

ARTICLE

Cross-dehydrogenative coupling of ethers and amides with the tautomerizable quinazolinones, and mechanistic studies

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Dellamol Sebastian,^{a,b} Patrick H. Willoughby^c and Mahesh K. Lakshman^{*a,b}

Cross-dehydrogenative coupling reactions have been utilized to alkylate 4(3*H*)-quinazolinones with ethers and amides, using catalytic *n*-Bu₄NI and *t*-BuOOH as oxidant. Reactions with amides represent the first examples under such conditions. Studies *via* inter- and intramolecular competitive experiments with protio and deuterio reactants, as well as radical inhibition experiments, provided mechanistic insight. Also, an understanding of the relative reactivities of ethers was obtained by pairwise competitions with 4(3*H*)-quinazolinone.

Introduction

The 4(3*H*)-quinazolinone (quinazolinone) unit, a tautomerizable moiety, is present in a variety of alkaloids and drug candidates.^{1–3} Some examples of bioactive quinazolinone derivatives are shown in Fig. 1. Febrifugine and halofuginone, two compounds found in *Dichroa febrifuga* and in the common garden plant hydrangea,⁴ have been ascribed a range of bioactivities. More recently, these and their derivatives have been shown to inhibit prolyl-tRNA synthetase,⁵ and halofuginine is used as a veterinary coccidiostat. Beyond bioactive natural products, there is effort to identify new quinazoline-based drug candidates and in this context, diproqualone as well as albaconazole are examples.

Shown in the dotted box in Fig. 1 are possible tautomers of quinazolinone, which can potentially lead to reactions at more than one center. This complication has been identified in both

base- and metal-mediated alkylative processes, and the complexity is further enhanced by a substituent at C2 position.^{6,7} Herein, we present studies on the unknown cross-dehydrogenative coupling (CDC) reactions of quinazolinones with ethers and amides, as an attractive and concise segue to *N*-alkylation of this heterocycle. In this context, Minisci-type reactions are known, either with quinazoline as one substrate among others,⁸ or as a specific substrate.⁹ However, this literature holds some interesting results. In one instance, reaction of quinazolinone and 1,4-dioxane with NaN₃/PIFA in TFE, at room temperature, led to no product.^{9a} In a second case, homolytic reactions of 1,4-dihydropyridine derivatives of tetrahydropyran (THP) and benzylmethyl ether with quinazolinone gave only Minisci-type products.^{9b} These are shown in Scheme 1.

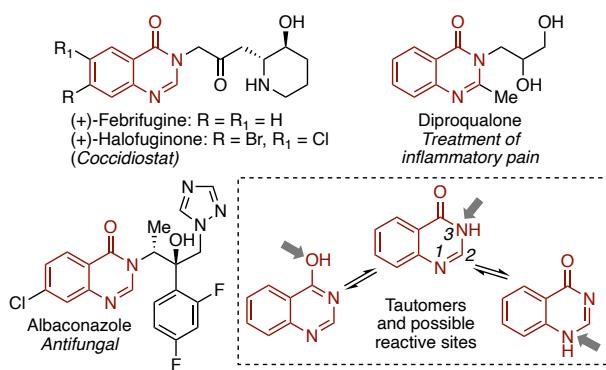
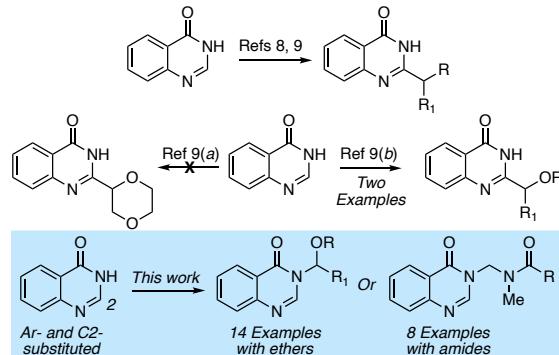



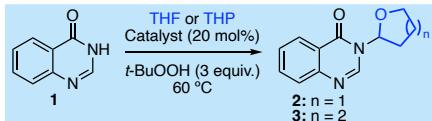
Fig. 1. Natural and synthetic biologically important quinazolinone derivatives.

Scheme 1. A summary of Minisci-type reactions of quinazolinones as well as the present work.

In the context of CDC reactions of amides, *viz.* phthalimides, saccharin as well as isothiazol-3(2*H*)-one-1,1-dioxides with ethers, use of a simple iodide salt (*n*-Bu₄NI) and a peroxide has proven successful.^{10,11}

Results and discussion

^a Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. E-mail: mlakshman@ccny.cuny.edu


^b The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA

^c Department of Chemistry, Ripon College, 300 W. Seward St., Ripon, WI 54971, USA

† Electronic Supplementary Information (ESI) available: [copies of NMR spectra of products and those from mechanistic investigations]. See DOI: 10.1039/x0xx00000x

These prior data were the basis for our investigations with quinazolinone and THF. In the initial optimizations (Table 1), THF was first tested for reactivity with 20 mol% of *n*-Bu₄Ni and 3 equiv. of *t*-BuOOH (Table 1, entries 1 and 2). The addition of MeCN as cosolvent appeared to improve the outcome slightly, but both reactions gave good yields. From the NOE and ¹³C NMR data, the point of attachment of the THF unit was shown to be the N3 atom. The α -hydrogen atoms in the THF unit, the methine and one methylene proton (δ = 6.33 and 4.32 ppm), showed NOE correlations with the proton at C2 (δ = 8.22 ppm) but not the aryl ring protons, and the ¹³C NMR spectrum showed a C=O resonance at δ = 160.8 ppm.

Table 1 Screening of the reaction conditions^a

Entry	Ether	Catalyst	Time	Yield ^b
1	THF	<i>n</i> -Bu ₄ Ni	4 h	60% ^c
2	THF	<i>n</i> -Bu ₄ Ni	4 h	63% ^{c,d}
3	THP	<i>n</i> -Bu ₄ Ni	4 h	39% ^c
4	THP	<i>n</i> -Bu ₄ Ni	4 h	46% ^{c,d}
5	THP	<i>n</i> -Bu ₄ Ni	4 h	14% ^{d,e}
6	THP	(<i>n</i> -Bu ₄ N) ₂ S ₂ O ₈	4 h	Trace ^{c,d,f}
7	THP	NH ₄ I	4 h	None ^{c,d,f}
8	THP	<i>n</i> -Bu ₄ Ni	21 h	60% ^{c,g}
9	THP	<i>n</i> -Bu ₄ Ni	21 h	59% ^{c,h}

^a Reactions were conducted on a 0.2 mmol scale of quinazolinone, with 20 equiv. of the ether, under a nitrogen atmosphere. ^b When reported, yield is of isolated and purified product. ^c *t*-BuOOH in decane (5–6 M) was used. ^d MeCN (324 μ L) was used as a cosolvent. ^e *t*-BuOOH in H₂O (70% solution) was used. ^f By TLC analysis. ^g Another 10 mol% of *n*-Bu₄Ni and 2.0 equiv. of *t*-BuOOH were added after 4 h. ^h The reaction was performed under air.

Stereoelectronic effects have been shown to influence hydrogen atom abstraction from ethers by *t*-butoxyl, and C–H bond scission is faster from 5-membered rings than 6-membered ones.¹² A factor in ether bond cleavages is the dihedral angle between the *p*-type orbital on the oxygen atom and the C–H bond.¹² The rate is high when this angle is small and at 90°, it becomes minimum. In many 5- and 6-membered ethers this dihedral angle has been calculated to be ~30°, and relief of ring strain in the former has been implicated in the faster reaction.¹² In radical chlorination of various ethers by *t*-BuOCl, THF was substantially more reactive than THP.¹³ In other experiments, we have empirically observed differential reactivities of ethers. Thus, these initial conditions were tested with THP (entries 3–9). Immediately, diminution in the yield was observed (entry 3) and, as with THF, addition of MeCN provided an improvement (entry 4). *t*-BuOOH in H₂O was far less effective (entry 5) and both (*n*-Bu₄N)₂S₂O₈ as well as NH₄I were ineffective (entries 6 and 7). Proceeding under the assumption that slow ether reactivity coupled with destruction of the catalyst and/or peroxide could contribute to lowered conversions, the addition of a second aliquot of both and a prolonged reaction time was considered (entry 8). This change brought the yield level to that

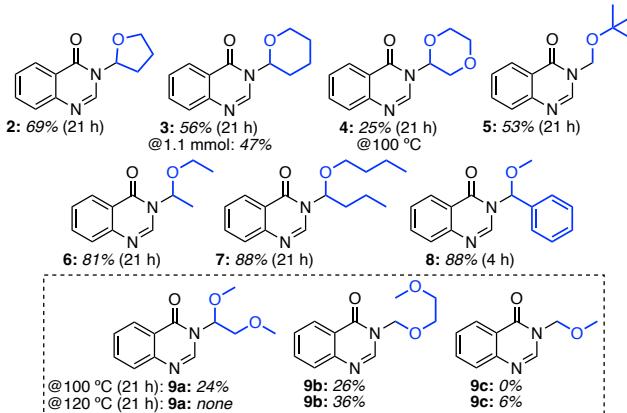


Fig. 2. Products from the reactions of quinazolinone with eight ethers.

of the THF reactions. Air did not seem to be a significant detriment at least in the one case shown (entry 9).

With the completion of these initial assessments, the scope of the reactions with respect to ethers was undertaken (Fig. 2). All these reactions were performed on the 0.5 mmol scale, and 811 μ L of MeCN was used in each case. Reactions of THF and THP proceeded well, yielding products 2 and 3. However, the reaction of 1,4-dioxane was substantially inferior, yielding only 14% of product 4. This result is consistent with its lower reactivity (only slightly better than cyclohexane) in radical chlorination.¹³ The rationale provided is the presence of an oxygen atom at the β -position to the reactive center. At 100 °C, the yield from the 1,4-dioxane reaction improved. MTBE, Et₂O, and *n*-Bu₂O reacted well, with the latter two providing high product yields. BnOMe was very reactive, giving a high product yield within 4 h, without additional catalyst and oxidant. Preference for reaction at the benzylic position was observed.

The reaction with DME, was interesting (see the dotted box in Fig. 2). At 100 °C, not unexpectedly, two products 9a and 9b were observed by reaction at the 1° and 2° carbon center. However, there was not a major preference for one over the other. At 120 °C, product 9a was not observed and the yield of isomeric 9b increased. Unexpectedly, a minor *N*-MOM derivative 9c was obtained. To our knowledge, this has not been reported in reactions with DME.

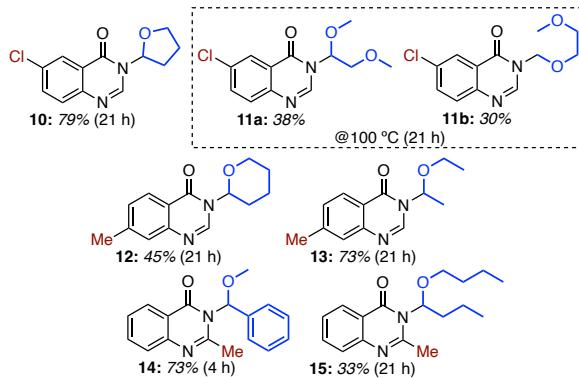
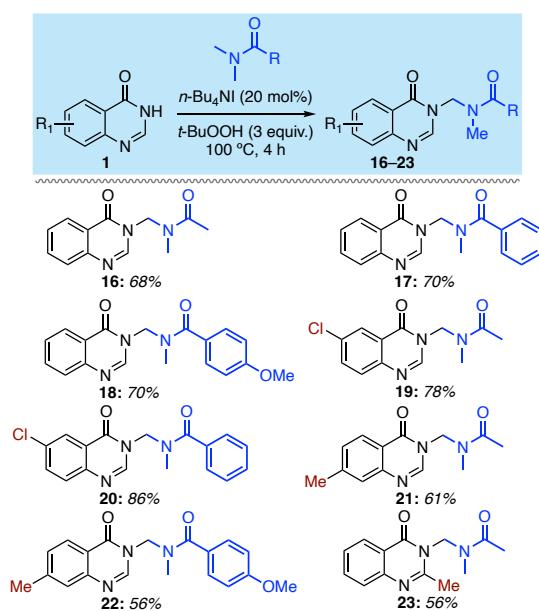
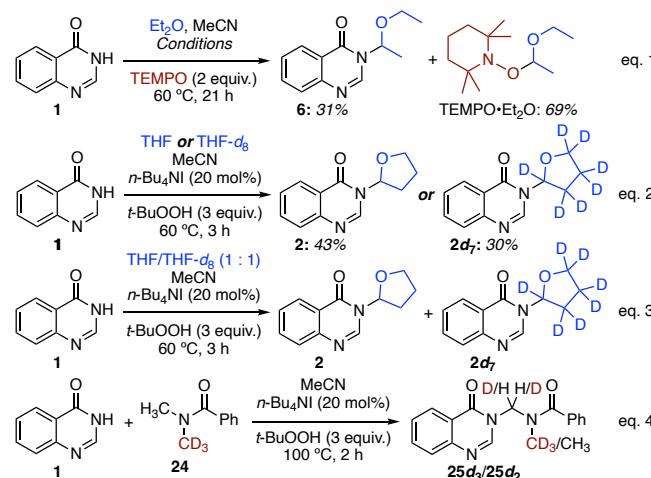



Fig. 3. Products from the reactions of substituted quinazolinones with ethers.

Next, the reactivities of 6-chloro, 7-methyl, and 2-methylquinazolin-4(3*H*)-ones (Fig. 3), which were prepared by known routes,^{14,15} were tested (these substrates are referred to as the respective substituted quinazolinones). 6-Chloroquinazolinone reacted well with THF and DME, and yields were marginally higher in these cases as compared with those from quinazolinone. As expected, DME, gave two products but the yield of the product from reaction at the 2° carbon center was a little higher in this case. The reactions of 7-methylquinazolinone with THP and Et₂O were reasonable to good, but product yields were a little lower than with quinazolinone. Finally, we tested the reactions of the 2-methyl derivative, that bears a substituent proximal to the reactive center. The reaction with BnOMe proceeded well albeit in a slightly lower yield than with quinazolinone, but the reaction with *n*-Bu₂O was substantially lower yielding, the steric buttress proximal to the reactive centre being the likely reason.

The reactions of two amides *via* this CDC process were assessed, that of quinazolinone and *N,N*-dimethyl amides. Initial reactions were tested at 60 and 100 °C. At 100 °C, reactions were completed within 4 h, without the need for additional catalyst and oxidant (products in Scheme 2). Again, the lower yield obtained with 2-methylquinazolinone is likely due to unfavorable steric factors proximal to the reactive center.



Scheme 2. Products from the reactions of various quinazolinones with *N,N*-dimethyl amides.

In mechanistic inquiries, a radical-trapping experiment was conducted with 2 equiv. of TEMPO under the conditions utilized for the product diversification (two aliquots of the catalyst and oxidant over 21 h, Scheme 3 eq. (1)). Under these conditions, the yield of product **6** decreased dramatically from 81 to 31% (based on quinazolinone), and a 69% yield of the TEMPO•Et₂O adduct was obtained (based on TEMPO). This pointed to the possible intermediacy of a radical species, thus validating the

relevance of the afore-described radical formation from ethers by *t*-butoxyl to this work.

Three reactions were conducted concurrently and under the same conditions, with THF, THF-*d*₈, and 1 : 1 THF/THF-*d*₈ (Scheme 3, eq. (2) and (3)), and all were terminated after 3 h. Although quinazolinone (**1**) was present in each case, upon isolation it was not entirely clean in each case. The product yields from the reactions with THF and THF-*d*₈ were 43 and 30% respectively, indicating a slower reaction with THF-*d*₈. Interestingly, from the product mixture obtained from the reaction with 1 : 1 THF/THF-*d*₈, a reasonable assessment could not be made on the extent of reaction with each by ¹H NMR. This was because it appeared that almost exclusive reaction had occurred with THF (see the ESI).

Scheme 3. Reactions for the mechanistic investigations.

We did however, manage to obtain an assessment from the reaction of quinazolinone (**1**) and *N*-methyl-*N*-(trideuteriomethyl)benzamide (Scheme 3, eq. (4)),¹⁶ which was prepared from *N*-methylbenzamide and CD₃I.¹⁷ This reaction was also terminated before completion, and the ¹H NMR spectrum of the product mixture **25d**₃/**25d**₂ is shown in Fig. 4.

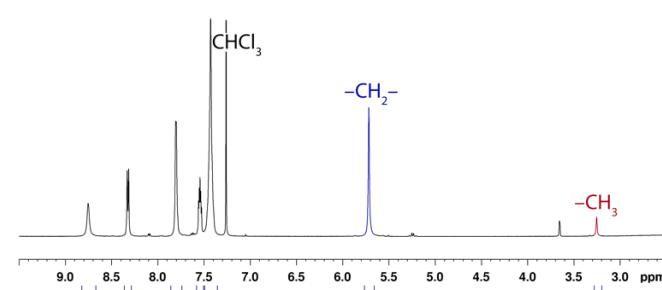
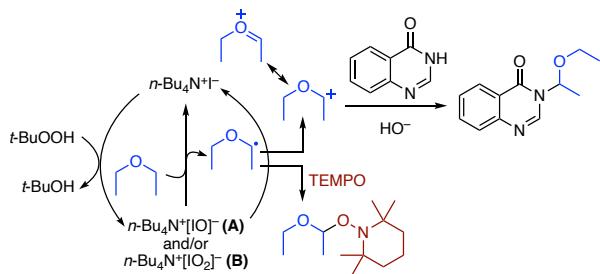



Fig. 4. The ¹H NMR spectrum of the mixture of **25d**₃/**25d**₂ (in CDCl₃) indicating the methyl protons from **25d**₂ and the methylene protons from **25d**₃.

From this spectrum, assessment of the integration values of the CH₂ (δ = 5.72 ppm, in blue color) and CH₃ (δ = 3.24 ppm, in red color) resonances indicated a significantly greater reaction at the CH₃ than the CD₃. The ratio of **25d**₃/**25d**₂ was estimated

as $\sim 10.2 : 1$ (Fig. 4). As a comparison, this value is lower than that reported for the reaction of phthalimide ($15.7 : 1$)¹⁰ but higher than the KIE reported for the reaction of saccharin (4.0).¹¹ These combined results point to the possibility of C–H bond scission in a rate-limiting step.

On the basis of the observed results, a plausible mechanism is presented in Scheme 4. Oxidation of $n\text{-Bu}_4\text{NI}$ by $t\text{-BuOOH}$ has been shown to produce hypoiodite ($[\text{IO}]^-$) or iodite ($[\text{IO}_2]^-$),^{18,19} with the formation of $t\text{-BuOH}$. These species can lead to radical formation at the α -position of the ether, a step that is dependent upon the ease of hydrogen atom abstraction. The initially formed radical can be trapped by TEMPO, as observed here (Scheme 3, eq. (1)). The radical can then undergo SET with an iodonium species, resulting in a resonance-stabilized oxocarbenium ion. Hydroxide ion released in the ether oxidation steps can lead to proton abstraction from quinazolinone (quinazolinone can exhibit both amide and phenolic characteristics and, as a reference point, the predicted pK_a values for $4(3\text{H})$ -pyrimidinone as well as the tautomeric 4 -pyrimidinol are ~ 9).²⁰ The ensuing amide anion can capture the oxocarbenium ion, leading to the product. Although the amide anion is resonance stabilized, the cation-trapping occurs regioselectively at the N3 atom.

Scheme 4. A plausible mechanistic manifold with Et_2O as a representative ether.

Finally, to gain an understanding of the relative reactivities of ethers, reactions of quinazolinone (**1**) with pairs of ethers were conducted. The reaction mixtures were worked up ($\text{EtOAc}/\text{saturated aq. Na}_2\text{S}_2\text{O}_3$) and ^1H NMR data of the product mixtures were obtained. The relative amount of each product in these mixtures was estimated from the integration values of the anomeric proton resonances. From this analysis the relative reactivity order of ethers appears to be $\text{BnOMe} > \text{THF} \geq n\text{-Bu}_2\text{O} > \text{Et}_2\text{O} > \text{THP} > \text{MTBE} \approx \text{DME} > 1,4\text{-dioxane}$.

Conclusions

This work contributes to an important area of CDC chemistry, and specifically metal-free reactions.^{21–27} Herein, we have studied the *N*-alkylation of the tautomerizable $4(3\text{H})$ -quinazolinones with ethers and amides, catalyzed by $n\text{-Bu}_4\text{NI}$ and $t\text{-BuOOH}$ as the oxidants. These reactions proceed through a radical pathway, likely *via* a rate-determining C–H cleavage step. Also provided are experimental results on the relative reactivities of ethers in these reactions. This work is anticipated

to provide a basis for cross-dehydrogenative coupling reactions of other biologically important heterocyclic systems.

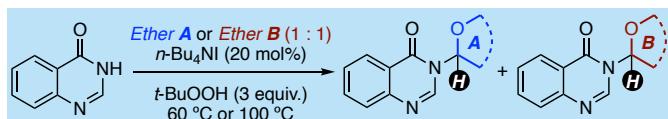


Table 2 Pair-wise competitive reactions with various ethers^{a–c}

Entry	Ethers	Temp	Time	Product ratio ^d
1	BnOMe/THF	$60\text{ }^\circ\text{C}$	1 h	$3.9 : 1$
2	$\text{THF/Et}_2\text{O}$	$60\text{ }^\circ\text{C}$	1 h	$1.9 : 1$
3	$n\text{-Bu}_2\text{O/Et}_2\text{O}$	$60\text{ }^\circ\text{C}$	1 h	$1.8 : 1$
4	$n\text{-Bu}_2\text{O/MTBE}$	$60\text{ }^\circ\text{C}$	1 h	$7.7 : 1$
5	MTBE/DME	$60\text{ }^\circ\text{C}$	1 h	$1.1 : 1$
6	THP/MTBE	$60\text{ }^\circ\text{C}$	1 h	$1.7 : 1$
7	DME/1,4-dioxane	$60\text{ }^\circ\text{C}$	1 h	$2.4 : 1$
8	THF/THP	$60\text{ }^\circ\text{C}$	2 h	$9.3 : 1$
9	$\text{THF}/n\text{-Bu}_2\text{O}$	$60\text{ }^\circ\text{C}$	2 h	$1.4 : 1$
10	THF/MTBE	$60\text{ }^\circ\text{C}$	2 h	$12.9 : 1$
11	THP/MTBE	$60\text{ }^\circ\text{C}$	2 h	$1.7 : 1$
12	DME/1,4-dioxane	$100\text{ }^\circ\text{C}$	1 h	$2.4 : 1$

^a Reactions were conducted on a 0.5 mmol scale of quinazolinone, with 10 equiv. of each ether, under a nitrogen atmosphere. ^b $t\text{-BuOOH}$ in decane ($5\text{--}6\text{ M}$) was used. ^c MeCN ($811\text{ }\mu\text{L}$) was used as a cosolvent. ^d Ratio of products was obtained from the ^1H NMR data of the product mixtures, by integrating the anomeric proton resonance.

Experimental section

General experimental considerations

CH_2Cl_2 , EtOAc , and hexanes were distilled over CaSO_4 . THF , Et_2O , and $1,4\text{-dioxane}$ were distilled over LiAlH_4 and then over Na prior to use. MeCN and $1,2\text{-DME}$ was distilled over CaH_2 . $4(3\text{H})$ -Quinazolinone (referred to as quinazolinone), $t\text{-BuOOH}$ (TBHP, $5\text{--}6\text{ M}$) in decane, and other reagents were purchased from commercial sources and were used without additional purification. 2- and 7-Methylquinazolin-4(3H)-one as well as 6-chloroquinazolin-4(3H)-one, all referred to as the respective substituted quinazolinones, were synthesized by known procedures.^{14,15} The reaction temperatures reported are that of a sand bath, which was pre-equilibrated to the reported temperature and then used. Thin-layer chromatography was performed on $200\text{ }\mu\text{m}$ aluminum-foil-backed silica plates and column chromatographic purifications were performed on $200\text{--}300$ mesh silica gel (see individual compound descriptions). ^1H NMR spectra were recorded at 500 MHz in CDCl_3 or acetone- d_6 and are referenced to the residual protonated solvent resonance. ^2H NMR spectra were recorded at 77 MHz in CHCl_3 with a few drops of added CDCl_3 . For this, the residual CHCl_3 resonance in a CDCl_3 sample was set to 7.26 ppm . Then the ^2H NMR spectrum of the sample prepared in CHCl_3 (0.5 mL) and CDCl_3 (3 drops) was obtained, and the D resonance of CDCl_3 was set to 7.24 ppm .²⁸ ^{13}C NMR spectra were recorded at 125 MHz in CDCl_3 or acetone- d_6 and are referenced to the solvent resonance. Chemical shifts (δ) are reported in parts per million and coupling constants (J) are in hertz (Hz).

Note. We believe that products from 2-methylquinazolin-4(3H)-one are potentially more labile than the others. Not only did we see lowered yields in those cases where product isolation was possible, but we could not obtain a tractable product with THF. This contrasts with the reactions of THF with quinazolin-4(3H)-one and 6-chloroquinazolin-4(3H)-one.²⁹

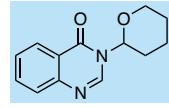
Representative procedure for the *N*-alkylation of quinazolinones with ethers and amides

In an oven-dried, screwcap culture tube (20 mL capacity, *ca.* 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 73.1 mg, 0.50 mmol, 1 eq.), or 2- or 7-methylquinazolinone (80.1 mg, 0.50 mmol, 1 eq.), or 6-chloroquinazolinone (90.3 mg, 0.50 mmol, 1 eq.) in anhydrous MeCN (811.0 μ L), and the appropriate ether or amide (10.0 mmol, 20.0 eq.) was added. This was followed by the addition of *n*-Bu₄NI (36.9 mg, 0.10 mmol, 0.20 equiv.), and the vial was flushed with nitrogen gas. Then, a 5.0–6.0 M solution of TBHP in decane (273.0 μ L, 1.50 mmol, 3.0 equiv.) was added dropwise. The tube was capped, and the mixture was heated at 60 °C or 100 °C for 4 h. In each case the reaction was monitored by TLC after 4 h. If TLC analysis indicated complete consumption of the precursor, work up was conducted as described below. On the other hand, if TLC analysis indicated the reaction was incomplete, additional *n*-Bu₄NI (18.4 mg, 0.05 mmol, 0.10 equiv.) and 5.0–6.0 M TBHP in decane (182.0 μ L, 1.00 mmol, 2.00 equiv.) were added, and the reaction was continued for a total of 21 h. The mixture was diluted with EtOAc (5.0 mL) and saturated aqueous Na₂S₂O₃•5H₂O (5.0 mL) was added. The mixture was then transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2 \times 5.0 mL). The combined organic layer was washed with brine (5.0 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Purification in each case was performed by column chromatography using an appropriate eluting solvent. Details are provided under the individual compound headings.

3-(Tetrahydrofuran-2-yl)quinazolin-4(3H)-one (2)

The reaction with THF (811.0 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, followed by 30% and 50% EtOAc in hexanes gave 74.7 mg (69% yield) of product **2** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.54. ¹H NMR (500 MHz, CDCl₃): δ = 8.29 (dd, *J* = 8.0, 1.1 Hz, 1H), 8.22 (s, 1H), 7.76 (td, *J* = 7.5, 1.4 Hz, 1H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 6.33 (dd, *J* = 6.4, 3.0 Hz, 1H), 4.32 (td, *J* = 8.0, 4.6 Hz, 1H), 4.08 (q, *J* = 7.6 Hz, 1H), 2.59–2.51 (m, 1H), 2.18–2.07 (m, 2H), 2.05–1.97 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.8, 148.0, 142.5, 134.4, 127.5, 127.2, 126.5, 121.8, 87.4, 70.4, 33.5, 24.0. HRMS (ESI/TOF) *m/z* calculated for C₁₂H₁₂N₂NaO₂ [M + Na]⁺: 239.0791, found 239.0796.

3-(Tetrahydrofuran-2H-pyran-2-yl)quinazolin-4(3H)-one (3)


The reaction with THP (978.0 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel

column packed in hexanes, sequentially eluted with hexanes, followed by 30% and 50% EtOAc in hexanes gave 64.0 mg (56% yield) of product **3** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.80. ¹H NMR (500 MHz, CDCl₃): δ = 8.31 (d overlapped with s, *J* = 7.9 Hz, 1H), 8.31 (singlet overlapped with d, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 1H), 5.95 (dd, *J* = 10.8, 1.5 Hz, 1H), 4.22 (dt, *J* = 11.9, 2.0 Hz, 1H), 3.74 (td, *J* = 11.8, 2.4 Hz, 1H), 2.04 (t, *J* = 12.6 Hz, 2H), 1.83–1.67 (m, 2H), 1.66–1.58 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ = 159.9, 147.7, 143.3, 134.6, 127.6, 127.3, 127.0, 121.7, 81.9, 69.5, 32.3, 25.2, 23.0. HRMS (ESI/TOF) *m/z* calculated for C₁₃H₁₄N₂NaO₂ [M + Na]⁺: 253.0948, found 253.0945.

Large-scale reaction. In an oven-dried, screwcap culture tube (30 mL capacity, *ca.* 13.5 cm long \times 1.2 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 160.8 mg, 1.1 mmol, 1.0 equiv.) in anhydrous MeCN (1.8 mL), and THP (2.1 mL, 22.0 mmol, 20.0 equiv.) was added. This was followed by the addition of *n*-Bu₄NI (81.3 mg, 0.22 mmol, 0.20 equiv.), and the vial was flushed with nitrogen gas. Then, a 5.0–6.0 M solution of *t*-BuOOH in decane (600.0 μ L, 3.3 mmol, 3.0 equiv.) was added dropwise. The tube was capped, and the mixture was heated at 60 °C for 4 h, at which time TLC analysis indicated the reaction was incomplete. Thus, additional *n*-Bu₄NI (40.7 mg, 0.11 mmol, 0.10 equiv.) and 5.0–6.0 M TBHP in decane (400.0 μ L, 2.2 mmol, 2.00 equiv.) were added, and the reaction was continued for a total of 21 h. The mixture was diluted with EtOAc (10.0 mL) and saturated aqueous Na₂S₂O₃•5H₂O (10.0 mL) was added. The mixture was then transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2 \times 10.0 mL). The combined organic layer was washed with brine (10.0 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, followed by 30% and 50% EtOAc in hexanes gave 119.4 mg (47% yield) of product **3** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.67. The ¹H NMR data of this compound matched those reported above.

3-(1,4-Dioxan-2-yl)quinazolin-4(3H)-one (4)

The reaction with 1,4-dioxane (852.0 μ L) was heated at 100 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30%, 50% and 80% EtOAc in hexanes gave 28.8 mg (25% yield) of product **4** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.71. ¹H NMR (500 MHz, CDCl₃): δ = 8.34 (s, 1H), 8.31 (d, *J* = 7.9 Hz, 1H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 7.5 Hz, 1H), 6.14 (dd, *J* = 9.0, 2.8 Hz, 1H), 4.09 (dd, *J* = 11.4, 2.4 Hz, 2H), 4.04 (td, *J* = 11.3, 2.5 Hz, 1H), 3.86 (d, *J* = 11.7 Hz, 1H), 3.76 (td, *J* = 11.2, 2.9 Hz, 1H), 3.50 (dd, *J* = 11.2, 9.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.1, 147.6, 142.9, 134.9, 127.8, 127.7, 127.1, 121.6, 78.4, 69.3, 67.4, 66.0. HRMS (ESI/TOF) *m/z* calculated for C₁₂H₁₃N₂O₃ [M + H]⁺: 233.0921, found 233.0917. This reaction when performed at 60 °C, over

The reaction with THF (978.0 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel

21 h using the two aliquots of reagents gave 16.4 mg (14% yield) of product **4**.

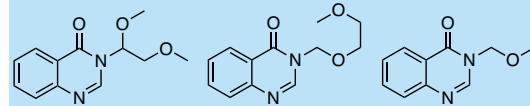
3-(*tert*-Butoxymethyl)quinazolin-4(3*H*)-one (5)

The reaction with *t*-BuOMe (1191 μ L) was heated at 60 $^{\circ}$ C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 62.2 mg (53% yield) of product **5** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.77. ¹H NMR (500 MHz, CDCl₃): δ = 8.31 (d, J = 8.1 Hz, 1H), 8.25 (s, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 5.48 (s, 2H), 1.29 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.7, 148.0, 146.0, 134.6, 127.7, 127.5, 127.1, 122.1, 76.1, 69.1, 28.0. HRMS (ESI/TOF) m/z calculated for C₁₃H₁₇N₂O₂ [M + H]⁺: 233.1284, found 233.1280.

3-(1-Ethoxyethyl)quinazolin-4(3*H*)-one (6)

The reaction with Et₂O (1050 μ L) was heated at 60 $^{\circ}$ C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 30% EtOAc in hexanes gave 88.4 mg (81% yield) of product **6** as a pale-yellow oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.85. ¹H NMR (500 MHz, CDCl₃): δ = 8.30 (d, J = 8.3 Hz, 1H), 8.27 (s, 1H), 7.78 (td, J = 7.5, 1.4 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 6.22 (q, J = 6.0 Hz, 1H), 3.57–3.46 (m, 2H), 1.60 (d, J = 6.0 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.9, 147.8, 142.7, 134.5, 127.6, 127.4, 126.9, 121.7, 81.1, 64.8, 22.4, 14.9. HRMS (ESI/TOF) m/z calculated for C₁₂H₁₅N₂O₂ [M + H]⁺: 219.1128, found 219.1127.

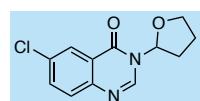
3-(1-Butoxybutyl)quinazolin-4(3*H*)-one (7)


The reaction with *n*-Bu₂O (1704 μ L) was heated at 60 $^{\circ}$ C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 30% EtOAc in hexanes gave 120.3 mg (88% yield) of product **7** as a pale-yellow oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.90. ¹H NMR (500 MHz, CDCl₃): δ = 8.31 (dd, J = 7.9, 0.7 Hz, 1H), 8.22 (s, 1H), 7.78 (td, J = 7.6, 1.4 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 6.07 (dd, J = 7.5, 5.4 Hz, 1H), 3.49–3.42 (m, 2H), 1.95–1.88 (m, 1H), 1.81–1.74 (m, 1H), 1.59–1.49 (m, 3H), 1.45–1.32 (m, 3H), 0.97 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 161.1, 147.8, 143.0, 134.4, 127.6, 127.3, 127.0, 121.6, 84.4, 69.3, 38.3, 31.4, 19.3, 18.2, 13.8, 13.7. HRMS (ESI/TOF) m/z calculated for C₁₆H₂₂N₂NaO₂ [M + Na]⁺: 297.1574, found 297.1574.

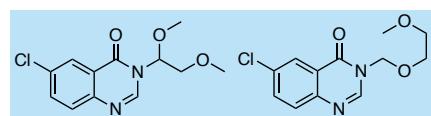
3-(Methoxy(phenyl)methyl)quinazolin-4(3*H*)-one (8)

The reaction with BnOMe (1238 μ L) was heated at 60 $^{\circ}$ C for 4 h with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 117.5 mg (88% yield) of

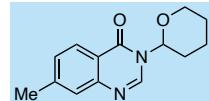
product **8** as a pale-yellow oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.78. ¹H NMR (500 MHz, CDCl₃): δ = 8.36 (dd, J = 8.0, 1.1 Hz, 1H), 8.04 (s, 1H), 7.78 (td, J = 7.6, 1.4 Hz, 1H), 7.71 (dd, J = 8.2, 0.7 Hz, 1H), 7.55 (td, J = 7.5, 1.1 Hz, 1H), 7.48–7.47 (m, 2H), 7.40–7.35 (m, 3H), 7.16 (s, 1H), 3.55 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 161.6, 147.7, 143.7, 137.7, 134.7, 129.1, 128.9, 127.8, 127.6, 127.2, 126.0, 121.6, 84.5, 57.1. HRMS (ESI/TOF) m/z calculated for C₁₆H₁₅N₂O₂ [M + H]⁺: 267.1128, found 267.1128.


3-(1,2-Dimethoxyethyl)quinazolin-4(3*H*)-one (9a), 3-(2-methoxyethoxy)methyl)quinazolin-4(3*H*)-one (9b), and 3-(methoxymethyl)quinazolin-4(3*H*)-one (9c)

The reaction with 1,2-DME (1039 μ L) was heated at 100 $^{\circ}$ C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 20% EtOAc in hexanes gave 27.9 mg (24% yield) of isomer **9a** as a colorless oil. Subsequent elution with 30% EtOAc in hexanes gave 30.9 mg (26% yield) of isomer **9b**, also as a colorless oil. R_f (SiO₂/50% EtOAc in hexanes): **9a** = 0.67 and **9b** = 0.54. ¹H NMR of isomer **9a** (500 MHz, CDCl₃): δ = 8.31 (dd, J = 8.0, 1.0 Hz, 1H), 8.26 (s, 1H), 7.79 (td, J = 7.5, 1.5 Hz, 1H), 7.76 (dd, J = 8.0, 1.1 Hz, 1H), 7.53 (td, J = 8.0, 1.5 Hz, 1H), 6.15 (t, J = 4.4 Hz, 1H), 3.71 (qd, J = 12.4, 4.4 Hz, 2H), 3.43 (s, 3H), 3.40 (s, 3H). ¹³C NMR of isomer **9a** (125 MHz, CDCl₃): δ = 161.4, 147.8, 143.5, 134.8, 127.8, 127.6, 127.1, 121.8, 84.0, 73.1, 59.8, 57.5. HRMS (ESI/TOF) of isomer **9a** m/z calculated for C₁₂H₁₅N₂O₃ [M + H]⁺: 235.1077, found 235.1076. ¹H NMR of isomer **9b** (500 MHz, CDCl₃): δ = 8.32 (d, J = 8.2 Hz, 1H), 8.24 (s, 1H), 7.82–7.76 (m, 2H), 7.54 (td, J = 7.3, 1.6 Hz, 1H), 5.53 (s, 2H), 3.82–3.80 (m, 2H), 3.55–3.53 (m, 2H), 3.34 (s, 3H). ¹³C NMR of isomer **9b** (125 MHz, CDCl₃): δ = 161.5, 148.2, 146.3, 134.9, 127.9, 127.7, 127.2, 122.2, 75.6, 71.8, 69.5, 59.2. HRMS (ESI/TOF) of isomer **9b** m/z calculated for C₁₂H₁₅N₂O₃ [M + H]⁺: 235.1077, found 235.1076. This reaction when performed at 60 $^{\circ}$ C over 21 h, with the two aliquots of reagents, gave 16.9 mg (14% yield) of isomer **9a** and 17.5 mg (15% yield) of isomer **9b**.

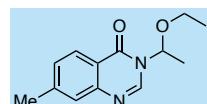

This reaction was also performed at 120 $^{\circ}$ C for 21 h, with two aliquots of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 40% EtOAc in hexanes gave 5.4 mg (6% yield) of product **9c** as a white solid. Subsequent elution with 50% EtOAc in hexanes gave 42.3 mg (36% yield) of isomer **9b** as a colorless oil. R_f (SiO₂/50% EtOAc in hexanes): **9c** = 0.67 and **9b** = 0.54. ¹H NMR of isomer **9c** (500 MHz, CDCl₃): δ = 8.33 (dd, J = 8.0, 1.5 Hz, 1H), 8.15 (s, 1H), 7.79 (td, J = 7.6, 1.5 Hz, 1H), 7.74 (dd, J = 7.9, 1.0 Hz, 1H), 7.54 (td, J = 7.5, 1.2 Hz, 1H), 5.42 (s, 2H), 3.46 (s, 3H). HRMS (ESI/TOF) of isomer **9c** m/z calculated for C₁₀H₁₀NaN₂O₂ [M + Na]⁺: 213.0634, found 213.0627.

6-Chloro-3-(tetrahydrofuran-2-yl)quinazolin-4(3*H*)-one (10)

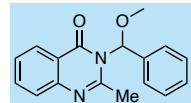

The reaction with THF (811.0 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 98.5 mg (79% yield) of product **10** as a white solid. R_f (SiO₂/50% EtOAc in hexanes) = 0.42. ¹H NMR (500 MHz, CDCl₃): δ = 8.25 (d, J = 2.2 Hz, 1H), 8.19 (s, 1H), 7.69 (dd, J = 8.7, 2.3 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 6.30 (dd, J = 6.4, 3.0 Hz, 1H), 4.32 (td, J = 8.1, 4.5 Hz, 1H), 4.09 (td, J = 8.3, 6.7 Hz, 1H), 2.59–2.51 (m, 1H), 2.17–2.07 (m, 2H), 2.04–1.96 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.0, 146.7, 142.8, 134.9, 133.2, 129.3, 126.0, 123.0, 87.7, 70.6, 33.6, 24.1. HRMS (ESI/TOF) m/z calculated for C₁₂H₁₁ClN₂NaO₂ [M + Na]⁺: 273.0401, found 273.0400.

6-Chloro-3-(1,2-dimethoxyethyl)quinazolin-4(3H)-one (11a) and 6-chloro-3-((2-methoxyethoxy)methyl)quinazolin-4(3H)-one (11b)

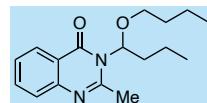
The reaction with 1,2-DME (1039 μ L) was heated at 100 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 30% EtOAc in hexanes gave 51.6 mg (38% yield) of isomer **11a** as a white solid. Subsequent elution with 30% and 50% EtOAc in hexanes, and finally EtOAc gave 41.0 mg (30% yield) of isomer **11b** as a white solid. R_f (SiO₂/50% EtOAc in hexanes): **11a** = 0.73 and **11b** = 0.35. ¹H NMR of isomer **11a** (500 MHz, CDCl₃): δ = 8.27 (d, J = 2.1 Hz, 1H), 8.23 (s, 1H), 7.72 (dd, J = 8.7, 2.3 Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 6.11 (t, J = 4.3 Hz, 1H), 3.70 (qd, J = 12.4, 4.4 Hz, 2H), 3.42 (s, 3H), 3.40 (s, 3H). ¹³C NMR of isomer **11a** (125 MHz, CDCl₃): δ = 160.4, 146.4, 143.7, 135.1, 133.3, 129.4, 126.4, 122.8, 84.1, 72.9, 59.8, 57.5. HRMS (ESI/TOF) of isomer **11a** m/z calculated for C₁₂H₁₃ClN₂NaO₃ [M + Na]⁺: 291.0507, found 291.0508. ¹H NMR of isomer **11b** (500 MHz, CDCl₃): δ = 8.25 (d, J = 2.2 Hz, 1H), 8.15 (s, 1H), 7.69 (dd, J = 8.7, 2.3 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 5.49 (s, 2H), 3.79–3.78 (m, 2H), 3.53–3.51 (m, 2H), 3.33 (s, 3H). ¹³C NMR of isomer **11b** (125 MHz, CDCl₃): δ = 160.5, 146.6, 146.4, 135.3, 133.7, 129.5, 126.6, 123.2, 75.7, 71.8, 69.7, 59.3. HRMS (ESI/TOF) of isomer **11b** m/z calculated for C₁₂H₁₄ClN₂O₃ [M + H]⁺: 269.0688, found 269.0687.


7-Methyl-3-(tetrahydro-2H-pyran-2-yl)quinazolin-4(3H)-one (12)

The reaction with THP (978.0 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 55.2 mg (45% yield) of product **12** as a pale-yellow oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.67. ¹H NMR (500 MHz, CDCl₃): δ = 8.27 (s, 1H), 8.18 (d, J = 8.1 Hz, 1H), 7.50 (s, 1H), 7.31 (dd, J = 8.2, 1.2 Hz, 1H), 5.94 (dd, J = 10.8, 2.3 Hz, 1H), 4.21 (dt, J = 11.7, 2.2 Hz, 1H), 3.74 (td, J = 11.8, 2.5 Hz, 1H), 2.50 (s, 3H), 2.05–2.01 (m, 2H), 1.83–1.66 (m, 2H), 1.66–1.60 (m, 2H). ¹³C

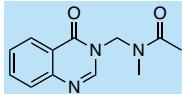

NMR (125 MHz, CDCl₃): δ = 159.9, 147.8, 145.6, 143.4, 129.0, 127.4, 126.9, 119.4, 81.8, 69.5, 32.3, 25.2, 23.1, 22.1. HRMS (ESI/TOF) m/z calculated for C₁₄H₁₆N₂NaO₂ [M + Na]⁺: 267.1104, found 267.1103.

7-Methyl-3-(1-ethoxyethyl)quinazolin-4(3H)-one (13)

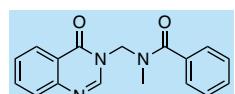

The reaction with Et₂O (1050 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 84.8 mg (73% yield) of product **13** as a pale-yellow oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.77. ¹H NMR (500 MHz, CDCl₃): δ = 8.24 (s, 1H), 8.18 (d, J = 8.1 Hz, 1H), 7.52 (s, 1H), 7.34 (dd, J = 8.2, 1.3 Hz, 1H), 6.22 (q, J = 6.0 Hz, 1H), 3.56–3.45 (m, 2H), 2.52 (s, 3H), 1.59 (d, J = 6.0 Hz, 3H), 1.21 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 160.9, 148.0, 145.6, 142.8, 129.0, 127.4, 126.8, 119.3, 81.0, 64.8, 22.4, 22.0, 15.0. HRMS (ESI/TOF) m/z calculated for C₁₃H₁₆N₂NaO₂ [M + Na]⁺: 255.1104, found 255.1109.

3-(Methoxy(phenyl)methyl)-2-methylquinazolin-4(3H)-one (14)

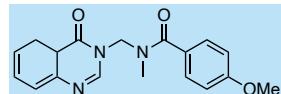
The reaction with BnOMe (1238 μ L) was heated at 60 °C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 10% and 30% EtOAc in hexanes gave 102.8 mg (73% yield) of product **14** as a colorless oil. R_f (SiO₂/30% EtOAc in hexanes) = 0.54. ¹H NMR (500 MHz, CDCl₃): δ = 8.35 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.68 (s, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.38–7.32 (m, 5H), 3.57 (s, 3H), 2.28 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 163.9, 155.0, 147.5, 138.1, 134.9, 128.8, 128.4, 127.4, 126.9, 126.8, 125.4, 120.0, 84.8, 57.1, 23.6. Whereas a good HRMS value could not be obtained for product **14**, a good value was found for the hydrolysis product. It is possible that steric factors are responsible for this result. HRMS (ESI/TOF) m/z calculated for C₁₇H₁₇N₂O₂ [M + H]⁺: 281.1284, found 281.0933. For the hydrolysis product HRMS (ESI/TOF) calculated for C₁₆H₁₅N₂O₂ [M + H]⁺: 267.1128, found 267.1134.


3-(1-Butoxybutyl)-2-methylquinazolin-4(3H)-one (15)

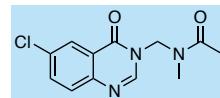
The reaction with n-Bu₂O (1704 μ L) was heated at 60 °C for 21 h, after addition of the second aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 30% EtOAc in hexanes gave 48.0 mg (33% yield) of product **15** as a colorless oil. R_f (SiO₂/50% EtOAc in hexanes) = 0.70. ¹H NMR (500 MHz, CDCl₃): δ = 8.24 (d, J = 8.0, 1.1 Hz, 1H), 7.72 (td, J = 7.6, 1.4 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 6.53 (t, J = 5.7 Hz, 1H), 3.44 (t, J = 6.5 Hz, 2H), 2.77 (s, 3H), 2.15–2.08 (m, 1H), 1.88–1.81 (m, 1H), 1.58–1.52 (m, 2H), 1.45–1.25 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, acetone-d₆): δ = 162.5, 154.2, 147.5, 134.2, 126.7, 126.67, 126.1, 120.3, 85.3, 68.9, 36.5, 31.3, 22.8, 19.1, 18.8, 13.2, 13.1. HRMS (ESI/TOF)


m/z calculated for $C_{17}H_{24}N_2NaO_2$ [M + Na]⁺: 311.1730, found 311.1740.

N-Methyl-*N*-(4-oxoquinazolin-3(4*H*)-yl)methyl)acetamide (16)

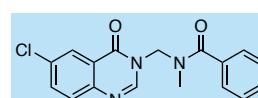

The reaction with DMA (930.0 μ L) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 50% EtOAc in hexanes, EtOAc, and 5% MeOH in EtOAc gave 79.2 mg (68% yield) of product **16** as a white solid. R_f (SiO₂/EtOAc) = 0.20. ¹H NMR (500 MHz, CDCl₃): δ = 8.52 (s, 1H), 8.25 (d, J = 1.9 Hz, 1H), 7.70 (dd, J = 8.7, 2.2 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 5.48 (s, 2H), 3.30 (s, 3H), 2.12 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 162.1, 148.3, 147.8, 134.7, 127.9, 127.4, 126.8, 122.1, 57.9, 37.8, 22.0. HRMS (ESI/TOF) *m/z* calculated for $C_{12}H_{14}N_3O_2$ [M + H]⁺: 232.1080, found 232.1080.

N-Methyl-*N*-(4-oxoquinazolin-3(4*H*)-yl)methyl)benzamide (17)


The reaction with *N,N*-dimethylbenzamide (1.492 g) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in 50% CH₂Cl₂ in hexanes, sequentially eluted with 50% and 80% CH₂Cl₂ in hexanes, CH₂Cl₂, and finally 50% EtOAc in CH₂Cl₂ gave 102.2 mg (70% yield) of product **17** as a white foam. R_f (SiO₂/20% EtOAc in CH₂Cl₂) = 0.19. ¹H NMR (500 MHz, CDCl₃): δ = 8.69 (s, 1H), 8.32 (d, J = 7.8 Hz, 1H), 7.81–7.75 (m, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.43 (s, 5H), 5.72 (s, 2H), 3.25 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.2, 161.9, 148.1, 147.6, 134.9, 134.6, 130.4, 128.5, 127.7, 127.3, 127.2, 126.7, 121.9, 57.5, 38.7. HRMS (ESI/TOF) *m/z* calculated for $C_{17}H_{16}N_3O_2$ [M + H]⁺: 294.1237, found 294.1235.

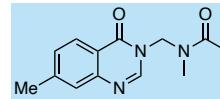
4-Methoxy-*N*-methyl-*N*-(4-oxoquinazolin-3(4*H*)-yl)methyl)benzamide (18)

The reaction *N,N*-dimethyl-4-methoxybenzamide (1.792 g) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in 50% CH₂Cl₂ in hexanes, sequentially eluted with 50% and 80% CH₂Cl₂ in hexanes, CH₂Cl₂, and finally 50% EtOAc in CH₂Cl₂ gave 114.1 mg (70% yield) of product **18** as a yellow solid. R_f (SiO₂/EtOAc) = 0.39. ¹H NMR (500 MHz, CDCl₃): δ = 8.70 (s, 1H), 8.32 (d, J = 7.9 Hz, 1H), 7.80–7.75 (m, 2H), 7.53 (t, J = 8.2 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 5.71 (s, 2H), 3.84 (s, 3H), 3.28 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.0, 162.0, 161.4, 148.2, 147.7, 134.8, 129.6, 128.7, 127.8, 127.5, 126.9, 122.0, 113.8, 57.8, 55.5, 38.9. One aromatic carbon resonance is not discernible, it appears that a quaternary carbon is merged with another resonance at δ = 126.9 ppm. HRMS (ESI/TOF) *m/z* calculated for $C_{18}H_{17}N_3NaO_3$ [M + Na]⁺: 346.1162, found 346.1163.

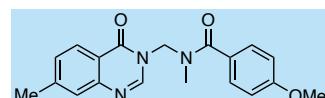

N-((6-Chloro-4-oxoquinazolin-3(4*H*)-yl)methyl)-*N*-methylacetamide (19)

The reaction with DMA (930.0 μ L) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh

silica gel column packed in hexanes, sequentially eluted with hexanes, 50% and 90% EtOAc in hexanes, EtOAc, and finally 5% MeOH in EtOAc gave 103.2 mg (78% yield) of product **19** as a white solid. R_f (SiO₂/EtOAc) = 0.20. ¹H NMR (500 MHz, CDCl₃): δ = 8.52 (s, 1H), 8.25 (d, J = 1.9 Hz, 1H), 7.70 (dd, J = 8.7, 2.2 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 5.48 (s, 2H), 3.30 (s, 3H), 2.12 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 161.0, 148.0, 146.7, 135.0, 133.1, 129.4, 126.1, 123.1, 58.1, 37.8, 21.9. HRMS (ESI/TOF) *m/z* calculated for $C_{12}H_{13}ClN_3O_2$ [M + H]⁺: 266.0691, found 266.0691.

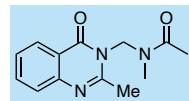

N-((6-Chloro-4-oxoquinazolin-3(4*H*)-yl)methyl)-*N*-methylbenzamide (20)

The reaction with *N,N*-dimethylbenzamide (1.492 g) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents.


Chromatography of the crude material on a 200–300 mesh silica gel column packed in 50% hexanes in CH₂Cl₂, sequentially eluted with 50% and 80% hexanes in CH₂Cl₂, CH₂Cl₂, and finally 50% EtOAc in CH₂Cl₂ gave 140.4 mg (86% yield) of product **20** as a pale-yellow oil. R_f (SiO₂/80% CH₂Cl₂ in EtOAc) = 0.31. ¹H NMR (500 MHz, CDCl₃): δ = 8.68 (s, 1H), 8.28 (d, J = 1.8 Hz, 1H), 7.72 (dd, J = 8.7, 2.2 Hz, 1H), 7.69 (d, J = 8.7 Hz, 1H), 7.43 (s, 5H), 5.70 (s, 2H), 3.25 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 160.8, 147.8, 146.6, 134.9, 134.7, 133.1, 130.4, 129.3, 128.5, 127.2, 126.1, 123.0, 57.8, 38.8. HRMS (ESI/TOF) *m/z* calculated for $C_{17}H_{15}ClN_3O_2$ [M + H]⁺: 328.0847, found 328.0846.

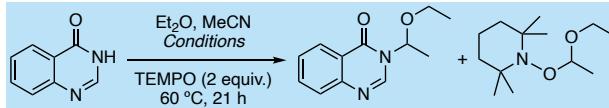
N-Methyl-*N*-(7-methyl-4-oxoquinazolin-3(4*H*)-yl)methyl)acetamide (21)

The reaction with DMA (930.0 μ L) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 50% and 90% EtOAc in hexanes, EtOAc, and finally 5% MeOH in EtOAc gave 75.2 mg (61% yield) of product **21** as a pale-yellow oil. R_f (SiO₂/EtOAc) = 0.33. ¹H NMR (500 MHz, CDCl₃): δ = 8.50 (s, 1H), 8.17 (d, J = 8.1 Hz, 1H), 7.52 (s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 5.49 (s, 2H), 3.30 (s, 3H), 2.51 (s, 3H), 2.12 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.0, 162.0, 148.4, 147.8, 145.8, 128.9, 127.6, 126.6, 119.7, 57.7, 37.6, 22.0, 21.9. HRMS (ESI/TOF) *m/z* calculated for $C_{13}H_{15}N_3NaO_2$ [M + Na]⁺: 268.1056, found 268.1056.


4-Methoxy-*N*-methyl-*N*-(7-methyl-4-oxoquinazolin-3(4*H*)-yl)methyl)benzamide (22)

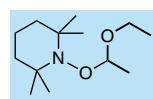
The reaction *N,N*-dimethyl-4-methoxybenzamide (1.792 g) was heated at 100 $^{\circ}$ C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in 50% hexanes in CH₂Cl₂, sequentially eluted with 50% and 80% hexanes in CH₂Cl₂, CH₂Cl₂, and finally 50% EtOAc in CH₂Cl₂ gave 94.7 mg (56% yield) of

product **22** as a yellow foam. R_f (SiO₂/EtOAc) = 0.34. ¹H NMR (500 MHz, CDCl₃): δ = 8.65 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.54 (s, 1H), 7.43 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 5.69 (s, 2H), 3.83 (s, 3H), 3.26 (s, 3H), 2.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 173.1, 162.0, 161.5, 148.3, 147.9, 146.0, 129.6, 129.1, 127.6, 126.9, 126.7, 119.6, 113.9, 57.6, 55.5, 38.8, 22.1. HRMS (ESI/TOF) m/z calculated for C₁₉H₂₀N₃O₃ [M + H]⁺: 338.1499, found 338.1498.


N-Methyl-N-((2-methyl-4-oxoquinazolin-3(4H)-yl)methyl)acetamide (23)

The reaction with DMA (930.0 μ L) was heated at 100 °C for 4 h, with a single aliquot of reagents. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 50% and 90% EtOAc in hexanes, EtOAc, and finally 5% MeOH in EtOAc gave 68.2 mg (56% yield) of product **23** as a pale-yellow gum. R_f (SiO₂/EtOAc) = 0.16. ¹H NMR (500 MHz, acetone- d_6): δ = 8.20 (dd, J = 7.9, 1.1 Hz, 1H), 7.81 (td, J = 7.7, 1.2 Hz, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 5.78 (s, 2H), 3.12 (s, 3H), 2.66 (s, 3H), 2.12 (s, 3H). ¹³C NMR (125 MHz, acetone- d_6): δ = 171.1, 162.7, 155.2, 147.6, 134.3, 126.8, 126.6, 126.1, 120.5, 54.5, 34.5, 22.5, 21.3. HRMS (ESI/TOF) m/z calculated for C₁₃H₁₅N₃NaO₂ [M + Na]⁺: 268.1056, found 268.1058.

Mechanistic experiments

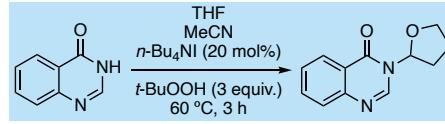

Reaction of quinazolinone and Et₂O in the presence of TEMPO

In an oven-dried, screwcap culture tube (20 mL capacity, ca. 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 36.5 mg, 0.25 mmol, 1.0 equiv.) in anhydrous MeCN (405.0 μ L), and Et₂O (524.0 μ L, 5.0 mmol, 20.0 equiv.) was added. This was followed by the addition of TEMPO (78.1 mg, 0.50 mmol, 2.0 equiv.), *n*-Bu₄NI (18.5 mg, 0.05 mmol, 0.20 equiv.), and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (136.0 μ L, 0.75 mmol, 3.0 equiv.) was added dropwise, the tube was capped, and the mixture was heated at 60 °C for 4 h. The reaction was monitored by TLC and after 4 h, TLC analysis indicated the presence of a significant amount of precursor **1**. Then additional aliquots of *n*-Bu₄NI (9.3 mg, 0.02 mmol, 0.10 equiv.) and 5.0–6.0 M TBHP in decane (91.0 μ L, 0.50 mmol, 2.0 equiv.) were added, and the stirring was continued for 21 h. The reaction mixture was diluted with EtOAc (2.5 mL), saturated aqueous Na₂S₂O₃•5H₂O (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2 \times 2.5 mL). The combined organic layer was washed with brine (2.5 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Purification by column chromatography on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, and 10% EtOAc in hexanes gave the TEMPO•Et₂O adduct (79.8 mg, 69%) as a colorless oil. Continued elution with 30% EtOAc in hexanes gave compound **6** (16.8 mg, 31%) as a colorless oil.

Further elution with 40% EtOAc in hexanes and EtOAc gave unreacted precursor **1** (9.4 mg, impure).

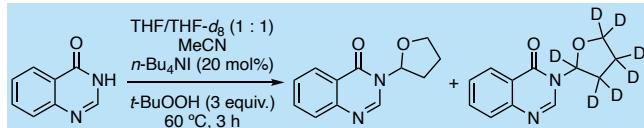
Characterization of TEMPO•Ether adduct³⁰

 R_f (SiO₂/5% EtOAc in hexanes) = 0.55. ¹H NMR (500 MHz, CDCl₃): δ = 4.87 (q, J = 5.5 Hz, 1H), 3.75 (dq, J = 9.2, 7.1 Hz, 1H), 3.57 (dq, J = 9.2, 7.0 Hz, 1H), 1.48–1.41 (m, 6H), 1.29 (d, J = 5.5 Hz, 3H), 1.23 (s, 3H), 1.16 (t, J = 7.0 Hz, 3H), 1.12 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ = 105.1, 63.0, 60.6, 59.3, 40.6, 40.2, 33.9, 33.8, 20.7, 20.2, 19.4, 17.4, 15.5. HRMS (ESI/TOF) m/z calculated for C₁₃H₂₈NO₂ [M + H]⁺: 230.2115, found 230.2118.

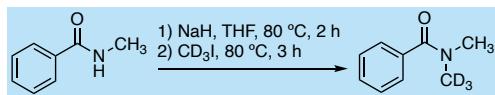

The ¹H NMR data for compound **6** obtained from this reaction matched those reported above.

Reaction of quinazolinone with THF-*d*₈

In an oven-dried, screwcap culture tube (20 mL capacity, ca. 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 36.5 mg, 0.25 mmol, 1.0 equiv.) in anhydrous MeCN (405.0 μ L), and THF-*d*₈ (407.0 μ L, 5.0 mmol, 20.0 equiv.) was added. This was followed by the addition of *n*-Bu₄NI (18.5 mg, 0.05 mmol, 0.20 equiv.) and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (136.0 μ L, 0.75 mmol, 3.0 equiv.) was added dropwise, the vial was capped, and the mixture was heated at 60 °C for 3 h. TLC analysis indicated the presence of unconsumed precursor **1**. The reaction mixture was diluted with EtOAc (2.5 mL), saturated aqueous Na₂S₂O₃•5H₂O (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2 \times 2.5 mL). The combined organic layer was washed with brine (2.5 mL), dried over anhydrous Na₂SO₄, filtered, and evaporated under reduced pressure. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 16.7 mg (30% yield) of product **2d**, as a white solid. Precursor **1** (16.5 mg, impure) was reisolated. HRMS (ESI/TOF) m/z calculated for C₁₂H₆D₇N₂O₂ [M + H]⁺: 224.1411, found 224.1411.

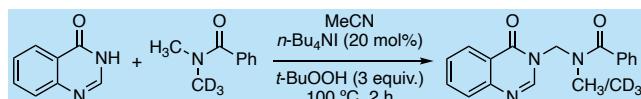

Reaction of quinazolinone with THF

In an oven-dried screwcap culture tube (20 mL capacity, ca. 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 36.5 mg, 0.25 mmol, 1.0 eq.) in anhydrous MeCN (405.0 μ L), and THF (405.0 μ L, 5.00 mmol, 20.0 equiv.) was added. This was followed by the addition of *n*-Bu₄NI (18.5 mg, 0.050 mmol, 0.20 equiv.) and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (136.0 μ L, 0.75 mmol, 3.0 equiv.) was added dropwise, the tube was capped, and the mixture was heated at 60 °C for 3 h. TLC analysis indicated the presence of unconsumed precursor **1**. The


reaction mixture was diluted with EtOAc (2.5 mL), saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2×2.5 mL). The combined organic layer was washed with brine (2.5 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 23.3 mg (43% yield) of product **2** as a colorless oil. Precursor **1** (6.3 mg, pure) was reisolated.

Competitive reaction of quinazolinone with THF and THF-*d*₈

In an oven-dried, screwcap culture tube (20 mL capacity, *ca.* 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 36.5 mg, 0.25 mmol, 1.0 equiv.) in anhydrous MeCN (405.0 μL). To this mixture, THF (203.0 μL , 2.50 mmol, 10.0 equiv.) and THF-*d*₈ (203.0 μL , 2.50 mmol, 10.0 equiv.) were added. This was followed by the addition of *n*-Bu₄NI (18.5 mg, 0.05 mmol, 0.20 equiv.) and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (136.0 μL , 0.75 mmol, 3.0 equiv.) was added dropwise, the vial was capped, and the mixture was heated at 60 °C for 3 h. TLC analysis indicated the presence of unconsumed precursor **1**. The reaction mixture was diluted with EtOAc (2.5 mL), saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2×2.5 mL). The combined organic layer was washed with brine (2.5 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. Chromatography of the crude material on a 200–300 mesh silica gel column packed in hexanes, sequentially eluted with hexanes, 30% and 50% EtOAc in hexanes gave 25.0 mg of the THF/THF-*d*₈ derived products (**2/2d**₇) as a white solid. Precursor **1** (13.3 mg, impure) was reisolated. HRMS (ESI/TOF) *m/z* calculated for $\text{C}_{12}\text{H}_{6}\text{D}_7\text{N}_2\text{O}_2$ [M + H]⁺: 224.1411, found 224.1354 and for $\text{C}_{12}\text{H}_{13}\text{N}_2\text{O}_2$ [M + H]⁺: 217.0972, found 217.1031.


Synthesis of *N*-methyl-*N*-(trideuteriomethyl)benzamide (24)¹⁶

In an oven-dried 100 mL long-necked, round bottom flask equipped with a stir bar was placed *N*-methylbenzamide (3.27 g, 24.2 mmol, 1.0 equiv.) in THF (24.2 mL). NaH (60% dispersion in mineral oil, 1.16 g, 29.0 mmol, 1.2 equiv.) was added. The flask was stoppered, and the mixture was stirred at 80 °C for 2 h. After cooling the mixture to room temperature, CD₃I was added, and the stirring was resumed at 80 °C. The reaction was monitored by TLC, and after 3 h, the precursor had been consumed. After cooling the reaction mixture in an ice-bath, the mixture was quenched with water (5 mL), transferred to a separatory funnel, and extracted with CH₂Cl₂ (5 mL). The

aqueous layer was separated and back-extracted with CH₂Cl₂ (2×5 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. Purification by column chromatography on a 200–300 mesh silica gel column packed in 50% hexanes in EtOAc and eluted with 50% EtOAc in CH₂Cl₂ gave 2.56 g (70% yield) of product **24** as a colorless oil. *R*_f (SiO₂/20% EtOAc in hexanes) = 0.22. ¹H NMR (500 MHz, CDCl₃): δ = 7.42–7.38 (m, 5H), 3.11 and 2.97 (2s, 3H). The ¹H NMR data for compound **24** are in agreement with those previously reported.¹⁶

Intramolecular competitive reaction of quinazolinone with *N*-methyl-*N*-(trideuteriomethyl)benzamide

In an oven-dried, screwcap culture tube (20 mL capacity, *ca.* 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 36.5 mg, 0.25 mmol, 1.0 equiv.) in anhydrous MeCN (405.0 μL), and amide **24** (0.761 g, 5.0 mmol, 20.0 equiv.) was added. This was followed by the addition of *n*-Bu₄NI (18.5 mg, 0.05 mmol, 0.20 equiv.) and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (136.0 μL , 0.75 mmol, 3.0 equiv.) was added dropwise, the tube was capped, and the mixture was heated at 100 °C for 2 h. This reaction was monitored by TLC and after 2 h, a significant amount of precursor **1** was still present. The reaction mixture was diluted with EtOAc (2.5 mL), saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous layer was separated and back-extracted with EtOAc (2×2.5 mL). The combined organic layer was washed with brine (2.5 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. Purification by column chromatography on a 200–300 mesh silica gel column packed in 50% hexanes in CH₂Cl₂, sequentially eluted with 50% hexanes in CH₂Cl₂, CH₂Cl₂, and 50% EtOAc in CH₂Cl₂ gave 36.2 mg (49% yield) of desired products **25d**₃/**25d**₂ as a colorless oil. Precursor **1** (8.2 mg, impure) was reisolated upon continued elution with EtOAc. HRMS (ESI/TOF) *m/z* calculated for $\text{C}_{17}\text{H}_{13}\text{D}_3\text{N}_2\text{O}_2$ [M + H]⁺: 297.1425, found 297.1425 and for $\text{C}_{17}\text{H}_{14}\text{D}_2\text{N}_2\text{O}_2$ [M + H]⁺: 296.1363, found 296.1360.

Competitive reactions of quinazolinone with ethers

In an oven-dried, screwcap culture tube (20 mL capacity, *ca.* 14.5 cm long \times 1.0 cm wide) equipped with a stir bar, was placed quinazolinone (**1**, 73.1 mg, 0.50 mmol, 1.0 equiv.) in anhydrous MeCN (811.0 μL), and a 1 : 1 molar mixture of ethers (10.0 mmol, 20.0 equiv.) was added. This was followed by the addition of *n*-Bu₄NI (36.9 mg, 0.10 mmol, 0.20 equiv.) and the vial was flushed with nitrogen gas. Then, 5.0–6.0 M TBHP in decane (273.0 μL , 1.50 mmol, 3.0 equiv.) was added dropwise, the tube was capped, and the mixture was heated either at 60 °C or 100 °C, for either 1 or 2 h. TLC analysis indicated these reactions to be incomplete. In each case, the reaction mixture was diluted with EtOAc (5.0 mL), saturated aqueous $\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O}$ (2.5 mL) was added, and the mixture was transferred to a separatory funnel for extraction. The aqueous

layer was separated and back-extracted with EtOAc (2×5.0 mL). The combined organic layer was washed with brine (5.0 mL), dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. The ^1H spectra of the crude product mixtures were analyzed to determine the relative ratio of products derived from each ether. This was done by integrating the proton at the α -position to the ether oxygen atom.

Author contributions

Conceptualization and assistance with data interpretation when needed: M. K. L.; organic synthesis, data acquisition, and interpretation: D. S.; HRMS analysis P. H. W.; article writing: M. K. L. with input from other authors; generation of the ESI:† D. S.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Support of this work by NSF awards CHE-1953574 (M. K. L.) and CHE-1429616 (P. H. W.), as well as a PSC CUNY award (M. K. L.) is gratefully acknowledged.

Notes and references

- 1 E. Jafari, M. R. Khajouei, F. Hassanzadeh, G. H. Hakimelahi and G. A. Khodarahmi, *Res. Pharm. Sci.*, 2016, **11**, 1–14.
- 2 B. K. Tiwary, K. Pradhan, A. K. Nanda and R. Chakraborty, *J. Chem. Biol. Ther.*, 2016, **1**: 104 doi: 10.4172/2572-0406.1000104
- 3 P. S. Auti, G. George and A. T. Paul, *RSC Adv.*, 2020, **10**, 41353–41392.
- 4 (a) J. B. Koepfli, J. F. Mead, J. F. and Brockman, J. A., Jr. *J. Am. Chem. Soc.*, 1947, **69**, 1837; (b) F. A. Kuehl, Jr., C. F. Spencer and K. Folkers, *J. Am. Chem. Soc.*, 1948, **70**, 2091–2093; (c) J. B. Koepfli, J. F. Mead and J. A. Brockman, Jr. *J. Am. Chem. Soc.*, 1949, **71**, 1048–1054; (d) J. B. Koepfli, J. A. Brockman, Jr. and J. Moffat, *J. Am. Chem. Soc.*, 1950, **72**, 3323; (e) F. Ablondi, S. Gordon, J. Morton and J. H. Williams, *J. Org. Chem.*, 1952, **17**, 14–18.
- 5 T. L. Keller, S. Zocco, M. S. Sundrud, M. Hendrick, M. Edenius, J. Yum, Y.-J. Kim, H.-k. Lee, J. F. Cortese, D. F. Wirth, J. D. Dignam, A. Rao, C.-Y. Yeo, R. Mazitschek and M. Whitman, *Nat. Chem. Biol.*, 2012, **8**, 311–317.
- 6 M. Hori and H. Ohtaka, *Chem. Pharm. Bull.*, 1993, **41**, 1114–1117.
- 7 (a) S. R. Vemula, D. Kumar and G. R. Cook, *ACS Catal.*, 2016, **6**, 5295–5031; (b) C.-J. Lu, D.-K. Chen, H. Chen, H. Wang, H. Jin, X. Huang and J. Gao, *Org. Biomol. Chem.*, 2017, **15**, 5756–5763.
- 8 (a) D. R. Sutherland, M. Veguillas, C. L. Oates and A.-L. Lee, *Org. Lett.*, 2018, **20**, 6863–6867; (b) T. C. Sherwood, N. Li, A. N. Yazdani and T. G. M. Dhar, *J. Org. Chem.*, 2018, **83**, 3000–3012; (c) L. Zhang and Z.-Q. Liu, *Org. Lett.*, 2017, **19**, 6594–6597; (d) A. P. Antonchick and L. Burgmann, *Angew. Chem., Int. Ed.*, 2013, **52**, 3267–3271.
- 9 (a) S. Mao, K. Luo, L. Wang, H. Y. Zhao, A. Shergalis, M. Xin, N. Neamati, Y. Jin and S. Q. Zhang, *Org. Lett.*, 2019, **21**, 2365–2368; (b) Á. Gutiérrez-Bonet, C. Remeur, J. K. Matsui and G. A. Molander, *J. Am. Chem. Soc.*, 2017, **139**, 12251–12258.
- 10 L. Dian, S. Wang, D. Zhang-Negrerie, Y. Du and K. Zhao, *Chem. Commun.*, 2014, **50**, 11738–11741.
- 11 K. Sun, X. Wang, G. Li, Z. Zhu, Y. Jiang and B. Xiao, *Chem. Commun.*, 2014, **50**, 12880–12883.
- 12 V. Malatesta and K. U. Ingold, *J. Am. Chem. Soc.*, 1981, **103**, 609–614.
- 13 C. Walling and M. J. Mintz, *J. Am. Chem. Soc.*, 1967, **89**, 1515–1519.
- 14 6-Chloro and 7-methylquinazolinone: S. S. Kulkarni, S. Singh, J. R. Shah, W.-K. Low and T. T. Talele, *Eur. J. Med. Chem.*, 2012, **50**, 264–273.
- 15 2-Methylquinazolinone: G. M. Nepomuceno, K. M. Chan, V. Huynh, K. S. Martin, J. T. Moore, T. E. O'Brien, L. A. E. Pollo, F. J. Sarabia, C. Tadeus, Z. Yao, D. E. Anderson, J. B. Ames and J. T. Shaw, *ACS Med. Chem. Lett.*, 2015, **6**, 308–312.
- 16 L. R. Hall, R. T. Iwamoto and R. P. Hanzlik, *J. Org. Chem.* 1989, **54**, 2446–2451.
- 17 U. C. Yoon, S. J. Cho, Y.-J. Lee, M. J. Mancheno and P. S. Mariano, *J. Org. Chem.* 1995, **60**, 2353–2360.
- 18 M. Uyanik, D. Suzuki, T. Yasui and K. Ishihara, *Angew. Chem., Int. Ed.*, 2011, **50**, 5331–5334.
- 19 T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner and B. J. Nachtsheim, *Org. Lett.*, 2011, **13**, 3754–3757.
- 20 SciFinder data: predicted $\text{p}K_a$ of 4(3H)-pyrimidinone = 9.04 ± 0.40 (CAS Registry Number 4562-27-0) and predicted $\text{p}K_a$ of 4-pyrimidinol (CAS Registry Number 51953-18-5) = 8.76 ± 0.10 .
- 21 C.-J. Li, *Acc. Chem. Res.*, 2009, **42**, 335–344.
- 22 C. J. Scheuermann, *Chem. – Asian J.*, 2010, **5**, 436–451.
- 23 M. K. Lakshman, P. K. Vuram, *Chem. Sci.*, 2017, **8**, 5845–5888.
- 24 Phillips, A. M. F., A. J. L. Pombeiro, *ChemCatChem*, 2018, **10**, 3354–3383.
- 25 A. Batra, K. N. Singh, *Eur. J. Org. Chem.*, 2020, 6676–6703.
- 26 K. Peng, Z.-B. Dong, *Adv. Synth. Catal.*, 2021, **363**, 1185–1201.
- 27 T. Tian, Z. Li.; C.-J. Li, *Green Chem.*, 2021, **23**, 6789–6862.
- 28 H. K. Akula, M. K. Lakshman, *J. Org. Chem.*, 2012, **77**, 8896–8904.
- 29 In the reaction of 2-methylquinazolin-4(3H)-one with THF, a new spot that was assumed to be product was seen to form at various reaction times, in essentially incomplete reactions. In one case, the initial product that was seen to form disappeared upon prolonged reaction. In other cases, the low amounts of impure material that was obtained (10–30%) also decomposed.
- 30 W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu, M. Hu, P. Xie and J.-H. Li, *Angew. Chem., Int. Ed.*, 2013, **52**, 3638–3641.