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ABSTRACT

A biodiversity crisis was observed in the latest Triassic on both macro- and micro-benthic communities from a
western Tethyan carbonate platform. The studied succession represented by the Monte Sparagio section consists
of a continuous Upper Triassic to Lower Jurassic peritidal limestones organized in shallowing upward cycles. The
subtidal facies in the lower part of this section (Unit A) contains very abundant and highly diverse fossiliferous
assemblages consisting of very large megalodontoids (up to 40 cm). Up-section, a reduction of biodiversity,
abundance and shell size of megalodontoids (up to 15 cm) tipifies Unit B. Similarly, in this last Unit, the average
dimensions of the benthic foraminifer T. hantkeni decreases (ca. 30%). After a short interval marked by a bloom
of the problematic alga T. parvovesiculifera, the overlying Unit C accounts for the recovery of the Jurassic benthic
community. The geochemical analyses of stable isotopes (C, O and S) seem correlative to the drastic reduction
in the Rhaetian biodiversity between Unit A and Unit B. These biodiversity crises in the Rhaetian horizons can
be interpreted as a precursor of the End Triassic Extinction and provide new insights into the existence of two
extinction pulses at the end of Triassic. These data are in accordance with the environmental parameters of
survival in a modern tropical shallow water platform (T-factory). In particular, the sea surface temperature (SST)
of a T-factory ranges from 18 °C to 30.5 °C representing respectively the minimum SST for the carbonate factory
persistence and the maximum SST that a T-factory can tolerate.

KEY-WORDS: biodiversity, End Triassic Extinction, paleotemperatures, 8180, biocalcification crises.

INTRODUCTION

Itislargely accepted that the end Triassic mass extinction (ETE) was driven by climatic and
environmental changes related to the Central Atlantic Magmatic Province (CAMP) volcanic
activity (Marzoli et al., 2018; Nomade et al., 2007; Todaro et al., 2022b; Yager et al., 2021). A
general relationship between volcanism and mass extinction is also seen at other times such as
Permo—Triassic boundary and in the Early Jurassic (Toarcian) (Guex, 2016; Isozaki & Aljinovic,
2009; Nomade et al., 2007). The recovery of biotas after a mass extinction event is often
marked by two main phenomena: i) the survival of opportunistic species capable of thriving
in harsh environmental conditions; ii) a reduction in body size of survivors (e.g., Guex, 2016).
Potentially, these phenomena could be more apparent amongst tropical and sub-tropical
organisms from stable environmental conditions (including pH, carbonate saturation, oxygen
availability, shallow water temperature, etc.), since they are potentially more vulnerable to the
environmental changes compared to those taxa from temperate, seasonal habitats (Vinagre et
al., 2016). Some studies claim the existence of a correlation between the maximum potential
size of animals and oxygen availability (Sun et al., 2012). In particular, large-sized marine
invertebrates have a low thermal tolerance, beyond which a reduction of dimensions known
as “Lilliput effect” is recorded (Morten & Twitchett, 2009; Todaro et al., 2018). During the
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BIODIVERSITY CRISES ON UPPER TRIASSIC CARBONATES

latest Triassic, calcareous organisms, such as bivalves, appear to
have experienced severe problems with calcification and changed
their mineralogy from aragonite to calcite (e.g., Hautmann, 2004).
The data collected from Lombardy (ltaly), Northern Calcareous
Alps (Austria and Germany), and northwest Europe (England and
Wales) suggest that a reduction of primary productivity could
have selectively extinguished the bivalve community at the end
of the Triassic (McRoberts et al., 1995). However, more recent
contributions do not agree with a selective extinction when
compared infaunal and epifaunal bivalves (Ros et al., 2011). As far
as concern the megalodontoids a selective extinction is postulated
by Kiessling & Aberhan (2007) as a consequence of climate
changes at the TJ boundary.

Based on the above statements is important to note that the
causes of ETE are still unclear even though the ultimate cause is
clearly linked to LIP volcanism. Furthermore, in many Triassic-
Jurassic sections, two pulses of extinction were identified (Wignall
& Atkinson, 2020).

In the studied Mt. Sparagio section (Sicily, Italy), we
documented a transition of biodiversity in the bivalve community of
a shallow marine succession from the south-western Tethys during
the latest Triassic. Moreover, the correlation between the 6'%0_,
and 83C_ (Todaro et al., 2018) and the observed biodiversity
variations provide new insights into the existence of two pulses of
extinction at the end of Triassic.

METHODS

Biodiversity trends have been documented in a continuous
section of about 350 m spanning the Triassic—Jurassic boundary
(TJB) based both on macro- and microfacies analysis (about 200
thin sections) of the lagoonal facies. The 6'%0_, , data are based on
65 bulk carbonate samples collected from a 224 m thick succession
across the TJB (Todaro et al., 2018). Petrographic observation,
SEM analyses data (wt% Mg?* 0.2—0.7), staining results and
elemental indicators (Mn/Sr, Mg/Ca) were carried out in order to
verify the primary nature of the carbonate powder collected for
isotope analyses. The results of the laboratory analyses showed
that the bulk powders are completely calcite and no diagenetic

processes and/or dolomitization have altered the samples (Todaro
etal., 2018; He et al., 2020).

A positive correlation (R2 = 0.57) was calculated for carbon
and oxygen isotope data, however, significant correlation has been
correlated to a pristine perturbation of the carbon cycle associated
with global climatic changes in the Earth system, such as the
PETM, the K/Pg boundary, and the Eocene-Oligocene boundary
(e.g., Bohaty et al., 2009; Coxall et al., 2005; Zachos et al., 2001).
The isotopic analyses have been performed at the Department
of Geosciences of the University of Padova with the procedure
described in Todaro et al. (2018). The oxygen isotope values were
used to calculate the paleotemperatures applying the equations
of Anderson & Arthur (1983) assuming a &0 of ~0%o. for Triassic
seawater in agreement with the temperature tolerance of the reef-
building organisms (Rigo et al., 2012). Bivalves were identified to
the highest taxonomic level possibly based on published works,
including Yao et al. (2012), Loriga et al. (1993), Sano et al. (2009),
Allasinaz & Zardini (1977), Zapfe (1963), Allasinaz (1965), and
Végh-Neubrandt (1982).

GEOLOGICAL SETTING

The Mt. Sparagio (MS) section is located in northwestern Sicily
(Custonaci, 38°05’N, 12°51’E) and consists of neritic limestones
representing a wide carbonate platform edging the south-western
Tethys Sea (Fig. 1). This platform was transitional to evaporitic
(sabkha-type) environments that today crop out in the Egadi
Islands, westernmost Sicily (Gasparo Morticelli et al., 2016; Martini
et al., 2007; Todaro et al., 2022) and are known by wells in the
subsurface of the Tunisian offshore (Fig. 1).

The peritidal limestone is part of a large thrust sheet of the
Apennine-Maghrebian Chain, piled up during Miocene times
(Randazzo et al. 2020, 2021).

The section is about 350 m thick, consisting of shallowing
upward peritidal cycles formed by subtidal, intertidal, and supratidal
facies. It represents a rare example of a continuous and well-
preserved shallow water sedimentary record across the TJB and it
has been investigated sedimentologically, biostratigraphically, and
geochemically (He et al., 2020; Todaro et al., 2017, 2018). The
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Fig. 1 - a) Planisphere indicates the location of Monte Sparagio section (MS, green star) in the Tethyan realm during Late Triassic. b) Detail of the
paleogeography of the central Mediterranean area during the Late Triassic (modified after Di Stefano et al., 2015; paleolatitude after Muttoni et al., 2015).

c) Schematic structural map of the Central Mediterranean area.
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section is subdivided into three informal units on the basis of the
benthic communities in the subtidal facies (Fig. 2).
Stratigraphically, grainstone/rudstone with diverse and
abundant associations of large bivalves, gastropods, scleractinian
corals, calcareous algae, and foraminifers (including Aulotortids
and Triasina hantkeni) commonly occur in Unit A (Fig. 3a). Subtidal
facies formed of wackestones/floatstones are rarely observed. The
Rhaetian age of this unit is supported by the common presence of
large specimens of the benthic foraminifer T. hantkeni that are up to
1 mmindiameter (Di Bari & Rettori, 1996). The Unit B does not show
significant textural differences from Unit A. Skeletal grainstone/
rudstone are the most common sediments, however they record
a sudden reduction in the diversity, abundance, and shell size
of megalodontoids. In this latter unit, the Rhaetian foraminiferal
assemblage is still dominated by specimens of T. hantkeni however,
with an average diameter below 1 mm (Fig. 3b). The top of Unit B
is marked by a thin (up to 10 cm) and discontinuous level of ooidal
grainstone (Fig. 3c), above which ca. 10 m of peritidal cycles with
barren subtidal facies occur. Upward, the Unit C consists of subtidal
facies formed by grainstone-packstone containing oligotypic
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—— Grainstone-packstone with Thaumatoporella
parvovesiculifera and Aeolisaccus sp. association
Siphovalvulina sp. occurs 10 m upward marking
the recovery of the platform

barren interval with the exclusive
presence of calcitic spherules

Grainstone-rudstone with low biodiversity
| fossils assemblage of megalodontoids.
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fossils assemblage of corals, Megalodontids,
Dicerocardids, Triasina hantkeni among

Fig. 2 - Lithostratigraphic column of
the Mt. Sparagio section across the
TJB. The section was differentiated
into three informal units on the
basis of the fossil associations in the
subtidal facies. (Mod. after Todaro et
al., 2018).

& Siphovalvulina sp.

assemblages of problematic organisms such as Thaumatoporella
parvovesiculifera and Aeolisaccus sp. (Fig. 3d). About 10 m upward
the appearance of Siphovalvulina sp. marks the recovery of the
Lower Jurassic benthic community (Unit C).

MEGALODONTOID ASSOCIATIONS

We analysed the bivalve associations throughout the studied
section in order to better understand the biodiversity variations
between Unit A and B. Additional observations were carried out
on large, quarried blocks whose stratigraphic position could be
determined.

The lower part of the section (Unit A) shows very rich and
well diversified assemblages of large megalodontoids. They are
concentrated in the subtidal facies and occur either in growth
position (Fig. 4a) or with disarticulated valves (Fig. 4b) possibly
as a result of storm events. In this unit the dicerocardiids typically
co-occur with some types of neomegalodontids. Only one outcrop
exhibits predominantly well-preserved Dicerocardium spp.
(Fig. 4c), while, in other cases, the megalodontoid assemblage
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Fig. 3 - Microfacies types in units A, B and C. a) grainstone with Triasina hantkeni belonging to Unit A (TJO1); b) grainstone with Triasina hantkeni of Unit
B; c) ooidal grainstone (TJ 38) at the top of Unit B; d) grainstone with Thaumatoporella parvovesiculifera (TJ 58) belonging to Unit C.

does not include obvious dicerocardids but contains abundant
Neomegalodon sp. (Fig. 4d). Remarkable in the megalodontoid
associations of Unit A is the large dimensions of the specimens
that reach an average size of about 25 cm and a maximum size up
to 40 cm. This is not surprising when considered other Rhaetian
associations from Tethys (Allasinaz, 1992; Végh-Neubrandt, 1982).
Smaller specimens (ca. 10 cm) also co-occur; however the large
specimens dominate the assemblage (Fig. 4d).

In Unit B of the Mt Sparagio section no dicerocardids have
been observed but only megalodontids that can be compared to
Neomegalodon sp. and Triadomegalodon sp. (Fig. 5a, b). The size
of these specimens does not exceed 10-15 cm, so it is evident a
drastic reduction in diversity and size of the pelecypod assemblage.

During the latest Triassic and across the TJB, a series of
environmental and biotic changes have been documented and
related to the emplacement of the CAMP, which is represented

Downloaded from http://pubs.geoscienceworld.org/italianjgeo/article-pdf/142/1/122/5794278/122.pdf
bv North Dakota State LIniv user

by intrusive and effusive volcanic activity as a consequence of the
Pangea breakup and opening of the central Atlantic Ocean (e.g.,
Nomade et al., 2007). The CAMP volcanic activity released high
amounts of SO, and CO, into the atmosphere. The presence of SO,,
associated with ash and aerosols, is thought to have caused a short-
term cooling event, followed by a long-lasting warming interval,
ocean acidification, and low carbonate saturation rates generated
from increased CO, (Clapham & Renne, 2019).

Cold paleotemperatures were indicated from isotopic
values of oyster shells in UK (Korte et al., 2009), likely related to
early degassing of sulphur from CAMP magmas, highlighting a
significative intrusive volcanic activity before the first basalt flow
(Davies et al., 2017). Guex et al. (2004) proposed a model that
associates the negative Initial Carbon Isotope Excursion (CIE) to
an SO, induced cooling event, followed by a CO, related warming
event, corresponding to the negative Main CIE. Evidence of cooling
was recorded in Rhaetian sediments of Europe that show regression
facies at the end of Triassic (Berra et al. 2010; Trotter et al., 2015).

On the other hand, a warming trend was related to the high
amountof CO, released by effusive volcanic activity. The absorption
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Fig. 4 - Megalodontoids assemblages (highlighted by a black line) from Unit A: a) large megalodontoids in growth position; b) a subtidal facies showing
predominant disarticulate valves of megalodontoids; c) a quarried block showing large Dicerocardium spp.; d) an assemblage of large Neomegalodon sp.

notice that also small specimens are present in the lower part of the image.

of CO, by the oceans causes acidification, low carbonate
saturation rates with consequent effects on the biocalcified
organisms. A warming trend, triggered by volcanogenic CO, from
Siberian Traps, has been considered a main cause of the Permian-
Triassic boundary (PTB) extinction (Song et al., 2014). The
consequent acidification and anoxia affected the benthic tropical
community, including a documentation of a reduction in the size
of invertebrates. The “greenhouse scenario” caused by the Karoo-
Ferrar large igneous provinces (LIPs) at the Pliensbachian—
Toarcian boundary (PITB) caused the extinction of benthic and
pelagic organisms at several latitudes (Caruthers et al., 2013).
In the immediate aftermath of the extinction event, a reduction
in size of bivalves was observed in basinal sections of northern
England (Morten & Twitchett, 2009). The authors hypothesized
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that a reduction of oxygen availability could be responsible for the
Lilliput effect above the PITB.

The increasing temperature during TJB was caused by the high
amount of CO, released by CAMP volcanic emissions (McElwain
et al., 1999). A temperature increase at the end of Triassic was
documented from bulk carbonate 50 of two sections at Cs6vér in
Hungary (Palfy et al., 2007) and Doniford in England (Clémence et
al., 2010). The correlation between high rates of CO, and warming
trends support synchronicity between climate warming and the
ETE (Ruhl et al., 2011). As demonstrated in lab experiments,
ocean acidification (CO,-driven) can reduce the capacity of some
organisms to resist high temperatures (Gunderson et al., 2016).
Recent studies have characterized the relationship between sea-
surface oceanographic parameters (i.e., temperature, salinity, and
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Fig. 5 - Megalodontoids assemblages (highlighted by a black line) from
Unit B showing the absence of dicerocaridids and an assemblage of
Neomegalodon and Triadomegalodon sp. specimens in which the size does
not exceed 10-15 cm.

marine primary productivity) and the global distribution of shallow-
water marine carbonate factories (e.g., Laugié et al., 2019). In
particular, the main controlling factor for the survival of a tropical
shallow water platform (T-factory) is a sea surface temperature
range of 18 °C to 30.5 °C, with a preferred temperature of 24°C.
Similar mechanisms might be put forward for the TJB biodiversity
crisis documented at Mt Sparagio. The temperature curve obtained
from the studied section supports climatic variations across the
Rhaetian—Hettangian boundary (Fig. 7).

The correlation of the 680 temperature curve with the biotic
turnover observed in this section allows a better understanding of the
triggering factors leading to the extinction of the Rhaetian benthic
community. The bivalve association consisting of well diversified and
large specimens of Dicerocardium-Neomegalodon observed in Unit
Arecords a drastic decrease both in biodiversity (only Neomegalodon
sp. occur) and size in the overlying Unit B. In Fig. 6 it is possible to
observe a comparison of outlined shells that show the difference in
size of megalodontoids specimens in Units A and B. No significant
difference in grain sizes or sedimentary structures occur between
the subtidal facies of Unit A and B so they are very comparable as
interpreted environments. This confirms that the decrease in shell
size is not a feature associated with habitat separation.

Rhaetian beds with giant megalodontoids are not exclusive
of the Mt Sparagio section as they were observed in different
platform-derived thrust sheets of the Appenine-Maghrebian chain.
As an example, similar beds are observed in the northernmost part
of the Capo San Vito peninsula (i.e. Torre dell’Usciere locality) at a
distance of about 13 km (not considering the shortening related to
the contraction of the chain). The rich megalodontoid associations
that occur in Norian subtidal facies of the platform do not show
any phenomena of gigantism (i.e.,Capo Rama and Cozzo di Lupo
sections, Palermo Mountains, Di Stefano, 1990).

Analogously to the bivalves community, the T. hantkeni records
a reduction in size down to 500 pum. A similar and synchronous
biotic trend was also recorded at St. Audrie’s Bay section (UK),
where a decrease in bivalve size, abundance, and shell thickness
was related to a biocalcification crisis reflecting the ecological
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adaptation by calcifying organisms to the reduced carbonate
availability in marine systems (Mander et al., 2008). The last
occurrence of the Rhaetian benthic community marks the top of the
Unit B and it is associated with a distinctive litho-horizon formed by
oolitic grainstones. This lithofacies, as documented in other sites
of the platform edge of several TJB sections, has been interpreted
as evidence of the demise of the Upper Triassic sponge reefs (Di
Stefano, 1990). Up-section, the barren interval and the subsequent
Unit C (with Thaumatoporella sp. and Aeolisaccus sp.) are recorded
in lowermost Jurassic limestones of other TJB shallow water
successions from Tethys such as Greece (Romano et al., 2008) and
Turkey (Tunaboylu et al., 2014) and they have been considered as a
survival zone. The integration of biostratigraphic and geochemical
data suggests that in the western Tethys sector, a climatic optimum
represented by Unit A favoured a high biodiversity and a gigantism
of some benthic communities during late Rhaetian.

This trend was overprinted by a climatic change between Initial
and Main CIEs (Fig. 7), probably related to a new phase of gas emission
by the CAMP, resulting in a drastic decrease of diversity and shell size
as an adaptation to a higher probability of survival. A temperature
decrease (below 18°C) is estimated in fact just above the boundary
between Unit A and B. The subsequent more prolonged warming
trend (Unit B) associated with acidification induced by the Main CIE
caused the stress conditions resulting in the total extinction of the
Rhaetian benthic community. The biocalcification crisis recorded
in the Unit B at Mt. Sparagio is characterized by the disappearance
of corals and reduction of mollusk biodiversity and it seems strongly
related to the higher negative values of the §'°C_, curve of Main
CIE coupled to warmer temperatures with peaks exceeding 31°C
(low &0, values). However, the 680 _ curve seems to remain
stable, characterized by negative values (high temperature) during
the return to 6°C_,, background values of the Main CIE. The abrupt
end of this warming phase, represented by an abrupt positive 6'°0__
shift, occurs just above a positive perturbation of the 6*S,; and
corresponds to the extinction of the Triassic benthic community (i.e.,
megalodontoids and T. hantkeni) (Fig. 7). In He et al. (2020), the
sudden positive excursion of the §*S . documented throughout the
barreninterval, suggests that persistent anoxic conditions might have
also played a significant role in the TJB crisis. It is noteworthy that at
Mt Sparagio the problematic alga Thaumatoporella parvovesiculifera
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Fig. 6 - Comparison of outlined shells between Unit A and Unit B showing
the difference in size of specimens.
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exhibits a monospecific bloom in the lowermost Jurassic lagoonal
beds during the last warming phase, suggesting that this taxon
thrived during the rapid and significant cooling event below 18°C,
as supported by the quick positive shift of 680 . (Fig. 7). In fact,
these disaster taxa were identified as a survival species capable to
live in stressed environments (Barattolo & Romano, 2005). A gradual

carb

biotic recovery of the carbonate productivity is evidenced by the first
occurrence of benthic foraminifera such as Siphovalvulina sp. in a
more stable environment in the lowermost Jurassic beds.

It is largely demonstrated for several geological boundaries
(e.g., PTB, TJB, PITB) that LIPs are capable of exerting a strong
influence in marine and terrestrial environments at a global
scale. The triggering factors of the environmental changes are
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trends. The oxygen isotope values
(6'80) were used to calculate the
paleotemperatures applying the
equations of Anderson & Arthur,
(1983).

volcanogenic gases, such as SO,and CO,, that might generate short
cooling and warming episodes, acidification, and anoxia. These
multiple forcing mechanisms have a severe effect in the biotic
systems, in particular on stable and sensitive habitats such as those
at the tropical and sub-tropical latitudes, where extinctions were
more severe. The integrated sedimentological, biostratigraphic
and geochemical data from a peritidal sub-tropical TJB section
outcropping in north-western Sicily highlight a close relationship
between climatic changes and the ETE. The ETE is preceded
by anomalies in the biodiversity abundance of some benthic
organisms such as the molluscs (megalodontoids) and benthic
foraminifers that were probably more sensitive to the variation of
the environmental conditions. A very abundant and high diverse
fossiliferous assemblages of megalodontoids families seems to
be an adaptive response to a climatic optimum during the latest
Rhaetian. A negative trend of 6'%0__, values corresponding to an
increase of temperature matches instead the biodiversity reduction
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of the mollusc assemblage both in dimension and diversification.
The observed sharp decrease in the mollusc biodiversity predates
the ETE that, in the Mt. Sparagio section, is documented by the
total extinction of the Late Triassic benthic community associated
with a drastic decrease of paleotemperatures of the shallow waters,
followed by the recovery of benthic communities in the Early
Jurassic.

ELECTRONIC SUPPLEMENTARY MATERIAL

This article contains electronic supplementary material which
is available to authorised users.
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