a large amount of not only rigorous analysis of systems of partial42

differential equations which model these scattering phenomena, but also careful design43
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2 MATTHEW KEHOE AND DAVID P. NICHOLLS

of numerical schemes to simulate solutions of these. Most of these results utilize either44

Integral Equation techniques or weak formulations of the volumetric problem, each45

of which lead to a variety of natural numerical implementations. We recommend46

the Habilitationsschrift of T. Arens [3] as a definitive reference for periodic layered47

media problems in two and three dimensions. In particular, we refer the interested48

reader to Chapter 1 which discusses in great detail the state-of-the-art in uniqueness49

and existence results for scattering problems on biperiodic structures. For the two50

dimensional problem we further refer the reader to the work of Petit [62]; Bao, Cowsar,51

and Masters [5]; and Wilcox [68]. In three dimensions, results on the Helmholtz52

equation can be found in Abboud and Nedelec [1]; Bao [4]; Bao, Dobson, and Cox53

[6]; and Dobson [22]. In the context of Maxwell’s equations, we point out the work54

of Chen and Friedman [16], and Dobson and Friedman [21]. Of course the field has55

progressed from these classical contributions in a number of directions, and survey56

volumes like [5] give further details.57

The previous work most closely related to the current contribution is that of58

Kirsch [38] on smoothness properties of the pressure field scattered by an acousti-59

cally soft two–dimensional periodic surface. More specifically, it was demonstrated60

that not only is this field continuous and differentiable with respect to a sufficiently61

small boundary deformation, but it is also analytic with respect to illumination fre-62

quency and angle of incidence, up to poles induced by the Rayleigh singularities63

(Wood Anomalies) which does not violate our theory. We generalize these results64

in a number of important ways. In addition, in contrast to their rather theoretical65

operator–theoretic approach using results from Kato’s classical work [36], our method66

of proof is quite explicit and results in a stable and highly accurate numerical scheme67

which we discuss in [37].68

Oftentimes in applications it is important to consider families of gratings interro-69

gated over a range of illumination frequencies. An example of this is the computation70

of the Reflectivity Map, R, which records the energy scattered by a layered structure71

with interface shaped by z = g(x) and illuminated by radiation of frequency ω (see,72

e.g., [42]). Taking the point of view that this configuration is simply one in a family73

with interface74

z = εf(x), ε ∈ R,75

illuminated by radiation of frequency76

ω = ω + δω, δ ∈ R,77

where ω is a distinguished frequency of interest, our novel High–Order Perturbation78

of Surfaces/Asymptotic Waveform Evaluation (HOPS/AWE) method [53, 37] is a79

compelling numerical algorithm. In short, this scheme studies a joint Taylor expansion80

of the solutions of the scattering problem in both ε and δ. Upon insertion of this81

expansion into relevant governing equations, the resulting recursions can be solved82

up to a prescribed number of Taylor orders once and then simply summed for (ε, δ)83

many times. Clearly, this is a most efficient and accurate method for approximating84

R = R(ε, δ), as we have demonstrated in our previous work [53, 37], provided that this85

joint expansion can be justified. The point of the current contribution is to provide86

this justification in the language of rigorous analysis (see Theorem 4.7). Not only is87

this of intrinsic interest, but it also provides hypotheses and estimates as the starting88

point for a rigorous numerical analysis of our HOPS/AWE scheme (see, e.g., [60] for89

a possible path) for this problem.90
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We begin this program by assuming that ε and δ are sufficiently small. However,91

we have demonstrated in [58, 61] for a closely related problem concerning Laplace’s92

equation, the domain of analyticity in ε is not merely a small disk centered at the93

origin in the complex plane, but rather a neighborhood of the entire real axis. We94

suspect that an analogous analysis can be conducted in the current setting and we95

intend to pursue this in future work. By contrast, as pointed out in [38], the domain96

of analyticity in δ is bounded by the presence of the Rayleigh singularities. We believe97

that a similar analysis may prove fruitful in verifying that the domain of analyticity98

can be extended right up to this limit which is supported by our numerics [37].99

The paper is organized as follows: In Section 2 we summarize the equations which100

govern the propagation of linear waves in a two–dimensional periodic structure, and101

in Section 2.1 we discuss how the outgoing wave conditions can be exactly enforced102

through the use of Transparent Boundary Conditions. Then in Section 3 we restate103

our governing equations in terms of interfacial quantities via a Non–Overlapping Do-104

main Decomposition phrased in terms of Dirichlet–Neumann Operators (DNOs). In105

Section 4 we discuss our analyticity result with a general theory in Section 4.1 and106

our specific result in Section 4.2. This requires a study of analyticity of the data in107

Section 4.3 and an investigation of the flat–interface situation in Section 4.4. We con-108

clude with the final piece required for the general theory: The analyticity of Dirichlet–109

Neumann Operators (Section 6). We accomplish this by first establishing analyticity110

of the underlying fields (Section 5) requiring a special change of variables specified111

in Section 5.1. With this we demonstrate the analyticity of the scattered field in112

Sections 5.2 and 5.3. Given these theorems, we prove the analyticity of the DNOs in113

Section 6.114

2. The Governing Equations. An example of the geometry we consider is115

displayed in Figure 1: a y–invariant, doubly layered structure with a periodic interface

Fig. 1: A two-layer structure with a periodic interface, z = g(x), separating two
material layers, S(u) and S(w), illuminated by plane–wave incidence.
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4 MATTHEW KEHOE AND DAVID P. NICHOLLS

separating the two materials. The interface is specified by the graph of the function116

z = g(x) which is d–periodic so that g(x+d) = g(x). Dielectrics occupy both domains117

where an insulator (with refractive index nu) fills the region above the graph z = g(x)118

S(u) := {z > g(x)},119

and a second material (with index of refraction nw) occupies120

S(w) := {z < g(x)}.121

The superscripts are chosen to conform to the notation of the authors in previous122

work [52, 55]. The structure is illuminated from above by monochromatic plane–wave123

incident radiation of frequency ω and wavenumber ku = nuω/c0 = ω/cu (c0 is the124

speed of light) aligned with the grooves125

Ei(x, z, t) = Ae−iωt+iαx−iγ
uz, Hi(x, z, t) = Be−iωt+iαx−iγ

uz,126

α := ku sin(θ), γu := ku cos(θ).127128

We consider the reduced incident fields129

Ei(x, z) = eiωtEi(x, z, t), Hi(x, z) = eiωtHi(x, z, t),130

where the time dependence exp(−iωt) has been factored out. As shown in [62],131

the reduced electric and magnetic fields, like the reduced scattered fields, are α–132

quasiperiodic due to the incident radiation. To close the problem, we specify that133

the scattered radiation is “outgoing,” upward propagating in S(u) and downward134

propagating in S(w).135

It is well known (see, e.g., Petit [62]) that in this two–dimensional setting, the136

time–harmonic Maxwell equations decouple into two scalar Helmholtz problems which137

govern the Transverse Electric (TE) and Transverse Magnetic (TM) polarizations.138

We define the invariant (y) direction of the scattered (electric or magnetic) field by139

ũ = ũ(x, z) and w̃ = w̃(x, z) in S(u) and S(w), respectively. The incident radiation in140

the upper field is denoted by ũi(x, z).141

Following our previous work [53] we further factor out the phase exp(iαx) from142

the fields ũ and w̃143

u(x, z) = e−iαxũ(x, z), w(x, z) = e−iαxw̃(x, z),144

which, we note, are d–periodic. In light of all of this, we are led to seek outgoing,145

d–periodic solutions of146

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.1a)147

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.1b)148

u− w = ζ, z = g(x),(2.1c)149

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.1d)150151

where N := (−∂xg, 1)T . The Dirichlet and Neumann data are152

ζ(x) := −e−iγ
ug(x),(2.1e)153

ψ(x) := (iγu + iα(∂xg))e−iγ
ug(x),(2.1f)154155
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and156

τ2 =

{
1, TE,

(ku/kw)2 = (nu/nw)2, TM,
157

where kw = nwω/c0 = ω/cw and γw = kw cos(θ).158

2.1. Transparent Boundary Conditions. The Rayleigh expansions, which159

are derived through separation of variables [62], are the periodic, upward/downward160

propagating solutions of (2.1a) and (2.1b). In order to truncate the bi–infinite problem161

domain to one of finite size we use these to define Transparent Boundary Conditions.162

For this we choose values a and b such that163

a > |g|∞ , −b < − |g|∞ ,164

and define the artificial boundaries {z = a} and {z = −b}. In {z > a} the Rayleigh165

expansions tell us that upward propagating solutions of (2.1a) are166

(2.2) u(x, z) =

∞∑
p=−∞

âpe
ip̃x+iγup z,167

while downward propagating solutions of (2.1b) in {z < −b} can be expressed as168

w(x, z) =
∞∑

p=−∞
d̂pe

ip̃x−iγwp z,169

where, for p ∈ Z and q ∈ {u,w},170

(2.3) p̃ :=
2πp

d
, αp := α+ p̃, γqp :=


√

(kq)2 − α2
p, p ∈ Uq,

i
√
α2
p − (kq)2, p 6∈ Uq,

171

and172

Uq := {p ∈ Z | α2
p < (kq)2},173

which are the propagating modes in the upper and lower layers. With these we can174

define the Transparent Boundary Conditions in the following way: we first rewrite175

(2.2) as176

u(x, z) =
∞∑

p=−∞

(
âpe

iγup a
)
eip̃x+iγup (z−a) =

∞∑
p=−∞

ξ̂pe
ip̃x+iγup (z−a),177

and observe that,178

u(x, a) =
∞∑

p=−∞
ξ̂pe

ip̃x =: ξ(x),179

and180

∂zu(x, a) =
∞∑

p=−∞
(iγup )ξ̂pe

ip̃x =: Tu[ξ(x)],181
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which defines the order–one Fourier multiplier Tu. From this we state that upward–182

propagating solutions of (2.1a) satisfy the Transparent Boundary Condition at z = a183

(2.4) ∂zu(x, a)− Tu[u(x, a)] = 0, z = a.184

A similar calculation leads to the Transparent Boundary Condition at z = −b185

(2.5) ∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,186

where187

Tw[ψ(x)] :=
∞∑

p=−∞
(−iγwp )ψ̂pe

ip̃x.188

We note that these conditions enforce the Upward and Downward Propagating Con-189

ditions described by Arens [3].190

With these we now state the full set of governing equations as191

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(2.6a)192

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(2.6b)193

u− w = ζ, z = g(x),(2.6c)194

∂Nu− iα(∂xg)u− τ2 [∂Nw − iα(∂xg)w] = ψ, z = g(x),(2.6d)195

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(2.6e)196

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,(2.6f)197

u(x+ d, z) = u(x, z),(2.6g)198

w(x+ d, z) = w(x, z).(2.6h)199200

3. A Non–Overlapping Domain Decomposition Method. We now rewrite201

our governing equations (2.6) in terms of surface quantities via a Non–Overlapping202

Domain Decomposition Method [46, 19, 18]. For this we define203

U(x) := u(x, g(x)), Ũ(x) := −∂Nu(x, g(x)),204

W (x) := w(x, g(x)), W̃ (x) := ∂Nw(x, g(x)),205206

where u is a d–periodic solution of (2.6a) and (2.6e), and w is a d–periodic solution of207

(2.6b) and (2.6f). In terms of these, our full governing equations (2.6) are equivalent208

to the pair of boundary conditions, (2.6c) and (2.6d),209

U −W = ζ,(3.1a)210

− Ũ − (iα)(∂xg)U − τ2
[
W̃ − (iα)(∂xg)W

]
= ψ.(3.1b)211

212

This set of two equations and four unknowns can be closed by noting that the pairs213

{U, Ũ} and {W, W̃} are connected, e.g., by Dirichlet–Neumann Operators (DNOs),214

which [59] showed are well–defined under the hypotheses presently listed.215

Definition 3.1. Given an integer s ≥ 0, if g ∈ Cs+2 then the unique solution of216

217

∆u+ 2iα∂xu+ (γu)2u = 0, z > g(x),(3.2a)218

u = U, z = g(x),(3.2b)219

∂zu(x, a)− Tu[u(x, a)] = 0, z = a,(3.2c)220

u(x+ d, z) = u(x, z),(3.2d)221222
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defines the upper layer DNO223

(3.3) G : U → Ũ.224

Definition 3.2. Given an integer s ≥ 0, if g ∈ Cs+2 then the unique solution of225

226

∆w + 2iα∂xw + (γw)2w = 0, z < g(x),(3.4a)227

w = W, z = g(x),(3.4b)228

∂zw(x,−b)− Tw[w(x,−b)] = 0, z = −b,(3.4c)229

w(x+ d, z) = w(x, z).(3.4d)230231

defines the lower layer DNO232

(3.5) J : W → W̃.233

The interfacial reformulation of our governing equations (3.1) now becomes234

(3.6) AV = R,235

where236

(3.7) A =

(
I −I

G+ (∂xg)(iα) τ2J − τ2(∂xg)(iα)

)
, V =

(
U
W

)
, R =

(
ζ
−ψ

)
.237

4. Joint Analyticity of Solutions. There are many possible ways to analyze238

(3.6) rigorously. Following our recent work [37], we select a jointly perturbative ap-239

proach based on two assumptions:240

1. Boundary Perturbation: g(x) = εf(x), ε ∈ R,241

2. Frequency Perturbation: ω = (1 + δ)ω = ω + δω, δ ∈ R.242

243

Remark 4.1. At inception one typically assumes that these perturbation parame-244

ters, ε and δ, are quite small and we can certainly begin there. However, we will show245

that these only need be sufficiently small (e.g., characterized by the C2 norm of f for246

the domain of analyticity in ε) but not necessarily tiny. Furthermore, following the247

methods devised in [58, 61] for the related problem of analytic continuation of DNOs248

associated to Laplace’s equation, we fully expect that the neighborhood of analyticity249

in ε contains the entire real axis. Beyond this we note that the domain of analyticity250

in δ is bounded by the Rayleigh singularities as discussed in [38]. However, it is possi-251

ble that an extension of the approach in [58, 61] may deliver a rigorous justification of252

our numerical observations in [37] that the region of analyticity in δ extends right up253

to the limit imposed by the Rayleigh singularities. Verifying each of these predictions254

is a goal of current research by the authors.255

The frequency perturbation has the following important consequences256

kq = ω/cq = (1 + δ)ω/cq =: (1 + δ)kq = kq + δkq, q ∈ {u,w},257

α = ku sin(θ) = (1 + δ)ku sin(θ) =: (1 + δ)α = α+ δα,258

γq = kq cos(θ) = (1 + δ)kq cos(θ) =: (1 + δ)γq = γq + δγq, q ∈ {u,w}.259260

This, in turn, delivers261

αp = α+ p̃ = α+ δα+ p̃ =: αp + δα.262
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We now pursue this perturbative approach to establish the existence, uniqueness,263

and analyticity of solutions to (3.6). To accomplish this we will presently show the264

joint analytic dependence of A = A(ε, δ) and R = R(ε, δ) upon ε and δ, and then265

appeal to the regular perturbation theory for linear systems of equations outlined in266

[54] to discover the analyticity of the unique solution V = V(ε, δ). More precisely,267

we view (3.6) as268

A(ε, δ)V(ε, δ) = R(ε, δ),269

establish the analyticity of A and R so that270

(4.1) {A,R}(ε, δ) =
∞∑
n=0

∞∑
m=0

{An,m,Rn,m}εnδm,271

and seek a solution of the form272

(4.2) V(ε, δ) =

∞∑
n=0

∞∑
m=0

Vn,mε
nδm,273

which we will show converges in a function space. To pursue this we insert (4.2) and274

(4.1) into (3.6) and find, at each perturbation order (n,m), that we must solve275

A0,0Vn,m = Rn,m −
n−1∑
`=0

An−`,0V`,m −
m−1∑
r=0

A0,m−rVn,r276

−
n−1∑
`=0

m−1∑
r=0

An−`,m−rV`,r.(4.3)277

278

A brief inspection of the formulas for A and R, (3.7), reveals that279

A0,0 =

(
I −I

G0,0 τ2J0,0

)
,(4.4a)280

An,m =

(
0 0

Gn,m τ2Jn,m

)
281

+ δn,1 {1 + δm,1} (∂xf)(iα)

(
0 0
1 −τ2

)
, n 6= 0 or m 6= 0,(4.4b)282

Rn,m =

(
ζn,m
−ψn,m

)
,(4.4c)283

284

where δn,m is the Kronecker delta function. Formulas for the terms {ζn,m, ψn,m} can285

be found in [37] or by using the recursions described in Section 4.3. The terms Gn,m286

and Jn,m are the (n,m)–th corrections of the DNOs G and J , respectively, in a Taylor287

series expansion of each jointly in ε and δ. This is explained in Section 6, together288

with precise estimates of the coefficients, Gn,m and Jn,m, in the appropriate Sobolev289

spaces. Finally, in Section 4.4 we utilize expressions for the flat–interface DNOs, G0,0290

and J0,0, to investigate the mapping properties of the linearized operator, A0,0, and291

its inverse.292

4.1. A General Analyticity Theory. Given these estimates, existence, unique-293

ness, and analyticity of solutions can be deduced in a rather straightforward fashion294
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using the following result from one of the authors’ previous papers [54] (Theorem 3.2).295

This result uses multi–index notation [25], in particular296

ε̃ :=

 ε1

...
εM

 , ñ :=

 n1

...
nM

 ,297

and the convention298

∞∑
ñ=0

Añ ε̃
ñ =

∞∑
n1=0

· · ·
∞∑

nM=0

An1,...,nM ε
n1
1 · · · ε

nM
M .299

300

Theorem 4.2. Given two Banach spaces, X̃ and Ỹ , suppose that:301

1. Rñ ∈ Ỹ for all ñ ≥ 0, and there exist M–multi–indexed constants C̃R > 0,302

B̃R > 0,303

C̃R =

 CR,1
...

CR,M

 , B̃ñR =

Bn1

R,1
...

BnMR,M

 ,304

such that305

‖Rñ‖Ỹ ≤ C̃RB̃
ñ
R,306

2. Añ : X̃ → Ỹ for all ñ ≥ 0, and there exist M–multi–indexed constants307

C̃A > 0, B̃A > 0 such that308

‖Añ‖X̃→Ỹ ≤ C̃AB̃
ñ
A,309

3. A−1
0 : Ỹ → X̃, and there exists a constant Ce > 0 such that310 ∥∥A−1

0

∥∥
Ỹ→X̃ ≤ Ce.311

Then the equation (3.6) has a unique solution,312

(4.5) V(ε̃) =
∞∑
ñ=0

Vñε̃
ñ,313

and there exist M–multi–indexed constants C̃V > 0 and B̃V > 0 such that314

‖Vñ‖X̃ ≤ C̃V B̃
ñ
V ,315

for all ñ ≥ 0 and any316

C̃V ≥ 2CeC̃R, B̃V ≥ max
{
B̃R, 2B̃A, 4CeC̃AB̃A

}
,317

enforced componentwise. This implies that, for any M–multi–indexed constant 0 ≤318

ρ̃ < 1, (4.5), converges for all ε̃ such that Bε̃ < ρ̃, i.e., ε̃ < ρ̃/B.319

Remark 4.3. In the current context we will use this result in the case M = 2 and320

ε̃ =

(
ε
δ

)
, ñ =

(
n
m

)
, ρ̃ =

(
ρ
σ

)
.321
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4.2. Analyticity of Solutions to the Two–Layer Problem. To state our322

theorem precisely we briefly define and recall classical properties of the L2–based323

Sobolev spaces, Hs, of laterally periodic functions [40]. We know that any d–periodic324

L2 function can be expressed in a Fourier series as325

µ(x) =
∞∑

p=−∞
µ̂pe

ip̃x, µ̂p =
1

d

∫ d

0

µ(x)e−ip̃xdx,326

[40]. We define the symbol 〈p̃〉2 := 1 + |p̃|2 so that laterally periodic norms for surface327

and volumetric functions are defined by328

‖µ‖2Hs :=
∞∑

p=−∞
〈p̃〉2s |µ̂p|2 ,329

and330

‖u‖2Hs :=
s∑
`=0

∞∑
p=−∞

〈p̃〉2(s−`)
∫ a

0

|ûp(z)|2 dz =
s∑
`=0

∞∑
p=−∞

〈p̃〉2(s−`) ‖ûp‖2L2(0,a) ,331

respectively. With these we define the laterally d–periodic Sobolev spaces Hs as the332

L2 functions for which ‖·‖Hs is finite. For our present use we define the vector–valued333

spaces for s ≥ 0334

Xs :=

{
V =

(
U
W

)∣∣∣∣U,W ∈ Hs+3/2([0, d])

}
,335

and336

Y s :=

{
R =

(
ζ
−ψ

)∣∣∣∣ ζ ∈ Hs+3/2([0, d]), ψ ∈ Hs+1/2([0, d])

}
.337

These have the norms338

‖V‖2Xs =

∥∥∥∥(UW
)∥∥∥∥2

Xs
:= ‖U‖2Hs+3/2 + ‖W‖2Hs+3/2 ,339

‖R‖2Y s =

∥∥∥∥( ζ
−ψ

)∥∥∥∥2

Y s
:= ‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2 .340

341

In addition to these function spaces we also require the following three results from342

the classical theory of Sobolev spaces [2, 44] and elliptic partial differential equations343

[41, 26, 27, 25]. (See also [56, 32] in the context of HOPS methods.)344

Lemma 4.4. Given an integer s ≥ 0 and any η > 0, there exists a constant345

M =M(s) such that if f ∈ Cs([0, d]) and u ∈ Hs([0, d]× [0, a]) then346

(4.6) ‖fu‖Hs ≤M|f |Cs ‖u‖Hs ,347

and if f̃ ∈ Cs+1/2+η([0, d]) and ũ ∈ Hs+1/2([0, d]) then348

(4.7)
∥∥∥f̃ ũ∥∥∥

Hs+1/2
≤M

∣∣∣f̃ ∣∣∣
Cs+1/2+η

‖ũ‖Hs+1/2 .349
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Theorem 4.5. Given an integer s ≥ 0, if F ∈ Hs([0, d])×[0, a]), U ∈ Hs+3/2([0, d]),350

P ∈ Hs+1/2([0, d]), then the unique solution of351

∆u(x, z) + 2iα∂xu(x, z) + (γu)2u(x, z) = F (x, z), 0 < z < a,352

u(x, 0) = U(x, 0), z = 0,353

∂zu(x, a)− Tu0 [u(x, a)] = P (x), z = a,354

u(x+ d, z) = u(x, z),355356

satisfies357

(4.8) ‖u‖Hs+2 ≤ Ce {‖F‖Hs + ‖U‖Hs+3/2 + ‖P‖Hs+1/2} ,358

for some constant Ce > 0 where Tu0 = iγu
D

corresponds to the δ = 0 scenario.359

Lemma 4.6. Given an integer s ≥ 0, if F ∈ Hs([0, d]) × [0, a]), then (a − z)F ∈360

Hs([0, d])× [0, a]) and there exists a positive constant Za = Za(s) such that361

‖(a− z)F‖Hs ≤ Za ‖F‖Hs .362

We now state our main result.363

Theorem 4.7. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) then the equation (3.6)364

has a unique solution, (4.2). Furthermore, there exist constants B,C,D > 0 such that365

‖Vn,m‖Xs ≤ CB
nDm,366

for all n,m ≥ 0. This implies that for any 0 ≤ ρ, σ < 1, (4.2) converges for all ε such367

that Bε < ρ, i.e., ε < ρ/B and all δ such that Dδ < σ, i.e., δ < σ/D.368

Proof. As mentioned above, our strategy is to invoke Theorem 4.2 and thus we369

must verify its hypotheses. To begin, we consider the spaces370

X̃ = Xs, Ỹ = Y s.371

In Section 4.3 we will show that the vector Rn,m, consisting of ζn,m and ψn,m, is372

bounded in Y s for any s ≥ 0 provided that f ∈ Cs+2([0, d]). (This implies that the373

Rn,m satisfies the estimates of Item 1 in Theorem 4.2.)374

Then in Section 6 we show that the operators Gn,m and Jn,m in the Taylor series375

expansions of the DNOs satisfy appropriate bounds provided that f ∈ Cs+2([0, d]).376

With this, it is clear that the An,m satisfy the estimates of Item 2 in Theorem 4.2.377

Finally, in Section 4.4 we show that the estimates and mapping properties of A−1
0,0378

for Item 3 in Theorem 4.2 hold.379

4.3. Analyticity of the Surface Data. To establish the analyticity of the380

Dirichlet and Neumann data obeying suitable estimates, we begin by defining381

E(x; ε, δ) := e−i(1+δ)γuεf(x),382

and note that we can write (2.1e) and (2.1f) as383

ζ(x) = ζ(x; ε, δ) = −E(x; ε, δ),384

ψ(x) = ψ(x; ε, δ) =
{
i(1 + δ)γu + i(1 + δ)α(ε∂xf)

}
E(x; ε, δ).385386

We will now demonstrate that the function E is jointly analytic in ε and δ, and subject387

to appropriate estimates, which clearly demonstrates the joint analytic dependence of388

the data, ζ(x; ε, δ) and ψ(x; ε, δ).389
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Lemma 4.8. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the function390

E(x; ε, δ) is jointly analytic in ε and δ. Therefore391

(4.9) E(x; ε, δ) =
∞∑
n=0

∞∑
m=0

En,m(x)εnδm,392

and, for constants CE , BE , DE > 0,393

(4.10) ‖En,m‖Hs+3/2 ≤ CEBnEDm
E ,394

for all n,m ≥ 0.395

Proof. We begin by observing the classical fact that the composition of jointly396

(real) analytic functions is also jointly (real) analytic [39] so that (4.9) holds, and397

move to expressions and estimates for the En,m. By evaluating at ε = 0 we find that398

E(x; 0, δ) = 1,399

so that400

E0,m(x) =

{
1, m = 0,

0, m > 0.
401

For ε > 0 we use the straightforward computation402

∂εE =
{
−i(1 + δ)γuf

}
E ,403

and the expansion (4.9) to learn that, for m = 0,404

(4.11) En+1,0 =

(−iγuf
n+ 1

)
En,0,405

and, for m > 0,406

(4.12) En+1,m =

(−iγuf
n+ 1

)
{En,m + En,m−1} .407

We work by induction in n and begin by establishing (4.10) at n = 0 for all m ≥ 0.408

This is immediate as409

‖E0,0‖Hs+3/2 = 1, ‖E0,m‖Hs+3/2 = 0.410

We now assume (4.10) for all n < n̄ and all m ≥ 0, and seek this estimate in the case411

n = n̄ and all m ≥ 0. For this we conduct another induction on m, and for m = 0 we412

use (4.11) (together with Lemma 4.4 with s̃ = s+ 1) to discover413

‖En̄,0‖Hs+3/2 ≤M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

)
‖En̄−1,0‖Hs+3/2414

≤M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CEB

n̄−1
E ≤ CEBn̄E ,415

416
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provided that417

BE ≥M
∣∣γu∣∣ |f |Cs+2 ≥M

(∣∣γu∣∣ |f |Cs+2

n̄

)
.418

Finally, we assume the estimate (4.10) for n = n̄ and m < m̄, and use (4.12) to learn419

that420

‖En̄,m̄‖Hs+3/2 ≤M

(∣∣γu∣∣ |f |Cs+3/2+η

n̄

){
‖En̄−1,m̄‖Hs+3/2 + ‖En̄−1,m̄−1‖Hs+3/2

}
421

≤M

(∣∣γu∣∣ |f |Cs+2

n̄

)
CE
{
Bn̄−1
E Dm̄

E +Bn̄−1
E Dm̄−1

E
}

422

≤ CEBn̄EDm̄
E ,423424

provided that425

M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BE

2
, M

(∣∣γu∣∣ |f |Cs+2

n̄

)
≤ BEDE

2
,426

which can be accomplished, e.g., with427

BE ≥ 2M
∣∣γu∣∣ |f |Cs+2 ≥ 2M

(∣∣γu∣∣ |f |Cs+2

n̄

)
, DE ≥ 1,428

and we are done.429

With Lemma 4.8 it is straightforward to prove the following analyticity result for430

the Dirichlet and Neumann data.431

Lemma 4.9. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) then the functions432

ζ(x; ε, δ) and ψ(x; ε, δ) are jointly analytic in ε and δ. Therefore433

(4.13) {ζ, ψ}(x; ε, δ) =

∞∑
n=0

∞∑
m=0

{ζn,m, ψn,m}(x)εnδm434

and, for constants Cζ , Bζ , Dζ > 0, and Cψ, Bψ, Dψ > 0,435

(4.14) ‖ζn,m‖Hs+3/2 ≤ CζBnζDm
ζ , ‖ψn,m‖Hs+1/2 ≤ CψBnψDm

ψ ,436

for all n,m ≥ 0.437

4.4. Invertibility of the Flat–Interface Operator. The final hypothesis to438

be verified in order to invoke Theorem 4.2 is the existence and mapping properties439

of the linearized (flat–interface) operator A0,0. In our previous work [37] we showed440

that441

(4.15) A0,0 =

(
I −I

G0,0 τ2J0,0

)
,442

where443

(4.16) G0,0 = −iγuD, J0,0 = −iγwD,444
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are order–one Fourier multipliers defined by445

(4.17) G0,0[U ] =
∞∑

p=−∞
(−iγup )Ûpe

ip̃x, J0,0[W ] =
∞∑

p=−∞
(−iγwp )Ŵpe

ip̃x.446

Lemma 4.10. The linear operator A0,0 maps Xs to Y s boundedly, is invertible,447

and its inverse maps Y s to Xs boundedly.448

Proof. We begin by defining the operator449

∆ := G0,0 + τ2J0,0 = (−iγuD) + τ2(−iγwD),450

which has Fourier symbol451

∆̂p = (−iγup ) + τ2(−iγwp ),452

and noting that there exist positive constants CG, CJ , and C∆ such that453 ∣∣−iγup ∣∣ ≤ CG 〈p̃〉 , ∣∣−iγwp ∣∣ ≤ CJ 〈p̃〉 , ∣∣∣∆̂p

∣∣∣ ≤ C∆ 〈p̃〉 .454

Importantly, provided that nu 6= nw, it is not difficult to establish the crucial fact455

that ∆̂p 6= 0. Finally, one can also find a positive constant C∆−1 such that456 ∣∣∣∣∣ 1

∆̂p

∣∣∣∣∣ ≤ C∆−1 〈p̃〉−1
.457

With this it is a simple matter to realize that ∆−1 exists and that458

∆ : Hs+3/2 → Hs+1/2, ∆−1 : Hs+1/2 → Hs+3/2.459

Next, we write generic elements of Xs and Y s as460

V =

(
U
W

)
∈ Xs, R =

(
ζ
−ψ

)
∈ Y s.461

Using the definitions of the norms of Xs and Y s, and the facts462

2ab ≤ a2 + b2, ‖A+B‖2 ≤ (‖A‖ + ‖B‖)2,463

we find that464

‖A0,0V‖2Y s = ‖U −W‖2Hs+3/2 +
∥∥G0,0U + τ2J0,0W

∥∥2

Hs+1/2465

≤ 2 ‖U‖2Hs+3/2 + 2 ‖W‖2Hs+3/2 + C2
G ‖U‖

2
Hs+3/2466

+τ2CGCJ(‖U‖2Hs+3/2 + ‖W‖2Hs+3/2) + C2
Jτ

4 ‖W‖2Hs+3/2467

≤ max{2, C2
G, τ

2CGCJ , τ
4C2

J}
(
‖U‖2Hs+3/2 + ‖W‖2Hs+3/2

)
468

= max{2, C2
G, τ

2CGCJ , τ
4C2

J} ‖V‖
2
Xs ,469470

so that A0,0 does indeed map Xs to Y s boundedly. We define the operator471

B := ∆−1

(
τ2J0,0 I
−G0,0 I

)
,472
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and note that473

BA0,0 = A0,0B =

(
I 0
0 I

)
,474

so that the inverse of A0,0 exists and A−1
0,0 = B. Furthermore, as above,475 ∥∥A−1

0,0R
∥∥2

Xs
=
∥∥∆−1(τ2J0,0ζ − ψ)

∥∥2

Hs+3/2 +
∥∥∆−1(−G0,0ζ − ψ)

∥∥2

Hs+3/2476

≤ C2
∆−1τ4C2

J ‖ζ‖
2
Hs+3/2 + C2

∆−1τ2CJ(‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2)477

+ C2
∆−1C2

G ‖ζ‖
2
Hs+3/2 + C2

∆−1CG(‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2)478

+2C2
∆−1 ‖ψ‖2Hs+1/2479

≤ C2
∆−1 max{2, CG, C2

G, τ
2CJ , τ

4C2
J}
(
‖ζ‖2Hs+3/2 + ‖ψ‖2Hs+1/2

)
480

= C2
∆−1 max{2, CG, C2

G, τ
2CJ , τ

4C2
J}‖R‖

2
Y s ,481482

and A−1
0,0 maps Y s to Xs boundedly.483

5. Analyticity of the Scattered Fields. At this point we establish the ana-484

lyticity of the fields which define the DNOs, G and J , though, for brevity, we restrict485

our attention to the one in the upper layer, G, and note that the considerations for486

the lower layer DNO, J , are largely the same.487

5.1. Change of Variables and Formal Expansions. For our rigorous demon-488

stration we appeal to the Method of Transformed Field Expansions (TFE) [56, 59]489

which begins with a domain–flattening change of variables (the σ–coordinates of490

oceanography [63] and the C–method of the dynamical theory of gratings [15, 14]) to491

the governing equations, (3.2),492

(5.1) x′ = x, z′ = a

(
z − g(x)

a− g(x)

)
.493

With this we can rewrite the DNO problem, (3.2), in terms of the transformed field494

u′(x′, z′) := u

(
x′,

(
a− g(x′)

a

)
z′ + g(x′)

)
,495

as (upon dropping primes)496

∆u+ 2iα∂xu+ (γu)2u = F (x, z), 0 < z < a,(5.2a)497

u(x, 0) = U(x), z = 0,(5.2b)498

∂zu(x, a)− Tu[u(x, a)] = P (x), z = a,(5.2c)499

u(x+ d, z) = u(x, z),(5.2d)500501

(Delete) where Tu0 = iγu
D

(corresponding to the δ = 0 scenario), and the DNO itself,502

(3.3), as503

(5.3) G(g)[U ] = −∂zu(x, 0) +H(x).504

The forms for {F, P,H} have been derived and reported in [59] and, for brevity, we505

do not repeat them here.506
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Following our HOPS/AWE philosophy we assume the joint boundary/frequency507

perturbation508

g(x) = εf(x), ω = ω + δω = (1 + δ)ω,509

and study the effect of this on (5.2) and (5.3). These become510

∆u+ 2iα∂xu+ (γu)2u = F̃ (x, z), 0 < z < a,(5.4a)511

u(x, 0) = U(x), z = 0,(5.4b)512

∂zu(x, a)− Tu0 [u(x, a)] = P̃ (x), z = a,(5.4c)513

u(x+ d, z) = u(x, z),(5.4d)514515

and516

(5.5) G(εf)[U ] = −∂zu(x, 0) + H̃(x),517

where F̃, P̃, H̃ = O (ε) +O (δ). More specifically,518

F̃ = −εdiv [A1(f)∇u]− ε2div [A2(f)∇u]− εB1(f)∇u− ε2B2(f)∇u519

− 2iαδ∂xu− δ2(γu)2u− 2δ(γu)2u520

− 2iεS1(f)α∂xu− 2iεS1(f)αδ∂xu− εS1(f)δ2(γu)2u521

− 2εS1(f)δ(γu)2u− εS1(f)(γu)2u522

− 2iε2S2(f)α∂xu− 2iε2S2(f)αδ∂xu− ε2S2(f)δ2(γu)2u523

− 2ε2S2(f)δ(γu)2u− ε2S2(f)(γu)2u,(5.6)524525

and526

(5.7) P̃ = −1

a
(εf(x))Tu [u(x, a)] + (Tu − Tu0 ) [u(x, a)] ,527

and528

(5.8) H̃ = ε(∂xf)∂xu(x, 0) + ε
f

a
G(εf)[U ]− ε2 f(∂xf)

a
∂xu(x, 0)− ε2(∂xf)2∂zu(x, 0).529

It is not difficult to see that the forms for the Aj , Bj , and Sj are530

A0 =

(
1 0
0 1

)
,(5.9a)531

A1(f) =

(
Axx1 Axz1

Azx1 Azz1

)
=

1

a

(
−2f −(a− z)(∂xf)

−(a− z)(∂xf) 0

)
,(5.9b)532

A2(f) =

(
Axx2 Axz2

Azx2 Azz2

)
=

1

a2

(
f2 (a− z)f(∂xf)

(a− z)f(∂xf) (a− z)2(∂xf)2

)
,(5.9c)533

534

and535

(5.10) B1(f) =

(
Bx1
Bz1

)
=

1

a

(
∂xf

0

)
, B2(f) =

(
Bx2
Bz2

)
=

1

a2

(
−f(∂xf)

−(a− z)(∂xf)2

)
,536

and537

(5.11) S0 = 1, S1(f) = −2

a
f, S2(f) =

1

a2
f2.538

This manuscript is for review purposes only.



JOINT GEOMETRY/FREQUENCY ANALYTICITY OF FIELDS 17

At this point we posit the expansions539

u(x, z; ε, δ) =
∞∑
n=0

∞∑
m=0

un,m(x, z)εnδm, G(ε, δ) =
∞∑
n=0

∞∑
m=0

Gn,mε
nδm,540

and, upon insertion into (5.4) and (5.5), we find541

∆un,m + 2iα∂xun,m + (γu)2un,m = F̃n,m(x, z), 0 < z < a,(5.12a)542

un,m(x, 0) = Un,m(x), z = 0,(5.12b)543

∂zun,m(x, a)− Tu0 [un,m(x, a)] = P̃n,m(x), z = a,(5.12c)544

un,m(x+ d, z) = un,m(x, z),(5.12d)545546

and547

(5.13) Gn,m(f) = −∂zun,m(x, 0) + H̃n,m(x).548

The formulas for F̃n,m, P̃n,m and H̃n,m can be readily derived from (5.6), (5.7), and549

(5.8) giving550

F̃n,m = −div [A1(f)∇un−1,m]− div [A2(f)∇un−2,m]551

−B1(f)∇un−1,m −B2(f)∇un−2,m552

− 2iα∂xun,m−1 − (γu)2un,m−2 − 2(γu)2un,m−1553

− 2iS1(f)α∂xun−1,m − 2iS1(f)α∂xun−1,m−1 − S1(f)(γu)2un−1,m−2554

− 2S1(f)(γu)2un−1,m−1 − S1(f)(γu)2un−1,m555

− 2iS2(f)α∂xun−2,m − 2iS2(f)α∂xun−2,m−1 − S2(f)(γu)2un−2,m−2556

− 2S2(f)(γu)2un−2,m−1 − S2(f)(γu)2un−2,m,(5.14)557558

and559

(5.15) P̃n,m = −1

a
f(x)

m∑
r=0

Tum−r [un−1,r(x, a)] +
m−1∑
r=0

Tum−r [un,r(x, a)] ,560

and561

H̃n,m = (∂xf)∂xun−1,m(x, 0) +
f

a
Gn−1,m(f)[U ]− f(∂xf)

a
∂xun−2,m(x, 0)562

− (∂xf)2∂zun−2,m(x, 0).(5.16)563564

5.2. Geometric Analyticity of the Upper Field. To prove our joint analyt-565

icity result we begin by stating the single, geometric, analyticity result for the field566

u under boundary perturbation, ε, alone. This was essentially established in [56] but567

we present it here for completeness.568

Theorem 5.1. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,0 ∈ Hs+3/2([0, d])569

such that570

(5.17) ‖Un,0‖Hs+3/2 ≤ KUB
n
U ,571

for constants KU , BU > 0, then un,0 ∈ Hs+2([0, d]× [0, a]) and572

(5.18) ‖un,0‖Hs+2 ≤ KBn,573

for constants K,B > 0.574
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To establish this we work by induction and the key estimate is the following Lemma.575

Lemma 5.2. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and576

(5.19) ‖un,0‖Hs+2 ≤ KBn, ∀n < n,577

for constants K,B > 0, then there exists a constant C > 0 such that578

(5.20) max
{∥∥∥F̃n,0∥∥∥

Hs
,
∥∥∥P̃n,0∥∥∥

Hs+1/2

}
≤ KC

{
|f |Cs+2 B

n−1 + |f |2Cs+2 B
n−2
}
.579

Proof. [Lemma 5.2] We begin with F̃n,0 and note that from (5.14), (5.9), (5.10),580

and (5.11) we have581

‖F̃n,0‖2Hs ≤ ‖Axx1 ∂xun−1,0‖2Hs+1 + ‖Axz1 ∂zun−1,0‖2Hs+1 + ‖Azx1 ∂xun−1,0‖2Hs+1582

+ ‖Azz1 ∂zun−1,0‖2Hs+1 + ‖Axx2 ∂xun−2,0‖2Hs+1 + ‖Axz2 ∂zun−2,0‖2Hs+1583

+ ‖Azx2 ∂xun−2,0‖2Hs+1 + ‖Azz2 ∂zun−2,0‖2Hs+1 + ‖Bx1∂xun−1,0‖2Hs584

+ ‖Bz1∂zun−1,0‖2Hs + ‖Bx2∂xun−2,0‖2Hs + ‖Bz2∂zun−2,0‖2Hs585

+ ‖2S1iα∂xun−1,0‖2Hs + ‖S1(γu)2un−1,0‖2Hs + ‖2S2iα∂xun−2,0‖2Hs586

+ ‖S2(γu)2un−2,0‖2Hs .587588

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with589

‖Axx1 ∂xun−1,0‖Hs+1 = ‖ − (2/a)f∂xun−1,0‖Hs+1590

≤ (2/a)M|f |Cs+1‖un−1,0‖Hs+2591

≤ (2/a)M|f |Cs+1KBn−1,592593

and in a similar fashion594

‖Axz1 ∂zun−1,0‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂zun−1,0‖Hs+1595

≤ (Za/a)M|∂xf |Cs+1‖un−1,0‖Hs+2596

≤ (Za/a)M|f |Cs+2KBn−1.597598

Also,599

‖Azx1 ∂xun−1,0‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂xun−1,0‖Hs+1600

≤ (Za/a)M|∂xf |Cs+1‖un−1,0‖Hs+2601

≤ (Za/a)M|f |Cs+2KBn−1,602603

and we recall that Azz1 ≡ 0. Moving to the second order604

‖Axx2 ∂xun−2,0‖Hs+1 = ‖(1/a2)f2∂xun−2,0‖Hs+1605

≤ (1/a2)M2|f |2Cs+1‖un−2,0‖Hs+2606

≤ (1/a2)M2|f |2Cs+1KBn−2.607608

Also,609

‖Axz2 ∂zun−2,0‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂xun−2,0‖Hs+1610

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,0‖Hs+2611

≤ (Za/a
2)M2|f |2Cs+2KBn−2,612613
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and614

‖Azx2 ∂xun−2,0‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂zun−2,0‖Hs+1615

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,0‖Hs+2616

≤ (Za/a
2)M2|f |2Cs+2KBn−2,617618

and619

‖Azz2 ∂zun−2,0‖Hs+1 = ‖((a− z)2/a2)(∂xf)2∂zun−2,0‖Hs+1620

≤ (Z2
a/a

2)M2|∂xf |2Cs+1‖un−2,0‖Hs+2621

≤ (Z2
a/a

2)M2|f |2Cs+2KBn−2.622623

Next for the B1 terms624

‖Bx1∂xun−1,0‖Hs = ‖(1/a)(∂xf)∂xun−1,0‖Hs625

≤ (1/a)M|∂xf |Cs‖un−1,0‖Hs+1626

≤ (1/a)M|f |Cs+1KBn−1,627628

and Bz1 ≡ 0. Moving to the second order629

‖Bx2∂xun−2,0‖Hs = ‖(−1/a2)f(∂xf)∂xun−2,0‖Hs630

≤ (1/a2)M2|f |Cs |∂xf |Cs‖un−2,0‖Hs+1631

≤ (1/a2)M2|f |2Cs+1KBn−2,632633

and634

‖Bz2∂zun−2,0‖Hs = ‖(−1/a2)(a− z)(∂xf)2∂zun−2,0‖Hs635

≤ (Za/a
2)M2|∂xf |2Cs‖un−2,0‖Hs+1636

≤ (Za/a
2)M2|f |2Cs+1KBn−2.637638

To address the S0, S1, S2 terms we have639

‖2S1iα∂xun−1,0‖Hs = ‖(−4/a)iαf∂xun−1,0‖Hs640

≤ (4/a)αM|f |Cs‖un−1,0‖Hs+1641

≤ (4/a)αM|f |CsKBn−1,642643

and644

‖S1(γu)2un−1,0‖Hs = ‖(−2/a)(γu)2fun−1,0‖Hs645

≤ (2/a)(γu)2M|f |Cs‖un−1,0‖Hs646

≤ (2/a)(γu)2M|f |CsKBn−1,647648

and649

‖2S2iα∂xun−2,0‖Hs = ‖(2/a2)iαf2∂xun−2,0‖Hs650

≤ (2/a2)αM2|f |2Cs‖un−2,0‖Hs+1651

≤ (2/a2)αM2|f |2CsKBn−2,652653
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and654

‖S2(γu)2un−2,0‖Hs = ‖(1/a2)(γu)2f2un−2,0‖Hs655

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,0‖Hs656

≤ (1/a2)(γu)2M2|f |2CsKBn−2.657658

We satisfy the estimate for ‖F̃n,0‖Hs provided that we choose659

C > max

{(
3 + 2Za + 4α+ 2(γu)2

a

)
M,

(
2 + 3Za + Z2

a + 2α+ (γu)2

a2

)
M2

}
.660

The estimate for P̃n,0 follows from an elementary estimate on the order–one Fourier661

multiplier Tu0662

‖P̃n,0‖Hs+1/2 = ‖ − (1/a)fTu0 [un−1,0] ‖Hs+1/2663

≤ (1/a)M|f |Cs+1/2+η‖Tu0 [un−1,0] ‖Hs+1/2664

≤ (1/a)M|f |Cs+1/2+ηCTu0 ‖un−1,0‖Hs+3/2665

≤ (1/a)M|f |Cs+1/2+ηCTu0 KB
n−1,666667

and provided that668

C > (1/a)MCTu0 ,669

we are done.670

With this information, we can now prove Theorem 5.1.671

Proof. [Theorem 5.1] We proceed by induction in n and at order n = 0 and m = 0672

Theorem 4.5 guarantees a unique solution such that673

‖u0,0‖Hs+2 ≤ Ce‖U0,0‖Hs+3/2 .674

So we choose K ≥ Ce‖U0,0‖Hs+3/2 . We now assume the estimate (5.18) for all n < n675

and study un,0. From Theorem 4.5 we have a unique solution satisfying676

‖un,0‖Hs+2 ≤ Ce{‖F̃n,0‖Hs + ‖Un,0‖Hs+3/2 + ‖P̃n,0‖Hs+1/2},677

and appealing to the hypothesis (5.17) and Lemma 5.2 we find678

‖un,0‖Hs+2 ≤ Ce{KUB
n
U + 2KC

[
|f |Cs+2Bn−1 + |f |2Cs+2Bn−2

]
}.679

We are done provided we choose K ≥ 3CeKU and680

B > max
{
BU , 6CeC|f |Cs+2 ,

√
6CeC|f |Cs+2

}
.681

682

Analogous results hold in the lower field which we record here for completeness.683

Theorem 5.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,0 ∈ Hs+3/2([0, d])684

such that685

‖Wn,0‖Hs+3/2 ≤ KWB
n
W ,686
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for constants KW , BW > 0, then wn,0 ∈ Hs+2([0, d]× [−b, 0]) and687

‖wn,0‖Hs+2 ≤ KBn,688

for constants K,B > 0.689

5.3. Joint Analyticity of the Upper Field. We can now proceed to prove690

our main result concerning joint analyticity of the transformed field.691

Theorem 5.4. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,m ∈ Hs+3/2([0, d])692

such that693

(5.21) ‖Un,m‖Hs+3/2 ≤ KUB
n
UD

m
U ,694

for constants KU , BU , DU > 0, then un,m ∈ Hs+2([0, d]× [0, a]) and695

(5.22) ‖un,m‖Hs+2 ≤ KBnDm,696

for constants K,B,D > 0.697

As before, we establish this result by induction.698

Lemma 5.5. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and699

(5.23) ‖un,m‖Hs+2 ≤ KBnDm, ∀n ≥ 0,m < m,700

for constants K,B,D > 0 then there exists a constant C > 0 such that701

max{‖F̃n,m‖Hs ,‖P̃n,m‖Hs+1/2} ≤ KC
{
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +702

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2Bn−2Dm +703

|f |2Cs+2Bn−2Dm−1 + |f |2Cs+2Bn−2Dm−2

}
.704

705
706

Proof. [Lemma 5.5] We begin with F̃n,m and note that from (5.14), (5.9), (5.10),707

and (5.11) we have708

‖F̃n,m‖2Hs ≤ ‖Axx1 ∂xun−1,m‖2Hs+1 + ‖Axz1 ∂zun−1,m‖2Hs+1 + ‖Azx1 ∂xun−1,m‖2Hs+1709

+ ‖Azz1 ∂zun−1,m‖2Hs+1 + ‖Axx2 ∂xun−2,m‖2Hs+1 + ‖Axz2 ∂zun−2,m‖2Hs+1710

+ ‖Azx2 ∂xun−2,m‖2Hs+1 + ‖Azz2 ∂zun−2,m‖2Hs+1 + ‖Bx1∂xun−1,m‖2Hs711

+ ‖Bz1∂zun−1,m‖2Hs + ‖Bx2∂xun−2,m‖2Hs + ‖Bz2∂zun−2,m‖2Hs712

+ ‖2iα∂xun,m−1‖2Hs + ‖(γu)2un,m−2‖2Hs + ‖2(γu)2un,m−1‖2Hs713

+ ‖2S1iα∂xun−1,m‖2Hs + ‖2S1iα∂xun−1,m−1‖2Hs + ‖S1(γu)2un−1,m−2‖2Hs714

+ ‖2S1(γu)2un−1,m−1‖2Hs + ‖S1(γu)2un−1,m‖2Hs + ‖2S2iα∂xun−2,m‖2Hs715

+ ‖2S2iα∂xun−2,m−1‖2Hs + ‖S2(γu)2un−2,m−2‖2Hs716

+ ‖2S2(γu)2un−2,m−1‖2Hs + ‖S2(γu)2un−2,m‖2Hs .717718

We now estimate each of these by applying Lemmas 4.4 and 4.6. We begin with719

‖Axx1 ∂xun−1,m‖Hs+1 = ‖ − (2/a)f∂xun−1,m‖Hs+1720

≤ (2/a)M|f |Cs+1‖un−1,m‖Hs+2721

≤ (2/a)M|f |Cs+1KBn−1Dm,722723
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and in a similar fashion724

‖Axz1 ∂zun−1,m‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂zun−1,m‖Hs+1725

≤ (Za/a)M|∂xf |Cs+1‖un−1,m‖Hs+2726

≤ (Za/a)M|f |Cs+2KBn−1Dm.727728

Also,729

‖Azx1 ∂xun−1,m‖Hs+1 = ‖ − ((a− z)/a)(∂xf)∂xun−1,m‖Hs+1730

≤ (Za/a)M|∂xf |Cs+1‖un−1,m‖Hs+2731

≤ (Za/a)M|f |Cs+2KBn−1Dm,732733

and we recall that Azz1 ≡ 0. Moving to the second order734

‖Axx2 ∂xun−2,m‖Hs+1 = ‖(1/a2)f2∂xun−2,m‖Hs+1735

≤ (1/a2)M2|f |2Cs+1‖un−2,m‖Hs+2736

≤ (1/a2)M2|f |2Cs+1KBn−2Dm.737738

Also,739

‖Axz2 ∂zun−2,m‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂xun−2,m‖Hs+1740

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,m‖Hs+2741

≤ (Za/a
2)M2|f |2Cs+2KBn−2Dm,742743

and744

‖Azx2 ∂xun−2,m‖Hs+1 = ‖((a− z)/a2)f(∂xf)∂zun−2,m‖Hs+1745

≤ (Za/a
2)M2|f |Cs+1 |∂xf |Cs+1‖un−2,m‖Hs+2746

≤ (Za/a
2)M2|f |2Cs+2KBn−2Dm,747748

and749

‖Azz2 ∂zun−2,m‖Hs+1 = ‖((a− z)2/a2)(∂xf)2∂zun−2,m‖Hs+1750

≤ (Z2
a/a

2)M2|∂xf |2Cs+1‖un−2,m‖Hs+2751

≤ (Z2
a/a

2)M2|f |2Cs+2KBn−2Dm.752753

Next for the B1 terms754

‖Bx1∂xun−1,m‖Hs = ‖(1/a)(∂xf)∂xun−1,m‖Hs755

≤ (1/a)M|∂xf |Cs‖un−1,m‖Hs+1756

≤ (1/a)M|f |Cs+1KBn−1Dm,757758

and Bz1 ≡ 0. Moving to the second order759

‖Bx2∂xun−2,m‖Hs = ‖(−1/a2)f(∂xf)∂xun−2,m‖Hs760

≤ (1/a2)M2|f |Cs |∂xf |Cs‖un−2,m‖Hs+1761

≤ (1/a2)M2|f |2Cs+1KBn−2Dm,762763
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and764

‖Bz2∂zun−2,m‖Hs = ‖(−1/a2)(a− z)(∂xf)2∂zun−2,m‖Hs765

≤ (Za/a
2)M2|∂xf |2Cs‖un−2,m‖Hs+1766

≤ (Za/a
2)M2|f |2Cs+1KBn−2Dm.767768

To address the S0, S1, S2 terms we have769

‖2iα∂xun,m−1‖Hs ≤ 2α‖un,m−1‖Hs+1770

≤ 2αKBnDm−1,771772

and773

‖(γu)2un,m−2‖Hs ≤ (γu)2‖un,m−2‖Hs774

≤ (γu)2KBnDm−2,775776

and777

‖2(γu)2un,m−1‖Hs ≤ 2(γu)2‖un,m−1‖Hs778

≤ 2(γu)2KBnDm−1,779780

and781

‖2S1iα∂xun−1,m‖Hs = ‖(−4/a)iαf∂xun−1,m‖Hs782

≤ (4/a)αM|f |Cs‖un−1,m‖Hs+1783

≤ (4/a)αM|f |CsKBn−1Dm,784785

and786

‖2S1iα∂xun−1,m−1‖Hs = ‖(−4/a)iαf∂xun−1,m−1‖Hs787

≤ (4/a)αM|f |Cs‖un−1,m−1‖Hs+1788

≤ (4/a)αM|f |CsKBn−1Dm−1,789790

and791

‖S1(γu)2un−1,m−2‖Hs = ‖(−2/a)(γu)2fun−1,m−2‖Hs792

≤ (2/a)(γu)2M|f |Cs‖un−1,m−2‖Hs793

≤ (2/a)(γu)2M|f |CsKBn−1Dm−2,794795

and796

‖2S1(γu)2un−1,m−1‖Hs = ‖(−4/a)(γu)2fun−1,m−1‖Hs797

≤ (4/a)(γu)2M|f |Cs‖un−1,m−1‖Hs798

≤ (4/a)(γu)2M|f |CsKBn−1Dm−1,799800

and801

‖S1(γu)2un−1,m‖Hs = ‖(−2/a)(γu)2fun−1,m‖Hs802

≤ (2/a)(γu)2M|f |Cs‖un−1,m‖Hs803

≤ (2/a)(γu)2M|f |CsKBn−1Dm,804805
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and806

‖2S2iα∂xun−2,m‖Hs = ‖(2/a2)iαf2∂xun−2,m‖Hs807

≤ (2/a2)αM2|f |2Cs‖un−2,m‖Hs+1808

≤ (2/a2)αM2|f |2CsKBn−2Dm,809810

and811

‖2S2iα∂xun−2,m−1‖Hs = ‖(2/a2)iαf2∂xun−2,m−1‖Hs812

≤ (2/a2)αM2|f |2Cs‖un−2,m−1‖Hs+1813

≤ (2/a2)αM2|f |2CsKBn−2Dm−1,814815

and816

‖S2(γu)2un−2,m−2‖Hs = ‖(1/a2)(γu)2f2un−2,m−2‖Hs817

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,m−2‖Hs818

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm−2,819820

and821

‖2S2(γu)2un−2,m−1‖Hs = ‖(2/a2)(γu)2f2un−2,m−1‖Hs822

≤ (2/a2)(γu)2M2|f |2Cs‖un−2,m−1‖Hs823

≤ (2/a2)(γu)2M2|f |2CsKBn−2Dm−1,824825

and826

‖S2(γu)2un−2,m‖Hs = ‖(1/a2)(γu)2f2un−2,m‖Hs827

≤ (1/a2)(γu)2M2|f |2Cs‖un−2,m‖Hs828

≤ (1/a2)(γu)2M2|f |2CsKBn−2Dm.829830

We satisfy the estimate for ‖F̃n,m‖Hs provided that we choose831

C > max

{(
2α+ 3(γu)2

)
,

(
3 + 2Za + 8α+ 8(γu)2

a

)
M,832 (

2 + 3Za + Z2
a + 4α+ 4(γu)2

a2

)
M2

}
.833

834

The estimate for P̃n,m follows from the mapping properties of Tu,835 ∥∥∥P̃n,m∥∥∥
Hs+1/2

=

∥∥∥∥∥−1

a
f(x)

m∑
r=0

Tum−r [un−1,r] +
m−1∑
r=0

Tum−r [un,r]

∥∥∥∥∥
Hs+1/2

836

≤ (1/a)M|f |Cs+1/2+η

m∑
r=0

∥∥Tum−r [un−1,r]
∥∥
Hs+1/2 +

m−1∑
r=0

∥∥Tum−r [un,r]
∥∥
Hs+1/2837

≤ (1/a)M|f |Cs+1/2+ηCTu
m∑
r=0

‖un−1,r‖Hs+3/2 + CTu
m−1∑
r=0

‖un,r‖Hs+3/2838

≤ (1/a)M|f |Cs+1/2+ηCTuKB
n−1

(
Dm+1 − 1

D − 1

)
+ CTuKB

n

(
Dm − 1

D − 1

)
,839

840
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and provided that D > 2 and841

C > max
{

(1/a)MCTuD,CTuD
}

842

we are done.843

With this information, we can now prove Theorem 5.4.844

Proof. [Theorem 5.4] We proceed by induction in m and at order m = 0 Theo-845

rem 5.1 guarantees a unique solution such that846

‖un,0‖Hs+2 ≤ KBn, ∀n ≥ 0.847

We now assume the estimate (5.22) for all n,m < m and study un,m. From Theorem848

4.5 we have a unique solution satisfying849

‖un,m‖Hs+2 ≤ Ce{‖F̃n,m‖Hs + ‖Un,m‖Hs+3/2 + ‖P̃n,m‖Hs+1/2},850

and appealing to the hypothesis (5.21) and Lemma 5.5 we find851

‖un,m‖Hs+2 ≤ Ce

{
KUB

n
UD

m
U + 2KC

(
BnDm−1 +BnDm−2 + |f |Cs+2Bn−1Dm +852

|f |Cs+2Bn−1Dm−1 + |f |Cs+2Bn−1Dm−2 + |f |2Cs+2Bn−2Dm +853

|f |2Cs+2Bn−2Dm−1 + |f |2Cs+2Bn−2Dm−2

)}
.854

855

We are done provided we choose K ≥ 9CeKU and856

B > max
{
BU , 18CeC|f |Cs+2 ,

√
18CeC|f |Cs+2

}
,857

D > max
{

1, DU , 18CeC,

√
18CeC

}
.858

859

860

As before, a similar analysis will establish the joint analyticity of the lower field861

which we now record.862

Theorem 5.6. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,m ∈ Hs+3/2([0, d])863

such that864

‖Wn,m‖Hs+3/2 ≤ KWB
n
WD

m
W ,865

for constants KW , BW , DW > 0, then wn,m ∈ Hs+2([0, d]× [−b, 0]) and866

‖wn,m‖Hs+2 ≤ KBnDm,867

for constants K,B,D > 0.868

6. Analyticity of the Dirichlet–Neumann Operators. Now that we have869

established the joint analyticity of the upper field u we move to establishing the870

analyticity of the upper layer DNO, G(g) = G(εf). To begin we give a recursive871

estimate of the H̃n,m appearing in (5.16).872
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Lemma 6.1. Given an integer s ≥ 0, if f ∈ Cs+2([0, d]) and873

(6.1) ‖un,m‖Hs+2 ≤ KBnDm, ‖Gn,m‖Hs+1/2 ≤ K̃B̃nD̃m, ∀ n < n,m ≥ 0,874

for constants K,B,D, K̃, B̃, D̃ > 0 where K̃ ≥ K, B̃ ≥ B, D̃ ≥ D, then there exists a875

constant C̃ > 0 such that876

(6.2) ‖H̃n,m‖Hs+1/2 ≤ K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃n−2D̃m

}
.877

Proof. [Lemma 6.1] From (5.16) we estimate878

‖H̃n,m‖Hs+1/2 ≤M|∂xf |Cs+1/2+η‖∂xun−1,m(x, 0)‖Hs+1/2879

+
1

a
M|f |Cs+1/2+η‖Gn−1,m(f)[U ]‖Hs+1/2880

+
1

a
M2|f |Cs+1/2+η |∂xf |Cs+1/2+η‖∂xun−2,m(x, 0)‖Hs+1/2881

+M2|∂xf |2Cs+1/2+η‖∂zun−2,m(x, 0)‖Hs+1/2 .882883

This gives884

‖H̃n,m‖Hs+1/2 ≤ K̃
{
M|f |Cs+2B̃n−1D̃m +

1

a
M|f |Cs+2B̃n−1D̃m

885

+
1

a
M2|f |2Cs+2B̃n−2D̃m +M2|f |2Cs+2B̃n−2D̃m

}
,886

887

and we are done provided888

C̃ ≥
(

1 +
1

a

)
max{M,M2}.889

890

We now have everything we need to prove the analyticity of the upper layer DNO.891

Theorem 6.2. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Un,m ∈ Hs+3/2([0, d])892

such that893

‖Un,m‖Hs+3/2 ≤ KUB
n
UD

m
U ,894

for constants KU , BU , DU > 0, then Gn,m ∈ Hs+1/2([0, d]) and895

(6.3) ‖Gn,m‖Hs+1/2 ≤ K̃B̃nD̃m,896

for constants K̃, B̃, D̃ > 0.897

Proof. [Theorem 6.2] As before, we work by induction in n. At n = 0 we have898

from (5.13) that899

G0,m = −∂zu0,m(x, 0),900

and from Theorem 5.4 we have901

‖G0,m‖Hs+1/2 = ‖∂zu0,m(x, 0)‖Hs+1/2 ≤ ‖u0,m‖Hs+2 ≤ KDm.902

So we choose K̃ ≥ K and D̃ ≥ D. We now assume B̃ ≥ B and the estimate (6.3) for903

all n < n; from (5.13) we have904

‖Gn,m(f)[U ]‖Hs+1/2 ≤ ‖∂zun,m(x, 0)‖Hs+1/2 + ‖H̃n,m(x)‖Hs+1/2 .905
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Using the inductive hypothesis, Lemma 6.1, and Theorem 5.4 we have906

‖Gn,m(f)[U ]‖Hs+1/2 ≤ KBnDm + K̃C̃
{
|f |Cs+2B̃n−1D̃m + |f |2Cs+2B̃n−2D̃m

}
.907

We are done provided K̃ ≥ 2K and908

B̃ ≥ max
{
B, 4C̃|f |Cs+2 , 2

√
C̃|f |Cs+2

}
.909

Finally, a similar approach will give the joint analyticity of the DNO in the lower910

field.911

Theorem 6.3. Given any integer s ≥ 0, if f ∈ Cs+2([0, d]) and Wn,m ∈ Hs+3/2([0, d])912

such that913

‖Wn,m‖Hs+3/2 ≤ KWB
n
WD

m
W ,914

for constants KW , BW , DW > 0, then Jn,m ∈ Hs+1/2([0, d]) and915

(6.4) ‖Jn,m‖Hs+1/2 ≤ K̃B̃nD̃m,916

for constants K̃, B̃, D̃ > 0.917

918

Remark 6.4. For the parametric, (ε, δ), analyticity we investigate in this paper,919

the smoothness we assume of the interface, f(x) ∈ Cs+2, s ≥ 0, is sufficient to justify920

the transformation (5.1) and all of the steps we have taken. We note that our TFE921

approach equivalently states the DNO in terms of the transformed field, u′ (rather922

than u), thereby delivering the analyticity result (Theorem 6.2). However, this is not923

the only result one could ponder. For instance, an interesting query is the (joint)924

smoothness of the DNO with respect to parameters and spatial variable, x. For925

instance, based upon our results in [58], we expect that mandating that f be analytic926

would deliver spatial analyticity of the DNO. Additionally, one could investigate the927

smoothness of the untransformed field, u, which would require the inversion of (5.1)928

and an accounting of its regularity. We leave these fascinating and important follow–929

on questions for future work.930
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Boston, Inc., Boston, MA, second ed., 2002.1022

[40] R. Kress, Linear integral equations, Springer-Verlag, New York, third ed., 2014.1023
[41] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and quasilinear elliptic equations, Aca-1024

demic Press, New York, 1968.1025
[42] N. Lassaline, R. Brechbühler, S. Vonk, K. Ridderbeek, M. Spieser, S. Bisig,1026

B. le Feber, F. Rabouw, and D. Norris, Optical fourier surfaces, Nature, 582 (2020),1027
pp. 506–510.1028

[43] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations, Soci-1029
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. Steady-state1030
and time-dependent problems.1031

[44] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, American1032
Mathematical Society, Providence, RI, second ed., 2001.1033

[45] N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S.-H. Oh, Ultrasmooth metallic1034
films with buried nanostructures for backside reflection-mode plasmonic biosensing, An-1035
nalen der Physik, 524 (2012), pp. 687–696.1036

[46] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdo-1037
mains, in Third International Symposium on Domain Decomposition Methods for Partial1038
Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, PA, 1990, pp. 202–223.1039

[47] S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.1040
[48] D. M. Milder, An improved formalism for rough-surface scattering of acoustic and electromag-1041

netic waves, in Proceedings of SPIE - The International Society for Optical Engineering1042
(San Diego, 1991), vol. 1558, Int. Soc. for Optical Engineering, Bellingham, WA, 1991,1043
pp. 213–221.1044

[49] D. M. Milder, An improved formalism for wave scattering from rough surfaces, J. Acoust.1045
Soc. Am., 89 (1991), pp. 529–541.1046

[50] M. Moskovits, Surface–enhanced spectroscopy, Reviews of Modern Physics, 57 (1985), pp. 783–1047
826.1048
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