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Abstract

In this paper we develop two wave-based approaches for predicting the nonlinear periodic
response of jointed elastic bars. First, we present a nonlinear wave-based vibration approach
(WBVA) for studying jointed systems informed by re-usable, perturbation-derived scattering
functions. This analytical approach can be used to predict the steady-state, forced response of
jointed elastic bar structures incorporating any number and variety of nonlinear joints. As a
second method, we present a nonlinear Plane-Wave Expansion (PWE) approach for analyzing
periodic response in the same jointed bar structures. Both wave-based approaches have advan-
tages and disadvantages when compared side-by-side. The WBVA results in a minimal set of
equations and is re-usable following determination of the reflection and transmission functions,
while the PWE formulation can be easily applied to new joint models and maintains solution
accuracy to higher levels of nonlinearity. For example cases of two and three bars connected
by linearly-damped joints with linear and cubic stiffness, the two wave-based approaches accu-
rately predict the expected Duffing-like behavior in which multiple periodic responses occur in
the near-resonant regime, in close agreement with reference finite element simulations. Lastly,
we discuss extensions of the work to jointed structures composed of beam-like members, and
propose follow-on studies addressing opportunities identified in the application of the methods
presented.

Keywords: Wave-based Vibration Approach; Nonlinear Wave Propagation; Perturbation
Methods; Plane Wave Expansion; Nonlinear Forced Response;

1 Introduction

Interest in the dynamics of jointed structures, in which mechanical joints connect elastic members,
has grown during the past decade [1, 2]. This interest has been spurred in part by new insights
into the influence that joint dynamics and tribology have on system-wide dynamic response and
hysteretic damping [2]. Owing to the complexity of such problems, nearly all predictive methods
employ high-fidelity, discretized models (e.g., finite element models) to compute dynamic response
– see, for instance, [3, 4]. Elastic members away from the joint (trusses, beams, etc.) are accurately
modeled using linear representations, while approximate nonlinear representations are typically
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employed to represent frictional contact behavior at the mechanical joints. Due to the small domain
size of the joints in comparison to the members, these methods allocate the majority of their
computational effort to linear components, while allocating comparatively smaller computational
effort to the intricate nonlinear dynamics of the mechanical joint. Herein, we address this apparent
paradox through the development of a nonlinear wave-based analysis approach in which known
wave solutions represent elastic members, effectively eliminating their computational burden, while
mechanical joints are represented by discrete, nonlinear models whose frequency- and amplitude-
dependent reflection and transmission behavior is first found using perturbation approaches. The
present research represents a first step in this direction, and as such, we consider the elastic members
to be simple bars, and we represent the joints by nonlinear springs with linear damping. To place
the paper in its proper context, we first review relevant literature on joint dynamics and damping,
wave-based vibration analysis techniques, and lastly, scattering of elastic waves from nonlinear
interfaces

Some of the earliest modern efforts on characterizing the nonlinear dynamic effects of mechanical
joints in jointed structures can be found in investigations of the dynamics of the so-called Gaul
resonator [5, 6], which connects two masses using a bolted lap joint. The dynamic response of
such jointed structures, at the interface level, are characterized by intermittent periods of slipping,
where the interfaces slide over one another with non-conservative force-displacement characteristics,
and sticking, characterized by conservative force-displacement characteristics (instantaneously).
Under harmonic operation this manifests as the well-known nonlinear hysteretic characteristics of
the jointed structure. Practically, these structures demonstrate an amplitude-dependent softening
(reduction in stiffness/resonant frequency with increasing amplitude) and dampening (increase in
the effective damping factor with increasing amplitude) as have been observed in many experimental
studies (see, for instance [7–10]). Mathematical modeling of hysteresis has been an active area of
research over the past century (see reviews such as [11, 12]). These range from simple saturating
springs (like the Jenkins model [13]), to models based on structural properties of hysteresis (like
the Masing hypothesis [14]), and more involved mathematical formulations (such as the Bouc-Wen
model [15]). The authors in [12] present a recent review detailing such models and their influence
in a steady-state setting.

Researchers in the structural dynamics community have recently applied known propagating
wave solutions (as opposed to traditional standing wave solution techniques) to analyze exact
steady-state dynamics of linear elastic structures, which requires knowledge of wave scattering
at discontinuities [16–19]. In frame-like and/or lattice structures composed of one-dimensional
members (e.g., bars and beams), the wave-based vibration approach (WBVA) [17, 18, 20–28] ex-
ploits known wave solutions propagating in the forward and backward directions along the elastic
members, together with characterization of reflection and transmission at connections and bound-
aries, to obtain exact system eigenfrequencies and eigenfunctions under free motion conditions, or
steady-state response under harmonic excitation. The present-day wave-based vibration approach
owes its existence to the culmination of studies that first focused on developing reflectivity and
transmissibility relationships for a variety of boundary conditions and interfaces using bar and
beam (e.g., Euler-Bernoulli and Timoshenko) theories [17, 21, 22, 29, 30]. These studies related the
incident wave coefficients to their reflected and transmitted counterparts, typically using matrix
representations. Armed with the knowledge of reflection, transmission, and excitation-generated
wave coefficients, researchers then posed closed, linear algebraic conditions governing exact so-
lution of the wave coefficients as applied to two- and three-dimensional structures (e.g., frames)
[20, 24, 31, 32], for both free and harmonically-forced motions. It is important to note that in these
papers the connections between members are commonly referred to as ‘joints’ – however, these are
more identifiable as rigid connections since they lack both compliance and damping. Herein, we
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exclusively refer to this procedure, of determining vibration response using an assemblage of wave
coefficient conditions, as the wave-based vibration approach. Related, but fundamentally different,
methods not grouped under the WBVA designation include the wave finite element approach [33]
and spectral wave analysis [34], among others. Extensions of the exact WBVA have been ex-
plored by Leamy for the study of Bloch waves in periodic two-dimensional lattices [27], and by Lv
and Leamy to study boundary-damped systems [28]. Lv and Leamy also describe an automated
assembly procedure and implementation in Matlab, similar to that used in finite element assem-
bly procedures, which generates the problem solution simply by user specification of the material
properties and geometry, connectivity of the members, and forcing properties. Implementation of
the WBVA in structures incorporating two-dimensional elastic members, such as membranes and
plates, is an open research problem. However, one basis for such a technique can be found in [35],
in which wave solutions are used to find exact and nearly-exact eigenfunctions of rectangular plates
supported by a variety of boundary conditions.

Wave scattering at nonlinear joints has received sparse attention in comparison to linear con-
nections, and as such a WBVA incorporating such joint models has yet to be presented. Gaul [16]
studied wave transmission and energy dissipation through joints using a variety of discrete nonlin-
ear representations, but simplified the analysis using equivalent elements (i.e., linear springs and
dashpots) for representing the constitutive features of the joints. Improving upon this, Vakakis [19]
studied nonlinear scattering of longitudinal waves in a rod with a weakly nonlinear elastic joint at
its end using a perturbation approach, and applied the phase-closure principle to compute vibra-
tion backbones. Later, Brennan et al. [36] derived the reflection and transmission coefficients for
both rods and beams terminated by a cubic spring using harmonic balance. Other researchers have
developed a multi-harmonic formulation for the description of the interaction of waves in linear
waveguides through nonlinear coupling elements [37], and extended it using a numerical implemen-
tation of the harmonic balance method to estimate the forced steady-state response of linear frame
structures with nonlinear supports [38]. Most recently, [39, 40] presented a general perturbation
approach for determining scattering in a beam due to an array of attached nonlinear oscillators.

We first aim to extend the WBVA to analyze weakly nonlinear systems, while finding the
requisite reflection and transmission behavior at nonlinear joints using a perturbation approach.
Importantly, the perturbation approach considers coupling of incident waves and their anticipated
higher harmonics, which first arise at the joint and then reappear incident after downstream re-
flections. This is followed by a critical reconstitution step before usage in the nonlinear WBVA.
Although demonstrated for longitudinal waves in multiple jointed bars, the nonlinear WBVA is
general and can be extended in a straight-forward manner to beams and frames joined by a variety
of discretely represented, nonlinear joints, which will be the subject of future work. Concurrently,
we implement an alternating frequency-time domain plane wave expansion (PWE) approach for
analyzing the same jointed bar systems, and then make comparisons between the two approaches
for harmonic loading. We validate the results using finite element models evaluated by the harmonic
balance method. While we present stability results for the example systems studied, development
of the stability methods used can be found in a companion paper [41].

The paper is organized as follows: in Sec. 2 we first develop requisite scattering relationships
for a damped, nonlinear joint between two semi-infinite bars using perturbation analysis. We then
formulate the nonlinear WBVA for finding system dynamic response using the example of two
clamped bars connected by the damped, nonlinear joint; later, we consider three bars connected by
two joints. In Sec. 3 we detail the PWE approach and its application to the same two-bar, clamped
system. This is followed by Sec. 4 where we present forced response results from the developed
approaches together with finite element-harmonic balance results for validation purposes. The
paper concludes with discussion of the results and avenues for future work.
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2 Nonlinear Wave-Based Vibration Approach

In this section we develop the nonlinear wave-based vibration approach through regular perturba-
tion theory. We start by developing scattering relationships corresponding to single and multiple
wave incidence on a joint of a system of linear-elastic bars. We then apply the scattering rela-
tionships to a wave-based vibration problem to predict system response resulting from harmonic
loading.

2.1 Scattering of a Single Incident Wave

As depicted in Fig. 1, we consider two semi-infinite, linearly elastic bars joined by a nonlinear
spring in parallel with a linear damper. The spring is characterized by linear and cubic stiffness
coefficients K and εΓ, respectively. The bars support longitudinal motions only such that the left
and right bars have displacement fields denoted by uL (x, t) and uR (x, t). For simplicity of resulting
expressions, the two bars considered share the same Young’s modulus Ey, density per unit volume ρ,
and cross-sectional area A. Generalization to two bars of unequal material and geometric properties
is straight-forward. We choose to consider this system as it represents the simplest setting to study
wave propagation inside a jointed structure in which the joint is modeled using a nonlinear stiffness
element and a linear damper. Consideration of hysteretic joints is deferred for future work.

Figure 1: Two semi-infinite linearly-elastic bars joined by a nonlinear spring and a linear dashpot.
Single-frequency plane waves are considered incident from the left-hand side. The incident wave is
reflected and transmitted due to the presence of the nonlinear joint.

The equations governing wave propagation in the linearly-elastic bars are given by,

ρA
∂2uL
∂t2

− EyA
∂2uL
∂x2

= fL(x, t), −∞ < x < 0 (1)

ρA
∂2uR
∂t2

− EyA
∂2uR
∂x2

= fR(x, t), 0 < x < ∞ (2)

where fL (x, t) and fR (x, t) denote forcing per unit length in the left and right subdomains, respec-
tively. We will consider forcing later; in the absence of forcing, the bars admit freely propagating
waves. We model a single-frequency incident plane wave radiating from the left boundary with
complex amplitude a,

I (x, t) = aeikxe−iωt + c.c., (3)

which then reflects off, and/or transmits through, the joint located at x = 0. Note that we denote
the complex conjugate of all preceding terms by +c.c. such that the total incident field is real
(as required for nonlinear analysis). Since the bars carrying all waves are linear and governed by
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Eqs. (1) and (2), the wavenumber k is related to the frequency ω by ω = cpk, where cp =
√

Ey

ρ

denotes the wave speed. The reflected and transmitted waves are both a function of space x and
time t, which we denote by R (x, t) and T (x, t), respectively. For a linear problem, these fields
would simply be of the form [Rae−ikxe−iωt + c.c.] and

[
Tae−ikxe−iωt + c.c.

]
, respectively, where R

and T denote complex reflection and transmission coefficients to be determined by suitable joint
conditions. However, due to the nonlinear spring stiffness, these forms do not suffice.

Four boundary conditions are required to completely specify the wave propagation problem
consisting of two jointed bars. Radiation and causality conditions provide two conditions: the
presence of a leftward propagating incident wave in the first bar with complex amplitude a, and
the absence of a rightward propagating wave from the right in the second bar. Two other boundary
conditions arise at the joint, which state that the internal force at x = 0 must equal the action of
the spring and dashpot,

EyA
∂uL
∂x

]
x=0

= K (uR−uL) + εΓ (uR−uL)
3 + C

(
∂uR
∂t

− ∂uL
∂t

)]
x=0

, (4)

EyA
∂uR
∂x

]
x=0

= K (uR−uL) + εΓ (uR−uL)
3 + C

(
∂uR
∂t

− ∂uL
∂t

)]
x=0

. (5)

Satisfaction of these boundary conditions requires an asymptotic approach predicated on the small-
ness of the parameter ε. Assuming ε ≪ 1 and positive, we decompose the displacement fields into
orders of ε, similar to the approach described in [40],

uL (x, t) = uL0 (x, t) + εuL1 (x, t) + ε2uL2 (x, t) +O
(
ε3
)
, (6)

uR (x, t) = uR0 (x, t) + εuR1 (x, t) + ε2uR2 (x, t) +O
(
ε3
)
, (7)

where |uL0| ≫ ε |uL1| ≫ ε2 |uL2| and |uR0| ≫ ε |uR1| ≫ ε2 |uR2|. Substitution of Eqs. (6) and (7)
into Eqs. (1), (2), (4) and (5), followed by collection of terms with the same powers of ε, yields the
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ordered field equations and boundary conditions,

O
(
ε0
)
:

ρA
∂2uL0
∂t2

− EyA
∂2uL0
∂x2

= 0, −∞ < x < 0, (8)

ρA
∂2uR0

∂t2
− EyA

∂2uR0

∂x2
= 0, 0 < x < ∞, (9)

EyA
∂uL0
∂x

]
x=0

= K (uR0−uL0) + C

(
∂uR0

∂t
− ∂uL0

∂t

)]
x=0

, (10)

EyA
∂uR0

∂x

]
x=0

= K (uR0−uL0) + C

(
∂uR0

∂t
− ∂uL0

∂t

)]
x=0

, (11)

O
(
ε1
)
:

ρA
∂2uL1
∂t2

− EyA
∂2uL1
∂x2

= 0, −∞ < x < 0, (12)

ρA
∂2uR1

∂t2
− EyA

∂2uR1

∂x2
= 0, 0 < x < ∞, (13)

EyA
∂uL1
∂x

]
x=0

= K (uR1−uL1) + Γ (uR0−uL0)
3 + C

(
∂uR1

∂t
− ∂uL1

∂t

)]
x=0

, (14)

EyA
∂uR1

∂x

]
x=0

= K (uR1−uL1) + Γ (uR0−uL0)
3 + C

(
∂uR1

∂t
− ∂uL1

∂t

)]
x=0

, (15)

O
(
ε2
)
:

ρA
∂2uL2
∂t2

− EyA
∂2uL2
∂x2

= 0, −∞ < x < 0, (16)

ρA
∂2uR2

∂t2
− EyA

∂2uR2

∂x2
= 0, 0 < x < ∞, (17)

EyA
∂uL2
∂x

]
x=0

= K (uR2−uL2) + 3Γ (uR0−uL0)
2 (uR1−uL1) + C

(
∂uR2

∂t
− ∂uL2

∂t

)]
x=0

, (18)

EyA
∂uR2

∂x

]
x=0

= K (uR2−uL2) + 3Γ (uR0−uL0)
2 (uR1−uL1) + C

(
∂uR2

∂t
− ∂uL2

∂t

)]
x=0

. (19)

In addition to the boundary conditions appearing above, the incident radiation condition I (x, t)
is present in uL0 (and not uL1 or uL2) since Eq. (3) appears at O

(
ε0
)
, and causality dictates that

no leftward-moving waves exist in either uR0 or uR1.

Zeroth-order solution

The O
(
ε0
)
problem recovers a linear problem whose solution we seek in the form,

uL0 (x, t) = I (x, t) + R0 (x, t) = aeikxe−iωt + R0ae
−ikxe−iωt + c.c., (20)

uR0 (x, t) = T0 (x, t) = T0ae
ikxe−iωt + c.c., (21)

where the assumed solution forms incorporate the radiation and causality conditions. Substitution
of Eqs. (20) and (21) into Eqs. (10) and (11) provides algebraic equations for solution of the
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reflection and transmission coefficients at O
(
ε0
)
, yielding

R0 =
iEyAk

2 (iωC −K) + iEyAk
, (22)

T0 =
2(iωC −K)

2 (iωC −K) + iEyAk
. (23)

With the O
(
ε0
)
solution complete, we next seek solutions to the O

(
ε1
)
problem.

First-order solution

Substituting the known solutions for uL0 (x, t) and uR0 (x, t) into the O
(
ε1
)
problem yields updated

boundary conditions,

EyA
∂uL1
∂x

]
x=0

= K (uR1−uL1) + C

(
∂uR1

∂t
− ∂uL1

∂t

)]
x=0

+ Γ
(
c1e

ikxe−iωt + c3e
i3kxe−i3ωt + c.c.

)]
x=0

, (24)

EyA
∂uR1

∂x

]
x=0

= K (uR1−uL1) + C

(
∂uR1

∂t
− ∂uL1

∂t

)]
x=0

+ Γ
(
c1e

ikxe−iωt + c3e
i3kxe−i3ωt + c.c.

)]
x=0

, (25)

where coefficients c1 and c3 are given by,

c1 = 3aa2 (T0 − R0 − 1)
(
T0 − R0 − 1

)2
= −24aa2R0

(
R0

)2
, (26)

c3 = a3
(
T0 − R0 − 1

)3
= −8a3

(
R0

)3
, (27)

with overbars denoting complex conjugate and where the identity R0 + T0 = 1 has been used to
simplify the expressions1. Due to the presence of the third harmonic (i.e., ei3kxe−i3ωt) on the right-
hand side of the updated boundary conditions, we seek solutions to Eqs. (12) and (13) decomposed
into the fundamental harmonic and third harmonic components,

uL1 (x, t) = R1 (x, t) = R(1)
1 ae−ikxe−iωt + R(3)

1 ae−i3kxe−i3ωt + c.c., (28)

uR1 (x, t) = T1 (x, t) = T(1)
1 aeikxe−iωt + T(3)

1 aei3kxe−i3ωt + c.c., (29)

where R(1)
1 and T(1)

1 capture higher-order corrections to reflection and transmission of the fun-

damental harmonic, and R(3)
1 and T(3)

1 capture the reflection and transmission of superharmonic
content. Substitution of Eqs. (28) and (29) into Eqs. (24) and (25), followed by separation of the
orthogonal harmonics (i.e., ω and 3ω), yields the necessary conditions to find the four coefficients.
We then find the resulting amplitude-dependent expressions,

R(1)
1 =

24aaΓ

2 (iωC −K) + iEyAk
R0 (R0)

2
, (30)

T(1)
1 =− R(1)

1 , (31)

R(3)
1 =

8a2Γ

2 (i3ωC −K) + i3EyAk
(R0)

3 , (32)

T(3)
1 =− R(3)

1 . (33)
1For non-zero damping we have R0 + T0 = 1 and |R0|2 + |T0|2 < 1.
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Second-order solution

The procedure for the second-order and higher follow that detailed for the first-order; namely,
the boundary conditions are updated with all known quantities from lower orders, solutions are as-
sumed capturing the harmonics present in these updated equations, and reflection and transmission
coefficients are then determined. For the second-order, this results in,

uL2 (x, t) = R2 (x, t) = R(1)
2 ae−ikxe−iωt + R(3)

2 ae−i3kxe−i3ωt + R(5)
2 ae−i5kxe−i5ωt + c.c., (34)

uR2 (x, t) = T2 (x, t) = T(1)
2 aeikxe−iωt + T(3)

2 aei3kxe−i3ωt + T(5)
2 aei5kxe−i5ωt + c.c., (35)

where

R(1)
2 =

24Γ

2 (iωC −K) + iEyAk

(
a2

(
R0

)2R(3)
1 + a2 (R0)

2R(1)
1 + 2aaR0R0R

(1)
1

)
, (36)

T(1)
2 =− R(1)

2 , (37)

R(3)
2 =

48Γ

2 (i3ωC −K) + i3EyAk

(
1

2
a2 (R0)

2R(1)
1 + aaR0R0R

(3)
1

)
, (38)

T(3)
2 =− R(3)

2 , (39)

R(5)
2 =

24Γ

2 (i5ωC −K) + i5EyAk
a2 (R0)

2R(3)
1 , (40)

T(5)
2 =− R(5)

2 . (41)

Solution reconstitution

Based on the expansions in Eqs. (6) and (7) and the solutions found at each order, we can recon-
stitute the total displacement fields in the left and right bars,

uL (x, t) = I (x, t) +R (x, t) = aeikxe−iωt + R(1)ae−ikxe−iωt + R(3)ae−i3kxe−i3ωt+

R(5)ae−i5kxe−i5ωt + c.c.+O
(
ε3
)
, (42)

uR (x, t) = T (x, t) = T(1)aeikxe−iωt + T(3)aei3kxe−i3ωt+

T(5)aei5kxe−i5ωt + c.c.+O
(
ε3
)
, (43)

where the total reflection and transmission coefficients are given by,

R(1) ≡ R0 + εR(1)
1 + ε2R(1)

2 , (44)

T(1) ≡ T0 + εT(1)
1 + ε2T(1)

2 , (45)

R(3) ≡ εR(3)
1 + ε2R(3)

2 , (46)

T(3) ≡ εT(3)
1 + ε2T(3)

2 , (47)

R(5) ≡ ε2R(5)
2 , (48)

T(5) ≡ ε2T(5)
2 . (49)

We note that ε and Γ always appear together, and thus there is no loss in generality in setting ε
to one once the final expressions are obtained.
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2.2 Scattering of Multiple, Ordered Incident Waves

Vibration problems in which a single frequency excitation acts on two finite-length jointed bars
motivates the study of scattering depicted in Fig. 2. In such a vibration problem, as we will study
in Sec. 2.3, application of the excitation source will first generate an incident wave at the excitation
frequency ω, which upon encountering the joint, will result in reflected and transmitted waves at
the excitation frequency and its multiples, as found in Sec. 2.1. Since the vibration problem consists
of finite-length bars, each of these reflected and transmitted waves will once again return after they
reflect from the opposite ends of the bars. Thus, as in Fig. 2, in the steady-state there will be
incident waves on the joint from both sides composed of zeroth-order waves at the fundamental (or
excitation) frequency, and higher-order waves at the higher harmonics. We note that the solutions
for each incident wave acting separately cannot be superimposed due to the nonlinear joint, and
thus a combined treatment is necessary.

Figure 2: Two semi-infinite linearly-elastic bars joined by a cubic spring and a linear dashpot.
Multiple ordered plane waves are considered incident from both the left and right sides.

We model multi-harmonic incident plane waves radiating from the left and right boundary,

IL (x, t) = aeikxe−iωt +
∞∑
n=1

εna2n+1e
i(2n+1)kxe−i(2n+1)ωt + c.c., (50)

IR (x, t) = be−ikxe−iωt +

∞∑
n=1

εnb2n+1e
−i(2n+1)kxe−i(2n+1)ωt + c.c., (51)

which then reflect off, and/or transmit through, the joint located at x = 0. Note that in this case
we cannot distinguish a sole reflected wave in one half, and a sole transmitted wave in the other.
Instead, we recognize that both reflected and transmitted waves exist in both halves, which we term
RT L (x, t) and RT R (x, t) for the left and right halves, respectively. For the cubic spring shown in
Fig. 2, based on the analysis of Sec. 2.1, the higher-harmonic coefficients we need to retain for an
analysis up to and including the second order are a3, a5, b3, and b5 such that the incident left and
right expressions simplify to,

IL (x, t) = aeikxe−iωt + εa3e
i3kxe−i3ωt + ε2a5e

i5kxe−i5ωt + c.c.+O
(
ε3
)
, (52)

IR (x, t) = be−ikxe−iωt + εb3e
−i3kxe−i3ωt + ε2b5e

−i5kxe−i5ωt + c.c.+O
(
ε3
)
. (53)

The ordered field equations and boundary conditions remain those studied earlier, namely
Eqs. (8) to (19). Due to the linearity of the zeroth-order problem, its solution consists of a super-
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position of two incident wave solutions,

uL0 (x, t) = IL0 (x, t) +RL0 (x, t) + TL0 (x, t) = aeikxe−iωt + R0ae
−ikxe−iωt+

T0be
−ikxe−iωt + c.c., (54)

uR0 (x, t) = IR0 (x, t) + TR0 (x, t) +RR0 (x, t) = be−ikxe−iωt + T0ae
ikxe−iωt+

R0be
ikxe−iωt + c.c., (55)

where R0 and T0 are again given by Eqs. (22) and (23). For the first-order problem, an incident wave
now appears in each bar at the third harmonic, and the solution again contains the fundamental
and its third harmonic, but reflection and transmission behavior cannot be separated. Thus we
seek solutions of the form,

uL1 (x, t) = IL1(x, t) +RT L1 (x, t) = a3e
i3kxe−i3ωt + RT(1)

1Le
−ikxe−iωt+

RT(3)
1Le

−i3kxe−i3ωt + c.c., (56)

uR1 (x, t) = IR1(x, t) +RT R1 (x, t) = b3e
−i3kxe−i3ωt + RT(1)

1Re
ikxe−iωt+

RT(3)
1Re

i3kxe−i3ωt + c.c., (57)

where RT(1)
1L , RT

(1)
1R, RT

(3)
1L , and RT(3)

1R denote functions of the wave coefficients a, b, a3, and b3
capturing the aforementioned combined reflection and transmission. Note that due to coupling,
these functions cannot be written as coefficients multiplying any one of the wave coefficients, as
done in Eqs. (54) and (55). Similar to the solution procedure detailed in Sec. 2.1, which requires
updating first the O(ε1) field equations and boundary conditions with the O(ε0) solutions, we find
the requisite functions in closed form,

RT(1)
1L (a, b) =

24Γ (a− b)2
(
a− b

)
2 (iωC −K) + iEyAk

R0 (R0)
2 , (58)

RT(1)
1R(a, b) = −RT(1)

1L , (59)

RT(3)
1L (a, b, a3, b3) =

8Γ (a− b)3 (R0)
3

2 (i3ωC −K) + i3EyAk
+ R3(ω,k)

0 a3 + T3(ω,k)
0 b3, (60)

RT(3)
1R(a, b, a3, b3) =

−8Γ (a− b)3 (R0)
3

2 (i3ωC −K) + i3EyAk
+ R3(ω,k)

0 b3 + T3(ω,k)
0 a3, (61)

where Rn(ω,k)
0 , Tn(ω,k)

0 denote R0, T0 evaluated with ω → nω and k → nk, and we indicate explicit
functional dependence on the wave coefficients in Eqs. (58) to (61). The wave coefficients a and b
appear together and cannot be separated, as expected.

We then follow the procedure once more to obtain the second-order solutions. We thus seek
solutions of the form,

uL2 (x, t) = IL2(x, t) +RT L2 (x, t) = a5e
i5kxe−i5ωt + RT(1)

2Le
−ikxe−iωt+

RT(3)
2Le

−i3kxe−i3ωt + RT(5)
2Le

−i5kxe−i5ωt + c.c., (62)

uR2 (x, t) = IR2(x, t) +RT R2 (x, t) = b5e
−i5kxe−i5ωt + RT(1)

2Re
ikxe−iωt+

RT(3)
2Re

i3kxe−i3ωt + RT(5)
2Re

i5kxe−i5ωt + c.c., (63)
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where

RT(1)
2L (a, b, a3, b3) =

3Γ

2 (iωC −K) + iEyAk

(
8RT(1)

1L (a, b)(a− b)2 (R0)
2

+16RT(1)
1L (a, b)R0R0(a− b)(a− b)

+4
(
R0

)2
(a− b)2

(
a3 − b3 + RT(3)

1L (a, b)− RT(3)
1R(a, b, a3, b3)

))
, (64)

RT(1)
2R(a, b, a3, b3) =− RT(1)

2L (a, b, a3, b3), (65)

RT(3)
2L (a, b, a3, b3) =

1

2 (i3ωC −K) + i3EyAk

(
24ΓR0R0(a− b)(a− b) (a3 − b3

−RT(3)
1R(a, b, a3, b3) + RT(3)

1L (a, b, a3, b3)
)

+24Γ (R0)
2 (a− b)2RT(1)

1L (a, b)
)
, (66)

RT(3)
2R(a, b, a3, b3) =− RT(3)

2L (a, b, a3, b3), (67)

RT(5)
2L (a, b, a3, b3, a5, b5) =

1

2 (i5ωC −K) + i5EyAk

(
12Γ (R0)

2 (a− b)2 (a3 − b3

+RT(3)
1L (a, b, a3, b3)− RT(3)

1R(a, b, a3, b3)
))

+ R5(ω,k)
0 a5 + T5(ω,k)

0 b5, (68)

RT(5)
2R(a, b, a3, b3, a5, b5) =

1

2 (i5ωC −K) + i5EyAk

(
−12Γ (R0)

2 (a− b)2 (a3 − b3

+RT(3)
1L (a, b, a3, b3)− RT(3)

1R(a, b, a3, b3)
))

+ R5(ω,k)
0 b5 + T5(ω,k)

0 a5. (69)

With assistance from computer algebra, the procedure can be carried-out to arbitrarily high orders.
However, for the purpose of this paper, we will restrict our analysis up to the second order accurate
perturbations (up to and including the O(ε2) terms).

Lastly, we reconstitute the solutions to obtain final expressions for the total reflection/transmission
and displacement fields,

uL (x, t) = IL (x, t) +RT L (x, t) , (70)

uR (x, t) = IR (x, t) +RT R (x, t) , (71)

where IL and IR are given by Eqs. (52) and (53) and the total reflected/transmitted fields are
given by,

RT L (x, t) =
(
R0a+ T0b+ εRT(1)

1L + ε2RT(1)
2L

)
e−ikxe−iωt+(

εRT(3)
1L + ε2RT(3)

2L

)
e−i3kxe−i3ωt + ε2RT(5)

2Le
−i5kxe−i5ωt + c.c.+O

(
ε3
)
, (72)

RT R (x, t) =
(
T0a+ R0b+ εRT(1)

1R + ε2RT(1)
2R

)
eikxe−iωt+(

εRT(3)
1R + ε2RT(3)

2R

)
ei3kxe−i3ωt + ε2RT(5)

2Re
i5kxe−i5ωt + c.c.+O

(
ε3
)
, (73)

where we suppress dependence on wave coefficients in the reflection/transmission functions for sake
of brevity. We note that in the final expressions ε always appears together with Γ, a3, a5, b3, and
b5, and thus no loss in generality results from setting ε to one.
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2.3 Nonlinear WBVA

In this section we pose and solve a nonlinear wave-based vibration approach capable of finding the
forced response of two finite, jointed bars excited by single-frequency forcing of the form 1

2F0e
−iωt+

c.c.. The system of interest is depicted in Fig. 3. The three values for αi, i = 1, 2, 3, form a partition
of unity. Note that ε no longer appears in the problem, and instead we consider only values of F0,
K, and Γ such that the ratio of cubic restoring force to linear restoring force is small - we check
adherence to this condition after computing the response (see Secs. 4.1 and 4.2).

To date, the wave-based vibration approach has been limited strictly to linear systems. We
extend the approach to structures in which nonlinearities arise solely at discontinuities (e.g., joints
and other connections). While the members considered are modeled as bars and not beams, the
approach can be extended in a straight-forward manner to Euler-Bernoulli and Timoshenko beams.
This will be the focus of follow-on work.

Figure 3: Two linearly elastic bars joined by a nonlinear spring and a linear dashpot. Each bar
has one fixed end. Single-frequency plane waves are injected at the location of the forcing. Note
that each wave coefficient includes itself plus its complex conjugate — this is only shown for a+,
but assumed for all other coefficients. The global coordinate X denotes position starting from the
left end.

The wave-based vibration approach takes advantage of known, exact wave solutions in the
structural members, together with wave conditions at discontinuities (i.e., boundaries and loading
locations), to yield exact analytical solutions to complex, multi-connected systems. The utility
of such an approach is that it (i) yields solutions that would otherwise require discretization to
obtain, and (ii) enables significant re-use after formulating the scattering behavior of the joint.
Fig. 3 depicts the jointed-bar forced vibration problem whose solution we seek using a nonlinear
WBVA. We identify wave coefficient vectors (i.e., a+, a−, b+, b+, ..., f−) at the locations of
discontinuities, which here include boundaries, the forcing location, and the jointed connection.
The coefficient vectors hold individual coefficients corresponding to the fundamental, third, and
fifth harmonic frequency — e.g., a+ = [a+1 a+3 a+5 ]

T . As per Secs. 2.1 and 2.2, this is consistent
with carrying-out the perturbation approach up to, but not including, O(ε3). Each individual wave
coefficient holds the magnitude and phase of either a leftward or rightward moving wave at each
location identified. These coefficients can then be used to represent the bar displacement along
the bar until the next set of coefficients is reached. For example, for all points to the right of the
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forcing, and up to the joint, the displacement is given by,

u (x, t) = c+1 e
ikxe−iωt + c−1 e

−ikxe−iωt + c+3 e
i3kxe−i3ωt + c−3 e

−i3kxe−i3ωt+

c+5 e
i5kxe−i5ωt + c−5 e

−i5kxe−i5ωt + c.c., 0 < x < α2l. (74)

Note from Eq. (74) that the local origin for the displacement field begins with x equal to zero at the
location identified for the coefficients - i.e., immediately to the right of the forcing for coefficients
c1, c3, c5, and their complex conjugates.

We next list the equations required to find the vibration response of the nonlinear problem
illustrated in Fig. 3. In regions of the bars between discontinuities, coefficients bounding the
continuous domain are related by propagation relationships,

b+j = a+j e
ijkα1l, a−j = b−j e

ijkα1l, d+j = c+j e
ijkα2l, c−j = d−j e

ijkα2l,

f+
j = e+j e

ijkα3l, f−
j = e−j e

ijkα3l, (75)

where j = 1, 3, 5. Note that we suppress expressions for complex conjugate coefficients since it is
only necessary to solve the problem for the original quantities and then later append to the solution
its complex conjugate. For clamped ends, the zero-displacement boundary conditions yield,

a+j = −a−j , f+
j = −f−

j . (76)

At the forcing location, a jump discontinuity occurs for the fundamental frequency coefficients, but
not for the third- and fifth-harmonic coefficients,

c+1 = b+1 +
iF0

4EyAk
, b−1 = c−1 +

iF0

4EyAk
, (77)

c+3 = b+3 , b−3 = c−3 , c+5 = b+5 , b−5 = c−5 . (78)

Lastly, we have the joint relationships arising from Eqs. (70) and (71),

d−1 = R0d
+
1 + T0e

− + RT(1)
1L (d

+
1 , e

−
1 ) + RT(1)

2L (d
+
1 , e

−
1 , d

+
3 , e

−
3 ), (79)

e+1 = R0e
−
1 + T0d

+
1 + RT(1)

1R(d
+
1 , e

−
1 ) + RT(1)

2R(d
+
1 , e

−
1 , d

+
3 , e

−
3 ), (80)

d−3 = RT(3)
1L (d

+
1 , e

−
1 , d

+
3 , e

−
3 ) + RT(3)

2L (d
+
1 , e

−
1 , d

+
3 , e

−
3 ), (81)

e+3 = RT(3)
1R(d

+
1 , e

−
1 , d

+
3 , e

−
3 ) + RT(3)

2R(d
+
1 , e

−
1 , d

+
3 , e

−
3 ), (82)

d−5 = RT(5)
2L (d

+
1 , e

−
1 , d

+
3 , e

−
3 , d

+
5 , e

−
5 ), (83)

e+5 = RT(5)
2R(d

+
1 , e

−
1 , d

+
3 , e

−
3 , d

+
5 , e

−
5 ). (84)

We note that the joint relationships are the only deviation from exactness in the nonlinear solution
approach; i.e., Eqs. (75)-(78) hold exactly. Meanwhile, Eqs. (79)-(84) are asymptotically rigorous.
Thus with a small set of solution quantities (a+, a−, ..., f−), fixed in number independent of
frequency, the solution approach can be expected to have high accuracy as substantiated in Sec. 4.
The joint relationships couple the third harmonic in the analysis of the fundamental harmonic
(via Eqs. (79)-(80)) as a result of solving the scattering problem first and then reconstituting the
ordered terms before posing the WBVA. As substantiated in Appendix B, had the solution approach
started first with an expansion of the equations governing the vibration problem shown in Fig. 3,
this coupling would not have been captured, compromising the analysis. For example, such an
approach would fail to capture multiple solutions and Duffing-like frequency response behavior
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documented in Secs. 4.1-4.2. We note further that if the scattering problem in Sec. 2.2 is carried-
out to third-order (and higher), the fifth harmonic (and higher) would also appear in the analysis
of the fundamental harmonic.

Eqs. (75) to (84) hold 36 nonlinear algebraic equations for 36 unknown wave coefficients, and
represent the nonlinear WBVA problem formulation. A large subset of the equations, totaling 30,
are in fact linear. As such, Eqs. (75) to (78) can be written as,

A (zred;P, ω) z = F, (85)

where A (zred;P, ω) denotes a sparce coefficient matrix parameterized by material and geometric
properties from the set P = {Ey, ρ, A, α1, α2, α3, l}, frequency ω, and a function of individual wave

coefficients from the reduced coefficient vector zred ≡
[
d−1 d−3 d−5 e+1 e+3 e+5

]T
; z holds coefficient

vectors a+, a−, b+, b−, c+, c−, f+, f−, and individual coefficients d+1 , d
+
3 , d

+
5 , e

−
1 , e

−
3 , and e−5 ;

and F holds two non-zero entries equal to iF0
4EyAk . Due to the sparsity of A (zred;P, ω) and the

small problem size, Eq. (85) returns relatively simple expressions for the elements of z in terms of
zred. We find these expressions using computer algebra - see Appendix A. Following substitution
of the now-eliminated wave coefficients z into Eqs. (79) to (84) results in six nonlinear algebraic
equations for the six unknown wave coefficients stored by the reduced coefficient vector zred, which
represents a significant reduction in problem size. After specification of the parameter set P, and
frequency ω, we numerically compute solutions for zred and then compose the total displacement
field from the coefficients,

u(X, t) =
∑

j=1,3,5
a+j e

ijkXe−ijωt + a−j e
−ijkXe−ijωt + c.c., 0 < X < α1l

c+j e
ijk(X−α1l)e−ijωt + c−j e

−ijk(X−α1l)e−ijωt + c.c., α1l < X < (α1 + α2)l

e+j e
ijk(X−(α1+α2)l)e−ijωt

+e−j e
−ijk(X−(α1+α2)l)e−ijωt + c.c., (α1 + α2)l < X < l

, (86)

where X denotes a global position coordinate with zero location at the leftmost edge of the domain.

3 Nonlinear Plane-Wave Expansion Approach

We now present an approach for the forced response estimation problem that is closely related to,
but fundamentally different from, the nonlinear wave-based vibration approach presented above.
Eq. (86) expresses the solution of the problem shown in Fig. 3 through the individual directed wave
components. The same solution form is assumed for the second approach, referred to henceforth
as the Plane Wave Expansion (PWE) approach. The point of departure of this approach from
the above nonlinear WBVA is the treatment of the nonlinearities at the joint. While the WBVA
treats it from a perturbation standpoint, leading up to the derivation of re-usable, nonlinear multi-
harmonic scattering relationships, the PWE approach employs a numerical Galerkin projection
approach applied to the entire problem in time, while retaining the traveling wave formalism in
space. An approach with some similarities was proposed and demonstrated recently in [38, 42].
However, herein, we do not discretize with traditional interpolation functions and we use only
waveform basis functions.

Dropping ε, we write the joint force relationship in Eq. (4) as,

EyA
∂uL
∂X

]
X=(α1+α2)l

= K (uR−uL) + Γ (uR−uL)
3 + C

(
∂uR
∂t

− ∂uL
∂t

)]
X=(α1+α2)l

,
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or more generically,

EyA
∂uL
∂X

]
X=(α1+α2)l

= fnl(∆u,∆u̇, . . . ), with ∆u = uR − uL]X=(α1+α2)l
. (87)

In the above, the nonlinear internal force generated from the joint is represented as fnl, with the
relative displacement at the joint location written as ∆u, while ˙( ) denotes a partial derivative with
respect to time. Since the PWE approach is sufficiently generalizeable, we will use this form of the
force balance at the joint for the remaining treatment.

Restricting the present discussion to modeling the joined members as bars, all the terms in
the solution expansion (Eq. (86)) are harmonic; i.e., we can decompose the solution into complex
harmonic wave components via a Fourier series. Evaluating this at any location (here attention is
only on the joint), will result in a time-periodic function with fundamental period 2π/ω. Using a
similar notation as in previous sections, we write uL, ∂uL/∂x (local to the joint), and ∆u(t) as

uL(x, t) =
∑

j=0,1,...

d+j e
ijkxe−ijωt + d−j e

−ijkxe−ijωt + c.c., − α2l < x < 0 (88)

∂uL
∂x

(x, t) = (ik)
∑

j=0,1,...

j
(
d+j e

ijkxe−ijωt − d−j e
−ijkxe−ijωt

)
+ c.c., − α2l < x < 0 (89)

∆u(t) =
∑

j=0,1,...

δje
−ijωt + c.c., (90)

where coefficients δj are known functions of d+j , d
−
j , e

+
j , and e−j . We note that this is an assumed

form of the solution, while Eq. (86) is a derived solution form found asymptotically. Notably, the
asymptotic solution reveals that only odd harmonics participate in the response (due to the cubic
nonlinearity), which is not strictly known a priori for the PWE.

The nonlinear function fnl evaluated with the time-periodic ∆u(t) will result in a time-periodic

restoring force, whose harmonic coefficients we denote as f
(nl)
j . Eq. (87) can now be written as

(ikEyA)
∑

j=0,1,...

j
(
d+j − d−j

)
e−ijωt + c.c. =

∑
j=0,1,...

f
(nl)
j e−ijωt + c.c.. (91)

A Galerkin projection of Eq. (91) onto the Fourier basis leads to nonlinear, coupled algebraic
equations in terms of the wave coefficients,

(ikEyA)j
(
d+j − d−j

)
− f

(nl)
j (δ0, δ1, . . . ) = 0, ∀ j = 0, 1, . . . (92)

The nonlinear force harmonic coefficients {f (nl)
j }j=0,1... can be numerically calculated using the

Alternating Fourier-Time (AFT) approach, schematically represented in Fig. 4. The displacement
harmonics {δj}j=0,1... (derived from the wave components) are first transformed to the time domain
(using an inverse FFT), yielding ∆u(t), since the nonlinearity is usually defined in the time domain
in a more convenient form. Using the definition of the nonlinearity, fnl(∆u, . . . ) is evaluated
(along with its gradients). Following this, the nonlinear force harmonics can be calculated by an
FFT operation, transforming the force (and its gradients) from the time domain to the frequency
domain.

The boundary conditions may be treated in a manner similar to the nonlinear WBVA. For a
clamped end at the left end of the structure in Fig. 3, where the local displacement field is given as

uA(x, t) =
∑

j=0,1,...

a+j e
ijkxe−ijωt + a−j e

−ijkxe−ijωt + c.c. 0 < x < α1ℓ, (93)
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Figure 4: A schematic representation of the evaluation of the joint nonlinearity in the Plane Wave
Expansion (PWE) approach.

the zero displacement condition (at x = 0) simplifies in the following fashion (also see Eq. (76)):

uA

∣∣∣∣
x=0

= 0 =⇒
∑

j=0,1,...

(a+j + a−j )e
−ijωt + c.c. = 0

a+j + a−j = 0, ∀ j = 0, 1, . . . . (94)

In other words, the boundary conditions are written at each harmonic level as algebraic relationships
between the wave-components. Given a vibration problem such as the one in Fig. 3, the wave
component coefficients are related by linear propagation relationships at each harmonic order (j
in the above, see Eqs. (75) to (78)). Appending the above algebraic relationships (force balance
at the joint(s), Eq. (92), and clamped boundary condition(s), Eq. (94)) to the wave propagation
relationships yields a nonlinear algebraic system of the form

r (z;P, ω) = F (z;P, ω)− F. (95)

Supposing the number of wave components in the problem is Nw and the number of harmonic
components is Nh, z ∈ CNwNh is the vector of wave components and their harmonics; F ∈ CNwNh is
the constant vector with the inhomogeneous terms, and F is a vector consisting of the homogeneous
terms in the system (linear propagation and joint nonlinear force balance). Setting the residual
r ∈ CNwNh , using z, to zero provides the PWE solution to the vibration problem. The usual
practice to study steady state response is to set all the elements of F to zero except for the
index corresponding to the first harmonic of the excitation location, which will be set to the
forcing amplitude. This allows us to capture all the super-harmonics that are generated from such
an excitation. If one is interested in the subharmonics, for instance the 1/3rd subharmonic, the
force will be applied at the third harmonic (so the non-zero element of F will be the index of
the third harmonic of the excitation point). Wave components at the first and second harmonic
terms from such an analysis corresponds to the 1/3rd and 2/3rd subharmonics respectively. The
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former approach will be taken for all the numerical studies in Sec. 4 for simplicity, but the validity
of neglecting subharmonic terms for the numerical examples considered is verified through time
integration (see App. C).

The development of the above approach is closely related to the traditional Harmonic Balance
Method (HBM) which, in recent years, has become extremely popular in the nonlinear structural
dynamics community (see [43] for a detailed presentation and review). As a consequence, estimation
of the analytical Jacobian of the residue in the above (Eq. (92)) is a straight-forward exercise,
enabling the use of any gradient-based solver to obtain the PWE solution. It must be noted that
this approach is only suitable for the study of periodic responses. Although extensions are possible
for quasi-periodic cases (see [44], for instance), it is not applicable when the responses are aperiodic
(e.g., chaotic).

4 Periodic Response and Validation

We now apply the two wave-based solution techniques to two examples of one-dimensional bars
connected with nonlinear joints and forced harmonically. The indicated stability is found using the
techniques developed in [41]. Additionally, a discretized Finite Element (FE) model is developed
for the two examples for validation purposes. We use the traditional nonlinear multi-harmonic
balance method [43] to predict the forced response of the FE models, with stability estimated
using the frequency domain Hill’s coefficient estimation approach [45]. Unless otherwise indicated,
we retain the first five harmonics for all the harmonic balance simulations (FE and PWE). The
sufficiency of five harmonics is verified by conducting simulations around each resonance with seven
harmonics and comparing the relative magnitude of the seventh harmonic with respect to the first
and ensuring it is below a threshold (10−3 used here). Time-domain validations are also conducted
around the resonances as a secondary check. Similar steps are undertaken to ensure that the
second-order perturbation is sufficient to capture the response. App. C presents numerical results
and discussions for one particular case from the examples below. No viscous dissipation is assumed
in the linear bars; it is, however, straightforward to include the effects of a linear viscous term in
the wave-based formulation using the developments above with complex dispersion relationships
(see, for instance [46]).

4.1 Bars Connected with a Single Nonlinear Joint

The first example we consider is the single-jointed bar system already used for the development of
the nonlinear WBVA in Sec. 2.3 (see Fig. 3 for a schematic). Table 1 presents the numerical values
of the parameters used for the analysis. A linear finite element model with 90 equal-length C0

elements is used for validation. The nonlinear joint is represented as a nonlinear phenomenological
relationship between appropriate nodal degrees-of-freedom (DoFs).

Before considering the nonlinear forced response, we first determine the eigenmodes of the lin-
earized system (Γ = 0), which aids in identifying near-resonant frequencies in the nonlinear model.
Applying the traditional WBVA to this problem in the absence of forcing yields an eigenvalue
problem similar in form to Eq. (85),

A(ω;P)z = 0. (96)

Since A(ω;P) has nonlinear dependence on ω, this is mathematically a Nonlinear Eigen-Value
Problem (NEP or NEVP). Further, since matrix A is, in general, complex, its fully real counterpart,

Â =

[
ℜ{A} ℜ{iA}
ℑ{A} ℑ{iA}

]
(97)
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Parameter Value

Ey 262 GPa
ρ 1280 kg/m3

K 109 N/m
C 320 N/(ms−1)
Γ 108 N/m3

A 1.7145× 10−3 m2

l 1.0 m
α1 0.28

α1 + α2 1/3
α3 2/3

Table 1: Mechanical and geometric parameters used for the single-jointed bar example (see Fig. 3
for accompanying schematic).

is constructed (see [41] for a derivation) and the determinant of Â is taken as the real-valued
characteristic polynomial that takes on zero when ω equals an eigenvalue. The characteristic
polynomial of this structure is shown in Fig. 5a, which also indicates the natural frequencies using
markers. In addition, Fig. 5b-g show the deflection shapes corresponding to the resonant modes.
Since this problem is linear, the WBVA yields exact eigenvalues and eigenfunctions.

With the eigenmodes identified, we use the developed approaches to calculate the nonlinear
response at frequencies close to the first three natural frequencies. Fig. 6 documents the forced
response results (first, third and fifth harmonic amplitudes and first harmonic phase) corresponding
to forcing the system harmonically with an amplitude of 7.5 MN near the first eigenfrequency. The
response at a point immediately to the right of the joint is used for all frequency response plots.
The unstable regimes of the solutions are plotted using dashed lines. Stability for the finite element
solution is determined using the frequency-domain Hill’s coefficient estimation method [45]. For the
wave-based approaches we determine stability using the approaches developed in [41]. Specifically,
the strained parameter approach is used for the nonlinear WBVA solutions, and the perturbation
eigenproblem residue approach is used for the PWE solutions (although either can be used for both
with no appreciable differences).

At the considered excitation level, the ratio of the peak nonlinear force to linear force at the
joint is approximately 0.032, indicating nonlinear response well within what is often considered
weakly nonlinear (i.e., 0.1). The zeroth-order WBVA solution recovers the linearized response, and
as such, does not contain higher harmonic content or multiple solutions. The first-order WBVA
solution already provides a very good approximation of the response until the third harmonic (recall,
fifth harmonic terms are not generated at the first-order). At this order, the response exhibits
classical frequency response bending and multiple solutions associated with Duffing [47] and other
nonlinear ordinary differential equations. We note that the WBVA captures this behavior using
straight-forward perturbation, without the need for more specialized treatments such as averaging
or multiple scales, since secular terms do not arise in the formulation. The second order WBVA,
PWE, and finite element (FE-HB) results match closely, up to and including the third harmonic,
with small differences around the peak amplitude occurring in the fifth harmonic.

Fig. 7 presents the first harmonic amplitude and phase results of the system for the second and
third nonlinear resonances, where the harmonic excitation amplitude is set to 15 MN. Here, the
peak nonlinear-to-linear force amplitude ratios are approximately 0.061 and 0.0017, respectively.
While the nonlinear response near mode 2 is comparable to that near mode 1 for 7.5 MN excitation,
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there is very little nonlinear response near mode 3 for this excitation level. Consequently, we observe
that unlike the first two modes, the third mode behaves linearly, as evidenced by the fact that the
O(ε0) solution already provides a very good estimate of the converged response. Otherwise, we can
make similar observations as made for mode 1.
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Figure 5: (a) Characteristic polynomial and (b-g) the first six mode shapes of the single-jointed
system. The resonant frequencies are emphasised with markers in (a).
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Figure 6: Nonlinear forced response of the single-jointed system around the first resonance, under-
going a 7.5 MN amplitude periodic excitation: (a) first harmonic amplitude; (b) third harmonic
amplitude; (c) first harmonic phase; and (d) fifth harmonic amplitude.

4.2 Bars Connected with Two Nonlinear Joints

For the second example, we modify the single-jointed system in Fig. 3 to form a three-bar, two-
jointed system - see Fig. 8. We set the length of the third nonlinear bar to (α1 + α2)l, resulting in
a symmetric structure in the absence of loading. A significant portion of the model equations from
Sec. 2.3 can be re-used, which is an advantage of the WBVA. For instance, we replace the second
of the two clamped boundary conditions in Eq. (76) by the reusable joint relationships,

f−
1 = R0f

+
1 + T0g

− + RT(1)
1L (f

+
1 , g−1 ) + RT(1)

2L (f
+
1 , g−1 , f

+
3 , g−3 ), (98)

g+1 = R0g
−
1 + T0f

+
1 + RT(1)

1R(f
+
1 , g−1 ) + RT(1)

2R(f
+
1 , g−1 , f

+
3 , g−3 ), (99)

f−
3 = RT(3)

1L (f
+
1 , g−1 , f

+
3 , g−3 ) + RT(3)

2L (f
+
1 , g−1 , f

+
3 , g−3 ), (100)

g+3 = RT(3)
1R(f

+
1 , g−1 , g

+
3 , g

−
3 ) + RT(3)

2R(f
+
1 , g−1 , f

+
3 , g−3 ), (101)

f−
5 = RT(5)

2L (f
+
1 , g−1 , f

+
3 , g−3 , f

+
5 , g−5 ), (102)

g+5 = RT(5)
2R(f

+
1 , g−1 , f

+
3 , g−3 , f

+
5 , g−5 ). (103)
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Figure 7: Nonlinear forced response of the single-jointed system around the second (a,c) and
third (b,d) resonances, undergoing a 15 MN amplitude periodic excitation: (a,b) first harmonic
amplitude; (c,d) first harmonic phase.

while the new right end adds a clamped boundary condition,

h+j = −h−j , (104)

and a single set of propagation conditions are added,

h+j = g+j e
ijk(α1+α2)l, g−j = h−j e

ijk(α1+α2)l. (105)

All other relationships from Sec. 2.3 can be re-used. The finite element model for this case is con-
structed using 120 equal-length C0 linear elements with the two discrete nonlinear joints connecting
appropriate nodal DOFs as in the previous case.

As before, we start with a linearized analysis to determine the eigenmodes before investigating
the nonlinear forced response. Fig. 9 depicts the characteristic polynomial and the first six resonant
frequencies and mode shapes. The two joints in the system are highlighted with blue and red
respectively. Unlike the single-jointed case, some modes of this structure oscillate in a manner that
contains no exertion (i.e., relative displacement) of the joints. Consequently, the system behaves
fully linearly around the associated resonances. Since the linear bars do not include dissipation,
these same modes are effectively undamped. Thus we can expect unbounded response amplitudes
near their eigenfrequencies. Among the plotted modes, the second and sixth modes behave in this
manner.
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Figure 8: Three linearly elastic bars connected by two damped, nonlinear joints.

For the nonlinear system, Fig. 10 presents the response near the first mode in a format similar
to Fig. 6. The response at a point immediately to the right of the first joint is used for all
frequency response plots. As before, the unstable branches are plotted using dashed lines; however,
for both WBVA and PWE solutions, we use the PER approach to assess their stability due to
its ease of application. We note that it is still possible to use the strained parameter approach,
expanding only one of the two linear stiffnesses, but the implementation complexity increases with
the size of the problem. We again assess stability of the finite element HB results directly in the
frequency-domain [45]. The amplitude of harmonic excitation is set to 15 MN, where the peak
nonlinear-to-linear restoring force ratio is 0.046. For the WBVA solutions, a clear convergence
trend is observed with increasing orders of ε in the first harmonic amplitude plot (Fig. 10a). We
note that the stability predictions for both wave-based approaches are again in very good agreement
with the FE-HB predictions.

Fig. 11 plots the first harmonic responses of the system around the second and third resonances,
forced with harmonic excitation amplitudes of 15 MN and 37.5 MN, respectively. As mentioned
above, the second mode does not exert the joints appreciably. Consequently the nonlinear frequency
responses are nearly unbounded at resonance. However, since a gradient-based implementation of
numerical continuation is used to trace out the solution branches, the solver has a tendency to
“jump” across the resonance when the peak becomes too steep. Since the local Jacobians as well
as basins of attractions of the different approaches differ, in general, the exact point at which this
happens differs, resulting in mismatches between the wave approaches in Fig. 11a. The exact nature
of the resonance is more apparent in the corresponding phase diagram (Fig. 11c), which displays
the discrete jump as a sharp phase change from 0◦ to -180◦. The finite element approach predicts
the peak at a slightly higher frequency (approximately 0.03%) than the wave-based approaches,
similar to the trend in Fig. 7d. This mismatch is likely due to discretization error in which the
finite element method is known to converge on frequency from above. Lastly, we note that the peak
nonlinear-to-linear force amplitude ratios for the second mode are on the order of 1× 10−5 at both
joints due to the absence of appreciable joint exertion.

Figs. 11b and 11d plot the third resonance peak where the peak nonlinear-to-linear restoring
force ratios at both joints is approximately 0.075, comparable to that observed near the first mode.
We also note similar trends to the first mode for convergence and stability.
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Figure 9: (a) Characteristic polynomial and (b-g) the first six mode shapes of the two-jointed
system. The resonant frequencies are emphasised with markers in (a).

4.3 Computational Performance

Apart from the theoretical interest in wave-based modeling for nonlinear structures, the reduction
in computation cost is a remarkable feature of the wave-based techniques. In order to quantify
this, we measure the total time taken to calculate forced responses at all the frequency ranges of
interest, at multiple forcing amplitudes, using the wave-based approaches (WBVA and PWE) and
the Finite Element Harmonic Balance (FE-HB) approach that we have employed for validation.
In order to avoid biasing the results due to poor performance of the specific implementation of
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Figure 10: Nonlinear forced response of the two-jointed system around the first resonance, under-
going a 15 MN amplitude periodic excitation: (a) first harmonic amplitude; (b) third harmonic
amplitude; (c) first harmonic phase; and (d) fifth harmonic amplitude.

FE-HB O(ε0) WBVA O(ε1) WBVA O(ε2) WBVA PWE

Avg. Comput. Time 1 0.0315 0.0310 0.0327 0.0416

(a)

FE-HB O(ε0) WBVA O(ε1) WBVA O(ε2) WBVA PWE

Avg. Comput. Time 1 0.0225 0.0232 0.0233 0.0277

(b)

Table 2: Average computation times per point on the frequency response curve for (a) the single-
jointed model and (b) the two-jointed model. Values scaled by the average response computation
time for the FE-HB model in each case.

numerical continuation employed, we divide the total time taken by the total number of steps in
the frequency response curve. This provides an estimate of the average time taken to obtain the
solution for a single point on the frequency response curve.

In Table 2 we present the average computation times for the presented wave-based approaches
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Figure 11: Nonlinear forced response of the two-jointed system around the second (a,c) and third
(b,d) resonances: (a,b) first harmonic amplitude; (c,d) first harmonic phase. The harmonic excita-
tion for the second and third mode regimes are 15 MN and 37.5 MN, respectively.

together with the same for the FE-HB approach, for both the single- and two-jointed examples
studied in Sec. 4. All computations are conducted on an Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz (16GB RAM), with all computation run on a single core. For both examples, results
in Table 2 document that the wave-based approaches provide an approximately 30× speedup in
comparison to the FE-HB reference. Comparing WBVA to PWE, PWE can be seen to have
marginally longer computation times. This is due to the fact that the WBVA uses efficient analytical
expressions for scattering, leading to a minimal set of nonlinear algebraic equations, while the PWE
must solve a full set of algebraic expressions.

5 Concluding Remarks

The paper develops multiple wave-based approaches for efficiently predicting periodic response in
nonlinear, jointed structures. In doing so, we develop a new wave-based vibration approach for
studying nonlinear systems informed by re-usable, perturbation-derived scattering functions. We
also present a numerical formulation referred to herein as the plane wave expansion approach.
We demonstrate that both wave-based approaches are highly-accurate and highly-efficient through
comparisons with a more traditional approach (finite element harmonic balance). The WBVA has
the most compact formulation and highest efficiency, but requires considerable up-front effort to
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derive the requisite scattering functions, while the PWE can be easily applied as new joint models
are encountered and maintains solution accuracy to higher levels of nonlinearity than the WBVA.
We remark that wave-based analysis of periodic and multi-physics vibration problems has received
scant attention in the structural dynamics community, presenting further opportunities for follow-on
research. One motivating example is that of a periodic bar or beam incorporating shunted piezo-
electric elements, which can be configured to exhibit bandgaps, non-reciprocity, and/or topological
states.
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Appendix A

In this appendix we provide the components of z in terms of the reduced coefficient vector compo-
nents, d−j and e+j , j = 1, 3, 5:

a+1 = − eikα1l

4EyAk

(
4EyAkeikα2ld−1 + iF0

)
,

a−1 =
eikα1l

4EyAk

(
4EyAkeikα2ld−1 + iF0

)
,

a+j = − eijk(α1+α2)ld−j , j = 3, 5 ,

a−j = eijk(α1+α2)ld−j , j = 3, 5 ,

b+1 = − ei2kα1l

4EyAk

(
4EyAkeikα2ld−1 + iF0

)
,

b−1 =
1

4EyAk

(
4EyAkeikα2ld−1 + iF0

)
,

b+j = − ei2jkα1leijkα2ld−j , j = 3, 5 ,

b−j = ei2jkα1leijkα2ld−j , j = 3, 5 ,

c+1 = − 1

4EyAk
(4EyAkei2kα1leikα2ld−1 + iF0e

i2kα1l − iF0),

c−1 = eikα2ld−1 ,

c+j = − ei2jkα1leijkα2ld−j , j = 3, 5 ,

c−j = eijkα2ld−j , j = 3, 5 ,

d+1 = − eijkα2l

4EyAk
(4EyAkei2kα1leikα2ld−1 + iF0e

i2kα1l − iF0),

d+j = − ei2jkα1lei2jkα2ld−j , j = 3, 5 ,

e−j = − ei2jkα3le+j , j = 1, 3, 5 ,

f+
j = eijkα3le+j , j = 1, 3, 5 ,

f−
j = − eijkα3le+j , j = 1, 3, 5 .

Appendix B

In this appendix we show that pursuing development of a nonlinear WBVA in which the nonlinear
forced vibration problem is treated from the outset using straight-forward perturbation, without
first formulating the scattering problem and reconstituting scattering relationships, leads to inac-
curate results not capturing multiple solutions and Duffing-like frequency response characteristics.
This näıve approach was the first one attempted by the authors and illustrates an issue requiring
careful attention when developing nonlinear wave-based vibration approaches.

By way of example, we consider the forced vibration problem illustrated in Fig. 3. Applying
straight-forward perturbation to the governing equations (Eqs. (1)-(2), (4)-(5)) using the expansions
defined in Eqs. (6)-(7), and retaining terms up to and including O

(
ε1
)
, yields two linear vibration

sub-problems at O
(
ε0
)
and O

(
ε1
)
, as illustrated in Fig. 12. The accompanying equations governing

the sub-problems are provided by Eqs. (8)-(15) with the exception of (i) harmonic forcing F 0(ω)
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Figure 12: Ordered vibration sub-problems appearing following straight-forward perturbation ap-
plied to the forced vibration problem in Fig. 3.

missing on the right-hand side of Eq. (8) and (ii) inclusion of fixed boundary conditions; however,
for the argument made herein, these equations are not strictly necessary and instead we only
require inspection of Fig. 12. At O

(
ε0
)
appears a linear sub-problem amenable to the linear

wave-based vibration approach. It is clear that the steady-state solution of such a problem yields
unique displacement fields u0L(x, t) and u0R(x, t) responding at the excitation frequency ω. Following
solution of the zeroth-order problem, substitution of u0L(x, t) and u0R(x, t) into Eqs. (14)-(15) yields
the O

(
ε1
)
sub-problem appearing in Fig. 12. The boundary conditions at the joint for u1L(x, t) and

u1R(x, t) now appear forced by terms with frequency content ω and 3ω resulting from the boundary
term Γ (uR0−uL0)

3, which we indicate by F 1(ω, 3ω). Once again it is clear that this linear sub-
problem yields unique displacement fields u1L(x, t) and u1R(x, t), now responding at the excitation
frequency ω and its third harmonic.

This procedure can be carried-out to higher orders, but stopping at O
(
ε1
)
is sufficient to

observe that, following solution reconstitution, the procedure yields a unique problem solution
for each frequency ω, without the possibility of recovering Duffing-like frequency response curves
and multiple solutions. We note that such a solution approach isn’t without utility, particularly
away from resonance, as it provides higher-order corrections to the fundamental frequency response
and estimates of the higher harmonics otherwise missing from a linear analysis, but it is clearly
inaccurate near resonance. We note further that this inaccuracy would not be encountered in a
linear problem where solution uniqueness is guaranteed, and in fact, a similar approach is carried-out
in the companion paper [41] where we consider stability of linear, parametrically-forced vibration
problems.
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Appendix C

Fig. 13 compares the harmonic balance (HB) results with time-transient simulations conducted on
the Finite Element (FE) model of the single-jointed structure (see Sec. 4.1). An implicit Newmark
scheme is used for the transient analysis. We chose the excitation frequency for the simulation
as the frequency closest to the peak of the forced response in Fig. 7 ( 80.7079 krad/s), and the
excitation amplitude is fixed at 15MN , as before. We conduct the simulation for forty cycles of
the fundamental period (40× 2π/80.7079× 10−3s) in order to bring out any sub-harmonic features
(which are expected at 1/3, 1/5, . . . of the excitation frequency) up to the 1/40th sub-harmonic.
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Figure 13: Comparison between time-transient and frequency-domain simulations for the single-
jointed structure (Sec. 4.1) undergoing a harmonic excitation of amplitude 15MN and frequency
80.7089 krad/s. Depicted clockwise are the time-domain acceleration response, the displacement-
velocity state-space response, and the acceleration frequency-domain response. Extra labels are
inserted in the x axis of the frequency domain showing relevant harmonics of the forcing frequency.

The acceleration of the output node (directly after the joint, as before) is plotted since the
higher harmonic effects are more pronounced in the acceleration than in the displacement (i.e., each
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frequency component gets scaled by the square of the frequency). It is readily observed that in
the time- and state-space domains, the harmonic balance scheme that was employed (truncating to
five harmonics) provides a reasonably accurate representation of the transient results, as expected.
Another major aspect that is confirmed from this plot is that the true response is also periodic,
thereby validating the choice of frequency-domain simulation techniques.

In the frequency-domain, the match is reasonable up to the fifth harmonic. The transient results
show exhibit no prominent sub-harmonic behavior for this case (the 1/3rd line is highlighted above).
Further, intermediate (between H3 and H4, for instance) as well as higher harmonic components
(H7 in the figure, for example) can be seen to exist, although these are not explicitly present in
the HB formalism. The accuracy of the HB solution in spite of these components is due to the fact
that their presence is very small in comparison to the other components. One way of quantifying
this is through the ratio of the harmonic component with the first harmonic component. This turns
out to be 3.89× 10−4 for the acceleration from the simulation above (2.51× 10−5 and 5.66× 10−5,
respectively, for displacement and velocity). It may also be observed that even harmonics do not
appear on the plot since their magnitudes are near machine-precision.

The same argument is extended to justify the sufficiency of considering perturbation solutions
only up to second order for the examples in Sec. 4. It can be seen from the wave-based scattering
relationships developed in Sec. 2.3 that the zeroth-order expansions are fully expressed in terms
of a single harmonic alone, first order expansions include the third harmonic, and second-order
expansions include the fifth harmonic. Since the above justifies the truncation of the solution up
to five harmonics, it implies that comparable accuracy can be achieved through a second-order
perturbation approach. In general, a convergence analysis has to be conducted to ascertain the
appropriate order of perturbation by comparing the difference of the responses between predictions
from the chosen order and one higher.
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