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Understanding the fragile-to-strong transition in silica from microscopic dynamics
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In this work, we revisit the fragile-to-strong transition (FTS) in the simulated BKS silica from the
perspective of microscopic dynamics in an effort to elucidate the dynamical behaviors of fragile and
strong glass-forming liquids. Softness, which is a machine-learned feature from local atomic struc-
tures, is used to predict the microscopic activation energetics and long-term dynamics. The FTS is
found to originate from a change in the temperature dependence of the microscopic activation ener-
getics. Furthermore, results suggest there are two diffusion channels with different energy barriers in
BKS silica. The fast dynamics at high temperatures is dominated by the channel with small energy
barriers (<~1 eV), which is controlled by the short-range order. The rapid closing of this diffusion
channel when lowering temperature leads to the fragile behavior. On the other hand, the slow
dynamics at low temperatures is dominated by the channel with large energy barriers controlled
by the medium-range order. This slow diffusion channel changes only subtly with temperature,
leading to the strong behavior. The distributions of barriers in the two channels show different tem-
perature dependences, causing a crossover at ~3100 K. This transition temperature in microscopic
dynamics is consistent with the inflection point in the configurational entropy, suggesting there is a

fundamental correlation between microscopic dynamics and thermodynamics.

I. INTRODUCTION

Glass-forming liquids based on the temperature de-
pendence of dynamical slowing-down can be classified
into two groups.[1, 2] If the viscosity (or other simi-
lar dynamic properties like diffusion coefficient and re-
laxation time) shows Arrhenius-like temperature depen-
dence, e.g., in the case of silica, the liquid is referred to
as “strong”. In other liquids including most organic and
metallic glass formers, which are referred to as “fragile”,
the slowing-down of the dynamics can be more drastic,
with properties like viscosity showing super-Arrhenius
temperature dependence. Fragility, which can be defined
based on the degree of deviation from the Arrhenius be-
havior, is one of the most important concepts in glass
physics, as it leads to intriguing questions on why dy-
namics slows down so quickly in some liquids and what
controls the different behaviors.[3] To answer these ques-
tions, the fragile-to-strong transition (FTS, or fragile-to-
strong crossover) discovered in many glass-forming sys-
tems such as silica has attracted much attention.[4-7]
During FTS, a crossover in the liquid’s dynamic behav-
ior occurs without compositional changes or significant
structural transformations. Understanding the cause of
FTS could therefore provide unique insights into the ori-
gin of fragility.

The perspective on FTS so far is largely based on re-
lating dynamics to thermodynamics, motivated by the
Adam-Gibbs relation and further supported by the ran-
dom first-order transition theory (RFOT).[8, 9] The ex-
planation focuses on the configurational entropy S. de-
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scribing the number of inherent states, i.e., local minima,
on potential energy landscape (PEL) explored by the sys-
tem in equilibrium.[10, 11] Saika-Voivod et al. demon-
strated based on molecular dynamics (MD) simulations
that the Adam-Gibbs relation is obeyed in liquid silica,
and that an inflection in S. may be responsible for the
FTS.[5, 12] The work related this thermodynamic inflec-
tion to polyamorphism, a liquid-liquid phase transition,
but this is not supported by experiments or simulations.
Later, Saksaengwijit et al. explained the thermodynamic
phenomenon by a depletion of inherent states below a
cutoff on the silica PEL, inferred by MD simulations.[13]
In this view, as the distribution of the sampled states
touches the cutoff of the PEL, S. decreases more and
more slowly with lowering temperature and eventually
becomes constant.

However, discrepancies still exist in the understand-
ings of FTS. In our recent replica exchange molecular
dynamics (REMD) simulations of silica,[14] we did not
observe a sudden depletion of states around the FTS tem-
perature (i.e., from 3500 K down to 2000 K, as shown
in Supplementary Information Fig. S2a). We attribute
this discrepancy with the previous study to the ability in
efficiently achieving equilibrium in REMD simulations,
which is difficult in regular MD simulations of silica lig-
uids below the FTS. Nonetheless, our simulation indeed
confirmed the existence of an inflection point in S, at the
FTS, as shown in SI Fig. S2b. The decrease of S, be-
comes slower as silica enters the strong region. However,
because this can no longer be attributed to the sudden
depletion of the states on the PEL, the source of this
inflection point remains unclear.

In addition, the FTS may also be related to changes
in the dynamics of local atomic rearrangements (here-



inafter referred to as microscopic dynamics), which in-
volves predominantly atomic hopping in the covalent net-
work of silica. Saksaengwijit et al. observed the inher-
ent structures above and below the FTS differ in the
concentrations of short range defects.[13] This suggests
that bond breaking, and therefore the microscopic dy-
namics, is more active above the transition. There have
been debates on the contribution of microscopic dynam-
ics to the dynamic slowdown in glass-forming liquids in
general.[15, 16] Understanding the role of microscopic dy-
namics in FTS would provide direct insights to help re-
solve this issue.

Here, we investigate the features of the PEL related
to microscopic dynamics, i.e., distribution of activation
barriers, in BKS silica liquid across the FTS, by means
of machine learning (ML). Obtaining accurate statistics
of microscopic activation barriers using traditional MD
approaches would involve identifying large numbers of
atom jumps (for both dynamically active and inactive
atoms) and computing the associated barrier heights,
which is very challenging computationally. Recently, Liu
and colleagues developed a ML method that can suc-
cessfully connect local atomic structure to microscopic
dynamics.[17, 18] The ML-generated quantity “softness”,
which can be obtained solely from atomic structures,
demonstrates clear correlations with dynamics in various
systems.[19, 20] Once the ML model is carefully trained
and tested, microscopic activation barriers for individual
atoms can be estimated from their local atomic environ-
ments based on their softnesses. By analyzing inherent
structures collected from equilibrated MD simulations,
we can examine how the barrier distribution changes
with temperature in both fragile and strong silica liquids,
thereby elucidating the role of microscopic dynamics in
FTS.

II. RESULTS

A. Predicting diffusion from local atomic
structures

The machine learning model is a key element of this
study. Based on the methodology from Schoenholz et
al.,[18, 21] we implemented several modifications to im-
prove the ML efficiency and accuracy for the silica sys-
tem. Instead of using hundreds of symmetry functions to
train the model, we only employ 10 structural features
as inputs. The inputs include means and variances of
distances and angles (listed in Sec. IV A) based on the
tetrahedral orders of SiO4 and SiSi4 in silica. The out-
put is whether an atom will rearrange in the next 1 ps.
This is a smaller time window than previously used be-
cause we found it gives a better prediction accuracy. The
ML training datasets are generated from inherent struc-
tures obtained from MD trajectories of equilibrated su-
percooled BKS silica liquid at 2600 K. After training, the
accuracy of 86% (and the recall, measuring the fraction

of rearranging atoms that are correctly predicted, 79%)
was achieved, which is higher than previously obtained
for the same system.[21] The ML quantity “softness” is
defined similarly to the previous studies, i.e., as the dis-
tance to the hyperplane for classification. Here we focus
on Si atoms although we have obtained similar results
were with O atoms as well. Details of the ML methods
and the softness calculation can be found in Sec. IV A
and SI.

After training, the ML model is utilized to study the
FTS in two steps. In the first step, we use softness to es-
timate microscopic dynamics and the associated energy
barrier statistics. The relationship between softness and
activation energy of microscopic dynamics is established
by applying the ML model to various temperatures from
2600 to 4000 K and statistically computing the rearrange-
ment probability as a function of softness (denoted as
s). For the selected time window of 1 ps, the total rear-
rangement probability, Pr(t=1 ps) can be expressed as a
function of an elementary rearrangement probability P,
(or atomic hopping probability) by

Prlt<<7,)=1-(1-P)" (1)
where n is the number of hopping attempts within ¢. n
within the temperature range we investigate is assumed
as 30 for 1 ps, based on the vibrational density of states of
amorphous silica.[22; 23] The previous study used n =1
for this value.[21] Since the hopping probability is small,
choosing different n values mainly affects the absolute
value of P, we obtain rather than its trend with temper-
ature. The elementary rearrangement probability P. can
be described based on the transition state theory as
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where AG, AS, and AH are free energy, entropy, and
enthalpy of activation, respectively. Note that the small
variation in the hopping attempt frequency over the tem-
perature range is accounted for through the prefactor
term of AS. As shown in Fig. 1la, the rearrangement
probability for atoms with a given softness shows an Ar-
rhenius behavior with temperature. The slope of the Ar-
rhenius function gives AH and the intercept AS. Fig. 1b
summarizes the calculated AH and AS as functions of
softness s. The enthalpy and entropy of activation both
decrease with increasing softness. This relationship can
be fitted with exponential function AH = Aexp(—B-s),
where A and B are fitting parameters. Because a mini-
mum value of zero is expected for AH (i.e., zero barrier
height) but not for AS (which is simply the entropy of
the transition state with respect to the ground state), a
constant is included to the exponential fitting for AS,
AS = Aexp(—B - s) + ASy. Nevertheless, the activation
free energy can now be established as a function of soft-
ness. Combined with softness distributions obtained by
applying the ML model to inherent structures generated
from MD simulations, we are able to predict microscopic
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FIG. 1. Application of the trained machine learning model to
silica liquids at temperatures from 2600 to 4000 K. (a) Arrhe-
nius plots of elementary hopping probability for atoms with
different softnesses. The arrow points to increasing softness
in different lines from -2.5 to 5.0. (b) Enthalpy, entropy, and
free energy of activation as functions of softness. The lines
are exponential fittings detailed in the main text.

dynamics and associated activation energy distribution
for silica liquids at various temperatures.

In the second step, we investigate FTS using softness
based on the correlation between short- and long- term
dynamics in silica liquids. The elementary hopping prob-
ability predicted so far is linearly related to short-term
dynamics, represented by the mean squared displace-
ments (MSD) over a short time relative to the relaxation
time, e.g., 1 ps, assuming a constant hopping distance R:

AG
7))
kT
3)
Note that the short-term dynamics here is based on in-
herent structures and therefore the thermal vibrations
have been excluded. As shown in Fig. Sda, MSDig(1ps)
predicted by softness agree well with those calculated di-
rectly from MD trajectories. However, the FTS in silica

MSDys(t << 7o) (R2 exp(— AG

kB—T))eq X R2<exp(—

liquid manifests in long-term dynamics, e.g., in bulk dif-
fusion coefficients. To bridge the dynamics at different
time frames, we found that the bulk diffusivity in sil-
ica liquid is connected to the elementary hopping prob-
ability (or short-term/microscopic dynamics) through a
quadratic relationship:

AG

kB—T)ﬁq (4)

D  (exp(—

where « is found to be around 2 based on MD simula-
tion results. This relationship is phenomenological and
based on the evolution of the time dependence of MSD
from short- to long- term. The details of the calculations
are reported in SI. Extrapolating short-term dynamics
to long term using this relationship, we can now esti-
mate bulk diffusivity using softness. As shown in Fig. 2,
diffusion coefficients of Si atoms predicted by softness
are in good agreements with those calculated directly
from 300 ns MD trajectories. Similar to the diffusion
behavior directly observed in MD simulations, a FTS is
clearly present in the softness-predicted diffusion coef-
ficient around 3100 K. By demonstrating the FTS can
be predicted from local structures that control atomic
hopping, we show that the transition may be rooted in
microscopic dynamics that is directly resolved by soft-
ness.

B. Activation energetics of microscopic dynamics

We now utilize the ML model to further investigate the
origin of the FTS. Taking atomic snapshots of the silica
liquid, atoms in different local environments have differ-
ent softnesses, representing their propensity for different
microscopic dynamics. The softness distributions in lig-
uid silica at different temperatures are shown in Fig. 3a.
At the highest temperature we investigated, 4000 K, the
softness distribution shows a peak around -1 with a long
tail of large softness extending to s > 20. At this tem-
perature, atoms with large softnesses, i.e., that can easily
hop or rearrange, pervade in the liquid. The tail of large
softnesses shrinks in proportion to the main peak as the
temperature decreases. At 2600 K, most atoms show low
propensity for local rearrangement, i.e., covered under
the main peak. The distinct peak around -1 present at
all temperatures suggests there is a main type of atomic
environments in silica liquids associated with slow mi-
croscopic dynamics. Our ML results indicate this corre-
sponds to the ideal tetrahedral order in the short range.
Atoms without such ordered atomic environments, cap-

“@tured by the long tail of large softnesses, contribute to

fast microscopic dynamics. The relative proportions of
the two groups change with temperature. As such, when
the averaged softness in the liquid is plotted versus tem-
perature in Fig. 3b, two linear portions can be observed
with a break of slope at ~3100 K, coinciding with the
FTS.
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FIG. 2. Diffusion coefficients of Si atoms predicted by softness
compared to those calculated directly from MD simulations.
The diffusion coefficient is found approximately proportional
to the square of the elementary hopping probability. Details
of this relationship are discussed in SI. The dashed line is
an Arrhenius fitting of the low-temperature data. An FTS
is clearly shown in the predicted diffusion coefficients around
3100 K, as noted by the arrow. The inset shows the diffusion
coefficients around the experimental T, predicted by extrapo-
lating softness distribution to lower temperatures (detailed in
SI Sec. S4) are in good agreement with experimental data.[24]

We further predict the distributions of microscopic ac-
tivation enthalpies AH, i.e., the energy barriers for the
elementary atomic hops, based on the relationship in Fig.
1b. Distributions of the energy barriers at all temper-
atures are clearly bimodal, as shown in Fig. 3c, with
one main peak at ~4 eV and a smaller peak around
zero. Again, the main peak corresponds to atoms in
well-coordinated tetrahedral environments. Hopping of
these atoms is associated with substantial energy bar-
riers. As the temperature decreases, the proportion of
these atoms and associated energy barrier height both
increase slowly, as suggested by the main peak increasing
in intensity and shifting right. The changes in this peak
become even more subtle below the FTS, suggesting the
coordination environment becomes rather stable for these
atoms at low temperatures. The secondary peak around
AH ~ 0 represents a microscopic dynamics channel as-
sociated with very small energy barriers. With lowering
temperature, the height of this peak decreases quadrat-
ically in the case of liquid silica (please refer to SI for
more detailed analysis).[25] As a result of different tem-
perature dependencies of the two microscopic dynamics
channels, the averaged activation enthalpy shows a tran-
sition around 3100 K, as shown in Fig. 3d. Note that,
although the overall activation energy associated with the
bulk diffusivity is not equal to the averaged microscopic

activation enthalpy, they are linearly related, as shown
in Fig. S6a. The activation energy in the low tempera-
ture region changes slowly with temperature, leading to
a stronger behavior than the high temperature region.

As the other factor in the elementary rearrangement
probability (Equation 2), the activation entropy is ap-
proximately linear to the average activation enthalpy, as
shown in Fig. 4a. This relationship given by AH =
Tonset AS + AHy is consistent with the enthalpy-entropy
compensation observed in many systems.[26] The slope
Tonset ~ 5360 K indicates an onset temperature where
diffusion of Si atoms in silica is independent of the lo-
cal atomic structure, separating the activated dynam-
ics regime for supercooled liquids and the free diffusion
regime of high-T liquids. It is consistent with the tem-
perature where inherent enthalpy erg starts to show the
typical decreasing trend with temperature during melt-
quenching simulations of BKS silica.[5, 27] When the en-
tropic contribution to the activation energy is plotted
versus temperature, as shown in Figure 4b, a break of
slope is again evident at ~3100 K, separating the fragile
and strong regions. It is worth mentioning that, calcu-
lating the bulk diffusivity by extrapolating the softness
distribution in Fig. 3b to the experimental glass tran-
sition temperature (detailed in SI Sec. S4) results in
a fairly good agreement with the experimental data, as
shown in the inset of Fig 2.[24]

III. DISCUSSION

To summarize, we demonstrate that the FTS in silica
liquid can be explained by changes in the microscopic
dynamics. Specifically, the energy barriers for local re-
arrangements in silica liquid show a bimodal distribu-
tion representing two distinct microscopic channels with
very different barrier heights. The microscopic dynam-
ics channel associated with very small energy barriers
(AH ~ 0 eV), or “barrierless”, closes rapidly as the
temperature decreases, while the activation energetics
of the channel with larger barriers (AH ~ 4 eV) has
a much weaker temperature dependence. This conse-
quently leads to a crossover in the overall activation en-
ergetics at around 3100 K, which manifests itself in the
bulk diffusive dynamics as the FTS. Interestingly, water,
which is known to have a FTS crossover, is also specu-
lated to have similar bimodality of local structures.[28]

By using physically meaningful inputs for machine
learning, we can directly investigate the structural fea-
tures correlating with the two microscopic dynamics
channels (see SI Sec. S5 for details). The smaller en-
ergy barriers have strong correlation with defects in the
short-range order (SRO), including coordination defects,
3-member rings, and highly distorted SiO4 tetrahedra.
Typical structures of these short-range defects are shown
in Fig. 5. These structures have strong tendency to re-
arrange in a short time. The larger energy barriers, on
the other hand, are mostly associated with structures
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FIG. 3. (a) Softness distributions at different temperatures. (b) Average softness as a function of temperature. The subscript
‘eq’ denotes that the structures used for softness statistical analysis are all in equilibrium at the corresponding temperature.
(c) Bimodal distributions of activation enthalpy of microscopic dynamics at different temperatures. (d) Average activation
enthalpy of microscopic dynamics as a function of temperature, showing a kink at ~3100 K corresponding to the FTS.

with near-ideal SRO, i.e., SiO4 tetrahedra with small
distortions. The medium-range order (MRO) for these
structures is usually well established as well, in the form
of SiSiy tetrahedron. Small deviations in the SRO and
MRO from the ideal tetrahedra do lead to some varia-
tions in the softness. It is interesting to note that we
observe the barriers above 4.5 eV are associated with a
specific MRO that involves distorted SiSiy4 tetrahedra in-
volving 4-member rings, suggesting this MRO structure
has strong kinetic stability. Although this MRO struc-
ture only occurs with a small fraction of the Si atoms,
how it is related to silica stability may warrant more in-
vestigations.

The link between fragile behavior and SRO defects has
been noted in the previous study by Saksaengwijit et
al..[13] Here, we propose that the fragile behavior above
FTS can be understood by considering the formation of
SRO defects as thermally activated like the formation

of intrinsic defects in crystals. Previous studies have al-
ready shown the concentration of certain SRO defects in
silica has strong dependence on temperature (or inherent
enthalpy).[25, 29] Some of these defects, such as under or
over coordinated Si, are structurally similar to vacancies
and interstitials in quartz.[30] However, unlike in crys-
tals where point defects and their formation energy are
usually well defined, the SRO defects in glass structures
are complex and may involve different levels and types
of distortions without obvious coordination defects. This
is evident in Fig. 3a where a broad range of large soft-
nesses are observed for atoms in liquid silica. Nonethe-
less, all these SRO defects can be associated with small
microscopic activation energies. As their concentrations
quadratically increase with temperatures, the average ac-
tivation energy decreases, leading to super-Arrhenius be-
havior in dynamics. Based on this explanation, FTS
crossover should be a universal feature of strong glass-
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FIG. 4. (a) A linear relationship between average activation enthalpy and activation entropy of microscopic dynamics. The
slope of 5359 K is an onset temperature where diffusion of Si atoms in silica becomes independent of the local atomic structure,
i.e., the upper bound temperature of the PEL-influenced region (see main text). (b) A break of slope at 3100 K can be more
clearly observed in the entropic contribution of activation energy corresponding to the FTS.

forming liquids. Strong behavior is an indication that
there exist one or more diffusion channels in the liquid,
of which the activation energetics shows weak tempera-
ture dependence. In these liquids, the formation of SRO
defects will open additional diffusion channels associated
with low activation barriers. The crossover occurs when
the defect concentration begins to strongly affect the av-
erage activation energetics. This is echoed by the recent
study on various doped silica melts.[31] For fragile lig-
uids, however, the universality of FTS crossover upon
cooling is unclear because there is no guarantee that all
liquids have diffusion channels with weakly temperature-
dependent energetics.

The insights into the FTS from the microscopic dy-
namics perspective also suggests that the fragile behav-
ior does not require the presence of cooperative motion.
In this study, the fragile behavior in the silica bulk dif-
fusivity is derived from microscopic dynamics under the
Stokes-Einstein relationship. This lends support to the
important role of microscopic dynamics in glass dynam-
ics in the recent debate.[15, 16] It would be interesting
to investigate common fragile liquids to see if there also
exist multiple microscopic dynamics channels that show
different temperature dependencies. These could be due
to SRO defects but can also involve different molecular
motions for organic glasses. For studying defects specifi-
cally, the softness-based ML approach addresses a major
challenge in defining SRO defects in complex amorphous
structures.

Finally, question remains on the connection between
the origins of the FTS in microscopic dynamics and in
configurational entropy. Like in the previous study, our

simulations also show FTS is associated with a inflec-
tion point in the S, vs. T (see SI), suggesting there
may be fundamental correlations between S, and micro-
scopic dynamics. This connection was also suggested re-
cently by Berthier et al. to explain the efficiency of the
SWAP algorithm within the RFOT framework.[16] The
SWAP algorithm, which enhances microscopic dynamics
in Monte Carlo simulations by introducing an additional
degree of freedom associated with particle sizes,[32] is
able to drastically accelerate glass relaxation, a process
that has been explained solely based on thermodynamics
in theories like RFOT.[9, 33] This was explained by that
the effective energy landscape (i.e., the energy landscape
seen by the system) is altered by artificial enhancements
in the microscopic dynamics, circumventing the metasta-
bility that would prevent the system from efficient relax-
ation in the absence of SWAP. This concept is similar
to the concept of ergodicity.[34] Here, by demonstrating
the microscopic dynamics origin of the FTS in silica, we
provide yet another evidence that quantitatively incor-
porating the effect of microscopic dynamics on broken
ergodicity or effective energy landscape is a critical step
towards a full thermodynamic description of supercooled
liquids.

IV. METHODS
A. DMachine learning methods

In this study, the ML model is trained to predict re-
arrangements of individual atoms in silica liquids. The
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FIG. 5. Example local structures of Si atoms with different activation enthalpies or energy barriers of microscopic dynamics.
The small energy barriers (<1 eV) are associated with defects in the short-range order (SRO), including coordination defects
and 3-member rings. The large energy barriers having converged SRO are controlled by the medium-range order (MRO). The
most common structures associated with ~2-4.5 eV barriers are near-ideal SiO4 and SiSis tetrahedra. A less common structure
associated with large barriers (>4.5 eV) involving distorted tetrahedra with 4-member rings is also shown.

input features are local structural features of atoms. Pre-
vious studies and our test studies show that short-range
features within 4 A in silica are the most predictive for
rearrangement. Structures within this range involve SiO4
and SiSiy tetrahedra. Therefore, we use structural fea-
tures based on these two types of tetrahedra instead of a
large number of symmetry functions as in previous stud-
ies. For Si atoms specifically, the 10 input features are
numbers of O around Si in the first neighboring shell,
means and variances of the Si-O bond lengths, means
and variances of the O-Si-O bond angles, numbers of
Si around center Si in the first neighboring shell, means
and variances of the Si-Si distances, means and variances
of the Si-Si(center)-Si angles. The 10 features quanti-
tatively describe how the two types of tetrahedra are
distorted from the ideal geometry, and atoms in more
distorted tetrahedra are expected to rearrange more eas-
ily.

The output of the model is whether an atom will re-
arrange in the next 1 ps (4 ps was used in the pre-
vious study for silica [21]). We find that the accu-
racy of the ML model improves as the time window
becomes shorter, although the computational cost for
preparing and analyzing data also increases significantly.
Besides the previously used hopping probability phnep
(an indicator of atomic displacements within a given
time window),[35, 36] we also employ local connectiv-
ity changes to identify rearrangements. Connectivity is
an important feature of glass formers with a rigid net-
work like SiO2. We find that, although the accuracy at
the training temperature is not strongly affected, using

connectivity helps the ML model make more accurate
predictions at higher temperatures. This is because con-
nectivity can effectively distinguish hops from vibrational
motions. The cutoff to calculate Si-O connectivity is set
to 2 A based on the range of the first peak in the pair
distribution function.

The dataset used for training and testing (25%) are
13,000 inherent structures from MD trajectories at 2600
K, the lowest temperature investigated in this study.
Training the ML model at a low temperature allows the
model to better capture the effect of structure on the
dynamics. However, rearranging atoms are rare com-
paring to non-rearranging atoms at this temperature.
To avoid naive solutions due to class imbalance, the
dataset contains the same number of rearranging and
non-rearranging events. This is achieved by randomly
select a subset of non-rearranging atoms to match the
number of rearranging atoms captured from the simula-
tion.

For ML, we use logistic regression with ls regulariza-
tion in this study.[37] In our tests, its performance is as
good as non-linear classification methods including neu-
ral network, random forest, and previously used support
vector machine. Similar to previous studies, softness
herein is defined to be proportional to the distance to
the hyperplane in the feature space.[18] The hyperplane
is an n— 1 dimensional subspace in an n dimensional fea-
ture space that best separates instances into two classes.
Therefore, softness quantifies the probability of one in-
stance to be classified into one class, that is, rearrange-
ment probability (during 1 ps in our case). Note that the



quantity of ”softness” would have different mathematical
definitions when different ML algorithms are employed.
In logistic regression based classification, softness s has a
simple form s = w2 + b, which is a linear combination
of input features with a bias.

B. Molecular dynamics simulations

The systems contain 1512 Si atoms and 3024 O atoms
in a cubic simulation box with periodic conditions ap-
plied in all three directions. The box size is fixed in the
canonical (NVT) ensemble to maintain a density of 2.28
g/cm®. The time step is 1 fs and the BKS potential is em-
ployed in all the simulations. The cutoff of the potential
is chosen as 6.0 A, which can reproduce the experimental
density of 2.2 g/cm? if the system is melt-quenched under
isothermal-isobaric (NPT) ensemble. The temperature
range investigated covers 2600 to 4000 K. In simulations
at a specific temperature, the initial structure is taken at
the same temperature from a melt-quenching simulation
trajectory with a cooling rate of 0.01 K/ps. To make sure

equilibrium is reached, the system is annealed at each
temperature for a sufficiently long time with respect to
the relaxation time calculated the from intermediate scat-
tering function (e.g., the system was annealed for >200
ns at 2600 K, comparing with the relaxation time of ~50
ns, as shown in Fig. S5). To obtain inherent structures,
energy minimization is performed using an MD-based ap-
proach that instantaneously quenches the structure to 0
K under 1 bar pressure. The inherent structure is then
obtained after continuing the simulation at 0 K for 10 ps.
We find this is sufficient to converge the change in the
system energy to below 10~# meV per atom in all cases.
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S1. CONFIGURATIONAL ENTROPY

As introduced in the main text, the fragile-to-strong
transition (FTS) in silica has been so far explained based
on configurational entropy. In this work, we recalcu-
late the configurational entropy of silica based on our
replica exchange molecular dynamics (REMD) simula-
tions to confirm this explanation. We apply the method
previously used for calculating configurational entropy
calculations,[1] with the formalism proposed by Stillinger
and Weber.[2] The basic idea is to count the number of
inherent structures apply the following equation

Sconf(eIS)/kB = log[P(6187T)] + BeIS + Bf(ﬁ’els) (1)

where erg is the potential energy or enthalpy of the inher-
ent structure, P(ers, T) is the probability of sampling erg
at T, f(B, ers) is the free energy of the system confined in
one energy well with erg, and 8 = 1/kgT. The method
assumes that the energy wells on the potential energy
landscape (PEL) have similar shapes independent of erg,
therefore Equation 1 can be superimposed at different
temperatures by shifting 8f(8).

* bu.wang@wisc.edu
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FIG. S1. Probability distributions of energies of inherent
structures ers in REMD simulations at 30 temperatures from
2000 to 3572 K. The distributions at the lowest 6 tempera-
tures below 2300 K show narrower main peaks and secondary
peaks due to not completely reaching equilibrium. The inset
plots the intermediate product for calculating configurational
entropy as in Equation 1.

In our REMD simulations, we run replicas in the
isothermal-isobaric (NPT) ensemble at 30 temperatures
between 2000 K and 3572 K. The temperature range is
selected to cover the fictive temperature of silica iden-
tified in the melt-quenching simulations and the melt-
ing point. For simulation efficiency, the 30 temperatures
are distributed to yield similar exchange acceptance rates
between all the neighboring temperatures (with a gradu-
ally increasing temperature interval). The inherent struc-
tures are obtained from snapshots of trajectories by en-
ergy minimization. The simulation system contains 150
Si atoms and 300 O atoms in cubic simulation boxes. The
BKS potential is employed for all the simulations with a
cutoff of 8.5 A. More details of the simulations can be
found in reference. 3]

The probability distributions of energies of inherent
structures erg at the simulated temperatures are shown
in Fig. S1 and the results before shifting 8 f(3) are shown
in the inset. Note that the distributions at the low-
est 6 temperatures below 2300 K show narrower main
peaks and secondary peaks because equilibrium is not
reached. From these distributions, we can calculate the
relative change of configurational entropy with tempera-
ture based on Equation 1. The absolute reference used
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FIG. S2. Configurational entropy of silica as a function of
(a) energy of inherent structure ers and (b) temperature, cal-
culated based on REMD simulation results at temperatures
from 2000 K to 3572 K. The solid line in (a) is a quadratic
fitting using data from only high temperatures, and the line
in (b) is a cubic fitting using data from all the temperatures.
The inflection point in (b) explains the FTS transition based
on the Adam-Gibbs relation, confirming the argument from
Saika-Voivod et al..[6] However, the depletion of states in sil-
ica PEL proposed by Saksaengwijit et al. as indicated by the
dashed point line in (a), is not supported by our data.[5].

here is the same as in the previous work.[4]. Figure S2
shows the calculated configurational entropy of silica as a
function of e;g and temperature. The depletion of states
in silica PEL proposed by Saksaengwijit et al., plotted
as the dashed point line in (a), is not supported by our
data.[5] However, the Scons inflection point in (b) does
explain the FTS transition based on the Adam-Gibbs
relation, confirming the explanation by Saika-Voivod et
al..[6] Note that the calculated Scons in (a) at the low-
est temperatures are slightly lower than the fitting curve
based on high temperature data, which again is a result
of the insufficient sampling not reaching equilibrium.
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FIG. S3. (a) Rearrangement probability as a function of soft-
ness in the learning dataset (ratio=50/50). The actual data
points are in good agreements with the sigmoid function from
the logistic regression model, suggesting a good performance
of the trained model. (b) Rearrangement probability of in-
dividual atoms in 1 ps as a function of softness in the raw
dataset (without manipulating the ratio between the num-
bers of rearranging vs. non-rearranging atoms).

S2. MACHINE LEARNING RESULTS

In Fig. S3a, we show the actual rearrangement prob-
ability of individual Si atoms within 1 ps as a function
of softness in the machine learning dataset. The data
points are in good agreements with the sigmoid function
Pr =1/(1+4exp(—s)) from the logistic regression model,
confirming the training has achieved a good performance.
The accuracy of the ML model on the test data is 86%
(precision: 93%, recall: 79%, F1:85%). Figure S3b plots
the rearrangement probability as a function of softness
at various temperatures. Note that these are different
from Fig. S3a because the fractions of two classes (rear-
ranging vs. non-rearranging) are no longer manipulated
to be 50/50.

S3. CONNECTING SHORT-TERM
REARRANGEMENTS TO LONG-TERM
DYNAMICS

As stated in the main text, if assuming a constant hop-
ping distance R, the short-term mean square displace-
ment (MSD) based on inherent structures is proportional
to the average hopping probability as

AG
el

2)
As shown in Fig. S4a, MSDjg(1ps) predicted by soft-
ness agree well with those calculated directly from sim-
ulations at lower temperatures where hopping rarely oc-
curs within 1 ps. The softness predicted MSD becomes
become increasingly underestimated as the temperature
increases above 3500 K, because at high temperatures
hoppings are more frequent and diffusive dynamics could
occur within 1 ps.

To investigate the connection between microscopic dy-
namics and long-term diffusion, it is necessary to exclude
thermal vibrations from dynamics calculations. There-
fore, we use MSD based on inherent structures (MSD1g)

A
MSDys(t << 7o) o (R exp(— 28

kB—T»eq X R2<exp(—
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FIG. S4. (a) Mean squared displacements based on inherent structures for Si atoms in silica predicted by softness compared to
those directly calculated from MD simulations. (b) The same quantity as in (a) as a function of time at various temperatures.
The fitting parameter ¢o is an approximate linear function of the inverse of temperature. (¢) and (d), diffusion coefficients of Si
atoms in silica versus the corresponding inherent structure MSD within 1 ps, and the elementary hopping probability (both in
log-log scale), respectively. The slope of the curves in (c) at low temperatures and in (d) is around 2, suggesting that long-term
and short-term dynamics are approximately connected by a quadratic function.

to quantify dynamics. Previously, the Monte Carlo sim-
ulation was used to exclude part of atomic vibrations,
but it does not exclude cluster vibration, which shows
up as the plateau corresponding to the two-step relax-
ation in the self-intermediate scattering function.[7] Here
in silica, the plateau in the self-intermediate scattering
function disappears when inherent structures are used,
as shown in Fig. S5. This also suggests there is no “3”
relaxation modes in silica, so all the local rearrangements
are in some way connected to the a relaxation only.

Figure S4b shows MSDjg of Si atoms in silica as a
function of time at various temperatures. The slope of
the curves gradually increase from 1 ps (<1) up to the
Fickian region (=1), which can be most clearly seen at
lower temperatures. We find that these curves in silica

can be empirically described by quadratic function y =
a(t — to)? + ¢, where a and c are constants and t, is a
fitting parameter depending on 7". As a result, the curves
from different T can be viewed as the same curve with
horizontal shifts, in which the slopes are equal at the
same MSDjg. An evidence of this is that MSD required
to enter the Fickian region are always similar at different
T. The parameter ¢ is found approximately linear to the
inverse of temperature. Based on this, we can empirically
estimate MSDyg at long duration at a given T" from short-
term data.

To view the dynamical evolution more closely, we plot
diffusion coefficient D vs. MSDig within 1 ps in a log-
log scale in Fig. S4c. The slope of the curve is around
2 at low temperatures, suggesting that D is approxi-
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FIG. S6. (a) Average elementary hopping probability ver-
sus elementary hopping probability calculated using aver-
age softness. The linear relationship in the figure suggests
(exp(—G(s)/kT)) ~ exp(—0.62 x G((s))/kT), resulting from
the distribution of elementary energy barriers. (b) Diffusion
coefficients of Si atoms in silica estimated by extrapolating
softness (also shown in Fig. 3b) to temperatures near the ex-
perimental T, are in good agreement with the experimental
values.[8]

mately proportional to the square of MSDys (1ps) as
long as the hopping frequency is small. We already
know MSDjg (1ps) at low temperatures is proportional
to (exp(—AG/kT)). Thus, D is approximately propor-
tional to (exp(—AG/kT))?, as shown in Fig. S4d. Note
that this near-quadratic relationship should be expected
at all temperatures, although the slope of the curve fur-
ther increases with increasing temperature as relaxation
times become closer to 1 ps.

S4. EXTRAPOLATION TO EXPERIMENTAL T,

As shown in Fig. 3b of the main text, the average soft-
ness shows a linear relationship with temperature. We
extrapolate this relationship and use the softness to pre-
dict diffusion coefficients near the experimental 7,. Be-
fore the extrapolation, however, we emphasize the differ-
ence between (exp(—G(s)/kT)) and exp(—G((s))/kT),
where (z) is thermodynamic average of a system prop-
erty . As shown in Fig. S6a, these two quantities are
not equivalent but have a power law correlation (this is
due to the specific bimodal distributions of softness in
the case of silica). Based on this relation, we can pre-
dict diffusion coefficients using the average softness. The
total activation energy (the slope of the Arrhenius plot
of D) is approximately equal to 0.62 times the averaged
microscopic activation enthalpy. Figure S6b shows the
predicted D for Si atoms around the experimental Tj.
They are in excellent agreement with the experimental
data.[§]

S5. LOCAL STRUCTURAL FEATURES
RESPONSIBLE FOR VARIOUS ENERGY
BARRIERS

From the bimodal activation enthalpy distributions
shown in Fig. 3c, two types of energy barriers for Si
rearrangements are observed in silica. Figure S7 shows
the relationships between the input local structural fea-
tures and the activation enthalpy (or energy barrier) of
microscopic dynamics AH. Note that the relationships
extracted from 4000 K and 2500 K are overall consis-
tent, suggesting the activation energetics is successfully
attributed to the local structures in the ML model.

The small energy barriers are related to all Si with co-
ordination defects (number of O around Si >4), and also
Si in highly distorted tetrahedra. They commonly involve
five Si atoms in the first shell of neighboring Si-Si. The
changes of the small energy barriers are more reflected
in the SiO,, polyhedral features (short-range order) than
the SiSi,, ones (medium-range order). Particularly, mean
bond length of Si-O and mean bond angle of O-Si-O show
the clearest correlation with energy barrier in this region.

Unlike the small energy barriers, the differences be-
tween large barriers are more clearly reflected by the
SiSi, polyhedral features in the medium-range order. As
the energy barrier increases up to 4.5 eV, the coordina-
tion number of the first Si-Si shell gradually decreases to
4 from 5, the variances of the Si-Si lengths and the Si-Si-
Si angles decrease, and the mean of the Si-Si bond lengths
increases, suggesting that a Si atom in the center of low-
density near-ideal SiO4 and SiSi4 tetrahedra has high ki-
netic stability. More interestingly, higher AH >4.5 eV
are related to a very different structure. In this new
structure, the short-range structure is in ideal tetrahe-
dral order. However, the medium-range structure has
five Si atoms in the first Si-Si shell, and the variances of
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FIG. S7. Relationship between the activation enthalpy (or
energy barrier) of microscopic dynamics AH and the input
structural features: (a-e) coordination number, bond length
mean and variance of Si-O, bond angle mean and variance of
0-Si-O, based on the SiO,, polyhedron; (f-j) similar features
based on the SiSi, polyhedron. The relationships extracted
from 4000 K and 2500 K are consistent overall.

Si-Si lengths and Si-Si-Si angles increase abruptly, to val-
ues even larger than those with the small energy barriers.
We found this medium range structure is associated with
distorted SiSiy tetrahedra involving 4-member rings, as
shown in Fig. 5. Such a highly kinetically stable struc-
ture exists in both low and high temperatures, suggesting
it is not a signature of new phases.

S6. DENSITY OF SMALL ENERGY BARRIERS

As discussed in the main text, there are two diffu-
sion channels with different energy barriers in BKS sil-
ica. Atoms with small energy barriers (or microscopic
activation enthalpy) AH < 1 eV can be considered as
short-range-order (SRO) defects in amorphous materials,
playing a significant role on silica’s dynamic behaviors.
The density of these small energy barriers decreases when
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FIG. S8. (a) Probability of Si atoms in BKS silica with small
AH < 1 eV, as shown in Fig. 3c, as a function of tempera-
ture.(b) Number of oxygen point defects with a coordination
number of 3 in silica as a function of temperature. The rela-
tionships can be well described by quadratic functions.

lowering temperature, as shown in Fig. S8a. The tem-
perature dependence within the investigated range is well
described by

N(AH < 1eV) o< (T —T')? (3)

where T is a fitting temperature, indicating the com-
plete depletion of small barriers. Note that this kind of
quadratic decrease with temperature was also observed
in the numbers of point defects in silica, as shown in Fig.
S8b.[3] This relation has the same form of what RFOT
proposed for the density of two-level systems, ~ (T —
Tx)?, where Tk is the Kauzmann temperature,[9, 10]
suggesting again that microscopic dynamics might be as-
sociated with thermodynamics by a consistent (or simi-
lar) lengthscale. However, 7" as seen in Fig. S8 is above
2000 K, much higher than the Kauzmann temperature
of silica (expecting a low temperature considering strong
dynamics of silica). This disagreement could be due to
limited simulation conditions (like the BKS potential, or
the small simulation box), or some missing modification
in the current theory worth further investigation.
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