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Abstract

In this paper we develop two new approaches for directly assessing stability of nonlinear
wave-based solutions, with application to jointed elastic bars. In the first stability approach,
we strain a stiffness parameter and construct analytical stability boundaries using a wave-based
method. Not only does this accurately determine stability of the periodic solutions found in the
example case of two bars connected by a nonlinear joint, but it directly governs the response and
stability of parametrically-forced continuous systems without resorting to discretization, a new
development in of itself. In the second stability approach, we pose a perturbation eigenproblem
residue (PER) and show that changes in the sign of the PER locate critical points where stability
changes from stable to unstable, and vice-versa. Lastly, we discuss follow-on research using the
developed stability approaches. In particular, we identify an opportunity to study stability
around internal resonance, and then identify a need to further develop and interpret the PER
approach to directly predict stability.

Keywords: Wave-based Vibration Approach; Nonlinear Wave Propagation; Perturbation
Methods; Floquet Theory

1 Introduction

In a companion paper [1], we developed two wave-based methods for predicting the nonlinear vibra-
tion response of jointed, continuous elastic bars. These methods consist of a nonlinear wave-based
vibration approach (WBVA) informed by re-usable, perturbation-derived scattering functions, and
a numerical plane wave expansion (PWE) approach exploiting wave solutions as expansion quan-
tities. Both approaches were applied to finding periodic solutions in example systems in which
continuous bars, connected by nonlinear joints, are constrained at their ends and harmonically
excited. As documented in [1], the two approaches exhibit very good accuracy while significantly
reducing the computation time required to obtain periodic solutions. They are also notable for
having fixed problem size, independent of frequency. Arguably, stability of the periodic solutions
predicted is as important as the solutions themselves. In [1] we report stability results for the ex-
amples studied using two new stability methods, which we deferred discussion of until the present
paper.

∗Corresponding author: michael.leamy@me.gatech.edu
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Direct methods for assessing stability of wave-based solutions have not been presented in the
literature, the necessity of which has been stated in recent studies (see, for instance [2, 3]). When
stability has been treated, previous studies, owing to a lack of alternatives, have chosen to project
the wave-based solution onto a finite element mesh and then use time-domain Monodromy matrix
calculations to estimate stability. Although this approach is very attractive owing to its simplicity,
it leads to inaccuracies at larger amplitudes, which we document in Appendix A. In this paper, we
assess stability of the multi-harmonic periodic solutions found in [1] using two new approaches: a
strained parameter, analytical method applied to the governing partial differential equations based
loosely on the technique as applied to parametrically-excited ordinary differential equations [4],
and a computational method employing the residue of the perturbed system’s eigenvalue problem.
Both are informed by Floquet theory. Floquet theory (see [4]) provides the theoretical basis for
the fact that stability transitions of a system perturbed around a periodic solution occur when the
perturbed system has a purely imaginary eigenvalue with magnitude equaling an integer multiple
of the frequency of the response (among other cases, see Sec. 3 below). Detection of such points
along a forced response curve, as opposed to a complete spectral decomposition of the perturbed
system for each response on the curve (such as the HBM perturbation approach in [5]), underpins
both proposed approaches. In the strained parameter approach we find stability tongues in the
parameter space distinguishing stable and unstable solutions, while in the perturbed eigenproblem
residue approach we employ Floquet theory to find changes in the computed residues which indicate
a stability transition.

The paper is organized as follows: we first develop an analytical, wave-based stability approach
based on straining a single stiffness parameter in Sec. 2. This strained parameter approach yields
stability curves (i.e., Arnold tongues) and surfaces associated with a parametrically excited con-
tinuous system. Next, in Sec. 3 we develop a computational approach termed the perturbation
eigenproblem residue (PER) for predicting stability changes in the forced problem. In Sec. 4 we
apply both methods to determine the stability of the two example systems studied in [1]. The
paper concludes with discussions of the results and avenues for future work.

2 Stability via the Strained Parameter Approach

We now formulate an analytical approach to determine stability of the multiple periodic solutions
found in [1] for the single-jointed system shown in Fig. 1. The approach shares many similarities
with the “strained parameter”, or Lindstedt-Poincaré, approach employed in the study of the
damped Mathieu equation [4]. While the Mathieu equation is a single ordinary differential equation,
the strained parameter approach developed herein assesses stability of continuous systems governed
by partial differential equations. In addition, the motivating example studied consists of multiple
continuous domains connected by a nonlinear joint.

The equations governing vibration response in the linearly-elastic bars are given by,

ρA
∂2uL
∂t2

− EyA
∂2uL
∂X2

= fL(X, t), 0 < X < (α1 + α2)l (1)

ρA
∂2uR
∂t2

− EyA
∂2uR
∂X2

= fR(X, t), (α1 + α2) < X < l (2)

where the left and right bars have displacement fields denoted by uL (x, t) and uR (x, t), while
fL (X, t) and fR (X, t) denote forcing per unit length in the left and right subdomains, respectively.
For simplicity of resulting expressions, the two bars considered share the same Young’s modulus
Ey, density per unit volume ρ, and cross-sectional area A. The three values for αi, i = 1, 2, 3, form
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Figure 1: Two linearly elastic bars joined by a nonlinear spring and a linear dashpot. Each bar
has one fixed end. Single-frequency plane waves are injected at the location of the forcing. Note
that each wave coefficient includes itself plus its complex conjugate — this is only shown for a+,
but assumed for all other coefficients. The global coordinate X denotes position starting from the
left end. Periodic solutions to this problem have been found in [1]

a partition of unity. Four boundary conditions are required to completely specify the vibration
response of two jointed bars. The two clamped ends provide two boundary conditions, uL(0, t) = 0
and uR(l, t) = 0, while two others arise at the joint,

EyA
∂uL
∂X

]
X=XJ

= K (uR−uL) + εΓ (uR−uL)3 + C

(
∂uR
∂t
− ∂uL

∂t

)]
X=XJ

, (3)

EyA
∂uR
∂X

]
X=XJ

= K (uR−uL) + εΓ (uR−uL)3 + C

(
∂uR
∂t
− ∂uL

∂t

)]
X=XJ

, (4)

where XJ = (α1 + α2)l. The joint considered has linear and cubic restoring stiffness characterized
by coefficients K and εΓ, respectively, and linear damping characterized by C. Note that ε denotes
a small book-keeping parameter later set to one [4].

We identify any periodic solution [1] with left and right displacement fields denoted by u∗L(X, t)
and u∗R(X, t), respectively. Next, we assess the local stability of these solutions by introducing
small perturbations δuL(X, t) and δuR(X, t) such that the total displacement fields are now given
by,

uL(X, t) =u∗L(X, t) + δuL(X, t), 0 < X < XJ , (5)

uR(X, t) =u∗R(X, t) + δuR(X, t), XJ < X < l. (6)

Substituting the above into the governing field equations, Eqs. (1) and (2), the joint conditions,
Eqs. (3) and (4), and the zero displacement boundary conditions, we retain only linear terms in
δuL(X, t) and δuR(X, t), yielding

ρA
∂2δuL
∂t2

− EyA
∂2δuL
∂X2

= 0, 0 < X < XJ , (7)

ρA
∂2uR
∂t2

− EyA
∂2uR
∂X2

= 0, XJ < X < l, (8)
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EyA
∂δuL
∂X

∣∣∣∣
X=XJ

=
[
K + 3εΓu∗2J (t)

]
(δuR(XJ , t)− δuL(XJ , t))

+C (δu̇R(XJ , t)− δu̇L(XJ , t)) , (9)

EyA
∂δuR
∂X

∣∣∣∣
X=XJ

=
[
K + 3εΓu∗2J (t)

]
(δuR(XJ , t)− δuL(XJ , t))

+C (δu̇R(XJ , t)− δu̇L(XJ , t)) , (10)

δuL(0, t) = 0, (11)

δuR(0, t) = 0, (12)

where u∗J(t) ≡ u∗R(XJ , t) − u∗L(XJ , t) denotes the joint displacement. Retaining only terms up to
and including O(ε) in the stability analysis (i.e., only retaining the fundamental harmonic in u∗J(t)),
we rewrite the bracketed term on the right-hand side of Eqs. (9) and (10) as,[

K + 3εΓu∗2J (t)
]
= K

′
+ εP cos(2ωt), (13)

where we have used u∗J(t) ≡ a∗ cos (ωt+ ϕ∗), ϕ∗ denotes the joint displacement phase relative to

the forcing, K
′ ≡ K + 3εΓa∗2

2 , and P ≡ 3Γa∗2

2 . We note that both the amplitude, a∗, and phase,
ϕ∗, are known from the solutions obtained in [1], and these fully discriminate one solution from
another.

Using Eq. (13) in Eqs. (7) to (12), we recover a parametrically-excited problem as illustrated
in Fig. 2(a). While this problem arises from studying the stability of a directly-excited system, it
may be of general interest. For example, similar problems will arise when when two domains are
connected by time-varying stiffness, such as in parametrically-driven micromechanical oscillators
[6]. For the forced problem, of interest herein, stability of the solution is guaranteed when the
parametrically-excited problem is stable.

We next proceed to find wave-based solutions to the linear problem illustrated in Fig. 2(a). To
do so, we employ a strained parameter approach. We first expand δuL and δuR,

δuL (X, t) = u
(0)
L (X, t) + εu

(1)
L (X, t) + ε2u

(2)
L (X, t) +O

(
ε3
)
, (14)

δuR (X, t) = u
(0)
R (X, t) + εu

(1)
R (X, t) + ε2u

(2)
R (X, t) +O

(
ε3
)
, (15)

and subsequently expand the static component of the spring stiffness,

K
′
= K0 + εK1 + ε2K2 +O

(
ε3
)
, (16)

which amounts to “straining” the stiffness in the problem. We also place the damping at first
order to avoid decay in the ensuing zeroth-order problem: C → ϵĈ. Substitution of the expanded
and ordered quantities into Eqs. (7) to (13), results in three subsequently ordered problems, as
illustrated in Figs. 2(b)-(d). The governing equations for each ordered problem are straight-forward
to produce, but are suppressed due to their lengthy nature. Instead, we provide only the forcing
arising at the joints at O(ε) and O(ε2), respectively:

F (1)(t) = (K1 + P cos(2ωt))
(
u
(0)
R (XJ , t)− u

(0)
L (XJ , t)

)
+

Ĉ
(
u̇
(0)
R (XJ , t)− u̇

(0)
L (XJ , t)

)
, (17)

F (2)(t) = (K1 + P cos(2ωt))
(
u
(1)
R (XJ , t)− u

(1)
L (XJ , t)

)
+

K2

(
u
(0)
R (XJ , t)− u

(0)
L (XJ , t)

)
+ Ĉ

(
u̇
(1)
R (XJ , t)− u̇

(1)
L (XJ , t)

)
. (18)
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Figure 2: (a) Damped, parametrically excited system arising from the local stability analysis of
the corresponding forced system; solution approach at (b) zeroth-order, (c) first-order, and (d)
second-order.

Similar to the wave-based solution procedure for the nonlinear forced problem [1], we seek wave
solutions for the three linear problems shown in Figs. 2(b)-(d). Starting with the zeroth-order
problem in Fig. 2(b), we assign wave coefficients a+0 , a

−
0 , ..., d

−
0 and their complex conjugates. Note

that the subscript notation here is different from that used in [1] where subscripts were used to
denote the harmonic index while they are used here to denote the ordered wave components of the
perturbation analysis. These coefficients are related by propagation relationships,

b+0 = a+0 e
ikβ1l, a−0 = b−0 e

ikβ1l, d+0 = c+0 e
ikβ2l, c−0 = d−0 e

ikβ2l, (19)

joint conditions,

c+0 =
iEyAk

−2K0 + iEyAk
c−0 +

−2K0

−2K0 + iEyAk
b+0 , b−0 =

iEyAk

−2K0 + iEyAk
b+0 +

−2K0

−2K0 + iEyAk
c−0 ,

(20)

and clamped boundary conditions,

a+0 =− a−0 , d+0 = −d−0 , (21)
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where k denotes the wavenumber associated with the system’s jth natural frequency, ωj . We point
the reader to more details on wave-based approaches in [1], particularly as concerns joint conditions
for the wave coefficients. Note that the zeroth-order stability problem is an eigenvalue problem.
Next, we assemble the coefficient relationships into the form,

A
(0)
s (ωj ;K0) z

(0)
s = 0, (22)

where z
(0)
s denotes an eigenvector holding the eight zeroth-order wave coefficients and A

(0)
s (ωj ;K0)

denotes the zeroth-order stability coefficient matrix as a function of natural frequency ωj and

parameterized by stiffness K0. Note that the dependence of A
(0)
s (ωj ;K0) on ωj is nonlinear, and

as a result, there are an infinite number of natural frequencies satisfying Eq. (22) consistent with the
fact that the jointed system is continuous. While it is not apparent until the next order analysis, we
also note that K0 will be chosen based on requiring the eigenfrequency ωj to be equal to the forcing
frequency ω. The zeroth-order problem is completed by finding the eigenvalues and eigenvectors
associated with Eq. (22) [7].

Following completion of the zeroth-order problem, we turn our attention to the first-order
problem. We note that the zeroth-order spring stretch required to evaluate Eq. (17) is now known
and given by,

u
(0)
R (XJ , t)− u

(0)
L (XJ , t) = a(0) cos (ωj(K0)t) + b(0) sin (ωj(K0)t) , (23)

where explicit dependence of ωj on K0 is noted. Since the zeroth-order solution is an eigenfunction,
we can freely choose the harmonic amplitudes a(0) and b(0). Substitution of Eq. (23) into Eq. (17)
yields an updated first-order forcing,

F (1)(t) =
Pa(0)

2
cos ((2ω − ωj(K0))t)−

Pb(0)

2
sin ((2ω − ωj(K0))t) +

Pa(0)

2
cos ((2ω + ωj(K0))t)

+
Pb(0)

2
sin ((2ω + ωj(K0))t) +

(
K1a

(0) + Ĉωj(K0)b
(0)
)
cos(ωj(K0)t)

+
(
K1b

(0) − Ĉωj(K0)a
(0)
)
sin(ωj(K0)t). (24)

We note secular, or resonant, terms on the right-hand side of Eq. (24) having frequency dependence
equal to one of the zeroth-order system’s eigenfrequencies; namely the underlined terms. These must
be eliminated in order to bound the response and satisfy the assumed ordering of the asymptotic
expansions. In addition, for particular choices of K0 such that 2ω − ωj(K0) = ωj(K0), additional
secular terms appear as indicated by the doubly underlined terms. In particular, the latter condition
holds for a certain value of K0 close, but not equal, to K from the forced problem. When this
occurs, the excitation frequency ω equals the jth eigenfrequency ωj(K0), as remarked during the
zeroth-order problem.

Proceeding with the choice of K0 such that ω = ωj(K0), we remove secular terms by requiring,[
K1 +

P
2 Ĉω

−Ĉω K1 − P
2

]{
a(0)

b(0)

}
=

{
0
0

}
. (25)

Zeroing the determinant of the coefficient matrix in Eq. (25) yields K1,

K1 = ±
1

2

√
P 2 − 4Ĉ2ω2. (26)
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We note that the two values of K1 in Eq. (26) begin to form two sides of a stability tongue in
the P versus K

′
plane, as seen later. With known values for K1, it is also possible to find the

eigenvectors, but these are not needed from this point forward.
With secular terms removed, we must still find the forced response associated with the non-

secular terms in Eq. (24). As is the usual practice in perturbation approaches [4], we neglect the
homogeneous (or unforced) solution in all orders above the zeroth-order without loss of generality.
With the choice of K0 established, the non-secular forcing occurs at frequency 3ωj(K0). We find
the forced response of the O(ε1) problem using another wave approach, as depicted by the wave
coefficients in Fig. 2(c) and their complex conjugates. These first-order wave coefficients are related
by propagation relationships,

b+1 =a+1 e
i3kβ1l, a−1 = b−1 e

i3kβ1l, d+1 = c+1 e
i3kβ2l, c−1 = d−1 e

i3kβ2l, (27)

joint conditions,

c+1 =
i3EyAk

−2K0 + i3EyAk
c−1 +

−2K0

−2K0 + i3EyAk
b+3 +

P
4 a

(0)

−2K0 + i3EyAk
+

iP
4 b(0)

−2K0 + i3EyAk
,

b−1 =
i3EyAk

−2K0 + i3EyAk
b+1 +

−2K0

−2K0 + i3EyAk
c−1 −

P
4 a

(0)

−2K0 + i3EyAk
−

iP
4 b(0)

−2K0 + i3EyAk
, (28)

and clamped boundary conditions,

a+1 =−a−1 , d+1 = −d−1 , (29)

where the joint conditions have been developed similar to the discussion in [1] with the exclusion

of damping and the inclusion of imposed forces Pa(0)

4 e−3ωj(K0)t + iP b(0)

4 e−3ωj(K0)t + c.c.. Similar to
the zeroth-order problem, we assemble the coefficient relationships into matrix form,

A
(1)
s (3ωj(K0)) z

(1)
s = f

(1)
s , (30)

where z
(1)
s holds the eight first-order wave coefficients, A

(1)
s (3ωj(K0)) denotes the first-order sta-

bility coefficient matrix, and f
(1)
s holds forcing terms proportional to P

4 a
(0) and iP

4 b(0). Unlike the
eigenvalue problem at zeroth-order, Eq. (30) admits a single solution for the coefficients via inver-

sion of A
(1)
s (3ωj(K0)), when this inverse exits. For cases where this is not possible (see discussions

of one such case in Sec. 4), it is implied that the strained system is resonant at 3ωj(K0) in addition
to having ωj(K0) as a resonance. We will, however, not dwell on this aspect presently and proceed

with the general formulation of the method assuming that A
(1)
s (3ωj(K0)) is non-singular.

Following the solution of Eq. (30), the spring displacement required in the second-order problem
can be written as,

u
(1)
R (XJ , t)− u

(1)
L (XJ , t) = a(1) cos (3ωj(K0)t) + b(1) sin (3ωj(K0)t) , (31)

where we note that a(1) depends only on a(0) (and not b(0)), and b(1) depends only on b(0) (and

not a(0)). In fact, a(1)

a(0)
= b(1)

b(0)
. This results from the similarity in how a(0) and b(0) appear in the

first-order joint relationships.
With the first-order problem complete, we turn final attention to the second-order problem.

Substitution of ω = ωj(K0) and Eqs. (23) and (31) into Eq. (18) yields an updated second-order
forcing, of which only the secular portion is of interest,

F (2)
sec (t) =

(
Pa(1)

2
+K2a

(0)

)
cos(ωj(K0)t) +

(
Pb(1)

2
+K2b

(0)

)
sin(ωj(K0)t). (32)
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Elimination of the two secular terms yields,

K2 = −
P

2

a(1)

a(0)
= −P

2

b(1)

b(0)
= −P

2
r(1)/(0), (33)

where we introduce r(1)/(0) to represent the ratio of first- to zeroth-order spring displacement
components.

Lastly, we reconstitute the strained stiffness,

K
′
= K0 ± ε

1

2

√
P 2 − 4Ĉ2ω2 − ε2

P

2
r(1)/(0) +O

(
ε3
)
, (34)

recalling that K0 is found by enforcing that the excitation frequency ω equals the jth natural
frequency of the zeroth-order stability problem, ω = ωj(K0). It is apparent from Eq. (34) that non-
zero damping lifts the stability curves off of the K ′ axis, and thus has a stabilizing effect. To return
fully to assessing stability of the forced problem, we recall that K

′ ≡ K + 3εΓa∗2

2 and P ≡ 3Γa∗2

2 ,
where a∗ and ϕ∗ denote the the joint displacement’s amplitude and phase for the periodic solution
under consideration. We also note that Ĉ and Γ always appear with ε, and thus no generality is lost
in setting ε to one. Inverting Eq. (34) yields two curves defining the stability tongue [8] separating
stable and unstable solutions in the P versus K

′
plane (depicted in Fig. 7 for the single-jointed

case).
We note that the strained parameter approach may also be developed for the two-jointed system

studied in [1], where it is only necessary to strain one of the two joint stiffnesses, regardless of the fact
that these two joints have the same stiffness – i.e., if they differed, it would still be only necessary
to strain one or the other, and not both. This is due to the fact that the stability problem has
codimension-1. I.e., only one resonant condition must be met, and thus only one parameter must
be strained [9].

3 Stability via the Perturbed Eigenproblem Residue Approach

The second stability approach is based on a PWE formulation of the perturbed system of the
original problem. We consider a generic single jointed-bar vibration problem of the form

ρA
∂2uL
∂t2

− EyA
∂2uL
∂X2

= fL(X, t), 0 < X < XJ (35)

ρA
∂2uR
∂t2

− EyA
∂2uR
∂X2

= fR(X, t), XJ < X < l (36)

EyA
∂uL
∂X

]
X=XJ

= fnl(∆u,∆u̇, . . . ) (37)

EyA
∂uR
∂X

]
X=XJ

= fnl(∆u,∆u̇, . . . ), (38)

uL(0, t) = 0, (39)

uR(l, t) = 0, (40)

and formulate the approach using this case as an example. Application to cases with multiple
joints is straight-forward since the method does not make assumptions on the number or types
of nonlinearities present. In the above, fL(X, t) and fR(X, t) denote general forcing functions
(independent of the solution uL,R). We note that this approach does not demand the presence
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of a small parameter. Following the notation in Sec. 2, we use starred superscripts to denote the
periodic solutions u∗L,R of the original forced vibration problem and δuL,R to denote infinitesimal
perturbations of the form,

left solution← u∗L(X, t) + δuL(X, t), 0 < X < XJ , (41)

right solution← u∗R(X, t) + δuR(X, t), XJ < X < l. (42)

Substituting these expressions into Eqs. (35) to (40) and dropping the higher-order terms yields a
homogeneous set of governing equations for δuL,R. These can be expressed as

ρA
∂2δuL
∂t2

− EyA
∂2δuL
∂X2

= 0, 0 < X < XJ (43)

ρA
∂2δuR
∂t2

− EyA
∂2δuR
∂X2

= 0, XJ < X < l (44)

EyA
∂δuL
∂X

]
X=XJ

=
∂fnl
∂u

]
∆u∗,...

∆δu+
∂fnl
∂u̇

]
∆u∗,...

∆ ˙δu (45)

EyA
∂δuR
∂X

]
X=XJ

=
∂fnl
∂u

]
∆u∗,...

∆δu+
∂fnl
∂u̇

]
∆u∗,...

∆ ˙δu. (46)

δuL(0, t) = 0, (47)

δuR(l, t) = 0. (48)

Since u∗L,R(X, t) (and therefore ∆u∗,∆u̇∗, . . . ) is fixed from the solution of Eqs. (35) to (40), the
above is a linear homogeneous PDE with time-varying linear stiffness and damping acting at the
joint, and the solution can be obtained using a wave-based approach. An important aspect in the
homogeneous case, however, is that the frequency of the response is complex and unknown, unlike
the inhomogeneous case where the frequency is real and fixed by the excitation. Resorting to a
multi-harmonic wave-based representation of the solution, the solution δuL can be represented, for
instance, around the joint as

δuL(X, t) =
∑
j

(
d+j e

jkXe−jλt + d−j e
−jkXe−jλt

)
+ c.c. α1l < X < (α1 + α2)l, (49)

where k in the above comes from the dispersion relationship λ =
√
E/ρk. Here, λ denotes the

unknown complex frequency that the perturbed system responds at. Assembling this system and
using the FFT to obtain the wave-component stiffness coefficient contributions for the periodic
stiffness terms in Eqs. (45) and (46) above (which are 2π/ω-periodic), we obtain a linear set of
equations of the form

A(λ;P, u∗, ω)z = 0 (50)

where z ∈ CNwNh is a complex vector consisting of the Nh complex harmonics of the Nw wave
components; A ∈ CNrNh×NrNh is a complex matrix that is a function of λ alone (but parameterized
by the periodic solution u∗, ω). Note that no AFT (Alternating Frequency -Time) procedure needs
to be carried out in terms of the complex frequency λ here; we use the appropriate entries of
the frequency-domain Jacobian of the PWE residue function (see [1]) to get the periodic stiffness
components once. As expected from Floquet theory, this is a Nonlinear EigenProblem (NEP)
in λ. However, since A contains exponentials of λ, it is not, in general, possible to spectrally
decompose this problem quite easily and, furthermore, there exist an infinite set of eigenpairs. We
unsuccessfully attempted the use of the Padé approximant and interpolatory Krylov techniques 1

1As implemented in http://guettel.com/rktoolbox/examples/html/example_nlep.html

9

http://guettel.com/rktoolbox/examples/html/example_nlep.html


for partial spectral decomposition of this NEP, but still feel that such approaches must be explored
in detail in the future to enable quantitative stability analysis.

Qualitative analysis of stability can, however, be carried out merely by seeking out the points
along a given forced response curve where transitions of stability occur in a manner that completely
avoids the challenges associated with spectral decomposition. Floquet theory asserts [4] that stabil-
ity transitions occur when the perturbed system has as eigenvalue imξ, a purely imaginary quantity
with integer m > 0, with three possibilities for ξ:

ξ = 0; Perturbation remains unchanging in time;

ξ = ω; Perturbation varies periodically with the same fundamental period as the solution; and

ξ = ω/2; Perturbation varies periodically with twice the fundamental period as the solution.

Choosing ξ = 0 gives rise to the trivial solution and need not be considered in the context of con-
tinuum dynamics with homogeneous essential boundary conditions. In a multi-harmonic approach
such as the wave-based strategies considered presently, m can be set to 1 without loss of generality
since the higher harmonics will be intrinsically included for each ξ. In our context, therefore, the
cases corresponding to ξ = ω and ξ = ω/2 will have to be considered.

If ξ is an eigenvalue of the system in Eq. (50), the determinant of A
]
λ=iξ

will be exactly zero.
Checking for points along any given forced response curve where this happens allows one to obtain
the stability transition or critical points directly. Since A is complex, the determinant is, in general
(for the cases when ξ is not an eigenvalue), also complex, making the task of detecting the zero
point on a forced response curve challenging. We first therefore create a fully real counterpart of
the Jacobian matrix (this process was previously alluded to in [1]). Denoting by ℜ{z} and ℑ{z} the
real and imaginary parts of the vector of wave component harmonics z, Eq. (50) can be rewritten
as

Az = Aℜ{z}+ iAℑ{z}

=
[
A iA

] [ℜ{z}
ℑ{z}

]
. (51)

Symbols denoting the functional and parametric dependences of A are dropped in the above for
brevity. Decomposing the complex quantity Az into its real and imaginary parts denoted by ℜ{Az}
and ℑ{Az} respectively, yields the following fully real form of Eq. (50):[

ℜ{Az}
ℑ{Az}

]
=

[
ℜ{A} ℜ{iA}
ℑ{A} ℑ{iA}

] [
ℜ{z}
ℑ{z}

]
=

[
0
0

]
. (52)

The Jacobian matrix of this system,

Â =

[
ℜ{A} ℜ{iA}
ℑ{A} ℑ{iA}

]
, (53)

is fully real and its determinant will be real always.
Along a forced response curve, a zero-crossing of the determinant of A]λ=iξ will be the same as

a sign change in the determinant of Â
]
λ=iξ

. The quantity det(Â)
]
λ=iξ

will be referred to as the

Perturbation Eigenproblem Residue (PER) henceforth. The sign-change property will be clear if
elaborated upon in the following manner: suppose the true eigenvalues of Eq. (52) are denoted by
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γj with j being the index of the eigenvalue, we can write the the PER as a characteristic polynomial
in the following manner:

PER = pÂ(λ) = α

∞∏
j=1

(λ− γj)

= α
∞∏
j=1

|λ− γj |ei
∑∞

j=1 λ− γj (54)

Here |(.)| and (.) denote the absolute value and angle of their complex arguments respectively, and
α is some real constant. A sufficient condition for the existence and validity of such a polynomial
representation is the analyticity of the PER for all points λ on the complex domain. The existence
of a Taylor series representation is guaranteed in this case, justifying the use of the polynomial
form above. This is clearly the case here since λ only appears as smooth functions in the matrix
A(λ) (and therefore, in its determinant). This analyticity condition could be violated in some
problems with non-smooth nonlinearities (e.g., Filippov dynamical systems, see, for instance [10]).
In these cases, classical Floquet theory is not strictly applicable and further considerations become
necessary. We will presently not concern ourselves with such issues and proceed with the discussion
making note of the fact that this framework is invalid for such cases. We also note here that
there are no bounded values of λ for which the PER becomes unbounded; i.e., the characteristic
polynomial does not have any poles on the complex plane. It, however, has an infinite number
of zeros (despite the finite size of Â), referred interchangeably here as eigenvalues of the NEP,
consistent with that expected in continuum dynamics.

Since the PER is always real, the effective phase
∑∞

j=1 λ− γj is either 0◦ or 180◦. Consider
two points right before and after a transition in stability such as shown in Fig. 3. Just before the

critical point (point A in Fig. 3), the zero γ
(A)
m closest to iξ will lie just to its left (since the solution

is known to be stable) such that the quantity iξ − γ
(A)
m equals 0◦. Equivalently, the vector in the

complex plane joining γ
(A)
m to iξ points to the right since this solution is known to be unstable.

The total angle of the PER at this point can be expressed as the sum,

PERA =
∞∑
j=1
j ̸=m

iξ − γ
(A)
j + iξ − γ

(A)
m

=

∞∑
j=1
j ̸=m

iξ − γ
(A)
j , (55)

where the zero term is canceled in the final expression, which itself has to be either 180◦ or 0◦ since
the PER is a real quantity. Looking at a point just after the transition (point B in Fig. 3), the zero

γ
(B)
m has crossed through iξ and will now lie just to its right. Consequently, the quantity iξ − γ

(B)
m

now takes a value of 180◦, and we can express the total angle of the PER at this point as the sum,

PERB =
∞∑
j=1
j ̸=m

iξ − γ
(B)
j + iξ − γ

(B)
m

=

∞∑
j=1
j ̸=m

iξ − γ
(B)
j + 180◦. (56)
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Figure 3: A schematic forced response (stable: blue, solid lines; unstable: red, dashed lines) with

insets showing the complex plane including the point iξ, the corresponding closest zero γ
(A,B)
m , and

the complex vector (iξ − γ
(A,B)
m ) denoted using a line segment and terminal arrow. A and B are

two points on the response curve across the stability transition.

Around these transition points, due to the arbitrarily small change in the excitation frequency ω
and ensuing response amplitude, the zeros away from iξ are assumed to undergo only negligible

changes and therefore γ
(A)
j ≊ γ

(B)
j is assumed for j ̸= m. The first term in Eq. (56) is approximated

as PERA (see Eq. (55) above) and can be simplified as

PERB = PERA + 180◦. (57)

This shows that the difference in complex angle between the PER values across a critical point is
exactly 180◦. Since the PER is always a real number, this amounts to a sign change as mentioned
earlier. Similar reasoning can be employed to observe that a sign change will also happen at the
other critical point in Fig. 3 where the solutions transition from unstable to stable.

One drawback of the method presented is the fact that it can only predict stability changes
and it is not possible, in general, to determine the stability of a solution from just the sign or the
value of the PER. Exact stability determination would instead require knowledge of the location
in the left or right half-plane for all infinite number of γj , of which little can be said at this point.
An exploration of the necessary conditions for the PER sign change (stability transition is just a
sufficient condition) is deferred for future research. But the efficacy of the approach is empirically
demonstrated by the fact that it provides satisfactory estimates of the stable and unstable branches
on the response curve for both the numerical examples considered in [1].

4 Stability Results for an Example System

In this section we present stability results for the single-jointed example problem illustrated in
Fig. 1 and parameterized by quantities appearing in Tab. 1. Periodic solutions to this problem are
presented in [1], which also contains stability results for a second example problem consisting of
three bars connected by two nonlinear joints.

The stability boundary predicted by the strained parameter approach for a fixed excitation
frequency ω is a parabolic curve (known as a stability or Arnold tongue), in the P − K ′ space,
where P denotes the periodic stiffness and K ′ the constant stiffness of the parametrically-forced
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Parameter Value

Ey 262 GPa
ρ 1280 kg/m3

K 109 N/m
C 320 N/(ms−1)
Γ 108 N/m3

A 1.7145× 10−3 m2

l 1.0 m
α1 0.28

α1 + α2 1/3
α3 2/3

Table 1: Mechanical and geometric parameters used for the single-jointed bar example (see Fig. 1
for accompanying schematic).

system (recall ϵ set to 1) – such a curve will be presented later. If, in addition, we vary the frequency,
a stability surface results separating regions of stable and unstable parametrically-forced systems.
We present this surface in the subplots of Fig. 4 near the second natural frequency of the single-
jointed system shown in Fig. 1, and label it as the Stability Boundary – note that this boundary
is the same surface in all six sub-figures. The stability analysis is carried-out up to, and including,
first-order terms. When we return to the directly forced system, specifying values for the joint
linear and nonlinear stiffness, K and Γ, respectively, together with the excitation frequency ω
and response amplitude a∗ for a given periodic solution, yields a point in the K ′ − P − ω space;
see Eq. (13). If this point falls inside of the stability boundary, the solution is unstable, whereas
as if it falls outside, the solution is stable. If in addition we sweep frequency, response curves
result which lie in the same space - these appear in Fig. 4 as curves whose stable portions are
indicated by solid black lines, and whose unstable portions by dashed green lines. We present
solution curves at forcing levels of 7.5 MN, 15 MN, and 30 MN, and we provide two views for
each forcing level to aid visualization. It is important to note that while K is fixed along these
curves, K

′
is not, and thus the curves bend towards increasing K

′
as resonance is approached and

the response amplitude a∗ increases. If we also vary the linear stiffness K in the directly-forced
problem, we can generate a solution surface, shaded blue in Fig. 4 and labeled as the Solution
Manifold. The solution curves and manifold occupy more space inside of the stability boundary
as the forcing increases, as depicted in the progression of sub-figures. For example, at 7.5 MN
forcing, the solution manifold never intersects the stability boundary, indicating all solutions are
stable. In fact, the solutions for 7.5 MN forcing closely resemble the linear solutions such that
no appreciable bending of the frequency response curve occurs, and thus multiple solutions near
resonance have yet to appear. At 15 MN and 30 MN forcing, appreciable bending occurs together
with multiple solutions and the solution manifolds intersect with the stability boundaries. For these
forcing levels, the portions of the response curves associated with mid-amplitude response are now
unstable. Lastly, we note that the intersection of the surface manifold with the stability boundary
marks the Transition Boundary, as indicated by the solid magenta curves in the sub-figures.

We study the convergence of the stability tongues as the analysis order increases in Fig. 5. The
sub-figure on the left presents the frequency response curve for the single-jointed system studied,
evaluated with a forcing of 45 MN. At such a large forcing level, the ratio of nonlinear to linear
restoring force at resonance is 0.25, well-above that which can be expected for solution accuracy.
However, this forcing level yields three solutions whose stability can be used to test the accuracy
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of first-order versus second-order stability analyses. The three solutions are indicated in the left
sub-figure at 81.6 k rad/s using three markers. Subsequently, values for P and K

′
for each are

computed and indicated with the same markers in the right sub-figure, together with the stability
tongue corresponding to 81.6 k rad/s. We note from the right sub-figure that the stability tongues

(a)

(b)

(c)

Figure 4: Stability boundaries from the strained parameter approach and the solution manifolds
(first-order perturbation for both) of the single-jointed system corresponding to excitation ampli-
tudes of (a) 7.5 MN; (b) 15 MN; and (c) 30 MN. Two views of the surface are presented in each
sub-figure for clarity.
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(a)
(b)

Figure 5: Stability assessment of periodic solutions in the single-jointed system around the second
resonance, undergoing a 45 MN amplitude periodic excitation: (a) first harmonic periodic response
with three solutions indicated at 81.6 k rad/s, and (b) accompanying stability boundaries at 81.6 k
rad/s using first- and second-order stability analysis. Also shown in (b) are the P and K ′ pairs for
the three periodic solutions where, in both sub-figures, a circle denotes the low-amplitude solution,
square the mid-amplitude solution, and hexagram the high-amplitude solution.

match closely at low values of P , and thus only first-order stability is necessary to assess the stability
of solutions at low forcing, justifying the use of first-order analysis in Fig. 4. At higher forcing
amplitudes, the mid- and high-amplitude solutions correspond to larger values of P . If first-order
stability analysis is employed, the stability determination can be inaccurate, and thus second-order
stability must be employed. This is clearly documented in Fig. 5(b) where the high-amplitude
solution appears inside of the first-order stability tongue, erroneously suggesting unstable response.
However, using second-order stability analysis, this solution subsequently lies outside of the stability
tongue as the tongue appears rotated away from the first-order tongue. In our investigations of
solution response and stability using the WBVA and the strained parameter approach, focusing
specifically on the resonance peak where issues in stability prediction might arise, we have found
first-order analysis is always accurate for responses in which the ratio of nonlinear to linear restoring
force is less than 0.1.

Next we investigate the PER stability approach in the context of the single-jointed system. For
all frequency responses considered, we set ξ equal to the excitation frequency ω in detecting critical
points for which the sign of the PER changes. No critical points were found by setting ξ to ω/2,
implying that stability loss occurs only through the ξ = ω case for the present system, consistent
with the strained parameter approach. Figure 6 plots the frequency response and the perturbation
eigenproblem residue corresponding to the PWE solution of the single-jointed system harmonically
forced at an amplitude of 30 MN using both a linear and log scale. Specifically, we plot the PER,

det(Â)
]
λ=iξ

, evaluated using λ = iω. The left sub-figure shows the PER clearly changing signs at

the two bifurcation points in the frequency response curve, correctly indicating stability transitions
in agreement with the strained parameter approach. In the right sub-figure, the log value of the
PER drops sharply at the bifurcation points, but interestingly, shows a drop and local minimum
at approximately 79.8 k rad/s.

The PER approach does not provide insight into the mechanism for the log value exhibiting
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a local minimum at approximately 79.8 k rad/s. Revisiting the stability boundaries predicted by
the strained parameter approach, however, provides the requisite insight. Figure 7 presents the
stability boundaries when we carry-out the strained parameter approach to the first- and second-
orders. At the second order, which also necessitates the inclusion of third harmonic terms, K2 (and
thus K ′) goes unbounded at the same point in frequency where the PER exhibits a local minimum.
Examining the coefficient matrix A(3ω;K0) evaluated near the local minimum frequency, we find
that it has a zero eigenvalue at 79.7636 k rad/s. Since the determinant of a matrix equals the
product of its eigenvalues, it is apparent that 3ω at this frequency satisfies an internal resonance
condition. Further investigation of the internal resonance mechanism lies beyond the scope of this
paper, but may offer an interesting direction for follow-on efforts.

Lastly, Fig. 8 presents the finite element validation and PWE forced response solutions for the
single-jointed system, where we assess stability of the PWE solutions using the PER approach. We
note strong agreement between the two approaches in both the predicted response and accompa-
nying stability. Notably, at a forcing level of 45 MN, the ratio of nonlinear to linear restoring force
at resonance is over 0.7, which is well-beyond the validity region for the WBVA and the strained
parameter stability approach. However, the PWE combined with the PER stability approach
accurately captures both the frequency response and the multiple solution stability at all ampli-
tudes considered. This can be further contrasted with the poor performance of the finite-element
substitution approach discussed earlier and documented in Fig. 9a.

(a) (b)

Figure 6: Frequency response (first harmonic amplitude) of the PWE solution of the single-jointed
system undergoing harmonic excitation near the second resonance with amplitude 30 MN, along
with the perturbation eigenproblem residue using (a) a linear scale and (b) a log scale. Stability
transition points are denoted by red points, while the stable and unstable solutions are plotted in
blue and red, respectively.
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(a) (b)

Figure 7: First and second order stability boundaries from the strained parameter approach for the
single-jointed system.

(a) (b)

Figure 8: Comparison of the forced response stability predictions for the single-jointed system (a)
using the FE-HB approach with frequency domain Hill’s coefficients [5] for stability determination,
and (b) using the PWE frequency response and the PER stability approach developed in Sec. 3. In
all figures, the stable and unstable branches are plotted using solid and dashed lines, respectively.
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5 Concluding Remarks

As pointed out by previous researchers, a direct analysis of stability has been lacking in the literature
for nonlinear wave-based solution approaches. We address this deficiency by developing two direct
approaches, and then apply the methods to determine solution stability of an harmonically forced,
example two-bar system connected by a nonlinear joint. The first stability approach expands (or
strains) a stiffness parameter in the problem, which allows one to construct analytical stability
boundaries in the parameter space of the perturbed problem using a wave-based method. Not only
does this determine stability of periodic solutions arising from direct excitation of a continuous
system, but it also directly governs the response and stability of parametrically-forced continuous
systems, which is a new development in and of itself. The second stability approach is primarily a
computational tool which searches for sign changes in the residue of the perturbed eigenproblem.
The strained parameter approach holds for only moderate nonlinear response due to its reliance on
an asymptotic expansion; the PER avoids this limitation, and in fact is used to determine stability
of periodic solutions at large nonlinear response.

We now list some avenues for future research that were identified during the course of this
study. One issue with the PER approach, as presented herein, is that it can only determine
locations of stability change, and does not assess stability directly. Therefore, a PER approach
that can assess the latter warrants investigation. Further, the PER method described in this paper
only involves a sufficient condition for the sign change. An investigation of the necessary conditions
could potentially yield greater insights. Both stability approaches (strained parameter as well as
PER) rely on Floquet theory, whose applicability for non-smooth problems is not very clear at this
point. This will have to be studied in detail (see [10], for instance) to understand the theoretical
limitations of the methods more clearly. The internal resonance observed in the single-jointed
problem (see Fig. 6 and related discussions) should also be given additional attention.

Appendix A

In this appendix, the PWE approach [1] is used to obtain the frequency responses of the single
jointed system (Fig. 1) around its first resonance. We then project these solutions onto a 90-
element finite element mesh, for use as initial conditions, and estimate its monodromy matrix
using transient simulations over a single period. The predicted stability using this hybrid approach
is indicated in Fig. 9a. Comparing these stability predictions with pure finite element stability
predictions (Fig. 9b, which use frequency domain Hill’s coefficients [5]), shows that although the
response curves are nearly the same, the stability predictions contradict, specifically around the
peaks at large forcing levels. This shows that the hybrid approach can lead to incorrect conclusions
about solution stability, and motivates the need for direct wave-based stability approaches.
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