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ABSTRACT
Federated learning (FL) has attracted growing interest for enabling
privacy-preserving machine learning on data stored at multiple
users while avoiding moving the data o�-device. However, while
data never leaves users’ devices, privacy still cannot be guaranteed
since signi�cant computations on users’ training data are shared in
the form of trained local models. These local models have recently
been shown to pose a substantial privacy threat through di�er-
ent privacy attacks such as model inversion attacks. As a remedy,
Secure Aggregation (SA) has been developed as a framework to
preserve privacy in FL, by guaranteeing the server can only learn
the global aggregated model update but not the individual model
updates.While SA ensures no additional information is leaked about
the individual model update beyond the aggregated model update,
there are no formal guarantees on how much privacy FL with SA
can actually o�er; as information about the individual dataset can
still potentially leak through the aggregated model computed at
the server. In this work, we perform a �rst analysis of the formal
privacy guarantees for FL with SA. Speci�cally, we useMutual Infor-
mation (MI) as a quanti�cation metric and derive upper bounds on
how much information about each user’s dataset can leak through
the aggregated model update. When using the FedSGD aggregation
algorithm, our theoretical bounds show that the amount of privacy
leakage reduces linearly with the number of users participating
in FL with SA. To validate our theoretical bounds, we use an MI
Neural Estimator to empirically evaluate the privacy leakage under
di�erent FL setups on both the MNIST and CIFAR10 datasets. Our
experiments verify our theoretical bounds for FedSGD, which show
a reduction in privacy leakage as the number of users and local
batch size grow, and an increase in privacy leakage as the number
of training rounds increases. We also observe similar dependencies
for the FedAvg and FedProx protocol.
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1 INTRODUCTION
Federated learning (FL) has recently gained signi�cant interest as
it enables collaboratively training machine learning models over
locally private data across multiple users without requiring the
users to share their private local data with a central server [9, 24, 30].
The training procedure in FL is typically coordinated through a
central server who maintains a global model that is frequently
updated locally by the users over a number of iterations. In each
training iteration, the server �rstly sends the current global model
to the users. Next, the users update the global model by training it
on their private datasets and then push their local model updates
back to the server. Finally, the server updates the global model by
aggregating the received local model updates from the users.

In the training process of FL, users can achieve the simplest
notion of privacy in which users keep their data in-device and
never share it with the server, but instead they only share their local
model updates. However, it has been shown recently in di�erent
works (e.g., [18, 41, 44]) that this alone is not su�cient to ensure
privacy, as the shared model updates can still reveal substantial
information about the local datasets. Speci�cally, these works have
empirically demonstrated that the private training data of the users
can be reconstructed from the local model updates through what is
known as the model inversion attack.

To prevent such information leakage from the individual models
that are shared during the training process of FL, Secure Aggre-
gation (SA) protocols have emerged as a remedy to address these
privacy concerns by enabling the server to aggregate local model
updates from a number of users, without observing any of their
model updates in the clear. As shown in Fig. 1a, in each training
round, users encrypt their local model updates before sending it to
the server for aggregation. Thus, SA protocols formally guarantee
that: 1) both the server and other users have no information about
any user’s clear model update from the encrypted update in the in-
formation theoretic sense; 2) the server only learns the aggregated
model. In other words, secure aggregation ensures that only the
aggregated model update is revealed to the server. Note that these
SA guarantees allow for its use as a supporting protocol for other
privacy-preserving approaches such as di�erential privacy [14]. In
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Figure 1: Figure (a) illustrates the current formal privacy guarantee of FL with SA protocols and sheds light on the missing
privacy guarantee on the aggregated model information leakage which is studied in this paper. Figure (b) gives a preview of
the behavior of the privacy leakage through the global aggregated model for a CNN model as a function of the number of
users in FL. The privacy leakage follows a O(1/N ) decay as proved in our theoretical bounds.

particular, these approaches can bene�t from SA by reducing the
amount of noise needed to achieve a target privacy level (hence
improving the model accuracy) as demonstrated in di�erent works
(e.g., [23, 38]).

However, even with these SA guarantees on individual updates,
it is not yet fully understood how much privacy is guaranteed in FL
using SA, since the aggregated model update may still leak infor-
mation about an individual user’s local dataset. This observation
leads us to the central question that this work addresses:

How much information does the aggregated model leak about
the local dataset of an individual user?

In this paper, we tackle this question by studying how much
privacy can be guaranteed by using FL with SA protocols. We high-
light that this work does not propose any new approaches to tackle
privacy leakage but instead analyzes the privacy guarantees o�ered
by state-of-the-art SA protocols, where updates from other users
can be used to hide the contribution of any individual user. An un-
derstanding of this privacy guarantee may potentially assist other
approaches such as di�erential privacy, such that instead of intro-
ducing novel noise to protect a user’s model update, the randomized
algorithm can add noise only to supplement the noise from other
users’ updates to the target privacy level. We can summarize the
contributions of the work as follows.
Contributions. In this paper, we provide information-theoretic up-
per bounds on the amount of information that the aggregated model
update (using FedSGD [9]) leaks about any single user’s dataset un-
der an honest-but-curious threat model, where the server and all
users follow the protocol honestly, but can collude to learn infor-
mation about a user outside their collusion set. Our derived upper

bounds show that SA protocols exhibit a more favorable behavior
as we increase the number of honest users participating in the
protocol at each round. We also show that the information leakage
from the aggregated model decreases by increasing the batch size,
which has been empirically demonstrated in di�erent recent works
on model inversion attacks (e.g., [18, 41, 44]), where increasing
the batch size limits the attack’s success rate. Another interesting
conclusion from our theoretical bounds is that increasing the model
size does not have a linear impact on increasing the privacy leakage,
but it depends linearly on the rank of the covariance matrix of the
gradient vector at each user.

In our empirical evaluation, we conduct extensive experiments
on the CIFAR10 [26] and MNIST [29] datasets in di�erent FL set-
tings. In these experiments, we estimate the privacy leakage using
a mutual information neural estimator [6] and evaluate the depen-
dency of the leakage on di�erent FL system parameters: number
of users, local batch size and model size. Our experiments show
that the privacy leakage empirically follows similar dependencies
to what is proven in our theoretical analysis. Notably, as the num-
ber of users in the FL system increase to 20, the privacy leakage
(normalized by the entropy of a data batch) drops below 5% when
training a CNN network on the CIFAR10 dataset (see Fig. 1b. We
also show empirically that the dependencies, observed theoretically
and empirically for FedSGD, also extend when using the FedAvg [9]
FL protocol to perform multiple local training epochs at the users.

2 PRELIMINARIES
We start by discussing the basic federated learning model, before
introducing the secure aggregation protocol and its state-of-the-art
guarantees.
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Figure 2: The training process in federated learning.

2.1 Basic Setting of Federated Learning
Federated learning is a distributed training framework [30] for
machine learning, in which a set of usersN = [N ] (|N | = N ), each
with its own local dataset Di (8i 2 [N ]), collaboratively train a
d-dimensional machine learning model parameterized by � 2 Rd ,
based on all their training data samples. For simplicity, we assume
that users have equal-sized datasets, i.e., Di = D for all i 2 [N ].
The typical training goal in FL can be formally represented by the
following optimization problem:

�⇤ = arg min
� 2Rd

"
C(� ) :=

1
N

N’
i=1

Ci (� )

#
, (1)

where � is the optimization variable, C(� ) is the global objective
function, Ci (� ) is the local loss function of user i . The local loss
function of user i is given by

Ci (� ) =
1
D

’
(x ,�)2Di

`i (� , (x,�)), (2)

where `i (� , (x,�)) 2 R denotes the loss function at a given data
point (xi ,�i ) 2 Di . The dataset Di at user i 2 [N ] is sampled from
a distribution Pi .

To solve the optimization problem in (1), an iterative training
procedure is performed between the server and distributed users,
as illustrated in Fig. 2. Speci�cally, at iteration t , the server �rstly
sends the current global model parameters, � (t ), to the users. User
i 2 [N ] then computes its model update x(t )i and sends it to the
server. After that, the model updates of the N users are aggregated
by the server to update the global model parameters into � (t+1) for
the next round according to

� (t+1) = � (t ) � �(t )
1
N

N’
i=1

x(t )i . (3)

There are two common protocols for computing the model update
xi : FedSGD and FedAvg [30]. Speci�cally, in FedSGD, each user uses
a data batch B

(t )
i of size B sampled uniformly at random from it

local dataset Di to compute the model update as follows:

x(t )i =
1
B

’
b 2B(t )

i

�i (�
(t ),b), (4)

where �i (� (t )) is the stochastic estimate of the gradient rCi (� (t ))
of the local loss function Ci of user i computed based on a random

sample b (corresponding to (xb ,�b )) drawn uniformly from Di
without replacement. In FedAvg, each user will run E complete
local training rounds over its local dataset Di to get its model
update x(t )i . Speci�cally, during each training round, each user will
use all their mini-batches sampled from Di to perform multiple
stochastic gradient descent steps.

2.2 Secure Aggregation Protocols for Federated
Learning

Recent works (e.g., [18, 41, 44]) have empirically shown that some of
the local training data of user i can be reconstructed from the local
model update xi , for i 2 [N ]. To prevent such data leakage, di�erent
SA protocols [3, 7, 13, 16, 22, 31, 35–38, 40, 43] have been proposed
to provide a privacy-preserving FL setting without sacri�cing the
training performance. In the following, we discuss the threat model
used in these SA protocols.

2.2.1 Threat Model in Secure Aggregation for Federated Learning.
Most of SA protocols consider the honest-but-curious model [9]
with the goal of uncovering users’ data. In this threat model, the
server and users honestly follow the SA protocol as speci�ed. In
particular, they will not modify their model architectures to better
suit their attack, nor send malicious model update that do not
represent the actually learned model. However, the server and the
participating users are assumed to be curious and try to extract any
useful information about the training data of any particular user.
The extraction of the information is done by storing and analyzing
the di�erent data received during the execution of the protocol.

On the other hand, the threat model in theses SA protocols
assumes that the server can collude with any subset of users T ⇢

[N ] by jointly sharing any data that was used during the execution
of the protocol (including their clear model updates xi , for all i 2 T )
that could help in breaching the data privacy of any target user
i 2 [N ]/T . Similarly, this threat model also assumes that users can
collude with each other to get information about the training data
of other users.

2.2.2 Secure Aggregation Guarantees. In general, SA protocols that
rely on di�erent encryption techniques; such as homomorphic en-
cryption [3, 13, 38, 40], and secure multi-party computing (MPC)
[7, 16, 22, 31, 35–37, 43], are all similar in the encryption procedure
in which each user encrypts its own model update y(t )i = Enc(x(t )i )

before sending it to the server. This encryption is done such that
these protocols achieve: 1) Correct decoding of the aggregated
model under users’ dropout; 2) Privacy for the local model update
of the users from the encrypted model. In the following, we for-
mally describe each of these guarantees.

Correct decoding. The encryption guarantees correct decoding
for the aggregated model of the surviving users even if a subset
U ⇢ [N ] of the users dropped out during the protocol execution.
In other words, the server should be able to decode

Dec

 ’
i 2V

y(t )i

!
=

’
i 2V

x(t )i , (5)

where V is the set of surviving users (e.g., U [ V = [N ] and
U \V = �).
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Privacy guarantee. Under the collusion between the server and
any strict subset of users T ⇢ [N ], we have the following

I

 
{y(t )i }i 2[N ]; {x

(t )
i }i 2[N ]

�����
N’
i=1

x(t )i , zT

!
= 0, (6)

where zT is the collection of information at the users in T . In
other words, (6) guarantees that under a given subset of colluding
users T with the server, the encrypted model updates {y(t )i }i 2[N ]

leak no information about the model updates {x(t )i }i 2[N ] beyond
the aggregated model

ÕN
i=1 x

(t )
i . We note that the upper bound on

the size of the colluding set T such that (6) is always guaranteed
has been analyzed in the di�erent SA protocols. Assuming that
|T | 

N
2 is widely used in most of the works (e.g., [36, 37]).

R����� 1. Recently, there have been also some works that en-
able doing secure model aggregation by using Trusted Execution
Environments (TEE) such as Intel SGX (e.g., [28, 42]). SGX is a
hardware-based security mechanism to protect applications run-
ning on a remote server. These TEE-based works are also designed
to give the same guarantee in (6).

In the following, we formally highlight the weakness of the
current privacy guarantee discussed in (6).

2.2.3 Our Contribution: Guarantees on Privacy Leakage from the
Aggregated Model . Di�erent SA protocols guarantee that the server
doesn’t learn any information about the local model update x(t )i of
any user i from the received encrypted updates {y(t )i }i 2N , beyond
the aggregated model as formally shown in (6). However, it is not
clear how much information the aggregated model update itself
leaks about a single user’s local dataset Di . In this work, we �ll
this gap by theoretically analyzing the following term.

Ipriv/data = max
i 2[N ]

I
©≠
´
Di ;

(
1
N

N’
i=1

x(t )i

)
t 2[T ]

™Æ
¨
. (7)

The term in (7) represents how much information the aggregated
model over T global training rounds could leak about the private
data Di of any user i 2 [N ]. In the following section, we theoreti-
cally study this term and discuss how it is impacted by the di�erent
FL system parameters such as model size, number of users , etc. In
Section 5, we support our theoretical �ndings by empirically evalu-
ating Ipriv/data in real-world datasets and di�erent neural network
architectures.

3 THEORETICAL PRIVACY GUARANTEES OF
FL WITH SECURE AGGREGATION

In this section, we theoretically quantify the privacy leakage in FL
when using secure aggregation with the FedSGD protocol.

3.1 Main Results
For clarity, we �rst state our main results under the honest-but-
curious threat model discussed in Section 2.2.1 while assuming that
there is no collusion between the server and users. We also assume
that there is no user dropout. Later in Section 3.3, we discuss the
general result with user dropout and the collusion with the server.

Our central result in this section characterizes the privacy leak-
age in terms of mutual information for a single round of FedSGD,
which for round t is de�ned as

I (t )priv = max
i 2[N ]

I
©≠
´
x(t )i ;

N’
i=1

x(t )i

������
( N’
i=1

x(k )i

)
k 2[t�1]

™Æ
¨

(8)

and then extends the privacy leakage bound to multiple rounds.
Before stating our main result in Theorem 1 below, we �rst de�ne
two key properties of random vectors that will be used in stating
our theorem and formally state our operational assumptions.

De�nition 1 (Independent under whitening). We say that a ran-
dom vector v with mean µ� and non-singular covariance matrix K�
is independent under whitening, if the whitened vectorbv is composed
of independent random variables, wherebv = K�1/2

� (v � µ� ).

De�nition 2 (Uniformly � -log concave). A random vector v with
covariance K� is uniformly � -log concave if it has a probability
density function e��(v) satisfying r2�(v) ⌫ I and 9 � > 0, such that
K� ⌫ � I.

Assumption 1 (IID data distribution). Throughout this section, we
consider the case where the local dataset Zi are sampled IID from
a common distribution, i.e., the local dataset of user i consists of IID
data samples from a distribution Pi , where Pi = P for 8i 2 [N ]. This
implies that the distribution of the gradients �i (� (t ),b), for i 2 [N ],
conditioned on the last global model � (t ) is also IID. For this common
conditional distribution, we will denote its mean with µ(t )G and the

covariance matrix K(t )
G in the t-th round.

With the above de�nitions and using Assumption 1, we can now
state our main result below, which is proved in Appendix A.

Theorem 1 (Single Round Leakage). Let d⇤  d be the rank of
the gradient covariance matrix K(t )

G , and let S� denote the set of
subvectors of dimension d⇤ of �(� (t�1),b) that have a non-singular
covariance matrices. Under Assumption 1, we can upper bound I (t )priv
for FedSGD in the following two cases:
Case. 1 If 9�̄ 2 S� , such that �̄ is independent under whitening (see
Def. 1), and E|�̄i |4 < 1,8i 2 [d⇤], then 9 C0,�̄ > 0, such that

I (t )priv 
C0,�̄ d⇤

(N � 1)B
+
d⇤

2
log

✓
N

N � 1

◆
, (9)

Case. 2 If 9�̄ 2 S� , such that �̄ is � -log concave under whitening (see
Def. 2) then we have that

I (t )priv 
d⇤C1,�̄ �C2,�̄

(N � 1)B� 4 +
d⇤

2
log

✓
N

N � 1

◆
, (10)

where: the constantsC1,�̄ = 2 (1 + � + log(2� ) � log(� )) andC2,�̄ =

4
⇣
h(�̄) � 1

2 log(|��̄ |
⌘
, with ��̄ being the covariance matrix of the

vector �̄.

R����� 2 (S��������� �����). Note that each �̄ 2 S
(t )
� satis-

fying Case 1 or Case 2 gives an upper bound on I (t )priv. Let S
(t )
�,c be

the set of �̄ 2 S
(t )
� satisfying either Case 1 or Case 2. Then, we can
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combine these di�erent bounds in Theorem 1 as follows

I (t )priv 
d⇤

2
log

✓
N

N�1

◆
+

min
�̄2S(t )

�,c

n
d⇤bC1,�̄ � bC2,�̄

o

(N � 1)B
, (11)

where

(bC1,�̄, bC2,�̄) =

(�
C0,�̄, 0

�
, if �̄ satis�es Case 1,⇣C1,�̄

� 4 ,
C2,�̄
� 4

⌘
, if �̄ satis�es Case 2,

where C0,�̄,C1,�̄ and C2,�̄ are de�ned as in Theorem 1.

R����� 3. (Why the IID assumption?) Our main result in Theo-
rem 1 relies on recent results on the entropic central [8, 15] for the
sum of independent and identically random variables/vectors. Note
that the IID assumption in the entropic central limit theorem can
be relaxed to independent (but not necessarily identical) distribu-
tions, however, in this case, the upper bound will have a complex
dependency on the moments of the N distributions in the system.
In order to high-light how the privacy guarantee depends on the
di�erent system parameters (discussed in the next subsection), we
opted to consider the IID setting in our theoretical analysis.

R����� 4. (Independence under whitening) One of our key
assumptions in Theorem 1 is the independence under whitening
assumption for stochastic gradient descent (SGD). This assumption
is satis�ed if the SGD vector can be approximated by a distribu-
tion with independent components or by a multivariate Gaussian
vector. Our adoption of this assumption is motivated by recent the-
oretical results for analyzing the behaviour of SGD. These results
have demonstrated great success in approximating the practical
behaviour of SGD, in the context of image classi�cation problems,
by modeling the SGD with (i) a non-isotropic Gaussian vector [45],
or, (ii) �-stable random vectors with independent components [34].
For both these noise models, the independence under whitening as-
sumption in Theorem 1 is valid. However, a key practical limitation
for the aforementioned SGD models (and thus of the independence
under whitening assumption) is assuming a smooth loss function
for learning. This excludes deep neural networks that make use
of non-smooth activation and pooling functions (e.g., ReLU and
max-pooling).

Now using the bounds in Theorem 1, in the following corollary,
we characterize the privacy leakage of the local training data Di of
user i afterT global training rounds of FedSGD, which is de�ned as

Ipriv/data = max
i 2[N ]

I
©≠≠
´
Di ;

8>><
>>:
1
N

’
i 2[N ]

x(t )i

9>>=
>>;t 2[T ]

™ÆÆ
¨
, (12)

Corollary 1. Assuming that users follow the FedSGD training proto-
col and the same assumptions in Theorem 1, we can derive the upper
bound of the privacy leakage Ipriv/data after T global training rounds
of FedSGD in the following two cases:
Case. 1: Following the assumptions used in Case 1 in Theorem 1, we
get

Ipriv/data  T


C0,�̄d⇤

(N � 1)B
+
d⇤

2
log

✓
N

N � 1

◆�
, (13)

Case. 2: Following the assumptions used in Case 2 in Theorem 1, we
get

Ipriv/data  T


d⇤C1,�̄ �C2,�̄

(N � 1)B� 4 +
d⇤

2
log

✓
N

N�1

◆�
. (14)

We prove Corollary 1 in Appendix B. Note that, we can combine
the bounds in Corollary 1 similar to the simpli�cation in (11) from
Theorem 1.

3.2 Impact of System Parameters
3.2.1 Impact of Number of Users (N). As shown in Theorem 1
and Corollary 1, the upper bounds on information leakage from
the aggregated model update decrease in the number of users N .
Speci�cally, the leakage dependency on N is at a rate of O(1/N ).

3.2.2 Impact of Batch Size (B). Theorem 1 and Corollary 1 show
that the information leakage from the aggregated model update
could decrease when increasing the batch size that is used in up-
dating the local model of each user.

3.2.3 Impact of Model Size (d). Given our de�nition of d⇤ in Theo-
rem 1, where d⇤ represents the rank of the covariance matrix KG (t )

and d⇤  d (d is the model size), the leakage given in Theorem
1 and Corollary 1 only increases with increasing the rank of the
covariance matrix of the gradient. This increase happens at a rate of
O(d⇤). In other words, increasing the model size d (especially when
the model is overparameterized) does not have a linear impact on
the leakage. The experimental observation in Section 4 supports
these theoretical �ndings.

3.2.4 Impact of Global Training Rounds (T). Corollary 1 demon-
strates that the information leakage from the aggregated model
update about the private training data of the users increases with
increasing the number of global training rounds. This result re�ects
the fact as the training proceed, the model at the server start to
memorize the training data of the users, and the data of the users
is being exposed multiple times by the server as T increases, hence
the leakage increases. The increase of the leakage happens at a rate
of O(T ).

3.3 Impact of User Dropout, Collusion, and
User Sampling

In this section, we extend the results given in Theorem 1 and Corol-
lary 1 to cover the more practical FL scenario that consider, user
dropout, the collusion between the server and the users and user
sampling. We start by discussing the impact of user dropout and
collusion.

3.3.1 Impact of User Dropout and Collusion with the Server. Note
that, in the case of user dropouts, this is equivalent to a situation
where the non-surviving users send a deterministic update of zero.
As a result, their contribution can be removed from the aggregated
model, and we can, without loss of generality, consider an FL system
where only the surviving subset Ns ⇢ [N ] users participate in the
system.

Similarly, when a subset of users colludes with the server, then
the server can subtract away their contribution to the aggregated
model in order to unmask information about his target user i . As a
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result, we can again study this by considering only the subset of
non-colluding (and surviving, if we also consider dropout) users in
our analysis. This observation gives us the following derivative of
the result in Theorem 1 which can summarized by the following
corollary.

Corollary 2. In FedSGD, under the assumptions used in Theorem 1,
if there is only a subset N(t )

s ⇢ [N ] of non-colluding and surviving
users in the global training round t , then, we have the following bound
on I (t )priv

I (t )priv 
d⇤

2
log

✓
|Ns |

|Ns |�1

◆
+

min
�̄2S(t )

�,c

n
d⇤bC1,�̄ � bC2,�̄

o

(|Ns | � 1)B
, (15)

where the maximization in I (t )priv (given in (8)) is only over the set of
non-colluding surviving and non-colluding users; and the constantsbC1,�̄ and bC2,�̄ are given in Remark 2.

This implies that the per round leakage increases when we have
a smaller number of surviving and non-colluding users. Similarly,
we can modify the bound in Corollary 1 to take into account user
dropout and user collusion by replacing N with |Ns |.

3.3.2 Impact of User Sampling. In Theorem 1 and Corollary 1, we
assume that all N users in the FL system participate in each training
round. If instead K users are chosen each round, then all leakage
upper bound will be in terms of K , the number of users in each
round, instead of N . Furthermore, through Corollary 1, we can
develop upper bounds for each user i , depending on the number
of rounds Ti that the user participated in. For example, taking into
account selecting K users in each round denoted by K

(t ), then the
upper bound in (13) is modi�ed to give the following information
leakage for user i

Ipriv/data(i) = I
©≠≠
´
Di ;

8>><
>>:
1
K

’
i 2K(t )

x(t )i

9>>=
>>;t 2[T ]

™ÆÆ
¨

 Ti


C0,�̄d⇤
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whereTi = K/N if the set of K users are chosen independently and
uniformly at random in each round.

Thus user sampling would improve the linear dependence of the
leakage onT (Section 3.2.4), but increase the per round leakage due
to a smaller number of users in each round (Section 3.2.1).

4 EXPERIMENTAL SETUP
4.1 MI Estimation
In order to estimate the mutual information in our experiments,
we use Mutual Information Neural Estimator (MINE) which is the
state-of-the-art method [6] to estimate the mutual information
between two random vectors (see Appendix D for more details). In
our experiments, at the t-th global training round, we use MINE
to estimate I (x(t )i ;

ÕN
i=1 x

(t )
i |� (t�1)), i.e., the mutual information

between model update of the i-th user x(t )i and the aggregated
model update from all users

ÕN
i=1 x

(t )
i . Our sampling procedure

is described as follows: 1) at the beginning of the global training
round t , each user will �rst update its local model parameters as the
global model parameters � (t�1). 2) Next, each user shu�es its local
dataset. 3) Then, each user will pick a single data batch from its
local dataset (if using FedSGD) or use all local data batches (if using
FedAvg) to update its local model. 4) Lastly, secure aggregation is
used to calculate the aggregated model update. We repeat the above
process forK times to getK samples {(x(t )i ,k ;

ÕN
i=1 x

(t )
i ,k )}

k=K
k=1 , where

x(t )i ,k represents the model update from the i-th user in the k-th

sampling and
ÕN
i=1 x

(t )
i ,k represents the aggregated model update

from the i-th user in the k-th sampling. Note that we use the K � th

(last) sample
ÕN
i=1 x

(t )
i ,K to update the global model.

We repeat the end-to-end training and MI estimation multiple
times in order to get multiple MI estimates for each training round
t . We use the estimates for each round to report the average MI
estimate and derive the con�dence interval (95%) for the MI esti-
mation1.

Lastly, when usingMINE to estimateMI, we use a fully-connected
neural network with two hidden layers each having 100 neurons
each as T� (see Appendix D for more details) and we perform gra-
dient ascent for 1000 iterations to train the MINE network.

4.2 Datasets and Models
Datasets.We use MNIST and CIFAR10 datasets in our experiments.
Speci�cally, the MNIST dataset contains 60,000 training images
and 10,000 testing images, with 10 classes of labels. The CIFAR10
dataset contains 50,000 training images and 10,000 testing images,
with 10 classes of labels. For each of the dataset, we randomly split
the training data into 50 local datasets with equal size to simulate
a total number of 50 users with identical data distribution. Note
that we describe how to generate users with non-identical data
distribution when we evaluate the impact of user heterogeneity in
Section 5.6.

Moreover, we use MINE to measure the entropy of an individual
image in each of these datasets, as an estimate of the maximal
potential MI privacy leakage per image. We report that the entropy
of an MNIST image is 567 (bits) and the entropy of a CIFAR10 image
is 1403 (bits). Note that we will use the entropy of training data to
normalize the measured MI privacy leakage in Section 5.
Models. Table 1 reports the models and their number of parame-
ters used in our evaluation. For MNIST dataset, we consider three
di�erent models for federated learning. For each of these models,
it takes as input a 28⇥28 image and outputs the probability of 10
image classes. We start by using a simple linear model, with a di-
mension of 7850. Next, we consider a non-linear model with the
same amounts of parameters as the linear model. Speci�cally, we
use a single layer perceptron (SLP), which consists of a linear layer
and a ReLU activation function (which is non-linear). Finally, we
choose a multiple layer perceptron (MLP) with two hidden layers,
each of which contains 100 neurons. In total, it has 89610 parame-
ters. Since the MLP model we use can already achieve more than

1During our experiments, we observe that the estimated MI does not change signif-
icantly across training rounds. Hence, we average the estimated MI across training
rounds when reporting our results.
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Models for MNIST
Name Linear SLP MLP
Size (d) 7850 7850 89610

Models for CIFAR10
Name Linear SLP CNN
Size (d) 30730 30730 82554

Table 1: Models used for MNIST and CIFAR10 datasets. Note
that SLP, MLP, and CNN represent Single Layer Perceptron,
Multiple Layer Perceptron, and Convolutional Neural Net-
work, respectively.

95% testing accuracy on MNIST dataset, we do not consider more
complicated model for MNIST.

For the CIFAR10 dataset, we also evaluate three di�erent models
for FL. For each of these models, it will take as input an 32⇥32⇥3
image and outputs the probability of 10 image classes. Similar to
MNIST, the �rst two models we consider are a linear model and
a single layer perceptron (SLP), both of which contains 30720 pa-
rameters. The third model we consider is a Convolutional Neural
Network (CNN) modi�ed from AlexNet [27], which contains a total
of 82554 parameters and is able to achieve a testing accuracy larger
than 60% on CIFAR. We do not consider larger CNN models due to
the limited computation resources.

5 EMPIRICAL EVALUATION
In this section, we empirically evaluate how di�erent FL system
parameters a�ect the MI privacy leakage in SA. Our experiments
explore the e�ect of the system parameters on FedSGD, FedAvg
and FedProx [33]. Note that our evaluation results on FedSGD are
backed by our theoretical results in Section 3, while our evaluation
results on FedAvg and FedProx are purely empirical.

We start by evaluating the impact of the number of users N on
the MI privacy leakage for FedSGD, FedAvg and FedProx (see in
Section 5.1). Then, we evaluate the impact of batch size B on the
MI privacy leakage for both FedSGD, FedAvg and FedProx (see in
Section 5.3). Next, in Section 5.4, we measure the accumulative
MI privacy leakage across all global training rounds. We evaluate
how the local training rounds E for each user will a�ect the MI
privacy leakage for FedAvg and FedProx in Section 5.5. Finally, the
impact of user heterogeneity on the MI privacy leakage for FedAvg
is evaluated in Section 5.6.

We would like to preface by noting that FedProx di�ers from
FedAvg by adding a strongly-convex proximal term to the loss used
in FedAvg. Thus, we expect similar dependencies on the number of
users N , batch-size B and local epochs E, when using FedAvg and
FedProx.

5.1 Impact of Number of Users (N)
FedSGD. Fig. 3 shows the impact of varying N on MI privacy
leakage in FedSGD, where the number of users is chosen from
{2, 5, 10, 20, 50}, and we measure the MI privacy leakage of di�erent
models on both MNIST and CIFAR10 datasets. We observe that in-
creasing the number of users participating in FL using FedSGD will
decrease the MI privacy leakage in each global training round (see

(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 3: Impact of the number of users (N ) when using
FedSGD. Note that we set and B = 32 for all users on both
MNIST and CIFAR10 datasets. We normalize the MI by en-
tropy of a single data batch (i.e. 32⇤567 forMNIST and 32⇤1403
for CIFAR10).

(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 4: Impact of the number of users (N ) when using
FedAvg. Note that we set E=1 and B = 32 for all users on both
MNIST and CIFAR10 datasets. We normalize the MI by en-
tropy of the whole local training dataset (i.e. 1200 ⇤ 567 for
MNIST and 1000 ⇤ 1403 for CIFAR10).

Fig. 3a and 3b), which is consistent with our theoretical analysis
in Section 3.2.1. Notably, as demonstrated in Fig. 3c and 3d, the
percentile of MI privacy leakage (i.e. normalized by the entropy of
a data batch) can drop below 2% for MNIST and 5% for CIFAR10
when there are more than 20 users.
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(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 5: Impact of the number of users (N ) when using
FedProx. Note that we set E=1 and B = 32 for all users on
both MNIST and CIFAR10 datasets. We normalize the MI by
entropy of a single data batch (i.e. 1200 ⇤ 567 for MNIST and
1000 ⇤ 1403 for CIFAR10).

FedAvg. Fig. 4 shows the impact of varying N on MI privacy leak-
age in FedAvg. Similar to the results in FedSGD, as the number of
users participating in FedAvg increases, the MI privacy leakage in
each global training round will decrease (see Fig. 4a and 4b), and the
decreasing rate is approximately O(N ). Moreover, as shown in Fig.
4c and 4d, the percentile of MI privacy leakage drops below 0.1%
on both MNIST and CIFAR10 when there are more than 20 users
participating in FL. It is worth noting that we normalize the MI by
the entropy of the whole training dataset in FedAvg instead of the
entropy of a single batch, since users will iterate over all their data
batches to calculate their local model updates in FedAvg. Therefore,
although we observe that the unnormalized MI is comparable for
FedSGD and FedAvg, the percentile of MI privacy leakage in FedAvg
is signi�cantly smaller than that in FedSGD.
FedProx. Similar to FedAvg, Fig. 5 shows how the MI privacy leak-
age with FedProx varies with the number of usersN . As the number
of users increase, the MI privacy leakage decreases in each training
round at an approximate rate of O(N ). With more than 20 partici-
pating users, the percentile of MI leakage drops below 0.12% under
both MNIST and CIFAR10. Same as FedAvg, we normalize the MI
privacy leakage by the entropy of the whole training dataset of a
single user.

In conclusion, while our theoretical analysis on the impact of N
in Section 3.2.1 is based on the assumption that the FedSGD protocol
is used, our empirical study shows that it holds not only in FedSGD
but also in FedAvg and FedProx.

5.2 Impact of Model Size (d)
FedSGD. From Fig. 3, we observe that increasing model size d will
increase theMI leakage during each global training round. However,
the increase rate of MI leakage is smaller than the increase rate of

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 6: Impact of batch size (B) when using FedSGD. The
MI is normalized by the entropy of a data batch, which is
proportional to the batch size B (i.e. B ⇤ 567 for MNIST and
B ⇤ 1403 for CIFAR10).

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 7: Impact of batch size (B) when using FedAvg. TheMI
is normalized by the entropy of a user’s local dataset, which
is a constant (i.e. 1200 ⇤ 567 for MNIST and 1000 ⇤ 1403 for
CIFAR10).

d . This is expected since the upper bound of MI privacy leakage is
proportional tod⇤ (i.e. the rank of the covariance ofmatrix as proved
in Theorem 1), which will not increase linearly with d especially
for overparameterized neural networks (see Section 3.2.3). Finally,
we observe that the MI privacy leakage on CIFAR10 is generally
higher than that on MNIST. Since the input images on CIFAR10
have higher dimension than the images on MNIST, larger model
size are required during training. Therefore, we expect that the MI
privacy leakage on CIFAR10 is higher than that on MNIST.
FedAvg and FedProx. As shown in Fig. 4 and Fig. 5, increasing
the model size will also have a sub-linear impact on the increase of
the MI privacy leakage in FedAvg and FedProx, which is consistent
with our results in FedSGD.

5.3 Impact of Batch Size (B)
FedSGD. Fig. 6 shows the impact of varying B on the normalized
MI privacy leakage in FedSGD, where the batch size is chosen from
{16, 32, 64, 128, 256} and we use MLP model on MNIST and CNN
model on CIFAR10 during experiments. Note that we normalize
the MI by the entropy of a single data batch used in each training
round, which is proportional to the batch size B. On both MNIST
and CIFAR10 datasets, we consistently observe that increasing B
will decrease the MI privacy leakage in FedSGD, and the decay rate
of MI is inversely proportional to batch size B. As demonstrated
in Fig. 6, when there are more than 20 users, the percentile of MI
privacy leakage for a single training round can be around 4% on
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(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 8: Impact of batch size (B) when using FedProx. The
MI is normalized by the entropy of a user’s local dataset,
which is a constant (i.e. 1200 ⇤ 567 for MNIST and 1000 ⇤ 1403
for CIFAR10).

MNIST and 12% on CIFAR10 with batch size 16. However, such
leakage can drop to less 1% on both MNIST and CIFAR10 with
batch size 256, which is signi�cantly reduced.
FedAvg and FedProx. Fig. 7 and Fig. 8 show the impact of varying
the batch size B on MI privacy leakage in FedAvg and FedProx,
respectively, following the same experimental setup as in Fig. 6.
Since in both FedAvg and FedProx, each user will transverse their
whole local dataset in each local training round, we normalize the
MI by the entropy of the target user’s local training dataset. As
shown in Fig. 7 and Fig. 8, the impact of B in FedAvg and FedProx
is relatively smaller than that in FedSGD. However, we can still
observe that increasing B can decrease the MI privacy leakage in
both FedAvg and FedProx. For example, with 20 users participating
in FedAvg, the percentile of MI privacy leakage at each training
round can drop from 0.8% to 0.3% when the batch size increases
from 16 to 256, achieving a reduction in privacy leakage by a factor
of more than 2⇥. Similarly, in FedProx, this causes a decrease in
the MI privacy leakage from 0.09% to 0.04% when the batch size
increases from 16 to 256.

In conclusion, we observe that increasing the batch size B can
decrease the MI privacy leakage from the aggregated model up-
date in FedSGD, FedAvg and FedProx which veri�es our theoretical
analysis in Section 3.2.3.

5.4 Accumulative MI leakage
To evaluate how the accumulative MI privacy leakage will accumu-
late with the number of training round T , we measure the MI be-
tween training data and the aggregated model updates across train-
ing round. Speci�cally, given a local training dataset sampleDi , we
will concatenate the aggregatedmodel updates { 1

N
Õ
i 2N x(t )i }t 2[T ]

across T training rounds in a single vector with dimension d ⇤T .
By randomly generating Di for the target user for K times, we can
get K concatenated aggregated model update vectors. Then, we use
MINE to estimate I (Di ; { 1

N
Õ
i 2N x(t )i }t 2[T ]) with these K dataset

and concatenated model update samples.
As illustrated in Fig. 9, the MI privacy leakage will accumulate

linearly as we increase the global training round T on both MNIST
and CIFAR dataset, which is consistent with our theoretical results
in Section 3.2.4. That also says, by reducing the times of local model
aggregation, the MI privacy leakage of secure aggregation will
be reduced. In practice, we can consider using client sampling

(a) Normalized accumulative MI,
MNIST.

(b) Normalized accumulative MI,
CIFAR10.

Figure 9: Accumulative MI privacy leakage on MNIST and
CIFAR10 datasets. Note that we normalize the MI by the en-
tropy of each user’s local dataset, whichwill not changewith
T . We use the linear model for both MNIST and CIFAR10
datasets.

(a) MNIST (b) CIFAR

Figure 10: Accumulative MI privacy leakage vs model accu-
racy of di�erent FL algorithms. Note that we use a linear
model for case study and normalize the MI by the entropy
of each user’s local dataset.

to reduce the participation times of each client in FL, such that
the accumulative MI leakage of individual users can be reduced.
Moreover, we can also consider increasing the number of local
averaging as much as possible to reduce the aggregation times for
local model updates.

Although, the three aggregation algorithms exhibit a similar
trend with T , these algorithms can result in di�erent convergence
speeds to a target accuracy. To highlight the e�ect of convergence
rate on the accumulative MI privacy leakage, we show, in Fig. 10,
how the accuracy changes with the amount of MI leakage incurred
for the three algorithms during the training process up to a maxi-
mum of 30 training rounds for FedSGD. We observe that although
FedSGD achieves lower MI leakage for a �xed number of rounds
(see Fig. 9), its slow convergence rate will make it su�er from more
leakage before reaching a target accuracy rate. For example, given
a target accuracy of 85% on the MNIST dataset, both FedAvg and
FedProx achieve the target accuracy with 0.058% and 0.057% leak-
age while FedSGD will reach 85% accuracy in later rounds resulting
in an accumulative MI leakage of 0.11% (even with smaller leakage
per round).
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(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 11: Impact of the local training round (E) when using
FedAvg. We normalize the MI by the entropy of each user’s
local dataset, and we consider N 2 {10, 20}.

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 12: Impact of the local training round (E) when using
FedProx. We normalize the MI by the entropy of each user’s
local dataset, and we consider N 2 {10, 20}.

5.5 Impact of Local Training Epochs (E)
Fig. 11 shows the impact of varying the number of local training
epochs E on MI privacy leakage in FedAvg on both MNIST and CI-
FAR10 datasets. We select E from {1, 2, 5, 10} and N from {10, 20},
and we consider MLP model for MNIST and CNN model for CI-
FAR10. We observe that increasing the local training round E will
increase the MI privacy leakage in FedAvg. An intuitive explanation
is that with more local epochs, the local model updates become
more biased towards the user’s local dataset, hence it will poten-
tially leak more private information about users’ and make it easier
for the server to infer the individual model update from the aggre-
gated update. However, as shown in Fig. 11, increasing the local
epochs E will not have a linear impact on the increase of MI privacy
leakage. As E increases, the increase rate of MI privacy leakage
becomes smaller.

Similar to FedAvg, we observe from Fig. 12 that the local training
epochs E has a sub-linear impact on the MI privacy leakage when
using FedProx. As aforementioned, this can be attributed to the fact
that FedProx represents an application of FedAvg with the original
loss function in addition to a convex regularization term.

5.6 Impact of Data Heterogeneity
As discussed in Remark 3 of Section 3, in our theoretical analy-
sis, we considered IID data distribution across users in Theorem
1 in order to make use of entropic central limit theorem results
in developing our upper bounds on privacy leakage. However in
practice, the data distribution at the users can be heterogeneous.

(a) Normalized MI when E = 1. (b) Normalized MI when E = 5.

Figure 13: Impact of user heterogeneity when using FedAvg
on non-IID CIFAR10. Note that � = 1 means that the user
data distributions are identical (IID users), and theMI is nor-
malized by the entropy of a user’s local dataset.

Figure 14: Impact of user heterogeneity when using FedAvg
on FEMNIST. Note that the MI is normalized by the entropy
of target user’s local dataset, which is 678 ⇤ 176 .

Hence, in this subsection, we analyze the impact of the non-IID
(heterogeneous) data distribution across the users’ on the privacy
leakage. To measure how user heterogeneity can potentially impact
the MI privacy leakage in FedAvg, we consider two di�erent data
settings. In the �rst setting, we create synthetic users with non-
IID data distributions following the methodology in [21]. For the
second setting, we consider FEMNIST [10], a benchmark non-IID
FL dataset extended from MNIST, which consists of 62 di�erent
classes of 28⇥28 images (10 digits, 26 lowercase letters, 26 uppercase
letters) written by 3500 users.

In the �rst, synthetic non-IID data setting, we use Dirichlet
distribution parameterized by � to split the dataset into multiple
non-IID distributed local datasets. Smaller � (i.e., � ! 0) represents
that the users’ datasets are more non-identical with each other,
while larger � (i.e., � ! 1) means that the user datasets are more
identical with each other. We choose CIFAR10 as the dataset, CNN
as the model, and use FedAvg for a case study while using a batch
size of B = 32. Note that we do not consider FedSGD since it will
not be a�ected by user heterogeneity. During the experiments, we
choose the � value from {1, 10, 100,1} to create di�erent levels
of non-IID user datasets, and we consider N 2 {2, 5, 10, 20} and
E 2 {1, 5}.

Fig. 13 shows how the MI privacy leakage varies with the num-
ber of users under di�erent � , where the MI privacy leakage is
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normalized by the entropy of each user’s local dataset. We notice
that the MI privacy leakage will decrease with the number of users
consistently under di�erent � , which empirically shows that our
theoretical results in Section 3 also holds in the case where users
are heterogeneous.

For the second, FEMNIST data setting, we split the dataset by
users into 3500 non-overlapping subsets, each of which contains
character images written by a speci�c user. Considering that the
size of each subset is small, in order to have enough training data,
we choose to sample N users at each training round instead of
using a �xed set of N users, which simulates the user sampling
scenario in FL. Speci�cally, at the beginning of each FL training
round with N participating users, we use the same target user and
randomly pick the other N � 1 out of 3500 users. Note that we
consider N 2 {2, 5, 10, 20, 50} and E 2 {1, 5}, and use the same
model (CNN), batch size (B = 32), and FedAvg algorithm in our
evaluation..

Fig. 14 shows how theMI privacy leakage varies with the number
of users. Similar to the synthetic non-IID data setting in Fig. 13, the
privacy leakage decreases with increasing the number of user N .

5.7 Practical Privacy Implications
Success of Privacy attacks. To provide insights on howMI trans-
lates to practical privacy implications, we conduct experiments
using one of the state-of-the-art data reconstruction attack, i.e., the
Deep Leakage from Gradients (DLG) attack from [44], to show how
the MI metric re�ects the reconstructed image quality of the attack
as we vary system parameters. Speci�cally, we choose MNIST as
the dataset, the same SLP used in Section 4.2 as the model, and
FedSGD with batch size of 32 as training algorithm. For the data
distribution across the users, we consider the IID setting. At the
end of each training round, each user uses a batch of images with
size 32 to calculate their local gradients, which will be securely
aggregated by the server. The DLG attack will reconstruct a batch
of images with size 32 from the aggregated gradient, making them
as similar as possible to the batch of images used by the target user.
After that, we apply the same PSNR (Peak Signal-to-noise Ratio)
metric used in [44] to measure the quality of reconstructed images
compared with the images used by the target user during training.
Note that without loss of generality, we report the PSNR value of
reconstructed images by DLG attack for the �rst training round.

Fig. 15 shows the impact of number of users N on the privacy
leakage metric (MI) and the reconstructed image quality of DLG
attack (PSNR). We pick the image of digit 3 out of the target 32
images as an example of reconstructed images. We can observe
that increasing the number of users N decreases the MI metric as
well as the PSNR at almost the same rate. This demonstrates that
the MI metric used in this paper can translate to practical privacy
implications well.

MIPrivacy leakage under the joint use of DP and SA. To high-
light the joint e�ect of di�erential privacy with secure aggregation,
we conduct experiments on the MNIST dataset with a linear model
to measure the MI privacy leakage in the presence of centralized
DP noise added at the server after SA. Speci�cally, following [1], we
�rst clip the aggregated model updates to make its norm bounded

Figure 15: Impact of varying the number of users N , on the
reconstructed image quality (PSNR) of the DLG attack and
on the MI privacy leakage.

by C , and then add Gaussian noise with variance � 2 to achieve
(�, � )-DP. We set C = 1, � = 1/1200, and � =

q
2 log( 1.25� )/� .

Fig. 16a shows the MI privacy leakage for di�erent (�, � )-DP
levels with SA (� is �xed at 1/1200). As the number of users increase,
SA improves the privacy level (measured in terms of MI leakage) for
di�erent levels of DP noise, with the e�ect being most pronounced
for weak DP noise level (� = 5000 in Fig. 16a). Our experiments
also show that as the number of users increase, the gain from using
higher DP noise levels is diminished. In particular, with N = 1000
users, the MI leakage level for � =5, 10 and 5000 are almost the
same; MI leakage is only reduced from 0.046% to 0.034% when using
� = 5 instead of � = 5000. In contrast, we get a reduction from
0.234% to 0.056% when there are N = 2 users.

Importantly, the reduction observed in privacy leakage due to
applying additional DP noise results in a severe degradation in
accuracy as seen in Fig. 16b, whereas privacy improvement gained
by having more users has a negligible e�ect on the performance
of the trained model. For example, consider the case of 1000 users.
One may achieve the same level of privacy in terms of MI leakage
(lower than 0.05% MI) with either (i) (�, � )-DP with � = 10, which,
however, results in unusable model accuracy (less than 50%), or, (ii)
by aggregating the 1000 users and using a tiny amount of DP noise
(equivalent to � = 5000), which achieves a model accuracy higher
than 90%.

6 RELATEDWORK
Secure Aggregation in FL. As mentioned secure aggregation has
been developed for FL [9] to provide protection against model
inversion attacks and robustness to user dropouts (due to poor
connections or unavailability). There has been a series of works that
aim at improving the e�ciency of the aggregation protocol [7, 16, 22,
35–37, 43]. This general family of works using secure aggregation
disallow the learning information about each client’s individual
model update beyond the global aggregation of updates, however
there has not been a characterization of how much information the
global aggregation can leak about the individual client’s model and
dataset. To the best of our knowledge, in this work, we provide the
�rst characterization of the privacy leakage due to the aggregated
model through mutual information for FL using secure aggregation.
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(a) Normalized MI, MNIST. (b) Model accuracy, MNIST.

Figure 16: E�ects of using DP noise together with SA on MI
privacy leakage and model accuracy. Note that we add DP
noise in aggregated model updates after SA.

Di�erential Privacy.Oneway to protect a client’s contributions is
to use di�erential privacy (DP). DP provides a rigorous, worst-case
mathematical guarantee that the contribution a single client does
not impact the result of the query. Central application of di�erential
privacy was studied in [1, 5, 11]. This form of central application
of DP in FL requires trusting the server with individual model
updates before applying the di�erentially private mechanism. An
alternative approach studied in FL for an untrusted server entity
is the local di�erential privacy (LDP) model [2, 4, 25] were clients
apply a di�erentially private mechanism (e.g. using the Gaussian
mechanism) locally on their update before sending to the central
server. LDP constraints imply central DP constraints, however due
to local privacy constraints LDP mechanisms signi�cantly perturb
the input and reduces globally utility due to the compounded e�ect
of adding noise at di�erent clients.

In this work, we use a mutual information metric to study the
privacy guarantees for the client’s dataset provided through the se-
cure aggregation protocol without adding di�erential privacy noise
at the clients. In this case, secure aggregation uses contributions
from other clients to mask the contribution of a single client. We
will discuss in Section 7 situations where relying only on SA can
clearly fail to provide di�erential privacy guarantees and comment
on the prevalence of such situations in practical training scenarios.
Privacy Attacks. There have been some works trying to empiri-
cally show that it is possible to recovery some training data from the
gradient information. [3, 32, 39, 41]. Recently, the authors in [18]
show that it is possible to recover a batch of images that were used
in the training of non-smooth deep neural network. In particular,
their proposed reconstruction attack was successful in reconstruc-
tion of di�erent images from the average gradient computed over
a mini-batch of data. Their empirical results have shown that the
success rate of the inversion attack decreases with increasing the
batch size. Similar observations have been demonstrated in the
subsequent works [41]. In contrast to this work, we are the �rst to
the best of our knowledge to theoretically quantify the amount of
information that the aggregated gradient could leak about the pri-
vate training data of the users, and to understand how the training
parameters (e.g., number of users) a�ect the leakage. Additionally,
our empirical results are di�erent from the ones in [3, 32, 39, 41, 41]
in the way of quantifying the leakage. In particular, we use the

Figure 17: Heatmap of the absolute values of sampled up-
dates from clients 1, 2 and 3 in the counter example. x4 and x04
can be distinguished even adding the aggregated noise fromÕ3
i=1 xi .

MINE tool to abstractly quantify the amount of information leak-
age in bits instead of the number of the reconstructed images. We
have also empirically studied the e�ect of the system parameters
extensively using di�erent real world data sets and di�erent neural
network architectures.

7 FURTHER DISCUSSION AND
CONCLUSIONS

In this paper, we derived the �rst formal privacy guarantees for FL
with SA using MI as a metric to measure how much information
the aggregated model update can leak about the local dataset of
each user. We proved theoretical bounds on the MI privacy leakage
in theory and showed through an empirical study that this holds
in practice after FL settings. Our concluding observations is that
by using FL with SA, we get that: 1) the MI privacy leakage will
decrease at a rate of O(

1
N ) (N is the number of users participating

in FL with SA); 2) increasing model size will not have a linear impact
on the increase of MI privacy leakage, and the MI privacy leakage
only linearly increases with the rank of the covariance matrix of the
individual model update; 3) larger batch size during local training
can help to reduce theMI privacy leakage.We hope that our �ndings
can shed lights on how to select FL system parameters with SA in
practice to reduce privacy leakage and provide an understanding
for the baseline protection provided by SA in settings where it
is combined with other privacy-preserving approaches such as
di�erential privacy.
Can we provide di�erential privacy guarantees using SA?
Note that when using FL with SA, then from the point of view
of an adversary that is interested in the data of the i-th user, the
aggregated model in i� = [N ]\{i} can be viewed as noise that is
independent of the gradient xi given the last global model, which
is very similar to an LDP mechanism for the update x(t )i of user i
that adds noise to x(t )i . This leads to an intriguing question: Can we
get LDP-like guarantees from the securely aggregated updates?

Since DP is interested in a worst-case guarantee, it turns out
that their exist model update distributions where it is impossible
to achieve an � < 1 DP guarantee by using other model updates
as noise as illustrated in Fig. 17. In this case, the alignment of the

521



Proceedings on Privacy Enhancing Technologies 2023(1) Elkordy et al.

sparsity pattern in x1, x2 and x3 allows an adversary to design a
perfect detector to distinguish between x4 and x 04.

Why our MI privacy guarantee can avoid this? Although, the
previous example illustrates that DP �avored guarantees are not
always possible, in practical scenarios, the worst-case distribution
for x1, x2 and x3 that enables the distinguishing between x4 and x04
in Fig. 17 are an unlikely occurrence during training. For instance, in
our theoretical analysis, since users have IID datasets, then having
the distribution of x1, x2 and x3 be restricted to a subspace Sxi� ,
implies also that points generated from x4 would also belong to
Sxi� almost surely. This is a key reason why we can get mutual
information guarantee in Theorem 1: for an aggregated gradient
direction

ÕN
i=1 xi , where each component is restricted to a common

subspaceSx protects the contribution of each individual component
xi as N increases.

In the worst case, where one component is not restricted to the
subspace Sx spanned by the remaining components, then we get
the privacy leakage discussed in the example above. We highlight
that through our experiments and other studies in the literature [17],
we observe that such sparsity alignment happens with very low
probability. This presents motivation for studying a probabilistic
notion of DP that satis�es (�, � )-DP with a probability at least � ,
instead of the worst-case treatment in current DP notions, but this
is beyond the scope of the study in this current work.

Another interesting future direction is to use the results from this
work for a providing “privacy metrics” to users to estimate/quantify
their potential leakage for participating in a federated learning co-
hort. Suchmetrics can be embedded in platforms, such as FedML [20],
to guide users to make informed decisions about their participa-
tion in federated learning. Finally, it would also be important to
extend the results to model aggregation protocols that are beyond
weighted averaging (e.g., in federated knowledge transfer [19]).
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A PROOF OF THEOREM 1
Without loss of generality, using permutation of clients indices, we
will prove the upper bound for the following term
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where xN is the mini-batch gradient of node i which is given by

x(t )i =
1
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b 2B(t )

i

�i (�
(t ),b), (18)

We will use the following property of vectors with singular covari-
ance matrices in the proof of this theorem.

Property 1. Given a random vector q with a singular covariance
matrix Kq of rank d⇤, there exists a sub-vector q̄ of q with a non-
singular covariance matrix Kq̄ such that q = Aq̄ where A 2 Rd⇥d

⇤

is a deterministic linear transformation matrix.

Let us de�ne S(t )N =
1
N

ÕN
i=1 x

(t )
i . We also use the de�nition of

�̄i (� (t ),b) 2 Rd
⇤

, for d⇤  d where d is the model size, which is the
largest sub-vector of the stochastic gradient �i (� (t ),b) such that
�̄i (� (t ),b) has a non-singular covariance matrix KḠ (t ) for all i 2 N .
According to the de�nition of �̄i (� (t ),b), we can rewrite (17) and
the term S(t )N as follows:
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Let also de�ne F (t )N =
p
NS̄(t )N . We can decompose the expression

in (17) as follows:
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where: (a) follows from the fact that the mutual information is
invariant under deterministic multiplication; (b) from Property 1
(c) follows from the property of the entropy of linear transforma-
tion of random vectors [12] and the fact that x̄(t )N and F (t )N�1 are

conditionally independent given
n
S(k)N

o
k 2[t�1]

(e.g., the last global
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model at time t ) ; (d) follows from the Schur compliment of the
matrix.

We will now turn our attention to characterizing the entropy
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where: (i) makes use of the fact that the covariance matrix is the
same across clients and using the whitening de�nition (De�nition
1) on the vector �̄i (b,� (t )); (ii) again uses the property of entropy
of linear transformation of random vectors.

Note that the term of h
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in the second term HM . As a result by substituting (21) in (20), we
get that
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Our �nal step is to �nd suitable upper and lower bounds for HM to
use in (22). Recall for the following arguments that due to whitening,
the vector b�(t )b = b�(b,� (t )) has zero mean and identity covariance.

A.1 Upper bound on HM
The upper bound is the simplest due to basic entropy properties. In
particular, the sum 1
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where (a) follows from the fact that for a �xed �rst and second
moment, Gaussian distribution maximizes the entropy.

The distinction between the proof of the bound in Case 1 and
Case 2 in Theorem 1 is in the lower bound on the term HM . We
start by providing the lower bound that is used for proving Case 1.

A.2 Lower bound on HM for Case 1 in Theorem
1

For the lower bound, we will rely heavily on the assumption that
the elements of b�(t )b are independent and the interesting result
that gives Berry-Esseen style bounds for the entropic central limit
theorem [8]. In particular, in its simplest form, the result states
that for IID zero mean random variables Xi , the entropy of the
normalized sum Tm =

1
p
M

ÕM
i=1 Xi approaches the entropy of a

Gaussian random variable �� 2 with the same variance � 2 as Xi ,
such that the following is always satis�ed

h(�� 2 ) � h(TM )  C̃
E|Xi |4

M
, (24)

Using (24), we can �nd a lower bound for HM as follows:
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In other words, we have the following bound on HM
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By substituting (26) in (22) (lower bound for M = N � 1 and
upper bound forM = N ), we get that
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This concludes the proof of Case 1.

A.3 Lower bound on HM for Case 2 in Theorem
1

The proof of this lower bound relies on the entropic central limit
theorem for the vector case [15] and Lemma 1 below. We start by
giving the entropic central limit theorem for the case of IID random
vectos [15].

Theorem 2 (Entropic central limit theorem [15]). Let q be a � -
uniformly log concave d-dimensional random vector with E[q] = 0
and non-singular covariance matrix �. Additionally, let z ⇠ N(0, �)
be a Gaussian vector with the same covariance as q, and let � ⇠

N(0, Id ) to be a standard Gaussian. The entropy of the normalized
sum TM =

1
p
M

ÕM
i=1 qi , where qi ’s are random samples, approaches

the entropy of a Gaussian random vector Z , such that the following is
always satis�ed

Ent(TM | |z) 
2(d + 2(Ent(

p
�q| |� )

M� 4 , (28)
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where Ent(TM | |z) is the relative entropy.

L���� 1. Given a random vector q 2 Rd with a distribution fq(�)
and Cov(q) = �, and de�ning z ⇠ N(0, �) to be a Gaussian vector
with the same covariance as q, for � > 0 , we get

Ent(
p
�q| |z) = �h(q) �

d

2
log(� ) +

d

2
log(2� )

+
1
2
log(|�|) + �

d

2
, (29)

and

Ent(q| |z) = h(z) � h(q). (30)

Given the assumption that b�(t )b has a � -log concave distribution

while both the term 1
p
MB

ÕM
i=1

Õ
b 2B(t )

i
b�(t )b and b�(t )b have an iden-

tity covariance matrix � = Id⇤ given
n
S(k )N

o
k 2[t�1]

, we can use (28)

with z ⇠ N(0, Id⇤ ). Furthermore, by using Lemma 1, we get

h(z) � HM 
d⇤C1,�̄ �C2,�̄

MB
, (31)

where, C1,�̄ =
2(1+�+log(2� )�log(� ))

� 4 and C2,�̄ =
4h

⇣b�(b ,� (t )
)

⌘
� 4 , and

h(b�(b,� (t ))) is the entropy of the random vector �̄i (b,� (t )) after
whitening.

Finally, using the fact that the entropy of the Gaussian random
vector z with covariance Id⇤ is given by h(z) = d⇤

2 log(2�e), we get
the following bound on HM

d⇤

2
log (2�e) �

d⇤C1,�̄ �C2,�̄

(N � 1)B
 HM 

d⇤

2
log (2�e) . (32)

By substituting (32) in (22) (lower bound for M = N � 1 and
upper bound for M = N ), we can now upper bound the mutual
information term as follows

I

✓
x(t )N ; S(t )N

����
n
S(k )N

o
k 2[t�1]

◆

= HN � HN�1 +
d⇤

2
log

✓
N

N � 1

◆


d⇤

2
log

✓
N

N � 1

◆
+
d⇤C1,�̄ �C2,�̄

(N � 1)B
. (33)

This concludes the proof of Theorem 1.

B PROOF OF COROLLARY 1
In the following, we de�ne S(t )N =

1
N

ÕN
i=1 x

(t )
i . Using this notation,

we can upper bound Ipriv/data as follows

Ipriv/data = I

✓
Di ;

n
S(k )N

o
k 2[T ]

◆

(a)
=

T’
t=1

I

✓
Di ; S

(t )
N

����
n
S(k )N

o
k 2[t�1]

◆

(b)


T’
t=1

I

✓
B
(t )
i ; S(t )N

����
n
S(k )N

o
k 2[t�1]

◆

(c)


T’
t=1

I

✓
x(t )i

✓
B
(t )
i ;

n
S(k )N

o
k 2[t�1]

◆
; S(t )N

����
n
S(k )N

o
k 2[t�1]

◆
|                                                     {z                                                     }

This is bounded by the result in Theorem 1

. (34)

where: (a) comes from the chain-rule; (b) from data processing
inequality Di ! B(t )i ! x(t )i , where B(t )i is the sampled mini-batch
from the data set of node i; (c) from data processing inequality
B(t )i ! x(t )i !

1
N

Õ
i 2N x(t )i ;. Combining the results given in the

two cases of Theorem 1 with (34) concludes the proof of Corollary
1.

C PROOF OF LEMMA 1

Ent(
p
�q| |Z) = Ent(q0 | |Z) =

π
fq0(�) log

fq0(�)

fZ(�)
d�

=

π
fq0(�) log fq0d� �

π
fq0(�) log fZ(�)d�

(a)
= �h(q0) +

d

2
log(2� )

+
1
2
log(|�|) +

1
2

π
fq0(�)�

T ��1�d�

(b)
= �h(q) �

d

2
log(� ) +

d

2
log(2� )

+
1
2
log(|�|) +

1
2

π
fq0(�) Tr(��1�T�)d�

(c)
= �h(q) �

d

2
log(� ) +

d

2
log(2� )

+
1
2
log(|�|) +

1
2
Tr

✓
��1

π
fq0(�)�

T�d�

◆

= �h(q) �
d

2
log(� ) +

d

2
log(2� )

+
1
2
log(|�|) +

1
2
Tr

⇣
��1Eq0[q0T q0]

⌘
(d )
= �h(q) +

d

2
log(

2�
�

) +
1
2
log(|�|) +

1
2
� Tr

⇣
��1�

⌘

= �h(q) +
d

2
log(

2�
�

) +
1
2
log(|�|) + �

d

2
, (35)

where: Tr represents the trace function; (a) follows from using the
multivariate distribution of the Gaussian vector z; (b) using the
scaling property of the entropy with q0 =

p
�q; (c) from follows

from using the linearity of the trace function; �nally (d) from using
the linear transformation of the random vector q0 =

p
�q and the

fact that q has the same covariance matrix � as z.
The proof of (30) follows directly by substituting � = 1 in the

equation (35) and using entropy of a Gaussian vector with covari-
ance �.

D OVERVIEW OF MINE
In our empirical evaluation in Section 5, we use the Mutual In-
formation Neural Estimator (MINE) [6] to estimate the mutual
information, which is the state-of-the-art method for mutual in-
formation estimation [6]. Speci�cally, given random vectors X
and Z , and a function family parameterized by a neural network
F = {T� : X ⇥ Z ! R}� 2�, the following bound holds:

I (X ;Z ) � I�(X ;Z ), (36)

where I�(X ;Z ) is the neural mutual information measure de�ned
as:

I�(X ;Z ) = sup
� 2�
EPXZ [T� ] � log(EPX ⌦PZ [e

T� ]), (37)
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PX and PZ are the marginal distribution of X and Z respectively,
PXZ is the joint distribution ofX and Z , and PX ⌦PZ is the product
of marginals PX and PZ . As an empirical estimation of I�(X ;Z ),
MINE is implemented as

õI (X ;Z )K = sup
� 2�
E
P(K )

XZ
[T� ] � log(E

P(K )

X ⌦P(K )

Z
[eT� ]), (38)

where P(K )

(·)
is the empirical distribution of P(·) with K IID samples.

Finally, solving Eq. 38 (i.e. get the MI estimation) can be achieved
by solving the following optimization problem via gradient ascent:

õI (X ;Z )K = max
� 2�

(
1
K

K’
k=1

T� (xk , zk ) � log

 
1
K

K’
k=1

eT� (xk ,z̄k )
!)
,

where (xk , zk ) is the k-th sample from PXZ and z̄k is the k-th
sample from PZ .
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